United States Patent

US011902284B2

(12) (10) Patent No.: US 11,902,284 B2
Du et al. 45) Date of Patent: Feb. 13, 2024
(54) TENANT USER MANAGEMENT IN CLOUD 9,843,587 B2* 12/2017 Meunier GO6F 21/10
DATABASE OPERATION 9,992,186 Bl1* 6/2018 Drozd HO4L 63/102
10,044,723 B1* 82018 Fischer HOAL 63/102
. 10,581,867 B2* 3/2020 Srinivasan HO4L 63/10
(71) Applicant: SAP SE, Walldorf (DE) 2007/0033393 AL* 22007 Ganesan HO4L 9/3226
)) 713/155
(72) Inventors: Long Du, Xi’an (CN); Haoxing Hou, 2009/0235346 Al* 9/2009 Steinberg GOGF 21/445
Xi’an (CN); Le Zhang, Xi’an (CN); 726/8
Jun Zhang, Xi’an (CN) (Continued)
(73) Assignee: SAP SE, Walldorf (DE) FOREIGN PATENT DOCUMENTS
(*) Notice: Subject to any disclaimer, the term of this WO WO02018/053337 Al 3/2018
patent is extended or adjusted under 35
U.S.C. 154(b) by 494 days. OTHER PUBLICATIONS
(21) Appl. No.: 17/194,141 B. Alouffi, M. Hasnain, A. Alharbi, W. Alosaimi, H. Alyami and M.
Ayaz, “A Systematic Literature Review on Cloud Computing Secu-
(22) Filed: Mar. 5, 2021 rity: Threats and Mitigation Strategies,” in IEEE Access, vol. 9, pp.
57792-57807, 2021. (Year: 2021).*
(65) Prior Publication Data (Continued)
US 2022/0286465 Al Sep. 8, 2022))
Primary Examiner — Kari . Schmidt
(51) Int. CL (74) Attorney, Agent, or Firm — Klarquist Sparkman,
HO4L 9/40 (2022.01) LLP
GO6F 21/62 (2013.01)
HO4L 9/32 (2006.01) 7 ABSTRACT
(52) US. CL A method of tenant user management in cloud database
cPe ... HO4L 63/105 (2013.01); GOGF 21/6218 operation can be implemented. The method can receive an
(2013.01); HO4L 9/32 (2013.01); HO4L 63/08 original job request from a user for a database service,
(2013.01) wherein the original job request can include a login creden-
(58) Field of Classification Search tial of the user. The method can authenticate the login
CPC ... HO4L 63/105; HO4L 9/32; GO6F 21/6218 credential of the user by a scheduler, verify the user has
See application file for complete search history. privileges for the original job request by the scheduler,
create a modified job request from the original job request by
(56) References Cited the scheduler based on a predefined role corresponding to

U.S. PATENT DOCUMENTS

the privileges of the user, send the modified job request from
the scheduler to a database service platform, and allocate an
instance of database service to the user in response to the

7,082,532 B1* 7/2006 Vickccovennnn HO04L 63/0815 .)
713/157 modified job request.
8,909,635 B2* 12/2014 Petriccoocevvenrrnns GO6F 16/907
707/732 13 Claims, 11 Drawing Sheets
it 1
User A 110a Jok requests A
1 120a Scheduler 130 it s ¥ instances 1502
Authentication
manager
User B 110b Job = |
T ragUes’s {1
DBaa® 1400 { |
1200 \ \/ instances 1500
Role
manager
i8g)
" 1 DBasS140n |
User M 110m Job reguests ‘ Instances 1500

100

US 11,902,284 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2011/0247059 Al1* 10/2011 Anderson GO6F 21/62
726/6

2012/0149325 Al* 6/2012 Tituscooevevvvinnne HO04M 11/04
455/404.2

2013/0007062 Al* 1/2013 Duttacccoeevenne. GOG6F 16/215
707/E17.055

2013/0151680 Al* 6/2013 Salinas ... GO6F 16/211
709/223

2013/0332618 Al* 12/2013 Kasivajjula HO4L 67/146
709/228

2016/0173500 Al 6/2016 Sharabi et al.

2018/0131517 Al* 5/2018 Blockccoeoewnne. HO04L 9/3226

2018/0367339 Al* 12/2018 Kleingeld-Mackenzie
HO4L 12/4633

2019/0199708 Al* 6/2019 Das ..o GOGF 9/45558

2019/0370484 Al* 12/2019 Klein GOGF 21/6227

2020/0007530 Al* 1/2020 Mohamad Abdul
HO04W 12/084

2020/0076817 Al* 3/2020 Gupta ... GO6F 21/41

2020/0186515 Al* 6/2020 Bansal GO6F 9/5027
2021/0326218 Al* 10/2021 Rachapudi . GO6F 11/3006
2022/0141212 Al* 5/2022 Kumar ... HO4L 63/0807

726/4

OTHER PUBLICATIONS

Rijah, Muhammed. “An Analysis of Security Issues in Cloud
Databases.” (2021). (Year: 2021).*

Rassam, Murad, Aishah Alfarhan, and Reem Alhussain. “Cloud
Database Security Issues and Challenges: A Review.” Journal of
Innovative Information and Communication Technology 1.1 (2021):
21-31. (Year: 2021).*

“Communication—FExtended European Search Report” from the
European Patent Office for European Application No. EP21213200.
5-1213, dated Jun. 3, 2022, 7 pages.

Ajmal Abbasi, “An Overview of One-Way SSL and Two-Way
SSL,” TutorialsPedia, https://tutorialspedia.com/an-overview-of-one-
way-ssl-and-two-way-ssl, printed Jan. 2, 2021, 8 pages.

Database Administrator’s Guide, “Scheduler Concepts,” Oracle
Help Center, https://docs.oracle.com/cd/B19306_01/server.102/
bl14231/schedoverhtm, on or before Mar. 4, 2021, 9 pages.
Database Security Guide, “Configuring Privilege and Role Autho-
rization,” https://docs.oracle.com/cd/B28359_01/network.111/b28531/
authorization.htm, Oracle Help Center, printed Feb. 9, 2021, 88
pages.

Faroog et al., “Database as a Service Concepts—360 Degrees,”
DBaaS—A Special Case of Cloud Computing, Building Database
Clouds in Oracle 12¢, https://www.informit.com/articles/article.
aspx?p=2521584&seqNum=2, Sep. 14, 2016, 3 pages.

Rami Honig, What is Database-as-a-Service (DBaaS)?, Stratoscale,
https://www.stratoscale.com/blog/dbaas/what-is-database-as-a-
service, printed Jan. 21, 2021, 10 pages.

Ariel Maislos, What to Consider When Using DBaaS Around the
World, DataCenter Knowledge, https://www.datacenterknowledge.
com/archives/2017/05/02/consider-using-dbaas-around-world, printed
Jan. 1, 2021, 13 pages.

“What is Database Clustering—Introduction and brief explanation,”
NDZ, https://www.ndimensionz.com/2018/01/05/what-is-database-
clustering-introduction-and-brief-explanation, printed Jan. 2, 2021,
4 pages.

“Scheduler Architecture,” Oracle Database Administrator’s Guide
11g Release 2 (11.2), https://docs.oracle.com/cd/E18283_01/server.
112/e17120/schedover004.htm, printed Feb. 6, 2021, 5 pages.
“SQL Grant, Revoke, Privileges and Roles,” Beginner SQL Tuto-
rial, https://beginner-sql-tutorial.com/sql-grant-revoke-privileges-
roles.htm, printed Feb. 6, 2021, 6 pages.

