US011900921B1

a2 United States Patent
Gupta et al.

US 11,900,921 B1
Feb. 13, 2024

(10) Patent No.:
45) Date of Patent:

(54) MULTI-DEVICE SPEECH PROCESSING 9,454,957 Bl 9/2016 Mathias et al.
9,940,927 B2 4/2018 Georges et al.
. : 10,388,277 B1* 82019 Ghosh GI10L 15/1822
(71) Applicant: Amazon Technologies, Inc., Seattle, 10:896:681 B2 12021 Ale(fsic il
WA (US) 11721347 Bl 82023 Pasko et al.
2006/0190268 Al 8/2006 Wang
(72) Inventors: Rahul Gupta, Waltham, MA (US); 2008/0120094 Al 5/2008 Mate et al.
Christophe Dupuy, Cambridge, MA 583;82?2222 i} ;ggg ;ejnOha et al.
(US); Jacob Ryan Stolee, Toronto agatomo
2014/0136183 Al* 5/2014 Hebert GOG6F 40/279
(CA); Clement Chung, Toronto (CA) 704/9
2015/0161522 Al* 6/2015 Saon ... GO6N 3/045
(73) Assignee: Amazon Technologies, Inc., Seattle, aon 706/12
WA (US) 2015/0242386 Al 8/2015 Moreno Mengibar et al.
Continued
(*) Notice: Subject to any disclaimer, the term of this ()
patent is extended or adjusted under 35 OTHER PUBLICATIONS
U.S.C. 154(b) by 189 days.
Shinde, Pramila P., and Seema Shah. “A review of machine learning
(21) Appl. No.: 17/080,189 and deep learning applications.” 2018 Fourth international confer-
. ence on computing communication control and automation (ICCUBEA).
(22) Filed: Oct. 26, 2020 IEEE, 2018. (Year: 2018).*
(51) Int. CL Primary Examiner — Jialong He
g;zi ;gﬁé 888283 (74) Attorney, Agent, or Firm — Pierce Atwood LLP
(52) US.CL (57) ABSTRACT
CPC ... GI0L 15/16 (2013.01); GI10L 15/22
(2013.01) Techniques for partially processing an input on a device and
(58) Field of Classification Search completlng processing at a remote system are pr.0V1ded. The
CPC ... GI0L 15/18; GIOL, 15/22; GI0L, 1530 device may process an input using an on-device machine
See application file for complete search history learning (ML) model, and determine to cease processing at
’ an intermediary node of the (ML) model based on the output
(56) References Cited of the intermediary node. Based on the output of the

intermediary node satisfying a condition, the device may use
the output of the intermediary node to generate an output
responsive to the input. Conversely, if the output of the

U.S. PATENT DOCUMENTS

6,408,272 Bl* 6/2002 White ..ooooooovcrvvvrnne, GI0L 15/30 intermediary node does not satisfy a condition, the device
645753 BL* 112002 Thelen 78‘1‘8]ilfso/‘z‘g may send the output of the intermediary node to the remote

487,534 Bl 11/2002 Thelenc.ccoco... T04/E 15047 system, so the remote system can use another machine
6.633.846 BL* 102003 Bemne ... GOGF 16/24522 learning model to complete processing with respect to the

704/E15.047

input.

7,225,134 B2 5/2007 Kamiya
8,494,852 B2 7/2013 LeBeau et al. 20 Claims, 14 Drawing Sheets
jrommmmmmmmmm System
100
I Receive input data 130 1
! Process the input data using a first ML model 132] Device

110b

System(s)
l 120

I Process an output of a node of the first ML model 134 I<—

Cease Cease, Bridge Continue

or Centinue Processing?

o ———————— e e =]

LN/

Brid RSN Network(s)
~
Determine, using the ridge Process the AN 189
output of the node, output output of the node: s
. ~
data responsive to the using next node \\\\
input data 138 of the first ML ~X N
modet 140 Device ~
1

Send the output of the node
to a second ML modei to
complete processing 142

US 11,900,921 B1

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2017/0060848 Al* 3/2017 Liu .cccvvvvnvnvecennn GOG6F 40/40
2019/0130904 Al* 5/2019 Homma GIOL 15/26
2020/0118554 Al1* 4/2020 Chancc....... GOG6F 40/197

* cited by examiner

US 11,900,921 B1

Sheet 1 of 14

Feb. 13,2024

U.S. Patent

2|1 Buisseooid syeiduwiod

0} |8poW N puooss e 0}
apou sy} jo indjno sy} pusg
A

Ovl |1epow
T Isal) 8Y) Jo 8¢l ejep indul
— 9pou 1xau Buisn a2} 0} anisuodsal elep
apou ay} Jo ndino Indino ‘epou ey} jo indino
ay) ssao0. :
Ul d oBpLIg ay) Buisn ‘suiwsieq

oel
¢ BuIssed0ld snunuoy) Jo
abpuyg ‘eses?)

anunuo) asea)

Ly PEL [9poW T 18414 84} JO 8pou B JO INdINOo Ue $S800.id
7y

ZE1 [1apow TN 184y B Buisn ejep indul 8y} sseo0id

A

0€ | Blep Indul aAieoay

US 11,900,921 B1

Sheet 2 of 14

Feb. 13,2024

U.S. Patent

aotl
8o1A8(]

661
(s)lomisN

0e])
weisAg

8P| 921Aep By} 0} Elep INdINO By} puss
A

9| elep indul 8y} 0} sAIsuodsal ejep
INAINO ‘[epow N pUooas 8y} 4o INdINo puodes e Buisn ‘sulwlele(
A

Pl [BPOW TN
puooas e Buisn |apow A 18J1) 8Y) Jo apou 8y} Jo Indino sy} sses0.id

US 11,900,921 B1

Sheet 3 of 14

Feb. 13,2024

U.S. Patent

S6¢

uoniubooay Jesn

A

0/¢
abeloig 9jjoid »

A 4

062
n_; (shusuodwo? |IMS

0ec

JoyensayaiQ

A 4

08¢
Sil

Y

09¢
NN

0S¢
HSY

1114
n1s

=
ejep xa|

oLl

ao1na(]
ocl
(s)weisAg
00 r\
waisAg

¢ Old

L1
eleq
olpny

/

— il -

o_\ 2
aoine(Q

- (-

o_U3<

0ccH

uonosle(
pJOMBYEAN

US 11,900,921 B1

Sheet 4 of 14

Feb. 13,2024

U.S. Patent

001
weisAg

G6e

uoniuboosy Jesn

0.€
abel0)s 9)1joid

8¢¢€ Ol

08¢
Sll1

£2€ O3H

9¢¢ dH

vze Jojos|es plUgAH

09¢
NN

06€
14; (s)usuodwo) IS

0cc
uonoeleqg

pJOMBYEAA

0s€
dSY

A

oclL
(s)welsAg

gg¢e
nis

U.S. Patent

Feb. 13, 2024 Sheet 5 of 14

US 11,900,921 B1

Device ML Model
110 ™\ F ' G . 4 / 400
fm e S
Block
472 or Bridge?
1 474 Node 470
Block Block
456 ’ 458
A
Block
454 Cease,
7\ Bridge or
Continue?
Block 460
452
A Node 450
Block Block Block
436 438 440
A
Block
434 Cease,
A Bridge or
Continue?
Block 442
432
A Node 430
Block .| Block Block Block
414 " 416 [a18 [420
A
Block Cease,
412 Bridge or
T Continue?
Block 422
410
Node 402

US 11,900,921 B1

Sheet 6 of 14

Feb. 13,2024

U.S. Patent

_l lllllllllllllllll - o e e e e e e e —— -
| |oisepoN | I | zov epoN [
| 916 Yoolg | “ "
| _ zey
| | l sanunuog Jo abpug » :mOm _
|| ozs epoN _ 60 B1ep “ obpug ‘osE00 asean| (IO "
_ zzs old " eInesd _ _
“ i | _ anunuon |
_ ¥Zg Yooig _ _ _
| I | v _
) 2 _ _ _
I 0S¥ @PON
_ 926 %o0lg _ _ |
| _ _ cry ¥05 !
_ t senunuon Jo abpug > |
“ 0£S 9PON Y | 815 elep _ mmncmzmmo 9se8) dino |-
i
“ zes yoig “ oImes “ anunuon |
v | [|
| P
| S Yoolg v _ _
| ¥ | _ |
_ _ I | osw apoN |
' 9€6 Yoolg | [_
| | | 09 905 _
| f sonunuon Jo abpug ndIno |
! opo L | | | °PPuE ‘9590 98890 |
| | ovs epoN - 8zs elep | _
] s oolg | aineea _ anunuoo |
[
| | |
“ | | ¥ |
_ | |0y epoN _
I |s¥s epoN | | } 005 _
I 9vs Yoo|g €« f ¢ebpug Jo indino | |
“ | 8eg ejep _ mmn:mémmmo _
| 2 I alnjeo | |
_
_ Os | “ 00¥ [8POIN TN "
1 00G 18PON TN Ao | R) S it -
Lun owm ovwm owwm owen . . o o oW oW oW . — ow— —
.0zl . 0L
(swayshs m o _ .H_ aolneq

U.S. Patent Feb. 13, 2024 Sheet 7 of 14 US 11,900,921 B1

ML Model 620
Node 618 T)
‘ System(s) 120
System ML Model
Node 616 00
7 Y
Node 618
Node 614 T
‘ Node 616
Node 612 Node 614
A
t
Device 110 : N ——
-

On-device ML Node 610 5
Model 400 Node 540
Node 470 Node 608 Node 530

T A ?
) &

Node 450 \< Node 520
I Node 606 A
Node 430 'y Node 510

X
Node 402 Node 604
\ S

Training
Data

602

U.S. Patent Feb. 13, 2024 Sheet 8 of 14 US 11,900,921 B1

FIG. 6B

System(s) 120
ML Model 620
_ System ML Model 500
Node 618)
A
Node 540
A
Node 616
| Node 530
A
>./ ?
Node 520
Node 614
A *
Node 510
Node 612 y
A
I N I b o
Node 610 1)
x Device 110
On-device ML Model
400
Node 608
A Node 470
> A
Node 606 Node 450
A T
Node 430
Node 604 1
S Node 402
A

Training
Data
602

U.S. Patent

Feb. 13, 2024 Sheet 9 of 14 US 11,900,921 B1

FIG. 6C

ML Model 620
Node 618
A
Node 616
A
Speech-
Controlled
Smart Phone Node 614 Device
1100 Y 110a o
Node 612
On-device ML x T
Model 400b
On-device ML
Node 450 Model 400a
Node 610 —_.
T A Node 470
Node 430 T
! Node 608 Node 450
Node 402
A ¢
- >~_, Node 430
Node 606 *
On-device ML A Node 402
Model 400c |e—1=
Node 430 _
Node 6804
i N y
Node 402
7y
Training
Smart \ Data
Watch 602

110c

US 11,900,921 B1

Sheet 10 of 14

Feb. 13,2024

U.S. Patent

81/ eyep IndinQ
-t

06¢
/062 (s)usuodwo) |IMS
| GZZ (s)waisAg |IMS

g1/ ejep indul ayj o) Buipuodseliod Bleq

i/ elep

Indul sy} 0} puodsal 0} ||IYs e }08]eS

[4Yi

wiod Buiddols jepow A
90IABP-UO pajedlpul uo peseq (s)epow
weishAs Buisn Biep |8powl $s8201d

0L
01/ wiod Buiddols |apon weisAs

0} abpug
80/ Bjep [8poN

90/
¢,8bpug Jo
ases?)

0L

(s)|jspow N eolnep
-uo Buisn eiep jndul sseoold

0.

ejep Indul aAI808Y

0zl (s)weisAg

L Ol

I ™oL

201n8(]

US 11,900,921 B1

Sheet 11 of 14

Feb. 13,2024

U.S. Patent

18 ejep indinQ
-t}

\ '

06€
/062 (s)iusuodwio) (NS
1G22 (s)weisAg |IMS

Z18 eiep indul sy 03 Buipuodse.lod gje(

018
eyep indui sy}
0} puodsal 0} ||Ms e 108|188

808
Buisseooud

|[epow asean

908
.8bpug o
ases)

08
(s)jopowl N @01A8p
-uo Buisn eiep Indul ss800.4d

208
elep Indul aAI908 Y

| NG

0zl (s)welshg

801ne(]

8 Ol

US 11,900,921 B1

Sheet 12 of 14

Feb. 13,2024

U.S. Patent

661
(s)JomieN

816
elawen

oL6

Ae|dsiq \V

806
abeloig

A
Y

906
Alows

A
h\ 4

A

L6
Joyeadg

(s)Jossao0id
/ (s)e)j0nu0)

06

A
) 4

(@

0c6
mcoco_o‘_o_s_\/\%

14 5
mccouc,q

A A 4

A 4

8d1Aeq O/l

206
seoeolU|

A
Y

—— ()

0l 1 ®dlAeQg

26 sng-|

6 Ol

US 11,900,921 B1

Sheet 13 of 14

Feb. 13,2024

U.S. Patent

8001

abelo1g

A

A

9001}
Alows|n

Y

001
(s)Josseoold

A

/ (s)48jj]053U0D

661 P »e—> mmmmmwﬂc_ >
(s)omieN 8o1n8q O/l
201 sng]|

GZ1/0Z) (s)walsAs

0L ©ld

US 11,900,921 B1

Sheet 14 of 14

Feb. 13,2024

U.S. Patent

S0} 1

011
Aeidsiq yiim aoias(

pa|josu0)-yosadg

POLL
Jsindwo) e|ge

uotLi
whig”) —_— 661 o011
JI8USEAN (s)siomieN UOIBM HEWwS
e S \\\an.\\\\ //
@j a0} 4
suoyd Yews
]
- on
0L oLl s01Aa(Q
Jojelabujey SABMOIDIN psjjoljuo)

. -yosadg

f_o: wol |

HeRs SPnaiEd wmw_mm\s

Ll Old

US 11,900,921 B1

1
MULTI-DEVICE SPEECH PROCESSING

BACKGROUND

Natural language processing systems have progressed to
the point where humans can interact with computing devices
using their voices and natural language textual inputs. Such
systems employ techniques to identify the words spoken and
typed by a human user based on the various qualities of
received input data. Speech recognition combined with
natural language understanding processing techniques
enable speech-based user control of computing devices to
perform tasks based on the user’s spoken inputs. Speech
recognition and natural language understanding processing
techniques may be referred to collectively or separately
herein as spoken language understanding (SLU) processing.
SLU processing may be used by computers, hand-held
devices, telephone computer systems, kiosks, and a wide
variety of other devices to improve human-computer inter-
actions.

