
US 20170168786A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2017/0168786 A1

Beckey (43) Pub. Date: Jun. 15, 2017

(54) SOURCE CODE GENERATION FROM (57) ABSTRACT
PROTOTYPE SOURCE Methods, systems, and computer program products for gen

erating source code from a compilable annotated Source
(71) Applicant: PAYPAL, INC., San Jose, CA (US) code prototype are disclosed. A computer-implemented

method may include receiving two or more schemas that
(72) Inventor: Christopher T. A. Beckey, Baltimore, each describe attributes of respective source code modules

MD (US) to be generated by a source code generator, receiving a
compilable source code prototype comprising annotations

(21) Appl. No.: 14/967,122 associated with the source code generator to generate each
of the respective source code modules, detecting the anno

(22) Filed: Dec. 11, 2015 tations from the source code prototype as part of generating
the respective source code modules, determining that one or
more of the annotations from the source code prototype Publication Classification
correspond with one or more attributes of a schema associ

(51) Int. Cl. ated with one of the respective source code modules to be
G06F 9/45 (2006.01) generated, and generating each of the respective source code
G06F 9/44 (2006.01) modules based on the annotations from the Source code

(52) U.S. Cl. prototype in view of attributes described in an associated
CPC. G06F 8/41 (2013.01); G06F 8/73 (2013.01) schema.

Serve achire 1.

Net Serief 12

18

f&
is s

Data Store
N

Softwafe Development
Eile

Patent Application Publication Jun. 15, 2017. Sheet 1 of 4

Source Code Generation System
3A

US 2017/O168786 A1

Data Receiver 4

Data Store
8.

Software Development
iyi Off?et

24N

Data Receiver 4N

Source Code Generator 50N

Source Code Copie?

Patent Application Publication Jun. 15, 2017 Sheet 2 of 4 US 2017/O168786 A1

Receive two or fore scher as each describing attributes of respective
source Code modules to be generated by a source code generator

Receive a compiled source code prototype comprising annotations
associated with the source code generator for generating each of the

respective source Code modies

Generate each of the source Code modules from the compiled source code
prototype based or the arrotations ir view of associated attributes

described in a corresponding scher a

Patent Application Publication Jun. 15, 2017 Sheet 3 of 4 US 2017/O168786 A1

Receive a source code prototype comprising annotations associated with a
Source Code generator for gerberating multiple source Code modules

304

Compile the source code prototype comprising the arrotations associated
with the source Code generator

Receive two or more schemas each describing attributes of respective
source code modules to be generated by the source code generator

Aralyze the source code prototype to gererate each of the respective
Source Code iodies associated with ore of the Correspondig Scheias

Detect the arrotations from the source code prototype as part of generating
the respective source Code modules

32

Analyze each one of the scheinas to generate each respective
Source Code rode

eterfire that Cr3 or fore of the arctatic is for the Sctice Code
prototype corresponding to one or more attributes of a schema associated

with a respective source code module being generated

36
Modify orie or more sections of prototype source Code associated with at
east one of the annotations by modifying the prototype source Code with
data from an associated section of the schema corresponding to the

respective source Code module being generated

F.G. 3

Patent Application Publication Jun. 15, 2017 Sheet 4 of 4 US 2017/O168786 A1

^{ry--
Neffork

\ 42

Nu

^ 400

. . Video Display
Source Code 4)

Generation Systern(s)
30A-3N Alpha-Numeric input Device
- 42

- CuSOf Contro Device
4:4.

Main Memory 404 :
Signal Generation evice

- - 45
instructions 422 erreror

Source Code - s:
Generation System(s)

13A-3N on Data Storage Device 418

Machine-Readable Storage Medium

instructions 422

Static Memory Source Code
46 Generation System(s)

39A430N

h

Y

US 2017/O16878.6 A1

SOURCE CODE GENERATION FROM
PROTOTYPE SOURCE

TECHNICAL FIELD

0001. The present disclosure generally relates to com
puter systems and, more particularly, to the generation of
computer source code and instructions for execution by
computer systems, computer networks, or Internet services.

BACKGROUND

0002 Computer programming generally refers to a
manual process where humans provide instructions to a
machine for processing and execution. For example, com
puter programmers enter source code written in a computer
programming language into a source code editor or inte
grated development environment (IDE). A compiler trans
forms or “compiles' the source code into a lower-level
machine-readable language. Such as assembly language or
machine code, for execution by a machine. Additionally,
Some compilers may compile source code into an interme
diate language for execution by an interpreter computer
program of a runtime environment.
0003) Automated source code generation refers to the
process of automatically creating source code from visual
elements placed in a graphical user interface (GUI) builder,
using input provided to a wizard program, programmati
cally, or based on templates written in a custom format other
than the computer language of source code that is to be
generated. However, Such methods of automated Source
code generation suffer from various deficiencies. For
instance, GUI builders and wizard-based source code gen
erators produce a limited amount of non-operational
“starter source code (e.g., outlines, skeletons, or stubs).
Computer programmers then apply a significant amount of
manual effort to augment the Small amount of generated
Source code to create a functioning software application. In
addition, programmatic source code generation is complex,
cumbersome, and prone to high-level syntactic errors.
0004 Template-based source code generators use custom
Syntax and formatting that introduces increased complexity
for computer programmers. For example, template-based
Solutions involve a proprietary validator to check and flag
errors in the custom syntax and formatting of associated
templates. However, these proprietary validators are unable
to detect syntactical errors present in computer language
Source code that is to be generated from a template. There
fore, most errors present in Source code generated from
custom templates are detected after source code already has
been generated from a template. As a result, computer
programmers perform the tedious and time-consuming tasks
of repetitively modifying a template and regenerating the
same desired source code until the generated source code
Successfully compiles and executes in the target computer
language. Accordingly, providing new, improved, and more
accurate ways of generating Source code is of importance.