* cited by examiner

US 11,902,284 B2

Sheet 1 of 11

Feb. 13,2024

U.S. Patent

L "Old

UTET seousisu)

-

CZ?

ugyi Seeqdo

SUCT soouBSy]

Wik
sisanbas gop

Q01

¥

WHLT wiesn

087
iabeusw

210N

q0v1 seeaq w

BIET seousisuy)

|
I

B0YL seegd

gt

jeBeusiy
uspeEspusyiny

4Géy
sisenbes gop

GOLT g jesn

0ET sempayog

BGZT
sisenbas gop

g

fo

b Y desh

US 11,902,284 B2

Sheet 2 of 11

Feb. 13,2024

U.S. Patent

07 1senbey

gol payipowl 8y 0] SSUCSS! Ul Jesn oy} o] paubisse 8¢ UBD BOIAIDS SSRARIED IO SOUBISU UY

!

57 uuoped aorss eseqRIED B 0} 1senbses qof peyipow aul SpIBMIC) JBINpaYss

!

57 sesn sy o sebajaud
s o1 Buipuodsauos 810l peuyepssd ® Uo peseq jsenbas qol PBUIDOW B SSIBSID ISINDeYDS

w

7E7 19anbas gof auy Jo) sebeiaud SBY Josn 8y SSULSA J8Npayss

i

FF 1980 8Ul J0 Bruepe.s uiBo] g SSIENUSUINE JBINPaUSS

¥ sasn B wiol) 188nbas qol & SoAle08) J8Npsyos

00g

US 11,902,284 B2

Sheet 3 of 11

Feb. 13,2024

U.S. Patent

Ol s@inpauog

vl Asy oygng

I
SD0GT SRUBUACT

PN

00g

0%1 seegd

PLT renuspail

T1T Aay e1BAud

8T PiT
188 seRraQ 1SS JeHD
GIT Ao areAld 22T Aoy otand

ot 4080

077 sebeuspy uoBsUSYITY

US 11,902,284 B2

Sheet 4 of 11

Feb. 13,2024

U.S. Patent

212
BOIAJES BNUIUCY

Y

{G% spjood sepdn

m‘m@ aoiAles w:mmummv

A Awﬁﬁmm@mﬁﬁ@%zm. AAAAAAAAAAAAAAAAAAA ;
~ssed

ON

EF Jonpsyos ou) puUR JBSN Bl USBMIBG LOHRIILBUING [BMINUE ULIOLS

((((((((((((((((((((((& %ﬁmamgm%s& ~
N e P

83A

OIF 201A08 @SBURIRD € J0) JoSn B wioy 1senbal qol 8 sasosy

00

US 11,902,284 B2

Sheet 5 of 11

Feb. 13,2024

U.S. Patent

0GC sonpauss aul AQ oninos B U BiUspsId paidAioue syl suoig

4

T7C Jenpayos eu) o) Josn au] woy jeiuepas paydiious syl pues

{

035 Jenpsyos sy Ag peuusisp wipuobie uondAious
ousuiuASE s Buisn Josn syl Ag lenuspsis peydiious us siRisuBD)

3

5T semnpsyos syl Ag wyiobie uondAious JUISWILUASE UB SUILLISISG

4

5% J8NpsyDs BY) 01 498N U W0y [Biuspss wbol ¢ 4980 B puss

%

0T Jo8n sy} Ag Asy oiand aiy s1epiiea

f

TPC 1080 oy O IBINPBUDS o wol Asy ongnd B wimey

_ f

LT (11 gof 2 yuam Janpeyss & 0] Jasn e woy 1senbed gol e ywgng

004

US 11,902,284 B2

Sheet 6 of 11

Feb. 13,2024

U.S. Patent

0GT seourisul

el
B0y jeuieiUl

OE1 sinpsyog

ieb80

| | 05T seeaq

g8t
SISSN AN

(2
SO

00%

21 1senbas qop

FA:1N
IDOBYD
abejaid

g8t
sefiueyy 8j0y

08T
aq ebepaud

U.S. Patent Feb. 13, 2024 Sheet 7 of 11 US 11,902,284 B2

fou,
L
6]
@
i
M
3
3 3
<L 0
@ 8
2 &2
: 2
7| |a
= @ =
@ 0 &
X 2 2 -

700

US 11,902,284 B2

Sheet 8 of 11

Feb. 13,2024

U.S. Patent

FAIA
{s}eouBsul

poIBSOIY

00%

OET W= INUaEHOS

nat sebeusiy 90

BST enuspeus padisous

GOT ssesn Jugndg

0st
SOOUBISU
BldB{iRAY

0zt
sanbas gop

US 11,902,284 B2

Sheet 9 of 11

Feb. 13,2024

U.S. Patent

078 uuopeid geegc o1 1senbss gol peyipow pusg

$

005 1senbes gol aul wisesn oyond pauyspald syl Uim Jesn au eosidey

3

58 o0 pouyepaad suUl Yum 1esn oignd peuyepsid e S1RInonssy

¢

%8 sebayand peisenbes sy Busudwio s psuyepexd e Anusn)

S3A

{i55 90IAI8S 2UIDB0

)

2 gsebopaud

ON

026
aseqeiep ebspaud v ul pauyep Jesn au 1o sebepaud Enoe yum sebsojiaud paisenbes aedwon

t

{18 1sanbay gol au o Bupuodsauos sabajiaud paisenbal sthuusasy

006

U.S. Patent Feb. 13, 2024 Sheet 10 of 11 US 11,902,284 B2

COMPUTING ENVIRONMENT 1000} ~ommUNICATION

Fime T T T CONNECTION(S) 1070 [
central | | graphics or
processing o INPUT DEVICE(S) 1050

| |
| E
g 11

X Processing

g _unit 1010 44 Tt 1015) |
| |
| |

OUTPUT DEVICE(S)
1060

CMEMORY Y { MEMORY

SOFTWARE 1080 IMPLEMENTING TECHNOLOGIES

FIG. 10

U.S. Patent Feb. 13, 2024 Sheet 11 of 11 US 11,902,284 B2

1160

CLOUD COMPUTING SERVICES

COMPUTING v COMPUTING
Dizjs\/ ;CQE COMPUTING Dﬁf’g&z
DEVICE 1124
1122

US 11,902,284 B2

1
TENANT USER MANAGEMENT IN CLOUD
DATABASE OPERATION

BACKGROUND

Tenant user management in a cloud foundry is a funda-
mental task. Contemporary, rapid response to the cloud
foundry requirements and potential security risks make the
cloud database complicated for users to use. Further, the
resource race and database service preparation on the cloud
platform makes it challenging for job scheduling and quality
assurance. Accordingly, there is room for improved tenant
user management in cloud database operations.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an overall block diagram of an example com-
puting system configured to implement an improved tenant
user management technology in cloud database operation.

FIG. 2 is a flowchart illustrating an example overall
method of implementing the improved tenant user manage-
ment technology in cloud database operation.

FIG. 3 is an example block diagram illustrating an
example triple-side authentication.

FIG. 4 is a flowchart illustrating an example method of
implementing a dynamic cookie used in conjunction with
user authentication by a scheduler.

FIG. 5 is a flowchart illustrating an example method of
authenticating a user by a scheduler.

FIG. 6 is a block diagram illustrating an example system
for role-based user privilege management.

FIG. 7 is a block diagram illustrating an example topo-
graphic mapping between users, roles, and database ser-
vices.

FIG. 8 is a block diagram illustrating an example data
flow involving a scheduler implementing the role-based user
privilege management.

FIG. 9 is a flowchart illustrating an example method of
implementing the role-based user privilege management.

