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part of U.S. patent application Ser. No. 15/460,129, filed on
Mar. 15,2017 (US 2017/0266371 Al, Sep. 21, 2017), which
itself claims the benefit under 35 USC § 119 of:

U.S. Provisional Patent Application Ser. No. 62/308,702,
filed Mar. 15, 2016;

U.S. Provisional Patent Application Ser. No.
filed Jul. 15, 2016;

U.S. Provisional Patent Application Ser. No.
filed Jul. 20, 2016;

U.S. Provisional Patent Application Ser. No.
filed Aug. 15, 2016;

U.S. Provisional Patent Application Ser. No.
filed Sep. 8, 2016;

U.S. Provisional Patent Application Ser. No.
filed Feb. 3, 2017; and

U.S. Provisional Patent Application Ser. No. 62/352,930,
filed Jun. 21, 2016, the disclosure of each of which is
incorporated herein in its entirety by this reference.

62/363,012,
62/364,472,
62/375,271,
62/385,124,

62/454,521,

TECHNICAL FIELD

The application relates generally to the field of cosmetic
and medical devices and associated methods and treatments,
and more specifically to precise bioelectrical stimulation of
a subject’s skin tissue, augmented with the administration of
a composition comprising, among other things, stem cells
and nutrients, useful to stimulate and treat the subject, the
subject’s skin tissue(s) and/or cells.

BACKGROUND

Various organs and tissues of the body, such as skin, lose
function due to aging. Other organs and tissues suffering
from loss of function have been treated with electrical
current to affect a change.

For example, U.S. Pat. No. 6,988,004 to Kanno and Sato
(Jan. 17, 2006), the contents of which are incorporated
herein by this reference, described a method for stimulating
angiogenesis. The method comprised electrically stimulat-
ing muscle below the threshold for muscle contraction and
increased VEGF mRNA.

For another example, see U.S. Pat. No. 7,483,749 (Jan.
27, 2009) to Leonhardt and Chachques, the contents of
which are incorporated herein by this reference, describes a
method for enhancing regeneration of the myocardium. The
method comprised applying electrical stimulation to an
injury site in the myocardium, and could be used in com-
bination with implantation of myogenic cells into the injury
site. The electrical stimulation could be applied before or
after an implantation. Also described was that a bioelectric
signal could recruit stem cells to the injury site.

BRIEF SUMMARY

Described is a skin regeneration therapy. The described
therapy combines precise bioelectric signals, light, and
biologics for skin treatment and regeneration. Precise bio-
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electric signals give clear instructions to the stimulated cell
DNA/RNA to produce specific regenerative proteins. Bio-
electric signals give clear instructions to cell membranes on
what to let in and what to let out and serve as an equivalent
or surrogate of environmental stimuli to cause a cell action
in response.

In certain embodiments, described is a combination of
bioelectrically induced stem cell homing, together with the
controlled release and/or expression of tropoelastin, and, for
example, a composition of mixed biological.

In certain embodiments, described is a combination of
bioelectrically induced stem cell homing, proliferation, and
differentiation, and the release and/or expression of tro-
poelastin.

Also described is bioelectric stimulator programmed to
activate release in a subject’s skin of, e.g., SDF-1, IGF-1,
EGF, HGF, PDGF, eNOS, VEGF, Activin A and B, A,
Follistatin, I1L.-6, HIF-1-c, and/or tropoelastin. Described is
a bioelectric stimulator including: a power source (e.g.,
battery, capacitor, or other suitable source of electricity), and
means for delivering an electrical signal to a subject’s tissue
(e.g., via electrode(s) or wirelessly). The bioelectric stimu-
lator utilizes the electrical signal to precisely control protein
expression in the tissue on demand. Such a bioelectric
stimulator preferably precisely controls release of SDF-1 in
the subject, without diminishing effect over time.

Also described is a method of using the bioelectric
stimulator to regenerate and/or recover a subject’s skin, the
method including: delivering selected electrical signals to
the skin so as to precisely control protein expressions in the
right sequence and volume for skin regeneration and recov-
ery.

Such a method can further include separately delivering to
the subject a cocktail of regenerative agents. A preferred
biological mix composition for such use includes (1) adi-
pose-derived stromal vascular fraction (SVF), a mixture of
growth factors including SDF1, IGF-1, IGF-1, PDGF, HGF,
GDF10, and/or GDF11, (2) platelet rich fibrin (“PRF”)
extended expression formulation, (3) amniotic fluid, (4)
exosomes, (5) micro RNAs, (6) a nutrient hydrogel (e.g.,
LUMANAIRE™ hydrogel cream or other stem cell extract
hydrogel based cream or gel), (7) alkaloids, (8) oxygenated
nanoparticles, and (9) skin matrix.

Also described is a method of using the bioelectric
stimulator in a subject’s tissue to control release of a protein,
wherein the electrical signal stimulates the production of a
protein selected from the group consisting of SDF-1, IGF-1,
HGF, EGF, PDGF, VEGF, HIF-1-a, eNOS, activin A,
activin B, IL-6, follistatin, tropoelastin, and any combination
thereof.

Also described is a method of using the bioelectric
stimulator in a subject to repair DNA in the subject’s skin,
the method including: generating electrical signals from the
bioelectric stimulator to control the release of IGF-1.

Also described is a method of using the bioelectric
stimulator to achieve a desired result in a subject, wherein
the desired result is skin regeneration or rejuvenation.

Also described is a bioelectric stimulator including: a
power source (e.g., battery, capacitor, or other suitable
source of electricity), and means for delivering an electrical
signal to a subject’s tissue (e.g., via electrode(s) or wire-
lessly), wherein the bioelectric stimulator utilizes the elec-
trical signal to precisely control stem cell homing, prolif-
eration and differentiation in the tissue. Such a bioelectric
stimulator preferably utilizes the electrical signal to pre-
cisely control protein expression.
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A preferred system includes:

1. A bioelectric stimulator that controls/stimulates the
release/production of SDF-1, IGF-1, EGF, HGF, PDGF,
eNOS, VEGF, Activin A and B, Follistatin, I1L.-6, HIF-
1-a, and tropoelastin.

2. A micro infusion pump (e.g., a FLUIDSYNC™ micro-
pump available from Fluidsynchrony of Pasadena, CA,
US), which is programmable and re-Tillable and pref-
erably has a low cell damage design. Such a pump
preferably includes a refilling silicon septum port or
ports and reservoir chambers.

3. A multi-component composition that includes, for
example, adipose-derived stem cells, muscle-derived
stem cells (when needed for muscle), exosomes, Micro
RNAs, nutrient hydrogel, growth factor cocktail, skin
matrix, selected alkaloids, and/or selected anti-inflam-
matory agents.