BRIEF DESCRIPTION OF DRAWINGS

For a more complete understanding of the present disclo-
sure, reference is now made to the following description
taken in conjunction with the accompanying drawings.

FIGS. 1A-1B are conceptual diagrams illustrating a sys-
tem configured to perform processing partially on a device
and partially by a system, according to embodiments of the
present disclosure.

FIG. 2 is a conceptual diagram of components of a
system, according to embodiments of the present disclosure.

FIG. 3 is a conceptual diagram illustrating components
that may be included in a device, according to embodiments
of the present disclosure.

FIG. 4 is a conceptual diagram of a machine learning
model, implemented by a device, with branches to determine
further processing strategy, according to embodiments of the
present disclosure.

FIG. 5 is a conceptual diagram illustrating how an on-
device machine learning model can bridge to a machine
learning model, on a system, to perform further processing,
according to embodiments of the present disclosure.

FIGS. 6A, 6B and 6C are conceptual diagrams illustrating
how a machine learning model may be split, according to
embodiments of the present disclosure.

FIG. 7 is a signal flow diagram illustrating how input data
may be processed by a device and a system, according to
embodiments of the present disclosure.

FIG. 8 is a signal flow diagram illustrating how input data
may be processed by a device and a system, according to
embodiments of the present disclosure.

FIG. 9 is a block diagram conceptually illustrating
example components of a device, according to embodiments
of the present disclosure.

FIG. 10 is a block diagram conceptually illustrating
example components of a system, according to embodi-
ments of the present disclosure.

FIG. 11 illustrates an example of a computer network for
use with the overall system, according to embodiments of
the present disclosure.

DETAILED DESCRIPTION

Automatic speech recognition (ASR) is a field of com-
puter science, artificial intelligence, and linguistics con-
cerned with transforming audio data associated with speech

20

30

35

40

45

55

2

into a token(s) or other textual representation of that speech.
Natural language understanding (NLU) is a field of com-
puter science, artificial intelligence, and linguistics con-
cerned with enabling computers to derive meaning from
natural language user inputs (such as spoken inputs). ASR
and NLU are often used together as part of a spoken
language understanding (SLU) processing component of a
system. Text-to-speech (TTS) is a field of computer science,
artificial intelligence, and linguistics concerned with trans-
forming text and/or other data into audio data synthesized to
resemble human speech.

Certain systems may be configured to perform actions
responsive to user inputs. For example, for the user input of
“Alexa, play music by <Artist>,” a system may output music
sung by the indicated artist. For further example, for the user
input of “Alexa, turn on the lights,” a system may turn on
lights based on where the user is located. In another
example, for the user input of “Alexa, find flights to Miami,”
a system may search, using another system, for flights from
the user’s location to Miami, and present the available flights
to the user for selection.

In some cases, a system may be configured so that speech
processing (i.e., ASR processing, and NLU processing, or
SLU processing) of a user input is wholly performed by a
device. In other cases, a system may be configured so that
speech processing of a user input is wholly performed by a
system separate and remote from the device (e.g., the cloud).
In such cases, the device may receive a user input and send
the user input to the system for speech processing.

The present disclosure relates to techniques for partial
processing of a user input at a device and partial processing
of the user input at a remote system, when appropriate. In
particular, the present disclosure describes techniques for
processing data using an on-device component, including a
machine learning (ML) model(s), and determining to com-
plete processing using a component at the remote system
when the on-device component is not able to complete the
processing. In some embodiments, the device is capable of
making dynamic decisions regarding when to cease process-
ing at the device and when to bridge to the remote system to
complete processing. As used herein, “bridge processing”
refers to when a device requests a remote system or another
device to complete processing of data that the device may
have (partially) processed already or may not have pro-
cessed. The on-device component may include multiple
egress points at different nodes of processing, where the
device determines to cease processing or bridge processing.
In some embodiments, the decision to cease processing or
bridge processing may be based on the output of the corre-
sponding node, the processing time spent by the device, the
processing time that may still need to be spent by the device
to complete processing, the computational resources of the
device, the complexity of the user input, and/or other factors.

In some embodiments, the component on the remote
system, including a ML model(s), may pick up processing of
the user input where the device left off. When the device
determines to bridge processing to the remote system, the
device may send (to the remote system) data corresponding
to the processing performed by the device thus far, and the
remote system may initiate processing using that data. Data
sent between the device and the remote system may be sent
using privacy preserving techniques, such as encryption,
addition of noise to the data, etc.

In some cases, the device of the present disclosure may
determine to complete processing at the device, when pos-
sible, and may only request the remote system to complete

US 11,900,921 B1

3

processing of the user input when the device is not capable
of doing so (with a certain level of confidence, for example).

The techniques of the present disclosure may provide an
improved user experience and an improved system for
processing user inputs. For example, the techniques
described herein may improve preservation of privacy as
only user inputs that the device is not capable of processing
may be sent to the remote system for processing. Allowing
a device to bridge processing per the techniques described
herein also improves accuracy and decreases user-perceived
latency with respect to processing of user inputs. Also, the
need to compress a full ML model(s) to include on the
device is minimized, as the device can bridge processing to
the remote system when needed.

A system according to the present disclosure may be
configured to incorporate user permissions and may only
perform activities disclosed herein if approved by a user. As
such, the systems, devices, components, and techniques
described herein would be typically configured to restrict
processing where appropriate and only process user data in
a manner that ensures compliance with all appropriate laws,
regulations, standards, and the like. The systems, devices,
components, and techniques can be implemented on a geo-
graphic basis to ensure compliance with laws in various
jurisdictions and entities in which the components of the
systems, devices, components, and/or user are located.

FIGS. 1A-1B illustrate a system 100 configured to per-
form processing using a device 110q, a device 1105 and a
system(s) 120. Although the figures and discussion of the
present disclosure illustrate certain steps in a particular
order, the steps described may be performed in a different
order (as well as certain steps removed or added) without
departing from the present disclosure. As shown in FIGS.
1A-1B, the system 100 may include the devices 110a, 1105
(local to a user 5) and the system(s) 120 in communication
across a network(s) 199. The network(s) 199 may include a
local-area network(s) (LAN(s)), a wireless local-area net-
work(s) (WLAN(s)), a Metropolitan Area Network(s), a
Wide Area Network(s), a Campus Area Network(s), a
mobile carrier system(s), and/or the like.

Referring to FIG. 1A, the device 110a receives (130)
input data representing an input provided by the user 5 to the
device 110a. In some cases, the input data may be audio data
representing a spoken natural language input. In some cases,
the input data may be text data representing a text-based
natural language input. In other cases, the input data may be
a sequence of images, captured by a camera of the device
110a, representing the user 5 performing a gesture, or facial
expressions of the user 5. The input data may be motion
sensor data captured by a motion sensor of the device 110aq.
The input data may represent an input received via a button
on the device 110 or a touchscreen of the device 110a.

The device 110a processes (132) the input data using a
first machine learning (ML) model. The first ML, model may
be considered an on-device ML model. The first ML model
may be configured to process data of the same type as the
input data, and generate a prediction corresponding to the
input data. For example, in the case the input data is a spoken
input, the first M. model may be configured to process audio
data representing spoken inputs and perform SLU process-
ing. In another example, in the case the input data is a natural
language text input, the first ML, model may be configured
to process text data representing natural language inputs and
perform NLU processing. In yet another example, in the
case the input data is an image(s) representing facial expres-
sions of the user 5, the first ML model may be configured to
process image data and perform sentiment detection. In

10

15

20

25

30

35

40

45

50

55

60

65

4

some cases, where the input data is audio data representing
a spoken input or other data representing a natural language
input, the first ML model may be configured to perform
spoken language understanding (SLU) processing or natural
language understanding (NLU) processing with respect to
the input data. The first M. model may include multiple
processing nodes that may be invoked in a sequential
manner to process the input data. The first M. model may
include at least an initial node, one or more intermediary
nodes, and a final node. Each node of the first ML model
may generate an output based on the processing performed
by the node. The output may represent the features learned
by the node.

The device 110a processes (134) an (first) output of a
(first) node of the first ML, model. The first node may be the
initial node or an intermediary node of the first ML, model.
The first output may be the features determined by the first
node during processing of the input data. The device 110a
may process the first output using one or more processing
blocks. The processing blocks may be a convolutional layer,
a softmax layer, or other types of layers used in a deep
learning model. By processing the first output using the
processing blocks, the device 110a may derive a prediction
from the first output and determine a confidence value
corresponding to the prediction.

Based on processing the first output, the device 110a
determines (136) whether to exit, bridge or continue pro-
cessing at the first ML model. If processing of the first output
indicates that the first ML. model is confident in its prediction
of the first node, then the device 110a ceases processing at
the first ML model, and the device 110a determines (138),
using the first output, output data responsive to the input
data. The device 110a¢ may determine a confidence value/
score associated with the first output and/or derived from
processing the first output, and if the confidence value/score
meets a threshold confidence value/score then the device
1104 may determine that the first ML, model is confident in
its prediction of the first node. In this scenario, the device
1104 uses a prediction of an initial or intermediary node of
the first ML model, rather than the prediction of the final
node, to generate output data responsive to the input data.
This may reduce latency in responding to the user 5.

If processing of the first output indicates that the first ML,
model is not confident in its prediction of the first node but
that the first ML model is capable of generating a high
confidence prediction (or the first ML, model is confident at
the first node that the next node is capable of generating a
high confidence prediction), then the device 110 continues
processing at the first ML model, and the device 110
processes (140) the first output using the next (second) node
of the first ML model. The device 110a may determine a
confidence value/score associated with the first output and/
or derived from processing the first output, and if the
confidence value/score does not meet a threshold confidence
value/score then the device 110a may determine that the first
ML model is not confident in its prediction of the first node.

In continuing processing at the first ML model, the device
1104 may process an (second) output of the second node of
the first ML model (per the step 134), and may determine,
based on processing the second output of the second node,
whether to cease, bridge or continue processing at the first
ML model (per the step 136).

If the processing of the first output indicates that first ML,
model is not confident in the prediction of the first node and
that further processing by the first ML, model will not result
in a high confidence prediction, then the device 110 bridges
processing to the system(s) 120, and the device 110a sends

US 11,900,921 B1

5

(142) the first output to a second ML model to complete
processing. The second ML model may be included at the
system(s) 120 or the device 1105. Thus, in this scenario, the
device 110a uses a prediction of an initial or intermediary
node of the first ML model to determine that the first ML
model will not generate an accurate prediction (a prediction
with high confidence), and then requests the system(s) 120
or the device 1105 to complete processing instead. This may
improve accuracy in generating output data responsive to the
input data. This may also reduce latency because the device
1104, in some cases, does not wait for the first ML model to
complete processing to then determine that the first ML
model prediction has low confidence, and then send the
input data to the system(s) 120 or the device 1105 to perform
processing. The system(s) 120 and the device 1105 picks up
processing where the device 110a left off.

Referring to FIG. 1B, the system(s) 120 or the device
1105 processes (144) the first output, of the node of the first
ML model, using a second ML model. The second ML
model may be configured to perform the same type of
processing as the first ML model. For example, the first ML,
model and the second ML model may be configured to
perform SLU processing. In another example, the first ML,
model and the second ML model may be configured to
perform NLU processing. In yet another example, the first
ML model and the second ML model may be configured to
perform sentiment detection. Using the first output, the
second ML model may pick up processing where the first
ML model left off. Thus, the second ML model may not
relearn/re-determine the features that the first ML model
already learned/determined. The second ML model may
complete processing with respect to the input data, and may
generate a second output. The system(s) 120 or the device
1105 determines (146), using the third output of the second
ML model, output data responsive to the input data. The
third output may be an output of a final node of the second
ML model. In some embodiments, the third output may be
an output of an initial node or intermediary node of the
second ML model. After determining the output data, the
system(s) 120 or the device 1105 sends (148) the output data
to the device 110a for output to the user 5.

In some embodiments, the device 110a may determine to
continue processing at the decision block 136 based on a
network signal quality or network connection quality
between the device 110a and the system(s) 120 or the device
1105. For example, if the network connection quality is
low/poor between the device 110a and the system(s) 120,
then the device 110a may continue processing per the step
140. Thus, instead of risking the system(s) 120 not receiving
the output of the node (as done in step 142), the device 110a
may continue processing at the first ML model. Once the
network connection improves, the device 110a may bridge
processing to the system(s) 120. Similarly, the device 110a
may determine to continue processing at the decision block
136 if the network connection quality is low/poor between
the device 110a and the device 1105. In some embodiments,
the device 110a may determine to continue processing at the
decision block 136 based on the device 1105 being presently
engaged in performing other operations, such as processing
a user input, received at the device 1105, from the user 5 or
another user.

The system 100 may operate using various components as
illustrated in FIG. 2. The various components may be
located on a same or different physical devices. Communi-
cation between various components may occur directly or
across a network(s) 199.

10

15

20

25

30

35

40

45

50

55

60

65

6

A microphone or array of microphones (of or otherwise
associated with a device 110) may capture audio 11. The
device 110 processes audio data, representing the audio 11,
to determine whether speech is detected. The device 110
may use various techniques to determine whether audio data
includes speech. In some examples, the device 110 may
apply voice activity detection (VAD) techniques. Such tech-
niques may determine whether speech is present in audio
data based on various quantitative aspects of the audio data,
such as the spectral slope between one or more frames of the
audio data, the energy levels of the audio data in one or more
spectral bands, the signal-to-noise ratios of the audio data in
one or more spectral bands, or other quantitative aspects. In
other examples, the device 110 may implement a classifier
configured to distinguish speech from background noise.
The classifier may be implemented by techniques such as
linear classifiers, support vector machines, and decision
trees. In still other examples, the device 110 may apply
Hidden Markov Model (HMM) or Gaussian Mixture Model
(GMM) techniques to compare the audio data to one or more
acoustic models in storage, which acoustic models may
include models corresponding to speech, noise (e.g., envi-
ronmental noise or background noise), or silence. Still other
techniques may be used to determine whether speech is
present in audio data.