FIG. 10 is a block diagram of an example computing
system in which the described embodiments can be imple-
mented.

FIG. 11 is a block diagram of an example cloud comput-
ing environment that can be used in conjunction with the
technologies described herein.

DETAILED DESCRIPTION

Example 1—Overview of Tenant User Management
in Cloud Computing Environment

Multitenancy is a feature in many types of cloud com-
puting services, where a service provider can support mul-
tiple clients of different customers (called “tenants™) within
a cloud solution. In a database-as-a-service (DBaaS) envi-
ronment, multitenancy means that the cloud solution can
support multiple users accessing multiple databases from
multiple tenants, and each tenant can have one or more
databases. Users can be grouped into the multiple tenants,
where users of a tenant can share a common access with
certain specific privileges to the DBaaS instances. Users
who consume services do not need to manage the availabil-
ity of resources or capacity-related issues (e.g., CPU con-
sumption, storage consumptions, backup service consump-
tion, network bandwidth consumption, etc.). Instead, such
tasks are managed by DBaaS service providers. Thus, a
cloud service supported by DBaaS can be attractive to end

25

35

40

45

50

2

users because it can offer benefits of low maintenance cost,
overall reliability, high elasticity, etc.

From the DBaaS service provider’s perspective, however,
management of large-scale databases on cloud, especially
when the DBaaS includes many database clusters (which
may be geographically distributed), can be expensive. The
complexity of tenant user management in a distributed cloud
computing environment can be markedly increased due to a
variety of reasons, such as the exponential growth of user
base and the deployment of multiple distributed DBaaS
platforms. When many end users send job requests to
multiple DBaaS platforms for different services, security
risks can arise, and privilege management can be compli-
cated.

As one example, secure authentication of many users by
corresponding DBaaS platforms can be a challenging task.
All end users must safeguard their login credentials and may
be required to update them frequently. It is not uncommon
that users may inadvertently expose their passwords to
others or lose their credential data for various reasons.

As another example, end users can have different user
privileges and their job requests may have different priorities
and demand different resources. One particular challenge
can come from the agile development cycle. For example, if
a cloud database cluster is used by multiple teams and/or
different team members, the privileges for each team and/or
team member to use the database cluster needs to be
individually managed, thus leading to increased communi-
cation cost. The challenge can also come from variation of
resource usage and different roles played by end users. For
example, developers, testers, and customers can each have
their own unique configurations for using the database
clusters. Conventionally, user’s privilege management is
performed at the kernel of the database management system.
For example, individual user’s privilege can be configured
by one or more SQL commands (e.g., GRANT and
REVOKE) to provide or remove particular privileges (e.g.,
INSERT, UPDATE, SELECT, DELETE, etc.) for accessing
a particular database. As the databases are moved to the
cloud environment, software applications, as well as data-
base and cluster management are deployed as the DBaaS to
support more users and easier usage. However, such change
is accompanied by new challenges to cloud database pro-
viders because conventional method of user privilege man-
agement is hard to scale in the complicated DBaaS platform.
For example, still relying on the database management
system kernel to manage each user’s privilege becomes
untenable because such task can reduce or even deplete the
computing resources of the database management system. In
another example, the privileges to be managed are not
limited to conventional database access rights, instead they
can include access rights to some DBaaS specific features
that cannot be directly authorized by the database kernel,
such as the right to access database explorer (for DBaaS
administrative tasks), the right to access certain DBaaS
based enterprise software application, the right to access an
extraordinarily large amount of memory (e.g., >1 TB), the
right to clustering/replication, etc.

Thus, it would be advantageous for an improved tenant
user management system in the DBaaS environment that can
mitigate users’ security vulnerability and more efficiently
manage users’ privileges. Such improved tenant user man-
agement technologies can be applied across a wide variety
of enterprise software environments.

US 11,902,284 B2

3

Example 2—FExample Overview System for
Improved Tenant User Management in Cloud
Database Operation

FIG. 1 shows an overall block diagram of an example
database system 100 configured to implement an improved
tenant user management technology in a cloud foundry
environment.

As shown, the database system 100 can include a plurality
of DBaaS platforms 140a, 1405, . . . , 140% (collectively
140), each of which can respectively instantiate a plurality
of instances 150a, 1505, . . ., 150% (collectively 150). In a
typical example, the DBaaS platforms 140 can provide a
web-based administration tool for the administration, moni-
toring, and maintenance of enterprise databases in a cloud
computing environment. For example, each DBaaS platform
(e.g., 140a, 1405, . . . , 140n) can provide a single point of
access to a range of tools for a cluster of databases, and also
integrates development capabilities required by administra-
tors through a database explorer or browser. In addition, the
DBaaS platforms 140 can also start and stop services,
monitor the underlying databases, configure database set-
tings, and manage users and authorizations.

As depicted in FIG. 1, the database system 100 can
support a plurality of users 110qa, 1105, . . . , 110m (collec-
tively 110). In some examples, the users 110 can be grouped
into different tenants, each of which can have tenant-specific
roles and/or privileges. Each user can respectively send one
or more job requests (also referred to as “service requests”™),
e.g., 120a, 1204, . . ., 120m (collectively 120), for database
services from the DBaaS platforms 140. The database sys-
tem 100 can further include a scheduler 130 serving as an
intermediary between the job requests 120 sent by users 110
and the DBaaS platforms 140. Receiving a job request 120
from a user 110, the scheduler 130 can, after authenticating
the user and validating the user’s privileges, determine
which DBaa$ platform 140 should be used to serve the job
request 120 based on a number of factors, e.g., the location
of'the user 110 and its proximity to the DBaaS platform 140,
the computing resources required by the job request 120, etc.
The DBaasS platform 140 selected by the scheduler 130 can
then determine which instance(s) 150 need to be assigned to
the user 110 so that the assigned instance(s) 150 can coop-
erate to execute a job that satisfies the job request 120 while
balancing the load on the corresponding DBaaS platform
140. Generally, the scheduler 130 can schedule execution of
jobs (e.g., determining the time and/or sequence of job
execution), and enable limited computing resources to be
allocated appropriately among competing jobs. Since a job
can undergo multiple states from its creation to its comple-
tion, the scheduler 130 can also track the execution of jobs
and log related information (e.g., job status, the last run time
of the job, etc.).

As described herein, the scheduler 130 can be configured
to implement additional, advanced, technological features
beyond traditional platform selection and job scheduling
functions. Specifically, the scheduler 130 can include an
authentication manager 170 configured to implement triple-
site user authentication, and a role manager 160 configured
to implement role-based user privilege management, as
described more fully below.

In practice, the systems shown herein, such as system 100,
can vary in complexity, with additional functionality, more
complex components, and the like. For example, there can
be additional functionality within the scheduler 130. Addi-
tional components can be included to implement security,
redundancy, load balancing, report design, and the like.

10

15

20

25

30

35

40

45

50

55

60

65

4

The described computing systems can be networked via
wired or wireless network connections, including the Inter-
net. Alternatively, systems can be connected through an
intranet connection (e.g., in a corporate environment, gov-
ernment environment, or the like).

The system 100 and any of the other systems described
herein can be implemented in conjunction with any of the
hardware components described herein, such as the com-
puting systems described below (e.g., processing units,
memory, and the like). In any of the examples herein, the job
requests, the user’s credentials, the public and/or private
keys, the roles, and the like can be stored in one or more
computer-readable storage media or computer-readable stor-
age devices. The technologies described herein can be
generic to the specifics of operating systems or hardware and
can be applied in any variety of environments to take
advantage of the described features.