The pump and stimulator may be associated with (e.g.,
connected to) the skin area to be treated/regenerated with a
pacing infusion lead (available from Nanoscribe of Eggen-
stein-Leopoldshafen, Germany). The interface varies by the
location of the skin, e.g., a conductive soft wrap can be used
for certain applications.

The stimulator can be designed to externally deliver all
regeneration promoting signals wirelessly to the subject’s
skin, associated tissue(s), and/or cells.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts a programmed bioelectric stimulator
together with a facemask and neck applicator. The facemask
delivers bioelectric signals as well as LED light to the
subject’s face and neck.

FIG. 2 depicts a programmed bioelectric stimulator
depicted alongside a U.S. quarter.

FIG. 3 depicts a micropump for use with the system.

FIG. 4 depicts an image of the signal (voltage and
frequency) associated with producing and/or expressing
Activin B at 6.0 mV, pulse width 100 ps, square wave.

FIG. 5 depicts an image of the signal (voltage and
frequency) associated with producing and/or expressing
EGF at 10V/em (5V here), 500 Hz, pulse width 180 ps,
square wave.

FIG. 6 depicts an image of the signal (voltage and
frequency) associated with producing and/or expressing
follistatin at 10V/cm, 50 Hz, square wave.

FIG. 7 depicts an image of the signal (voltage and
frequency) associated with producing and/or expressing
HGF at 3.5V, 10 second burst every 30 seconds, square
wave.

FIG. 8 depicts an image of the signal (voltage and
frequency) associated with producing and/or expressing
IGF-1: 3.0 mV, 22 Hz, square wave.

FIG. 9 depicts an image of the signal (voltage and
frequency) associated with producing and/or expressing
PDGF30%: 3V/em (100 mV here), 10 Hz, pulse width 200
Us, square wave.

FIG. 10 depicts an image of the signal (voltage and
frequency) associated with producing and/or expressing
PDGF230%: 20V/cm (7.0V here), 100 Hz, pulse width 100
Us, square wave.

FIG. 11 depicts an image of the signal (voltage and
frequency) associated with stem cell proliferation: 15 mV,
70 Hz, square wave.

FIG. 12 depicts an image of the signal (voltage and
frequency) associated with stem cell proliferation: 2.5-6.0 V
(4V here), 20 Hz, pulse width 200-700 us, square wave.
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FIG. 13 depicts an image of the signal (voltage and
frequency) associated with producing and/or expressing
SDF-1: 3.5 mV, 30 Hz, square wave.

FIG. 14 depicts an image of the signal (voltage and
frequency) associated with producing and/or expressing
tropoelastin: 60 mV, 50 Hz, square wave.

FIG. 15 depicts an image of the signal (voltage and
frequency) associated with producing and/or expressing
VEGF: 100 mV, 50 Hz, square wave.

FIG. 16 depicts an image of the signal (voltage and
frequency) associated with producing and/or expressing
SDF-1 (2”9 part): 0.25 mA (3.0V shown here), 100 Hz, 100
us pulse width, square wave.

DETAILED DESCRIPTION

Referring now to FIG. 1, depicted is a human use stimu-
lator and facemask for use with treatment of a subject’s face
and neck. As depicted in FIG. 2, the stimulator portion may
be about the size of two quarters (available from QIG
Greatbatch/Greatbatch, Inc. of Frisco, TX, US) (FIG. 2).
Depicted particularly in FIG. 1 are the face and neck mask
(with straps), controller/stimulator, and carrying case.

In certain embodiments, the device provides bioelectric
signaling sequences applied to the subject’s skin are ones for
(a) SDF-1 and/or PDGF (e.g., for stem cell homing to the
treated area), (b) VEGF, PDGF, HIF-1-a, CXCLS5, HGF,
EGF, SDF1, and/or eNOS (e.g., for growing new blood
vessels in the treated area), (c) tropoelastin (e.g., to increase
the elasticity of skin in the treated area), (d) follistatin (e.g.,
to improve muscle tone in the treated area), and (e) IGF-1
(e.g., for DNA repair due to aging and sun damage in the
treated area).

Preferably, a device provides bioelectric signaling
sequences applied to the subject’s skin are ones for (a)
SDF-1 (stem cell homing), (b) tropoelastin (to turn back on
the elasticity switch (“increase skin elasticity”) that turns off
at age 9 in humans), (¢) IGF-1 (for DNA repair), (d) VEGF,
SDF-1, HGF, EGF, PDGF, eNOS, HIF-1-a, CXCLS, tro-
poelastin, and/or EGF (for dermal skin repair), (e) IL’s (for
inflammation response/inflammation management), (f)
BMP proteins, and (g) Activin A and/or B.

In certain embodiments, a device provides bioelectric
signaling sequences applied to the subject’s skin are signals
for: (a) SDF-1 (e.g., for stem cell homing to the treated area),
(b) IGF-1 (e.g., for DNA repair due to aging and sun damage
in the treated area), (c) tropoelastin (e.g., to increase the
elasticity of skin in the treated area), and (d) VEGF (e.g., to
improve blood circulation in the treated area). Preferably,
such a device also provides bioelectric signaling sequences
for application to the subject’s skin for (e) PDGF, HIF-1-a,
eNOS, and/or CXCLS5, (e.g., to improve blood circulation in
the treated area), (f) stem cell proliferation, (g) stem cell
differentiation control, (h) extended PRF protein release, (i)
HGF (e.g., to enhance skin regeneration), and/or (j) EGF
(e.g., to aid or enhance skin regeneration).

The device may be similar in construction and form to the
NuFace® device of W0O2006/116728 (Nov. 2, 2006), the
contents of which are incorporated herein by this reference.
The NuFace® device comprises a hand-held housing from
which a pair of electrodes project and circuitry for estab-
lishing a potential difference between the electrodes so that
a microcurrent flows between the electrodes when the elec-
trodes are placed on the skin. For other devices adaptable for
use with the herein described system see, e.g., EP 0603451
Al to Paolizzi (Jun. 29, 1994) and U.S. Pat. No. 8,639,361
to Nathanson (Jan. 28, 2014), the contents of each of which
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are incorporated herein by this reference. Similar devices are
the LicHTSTIM MULTIWAVE™ device for LED light therapy.

While such devices may be adapted for use herein, these
prior art microcurrent devices were generally designed to
accelerate healing via “current of injury” signaling, to
improve mildly blood circulation and muscle tone and
provide mild pain relief. For example, traditional TENS
devices were designed to lower pain. Nearly all of these
devices have relatively fuzzy/noisy signals compared to new
modern precise bioelectric signaling stimulators, such as
those used and programmed herein. Traditional microcurrent
facial devices do not have specific, precise signals or
sequences for controlling the release of specific regeneration
promoting proteins on demand. Furthermore, even if they
were programmed with these signals, they do not have the
clarity of signal for the body to understand the instruction.
Bioelectrical stimulators, such as those described herein,
have precise programming to deliver precise clear signals to
control protein expressions on demand. These controlled
protein expressions are for very specific purposes.