BRIEF DESCRIPTION OF THE DRAWINGS

0005 Various examples of the present disclosure will be
understood more fully from the detailed description given
below and from the accompanying drawings of various
examples of the disclosure. In the drawings, like reference
numbers may indicate identical or functionally similar ele

Jun. 15, 2017

ments. The drawing in which an element first appears is
generally indicated by the left-most digit in the correspond
ing reference number.
0006 FIG. 1 is a block diagram illustrating a system
architecture, in accordance with various examples of the
present disclosure.
0007 FIG. 2 is a flow diagram for generating source code
from prototype source based on one or more schemas.
0008 FIG. 3 is a flow diagram for generating source code
from compilable prototype source based on one or more
schemas.
0009 FIG. 4 is a block diagram of an exemplary com
puter system that may perform one or more of the operations
described herein.

DETAILED DESCRIPTION

0010 Systems, methods, and computer program products
for generating source code modules from compilable source
code prototypes are disclosed. In examples of the present
disclosure, a source code generation system receives a
compilable source code prototype comprising source code
generation annotations to generate one or more source code
modules. A user may compile, test, debug, and execute the
Source code prototype before generating source code mod
ules from the prototype, for example, to Verify that gener
ated source code modules are reliable or defect-free.
0011. In an example, the Source code generation system
also receives two or more schemas that each describe
attributes of respective source code modules to be generated
from the source code prototype. The source code generation
system then generates each of the source code modules from
the Source code prototype based on annotations in the Source
code prototype and associated attributes described in a
corresponding schema. For example, the source code gen
erator may match an annotation from the source code
prototype with one or more attributes from a schema asso
ciated with a respective source code module being gener
ated. The Source code generation system then may modify
one or more sections of the source code prototype (or an
associated copy) by updating the Source code prototype with
data from an associated section of a schema corresponding
to the respective source code module being generated.
0012. Accordingly, aspects of the present disclosure
describe various ways of efficiently generating highly reli
able source code.
0013 FIG. 1 illustrates an exemplary system architecture
100 in which examples of the present disclosure may be
implemented. System architecture 100 includes one or more
server machines 110 one or more data stores 180, and one or
more client machines 102A, 102N connected via one or
more networks 104.
0014 Network 104 may be a public network (e.g., the
Internet), a private network (e.g., local area network (LAN)
or wide area network (WAN)), or any combination thereof.
In an example, network 104 may include the Internet, one or
more intranets, wired networks, wireless networks, and/or
other types of communication networks. Network 104 also
may comprise a wireless telecommunications network (e.g.,
cellular phone network) adapted to communicate with other
communication networks, such as the Internet. In addition,
network 104 may include one or more short-range wireless
networks or beacon networks.
00.15 Data store 180 generally refers to persistent storage
capable of storing various types of data, Such as text, audio,

US 2017/O16878.6 A1

Video, images, source code, executable computer instruc
tions, software applications, or generally any form of con
tent. In some examples, data store 180 may include a
network-attached file server, while in other examples data
store 180 may include other forms of persistent storage such
as an object-oriented database, a relational database, a
Source code revision and control system, and so forth.
0016 Client machines 102A, 102N generally may be a
personal computer (PC), laptop, mobile phone, tablet com
puter, server computer, wearable computing device, or any
other type of computing device (i.e., a client computing
device). Client machines 102A-102N may run an operating
system (OS) that manages hardware and software of the
client machines 102A-102N. A browser (not shown) may
run on client machines 102A-102N (e.g., on the OS of client
machines 102A-102N).
0017. The browser may be a web browser that can access
content and services provided by web server 120, applica
tion server 122, or a combination of web server 120 and
application server 122. For example, such content and
services may be provided via a cloud or network-based
application development environment (e.g., a web-based
integrated development environment) for writing, generat
ing, testing, and deploying various types of Software appli
cations. In an example, a web-based integrated development
environment (IDE) may be provided in a web browser or any
other type of application delivered via a network protocol
(e.g., a smart client IDE delivered via Hypertext Transfer
Protocol). In addition, other types of computer programs and
Scripts may be provided to and run on client machines
102A-102N.

0018 Server machine 110 may include one or more web
server(s) 120 and/or one or more application server(s) 122.
For example, web server 120 may provide text, audio, video,
images, source code, executable computer instructions, soft
ware applications, cloud-based software development envi
ronments, and/or other various types of content to and from
server machine 110 or other sources (e.g., data store 180
and/or client machines 102A-102N). Web server 120 also
may provide various web-based applications, services, busi
ness logic, and updates to server machine 110 and/or client
machines 102A-102N. Server machine 110 may locate,
access, and consume various forms of content and services
from a trusted (e.g., internal, known, associated) web server
120 or application server 122 and/or various other (e.g.,
external, unknown, unassociated) web and application serv
ers. Web server 120 also may receive text, audio, video,
images, source code, executable computer instructions, soft
ware applications, cloud-based software development data,
and/or other various types of content from client machines
102A-102N, which may be stored in data store 180 for
preservation and/or sharing of content.
0019. In an example, web server 120 is coupled to an
application server 122 that provides application services,
data, business logic, and/or APIs to server machine 110
and/or client machines 102A-102N. In some examples,
application server 122 provides one or more such services
independently, without use of web server 120.
0020. In an example, web server 120 may provide server
machine 110 and client machines 102A-102N with access to
one or more application server 122 services associated with
a cloud, network, or web-based source code generation
system 130-130N, or other type of source code generation
system 130-130N. Such functionality also may be provided

Jun. 15, 2017

as part of one or more different web applications, standalone
applications, systems, plug-ins, web browser extensions,
and application programming interfaces (APIs), etc. In some
examples, plug-ins and extensions generally may be referred
to, individually or collectively, as “add-ons.”
0021. In an example, client machines 102A-102N may
include or use an application associated with a service
provided by server machine 110 (e.g., Source code genera
tion system 130-130N). For example, various types of
computing devices (e.g., Smart phones, Smart televisions,
tablet computers, Smart wearable devices, Smart home com
puter systems, etc.) may use specialized applications to
access services provided by server machine 110, to issue
commands to server machine 110, and/or to receive content
from server machines 110-110N with or without visiting or
using web pages.