Example 3—FExample Overall Method for
Improved Tenant User Management in Cloud
Database Operation

FIG. 2 is a flowchart of an example overall method 200
of implementing the improved tenant user management
technology in a cloud foundry environment and can be
performed, for example, by the system of FIG. 1.

At 210, the scheduler (e.g., 130) can receive a job request
(e.g., 120) from a user (e.g., 110) for a database service. At
220, the scheduler can authenticate a login credential of the
user, e.g., by means of triple-site authentication described
below. At 230, the schedule can further verify that the user
has privileges for the job request. At 240, the scheduler can
create a modified job request based on a predefined role
corresponding to the privileges of the user. At 250, the
scheduler can forward the modified job request to a selected
DBaaS platform (e.g., 140). Then at 260, an instance of
database service can be assigned to the user in response to
the modified job request. For example, the DBaaS platform
can allocate or assign an instance of database service to the
user in response to the modified job request.

The method 200 and any of the other methods described
herein can be performed by computer-executable instruc-
tions (e.g., causing a computing system to perform the
method) stored in one or more computer-readable media
(e.g., storage or other tangible media) or stored in one or
more computer-readable storage devices. Such methods can
be performed in software, firmware, hardware, or combina-
tions thereof. Such methods can be performed at least in part
by a computing system (e.g., one or more computing
devices).

The illustrated actions can be described from alternative
perspectives while still implementing the technologies. For
example, “receive” can also be described as “send” from a
different perspective.

Example 4—FExample Triple-Side Authentication
Scheme

FIG. 3 is a block diagram 300 illustrating an example
triple-side authentication scheme according to the disclosed
technology.

As shown, the depicted authentication scheme involves
three sides: the user 110, the scheduler 130, and the DBaaS
platform 140. Before the user 110 can use any database
services provided by a DBaaS platform 140, the user 110
must be authenticated by the scheduler 130 and the sched-
uler 130 must be authenticated by the DBaaS platform 140.

US 11,902,284 B2

5

In some embodiments, two-way secure socket layer (SSL)
authentication, also referred to as mutual authentication, can
be performed between the user 110 and the scheduler 130,
and/or between the scheduler 130 and the DBaaS platform
140. Such triple-side authentication can be supported by the
authentication manager 170 contained in the scheduler 130.

In certain examples, the user 110 and the scheduler 130
can authenticate each other to ensure that both parties
involved in the communication are trusted. Specifically, the
authentication manager 170 can hold a public key 172,
which, through a client SSL. 174, can be paired with a private
key 112 held by the user 110 to authenticate the user’s login
credential 114 (e.g., username and password). Typically, the
user’s private key 112 and login credential 114 can be
included in the job request 120 sent by the user 110. As
described below, the scheduler 130 can specify an encryp-
tion algorithm which is used to encrypt the user’s login
credentials. Likewise, the scheduler 130 and the DBaaS
platform 140 can verify the identity of each other. For
example, the authentication manager 170 can hold a private
key 176, which, through a DBaaS SSL 178, can be paired
with a public key 142 held by the DBaaS platform 140 so
that the scheduler 130 can be authenticated by the DBaaS
platform 140.

In addition, the authentication manager 170 can maintain
a dynamic cookie 175. Specifically, after the user’s authen-
tication has been verified by the scheduler 130, the authen-
tication manager 170 can create the dynamic cookie 175,
which contains encrypted login credential 114 of the user
110 and can be used for scheduling future jobs of the user
110 (e.g., the authentication of the user 110 can be auto-
matically verified by using the user’s private key 112 to
decrypt the user’s login credential 114 contained in the
dynamic cookie 175). The user’s login credential 114 can
have a predefined validity period (e.g., one week, etc.) set by
the DBaaS platform 140 and administered by the scheduler
130. In other words, the user 110 can be required to
periodically update or change his login credential 114 in
order to use the services provided by the DBaaS platform
140. After the expiration of the validity period, the previ-
ously created dynamic cookie 175 will fail to authenticate
the user 110. Thus, the user 110 needs to be re-authenticated
by the scheduler 130 in order to access the DBaaS platform
140. In certain embodiments, the predefined validity period
can be cut short when certain activities are detected (e.g., an
abnormal or suspicious pattern of usage of database
resources, etc.). In such circumstances, the DBaaS platform
140 can instruct the scheduler 130 to re-authenticate the user
110. In certain examples, the scheduler 130 can generate a
dynamic passcode, e.g., a random string that expires within
a short time period (e.g., 5 minutes, etc.). The dynamic
passcode can be sent to the user, e.g., via SMS or email, to
verify the user’s identity and/or prompt the user to change
his login credentials. After a successful re-authentication,
the scheduler 130 can update or refresh the dynamic cookie
175 so that it contains the user’s updated login credential 114
so that it can be used again for scheduling future jobs of the
user 110. Note that the dynamic cookie 175 is stored on the
scheduler 130, not on local computers of the user, thus the
risk of exposing the user’s login credential (e.g., via decryp-
tion of the cookie) can be reduced.

In other words, the task of user authentication for using
the services provided by the DBaaS platform 140 can be a
part of the triple-side authentication scheme depicted in FIG.
3 and enabled by the authentication manager 170. Such
authentication scheme can be implemented through a pro-
tocol administered by the scheduler 130, where the protocol

10

15

20

25

30

35

40

45

50

55

60

65

6

specifies the encryption algorithm used for encrypting the
user’s login credential, the validity period of user’s login
credential specified by the DBaaS platform, the algorithm to
generate the dynamic passcode, etc. Thus, in contrast to the
conventional cloud database operations where a DBaaS
platform is usually responsible for authenticating thousands
or more users, the triple-side authentication scheme
described herein is more secure through an added authenti-
cation layer (i.e., the scheduler 130) and the dynamic cookie
mechanism. Further, the triple-side authentication scheme
can improve the overall efficiency by offloading the volu-
minous user authentication tasks to the scheduler 130, while
the DBaaS platform 140 only needs to authenticate the
scheduler 130.

Example 5—FExample Overall Method of User
Authentication Based on Dynamic Cookie

FIG. 4 shows a flowchart 400 illustrating an example
overall method of user authentication based on a dynamic
cookie (e.g., 175).

At 410, the scheduler (e.g., 130) can receive a job request
(e.g., 120) from a user (e.g., 110) for a database service. At
420, the authentication manager (e.g., 170) can perform
cookie authentication, i.e., to determine if the user’s private
key (e.g., 112) can properly decrypt the user’s login creden-
tial (e.g., 114) contained in the dynamic cookie. If the
dynamic cookie is successfully authenticated, the method
can continue services at 460 (e.g., checking user’s privileges
against the job request, as described further below). On the
other hand, if the authentication manager fails to authenti-
cate the user using the dynamic cookie, the method can go
to 430 to perform user authentication by the scheduler, as
described further in the following Example. The result of
such user authentication can be checked at 440. If such
authentication is successful, the scheduler can update the
dynamic cookie at 450 and continue services at 460. Oth-
erwise, the user’s service request will be declined at 470.

Example 6—Example Method of User
Authentication by Scheduler

FIG. 5 is a flowchart 500 illustrating an example method
of authenticating a user (e.g., 110) by a schedule (e.g., 130).