In certain embodiments, the bioelectrical stimulation is
provided by a SkinStim Model 240 High Precision Bioelec-
tric and TENS Stimulator, which is pre-programmed for
SDF-1, VEGEF, IGF-1, and Tropoelastin Controlled Release.
Bioelectric microcurrent and LED Face Mask (inner and
outer views) such as a SkinStim Model 100 Micro-current
and LED face mask may be used to treat the forehead,
eyebrow, cheek, under-eye, jaw line, and jowls. Such a
device preferably has, e.g., neoprene masks and straps
(which are soft and oil and water resistant), a silicone outer
casing of micro-current nodes and strap clasps, LED
lights—rings that light up when mask is turned on, and metal
nodes and wiring on inside of mask for micro-current.

Traditional microcurrent or TENS facials did not control
with precision the release and/or expression of any of the
above. At most, they provided a temporary, slight improve-
ment of blood circulation. If there were however a surface
wound, these general “current of injury” signals demon-
strated accelerated healing.

In certain embodiments, a microcurrent and LED Mini-
Mask Model 200 micro-current mini face mask is used. For
applications just about the subject’s eyes, a SkinStim Eye-
Mask Model 100 microcurrent Eye mask may be used.

In certain embodiments, a pulsed laser light generator
(e.g., one available from Epimedica of San Clemente, CA,
US) is used to provide laser light therapy to the area to be
treated.

Methods and benefits of utilizing light and light emitting
diodes (LEDs) for phototherapeutic treatment are described
in U.S. Pat. No. 9,533,170 (Jan. 3, 2017) to Dye et al., U.S.
Pat. No. 8,945,104 (Feb. 3, 2015) to Boone, Il et al., and US
2006/0030908 A1 (Feb. 9, 2006) to Powell et al., the
contents of each of which are incorporated herein by this
reference.

Delivery may also/alternatively be through a micro-cur-
rent facial conductive massage glove wherein, for example,
electrodes associated with the bioelectrical stimulator are
used to apply the desired electrical therapies.

Further, bioelectric signals may be used to improve
muscle tone (follistatin for muscle tone improvement) and
with improved muscle tone, the appearance of the overlying
skin improves. Likewise, bioelectric signals may also be
used to improve blood flow (VEGF, eNOS, PDGF, and
HIF-1-c for blood circulation improvement). IGF-1, EGF,
HGF, Activin A+B, Follistatin and PDGF are expressed via
bioelectric signaling and are intended to promote skin regen-
eration and DNA repair.
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Typical subjects to be treated are humans, and the typical
areas of skin are the face, neck, arms, the back of hands,
legs, etc.

Skin regeneration compositions include basic skin regen-
eration compositions and advanced skin regeneration com-
positions. A basic skin regeneration composition contains,
e.g., amniotic fluid and membranes, platelet rich fibrin
(“PRF”) and PRF membranes, and nutrient engineered
hydrogel. An advanced skin regeneration composition typi-
cally contains autologous (from patient to patient) and/or
homologous stem cells (adipose-derived), Extracellular
Matrix (“ECM”) (skin matrix), micro RNAs, selected exo-
somes, selected alkaloids (e.g., tetraharmine), and oxygen-
ated nanoparticles.

For instance, in certain embodiments, the skin regenera-
tion composition contains bioelectric pre-treated stem cells
(e.g., adipose tissue-derived), stromal fraction (“SVF”),
PRF, selected growth factors, amniotic fluid, exosomes,
micro RNAs in a gel, nutrient hydrogel, oxygenated nan-
oparticles, and skin matrix.

Stem cells may be obtained using a same-day stem cell
process, which takes about 60 minutes. In such a process,
first, one obtains tissue sample from the subject. Then a fat
sample is processed using commercially available equip-
ment and kits. This tissue is combined with reagent centri-
fuge and platelet rich fibrin (“PRF”). The stromal vascular
fraction (“SVF”) is washed and filtered. Stem cells are
re-suspended in saline or platelet rich plasma (“PRP”) and
injected into the subject. The process may be repeated as
needed or desired.

The stromal vascular fraction (SVF) of adipose tissue is a
source of pre-adipocytes, mesenchymal stem cells (MSC),
endothelial progenitor cell, T cells, B cells, mast cells as well
as adipose tissue macrophages.

PRF may be provided by utilization of a SkinStim Bed-
side PRF Device or other platelet rich fibrin processing
device.

This composition is preferably delivered repeatedly with
a DerMaPENT™-like microneedle array over time. One such
microneedle system is disclosed in US20170028184A1 to
Godden et al. (Feb. 2, 2017) for a “Device and method of
skin care and treatment via microneedles having inherent
anode and cathode properties, with or without cosmetic or
pharmacological compositions,” the contents of which are
incorporated herein by this reference in its entirety.

A skin matrix is a composition comprising skin cells that
are to be treated. The skin matrix is believed to aid in stem
cell differentiation, but in any event is found to be useful in
the composition. It has been found that for the multicom-
ponent composition, cells plus selected growth factors are
better than just cells alone. See, e.g., Prochazka et al.
“Therapeutic Potential of Adipose-Derived Therapeutic Fac-
tor Concentrate for Treating Critical Limb Ischemia,” Cell
Transplantation, 25(9), pp. 1623-1633(11) (2016) and
“Cocktail of Factors from Fat-derived Stem Cells Shows
Promise for Critical Limb Ischemia,” world wide web at
sciencenewsline.com/news/2016012204520017 . html  (Jan.
22, 2016), the contents of each of which are incorporated
herein by this reference.

Useful hydrogels (and microRNA) are known and are
described in Mao et al. “13—Hydrogel fibrous scaffolds for
accelerated wound healing” Electrofluidodynamic Technolo-
gies (EFDT5) for Biomaterials and Medical Devices, pages
251-274 (2018), Bradshaw et al. “Designer self-assembling
hydrogel scaffolds can impact skin cell proliferation and
migration” Nature Scientific Reports, vol. 4, Article number:
6903 (2014), Wang et al. “Local and sustained miRNA
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delivery from an injectable hydrogel promotes cardiomyo-
cyte proliferation and functional regeneration after ischemic
injury,” Nat Biomed Eng. 2017; 1: 983-992, doi: 10.1038/
s41551-017-0157-y, R. Boyle “Wound-Treating IJelly
Regenerates Fresh, Scar-Free Skin”, Popular Science, (Dec.
15, 2011), “New material developed for accelerated skin
regeneration in major wounds,” Science Highlight, (Na-
tional Institute of Biomedical Imaging and Bioengineering,
Dec. 17, 2015), and Jouybar et al. “Enhanced Skin Regen-
eration by Herbal Extract-Coated Poly-L.-Lactic Acid Nano-
fibrous Scaffold” Artif Organs. 2017 November; 41(11):
E296-E307. doi: 10.1111/a0r.12926.