0022 Server machine 110 and each of the client
machines 102A-102N may include respective data receiver
140-140N modules, source code generator 150-150N mod
ules, and source code compiler 160-160N modules. In
various examples, such modules may be combined, divided,
and organized in various arrangements on one or more
computing devices. Client machines 110A-110N each also
may include a respective Software development environ
ment 112A, 112N. A software development environment
generally refers to a software application, Such as an inte
grated development environment (IDE) that allows users to
design, write, generate, compile, test, debug, and deploy
computer Source code and/or associated machine instruc
tions.

0023. In an example, one or more functions performed by
server machine 110 also may be performed by client
machines 102A-102N, in whole or in part. In addition,
functionality attributed to a particular component may be
performed by different or multiple components operating
together. Server machine 110 may be accessed as a service
provided by Systems or devices via appropriate application
programming interfaces (APIs) and data feeds, and thus are
not limited to use with websites.

0024 FIG. 2 is a flow diagram for generating source code
from prototype source based on one or more schemas. The
method 200 may be performed by processing logic that may
comprise hardware (e.g., circuitry, dedicated logic, program
mable logic, microcode, etc.), software (e.g., instructions
run on a general purpose computer system, dedicated
machine, or processing device), firmware, or a combination
thereof. Examples of method 200 are described with respect
to source code generation system 130 for the sake of
consistency. In addition, such examples generally apply to
other examples of source code generation systems 130A,
130N as described herein.

(0025 Method 200 begins at block 202 when data receiver
140 of source code generation system 130 receives two or
more schemas that each describe attributes of respective
Source code modules to be generated by source code gen
erator 150. In an example, a user or computer program may
invoke source code generation system 130 to automatically
generate a source code module for each of the two or more
schemas based on a compilable, annotated source code
prototype. For example, a software developer may use
Source code generation system 130 to generate multiple
different source code modules for a software application

US 2017/O16878.6 A1

using a source code prototype and a set of Schemas each
describing attributes of respective source code modules to be
generated.
0026. A software developer also may use a plurality of
different source code prototypes to generate various source
code modules based on one or more different sets of sche
mas. In an example, different Source code prototypes may
include, but are not limited to, (1) a source code prototype
for generating mutable source code modules with private
fields and associated accessor and mutator methods, (2) a
Source code prototype for generating immutable classes
having an inner builder class associated with a builder
pattern, and (3) a source code prototype for generating
immutable classes with “morph” fields to allow Java Speci
fication Request (JSR) validation (e.g., JSR-303, JSR-349.
etc.) or other validation to be performed on custom field
types.

0027. In an example, a “morph” field generally refers to
a special field where two versions of the same information
are maintained and kept in Sync. In one example, a first
version of a “morph” field (e.g., telephone number) appears
as a String object externally or outside of a source code
module. In addition, the Source code module maintains an
associated second version of the “morph” field in a validated
format (e.g., a custom telephone number data type or object
providing internal visibility and validation). Further, the
source code module keeps the two versions of the field in
sync to allow external visibility/usage in one format or data
type (e.g., Object, String, alphanumeric, numeric, etc.) and
internal source code visibility and validation in another
format (e.g., telephone number, driver license number, pay
ment identifier, personal identifier, and other custom data
types or objects).
0028. A source code prototype generally describes an
existing source code module written or created in a standard
computer language that is compilable by a native or standard
computer language compiler. For example, a source code
prototype may be a source code file written in the Java R.
programming language that is compilable using an industry
standard or compliant Java R compiler. Thus, a source code
prototype generally is a syntactically correct and compilable
module of Source code written in the same language as
Source code that is to be generated. In some examples,
Source code prototypes may be compilable, compiled, or
executable source code modules represented as Source code,
as an intermediate computer language (e.g., a Java R class
file or other file comprising an intermediate language), or as
machine-readable instructions.

0029. In general, compilable, annotated source code pro
totypes allow software developers to generate Source code
modules using a known computer language without having
to learn additional, non-essential proprietary syntax and
formatting associated with template-based solutions. In
addition, compilable native source code prototypes allow
developers to compile and test Source code prototype using
familiar Software development tools, including but not lim
ited to, source code editors, compilers, debuggers, and other
utilities, prior to generating source code modules. Allowing
Such analysis and testing on the Source code prototype prior
to source code generation is beneficial because it provides
Software developers with an opportunity to identify, exam
ine, and resolve issues with source code efficiently for the
purpose of ensuring that source code modules eventually

Jun. 15, 2017

generated from the Source code prototype will successfully
compile and operate as intended.
0030. In an example, a compilable source code prototype
comprises source code written in a computer language and
one or more annotations associated with source code gen
erator 150 of source code generation system 130. In one
example, annotations associated with Source code generator
150 are situated in various locations of a source code
prototype. In addition, such annotations provide flags or
instructions that code generator 150 uses when generating
Source code modules. For example, the Source code genera
tor 150 annotations may be included in a source code
prototype as comments or other special Statements that are
ignored by a compiler and retained in the Source code
prototype for processing by code generator 150. In general,
annotations are a special type of metadata that signal to code
generator 150 which elements of a source code prototype are
to be refactored when generating a source code module
based on a schema.