At 510, the user can submit a job request (e.g., 120) to the
scheduler with a job identifier (ID). The job ID can include
a timestamp and other job description information, and can
be generated in a random manner and/or sequentially. At
520, the scheduler can return or send its public key (e.g.,
172) to the user. At 530, the user can validate the scheduler’s
public key, e.g., by verifying the scheduler’s public key
through a certification authority. After such validation is
successful, at 540, the user can send his login credential
(e.g., 114) to the scheduler. At 550, the scheduler can select
or determine an asymmetric encryption algorithm (e.g.,
Digital Signature Algorithm, RSA algorithm, etc.) for the
user. At 560, the user can generate an encrypted login
credential using the asymmetric encryption algorithm
selected or determined by the scheduler. Then at 570, the
user can send his encrypted login credential to the scheduler.
After receiving the user’s encrypted login credential, the
scheduler can preserve such information in the dynamic
cookie at 580 for future cookie-based authentication pur-
pose, i.e., when there are following job requests by the user
requiring such a login credential, the scheduler can decrypt
it using his private key.

US 11,902,284 B2

7

Example 7—Example Overview of Role-Based
User Privilege Management

FIG. 6 a block diagram 600 illustrating an example
system for role-based user privilege management.

As shown, the scheduler 130 includes a role manager 160
which can serve as an intermediary between the job request
120 sent by the user 110 and the DBaaS platform 140. The
role manager 160 can include a privilege checker 162, a
plurality of predefined roles 164, and a plurality of pre-
defined public users 166 associated with or mapped to the
predefined roles 164. As described herein, public users 166
are virtual users existing only in the scheduler 130 and have
their own encrypted, pre-authenticated login credentials.
The default or assigned privilege information of all users of
the DBaaS platform 140 can be saved in a privilege database
180, which can be assessed by the privilege checker 162. In
addition, the scheduler 130 can include a logger 132 con-
figured to create internal logs 134 to record certain infor-
mation about job sessions corresponding to the job request
120.

As described herein, privileges of the user 110 define the
user’s access rights to services of the DBaaS platform 140.
As in conventional database management systems, user
privileges can include specific privileges of the user 110 to
operate directly on database objects, such as system privi-
leges of creating, altering, and/or dropping database tables,
and/or object privileges of selecting or updating records in
database tables, etc. Unlike conventional database manage-
ment systems, user privileges described herein can be more
expansive and include access rights to DBaaS platform
specific features, such as the right to visit DBaaS platform
administration website (e.g., the SAP HANA Cockpit pro-
vided by SAP SE, of Walldorf, Germany), the right to create
a private cloud, the right to visit DBaaS internal docker, etc.

In certain embodiments, the user’s job request 120 can
specify and/or define a list of requested privileges for the
job, e.g., in a configuration format. As an example, one such
privilege configuration can be: {disk: 128 GB; memory: 32
GB; CPU: 16; operation: r+w; explorer: yes; administrator
explorer: no; ERP: no}, which specifies that the job request
seeks 128 GB disk space, 32 GB memory space, 16 CPUs,
read and write access rights to the database, and the access
right to the regular database explorer, but does not seck the
access right to the administrative database explorer or the
enterprise resource planning (ERP) software application. As
described below, the privilege checker 162 can analyze the
job request 120 to compare user requested privileges with
his assigned privileges to determine the validity of the job
request 120.

As described herein, roles 164 are combinations of users’
privileges described above. Different roles generally have
different combinations of user’s privileges, and the number
of privileges contained in the roles can vary. For example,
one role can include a combination of multiple privileges
(e.g., the privileges to insert, update, select, or delete certain
database records, and the privileges to visit DBaaS platform
administration website), whereas another role can include
only a single privilege (e.g., the privilege to select certain
database records). In one example embodiment, the plurality
of predefined roles 164 can be saved in respective configu-
ration files located on the scheduler 130.

In an example embodiment, the plurality of roles 164
predefined by the scheduler 130 can cover all possible
combinations of users’ privileges for using all available
services provided by the DBaaS platform 140. In other
words, each user 110 can be mapped to one or more roles

10

20

25

30

35

40

45

50

55

60

65

8

164 predefined by the scheduler 130. FIG. 7 is a block
diagram 700 illustrating an example mapping between users
110, roles 164, and the DBaaS platform 140. In the depicted
example, two predefines roles A 164a and B 1645 are shown,
each containing a respective combination of privileges for
certain services provided by the DBaaS platform 140. As
illustrated, both user A 110a and user M 110m are mapped
to the predefined role A 164a, indicating the combination of
privileges contained in role A 164a can cover the access
rights of both user A 1104 and user M 110m. In other words,
user A 110a and user M 110m share the same privileges
contained in role A 164a. On the other hand, user B 1105 is
mapped to both role A 164a and role B 1645, indicating that
the user B 1105 needs the privileges contained in both roles
A and B in order to use services provided by the DBaaS
platform 140. The user-role mapping described herein estab-
lishes a protocol through which the DBaaS platform can
manage users’ privileges.

Because the total number of privileges for assessing the
DBaasS platform 140 is generally limited (e.g., less than 100)
and the roles 164 represent various combinations of users’
privileges, the total number of predefined roles 164 is also
generally limited (e.g., a few hundreds), which can be
significantly smaller (e.g., by a few orders of magnitude)
than the total number of users (e.g., millions) of the DBaaS
platform 140. Thus, by mapping different users 110 to
respective roles 164 predefined by the scheduler 130, a
significant dimension reduction can be achieved for user
privilege management. For example, in contrast to conven-
tional approaches where the database management system
kernel is responsible for verifying each user’s privileges, the
technology described herein can free the DBaaS platform
140 from direct interaction with the users 110 and offload the
task of user privilege management to the scheduler 130,
which can map a large cohort of users 110 to a much smaller,
and thus more manageable, set of predefined roles 164.

Example 8—FExample Method of Role-based User
Privilege Management

FIG. 8 is a block diagram 800 illustrating an example data
flow involving the scheduler 130 implementing the role-
based user privilege management. As noted above, the role
manager 160 can have a plurality of predefined public users
166. Each public user 166 can have its respectively
encrypted login credential 168 (e.g., username and pass-
word) that has been authenticated by default, i.e., the public
user 166 is pre-authorized to use services provided by the
DBaaS platform 140. As described herein, each predefined
role 164 can be associated with or mapped to at least one
public user 166. A public user 166 associated with or
mapped to a role 164 can inherit all privileges contained in
that role 164. In certain embodiments, a public user 166 can
be associated with or mapped to multiple roles 164. In such
cases, the public user 166 can inherit all privileges contained
in each of the multiple roles 164 associated with or mapped
to the public user 166.

When the scheduler 130 receives the job request 120, the
role manager 160 can (after verifying the user has privileges
for executing the job, as described further below) map the
user to one or more predefined roles 164, as described above.
Next, through the role manager 160, a public user 166 can
be associated with or mapped to the one or more predefined
roles 164 mapped to the user. Then the role manager 160 can
modify the job request 120 by replacing the user’s login
credential (e.g., 114) with the encrypted credential 168 of the
public user 166 that has been mapped to the one or more

US 11,902,284 B2

9

predefined roles 164. The scheduler 130 can then forward
the modified job request to the DBaaS platform 140, which
can select from the available instances 150 one or more
instances 152 to be assigned to the user. The scheduler 130
can then schedule these assigned instances 152 for job
execution.

In contrast to conventional user privilege management
method where the DBaa$ platform is directly responsible to
grant, alter, or revoke users’ privileges through SQL com-
mands, the role-based user management method described
herein operates through protocols. Specifically, the DBaaS
platform can use the scheduler as an intermediary, which can
map large groups of users into certain predefined roles, each
of which has a respective combination of privileges. Thus,
the DBaaS platform only needs to deal with a limited
number of predefined roles in the scheduler.

FIG. 9 a flowchart 900 illustrating an example method of
implementing the role-based user privilege management,
which can be implemented, e.g., by the role manager 160.