Exosomes represent a specific subset of secreted mem-
brane vesicles, which are relatively homogeneous in size
(30-100 nm). Exosomes have been proposed to differ from
other membrane vesicles by its size, density, and specific
composition of lipids, proteins, and nucleic acids, which
reflect its endocytic origin

Exosomes are formed in endosomal vesicles called mul-
tivesicular endosomes (MVEs) or multivesicular bodies,
which originate by direct budding of the plasma membrane
into early endosomes. The generation of exosomes to form
MVEs involves the lateral segregation of cargo at the
delimiting membrane of an endosome and inward budding
and pinching of vesicles into the endosomal lumen. Because
exosomes originate by two successive invaginations from
the plasma membrane, its membrane orientation is similar to
the plasma membrane. Exosomes from many cell types may
contain similar surface proteins as the cell from which it is
derived. Membrane proteins that are known to cluster into
microdomains at the plasma membrane or at endosomes,
such as tetraspanins (CD63, CD81, CD82), often are also
enriched in EVs. It is also thought that endosomal sorting
complex responsible for transport system and tetraspanins,
which are highly enriched in MVEs, play a role in exosome
production. How cytosolic constituents are recruited into
exosomes is unclear but may involve the association of
exosomal membrane proteins with chaperones, such as
HSC70, that are found in exosomes from most cell types.
MVEs are also sites of miRNA-loaded RNA-induced silenc-
ing complex accumulation, and the fact that exosome-like
vesicles are considerably enriched in GW182 and AGO2
implicates the functional roles of these proteins in RNA
sorting to exosomes. Exosomes are released to the extracel-
Iular fluid by fusion of MVE to the plasma membrane of a
cell, resulting in bursts of exosome secretion. Several Rab
GTPases such as Rab 27a and Rab27b, Rab11 and Rab35, all
seem to be involved in exosomes release.

Useful exosomes are known and described in Hu et al.
“Exosomes derived from human adipose mesenchymal stem
cells accelerates cutaneous wound healing via optimizing
the characteristics of fibroblasts,” Nature Scientific Reports,
vol. 6, Article number: 32993 (2016), Zhang et al. “Exo-
somes derived from human embryonic mesenchymal stem
cells promote osteochondral regeneration,” Osteoarthritis
and Cartilage, vol. 24, Issue 12, December 2016, pp.
2135-2140, and Wu et al. “MSC-exosome: A novel cell-free
therapy for cutaneous regeneration,” Cytotherapy, vol. 20,
Issue 3, March 2018, pp. 291-301.

Generally, the system hereof involves a bioelectric stimu-
lator controlling release of SDF-1, IGF-1, HGF, EGF,
VEGF, PDGF, eNOS, follistatin, Activin A and B, and
tropoelastin.

SDF-1 is generally for recruiting stem cells and maturing
blood vessels. IGF-1 is for DNA repair. HGF is for tissue
regeneration. EGF grows tissue. VEGF grows blood vessels.
PDGF is a second stem cell homing factor and helps tissue
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regeneration. eNOS dilates blood vessels. Follistatin pro-
motes muscle growth. Activin A and B regenerates nerve
cells and neurons. Tropoelastin increases elasticity of all
tissues especially the skin.

The micro voltage signal generator may be produced
utilizing the same techniques to produce a standard heart
pacemaker well known to a person of ordinary skill in the
art. An exemplary microvoltage generator is available (for
experimental purposes from Cal-X Stars Business Accelera-
tor, Inc. DBA Leonhardt’s Launchpads or Leonhardt Vine-
yards LL.C DBA Leonhardt Ventures of Salt Lake City, UT,
US). The primary difference is the special electrical stimu-
lation signals needed to control, e.g., precise follistatin
release on demand (which signals are described later herein).
The leading pacemaker manufacturers are Medtronic, Bos-
ton Scientific Guidant, Abbott St. Jude, BioTronik and Sorin
Biomedica.

Construction of the electric signal generators and pace-
makers, are known in the art and can be obtained from OEM
suppliers as well as their accompanying chargers and pro-
grammers. The electric signal generators are programmed to
produce specific signals to lead to specific protein expres-
sions at precisely the right time for, e.g., optimal treatment
or regeneration.

An infusion and electrode wide area pitch may be con-
structed by cutting conduction polymer to shape and form-
ing plastic into a flat bag with outlet ports in strategic
locations.

Micro stimulators may be purchased or constructed in the
same manner heart pacemakers have been made since the
1960’s. Micro infusion pumps can be purchased or produced
similar to how they have been produced for drug, insulin,
and pain medication delivery since the 1970’s. The pro-
gramming computer can be standard laptop computer. The
programming wand customary to wireless programming
wands may be used to program heart pacers.

Any one of the protein expression signals work well on
their own, but they work better together. SDF-1 is the most
powerful regeneration protein followed by IGF-1.

Wireless, single lumen infusion pacing lead or an infusion
conduction wide array patch may all be used to deliver the
regeneration signals and substances to the area of interest or
they may be used in combination.

A re-charging wand for use herein is preferably similar to
the pacemaker re-charging wand developed by Alfred Mann
in the early 1970’s for recharging externally implantable
pacemakers.

A preferred composition includes adipose-derived cells
(or bone marrow-derived MSCs or any pluripotent stem cell,
such as iPS cells) and growth factor mix which should
include (SDF-1, IGF-1, EGF, HGF, PDGF, VEGF, eNOS,
activin A, activin B, follistatin, and tropoelastin plus
selected exosomes (miR-146a, miR-294, mES-Exo) plus
selected alkaloids (harmine and tetrahydroharmine) plus
selected anti-inflammatory factors plus nutrient hydrogel
(IGF-1, SDF-1, HGF plus FGF) plus skin matrix. Also,
preferably included are amniotic fluid, placenta, or cord
blood when available.

The concentration of cells in the compositions is prefer-
ably about 50,000,000 cells/ml. The amniotic fluid is pref-
erably as described in Pierce et al. “Collection and charac-
terization of amniotic fluid from scheduled C-section
deliveries,” Cell Tissue Bank, DOI 10.1007/s10561-016-
9572-7 (Springer, 2012) and is available from Irvine Scien-
tific.

Described is a method of activating a tissue to differen-
tiate a stem cell or to stimulate the tissue to produce a
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protein. The protein is selected from the group consisting of
insulin-like growth factor 1 (“IGF-17), epidermal growth
factor (“EGF”), hepatocyte growth factor (“HGF”), platelet-
derived growth factor (“PDGF”), endothelial NOS
(“eNOS”), vascular endothelial growth factor (“VEGF”),
activin A, activin B, follistatin, interleukin 6 (“IL-6"), hyp-
oxia-inducible factor 1-alpha (“HIF-1-c””), and tropoelastin,
the method including: stimulating the, e.g., human tissue
with an electrical signal appropriate for the protein and
tissue.