Once speech is detected in audio data representing the
audio 11, the device 110 may determine if the speech is
directed at the device 110/system 120. In at least some
embodiments, such determination may be made using a
wakeword detection component 220. The wakeword detec-
tion component 220 may be configured to detect various
wakewords. In at least some examples, each wakeword may
correspond to a name of a different digital assistant. An
example wakeword/digital assistant name is “Alexa.”

Wakeword detection is typically performed without per-
forming linguistic analysis, textual analysis, or semantic
analysis. Instead, the audio data, representing the audio 11,
is analyzed to determine if specific characteristics of the
audio data match preconfigured acoustic waveforms, audio
signatures, or other data corresponding to a wakeword.

Thus, the wakeword detection component 220 may com-
pare audio data to stored data to detect a wakeword. One
approach for wakeword detection applies general large
vocabulary continuous speech recognition (LVCSR) sys-
tems to decode audio signals, with wakeword searching
being conducted in the resulting lattices or confusion net-
works. Another approach for wakeword detection builds
HMMs for each wakeword and non-wakeword speech sig-
nals, respectively. The non-wakeword speech includes other
spoken words, background noise, etc. There can be one or
more HMMs built to model the non-wakeword speech
characteristics, which are named filler models. Viterbi
decoding is used to search the best path in the decoding
graph, and the decoding output is further processed to make
the decision on wakeword presence. This approach can be
extended to include discriminative information by incorpo-
rating a hybrid DNN-HMM decoding framework. In another
example, the wakeword detection component 220 may be
built on deep neural network (DNN)/recursive neural net-
work (RNN) structures directly, without HMM being
involved. Such an architecture may estimate the posteriors
of wakewords with context data, either by stacking frames
within a context window for DNN, or using RNN. Follow-
on posterior threshold tuning or smoothing is applied for
decision making. Other techniques for wakeword detection,
such as those known in the art, may also be used.

US 11,900,921 B1

7

Once the wakeword detection component 220 detects a
wakeword, the device 110 may “wake” and begin transmit-
ting audio data 211, representing the audio 11, to the system
120. The audio data 211 may include data corresponding to
the detected wakeword, or the device 110 may remove the
portion of the audio corresponding to the detected wakeword
prior to sending the audio data 211 to the system 120.

The system 120 may include an orchestrator component
230 configured to, among other things, coordinate data
transmissions between components of the system 120. The
orchestrator component 230 may receive the audio data 211
from the device 110, and send the audio data 211 to an ASR
component 250.

The ASR component 250 transcribes the audio data 211
into ASR output data including one or more ASR hypoth-
eses. An ASR hypothesis may be configured as a textual
interpretation of the speech, or may be configured in another
manner, such as one or more tokens. Each ASR hypothesis
may represent a different likely interpretation of the speech
in the audio data 211. Each ASR hypothesis may be asso-
ciated with a score representing a confidence of ASR pro-
cessing performed to determine the ASR hypothesis with
which the score is associated.

The ASR component 250 interprets the speech in the
audio data 211 based on a similarity between the audio data
211 and pre-established language models. For example, the
ASR component 250 may compare the audio data 211 with
models for sounds (e.g., subword units, such as phonemes,
etc.) and sequences of sounds to identify words that match
the sequence of sounds of the speech represented in the
audio data 211.

In at least some instances, instead of the device 110
receiving audio 11, the device 110 may receive a text-based
(e.g., typed) natural language user input. The device 110
may determine text data 213 representing the typed natural
language user input, and may send the text data 213 to the
system 120, wherein the text data 213 is received by the
orchestrator component 230.

The orchestrator component 230 may send the text data
213 or ASR output data output, depending on the type of
natural language user input received, to a NLU component
260. The NLU component 260 processes the ASR output
data or text data to determine one or more NL.U hypotheses
embodied in NLU output data. The NLU component 260
may perform intent classification (IC) processing on the
ASR output data or text data to determine an intent of the
natural language user input. An intent corresponds to an
action to be performed that is responsive to the natural
language user input. To perform IC processing, the NLU
component 260 may communicate with a database of words
linked to intents. For example, a music intent database may
link words and phrases such as “quiet,” “volume off,” and
“mute” to a <Mute> intent. The NLU component 260
identifies potential intents by comparing words and phrases
in ASR output data or text data to the words and phrases in
an intents database. In at least some embodiments, the NLU
component 260 may communicate with multiple intents
databases, with each intents database corresponding to one
or more intents associated with a particular skill.

For example, IC processing of the natural language user
input “play my workout playlist” may determine an intent of
<PlayMusic>. For further example, IC processing of the
natural language user input “call mom™ may determine an
intent of <Call>. In another example, IC processing of the
natural language user input “call mom using video” may
determine an intent of <VideoCall>. In yet another example,

20

25

30

40

45

55

60

8

IC processing of the natural language user input “what is
today’s weather” may determine an intent of <Out-
putWeather>.

The NLU component 260 may also perform named entity
recognition (NER) processing on the ASR output data or text
data to determine one or more portions (which may be
referred to as one or more slots) of the natural language user
input that may be needed for post-NLU processing (e.g.,
processing performed by a skill). For example, NER pro-
cessing of the natural language user input “play [song
name|” may determine a slot corresponding to “SongName:
[song name].” For further example, NER processing of the
natural language user input “call mom” may determine a slot
corresponding to “Recipient: Mom.” In another example,
NER processing of the natural language user input “what is
today’s weather” may determine a slot corresponding to
“Date: Today.”

In at least some embodiments, the intents identifiable by
the NLU component 260 may be linked to one or more
grammar frameworks with “slots” to be filled. Each slot of
a grammar framework corresponds to a portion of ASR
output data or text data that the NLU component 260
believes corresponds to an entity. For example, a grammar
framework corresponding to a <PlayMusic> intent may
correspond to sentence structures such as “Play {Artist
Name},” “Play {Album Name},” “Play {Song name},”
“Play {Song name} by {Artist Name},” etc.

For example, the NLU component 260 may perform NER
processing to identify words in ASR output data or text data
as subject, object, verb, preposition, etc. based on grammar
rules and/or models. Then, the NLU component 260 may
perform IC processing that involves using the identified verb
to identify an intent. Thereafter, the NLU component 260
may again perform NER processing to determine a grammar
model associated with the identified intent. For example, a
grammar model for a <PlayMusic> intent may specify a list
of slots applicable to play the identified “object” and any
object modifier (e.g., a prepositional phrase), such as { Artist
Name}, {Album Name}, {Song name}, etc. The NER
processing may then involve searching corresponding fields
in a lexicon, attempting to match words and phrases in the
ASR output data that NER processing previously tagged as
a grammatical object or object modifier with those identified
in the lexicon.

NER processing may include semantic tagging, which is
the labeling of a word or combination of words according to
their type/semantic meaning. NER processing may include
parsing ASR output data or text data using heuristic gram-
mar rules, or a model may be constructed using techniques
such as hidden Markov models, maximum entropy models,
log linear models, conditional random fields (CRF), and the
like. For example, NER processing with respect to a music
skill may include parsing and tagging ASR output data or
text data corresponding to “play mother’s little helper by the
rolling stones” as {Verb}: “Play,” {Object}: “mother’s little
helper,” {Object Preposition}: “by,” and {Object Modifier}:
“the rolling stones.” The NER processing may identify
“Play” as a verb based on a word database associated with
the music skill, which IC processing determines corresponds
to a <PlayMusic> intent.

The NLU component 260 may generate NLU output data
including one or more NLU hypotheses, with each NLU
hypothesis including the intent and slot(s) determined from
IC processing and NER processing of the ASR output data
or text data. In at least some embodiments, the NLU
component 260 may perform IC processing and NLU pro-
cessing with respect to different skills. One skill may support

US 11,900,921 B1

9

the same or different intents than another skill. Thus, the
NLU output data may include multiple NLU hypotheses,
with each NLU hypothesis corresponding to IC processing
and NER processing performed on the ASR output or text
data with respect to a different skill.

As described above, the system 120 may perform speech
processing using two different components (e.g., the ASR
component 250 and the NLU component 260). In at least
some embodiments, the system 120 may implement a spo-
ken language understanding (SLU) component 255 config-
ured to process audio data 211 to determine NLU output
data.

The SL.U component 255 may be equivalent to a combi-
nation of the ASR component 250 and the NLU component
260. Yet, the SLU component 255 may process audio data
211 and directly determine the NLU output data, without an
intermediate step of generating ASR output data. As such,
the SLLU component 255 may take audio data 211 represent-
ing speech and attempt to make a semantic interpretation of
the speech. That is, the SLU component 255 may determine
a meaning associated with the speech and then implement
that meaning. For example, the SLU component 255 may
interpret audio data 211 representing speech from the user 5
in order to derive a desired action. The SL.U component 255
may output a most likely NLU hypothesis, or multiple NLLU
hypotheses associated with respective confidence or other
scores (such as probability scores, etc.).

The NLU component 260 (or the SLU component 255
depending on configuration of the system 120) may send the
NLU output data to the orchestrator component 230. The
orchestrator component 230 may send the top-scoring NLU
hypothesis (in the NLU output data) to a skill associated
with the NLU hypothesis.

The system 120 may include one or more skill compo-
nents 290 and/or may communicate with one or more skill
systems 225 via one or more skill components 290. As used
herein, a “skill” may refer to a skill component 290, a skill
system 225, or a combination of a skill component 290 and
a skill system 225. A skill may be configured to execute with
respect to NLU output data. For example, for an NLU
hypothesis including a <GetWeather> intent, the system 120
(and more particularly the orchestrator component 230) may
invoke a weather skill to determine and output weather
information for a geographic location represented in a user
profile or corresponding to a location of the device 110 that
captured the corresponding natural language user input. For
further example, for an NLU hypothesis including a
<BookRide> intent, the system 120 (and more particularly
the orchestrator component 230) may invoke a taxi skill to
book a requested ride. In another example, for an NLU
hypothesis including a <BuyPizza> intent, the system 120
(and more particularly the orchestrator component 230) may
invoke a restaurant skill to place an order for a pizza. A skill
may operate in conjunction between the system 120 and
other devices, such as the device 110, restaurant electronic
ordering systems, taxi electronic booking systems, etc. in
order to complete certain functions. Inputs to a skill may
come from speech processing interactions or through other
interactions or input sources.

A skill may be associated with a domain, a non-limiting
list of which includes a smart home domain, a music
domain, a video domain, a weather domain, a communica-
tions domain, a flash briefing domain, a shopping domain,
and a custom domain.

The system 120 may include a TTS component 280 that
determine audio data (e.g., synthesized speech) from text
data using one or more different methods. Text data input to

30

40

45

50

10

the TTS component 280 may come from a skill, the orches-
trator component 230, or another component of the system
120.

In one method of synthesis called unit selection, the TTS
component 280 matches text data against a database of
recorded speech. The TTS component 280 selects matching
units of recorded speech and concatenates the units together
to form audio data. In another method of synthesis called
parametric synthesis, the TTS component 280 varies param-
eters such as frequency, volume, and noise to determine
audio data including an artificial speech waveform. Para-
metric synthesis uses a computerized voice generator, some-
times called a vocoder.

The system 120 may include a user recognition compo-
nent 295. The user recognition component 295 may recog-
nize one or more users using various data. The user recog-
nition component 295 may take as input the audio data 211.
The user recognition component 295 may perform user
recognition by comparing speech characteristics, in the
audio data 211, to stored speech characteristics of users (e.g.,
stored speech characteristics associated with user profile
identifiers associated with the device 110 that determined the
audio data 211). The user recognition component 295 may
additionally or alternatively perform user recognition by
comparing biometric data (e.g., fingerprint data, iris data,
retina data, etc.), received by the system 120 in correlation
with a natural language user input, to stored biometric data
of users (e.g., stored biometric data associated with user
profile identifiers associated with the device 110 that deter-
mined the audio data 211 or otherwise captured a user input).
The user recognition component 295 may additionally or
alternatively perform user recognition by comparing image
data (e.g., including a representation of at least a feature of
a user), received by the system 120 in correlation with a
natural language user input, with stored image data includ-
ing representations of features of different users (e.g., stored
image data associated with user profile identifiers associated
with the device 110 that determined the audio data 211 or
otherwise captured a user input). The user recognition
component 295 may perform other or additional user rec-
ognition processes, including those known in the art. For a
particular user input, the user recognition component 295
may perform processing with respect to stored data of users
associated with the device 110 that captured the user input.

The user recognition component 295 determines whether
a user input originated from a particular user. For example,
the user recognition component 295 may determine a first
value representing a likelihood that a user input originated
from a first user, a second value representing a likelihood
that user input originated from a second user, etc. The user
recognition component 295 may also determine an overall
confidence regarding the accuracy of user recognition pro-
cessing.

The user recognition component 295 may output a single
user profile identifier corresponding to the most likely user
that originated the user input. Alternatively, the user recog-
nition component 295 may output multiple user profile
identifiers (e.g., in the form of an N-best list) with respective
values representing likelihoods of respective users originat-
ing the user input. The output of the user recognition
component 295 may be used to inform NLU processing,
processing performed by a skill, as well as processing
performed by other components of the system 120 and/or
other systems.

The system 120 may include profile storage 270. The
profile storage 270 may include a variety of data related to
individual users, groups of users, devices, etc. that interact

US 11,900,921 B1

11

with the system 120. As used herein, a “profile” refers to a
set of data associated with a user, group of users, device, etc.
The data of a profile may include preferences specific to the
user, group of users, device, etc.; input and output capabili-
ties of one or more devices; internet connectivity data; user
bibliographic data; subscription data; as well as other data.