At 910, requested privileges corresponding to a job
request (e.g., 120) can be determined. The requested privi-
leges are privileges sought by the job request. For example,
a job request containing the task of deleting some data
records from certain database tables will need a DELETE
privilege to related database object, a job request sought to
perform some DBaaS administrative work will need a
special privilege to visit the DBaaS platform administration
website, etc. As noted above, in certain cases, the requested
privileges can be contained in the job request in a configu-
ration format. In an example embodiment, the privilege
checker 162 can be configured to analyze the job request to
determine what privileges are sought by the job request. At
920, the requested privileges can be compared with actual
privileges of the user, e.g., by the privilege checker 162. As
noted above, the actual privileges of the user can be saved
in the privilege database 180. Typically, actual privileges are
assigned to the user when the user registers with the DBaaS
platform. In certain embodiments, the user’s actual privi-
leges stored in the privilege database 180 can be specified in
a configuration format. For example, the actual privileges
assigned to a user can be: {disk: <256 GB; memory: <64
GB; CPU: <32; operation: r+w; database explorer: 2; ERP:
no}, which indicates that the user is limited to 256 GB disk
space, 64 GB memory space, and 32 CPUs, has read and
write access rights to the database, and the access right to the
regular database explorer (e.g., assuming the following
predefined codes: 1=no access right, 2=access right to
regular database explore, and 3=access right to the admin-
istrative database explorer), but have no access right to the
ERP software application.

If'the condition check at 930 determines that the requested
privileges exceed the actual privileges assigned to the user,
the user’s job request will be declined at 980. Otherwise, the
method will proceed to 940, where the scheduler can iden-
tify a predefined role (e.g., 164) mapped to the user, i.e., the
predefined role includes all requested privileges sought by
the user’s job request. Next at 950, the scheduler can
associate a predefined public user (e.g., 166) with the
predefined role. As noted above, the public user has its own
encrypted, pre-authenticated login credential, and will
inherit all privileges of the predefined role. Then at 960, the
scheduler can replace the user with the public user in the job
request. Specifically, the user’s login credential (e.g., 114)
contained in the job request is replaced with the public user’s
encrypted login credential (e.g., 168). Such modified job
request can then be submitted to the DBaaS platform at 970
for assignment of instances to the user. Because the public

10

15

20

25

30

35

40

45

50

55

60

65

10

user has been pre-authenticated and have all requested
privileges, the DBaaS platform can assign an instance to the
user for job execution so long as there are instances available
for allocation or assignment. Importantly, because the user’s
login credential is absent in the modified job request, it
cannot be leaked to or stolen by other users who have access
to the same DBaaS platform.

When the schedule submits a modified job request to the
DBaaS platform, the scheduler can establish a new session
with the DBaaS platform. A job console can generate a
session log during execution of the job. For example, each
job can be associated with a respective job log which
contains a message thread tracing the job’s execution, and
the job log can be viewed by a web browser or other means.
The conventional job log, however, cannot reveal real user
information with role involvement. As described herein, the
scheduler can have its own internal logging mechanism. For
example, the scheduler can also record, e.g., via the logger
132, internal logs 134 containing uset/role mapping details
described above. Thus, users can search the internal logs 134
for more details of a job (e.g., by entering a job identifier),
such as checking the user-role mapping information, error
exceptions, and other job execution details.

Example 9—Example Advantages

A number of advantages can be achieved via the technol-
ogy described herein. In particular, the scheduler 130,
besides performing conventional tasks such as DBaaS plat-
form selection and job scheduling, can play a more central
role in user authentication and privilege management.
Accordingly, by offloading user authentication and privilege
management functions from the DBaaS platforms 140 to the
scheduler 130, the database system 100 can have a more
streamlined infrastructure, and operate with improved secu-
rity and higher efficiency. For example, compared to the
previous method of direct user authentication by the DBaaS
platforms, the triple-side authentication scheme described
herein adds another layer (i.e., scheduler) in between. In
conjunction with the dynamic cookies preserved on the
scheduler, the triple-side authentication scheme can not only
reduce the workload of DBaaS platforms (e.g., authenticat-
ing users), but also improve the security of authentication
process. The security can be further enhanced by the
replacement of a user’s login credential in job requests with
a public user’s encrypted credential, as described above. As
another example, the technology described herein can
greatly simplify the complexity of user privilege manage-
ment by moving away from the conventional SQL com-
mands-based privilege management model and embracing
the protocol-based privilege management model (e.g., via
user-role mapping). By shifting the user privilege manage-
ment responsibility from the DBaaS platforms to the sched-
uler, the computing resources of the DBaaS platforms can be
devoted to handle instances for job execution instead of
administrative tasks (e g, managing users’ privileges), which
can be voluminous as the number of users increases.

Example 10—Example Computing Systems

FIG. 10 depicts an example of a suitable computing
system 1000 in which the described innovations can be
implemented. The computing system 1000 is not intended to
suggest any limitation as to scope of use or functionality of
the present disclosure, as the innovations can be imple-
mented in diverse computing systems.

US 11,902,284 B2

11

With reference to FIG. 10, the computing system 1000
includes one or more processing units 1010, 1015 and
memory 1020, 1025. In FIG. 10, this basic configuration
1030 is included within a dashed line. The processing units
1010, 1015 execute computer-executable instructions, such
as for implementing the features described in the examples
herein. A processing unit can be a general-purpose central
processing unit (CPU), processor in an application-specific
integrated circuit (ASIC), or any other type of processor. In
a multi-processing system, multiple processing units execute
computer-executable instructions to increase processing
power. For example, FIG. 10 shows a central processing unit
1010 as well as a graphics processing unit or co-processing
unit 1015. The tangible memory 1020, 1025 can be volatile
memory (e.g., registers, cache, RAM), non-volatile memory
(e.g., ROM, EEPROM, flash memory, etc.), or some com-
bination of the two, accessible by the processing unit(s)
1010, 1015. The memory 1020, 1025 stores software 1080
implementing one or more innovations described herein, in
the form of computer-executable instructions suitable for
execution by the processing unit(s) 1010, 1015.

A computing system 1000 can have additional features.
For example, the computing system 1000 includes storage
1040, one or more input devices 1050, one or more output
devices 1060, and one or more communication connections
1070, including input devices, output devices, and commu-
nication connections for interacting with a user. An inter-
connection mechanism (not shown) such as a bus, controller,
or network interconnects the components of the computing
system 1000. Typically, operating system software (not
shown) provides an operating environment for other soft-
ware executing in the computing system 1000, and coordi-
nates activities of the components of the computing system
1000.

The tangible storage 1040 can be removable or non-
removable, and includes magnetic disks, magnetic tapes or
cassettes, CD-ROMs, DVDs, or any other medium which
can be used to store information in a non-transitory way and
which can be accessed within the computing system 1000.
The storage 1040 stores instructions for the software imple-
menting one or more innovations described herein.

The input device(s) 1050 can be an input device such as
a keyboard, mouse, pen, or trackball, a voice input device,
a scanning device, touch device (e.g., touchpad, display, or
the like) or another device that provides input to the com-
puting system 1000. The output device(s) 1060 can be a
display, printer, speaker, CD-writer, or another device that
provides output from the computing system 1000.

The communication connection(s) 1070 enable commu-
nication over a communication medium to another comput-
ing entity. The communication medium conveys information
such as computer-executable instructions, audio or video
input or output, or other data in a modulated data signal. A
modulated data signal is a signal that has one or more of its
characteristics set or changed in such a manner as to encode
information in the signal. By way of example, and not
limitation, communication media can use an electrical, opti-
cal, RF, or other carrier.