0031. At block 204, data receiver 140 of source code
generation system 130 receives two or more schemas each
describing attributes of respective source code modules to be
generated by source code generator 150. In an example, each
schema indicates a definition or interface specification of a
Source code module to be generated by Source code genera
tion system 130. For example, each schema may define one
or more attributes of a source code module that is to be
generated. Such attributes may include, but are not limited
to, a source code module name, a source code module access
modifier (e.g., public, private, protected, default, etc.),
Source code module variable names and types, source code
module variable values, source code module variable access
modifiers, Source code module function and method names,
one or more nested modules, or generally any other infor
mation describing attributes of a source code module that is
to be generated from a source code prototype.
0032. In general, a source code schema definition gener
ally refers to any representation of a source code module that
is to be generated. For example, one or more example
schema formats may include, but are not limited to, name
value pairs, JavaScript Object Notation (JSON) schemas,
Extensible Markup Language (XML) schemas, XML
Schema Definition (XSD) schemas, etc. In various
examples, these and other schema formats generally may be
used to represent attributes, structure, interfaces, and other
information used by source code generator 150 to generate
an associated Source code module from a source code
prototype. Further, source code modules generally refer to
any unit of compilable or executable source code or instruc
tions. For example, various types of Source code modules
that may be generated include objects, classes, packages,
Sub-packages, libraries, executable instructions, or any other
various units of Source code or instructions.

0033. At block 206, source code generator 150 of source
code generation system 130 generates each of the respective
Source code modules based on the annotations from the
source code prototype in view of attributes described in an
associated Schema. In an example, a user invokes source
code generation system 130 using one or more invocation
options that provide source code generation system 130 with
preliminary information and instructions for generating
Source code modules.

0034. In an example, a user may invoke source code
generation system 130 using a command line interface, a

US 2017/O16878.6 A1

Software development environment, a software development
environment add-on or plug-in (e.g., a Maven plug-in), a
build task, a package, a library, a programmatic call, an
application programming interface (API), a web service, or
in one or more other ways. In various examples, invocation
options associated with source code generation system 130
generally allow a user to indicate various information and
instructions that source code generator 150 uses to process
annotations in a source code prototype, to perform source
code generation based on a source code prototype and a
schema, to locate and identify a source code prototype, to
locate and identify one or more schemas, to identify a target
location for generated source code, etc.
0035. In an example, source code generator 150 gener
ates source code modules for each Schema received in block
202 by applying each specific schema to the Source code
prototype received in block 204. For example, source code
generator 150 may generate a Plain Old Java R. Object
(POJO) for each of a plurality of JSON schemas that each
describe a source code module that is to be generated from
a compilable Java R Source code prototype comprising a
plurality of source code generator 150 annotations. In one
example, Source code generator 150 generates a compilable
and executable mutable POJO object comprising accessors
and mutators (e.g., getter and setter methods) from a com
pilable Java R source code prototype based on a schema
definition. While various examples in the present disclosure
are described using the Java R computer programming lan
guage, such examples are applicable and generally may be
performed using any computer programming language (e.g.,
Ci, C, C++, Python, etc.).
0036. In an example, source code generator 150 analyzes
a compilable Java R Source code prototype to detect one or
more source code generator 150 annotations present in the
Source code prototype. For example, a compilable Java R.
Source code prototype may comprise one or more top-level
class annotations, builder class annotations, nested inner
class annotations, array type annotations, or other types of
Source code generator 150 annotations.
0037. In various examples, one or more different top
level class annotations may be used (1) to identify a root
class to use for generating Java R Source code from a
schema, (2) to identify a constructor that is to be refactored
as part of code generation based on attributes provided in a
schema, (3) to identify one or more fields to be used as
prototypes for generating field declarations, (4) to identify a
method to be used as an accessor prototype, (5) to identify
a method to be used as a mutator prototype, (6) to identify
a method to be used as a builder factory method, and (7) to
identify a constructor from a builder implementation to
create a class instance.

0038. In various examples, one or more different builder
class annotations may be used to create classes as inner,
public, and static, to avoid large constructors for immutable
classes. In one example, one type of builder class annotation
may be used to annotate an inner class within a source code
prototype that is to be used as a prototype builder. In
addition, another type of builder class annotation may be
used to annotate the build()method of a builder class.
0039. In various examples, different nested inner class
annotations may be used (1) to indicate a class in a source
code prototype that is to be used as an inner class, (2) to
mark a source code prototype inner class as a constructor,
accessor, or mutator, and (3) to indicate whether an inner

Jun. 15, 2017

class that is to be generated should be accessible within a
Source code module (locally), by source code units within a
system or application (intra-module), or by external sys
tems/applications (externally). In addition, different array
type annotations may be used (1) to identify a field to use as
a prototype for an array associated with unique elements,
and (2) to identify a field to use as a prototype for an array
associated with non-unique elements.
0040. In an example, source code generator 150 identifies
one or more annotations in a compilable Java R source code
prototype. For example, source code generator 150 may
identify an annotation based on a special source code
generation keyword, one or more special characters, or a
combination of special keywords and characters. In one
example, source code generator 150 processes annotations
present in a source code prototype based on a sequence. For
example, Source code generator 150 may process one or
more of the annotations based on an ordering of the anno
tations in a source code prototype file or associated repre
sentation. Source code generator 150 also may process one
or more of the annotations based on a predefined ordering
associated with one or more of annotations, a source code
prototype, a schema, or a source code module being gener
ated. In one example, Source code generator 150 searches a
Source code prototype for one or more annotations to
process based on a predetermined order of Source code
generation processing.
0041. In an example, source code generator 150 creates a
copy of a source code prototype being used to generate a
Source code module from a schema. For example, source
code generator 150 may create a new file or in-memory
representation of the Source code prototype that. Source
code generator 150 then may refactor the copy of the source
code prototype by inserting, replacing, updating, deleting, or
otherwise modifying various sections and/or annotations in
the source code prototype based on the schema.
0042. In an example, source code generator 150 deter
mines that an annotation detected in a source code prototype
is to be processed as part of generating a source code module
from a schema. Source code generator 150 then analyzes the
schema describing attributes of the Source code module
being generated to identify information in the schema asso
ciated with an annotation being processed from the Source
code prototype. For example, source code generator 150
may use a file name of the schema or a file name present in
the schema to name the Source code module that is being
generated (e.g., a Java R class). Source code generator 150
also may identify type declarations and fields from the
associated Schema to use when processing corresponding
annotations from the source code prototype.
0043. In an example, source code generator 150 inserts
information from a schema into a copy of the source code
prototype, removes one or more processed annotations from
the copy of the Source code prototype, and stores an updated
copy of the Source code prototype applied with information
from the schema in a target location as the generated source
code module. In various examples, a source code module
generated by source code generator 150 is a compilable and
executable unit of Source code or machine instructions that
may be used without further modification by a user.
0044 FIG. 3 is a flow diagram for generating source code
from compilable prototype source based on one or more
schemas. The method 300 may be performed by processing
logic that may comprise hardware (e.g., circuitry, dedicated