The profile storage 270 may include one or more user
profiles. Each user profile may be associated with a different
user profile identifier. Each user profile may include various
user identifying data. Each user profile may also include
preferences of the user. Each user profile may include one or
more device identifiers, representing one or more devices
registered to the user. Each user profile may include iden-
tifiers of skills that the user has enabled. When a user enables
a skill, the user is providing the system 120 with permission
to allow the skill to execute with respect to the user’s natural
language user inputs. If a user does not enable a skill, the
system 120 may not invoke the skill to execute with respect
to the user’s natural language user inputs.

The profile storage 270 may include one or more group
profiles. Each group profile may be associated with a dif-
ferent group profile identifier. A group profile may be
specific to a group of users. That is, a group profile may be
associated with two or more individual user profiles. For
example, a group profile may be a household profile that is
associated with user profiles associated with multiple users
of a single household. A group profile may include prefer-
ences shared by all the user profiles associated therewith.
Each user profile associated with a group profile may
additionally include preferences specific to the user associ-
ated therewith. That is, a user profile may include prefer-
ences unique from one or more other user profiles associated
with the same group profile. A user profile may be a
stand-alone profile or may be associated with a group
profile. A group profile may be associated with (or include)
one or more device profiles corresponding to one or more
devices associated with the group profile.

The profile storage 270 may include one or more device
profiles. Each device profile may be associated with a
different device identifier/device profile identifier. A device
profile may include various device identifying data, input/
output characteristics, networking characteristics, etc. A
device profile may also include one or more user profile
identifiers, corresponding to one or more user profiles asso-
ciated with the device profile. For example, a household
device’s profile may include the user profile identifiers of
users of the household.

The foregoing describes illustrative components and pro-
cessing of the system 120. In at least some embodiments, the
device 110 may be configured to include some or all of the
components, and perform some or all of the processing, of
the system 120 described above. FIG. 3 illustrates such a
configured device 110.

In at least some embodiments, the system 120 may
receive the audio data 211 from the device 110, to recognize
speech corresponding to a spoken input in the received audio
data 211, and to perform functions in response to the
recognized speech. In at least some embodiments, these
functions involve sending directives (e.g., commands), from
the system 120 to the device 110 (and/or other devices 110)
to cause the device 110 to perform an action, such as output
an audible response to the spoken input via a loudspeaker(s),
and/or control secondary devices in the environment by
sending a control command to the secondary devices.

Thus, when the device 110 is able to communicate with
the system 120 over the network(s) 199, some or all of the
functions capable of being performed by the system 120

20

30

40

45

55

12

may be performed by sending one or more directives over
the network(s) 199 to the device 110, which, in turn, may
process the directive(s) and perform one or more corre-
sponding actions. For example, the system 120, using a
remote directive that is included in response data (e.g., a
remote response), may instruct the device 110 to output an
audible response (e.g., using TTS processing performed by
an on-device TTS component 380) to a user’s question via
a loudspeaker(s) of (or otherwise associated with) the device
110, to output content (e.g., music) via the loudspeaker(s) of
(or otherwise associated with) the device 110, to display
content on a display of (or otherwise associated with) the
device 110, and/or to send a directive to a secondary device
(e.g., a directive to turn on a smart light). It is to be
appreciated that the system 120 may be configured to
provide other functions in addition to those discussed herein,
such as, without limitation, providing step-by-step direc-
tions for navigating from an origin location to a destination
location, conducting an electronic commerce transaction on
behalf of the user 5 as part of a shopping function, estab-
lishing a communication session (e.g., a video call) between
the user 5 and another user, and so on.

As noted with respect to FIG. 2, the device 110 may
include a wakeword detection component 220 configured to
compare the audio data 211 to stored models used to detect
a wakeword (e.g., “Alexa”) that indicates to the device 110
that the audio data 211 is to be processed for determining
NLU output data (e.g., slot data that corresponds to a named
entity, label data, and/or intent data, etc.). In at least some
embodiments, a hybrid selector 324, of the device 110, may
send the audio data 211 to the wakeword detection compo-
nent 220. If the wakeword detection component 220 detects
a wakeword in the audio data 211, the wakeword detection
component 220 may send an indication of such detection to
the hybrid selector 324. In response to receiving the indi-
cation, the hybrid selector 324 may send the audio data 211
to the system 120 and/or the ASR component 350. The
wakeword detection component 220 may also send an
indication, to the hybrid selector 324, representing a wake-
word was not detected. In response to receiving such an
indication, the hybrid selector 324 may refrain from sending
the audio data 211 to the system 120, and may prevent the
ASR component 350 from further processing the audio data
211. In this situation, the audio data 211 can be discarded.

The device 110 may conduct its own speech processing
using on-device language processing components, such as
an SLU component 355 (an ASR component 350 and an
NLU 360), similar to the manner discussed above with
respect to the SLU component 255 (or ASR component 250
and the NLU component 260) of the system 120. The device
110 may also internally include, or otherwise have access to,
other components such as one or more skill components 390
capable of executing commands based on NLU output data
or other results determined by the device 110/system 120, a
user recognition component 395 (configured to process in a
similar manner to that discussed above with respect to the
user recognition component 295 of the system 120), profile
storage 370 (configured to store similar profile data to that
discussed above with respect to the profile storage 270 of the
system 120), or other components. In at least some embodi-
ments, the profile storage 370 may only store profile data for
a user or group of users specifically associated with the
device 110. Similar to as described above with respect to
FIG. 2, a skill component 390 may communicate with a skill
system(s) 225.

In at least some embodiments, the on-device language
processing components may not have the same capabilities

US 11,900,921 B1

13

as the language processing components of the system 120.
For example, the on-device language processing compo-
nents may be configured to handle only a subset of the
natural language user inputs that may be handled by the
system 120. For example, such subset of natural language
user inputs may correspond to local-type natural language
user inputs, such as those controlling devices or components
associated with a user’s home. In such circumstances the
on-device language processing components may be able to
more quickly interpret and respond to a local-type natural
language user input, for example, than processing that
involves the system 120. If the device 110 attempts to
process a natural language user input for which the on-
device language processing components are not necessarily
best suited, the language processing results determined by
the device 110 may indicate a low confidence or other metric
indicating that the processing by the device 110 may not be
as accurate as the processing done by the system 120.

The hybrid selector 324, of the device 110, may include
a hybrid proxy (HP) 326 configured to proxy traffic to/from
the system 120. For example, the HP 326 may be configured
to send messages to/from a hybrid execution controller
(HEC) 327 of the hybrid selector 324. For example, com-
mand/directive data received from the system 120 can be
sent to the HEC 327 using the HP 326. The HP 326 may also
be configured to allow the audio data 211 to pass to the
system 120 while also receiving (e.g., intercepting) this
audio data 211 and sending the audio data 211 to the HEC
327.

In at least some embodiments, the hybrid selector 324
may further include a local request orchestrator (LRO) 328
configured to notify the ASR component 350 about the
availability of new audio data 211 that represents user
speech, and to otherwise initiate the operations of on-device
language processing when new audio data 211 becomes
available. In general, the hybrid selector 324 may control
execution of on-device language processing, such as by
sending “execute” and “terminate” events/instructions. An
“execute” event may instruct a component to continue any
suspended execution (e.g., by instructing the component to
execute on a previously-determined intent in order to deter-
mine a directive). Meanwhile, a “terminate” event may
instruct a component to terminate further execution, such as
when the device 110 receives directive data from the system
120 and chooses to use that remotely-determined directive
data.

Thus, when the audio data 211 is received, the HP 326
may allow the audio data 211 to pass through to the system
120 and the HP 326 may also input the audio data 211 to the
on-device ASR component 350 by routing the audio data
211 through the HEC 327 of the hybrid selector 324,
whereby the LRO 328 notifies the ASR component 350 of
the audio data 211. At this point, the hybrid selector 324 may
wait for response data from either or both of the system 120
or the on-device language processing components. How-
ever, the disclosure is not limited thereto, and in some
examples the hybrid selector 324 may send the audio data
211 only to the on-device ASR component 350 without
departing from the disclosure. For example, the device 110
may process the audio data 211 on-device without sending
the audio data 211 to the system 120.

The on-device ASR component 350 is configured to
receive the audio data 211 from the hybrid selector 324, and
to recognize speech in the audio data 211, and the on-device
NLU component 360 is configured to determine a user intent
from the recognized speech, and to determine how to act on
the user intent by generating NLU output data which may

30

40

45

55

14

include directive data (e.g., instructing a component to
perform an action). Such NLU output data may take a form
similar to that as determined by the NLU component 260 of
the system 120. In some cases, a directive may include a
description of the intent (e.g., an intent to turn off {device
A}). In some cases, a directive may include (e.g., encode) an
identifier of a second device(s), such as kitchen lights, and
an operation to be performed at the second device(s).
Directive data may be formatted using Java, such as
JavaScript syntax, or JavaScript-based syntax. This may
include formatting the directive using JSON. In at least some
embodiments, a device-determined directive may be serial-
ized, much like how remotely-determined directives may be
serialized for transmission in data packets over the
network(s) 199. In at least some embodiments, a device-
determined directive may be formatted as a programmatic
API call with a same logical operation as a remotely-
determined directive. In other words, a device-determined
directive may mimic a remotely-determined directive by
using a same, or a similar, format as the remotely-deter-
mined directive.

An NLU hypothesis (output by the NLU component 360)
may be selected as usable to respond to a natural language
user input, and local response data may be sent (e.g., local
NLU output data, local knowledge base information, inter-
net search results, and/or local directive data) to the hybrid
selector 324, such as a “ReadyToExecute” response. The
hybrid selector 324 may then determine whether to use
directive data from the on-device components to respond to
the natural language user input, to use directive data
received from the system 120, assuming a remote response
is even received (e.g., when the device 110 is able to access
the system 120 over the network(s) 199), or to determine
output audio requesting additional information from the user
5.

The device 110 and/or the system 120 may associate a
unique identifier with each natural language user input. The
device 110 may include the unique identifier when sending
the audio data 211 to the system 120, and the response data
from the system 120 may include the unique identifier to
identify which natural language user input the response data
corresponds.

In at least some embodiments, the device 110 may
include, or be configured to use, one or more skill compo-
nents 390 that may work similarly to the skill component(s)
290 implemented by the system 120. The skill component(s)
390 may correspond to one or more domains that are used
in order to determine how to act on a spoken input in a
particular way, such as by outputting a directive that corre-
sponds to the determined intent, and which can be processed
to implement the desired operation. The skill component(s)
390 installed on the device 110 may include, without limi-
tation, a smart home skill component (or smart home
domain) and/or a device control skill component (or device
control domain) to execute in response to spoken inputs
corresponding to an intent to control a second device(s) in an
environment, a music skill component (or music domain) to
execute in response to spoken inputs corresponding to a
intent to play music, a navigation skill component (or a
navigation domain) to execute in response to spoken input
corresponding to an intent to get directions, a shopping skill
component (or shopping domain) to execute in response to
spoken inputs corresponding to an intent to buy an item from
an electronic marketplace, and/or the like.

Additionally or alternatively, the device 110 may be in
communication with one or more skill systems 225. For
example, a skill system 225 may be located in a remote
environment (e.g., separate location) such that the device

US 11,900,921 B1

15

110 may only communicate with the skill system 225 via the
network(s) 199. However, the disclosure is not limited
thereto. For example, in at least some embodiments, a skill
system 225 may be configured in a local environment (e.g.,
home server and/or the like) such that the device 110 may
communicate with the skill system 225 via a private net-
work, such as a local area network (LAN).

As used herein, a “skill” may refer to a skill component
390, a skill system 225, or a combination of a skill compo-
nent 390 and a skill system 225.

Machine learning (ML) is a valuable computing technique
that allows computing systems to learn techniques for solv-
ing complex problems without needing an explicit algorithm
for the computing system to follow. ML may use a trained
model that consists of internally configured operations that
can manipulate a particular type of input data to determine
a desired result. Trained models are used in many computing
tasks such as computer vision, speech processing, predictive
analyses, and many more.

Trained models come in a variety of forms including
trained classifiers, Support Vector Machines (SVMs), neural
networks (such as deep neural networks (DNNs), recurrent
neural networks (RNNs), or convolutional neural networks
(CNNis)), random forests, isolation forests, and others. As an
example, a neural network typically includes an input layer,
an output layer and one or more intermediate hidden layers
where the input layer is configured to take in a certain kind
of data and the output layer is configured to output the
desired kind of data resulting from the network and the
hidden layer(s) perform a variety of functions to generate
output data from the input data.

Various techniques may be used to train ML models
including backpropagation, statistical learning, supervised
learning, semi-supervised learning, stochastic learning, or
other known techniques. In supervised learning a model may
be configured to infer a function from labeled training data.
Thus a computing system may use training data in the form
of training examples that provide examples of the kinds of
input data the model will be configured to process at runtime
as well as an accompanying “ground truth” for each training
example. The ground truth provides the correct response for
the respective training example, thus providing a complete
example that can be used to train the model. Other data that
may be used to train a model may include training param-
eters such as error functions, weights or other data that can
be used to guide the training of a model.

One or more of the components described in relation to
FIGS. 2 and 3 may employ one or more ML models to
perform the described functionalities. For example, the SLU
component 255/355 may employ one or more deep neural
networks (DNNs) or other type of deep ML models to
process audio data 211 (representing speech from the user 5)
and determine NLU output data, representing an intent and
one or more entities indicated in the audio data 211.
Described below are techniques for processing input data
(such as the audio data 211) using an on-device ML, model
(for example, included in the SLU component 355), and
sending feature data to the system(s) 120, when needed/
appropriate, to enable the system(s) 120 (for example, using
a ML model included in the SLU component 255) to
complete processing with respect to the input data.