In such a method, when the electrical signal includes
(within 15%): 0.1V applied at a frequency of about 50 Hz
with a duration of about three (3) minutes (wherein the
electrical signal is as measured three (3) mm deep into the
tissue), the protein produced is VEGFE.

In such a method, when the electrical signal includes
(within 2%): 200 picoamps for about 10 seconds for about
one (1) hour and the pulse has an amplitude of about 5 volts
and a width of about 0.5 milliseconds for about 1 hour, with
a duration of about one (1) minute (wherein the electrical
signal is as measured three (3) mm deep into the tissue),
stem cells differentiate.

In such a method, when the electrical signal includes
(within 15%): 10V at 50 Hz and 100 Hz for about 12 hours
each (duration 1 minute) (wherein the electrical signal is as
measured three (3) mm deep into the tissue), the protein
produced is follistatin.

In such a method, when the electrical signal includes
(within 15%): 3.5V stimulation in 10 second bursts, 1 burst
every 30 seconds at a frequency of about 50 Hz (duration 5
minutes) (wherein the electrical signal is as measured three
(3) mm deep into the tissue), the protein produced is HGF.

In such a method, when the electrical signal includes
(within 15%): 3 mV with a frequency of about 22 Hz, and
a current of about 1 mA for about fifteen (15) minutes and
3 mA for about fifteen (15) minutes (duration 5 minutes)
(wherein the electrical signal is as measured three (3) mm
deep into the tissue), the protein produced is IGF-1.

In such a method, when the electrical signal includes
(within 15%): 0.06 V with 50 Hz alternating electrical field
and a current of about 1 mA for about fifteen (15) minutes
and 3 mA for about fifteen (15) minutes (duration 2 minutes)
(wherein the electrical signal is as measured three (3) mm
deep into the tissue), the protein produced is tropoelastin.

In such a method, when the electrical signal includes
(within 15%): alternating high-frequency (HF) and medium-
frequency signals (MF), symmetric, biphasic, trapezoid
pulses, with 400-us pulse duration and 1.5/1-s ramp-up/
ramp-down duration, respectively (wherein the electrical
signal is as measured three (3) mm deep into the tissue), the
protein produced is eNOS. In such a method, when the HF
consists of about 75 Hz pulses with six (6) seconds on and
21 seconds off for about fifteen (15) minutes. In such a
method, when the MF consists of about 45 Hz pulses with
5 seconds on 12 seconds off for about fifteen (15) minutes
followed by stimulation duration set as 20 minutes. In such
a method, when the electrical signal includes (within 15%):
1 Hz stimulation, stimulation applied for about nine (9)
seconds, followed by a one (1) second silent period, a total
of about 1080 stimulations for about 20 minutes. In such a
method, when the electrical signal includes (within 15%): 20
Hz stimulation, stimulation applied for about two (2) sec-
onds, followed by silent period for about 28 seconds, a total
of about 1600 stimulations for about 20 minutes (duration 2
minutes).

In such a method, when the electrical signal includes
(within 15%): 6 mV at 150 Hz Monophasic square wave
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pulse 0.1 ms in duration current of fifteen (15) mA for about
fifteen (15) minutes (duration two (2) minutes) (wherein the
electrical signal is as measured three (3) mm deep into the
tissue), the protein produced is Activin B.

In such a method, when the electrical signal includes
(within 15%): 10 V/cm, pulse-width 180 us, 500 Hz (dura-
tion nine (9) minutes) (wherein the electrical signal is as
measured three (3) mm deep into the tissue), the protein
produced is EGF.

For example, upregulation of IGF-1, VEGF, and SDF-1
was achieved in cardiomyocytes using such signals. Upregu-
lation of SDF-1 was achieved in pig heart. Upregulation of
VEGF, endothelial NOS (“eNOS”), hypoxia-inducible fac-
tor 1-alpha (“HIF-1-a), and IL.-6 was achieved in eye cells.

Also described is a method of activating a tissue to
produce stromal cell-derived factor 1 (“SDF-17), the method
including: stimulating the (e.g., human) tissue with an
electrical signal, wherein the electrical signal includes
(within 15%): 30 pulses per second with a voltage of about
3.5 mV, and successively alternating currents of about 700
to 1500 picoamps for about one minute, and again with 700
to 1500 picoamps for about one minute and stimulated with
current of about 0.25 mA, pulse duration of about 40
pulses/s, pulse width of about 100 ps, wherein the electrical
signal is as measured three (3) mm deep into the tissue (e.g.,
preferably for a period of time of about 20 minutes).

Further described is a method of activating a tissue to
attract a stem cell, the method including: stimulating the
(e.g., human) tissue with an electrical signal, wherein the
electrical signal includes (within 2%): fifteen (15) mV and
a current of about 500 picoamps at 70 pulses per minute for
about three (3) hours and 20 pulses per minute, a pulse
amplitude of from about 2.5-6 volts, and a pulse width of
from about 0.2-0.7 milliseconds for about three (3) hours for
about three (3) minutes, wherein the electrical signal is as
measured three (3) mm deep into the tissue.

In some cases, SDF-1 recruits via a presumed homing
signal new reparative stem cells to the damaged skin. VEGF
causes new nutrient and oxygen producing blood vessels to
grow into the area being treated. IGF-1 repairs damaged
cells and tissues. Follistatin repairs damaged muscle. Tro-
poelastin adds elasticity to treated tissues making them more
compliant. HGF aides in all repair processes. All of these
proteins work together to fully regenerate/rejuvenate the
skin tissue over time.

The healing process can be accelerated with the use of a
micro infusion pump that is filled with various types of stem
cells and growth factors and in some cases drugs.

What follows are preferred signals from the stimulator.
For example, described are two PDGF expression control
signals, one low voltage and one higher voltage. The test
tissue is sheep heart tissue. The test cells are mesenchymal
stem cells.

30% PDGF increase: 3 V/em, 10 Hz, 2 micro amps

(0.000002 amps) and the pulse duration 0.2 ms.

230% PDGF increase: 20 V/ecm 100 Hz, 0.25 mA (2.5e-7

amps) and pulse duration of 40 pulses/s, width of 100
us.

40 minute treatment cycles 2 times a week for 4 weeks

and then 3 times a week for 12 weeks.

PDGF Signal: 20V for 1 minute, 20 mV for 10 minutes,
current of 0.25 mA, pulse duration of 40 pulses/s, pulse
width of 100 us, and frequency of 100 Hz for 5 minutes
followed by 528 Hz for 3 minutes and 432 Hz for 3 minutes
and 50 Hz for 3 minutes.