The innovations can be described in the context of com-
puter-executable instructions, such as those included in
program modules, being executed in a computing system on
a target real or virtual processor (e.g., which is ultimately
executed on one or more hardware processors). Generally,
program modules or components include routines, pro-
grams, libraries, objects, classes, components, data struc-
tures, etc. that perform particular tasks or implement par-
ticular abstract data types. The functionality of the program

5

10

15

20

25

30

35

40

45

50

55

60

65

12

modules can be combined or split between program modules
as desired in various embodiments. Computer-executable
instructions for program modules can be executed within a
local or distributed computing system.

For the sake of presentation, the detailed description uses
terms like “determine” and “use” to describe computer
operations in a computing system. These terms are high-
level descriptions for operations performed by a computer,
and should not be confused with acts performed by a human
being. The actual computer operations corresponding to
these terms vary depending on implementation.

Example 11—Computer-Readable Media

Any of the computer-readable media herein can be non-
transitory (e.g., volatile memory such as DRAM or SRAM,
nonvolatile memory such as magnetic storage, optical stor-
age, or the like) and/or tangible. Any of the storing actions
described herein can be implemented by storing in one or
more computer-readable media (e.g., computer-readable
storage media or other tangible media). Any of the things
(e.g., data created and used during implementation)
described as stored can be stored in one or more computer-
readable media (e.g., computer-readable storage media or
other tangible media). Computer-readable media can be
limited to implementations not consisting of a signal.

Any of the methods described herein can be implemented
by computer-executable instructions in (e.g., stored on,
encoded on, or the like) one or more computer-readable
media (e.g., computer-readable storage media or other tan-
gible media) or one or more computer-readable storage
devices (e.g., memory, magnetic storage, optical storage, or
the like). Such instructions can cause a computing device to
perform the method. The technologies described herein can
be implemented in a variety of programming languages.

Example 12—Example Cloud Computing
Environment

FIG. 11 depicts an example cloud computing environment
1100 in which the described technologies can be imple-
mented, including, e.g., the system disclosed above and
other systems herein. The cloud computing environment
1100 comprises cloud computing services 1110. The cloud
computing services 1110 can comprise various types of
cloud computing resources, such as computer servers, data
storage repositories, networking resources, etc. The cloud
computing services 1110 can be centrally located (e.g.,
provided by a data center of a business or organization) or
distributed (e.g., provided by various computing resources
located at different locations, such as different data centers
and/or located in different cities or countries).

The cloud computing services 1110 are utilized by various
types of computing devices (e.g., client computing devices),
such as computing devices 1120, 1122, and 1123. For
example, the computing devices (e.g., 1120, 1122, and 1124)
can be computers (e.g., desktop or laptop computers),
mobile devices (e.g., tablet computers or smart phones), or
other types of computing devices. For example, the com-
puting devices (e.g., 1120, 1122, and 1124) can utilize the
cloud computing services 1110 to perform computing opera-
tions (e.g., data processing, data storage, and the like).

In practice, cloud-based, on-premises-based, or hybrid
scenarios can be supported.

Example 13—Example Implementations

Although the operations of some of the disclosed methods
are described in a particular, sequential order for convenient

US 11,902,284 B2

13

presentation, such manner of description encompasses rear-
rangement, unless a particular ordering is required by spe-
cific language set forth herein. For example, operations
described sequentially can in some cases be rearranged or
performed concurrently.

Example 14—Example Embodiments

Any of the following embodiments can be implemented.

Clause 1. A computer-implemented method comprising:
authenticating a login credential of a user by a scheduler,
wherein the user sends an original job request comprising
the login credential for a database service; veritying the user
has privileges for the original job request by the scheduler;
creating a modified job request from the original job request
by the scheduler based on a predefined role corresponding to
the privileges of the user; sending the modified job request
from the scheduler to a database service platform; and
allocating an instance of database service to the user by the
database service platform in response to the modified job
request.

Clause 2. The method of clause 1, wherein verifying the
user has privileges for the original job request comprises
determining actual privileges assigned to the user contain
requested privileges of the job request.

Clause 3. The method of any one of clauses 1-2, further
comprising mapping the user to the predefined role, wherein
the predefined role comprises a combination of privileges
for accessing the database service platform.

Clause 4. The method of clause 3, further comprising
associating a predefined public user with the predefined role,
wherein the public user has an encrypted login credential
that has been pre-authenticated to access the database ser-
vice platform.

Clause 5. The method of clause 4, wherein creating the
modified job request comprises replacing the login creden-
tial of the user with the encrypted login credential of the
public user in the job request.

Clause 6. The method of any one of clauses 1-5, wherein
authenticating the login credential of the user comprises
authenticating the user by the scheduler and authenticating
the scheduler by the database service platform.

Clause 7. The method of clause 6, wherein authenticating
the user by the scheduler comprises decrypting a cookie
stored on the scheduler using a private key of the user.

Clause 8. The method of clause 7, wherein authenticating
the user by the scheduler further comprises periodically
changing the login credential of the user and updating the
cookie stored on the scheduler.

Clause 9. The method of clause 8, wherein updating the
cookie comprises: submitting a job identifier from the user
to the scheduler; returning a public key from the scheduler
to the user; validating the public key by the user; sending the
login credential of the user to the scheduler; selecting an
asymmetric encryption algorithm by the scheduler; gener-
ating an encrypted login credential by the user using the
asymmetric encryption algorithm selected by the scheduler;
sending the encrypted login credential from the user to the
scheduler; and storing the encrypted credential in the cookie
by the scheduler.

Clause 10. The method of any one of clauses 1-9, further
comprising logging the job request, results of user authen-
tication, the predefined role corresponding to the privileges
of the user, and status of allocating the instance of database
service.

Clause 11. A system comprising: memory; one or more
hardware processors coupled to the memory; and one or

10

15

20

25

30

35

40

45

50

55

60

65

14

more computer readable storage media storing instructions
that, when loaded into the memory, cause the one or more
hardware processors to perform operations comprising:
authenticating a login credential of a user by a scheduler,
wherein the user sends an original job request comprising
the login credential for a database service; veritying the user
has privileges for the original job request by the scheduler;
reating a modified job request from the original job request
by the scheduler based on a predefined role corresponding to
the privileges of the user; sending the modified job request
from the scheduler to a database service platform; and
allocating an instance of database service to the user by the
database service platform in response to the modified job
request.

Clause 12. The system of clause 11, wherein verifying the
user has privileges for the original job request comprises
determining actual privileges assigned to the user contain
requested privileges of the job request.

Clause 13. The system of any one of clauses 11-12,
wherein the operations further comprise mapping the user to
the predefined role, wherein the predefined role comprises a
combination of privileges for accessing the database service
platform.

Clause 14. The system of any one of clauses 11-13,
wherein the operations further comprise associating a pre-
defined public user with the predefined role, wherein the
public user has an encrypted login credential that has been
pre-authenticated to access the database service platform.

Clause 15. The system of clause 14, wherein creating the
modified job request comprises replacing the login creden-
tial of the user with the encrypted login credential of the
public user in the job request.

Clause 16. The system of any one of clauses 11-15,
wherein authenticating the login credential of the user
comprises authenticating the user by the scheduler and
authenticating the scheduler by the database service plat-
form.

Clause 17. The system of clause 16, wherein authenticat-
ing the user by the scheduler comprises decrypting a cookie
stored on the scheduler using a private key of the user.

Clause 18. The system of clause 17, wherein authenticat-
ing the user by the scheduler further comprises periodically
changing the login credential of the user and updating the
cookie stored on the scheduler.