The improved performance of additional layers in a DNN
may come at the cost of added latency and energy usage. As
networks continue to get deeper and larger, these costs
become more prohibitive for real-time and energy-sensitive
applications. To address this issue, the ML, model(s) on the
device may be augmented with additional side branch clas-

10

15

20

25

30

35

40

45

50

55

60

65

16

sifiers. The architecture shown in FIG. 4 may allow the
device to cease processing by the ML model(s) early when
the prediction for the input data can already be inferred with
high confidence. The architecture may also allow the device
to bridge processing to the system 120 when the prediction
for the input data cannot be inferred with high confidence.
In some cases, features determined at an early node/layer of
a ML model may be sufficient to make a prediction with
respect to certain input data, in which case, the device may
determine to cease processing. In some cases, based on the
features learned at an early node/layer of the ML, model, the
device may be able to determine that the network is not
capable of making a prediction with high confidence, in
which case the device may determine to bridge processing.
In other cases, the device may determine to continue pro-
cessing using the remaining nodes/layers of the on-device
ML model. Using such techniques can improve accuracy
and reduce the time it takes to process input data.

In some embodiments, an existing ML model (e.g., a
DNN) may be modified to include branches at various egress
points, as shown in FIG. 4. For example, the existing ML
model may include blocks 410, 412, 414, 432, 434, 436,
452, 454, 456, and 472. The blocks 414, 436, 456 and 472
may be considered egress points, and the blocks 416, 418,
420, 422, 438, 440, 442, 458, 460 and 474 may be consid-
ered branches. In some embodiments, after each node the
ML model 400 makes a prediction and decides whether to go
to the next node or to stop and return the prediction. During
training a loss is computed at each egress point (after each
node) and the training objective is to optimize a weighted
sum of the losses. An ML model, including the processing
nodes and processing blocks, may be stored as software in
a memory of a device or computing system.

A ML model with branches as described herein, may
consist of one entry point (at the first node of the ML model
that receives input data) and multiple egress points. A branch
may be a subset of the network containing contiguous layers,
which do not overlap other branches, followed by an egress
point. The main branch may be considered as the existing
ML model (the original network) before the side branches
are added.

The modified ML, model architecture may promote faster
inference via early egress points from branches. Through the
branching structures and egress point criteria as well as joint
optimization of loss functions for all egress points, the ML
model may be able to leverage the insight that many data
points can be correctly classified early and therefore do not
need the later model layers/nodes.

FIG. 4 is a conceptual diagram of a ML model 400,
included at the device 110, with branches to determine a
strategy with respect to further processing the input data. In
some embodiments, the ML, model 400 may be a deep
learning model, such as a DNN. The ML model 400 may
include one or more processing nodes, such as, node 402,
node 430, node 450 and node 470 (which may also be
referred to as layers of a ML model). Each of the nodes 402,
430, 450 and 470 may include one or more processing
blocks. In some embodiments, the processing blocks may be
configured to perform convolutions. Each of the nodes 402,
430, 450 and 470 may also include a processing strategy
decision block configured to determine whether the device
110 should cease processing, bridge processing to the sys-
tem(s) 120 or continue processing at the device 110. Each
processing node/layer may be a collection of processing
blocks operating together at a specific depth within a neural
network type ML model 400.

US 11,900,921 B1

17

The first node, for example node 402, may be an input
node/layer that processes raw input data. The intermediary
nodes, for example nodes 430 and 450, may be hidden
nodes/layers of a neural network type ML model 400, where
each node is attempting to learn different aspects/features
about the input data by minimizing an error/cost function. In
the example embodiment where the ML model 400 is
configured for facial recognition in images, the intermediary
node 430 may perform edge detection in the image data, the
intermediary node 450 may detect eyes, the next interme-
diary node (not shown) may detect a nose, etc. The final
node/layer, for example node 470, may be an output node/
layer that may consist of a single output for classification
problems.

In some embodiments, the node 402 may be the first node
of'the ML model 400 on the device 110, and may receive the
input data (such as, audio data 211) for processing. The node
402 may include a (first) block 410 configured to process the
input data and provide output data to a (second) block 412,
where the output data from the block 410 may be features
learned from processing the input data. The block 412 may
process the output data from the block 410 and provide
output data to a (third) block 414, where the output data from
the block 412 may be features learned from processing the
output data from the block 410. The blocks 410, 412 and 414
may perform convolutional operations of a DNN.

In an example embodiment, the device 110, using the
decision block 422, may determine to cease processing
(cease processing) at the node 402 with respect to the input
data, bridge processing at the node 402 to the system(s) 120
with respect to the input data, or continue processing the
input data using the ML, model 400. The data evaluated by
the decision block 422 may be features or model output data
determined by the block 414. The features or model output
data determined by the block 414 may be further processed
using one or more processing blocks, such as blocks 416,
418 and 420. Each of the blocks 416, 418 and 420 may
perform convolution operations on the output of the block
414, thus, rendering the output of the block 414 into a form
that may be evaluated by the decision block 422.

In some embodiments, the device 110 may cease process-
ing at a particular node of the MLL model 400 if the device
110 determines that the ML model 400 is capable of out-
putting a prediction with respect to the input data based on
the processing performed at the node, and that processing by
the remaining nodes of the ML, model 400 will not result in
a different prediction. The decision to cease processing by
the device 110 may be based on a confidence score(s)
derived from the output of the last processing block of the
node. For example, in the node 402 the decision to cease
processing may be based on the confidence score(s) derived
from the output of the block 414 and determined by the
blocks 416, 418 and 420. If the confidence score(s) satisfies
a threshold confidence score/level, then the device 110 may
determine to cease processing.

In some embodiments, the device 110 may bridge pro-
cessing at a particular node of the ML model 400 if the
device 110 determines that the ML model 400 on the device
110 is not capable of outputting a prediction with respect to
the input data based on the processing performed at the
node, and that processing by the remaining nodes of the ML,
model 400 will not result in a prediction either. In this case,
the device 110 may bridge processing to a ML model 400
included in the system(s) 120, such that, processing with
respect to the input data is completed by the system(s) 120.
Further details on how bridge processing is performed are
described with respect to FIG. 5. The decision to bridge

10

15

20

25

30

35

40

45

50

55

60

65

18

processing by the device 110 may be based on a confidence
score(s) derived from the output of the last processing block
of the node. For example, in the node 402 the decision to
bridge processing may be based on the confidence score(s)
derived from the output of the block 414 and determined by
the blocks 416, 418 and 420. If the confidence score(s) fails
to satisfy a threshold confidence score/level, then the device
110 may determine to bridge processing.

In some embodiments, the device 110 may continue
processing at the ML, model 400 if the device 110 determines
that the ML model 400 on the device 110 is capable of
outputting a prediction with respect to the input data if
processing is continued. In some embodiments, the device
110 may continue processing at the ML model 400 if the
device 110 determines to not cease processing and deter-
mines to not bridge processing to the system(s) 120. The
decision to continue processing by the device 110 may be
based on a confidence score(s) derived from the output of the
last processing block of the node. For example, in the node
402 the decision to continue processing may be based on the
confidence score(s) derived from the output of the block 414
and determined by the blocks 416, 418 and 420. If the
confidence score(s) satisfy a first threshold confidence score/
value and fails to satisfy a second threshold confidence
score/value, then the device 110 may determine to continue
processing.

In some embodiments, the decision block 422 may evalu-
ate binned representations of the confidence score(s) to
determine whether to cease processing, bridge processing or
continue processing. For example, the decision block 422
may determine to cease processing if the confidence score(s)
is a high score, may determine to bridge processing if the
confidence score(s) is a low score, and may determine to
continue processing if the confidence score(s) is a medium
score.

If the device 110 determines to continue processing at
decision block 422, then the output of the block 414 may be
provided to a block 432 (the first block) of the next node 430
of the ML model 400, so that the ML model 400 may
continue processing with respect to the input data. The node
430 may include a (first) block 432 configured to process the
output data from the block 414 and provide output data to a
(second) block 434, where the output data from the block
432 may be features learned from processing the output data
from the block 414. The block 434 may process the output
data from the block 432 and provide output data to a (third)
block 436, where the output data from the block 434 may be
features learned from processing the output data from the
block 432. The blocks 432, 434 and 436 may perform
convolutional operations of the DNN.

In an example embodiment, the device 110, using the
decision block 442, may determine to cease processing
(cease processing) at the node 430 with respect to the input
data, bridge processing at the node 430 to the system(s) 120
with respect to the input data, or continue processing the
input data using the ML, model 400. The data evaluated by
the decision block 442 may be features or model output data
determined by the block 436. The features or model output
data determined by the block 436 may be further processed
using one or more processing blocks, such as blocks 438 and
440. Each of the blocks 438 and 440 may perform convo-
Iution operations on the output of the block 436, thus,
rendering the output of the block 436 into a form that may
be evaluated by the decision block 442.

In the node 430 the decision to cease processing, bridge
processing, or continue processing may be based on the
confidence score(s) derived from the output of the block 436

US 11,900,921 B1

19

and determined by the blocks 438 and 440. If the confidence
score(s) satisfies a first threshold confidence score/level,
then the device 110 may determine to cease processing at the
node 430. If the confidence score(s) fails to satisfy a second
(lower) threshold confidence score/level, then the device 110
may determine to bridge processing at the node 430. If the
confidence score(s) satisfies the second (lower) threshold
confidence score/level and fails to satisfy the first (higher)
threshold confidence score/level, then the device 110 may
determine to continue processing at the ML model 400.

In some embodiments, the decision block 442 may evalu-
ate binned representations of the confidence score(s) to
determine whether to cease processing, bridge processing or
continue processing. For example, the decision block 442
may determine to cease processing at the node 430 if the
confidence score(s) is a high score, may determine to bridge
processing at the node 430 if the confidence score(s) is a low
score, and may determine to continue processing if the
confidence score(s) is a medium score.

If the device 110 determines to continue processing at
decision block 442, then the output of the block 436 may be
provided to a block 452 (the first block) of the next node 450
of the ML model 400, so that the ML model 400 may
continue processing with respect to the input data. The node
450 may include a (first) block 452 configured to process the
output data from the block 436 and provide output data to a
(second) block 454, where the output data from the block
452 may be features learned from processing the output data
from the block 436. The block 454 may process the output
data from the block 452 and provide output data to a (third)
block 456, where the output data from the block 454 may be
features learned from processing the output data from the
block 452. The blocks 452, 454 and 456 may perform
convolutional operations of the DNN. In some embodi-
ments, the block 456 may be perform pooling operations of
the DNN.

In an example embodiment, the device 110, using the
decision block 460, may determine to cease processing (exit
processing) at the node 450 with respect to the input data,
bridge processing at the node 450 to the system(s) 120 with
respect to the input data, or continue processing the input
data using the ML, model 400. The data evaluated by the
decision block 460 may be features or model output data
determined by the block 456. The features or model output
data determined by the block 456 may be further processed
using one or more processing blocks, such as block 458. The
block 458 may perform convolution operations on the output
of the block 456, thus, rendering the output of the block 456
into a form that may be evaluated by the decision block 460.

In the node 450 the decision to cease processing, bridge
processing, or continue processing may be based on the
confidence score(s) derived from the output of the block 456
and determined by the block 458. If the confidence score(s)
satisfies a first threshold confidence score/level, then the
device 110 may determine to cease processing at the node
450. If the confidence score(s) fails to satisfy a second
(lower) threshold confidence score/level, then the device 110
may determine to bridge processing at the node 450. If the
confidence score(s) satisfies the second (lower) threshold
confidence score/level and fails to satisfy the first (higher)
threshold confidence score/level, then the device 110 may
determine to continue processing at the ML model 400.

In some embodiments, the decision block 460 may evalu-
ate binned representations of the confidence score(s) to
determine whether to cease processing, bridge processing or
continue processing. For example, the decision block 460
may determine to cease processing at the node 450 if the

10

15

20

25

30

35

40

45

50

55

60

65

20

confidence score(s) is a high score, may determine to bridge
processing at the node 450 if the confidence score(s) is a low
score, and may determine to continue processing if the
confidence score(s) is a medium score.

If the device 110 determines to continue processing at
decision block 460, then the output of the block 456 may be
provided to a block 472 of the next node 470 of the ML
model 400, so that the ML model 400 may continue pro-
cessing with respect to the input data. The block 472 may be
the last processing block of the ML model 400. In some
embodiments, the block 472 may be an activation layer, and
may employ a rectified linear activation function (ReLu). In
some embodiments, the block 472 may be a pooling layer.
In some embodiments, the block 472 may be a sofimax
layer. In some cases, with the block 472 being the last
processing block of the ML model 400, the output of the
block 472 may be the prediction of the ML model 400 with
respect to the input data.

In some embodiments, the device 110 may determine, at
decision block 474, to cease processing or bridge processing
at the node 470. The decision block 474 may evaluate the
output of the block 472, which may be a confidence score(s)
corresponding to the processing performed by the entire ML
model 400. In this case, since the node 470 is the final
processing node of the MLL model 400, when the device 110
determines to cease processing, the device 110 is determin-
ing to use the prediction of the on-device ML model 400. In
other words, the device 110 may determine that the predic-
tion/output of the on-device ML model 400 with respect to
the input data satisfies a threshold confidence score/level,
and may be used by downstream components (as described
with respect to FIGS. 2 and 3) to perform further processing
of the input data. At decision block 474, if the device 110
determines to bridge processing to the system(s) 120, since
the node 470 is the final processing node of the ML model
400, the device 110 is determining that the prediction/output
of'the on-device ML model 400 with respect to the input data
does not satisfy a threshold confidence score/level, and may
not be used by downstream components to perform further
processing of the input data.