VEGF—BIlood vessel sprouting growth: 0.1V applied at
a frequency of 50 Hz. Duration 3 minutes. In certain
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embodiments, the duration can be for a time of, e.g., from 10
to 40 minutes, wherein the percentage VEGF expression
increases with time.

SDF-1—Stem cell recruiting signal: 30 pulses per second
with a voltage of 3.5 mV, and successively alternating
currents of 700 to 1500 picoamps for one minute, and again
with 700 to 1500 picoamps for one minute and stimulated
with current of 0.25 mA, pulse duration of 40 pulses/s, pulse
width of 100 ps, and frequency of 100 Hz—each signal for
40 minutes to 8 hours a day for 2 to 36 months as needed for
ideal results. Duration 7 minutes.

Stem cell proliferation signals: 15 mV and a current of
500 picoamps at 70 pulses per minute for 3 hours and 20
pulses per minute, a pulse amplitude of from 2.5-6 volts, and
a pulse width of from 0.2-0.7 milliseconds for 3 hours.
Duration 3 minutes.

Stem cell differentiation signals to become muscle: 200
picoamps for 10 seconds for 1 hour and the pulse has an
amplitude of 5 volts and a width of 0.5 milliseconds for 1
hour. Duration 1 minute. Another method is to reverse
polarity and drop the voltage.

Stem cell differentiation signal to become skin: low-
voltage square wave with 60 ms pulse duration for one to
seven cycles, then reverse polarity to a negative square wave
for one to fourteen cycles, which repeats, delivering 200
microAmps.

Follistatin—(muscle growth) production signal: 10V at
50 Hz and 100 Hz 0.25 mA. Duration 1 minute.

HGF—Hepatocyte growth factor (arrhythmia reduction)
signal: 3.5V stimulation in 10 second bursts, 1 burst every
30 seconds at frequency 50 Hz. Duration 5 minutes.

IGF-1: 3 mV with electric frequency of 22 Hz, and
electric current of 1 mA for 15 minutes and 3 mA for 15
minutes. Duration 5 minutes.

Tropoelastin: 0.06 V with 50 Hz alternating electrical field
and electric current of 1 mA for 15 minutes and 3 mA for 15
minutes. Duration 2 minutes.

eNOS: Alternating high-frequency (HF) and medium-
frequency signals (MF): Symmetric, biphasic, trapezoid
pulses, with 400-us pulse duration and 1.5/1-s ramp-up/
ramp-down duration, respectively. HF consisted of 75 Hz
pulses with 6 second on-21 second off for 15 minutes. MF
consisted of 45 Hz pulses with 5 second on-12 second off for
15 minutes. Followed by stimulation duration set as 20
minutes for both 1 Hz and 20 Hz stimulations. For 1 Hz
stimulation, stimulation is applied for 9 seconds, followed
by a 1 second silent period, a total of 1080 stimulations for
20 min. For 20 Hz stimulation, stimulation is applied for 2
seconds, followed by silent period for 28 seconds, a total of
1600 stimulations for 20 min. Duration 2 minutes.

Activin B: 6 mV at 150 Hz Monophasic square wave
pulse 0.1 ms in duration current of 15 mA for 15 minutes.
Duration 2 minutes.

EGF—10 V/em, pulse-width 180 ps, 500 Hz. Duration 9
minutes.

FIGS. 4-14 are images of the corresponding signals with
the name, voltage, and frequency of each signal written on
each image. eNOS and differentiation signals were omitted
due to of complexity or lack of frequency parameters. The
signals are to be further defined in terms of current and
frequency, not voltage and frequency as shown. The voltage
delivered to the cells will be different for each tissue type,
but with current all of the signals can be kept constant
regardless of tissue type. The device should have a current
driven signal (instead of voltage driven like most other
devices).
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Specifically, FIG. 4 depicts an image of the signal (voltage
and frequency) associated with producing and/or expressing
Activin B at 6.0 mV, pulse width 100 ps, square wave on a
TEKTRONIX® TPS 2024 four channel digital storage
oscilloscope. FIG. 5 depicts an image of the signal (voltage
and frequency) associated with producing and/or expressing
EGF at 10V/ecm (5V here), 500 Hz, pulse width 180 ps,
square wave. FIG. 6 depicts an image of the signal (voltage
and frequency) associated with producing and/or expressing
follistatin at 10V/cm, 50 Hz, square wave. FIG. 7 depicts an
image of the signal (voltage and frequency) associated with
producing and/or expressing HGF at 3.5V, 10 second burst
every 30 seconds, square wave. FIG. 8 depicts an image of
the signal (voltage and frequency) associated with producing
and/or expressing IGF-1: 3.0 mV, 22 Hz, square wave (for
a time of, e.g., from 10 to 40 minutes). FIG. 9 depicts an
image of the signal (voltage and frequency) associated with
producing and/or expressing PDGF30%: 3V/em (100 mV
here), 10 Hz, pulse width 200 ps, square wave. FIG. 10
depicts an image of the signal (voltage and frequency)
associated with producing and/or expressing PDGF230%:
20V/em (7.0V here), 100 Hz, pulse width 100 ps, square
wave. FIG. 11 depicts an image of the signal (voltage and
frequency) associated with stem cell proliferation: 15 mV,
70 Hz, square wave. FIG. 12 depicts an image of the signal
(voltage and frequency) associated with stem cell prolifera-
tion: 2.5-6.0 V (4V here), 20 Hz, pulse width 200-700 us,
square wave. FIG. 13 depicts an image of the signal (voltage
and frequency) associated with producing and/or expressing
SDF-1: 3.5 mV, 30 Hz, square wave. FIG. 14 depicts an
image of the signal (voltage and frequency) associated with
producing and/or expressing tropoelastin: 60 mV, 50 Hz,
square wave. FIG. 15 depicts an image of the signal (voltage
and frequency) associated with producing and/or expressing
VEGF: 100 mV, 50 Hz, square wave. FIG. 16 depicts an
image of the signal (voltage and frequency) associated with
producing and/or expressing SDF-1 (2nd part): 0.25 mA
(3.0V shown here), 100 Hz, 100 ps pulse width, square
wave.

In certain embodiments, a subject’s skin is first scanned or
analyzed with a device to determine what his or her needs
may be before treatment begins. The scanning/analysis can
be by, e.g., generating mechanical vibrations at position
adjacent the location to be an analyzed as described in, e.g.,
US 2003/0220556 A1 to Porat et al. (the contents of which
are incorporated herein by this reference) and/or by mea-
suring transmembrane voltage potential of a cell (see, e.g.,
Chernet & Levin, “Transmembrane voltage potential is an
essential cellular parameter for the detection and control of
tumor development in a Xenopus model,” Dis. Models &
Mech. 6, pp. 595-607 (2013); doi:10.1242/dmm.010835),
the contents of which are also incorporated herein by this
reference. See, also, Brooks et al. “Bioelectric impedance
predicts total body water, blood pressure, and heart rate
during hemodialysis in children and adolescents™ J. Ren.
Nutr., 18(3):304-311 (May 2008); doi: 10.1053/
jjrn.2007.11.008, the contents of which are incorporated
herein by this reference, describing the use of bioelectric
impedance to evaluate the variability of blood pressure,
systolic blood pressure, etc.