US 2017/O16878.6 A1

logic, programmable logic, microcode, etc.), Software (e.g.,
instructions run on a general purpose computer system,
dedicated machine, or processing device), firmware, or a
combination thereof. Examples of method 300 are described
with respect to source code generation system 130 for the
sake of consistency. In addition, Such examples generally
apply to other examples of source code generation systems
130A, 130N as described herein.
0045 Method 300 begins at block 302 when data receiver
140 of source code generation system 130 receives a source
code prototype comprising annotations associated with a
Source code generator for generating multiple source code
modules. In an example, a user invokes source code gen
eration system 130 to automatically generate multiple source
code modules from each of multiple schemas using a
compilable, annotated Source code prototype. In various
examples, a user provides one or more invocation options
and/or parameters to Source code generation system 130 for
the Source code generation. For example, a user may provide
a location and identity of a compilable, annotated Source
code prototype to generate source code modules from each
of a plurality of different schemas. In an example, a com
pilable, annotated Source code prototype is a source code
module in a standard computer language (e.g., Java, C#, C.
C++, Python, etc.) that is or compilable or has been com
piled by a compiler associated with the computer language.
0046. In an example, source code generation system 130
accepts and processes one or more invocation options and/or
parameters associated with generating source code. For
example, various invocation options and/or parameters may
include, but are not limited to (1) an option to specify a
directory or target location where generated Source code
modules are to be generated, (2), an option to specify a
directory, Source location, or directory tree where source
schema files are located, (3) an option to specify a base
package name for generated Source code modules, (4) an
option to specify a location, link, or URL indicating a source
code prototype file to use for generating respective source
code modules from corresponding schemas, (5) an option to
specify a mapping file to Supplement or modify schemas in
one or more ways prior to Source code module generation,
(6) an option to specify a relative location of source code
modules generated from an embedded schema (e.g., within
a parent source code module, as a top-level source code
module, etc.), (7) an option to generate JSR-303/349 con
straints or other validation as specified in a source Schema,
(8) an option to specify whether to allow a javaType in a
Source schema or to exit with an error when an instance of
javaType is detected, (9) an option to specify whether source
code generator 150 should attempt to clean up import
statements in a generated source code module, an option to
specify whether JavaScript Object Notation (JSON), Jack
son, or other annotations are to be added to generated Source
code modules, (10) an option to specify whether source code
generator 150 is to add debug information as comments in
generated Source code modules, (11) an option to specify
whether to generate immutable source code modules having
an inner builder class with “morph” fields having constraints
on custom types, (12) an option to specify whether to write
a source schema used to generate a source code module form
a source code prototype to the generated Source code module
(e.g., for debugging source code generator 150), or any other
options that provide information and instructions to code
generator 150.

Jun. 15, 2017

0047. At block 304, source code compiler 160 of source
code generation system 130 compiles the source code pro
totype comprising the annotations associated with source
code generator 150. In an example, a software developer
compiles a Java R source code prototype comprising one or
more source code generation annotations associated with
source code generator 150. For example, the software devel
oper may compile the Java R source code prototype with any
Java R compiler. In an example, a software developer com
piles, tests, debugs, and executes the annotated Java R source
code prototype prior to generating source code modules to
ensure that each Source code module eventually generated
from the prototype will Successfully compile, execute, and
operate as expected.
0048. At block 306, data receiver 140 of source code
generation system 130 receives two or more schemas each
describing attributes of respective source code modules to be
generated by the Source code generator. In an example, data
receiver retrieves and/or receives two or more schemas that
each provide a specification or interface describing attributes
for generating respective source code modules from a com
pilable, annotated source code prototype. In one example,
data receiver 140 receives multiple JavaScript Object Nota
tion (JSON). Extensible Markup Language (XML), or XML
Schema Definition (XSD) schemas, that each represent
attributes of respective Java R source code modules to be
generated from a Java R source code prototype. For
example, each Schema may provide one or more of a name
for the source code module to be generated, fields or
variables to be generated as part of the Source code module,
constructor information for the source code module to be
generated, accessor and mutator information for the Source
code module to be generated, one or more other (e.g.,
internal or external) source code modules to be generated in
association with the Source code module, etc.
0049. At block 308, source code generator 150 of source
code generation system 130 analyzes the source code pro
totype to generate the Source code modules. In an example,
Source code generator 150 reads and parses a compilable,
annotated source code prototype into a Document Object
Model (DOM) or other representation used for processing.
In one example, Source code generator 150 searches a source
code prototype for annotations of interest. For example,
Source code generator 150 may process annotations present
in a source code prototype or a copy of a source code
prototype based on a predetermined order.
0050. At block 310, source code generator 150 of source
code generation system 130 detects the annotations from the
Source code prototype as part of generating the respective
Source code modules. In an example, source code generator
150 analyzes a source code prototype (or a copy of the
Source code prototype) to identify and process a compilation
unit annotation representing the root or top level of the
Source code module being generated. Source code generator
150 then may analyze the source code prototype to identify
and process a top-level type-declaration annotation for the
source code module being. Source code generator 150 then
may analyze the source code prototype to identify and
process field and field property annotations for the Source
code module being generated. Source code generator 150
then may analyze the source code prototype to identify and
process accessor and mutator annotations for the Source
code module being generated. Source code generator 150
also generally may process annotations associated with a

US 2017/O16878.6 A1

Source code prototype in one or more different orders to
generate various source code modules under different con
ditions.