In some embodiments, the device 110 may consider other
factors/data at the decision blocks 422, 442, 460 and 474 in
determining whether to cease processing, bridge processing
or continue processing. The factors may relate to and affect
the latency in processing the input data and providing a
responsive output to the user. The data may include time
spent by the ML model 400 in processing the input data till
the egress point, estimated time that the ML, model 400 will
spend if processing continues, the number of nodes and/or
blocks of the ML, model 400 that have processed the input
data, the number of nodes and/or blocks remaining in the
ML model 400 that can process the input data, the time
elapsed since the device 110 received the input data, etc. The
decision blocks 422, 442, 460 and 474 may also consider the
number of iterations/computations/operations already per-
formed by the ML, model 400 in processing the input data till
the egress point, and the number of iterations/computations/
operations that may have to be performed if processing
continues at ML model 400. The decision blocks 422, 442,
460, and 474 may also consider a divergence in the features
determined by the respective node. In some embodiments,
the decision blocks 422, 442, 460 and 474 may also consider
the complexity of the input data in terms of the amount of
data received, the quality of data received, etc. For example,
if the input data is audio data 211, the length of the audio
data 211 may be considered, the noise to signal ratio may be
considered; if the input data is a natural language input, then

US 11,900,921 B1

21

the number of words in the input data may be considered. In
some embodiments, the decision blocks 422, 442, 460 and
474 may consider the quality of the network connection
between the device 110 and the system(s) 120. If the
network connection is low/poor, then the system(s) 120 may
not receive data sent by the device 110 or may be delayed in
receiving the data sent by the device 110. In this case, the
device 110 may determine to continue processing at the
device 110 using the ML, model 400, and reduce latency in
processing the input data.

It should be understood that the ML model 400 may
include fewer or more processing nodes than shown in FIG.
4. Each of the nodes may include fewer or more processing
blocks than shown in FIG. 4. The architecture of the ML
model 400 may vary from what is illustrated based on
system configurations and ML model configurations.

The ML model 400, in some embodiments, may be
trained by solving a joint optimization problem on the
weighted sum of the loss functions associated with the
egress points. The blocks 414, 436, 456 and 472, for
example, may be considered as egress points. Once the ML
model 400 is trained, the device 110 utilizes the egress
points to determine whether to cease processing, bridge
processing or continue processing, as described above, thus
reducing the cost (time and resources-wise) of processing
input data.

At each egress point, the device 110 may use the entropy
of a classification result (e.g., output of a softmax layer at
blocks 420, 440, 458 and 472) as a measure of confidence in
the prediction. If the entropy is below a threshold value,
meaning that the ML, model 400 is confident in the predic-
tion, the device 110 may cease processing, and the remain-
ing nodes of the ML model 400 do not process the input data.
If the entropy value is above a threshold value, then the ML
model 400 is deemed not confident, and the device 110 may
continue to the next nodes in the ML model 400. In some
embodiments, if the entropy is below another threshold
value, meaning that the ML model 400 is not capable of
making a prediction with a high confidence, even if pro-
cessing continues, then the device 110 may determine to
bridge processing to the system(s) 120.

In some embodiments, if the entropy is below the thresh-
old value and certain other conditions exist, then the device
110 may determine to bridge processing to the system(s)
120, to reduce latency in processing the input data and to
increase accuracy in processing the input data. These other
conditions may include, but are not limited to, the process-
ing time already spent by the ML, model 400 in processing
the input data when the ML, model 400 reached the egress
point, the time since the input data was received by the
device 110, the number of nodes remaining in the ML model
400 to process the input data, the number of nodes in the MLL
model 400 that already processed the input data, and others.
In some embodiments, the device 110 may also compare a
previous entropy (or previous confidence score) of the
prediction at a previous egress point (e.g., the block 420)
with the instant entropy (or instant confidence score) of the
prediction at an instant egress point (e.g., the block 440) to
determine whether there is positive or negative change in the
entropy (or confidence score). If there is an increase in the
instant entropy from the previous entropy (or a decrease in
the instant confidence score from the previous confidence
score) then the likelihood of the ML, model 400 generating
an accurate prediction may be low. That is, continued
processing by the ML model 400 is not likely to result in an
accurate prediction. In this case, the device 110 may deter-
mine to bridge processing to the system(s) 120 to complete

10

20

35

40

45

22

processing. In this manner, the device 110 may not waste
time by continuing to process at the device 110 when the ML,
model 400 is not going to be able to make a high confidence
prediction.

In training the blocks in the branches, network regular-
ization and mitigation of vanishing gradients in backproga-
tion may also be considered. For the former, the branches
may provide regularization on the existing ML, model. For
the latter, a relatively shallower branch (with fewer blocks)
at a lower layer may provide more immediate gradient signal
in backpropagation, resulting in discriminative features in
lower nodes of the ML model 400, thus improving its
accuracy.

In some embodiments, there may be fewer egress points
than illustrated in FIG. 4. Each node of the ML model 400
may not have an egress point. For example, the first node
402 may not have an egress point because it may not be
beneficial (time-wise and resource-wise) to evaluate the
prediction made by the first node of the ML, model 400, as
the features learned at the first node may not be valuable for
making a prediction. In other embodiments, there may be
more than one egress point in a node of the ML model 400.
In some embodiments, there may be fewer blocks in a
branch for an egress point. For example, at node 402, there
may only be block 416 (and no blocks 418 and 420).

In some embodiments, a node of the ML, model 400 may
include a combination of convolutional layers and fully-
connected layers after the convolutional layers, enabling
both local and global features to be combined at a node level,
which may be used to make a decision at the egress point.
The number of blocks in a first egress point branch may be
less than the number of blocks in a second/next egress point
branch, thus, lessening the amount of computation needed at
a later egress point. Earlier egress points may include more
processing blocks than later egress points. The blocks in the
egress point branches may include a combination of con-
volutional layers and fully-connected layers.

The device 110 may base its decision at the egress points
on the observation that lower and intermediate nodes of the
ML model 400 may suffice to classify certain input data or
determine that the ML model 400 is not going to be able to
classify the input data.

Each of the processing blocks 410, 412, 414, 416, 418,
420, 432, 434, 436, 438, 440, 452, 454, 456, 458, and 472
may be configured to perform one or more operations of a
ML model, for example, including but not limited to, a
convolutional layer, a recurrent layer, a LSTM layer, a
pooling layer, an averaging layer, a rectified linear activation
function, a softmax layer, or other operations/layers of a ML
model.

As the input data is processed by the nodes of ML model,
the dimensions of the features determined by a node
decreases, based on which later occurring egress branches
may have fewer processing blocks. For example, the egress
branch for node 450 may have one processing block 458 in
the egress branch because the dimension of the feature
vector outputted at block 456 may be smaller than dimen-
sion of the feature vector outputted by the block 414, where
the egress branch has three blocks, 416, 418 and 420, for the
node 402.

The system(s) 120 (or another device 110) may include
one or more ML models (e.g., ML, model 500 of FIG. 5) to
perform the same type of processing performed by the ML
model 400. The ML model 500 may include, in some
embodiments, the same number of processing nodes as the
on-device ML model 400. In some embodiments, the
sequential nodes of the ML model 500 may correspond to

US 11,900,921 B1

23

the sequential nodes of the ML, model 400. For example, the
node 402 may be an initial/first node of the ML model 400,
while node 510 may be an initial/first node of the ML model
500. FIG. 5 is a conceptual diagram illustrating how the
on-device ML, model 400 can bridge to a ML, model 500 on
the system(s) 120 to perform processing with respect to
input data. As described in relation to FIG. 4, the device 110
may determine, at each processing node, whether to bridge
processing to the system(s) 120.

At the decision block 422, the device 110 may determine
to cease processing at the node 402, in response to which,
the node 402 may provide output data 502 (e.g., the output
of the block 414). The device 110 may use the output data
502 as the prediction of the ML, model 400, and may provide
the output data 502 to downstream components to perform
further processing of the input data.

At decision block 422, the device 110 may determine to
bridge processing at the node 402, in response to which, the
device 110 may send feature data 509 to the system(s) 120.
The feature data 509 may be the output of the block 414. In
some embodiments, the feature data 509 may be embed-
dings determined based on processing by the block 414. In
some embodiments, the feature data 509 may be token data
determined based on processing by the block 414. In some
embodiments, the device 110 may also provide data, to the
system(s) 120, indicating where within the ML, model 400
the device 110 decided to bridge processing. Such data may
indicate a processing node and a processing block within the
processing node, using a node identifier and a block iden-
tifier. The ML model 500 may pick up processing where the
ML model 400 left off. The ML model 500 may do so using
the node and block indicated by the device 110. As such, the
system(s) 120 may not re-perform processing that the device
110 has already performed, thus, reducing latency.

At decision block 422, the device 110 may determine to
continue processing at the ML, model 400, in response to
which, the output of the node 402 may be provided to the
next node 430 of the ML model 400.

As shown in FIG. 5, at the nodes 430 and 450, the device
110, similarly to the decision block 422, may determine to
cease processing, bridge processing or continue processing,
via the decision blocks 442 and 460. Output data 504 may
be provided by the node 430 if the device 110 determines to
cease processing at the node 430. Feature data 518 may be
provided to the system(s) 120 if the device 110 determines
to bridge processing at the node 430. Output data 506 may
be provided by the node 450 if the device 110 determines to
cease processing at the node 450. Feature data 528 may be
provided to the system(s) 120 if the device 110 determines
to bridge processing at the node 450.

At the node 470, which may be the final processing node
of'the ML. model 400, the device 110 may determine to cease
processing and may send output data 508 generated by the
node 470 to downstream components to perform further
processing of the input data. In this case, the device 110 may
determine to use the prediction of the on-device ML, model
400. The device 110, at node 470, may determine to bridge
processing to the system(s) 120, and may send feature data
538 to the system(s) 120. In this case, the device 110 may
determine that the on-device ML model 400 is not confident
enough in its processing of the input data, and therefore, the
device 110 may request the system(s) 120 to complete
processing with respect to the input data.

The ML model 500 may be a ML model included in the
SLU component 255. As shown in FIG. 5, the ML model
500 of the system(s) 120 may include multiple processing
nodes, such as nodes 510, 520, 530, 540, 545. Each of the

10

15

20

25

30

35

40

45

50

55

60

65

24

processing nodes may include one or more processing
blocks, such as, blocks 516, 522, 524, 526, 532, 534, 536,
542 and 546. The system(s) 120 may initiate processing at
the ML model 500 based on where the device 110 left off.
For example, the system(s) 120 may begin processing at the
node 520 if the device 110 bridged processing at the node
402, where the node 520 in the ML model 500 may be the
second node. Thus, the ML, model 500 may not perform
processing by the first node 510 that may be already per-
formed by the first node 402 of the ML, model 400. In this
case, the system(s) 120 may continue processing at the ML
model 500 via the nodes 520, 530, 540 and 545.

The node 545 may be the final processing node of the ML,
model 500, and may determine output data 550 representing
a prediction of the ML model 500 on the system(s) 120 with
respect to the input data. If the device 110 determines to
bridge processing to the system(s) 120, then the output data
550 may be used as the prediction for the input data, and the
output data 550 may be sent to downstream components (of
the system 120) to perform further processing of the input
data.

In some embodiments, the system ML model 500 may
also include exit points (similar to the egress points of the
ML model 400). At these exit points, the system(s) 120 may
determine to cease processing or continue processing, based
on the confidence level of the prediction generated by the
corresponding node.

The feature data 509, 518, 528 and 538 may be the output
of'the last block in the corresponding node. In some embodi-
ments, the feature data 509, 518, 528 and 538 may be
embeddings determined based on processing by the corre-
sponding node. In some embodiments, the feature data 509,
518, 528 and 538 may be token data determined based on
processing by the corresponding node. In some embodi-
ments, the device 110 may also send other data to the
system(s) 120 along with the feature data 509, 518, 528 and
538. The other data may include, but is not limited to,
context data corresponding to the input data, the input data,
user profile data associated with the user that provided the
input data, and other data. The context data may include
device information (device type, device model, version
number, device input/output capabilities) for the device 110
that received the input data, location information (user
location, device 110 location), time information (when the
input data was received), and other context information. The
device 110 may encrypt the data sent to the system(s) 120,
and the system(s) 120 may decrypt the received data prior to
processing (such encryption and description may be per-
formed using art-known/industry-known techniques). The
device 110 may add noise to the data prior to sending the
data to the system(s) 120, and the system(s) 120 may remove
the noise or process the data with the noise. The added noise
may be such that it may not impact the processing results.

In some embodiments, the ML, model 400 may be
included in the SLU component 355 and configured to
process audio data 211 to determine NLU output data, and
the ML model 500 may be included in the SLU component
255 and configured to process audio data 211 to determine
NLU output data. In other embodiments, the ML model 400
may be included in the NLU component 360 and may be
configured to process ASR output data to determine NLU
output data, and the ML model 500 may be included in the
NLU component 260 configured to process ASR output data
to determine NLU output data. In yet other embodiments,
the ML model 400 and the ML. model 500 may be configured
to process other types of data.

US 11,900,921 B1

25

In some embodiments, the MLL model 500 may be
included in another device 110, and the ML model 400 may
bridge processing to the ML, model 500 on the device 110
(e.g., the device 1105). The device 1105 may be associated
with the device 110q (that includes the ML, model 400) with
respect to a user profile identifier—as in the device 110a and
the device 1105 may be associated with the same user 5. The
device 110a and the device 1105 may be associated with the
same household (office, vehicle, hotel, building, etc.). The
device 1105 may have higher/better processing capabilities
in terms of a processor and a memory included in the device
1105 as compared to the processing capabilities of the
device 110a.

Given the size of some of the ML models, it may be
difficult to compress an entire ML, model to include in the
device 110. Instead, splitting an ML model across environ-
ments may enable optimization of operations performed on
the device 110. The modular structure of the ML models
described herein may allow for the processing to be spilt
across environments, as a subset of the processing nodes can
reside on a user device and the remainder of the processing
nodes (or the entire ML model) can reside on a system (e.g.,
a server, in the cloud, etc.) or on another device. FIGS. 6A,
6B and 6C are conceptual diagrams illustrating how a ML
model 620 may be split, according to embodiments of the
present disclosure. In some embodiments, a system(s) may
train/configure the ML model 620 using training data 602. In
the case that the ML model is to be used by the SLU
components 255 and 355, the training data 602 may include
annotated audio data. In the case that the ML model is to be
used by the NLU components 260 and 360, the training data
602 may include annotated ASR output data. In the case that
the ML model 620 is to be used for image processing, object
recognition, and computer vision tasks, the training data 602
may include annotated image data and video data. In the
case that the ML model 620 is to be used to detect sentiment
from audio data, the training data 602 may include audio
data labeled with a sentiment category. Using the training
data 602, the system(s) may configure the ML model 620. In
some embodiments, the MLL model 620 may include mul-
tiple sequential processing nodes, such as, nodes 604, 606,
608, 610, 612, 614, 616 and 618.