As used herein, “scanning” means measuring bioelectrical
electrical activity of skin, sometimes by placement of a bion
coil reader and transmitter in the skin, and direct that
information to a computer. The computer stores the bioelec-
trical read measurements of diseased skin and healthy skin
and makes a comparative exam classifying the skin into one
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category or another, which is much like a doctor using
information to make a diagnosis.

Scanners such as the Ina’Chi scanner, the Quantum Mag-
netic Resonance Analyzer (QMRA), the 3D Quantum
Health Analyzer Scan whole body organ health 2, Bopy-
Scan® scanner, and the “BIONic muscle spindle” are also
useful.

In an alternative embodiment, the analysis conducted by
the device comprises (or further includes) detecting minute
energy fields around the human body with, e.g., a “SQUID
magnetometer” (SQUID is an acronym for “Superconduct-
ing Quantum Interference Device”), able to detect biomag-
netic fields associated with physiological activities in the
subject’s body. A quantum resonant magnetic analyzer ana-
lyzes such fields. The magnetic frequency and energy of a
subject’s tissue(s) are collected by appropriately positioning
the sensor with respect to the portion of the subject’s
tissue(s) to be analyzed, and after amplification of the signal
by the instrument, the data are compared with standard
quantum resonant spectrum of diseases, nutrition, and other
indicators/markers to determine whether the sample wave-
forms are irregular using a Fourier approach.

In certain embodiments, bioelectric signaling is applied to
the area of skin to be treated in approximate 28 minute
treatment sessions twice a week for, e.g., up to 16 weeks (32
times total) utilizing, e.g., a benchtop bioelectric stimulator
and face mask. The bioelectric signaling is preferably
applied to the skin area to be treated as follows: (a) SDF-1
homing signal to recruit stem cells to skin for about seven
(7) minutes, (b) IGF-1 DNA repair signal for about four (4)
minutes, (¢) tropoelastin signal to increase skin elasticity for
about twelve (12) minutes, and (d) blood circulation
improvement signal sequence VEGF for about five (5)
minutes.

This “basic” program can be supplemented by supplying
further signaling (i.e., in addition to the foregoing) by
applying the following bioelectric signaling: (e) PDGF,
HIF1a, eNOS, CXCLS5 for advanced blood circulation, (f)
Stem cell proliferation, (g) Stem cell differentiation control,
(h) extended PRF protein release, (i) HGF for skin regen-
eration, and (j) EGF for skin regeneration.

A preferred treatment protocol for facial skin regenera-
tion, rejuvenation, and/or treatment comprises: 30 minutes
of bioelectric treatments (e.g., in clinic), twice a week for 16
weeks; PRF, amniotic fluid, stem cell injections (via, e.g.,
DERMAPEN™) once a week every four weeks for 16
weeks (four times total); amniotic fluid membrane applica-
tion once a week every eight weeks for 16 weeks (two times
total); daily bioelectric treatment (e.g., at home) for at least
15 minutes a day for 16 weeks; bioelectric micro-current
conductive globe facial massage once a week every four
weeks for 16 weeks (four times total); electroacupuncture
once a week every eight weeks for 16 weeks (two times
total); and LUMANAIRE™ hydrogel skin cream applied
morning and night every day for 16 weeks.

A preferred protocol follows. First, bioelectric signaling is
applied to the area to be treated in approximate 40 minute
treatment sessions twice a week for up to 16 weeks (32 times
total) utilizing, e.g., a benchtop bioelectric stimulator and
face mask. The preferably in-clinic precision bioelectric
signaling applied to the area is as follows:

(first) SDF-1 homing signal to recruit stem cells to skin

for about seven (7) minutes,

(second) stem cell to skin differentiation signal for about

three (3) minutes,

(third) IGF-1 DNA repair signal for about four (4) min-

utes,

10

15

20

25

30

35

40

45

50

55

60

65

14

(fourth) EGF epidermal growth factor signal skin repair
for about three (3) minutes,

(fifth) Tropoelastin signal to increase skin elasticity for
about twelve (12) minutes,

(sixth) Blood circulation improvement signal sequences
VEGF, PDGF, eNOS, HIFla, CXCLS, EGF, HGF, and
SDF-1 for about five (5) minutes,

(seventh) Muscle-toning signal follistatin for about two
(2) minutes,

(eighth) SDF-1 again for about one (1) minute, and

(ninth) Stem cell to skin differentiation again for about
one (1) minute.

Then, the foregoing bioelectric signaling is preferably

combined with any or all of the following:

DERMAPEN™ Micro Needle array delivery of a skin
regeneration composition mix that includes adipose tissue
derived stem cells, exosomes, micro RNAs, selected alka-
loids, hydrogel skin matrix, elastin, oxygenated nanopar-
ticles, platelet rich fibrin (“PRF”), amniotic fluid, and
selected growth factors such as SDF-1, IGF-1, EGF, HGF,
and PDGF or any combination thereof once a month for
about four (4) months (four times total)

DERMAPEN™ micro needle array delivery of PRF once
a month for about four (4) months (four times total). May or
may not be bioelectric energy enhanced.

DERMAPEN™ micro needle array delivery of amniotic
fluid once a month for about four (4) months (four times
total)

DERMAPEN™ micro needle array delivery of adipose
tissue derived stem cells once every two months for about
four (4) months (two times total)

At home Prizm Medical electrical stimulation with con-
ductive electro-massaging gloves once a week for 15 min-
utes for 16 weeks (sixteen times total)

Electroacupuncture with, e.g., simple electroacupuncture
pen once a month for about four (4) months (four times total)

LED pulsed light therapy 10 minutes twice a week via
combination bioelectric and light mask (32 times total)

Amniotic fluid membrane dressings once a month left on
for one hour (four times total).

DERMAPEN™ micro needle array delivery of oxygen-
ated nanoparticles once a month for four months (four times
total)

DERMAPEN™ micro needle array delivery of hydrogel
skin matrix once every other month for four months (two
times total)

Application of a hydrogel and stem cell matrix-based skin
cream twice a day for about sixteen (16) weeks once in the
morning and once before bed (224 times total). May or may
not be light or bioelectric energy activated or enhanced.

Used in conjunction with GOSEAR™ electroacupuncture
pen, DERMAPEN™ microneedle array for delivering stem
cells, amniotic fluid, and PRF. PRF bedside processing
device plus bioelectric PRF equals “BPRF.”

The invention is further described with the aid of the
following illustrative Examples.