0051. In an example, source code generator 150 removes
annotations from a copy of the Source code prototype
serving as an intermediate representation of a source code
module that is being generated. For example, source code
generator 150 may remove each annotation individually
after each annotation is processed. Source code generator
also may remove one or more of the annotations after every
annotation has been processed accordingly. Thus, in various
examples, a generated Source code module, once generated,
may not comprise source code generator 150 annotations
that were present in an original source code prototype.
0052 At block 312, source code generator 150 of source
code generation system 130 analyzes each one of the sche
mas to generate each respective source code module. In an
example, source code generator processes each schema to
generate a corresponding source code module from a source
code prototype. For example, source code generator 150
may read and parse each schema describing attributes of a
source code module into a Document Object Model or other
representation.
0053. In an example, one or more of the schemas may be
original and unmodified, or pre-processed to update and/or
augment data from an original version of the schema. In one
example, each schema comprises a root schema class having
one or more definitions, one or more properties, one or more
types, one or more methods, etc. In addition, one or more of
the schemas may comprise one or more additional schema
classes each having one or more definitions, one or more
properties, one or more types, one or more methods, etc.
0054. At block 314, source code generator 150 of source
code generation system 130 determines that one or more of
the annotations from the Source code prototype correspond
to one or more attributes of a schema associated with a
respective source code module being generated. In an
example, each of one or more source code generator 150
annotations in a source code prototype are associated with
one or more corresponding elements in a schema describing
attributes of a source code module to be generated. In one
example, source code generator 150 maintains a mapping
between each of one or more source code generator 150
annotations that may be used in source code prototypes and
one or more corresponding schema elements that may be
used in a schema comprising attributes of a source code
module to be generated. For example, such mappings gen
erally allow source code generator 150 to process source
code prototype annotations in view of corresponding data
provided in a schema.
0055. In an example, source code generator 150 detects
and processes annotations in a source code prototype as part
of generating a source code module from a schema defini
tion. In one example, Source code generator 150 determines
a next annotation to process in a source code prototype.
Source code generator 150 then detects one or more
instances of the annotation to process in an original or copy
of the source prototype. Source code generator 150 then
examines a mapping between one or more annotations and
schema elements to determine which of one or more ele
ments of a schema to use when generating a section of
Source code associated with the annotation(s) being pro
cessed.

Jun. 15, 2017

0056. At block 316, source code generator 150 of source
code generation system 130 generates one or more sections
of prototype source code associated with at least one of the
annotations by modifying the prototype source code with
data from an associated section of the schema corresponding
to the respective source code module being generated. In an
example, source code generator 150 identifies one or more
elements of a schema associated with a source code proto
type annotation as part generating a source code module
from the schema. In one example, Source code generator 150
modifies a section of the Source code prototype associated
with the annotation being processed based on one or more
associated elements of the corresponding schema. Source
code generator 150 also may insert one or more new sections
or new statements of Source code into the source code
prototype based on an annotation in the source code proto
type and one or more associated elements of the correspond
ing schema.
0057. In an example, source code generator 150 gener
ates or replaces source code data associated with field
declaration and field property annotations with field and
field property element data from a schema. Source code
generator 150 further may generate or replace source code
data associated with accessor and mutator annotations by
iteratively processing each field declaration annotation asso
ciated with a source code module described in a schema file.
0058. In an example, source code generator 150 com
pletes processing of annotations in a source code prototype
to generate a source code module from a schema. Source
code generator 150 then continues by generating one or
more additional source code modules each corresponding to
other respective schemas. For example, source code genera
tor 150 may process the annotations in a source code
prototype in view of a second Schema to generate a second
Source code module associated with the second schema.
Source code generator 150 then may process the annotations
in a source code prototype in view of a third schema to
generate a third source code module associated with the
third schema, and so on and so forth.
0059. In an example, compiler 160 compiles one or more
of the Source code modules generated by Source code
generator 150. For example, compiler 160 may compile each
of the generated Source code modules automatically. In
addition, one or more of the generated Source code modules
then may be executed by one or more processing devices.
0060. In an example, a software developer modifies a
Source code prototype after generating Source code modules
from a series of schemas. For example, a software developer
may modify a source code prototype based on a change in
coding standards, based on a change in an industry speci
fication, to improve efficiency of the generated code, or to
refactor the code for any other reason. In one example, the
Software developer updates source code and/or annotations
in the source code prototype. The software developer also
may update one or more aspects of corresponding schemas
independently or in association with updates to the source
code prototype. The Software developer then may regener
ates each of the respective source code modules using the
modified source code prototype and Schemas to generate an
updated version of each source code module based on the
modified source code prototype.
0061 FIG. 4 illustrates a diagram of a machine in the
exemplary form of a computer system 400, within which a
set of instructions for causing the machine to perform any