As shown in FIG. 6A, in some embodiments, the ML
model 620 may be spilt (divided) to generate the on-device
ML model 400. In some embodiments, the on-device ML
model 400 may include a set of processing nodes from the
ML model 620 that correspond to the bottom processing
nodes (sequentially first processing nodes) of the ML model
620. For example, the nodes 402, 430, 450 and 470 of the
on-device ML, model 400 may correspond respectively to the
nodes 604, 606, 608 and 610 of the ML model 620. In this
example embodiment, the ML, model 500 of the system(s)
120 may include all of the processing nodes of ML model
620. In some embodiments, the system(s) 120 may use the
training data 602 to configure the ML, model 620, store the
configured ML model 620 as the ML, model 500, and then
send data corresponding to the bottom set of the processing
nodes of the ML model 620 to the device 110 to be stored
as the ML model 400 at the device 110.

As shown in FIG. 6B, in some embodiments, the ML
model 620 may be split (divided) to generate the on-device
ML model 400 and the system ML model 500. In some
embodiments, the on-device ML model 400 may include a
set of the processing nodes from the ML model 620 that
correspond to the bottom processing nodes (sequentially first
processing nodes) of the ML model 620, while the system
ML model 500 may include a set of the processing nodes

5

10

15

20

25

30

35

40

45

50

55

60

65

26

from the ML model 620 that correspond to the top process-
ing nodes (sequentially last processing nodes) of the ML
model 620. For example, the nodes 402, 430, 450 and 470
of the on-device ML. model 400 may correspond respec-
tively to the nodes 604, 606, 608 and 610 of the ML model
620. The nodes 510, 520, 530 and 540 of the system ML
model 500 may correspond respectively to the nodes 612,
614, 616 and 618 of the ML model 620.

Different devices 110 may include a different set or
number of processing nodes from the ML model 620. Which
nodes and the number of nodes included in the device 110
may be based on the processing capabilities (at least with
respect to a processor and a memory) of the device 110. FIG.
6C shows how different devices 110 may include a different
set of processing nodes. For example, as shown in FIG. 6C,
the device 110a may include an on-device ML, model 400a
with four processing nodes corresponding to the bottom/first
four processing nodes of the ML model 620, while the
device 1105 may include an on-device ML model 4005
including three processing nodes corresponding to the bot-
tom/first three processing nodes of the ML model 620, and
the device 110¢ may include an on-device ML model 400c¢
including two processing nodes corresponding to the bot-
tom/first two processing nodes of the ML model 620. The
system ML model 500 (not shown in FIG. 6C) may include
all of the processing nodes of the ML model 620 (as shown
in FIG. 6A). As described herein, the device 110, when
bridging processing to the system(s) 120 or to another
device 110, may send data representing a node where the
on-device ML, model 400 stopped processing, so that the
system(s) 120 or the other device 110 may pick up process-
ing at that point.

In splitting the ML model 620 and generating the on-
device ML, model 400, one or more final processing nodes
may be added to the set of nodes for the on-device ML
model 400, so that the on-device ML model 400 may be a
fully functional ML model capable of outputting a prediction
for input data. For example, a pooling layer or softmax layer
may be added after the bottom set of nodes from the ML
model 620.

In some embodiments, one or more compression tech-
niques may be applied to the on-device ML model(s) 400 for
storing at the device 110. These compression techniques
may include reducing the total number of model parameters
of the ML model(s) 400, thus reducing the amount of
computations required to generate the prediction. The com-
pression techniques may also include pruning the ML model
400 by removing one or more network connections with
small contributions towards the prediction. The compression
techniques may also include quantizing the processing
nodes. In some embodiments, a neural architecture search
model/algorithm may be used to automatically determine
where, within the ML model 400, to insert branches and
egress points, and which nodes/branches/egress points
should be deployed to the device 110 based on the device’s
capabilities.

In some embodiments, the on-device ML model 400 and
the system ML model 500 may be trained/configured sepa-
rately, rather than split from a larger ML model. In some
cases, the on-device ML model 400 may configured to
perform a light (lite) version of processing as compared to
the system ML model 500. In embodiments where the ML
models are configured for SLU processing, the on-device
ML model 400 may have reduced capabilities as compared
to the system ML model 500, for example, the on-device ML,
model 400 may be able to process certain simple natural
language inputs (e.g., “stop,” “turn on the lights,” “play

2 <

US 11,900,921 B1

27

music,” etc.), while the system ML model 500 may be able
to process the simple natural language inputs as well as
complex natural language inputs (e.g., “find flights to Miami
and book one that gets me there in time for my meeting”).
A natural language input may be simple or complex based on
the number of words in the input, the number of entities in
the input, the number of verbs and/or nouns in the input, the
number of requests in the input, the number of skills that
may invoked to respond to the input, etc.

In some embodiments, the ML, model 400 outputs within
the same label space at each processing node 402, 430, 450
and 470. For example, each processing node, the ML model
400 is able to make a prediction from the same domain
labels and intent labels.

In other embodiments, the ML model 400 outputs in
different label spaces at different processing nodes 402, 430,
450 and 470. For example, at processing node 402, the ML
model 400 may be able to make a prediction from a first
subset of domains and intents, while at processing node 430
the ML, model 400 may be able to make a prediction from
a second subset of domains and intents, where the first
subset may be different than the second subset or the first
subset may be included in the second subset. For domains
and intents that are not supported by the ML, model 400, the
device 110 may bridge processing to the system ML model
500.

In some embodiments, the device 110 may include a ML
model, for example, a binary classifier, configured to deter-
mine whether the device 110 is able to generate a prediction
for the input data (with a high confidence). In some embodi-
ments, the device 110 may process the input data using the
binary classifier, before sending the input data to the ML
model 400 for processing. If the binary classifier determines
that the ML. model 400 will not be able to make a prediction
with high confidence, then the device 110 may send the input
data to the system(s) 120 for processing, and may not
perform any processing of the input data at the device 110,
and the system(s) 120 may start processing the input data at
the first node 510 of the ML model 500. If the binary
classifier determines that the ML model 400 will be able to
make a prediction with high confidence, then the device 110
may send the input data to the ML. model 400 for processing.
In some embodiments, the decision blocks 422, 442, 460 and
474 may employ the binary classifier.

In some embodiments, where the ML, models are config-
ured for SLU processing, the binary classifier, may be
configured using a training dataset that includes a first
portion of data (of the same type as the input data) labeled
as “simple” and a second portion of data labeled as “com-
plex.” If the input data corresponds to the “simple” category,
then device 110 may process the input data, and if the input
data corresponds to the “complex” category, then the device
110 may send the input data to the system(s) 120 for
processing.

In some embodiments, the binary classifier may be con-
figured using a training dataset that includes data (same type
as the input data) labeled with a value/identifier indicating at
which egress point the ML model 400 ceased processing for
that data point. For example, the training dataset may
include a first natural language input “stop” and the corre-
sponding label may be “egress point 1 or “1” indicating that
the ML model 400 exited processing at the first egress point
(and used the prediction of the first node). In another
example, the training dataset may include a second natural
language input “turn off the lights in the bedroom™ and the
corresponding label may be “egress point 4” or “4” indicat-
ing that the ML, model 400 exited processing at the fourth/

5

10

20

25

30

35

40

45

50

55

60

65

28

final egress point, indicating that all nodes of the ML, model
400 had to be used to generate a prediction for this data
point. In yet another example, the training dataset may
include a third natural language input “play music” and the
corresponding label may be “egress point 2” or “2” indicat-
ing that the ML, model 400 exited processing at the second
egress point (and used the prediction of the second node).
Using the binary classifier, the device 110 may estimate
which egress point the input data may have to be processed
until. When that estimated egress point is reached, and other
conditions exist (such as the data considered at the decision
blocks 422, 442, 460 and 474), the device 110 may deter-
mine to cease processing or bridge processing, instead of
continuing processing.

In some embodiments, the device 110 may process the
input data using the entire ML model 400 (without checking
the egress points), may send the processing results of the ML,
model 400 to the system(s) 120, and the system ML model
500 may complete processing of the input data based on the
processing results of the ML, model 400.

In some embodiments, the ML models 400 and 500 may
be configured to perform SLU processing as described
above. In other embodiments, the ML models 400 and 500
may be configured to process image data and video data for
various tasks, such as, object recognition, facial recognition,
gesture recognition, text recognition, computer vision tasks,
etc. In yet other embodiments, the ML. models 400 and 500
may be configured to process other types of data (e.g.,
motion sensor data, text data, non-speech audio data, etc.) to
perform other tasks, such as, predictive analysis, classifica-
tion analysis, user activity detection, etc.

FIG. 7 is a signal flow diagram illustrating how input data
may be processed by the device 110 and the system(s) 120.
The device 110 may receive (702) input data, for example
audio data 211 or text data 213, and the device 110 may
process (704) the input data using an on-device ML
model(s). At decision block 706, the device 110 may deter-
mine to cease processing or bridge processing with respect
to the input data being processed by the on-device ML
model(s). In this example case, the device 110 may bridge
(707) processing to the system(s) 120. The device 110, in
this case, may send (708) feature data to the system(s) 120,
where the feature data is determined by or generated by the
on-device ML model(s) when processing the input data. The
device 110 may also send (710) a model stopping point to
the system(s) 120, where the model stopping point may
represent the point (a processing node and/or a processing
block) within the on-device ML model(s) up to which the
on-device ML model(s) completed processing with respect
to the input data.

The system(s) 120 may process (712) the feature data
using a system ML model(s) based on the model stopping
point. The system(s) 120 may pick up processing where the
on-device ML, model(s) left off with respect to the input data.
As such, the system(s) 120 may use the feature data,
provided by the device 110, to initialize a processing node
of the system ML model(s). The system(s) 120 may deter-
mine which processing node to initialize based on the model
stopping point.

The system(s) 120 may process the input data, as
described in relation to FIG. 2, and may select (714) a skill
to respond to the input data. The system(s) 120 may send
(716) data corresponding to the input data to a skill
system(s) 225/skill component(s) 290/390 associated with
the selected skill. The skill system 225 may send (718)
output data to the device 110, where the output data is
responsive to the input data received at step 702. Alterna-

US 11,900,921 B1

29

tively, the skill system 225 may send the output data to the
system(s) 120, which sends the output data to the device 110.

In this manner, an on-device ML model(s) may process
input data, but may not complete the processing of the input
data or may not be confident in its processing of the input
data, and may send data to the system(s) 120 to enable the
system(s) 120 to complete processing with respect to the
input data.

FIG. 8 is a signal flow diagram illustrating how input data
may be processed by the device 110. The device 110 may
receive (802) input data, for example, audio data 211 or text
data 213, and the device 110 may process (804) the input
data using an on-device ML model(s). At decision block
806, the device 110 may determine to cease processing or
bridge processing with respect to the input data being
processed by the on-device ML model(s). In this example
case, the device 110 may cease (808) processing at the
on-device ML model(s). Using the output of the on-device
ML model(s), the device 110 may perform further process-
ing as described in relation to FIG. 3. The device 110 may
select (810) a skill to respond to the input data. The
system(s) 120 may send (812) data corresponding to the
input data to a skill system(s) 225/skill component(s) 290/
390 associated with the selected skill. The skill system 225
may send (814) output data to the device 110, where the
output data is responsive to the input data received at step
802. In this manner, the device 110 may complete processing
with respect to the input data at the device 110, without
requesting the system(s) 120 to perform some processing.

FIG. 9 is a block diagram conceptually illustrating
example components of a device 110 according to the
present disclosure. FIG. 10 is a block diagram conceptually
illustrating example components of a system, such as the
system 120 or a skill system 225. A system (120/225) may
include one or more servers. A “server” as used herein may
refer to a traditional server as understood in a server/client
computing structure but may also refer to a number of
different computing components that may assist with the
operations discussed herein. For example, a server may
include one or more physical computing components (such
as a rack server) that are connected to other devices/
components either physically and/or over a network and is
capable of performing computing operations. A server may
also include one or more virtual machines that emulates a
computer system and is run on one or across multiple
devices. A server may also include other combinations of
hardware, software, firmware, or the like to perform opera-
tions discussed herein. The system 120 may be configured to
operate using one or more of a client-server model, a
computer bureau model, grid computing techniques, fog
computing techniques, mainframe techniques, utility com-
puting techniques, a peer-to-peer model, sandbox tech-
niques, or other computing techniques.

Multiple systems (120/225) may be included in the sys-
tem 100 of the present disclosure, such as one or more
systems 120 for performing ASR processing, one or more
systems 120 for performing NLU processing, and one or
more skill systems 225, etc. In operation, each of these
systems may include computer-readable and computer-ex-
ecutable instructions that reside on the respective device
(120/225), as will be discussed further below.

Each of these devices (110/120/225) may include one or
more controllers/processors (904/1004), which may each
include a central processing unit (CPU) for processing data
and computer-readable instructions, and a memory (906/
1006) for storing data and instructions of the respective
device. The memories (906/1006) may individually include

10

15

20

25

30

35

40

45

50

55

60

65

30

volatile random access memory (RAM), non-volatile read
only memory (ROM), non-volatile magnetoresistive
memory (MRAM), and/or other types of memory. Each
device (110/120/225) may also include a data storage com-
ponent (908/1008) for storing data and controller/processor-
executable instructions. Each data storage component (908/
1008) may individually include one or more non-volatile
storage types such as magnetic storage, optical storage,
solid-state storage, etc. Each device (110/120/225) may also
be connected to removable or external non-volatile memory
and/or storage (such as a removable memory card, memory
key drive, networked storage, etc.) through respective input/
output device interfaces (902/1002).