Clause 19. The system of clause 18, wherein updating the
cookie comprises: submitting a job identifier from the user
to the scheduler; returning a public key from the scheduler
to the user; validating the public key by the user; sending the
login credential of the user to the scheduler; selecting an
asymmetric encryption algorithm by the scheduler; gener-
ating an encrypted login credential by the user using the
asymmetric encryption algorithm selected by the scheduler;
sending the encrypted login credential from the user to the
scheduler; and storing the encrypted credential in the cookie
by the scheduler.

Clause 20. One or more computer-readable media having
encoded thereon computer-executable instructions causing
one or more processors to perform a method comprising:
authenticating a login credential of a user by a scheduler,
wherein the user sends an original job request comprising
the login credential for a database service; veritying the user
has privileges for the original job request by the scheduler;
mapping the user to a predefined role, wherein the pre-
defined role comprises a combination of privileges for
accessing the database service platform; associating a pre-
defined public user with the predefined role, wherein the
public user has an encrypted login credential that has been

US 11,902,284 B2

15

pre-authenticated to access the database service platform;
creating a modified job request by the scheduler by replacing
the login credential of the user with the encrypted login
credential of the public user in the job request; sending the
modified job request from the scheduler to a database
service platform; and allocating an instance of database
service to the user by the database service platform in
response to the modified job request.

Example 15—Example Alternatives

The technologies from any example can be combined
with the technologies described in any one or more of the
other examples. In view of the many possible embodiments
to which the principles of the disclosed technology can be
applied, it should be recognized that the illustrated embodi-
ments are examples of the disclosed technology and should
not be taken as a limitation on the scope of the disclosed
technology. Rather, the scope of the disclosed technology
includes what is covered by the scope and spirit of the
following claims.
The invention claimed is:
1. A computer-implemented method comprising:
authenticating a login credential of a user by a scheduler,
wherein the login credential is included in an original
service request of the user for a database service;

determining the user has privileges for the original service
request by the scheduler;

creating a modified service request from the original

service request by the scheduler based on a predefined
role corresponding to the privileges of the user; and
forwarding, by the scheduler, the modified service request
to a database-as-a-service (DBaaS) platform, wherein
an instance of database service can be assigned to the
user in response to the modified service request,
wherein authenticating the login credential of the user
comprises authenticating the user by the scheduler and
authenticating the scheduler by the DBaaS platform,
wherein authenticating the user by the scheduler com-
prises decrypting a cookie stored on the scheduler using
a private key of the user,
wherein authenticating the user by the scheduler further
comprises changing the login credential of the user and
refreshing the cookie stored on the scheduler,
wherein refreshing the cookie comprises:
sending a public key from the scheduler to the user;
validating the public key by the user;
sending the login credential of the user to the scheduler;
determining an asymmetric encryption algorithm by
the scheduler;
generating an encrypted login credential by the user
using the asymmetric encryption algorithm deter-
mined by the scheduler;
sending the encrypted login credential from the user to
the scheduler; and
storing the encrypted credential in the cookie by the
scheduler.

2. The method of claim 1, wherein determining the user
has privileges for the original service request comprises
determining predefined privileges of the user contain
requested privileges of the service request.

3. The method of claim 1, further comprising mapping the
user to the predefined role, wherein the predefined role
comprises a combination of privileges for accessing the
DBaaS platform.

4. The method of claim 3, further comprising mapping a
predefined public user to the predefined role, wherein the

15

20

25

30

35

40

45

50

55

60

65

16

public user has an encrypted login credential that has been
pre-authenticated to access the DBaaS platform.

5. The method of claim 4, wherein creating the modified
service request comprises replacing the login credential of
the user with the encrypted login credential of the public
user in the service request.

6. The method of claim 1, further comprising logging the
service request, results of user authentication, and the pre-
defined role corresponding to the privileges of the user.

7. A system comprising:

memory;

one or more hardware processors coupled to the memory;

and

one or more computer readable storage media storing

instructions that, when loaded into the memory, cause
the one or more hardware processors to perform opera-
tions comprising:
authenticating a login credential of a user by a scheduler,
wherein the login credential is included in an original
service request of the user for a database service;

determining the user has privileges for the original service
request by the scheduler;

creating a modified service request from the original

service request by the scheduler based on a predefined
role corresponding to the privileges of the user;
forwarding, by the scheduler, the modified service request
to a database-as-a-service (DBaaS) platform; and
assigning an instance of database service to the user in
response to the modified service request,
wherein authenticating the login credential of the user
comprises authenticating the user by the scheduler and
authenticating the scheduler by the DBaaS platform,
wherein authenticating the user by the scheduler com-
prises decrypting a cookie stored on the scheduler using
a private key of the user,
wherein authenticating the user by the scheduler further
comprises changing the login credential of the user and
refreshing the cookie stored on the scheduler,
wherein refreshing the cookie comprises:
sending a public key from the scheduler to the user;
validating the public key by the user;
sending the login credential of the user to the scheduler;
determining an asymmetric encryption algorithm by
the scheduler;
generating an encrypted login credential by the user
using the asymmetric encryption algorithm deter-
mined by the scheduler;
sending the encrypted login credential from the user to
the scheduler; and
storing the encrypted credential in the cookie by the
scheduler.

8. The system of claim 7, wherein determining the user
has privileges for the original service request comprises
determining predefined privileges of the user contain
requested privileges of the service request.

9. The system of claim 7, wherein the operations further
comprise mapping the user to the predefined role, wherein
the predefined role comprises a combination of privileges
for accessing the DBaaS platform.

10. The system of claim 7, wherein the operations further
comprise mapping a predefined public user to the predefined
role, wherein the public user has an encrypted login creden-
tial that has been pre-authenticated to access the DBaaS
platform.

US 11,902,284 B2

17

11. The system of claim 10, wherein creating the modified
service request comprises replacing the login credential of
the user with the encrypted login credential of the public
user in the service request.
12. The system of claim 7, further comprising logging the
service request, results of user authentication, and the pre-
defined role corresponding to the privileges of the user.
13. One or more non-transitory computer-readable media
containing program instructions for causing a computer to
perform a method comprising:
authenticating a login credential of a user by a scheduler,
wherein the login credential is included in an original
service request of the user for a database service;

determining the user has privileges for the original service
request by the scheduler;
mapping the user to a predefined role, wherein the pre-
defined role comprises a combination of privileges for
accessing a database-as-a-service (DBaaS) platform;

mapping a predefined public user to the predefined role,
wherein the public user has an encrypted login creden-
tial that has been pre-authenticated to access the DBaaS
platform;

creating a modified service request by the scheduler by

replacing the login credential of the user with the
encrypted login credential of the public user in the
service request;

10

15

20

25

18

forwarding, by the scheduler, the modified service request
to the DBaaS platform; and
assigning an instance of database service to the user in
response to the modified service request,
wherein authenticating the login credential of the user
comprises authenticating the user by the scheduler and
authenticating the scheduler by the DBaaS platform,
wherein authenticating the user by the scheduler com-
prises decrypting a cookie stored on the scheduler using
a private key of the user,
wherein authenticating the user by the scheduler further
comprises changing the login credential of the user and
refreshing the cookie stored on the scheduler,
wherein refreshing the cookie comprises:
sending a public key from the scheduler to the user;
validating the public key by the user;
sending the login credential of the user to the scheduler;
determining an asymmetric encryption algorithm by
the scheduler;
generating an encrypted login credential by the user
using the asymmetric encryption algorithm deter-
mined by the scheduler;
sending the encrypted login credential from the user to
the scheduler; and
storing the encrypted credential in the cookie by the
scheduler.