US 2017/O16878.6 A1

one or more of the methodologies discussed herein may be
executed. In other examples, the machine may be connected
(e.g., networked) to other machines in a LAN, an intranet, an
extranet, or the Internet. The machine may operate in the
capacity of a server or a client device in client-server
network environment, or as a peer machine in a peer-to-peer
(or distributed) network environment. The machine may be
a personal computer (PC), a tablet PC, a set-top box (STB),
a Personal Digital Assistant (PDA), a cellular telephone, a
wearable computing device, a web appliance, a server, a
network router, Switch or bridge, or any machine capable of
executing a set of instructions (sequential or otherwise) that
specify actions to be taken by that machine. Further, while
only a single machine is illustrated, the term “machine' shall
also be taken to include any collection of machines that
individually or jointly execute a set (or multiple sets) of
instructions to perform any one or more of the methodolo
gies discussed herein.
0062. The exemplary computer system 400 includes a
processing device (processor) 402, a main memory 404
(e.g., read-only memory (ROM), flash memory, dynamic
random access memory (DRAM) Such as Synchronous
DRAM (SDRAM), double data rate (DDR SDRAM), or
DRAM (RDRAM), etc.), a static memory 406 (e.g., flash
memory, static random access memory (SRAM), etc.), and
a data storage device 418, which communicate with each
other via a bus 430.
0063 Processor 402 represents one or more general
purpose processing devices such as a microprocessor, cen
tral processing unit, multi-core processor, or the like. More
particularly, the processor 402 may be a complex instruction
set computing (CISC) microprocessor, reduced instruction
set computing (RISC) microprocessor, very long instruction
word (VLIW) microprocessor, or a processor implementing
other instruction sets or processors implementing a combi
nation of instruction sets. The processor 402 also may be one
or more special-purpose processing devices Such as an
application specific integrated circuit (ASIC), a field pro
grammable gate array (FPGA), a digital signal processor
(DSP), network processor, or the like. The processor 402 is
configured to execute instructions 422 for performing the
operations and steps discussed herein.
0064. The computer system 400 also may include a
network interface device 408. The computer system 400
may further include a video display unit 410 (e.g., a liquid
crystal display (LCD) or a cathode ray tube (CRT)), an
alphanumeric input device 412 (e.g., a keyboard), a cursor
control device 414 (e.g., a mouse), and a signal generation
device 416 (e.g., a speaker).
0065. The data storage device 418 may include a com
puter-readable storage medium 428 on which is stored one
or more sets of instructions 422 (e.g., Software computer
instructions) embodying any one or more of the methodolo
gies or functions described herein. The instructions 422 also
may reside, completely or at least partially, within the main
memory 404 and/or within the processor 402 during execu
tion thereof by the computer system 400, the main memory
404 and the processor 402 also constituting computer
readable storage media. The instructions 422 may be trans
mitted or received over a network 420 via the network
interface device 408.

0066. In one example, the instructions 422 include
instructions for one or more modules of a source code
generation system (e.g., Source code generation system

Jun. 15, 2017

130-130N of FIG. 1) and/or a software library containing
methods that call a source code generation system 130
130N. While the computer-readable storage medium 428
(machine-readable storage medium) is shown as an example
to be a single medium, the term “computer-readable storage
medium’ should be taken to include a single medium or
multiple media (e.g., a centralized or distributed database,
and/or associated caches and servers) that store the one or
more sets of instructions. The term “computer-readable
storage medium also may include any medium that is
capable of storing, encoding or carrying a set of instructions
for execution by the machine and that cause the machine to
performany one or more of the methodologies of the present
disclosure. The term “computer-readable storage medium’
shall accordingly be taken to include, but not be limited to,
Solid-state memories, optical media, and magnetic media.
0067. Numerous details are set forth in the foregoing
description. However, it will be apparent to one of ordinary
skill in the art having the benefit of this disclosure that the
present disclosure may be practiced without these specific
details. In some instances, well-known structures and
devices are shown in block diagram form, rather than in
detail, to avoid obscuring the present disclosure.
0068. Some portions of the detailed description have
been presented in terms of algorithms and symbolic repre
sentations of operations on data bits within a computer
memory. Here, an algorithm is generally conceived to be a
self-consistent sequence of steps leading to a desired result.
The steps are those requiring physical manipulations of
physical quantities. Usually, though not necessarily, these
quantities take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared,
and otherwise manipulated. It has proven convenient at
times, for reasons of common usage, to refer to these signals
as bits, values, elements, symbols, characters, terms, num
bers, or the like.
0069. It should be understood, however, that all of these
and similar terms are to be associated with the appropriate
physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise as
apparent from the following discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as “computing.” “comparing.” “associating.” “applying.”
“transmitting,” “receiving,” “processing or the like, refer to
the actions and processes of a computer system, or similar
electronic computing device, that manipulates and trans
forms data represented as physical (e.g., electronic) quanti
ties within the computer system's registers and memories
into other data similarly represented as physical quantities
within the computer system memories or registers or other
Such information storage, transmission or display devices.
0070 Certain examples of the present disclosure also
relate to an apparatus for performing the operations herein.
This apparatus may be constructed for the intended pur
poses, or it may comprise a general-purpose computer
selectively activated or reconfigured by a computer program
stored in the computer. Such a computer program may be
stored in a computer readable storage medium, Such as, but
not limited to, any type of disk including floppy disks,
optical disks, CD-ROMs, and magnetic-optical disks, read
only memories (ROMs), random access memories (RAMs),
EPROMs, EEPROMs, magnetic or optical cards, or any type
of media suitable for storing electronic instructions.

US 2017/O16878.6 A1

0071. It is to be understood that the above description is
intended to be illustrative, and not restrictive. Many other
examples will be apparent to those of skill in the art upon
reading and understanding the above description. The scope
of the disclosure therefore should be determined with ref
erence to the appended claims, along with the full scope of
equivalents to which Such claims are entitled.

1. A computer system, comprising:
a non-transitory memory storing instructions; and
one or more processors coupled to the non-transitory
memory and configured to execute the instructions
from the non-transitory memory to cause the system to
perform operations comprising:
receiving two or more schemas each comprising

respective attributes corresponding to annotations in
a source code generation prototype that is compilable
in a native language;

creating a respective copy of the Source code genera
tion prototype for each one of the schemas;

generating a first source code module by modifying a
first copy of the source code generation prototype
created for the first schema based on mappings
between the respective attributes of the first schema
and corresponding annotations of the source code
generation prototype, the first source code module
being generated in the native language; and

generating a second source code module by modifying
a second copy of the Source code generation proto
type created for the second schema based on map
pings between the respective attributes of the second
schema and corresponding annotations of the Source
code generation prototype, the second source code
module being generated in the native language.