EXAMPLES

The study is to enroll and treat patients to assess improve-
ment in the appearance of facial wrinkles utilizing a bio-
electric or biologics (PRF and amniotic fluid) therapy or a
combination of bioelectric and biologics therapy. The study
is to enroll and treat a minimum of 49 subjects (23 in
treatment Group A receiving a bioelectric treatment alone,
23 in treatment Group B receiving biologics treatment alone
and 23 in Group C receiving combined bioelectric and
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biologics treatment) with moderate facial wrinkles corre-
sponding to a grade of 4-6 on the validated Fitzpatrick
Wrinkle Assessment Scale.

Group A=Active Comparator: Bioelectric Treatment
Alone (treatment of facial wrinkle(s) with bioelectric
treatment only and hydrogel skin cream). Devices:
SkinStim Bioelectric Stimulation twice a week for 30
minutes for 12 weeks and once a week 20 minutes
electro face massages with Prizm Medical stimulator
and conductive gloves and hydrogel skin cream applied
twice a day morning and evening.

Group B=Active Comparator: Biologics Treatment Alone
(treatment of facial wrinkle with PRF and amniotic
fluid both delivered via a DERMAPEN™ micro needle
array and hydrogel skin cream comparison of bioelec-
tric versus biologics versus combined bioelectric and
biologics therapies).

Group C: Active Comparator: Combined Bioelectric and
Biologics Treatment (treatment of facial wrinkle with
bioelectric and biologic treatments) Devices: SkinStim
Stimulation twice a week for 30 minutes for 12 weeks
and once a week 20 minute electro face massages with
Prizm Medical stimulator and conductive gloves and
Biologics: Autologous PRF and amniotic fluid applied
via DERMAPEN™ microneedle array delivery once a
month for 3 months and hydrogel skin cream applied
twice a day morning and evening comparison of bio-
electric versus biologics versus combined bioelectric
and biologics therapies

Primary Outcome Measure:

1. Fitzpatrick Wrinkle Assessment [Time Frame: change
in Fitzpatrick Wrinkle Score between baseline and 90
days post treatment assessment.|

Subject photos will be evaluated using the 9-point Fitz-

patrick Wrinkle Assessment Scale at all follow up visits. An
improvement is noted by a decrease in the numeric Fitzpat-
rick Wrinkle score. The Fitzpatrick Wrinkle Assessment
ranges from 1-9. Wrinkle Score between baseline and 90
days post treatment assessment. Positive values indicate an
increase in score, while negative values indicate a decrease.
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What is claimed is:
1. A method of treating an area of a subject’s skin, the
method comprising:
applying the following bioelectric signals to the area of
the subject’s skin:
(a) a first bioelectric signal that upregulates expression
of stromal cell-derived factor 1 (SDF1) at the treated
area;
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(b) a second bioelectric signal that upregulates expres-
sion of platelet-derived growth factor (PDGF) at the
treated area;

(c) a third bioelectric signal that upregulates expression
of tropoelastin at the treated area;

(d) a fourth bioelectric signal that upregulates expres-
sion of follistatin at the treated area; and

(e) a fifth bioelectric signal that upregulates expression
of insulin-like growth factor 1 (IGF-1) at the treated
area; and

delivering platelet rich fibrin (PRF) and/or amniotic fluid

to the area of the subject’s skin.

2. The method according to claim 1, further comprising:

delivering to the area of skin a skin regeneration compo-

sition comprising bioelectric pre-treated stem cells,
bioelectric pre-treated adipose tissue-derived stem
cells, stromal fraction (SVF), growth factors, exo-
somes, micro RNAs in a gel, nutrient hydrogel, oxy-
genated nanoparticles, and extracellular matrix (ECM).

3. The method according to claim 1, wherein the PRF is
delivered via a microneedle system.

4. The method according to claim 1, wherein the amniotic
fluid is delivered via a microneedle.

5. The method according to claim 1, further comprising:

suspending stem cells in platelet rich plasma (PRP); and

injecting the thus suspended stem cells into the subject.

6. The method according to claim 1, further comprising:

delivering light emitting diode (LED) pulsed light therapy

to the area of the subject’s skin.

7. The method according to claim 1, further comprising:

delivering exosomes to the area of the subject’s skin.

8. The method according to claim 1, wherein the first
bioelectric signal has (within 15%) a frequency of 30 Hz,
square wave.

9. The method according to claim 1, wherein the first
bioelectric signal has a frequency of 100 Hz, square wave.

10. The method according to claim 1, wherein the second
bioelectric signal has a frequency of 10 Hz, square wave.

11. The method according to claim 1, wherein the second
bioelectric signal has a frequency of 100 Hz, square wave.

12. The method according to claim 1, wherein the third
bioelectric signal has (within 15%) a frequency of 50 Hz,
square wave.

13. The method according to claim 1, wherein the fourth
bioelectric signal has (within 15%) a frequency of 50 Hz,
square wave.
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14. The method according to claim 1, wherein the fifth

bioelectric signal has (within 15%) a frequency of 22 Hz,
square wave.

15. A method of treating an area of a subject’s skin, the

5 method comprising:
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applying the following bioelectric signals to the area of
the subject’s skin:

(a) a first bioelectric signal that upregulates expression
of stromal cell-derived factor 1 (SDF1) at the treated
area;

(b) a second bioelectric signal that upregulates expres-
sion of platelet-derived growth factor (PDGF) at the
treated area;

(c) a third bioelectric signal that upregulates expression
of tropoelastin at the treated area;

(d) a fourth bioelectric signal that upregulates expres-
sion of follistatin at the treated area; and

(e) a fifth bioelectric signal that upregulates expression
of insulin-like growth factor 1 (IGF-1) at the treated
area; and

delivering to the area of skin a skin regeneration compo-
sition comprising amniotic fluid, amniotic fluid mem-
branes, platelet rich fibrin (PRF), PRF membranes,
and/or nutrient hydrogel.

16. A method of treating an area of a subject’s skin, the

method comprising:

applying the following bioelectric signals to the area of
the subject’s skin:

(a) a first bioelectric signal having a frequency of 100
Hz, square wave, or (within 15%) 30 Hz, square
wave;,

(b) a second bioelectric signal having a frequency of 10
Hz, square wave, or 100 Hz, square wave;

(c) a third bioelectric signal having a frequency of
(within 15%) 50 Hz, square wave wherein the third
bioelectric signal is able to upregulate expression of
tropoelastin at the treated area;

(d) a fourth bioelectric signal having a frequency of
(within 15%) 50 Hz, square wave, wherein the fourth
bioelectric signal is able to upregulate expression of
follistatin at the treated area; and

(e) a fifth bioelectric signal having a frequency of
(within 15%) 22 Hz, square wave; and

delivering platelet rich fibrin (PRF) and/or amniotic fluid
to the area of the subject’s skin.
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