2. The computer system of claim 1, wherein the opera
tions further comprise:

compiling the source code generation prototype compris
ing the annotations using a compiler associated with the
native language prior to generating the first and second
code modules.

3. (canceled)
4. The computer system of claim 1, wherein the opera

tions further comprise:
searching the source code prototype for respective anno

tations corresponding to each one of the attributes in
one of the schemas based on the mappings.

5. The computer system of claim 1, wherein the first
Source code module and the second source code module are
generated based on a predetermined processing order asso
ciated with the Source code generation prototype annota
tions.

6. (canceled)
7. The computer system of claim 1, wherein the opera

tions further comprise:
modifying a section of code in the copy of the Source code

generation prototype created for the first schema based
on a mapping between a respective one of the annota
tions associated with the section of code and a corre
sponding attribute in the first schema.

8. The computer system of claim 1, wherein the opera
tions further comprise:

inserting, one or more new sections of Source code into
the first copy of the source code generation prototype
based on a mapping between one of the annotations in

Jun. 15, 2017

first copy of the Source code generation prototype and
one of the attributes in the first schema.

9. (canceled)
10. The computer system of claim 1, wherein the opera

tions further comprise:
compiling one of more of the source code modules

generated from the schemas and the Source code gen
eration prototype.

11. The computer system of claim 1, wherein the opera
tions further comprise:

executing one or more of the source code modules gen
erated from the schemas and the Source code generation
prototype.

12. (canceled)
13. The computer system of claim 1, wherein one or more

of the schemas are associated with an Extensible Markup
Language (XML) data format.

14. (canceled)
15. The computer system of claim 1, wherein the source

code modules are generated, at least in part, with the
assistance of a plug-in associated with a software develop
ment environment.

16. (canceled)
17. The computer system of claim 1, wherein the source

code generation prototype generates immutable objects
comprising morph fields, wherein each morph field com
prises multiple different versions of respective morph field
data that are kept in Sync.

18. (canceled)
19. A non-transitory computer-readable medium having

stored thereon machine-readable instructions executable to
cause a machine to perform operations comprising:

maintaining a mapping between each one of a plurality of
Source code generation annotations and respective
Source code generation attributes available for use in
Source code generation schemas, the source code gen
eration annotations comprising at least one top-level
class annotation, at least one builder class annotation,
and at least one nested inner class annotation;

receiving a source code generation prototype comprising
a plurality of the source code generation annotations,
the Source code generation prototype being written in a
native computer language and being compilable by a
compiler of the native computer language;

receiving a first Source code generation schema compris
ing a first set of one or more of the Source code
generation attributes, each one of the Source code
generation attributes in the first set being associated
with a respective source code generation annotation in
the mapping:

receiving a second source code generation schema com
prising a second set of one or more of the source code
generation attributes, each one of the Source code
generation attributes in the second set being associated
with a respective source code generation annotation in
the mapping:

generating a first Source code module from the first source
code generation schema and the Source code generation
prototype, at least in part, based on the respective
mappings between the Source code generation attri
butes in the first source code generation schema and the
Source code generation annotations in the source code
generation prototype; and

US 2017/O16878.6 A1

generating a second source code module from the second
Source code generation schema and the source code
generation prototype, at least in part, based on the
respective mappings between the source code genera
tion attributes in the second source code generation
Schema and the Source code generation annotations in
the source code generation prototype.

20. A computer-implemented method, comprising:
maintaining a mapping between each one of a plurality of

Source code generation annotations and respective
Source code generation attributes available for use in
Source code generation schemas, the source code gen
eration annotations comprising at least two or more of
a top-level class annotation, a builder class annotation,
a nested inner class annotation, or an array-type anno
tation;

receiving a source code generation prototype comprising
a plurality of the source code generation annotations,
the Source code generation prototype being written in a
compilable object-oriented language;

receiving a first schema comprising a first set of one or
more of the Source code generation attributes, each one
of the source code generation attributes in the first set
being associated with a respective source code genera
tion annotation in the mapping;

receiving a second schema comprising a second set of one
or more of the source code generation attributes, each
one of the Source code generation attributes in the
second set being associated with a respective source
code generation annotation in the mapping;

generating a first source code module from the first
Schema and the source code generation prototype, at
least in part, based on the respective mappings between
the Source code generation attributes in the first Source
code generation schema and the Source code generation
annotations in the source code generation prototype;
and

Jun. 15, 2017

generating a second source code module from the second
Schema and the Source code generation prototype, at
least in part, based on the respective mappings between
the Source code generation attributes in the second
Source code generation schema and the source code
generation annotations in the source code generation
prototype.

21. The computer system of claim 1, wherein source code
generation prototype comprises one or more top-level class
annotations and one or more builder class annotations.

22. The computer system of claim 1, wherein source code
generation prototype comprises one or more top-level class
annotations, one or more builder class annotations, and one
or more nested inner class annotations.

23. The computer system of claim 1, wherein source code
generation prototype comprises one or more top-level class
annotations, one or more builder class annotations, one or
more nested inner class annotations, and one or more
array-type annotations.

24. The non-transitory computer-readable medium of
claim 19, wherein one or more of the schemas are associated
with an XML Schema Definition (XSD) data format.

25. The non-transitory computer-readable medium of
claim 19, wherein the source code modules are generated, at
least in part, via a code generation application programming
interface (API).

26. The computer-implemented method of claim 20,
wherein the object-oriented language is the Java R computer
language, and wherein one or more of the first schema and
the second schema are JSON schemas.

27. The computer-implemented method of claim 20,
wherein the source code generation prototype generates at
least one morph field that maintains two or more different
versions of a respective data element that are kept in Sync
when a change occurs in one of the other different versions
of the respective data element.

k k k k k