Computer instructions for operating each device (110/
120/225) and its various components may be executed by
the respective device’s controller(s)/processor(s) (904/
1004), using the memory (906/1006) as temporary “work-
ing” storage at runtime. A device’s computer instructions
may be stored in a non-transitory manner in non-volatile
memory (906/1006), storage (908/1008), or an external
device(s). Alternatively, some or all of the executable
instructions may be embedded in hardware or firmware on
the respective device in addition to or instead of software.

Each device (110/120/225) includes input/output device
interfaces (902/1002). A variety of components may be
connected through the input/output device interfaces (902/
1002), as will be discussed further below. Additionally, each
device (110/120/225) may include an address/data bus (924/
1024) for conveying data among components of the respec-
tive device. Each component within a device (110/120/225)
may also be directly connected to other components in
addition to (or instead of) being connected to other compo-
nents across the bus (924/1024).

Referring to FIG. 9, the device 110 may include input/
output device interfaces 902 that connect to a variety of
components such as an audio output component such as a
speaker 912, a wired headset or a wireless headset (not
illustrated), or other component capable of outputting audio.
The device 110 may also include an audio capture compo-
nent. The audio capture component may be, for example, a
microphone 920 or array of microphones, a wired headset or
a wireless headset (not illustrated), etc. If an array of
microphones is included, approximate distance to a sound’s
point of origin may be determined by acoustic localization
based on time and amplitude differences between sounds
captured by different microphones of the array. The device
110 may additionally include a display 916 for displaying
content. The device 110 may further include a camera 918.

Via antenna(s) 914, the input/output device interfaces 902
may connect to a network(s) 199 via a wireless local area
network (WLAN) (such as WiFi) radio, Bluetooth, and/or
wireless network radio, such as a radio capable of commu-
nication with a wireless communication network such as a
Long Term Evolution (LTE) network, WiMAX network, 3G
network, 4G network, 5G network, etc. A wired connection
such as Ethernet may also be supported. Through the net-
work(s) 199, the system may be distributed across a net-
worked environment. The /O device interface (902/1002)
may also include communication components that allow
data to be exchanged between devices such as different
physical servers in a collection of servers or other compo-
nents.

The components of the device 110, the system 120, and/or
a skill system 225 may include their own dedicated proces-
sors, memory, and/or storage. Alternatively, one or more of
the components of the device 110, the system 120, and/or a
skill system 225 may utilize the I/O interfaces (902/1002),

US 11,900,921 B1

31

processor(s) (904/1004), memory (906/1006), and/or stor-
age (908/1008) of the device(s) 110, system 120, or the skill
system 225, respectively. Thus, the ASR component 250
may have its own I/O interface(s), processor(s), memory,
and/or storage; the NLU component 260 may have its own
1/0 interface(s), processor(s), memory, and/or storage; and
so forth for the various components discussed herein.

As noted above, multiple devices may be employed in a
single system. In such a multi-device system, each of the
devices may include different components for performing
different aspects of the system’s processing. The multiple
devices may include overlapping components. The compo-
nents of the device 110, the system 120, and a skill system
225, as described herein, are illustrative, and may be located
as a stand-alone device or may be included, in whole or in
part, as a component of a larger device or system.

As illustrated in FIG. 11, multiple devices (110a-110/)
may process as part of the system 100. The network(s) 199
may include a local or private network or may include a
wide network such as the Internet. Devices may be con-
nected to the network(s) 199 through either wired or wire-
less connections. For example, the system 100 may include
a speech-controlled device(s) 110a, a smart phone(s) 1105,
a smart watch(s) 110¢, a tablet computer(s) 1104, a
vehicle(s) 110e, a speech-controlled display device(s) with a
display 110f; a smart television(s) 110g, a washer(s)/dryer(s)
1104, a refrigerator(s) 110i, a microwave(s) 110/, smart
glasses 1104, earbuds 110/, and/or a wearable ring(s) 110m.

The concepts disclosed herein may be applied within a
number of different devices and computer systems, includ-
ing, for example, general-purpose computing systems,
speech processing systems, and distributed computing envi-
ronments.

The above aspects of the present disclosure are meant to
be illustrative. They were chosen to explain the principles
and application of the disclosure and are not intended to be
exhaustive or to limit the disclosure. Many modifications
and variations of the disclosed aspects may be apparent to
those of skill in the art. Persons having ordinary skill in the
field of computers and speech processing should recognize
that components and process steps described herein may be
interchangeable with other components or steps, or combi-
nations of components or steps, and still achieve the benefits
and advantages of the present disclosure. Moreover, it
should be apparent to one skilled in the art, that the disclo-
sure may be practiced without some or all of the specific
details and steps disclosed herein.

Aspects of the disclosed system may be implemented as
a computer method or as an article of manufacture such as
a memory device or non-transitory computer readable stor-
age medium. The computer readable storage medium may
be readable by a computer and may comprise instructions
for causing a computer or other device to perform processes
described in the present disclosure. The computer readable
storage medium may be implemented by a volatile computer
memory, non-volatile computer memory, hard drive, solid-
state memory, flash drive, removable disk, and/or other
media. In addition, components of system may be imple-
mented as in firmware or hardware, such as an acoustic front
end (AFE), which comprises, among other things, analog
and/or digital filters (e.g., filters configured as firmware to a
digital signal processor (DSP)).

Conditional language used herein, such as, among others,
can,” “could,” “might,” “may,” “e.g.,” and the like, unless
specifically stated otherwise, or otherwise understood within
the context as used, is generally intended to convey that
certain embodiments include, while other embodiments do

113

10

15

20

25

30

35

40

45

50

55

60

65

32

not include, certain features, elements and/or steps. Thus,
such conditional language is not generally intended to imply
that features, elements, and/or steps are in any way required
for one or more embodiments or that one or more embodi-
ments necessarily include logic for deciding, with or without
other input or prompting, whether these features, elements,
and/or steps are included or are to be performed in any
particular embodiment. The terms “comprising,” “includ-
ing,” “having,” and the like are synonymous and are used
inclusively, in an open-ended fashion, and do not exclude
additional elements, features, acts, operations, and so forth.
Also, the term “or” is used in its inclusive sense (and not in
its exclusive sense) so that when used, for example, to
connect a list of elements, the term “or” means one, some,
or all of the elements in the list.

Disjunctive language such as the phrase “at least one of X,
Y, Z,” unless specifically stated otherwise, is understood
with the context as used in general to present that an item,
term, etc., may be either X, Y, or Z, or any combination
thereof (e.g., X, Y, and/or Z). Thus, such disjunctive lan-
guage is not generally intended to, and should not, imply that
certain embodiments require at least one of X, at least one
of Y, or at least one of Z to each be present.

As used in this disclosure, the term “a” or “one” may
include one or more items unless specifically stated other-
wise. Further, the phrase “based on” is intended to mean
“based at least in part on” unless specifically stated other-
wise.

What is claimed is:

1. A system comprising:

a first component including at least a first processor and

at least a first memory, wherein the first component is

a user device; and

a second component including at least a second processor

and at least a second memory, wherein the second

component is a second device that uses a network

connection to communicate with the first component,

the at least first memory including first instructions that,

when executed by the at least first processor, cause the

first component to:

receive first audio data representing a first spoken user
input;

using a first node of a first machine learning (ML)
model, the first ML. model configured to perform
spoken language understanding (SLU) processing,
process a first portion of the first audio data to
determine embedding data representing a partial
speech recognition output of the first node;

determine, based on the embedding data, the second
component is to process to generate a SLU output;
and

in response to determining the second component is to
process to generate the SLU output, and prior to
processing the embedding data using a second node
of' the first ML model, send the embedding data to the
second component,

the at least second memory including second instructions

that, when executed by the at least second processor,

cause the second component to:

process the embedding data using a second ML, model
to complete the SLU processing of the first audio
data;

determine, using the second ML model, a first SLU
output;

determine, using the first SLU output, a first output
responsive to the first spoken user input; and

send the first output to the first component.

US 11,900,921 B1

33

2. The system of claim 1, wherein the first instructions,
when executed by the at least first processor, further cause
the first component to:

Send, to the second component, a node identifier corre-

sponding to the first node of the first ML, model;
send, to the second component, a device identifier corre-
sponding to the user device;

process the first audio data to perform user recognition

and determine a profile identifier corresponding to the
first audio data; and

send, to the second component, the profile identifier.

3. The system of claim 1, wherein the first instructions,
when executed by the at least first processor, further cause
the first component to:

receive second audio data representing a second spoken

user input;

using a classifier, process the second audio data to deter-

mine a confidence value representing a likelihood of
the first ML, model being able to process the second
audio data;

based on the confidence value failing to meet a threshold,

determine that the second audio data is to be sent to the
second component to generate a second SLU output;
and

send the second audio data to the second component to

perform SLU processing.

4. A computer-implemented method comprising:

receiving, at a first device, first input data corresponding

to a first input;
processing, at the first device, a first portion of the first
input data using a second portion of a first machine
learning (ML) model, wherein the second portion of the
first ML, model comprises a first node of the first ML,
model,;
determining, at the first device and based at least in part
on processing the first portion of the first input data
using the second portion of the first ML model, first
embedding data representing a partial speech recogni-
tion output of the second portion of the first ML, model;

determining, based on the first embedding data, a second
device is to complete the processing of the first input
data; and

in response to determining the second device is to com-

plete the processing of the first input data, and prior to
processing the first embedding data using a third por-
tion of the first ML model, sending the first embedding
data to the second device to complete the processing of
the first input data using a second ML model, wherein:
the third portion of the first ML model comprises a
second node of the first ML model,
the first ML model and the second ML model are
configured to perform a first type of processing, and
sending the first embedding data to the second device
causes the second device to complete the first type of
processing of the first input data using the second
ML model to determine a response to the first input.

5. The computer-implemented method of claim 4,
wherein the first embedding data is determined by the first
node of the second portion of the first ML, model, and the
method further comprises:

processing, at the first device, the first embedding data

using the second node of the third portion of the first
ML model;

determining, at the first device, second embedding data

output by the second node;

processing the first embedding data with respect to the

second embedding data; and

34

sending the second embedding data to the second device
based at least in part on the processing of the first
embedding data with respect to the second embedding
data.
5 6. The computer-implemented method of claim 4,
wherein:
receiving the first input data comprises receiving audio
data representing a spoken input, and
processing the first portion of the first input data using the
second portion of the first M. model comprises pro-
cessing a fourth portion of the audio data using the
second portion of the first ML model, wherein the first
ML model is configured for spoken language under-
standing (SLU) processing, and wherein the second
ML model is configured for SLU processing.
7. The computer-implemented method of claim 4
wherein:
receiving the first input data comprises receiving image

10

15

20 data representing an object, and
processing the first portion of the first input data using the
second portion of the first M. model comprises pro-
cessing a fourth portion of the image data using the
second portion of the first ML model, wherein the first
25

ML model is configured for object recognition, and
wherein the second ML model is configured for object
recognition.
8. The computer-implemented method of claim 4, further
comprising:
receiving second input data corresponding to a second
input;
processing a fourth portion of the second input data using
the first node of the second portion of the first ML
model,;
determining second embedding data output by the first
node;
processing the second embedding data to determine an
entropy value corresponding to the second embedding
data;
determining the entropy value satisfies a threshold value;
and
based on the entropy value satisfying the threshold value,
determining, using the second embedding data, first
output data responsive to the second input.
9. The computer-implemented method of claim 4, further
comprising:
receiving second input data corresponding to a second
input;
using a classifier, processing the second input data to
determine a likelihood that the first ML model is able
to process the second input data to generate a first
output;
based on the likelihood failing to meet a threshold,
determining to send the second input data to the second
device for processing; and
sending the second input data to the second device to
generate the first output responsive to the second input.
10. The computer-implemented method of claim 4, fur-
60 ther comprising:
receiving second input data corresponding to a second
input;
using the first node of the second portion of the first ML
model, processing a fourth portion of the second input
data to determine second embedding data;
determining the second embedding data satisfies a first
threshold condition;

30

35

40

45

50

55

US 11,900,921 B1

35

using the second node of the third portion of the first ML,
model, processing the second embedding data to deter-
mine third embedding data;

determining the third embedding data satisfies a second
threshold condition; and

sending the third embedding data to the second device to
perform processing using the second ML model.

11. The computer-implemented method of claim 10, fur-

ther comprising:

processing, at the second device using the second ML
model, the second embedding data to determine fourth
embedding data;

determining, at the second device and using the fourth
embedding data, a first output responsive to the second
input; and

sending, from the second device to the first device, the
first output.

12. The computer-implemented method of claim 4,

wherein:
the first ML model includes a first plurality of nodes,
the second ML model includes a second plurality of
nodes,
the first embedding data is determined based on process-
ing the first portion of the first input data using the first
node of the second portion of the first ML, model, and
the method further comprises:
receiving, at the second device from the first device, an
indication representing the first node of the first ML
model,

wherein the processing of the first embedding data at
the second device is performed by a third node of the
second ML model instead of a fourth node of the
second ML model based on the indication.

13. The computer-implemented method of claim 4, fur-

ther comprising:
configuring, using training data, the second ML model to
perform the first type of processing, the second ML
model comprising a plurality of nodes;
storing, at the first device, a first set of nodes, from the
plurality of nodes, as the first ML, model, wherein the
first set is based on a processing capacity of the first
device;
storing, at a third device, a second set of nodes, from the
plurality of nodes, as a third ML model, wherein the
second set is based on a processing capacity of the third
device; and
storing, at the second device, the second ML model.
14. A system comprising:
a first device including at least one processor, and at least
one memory including instructions that, when executed
by the at least one processor, cause the first device to:
receive first input data corresponding to a first input;
process a first portion of the first input data using a
second portion of a first machine learning (ML)
model, wherein the second portion of the first ML,
model comprises a first node of the first ML, model;

determine, based at least in part on processing the first
portion of the first input data using the second
portion of the first ML model, first embedding data
representing a partial speech recognition output of
the second portion of the first ML model;

determine, based at least in part on the first embedding
data, a second device is to complete the processing
of the first input data; and

in response to determining the second device is to
complete the processing of the first input data, and
prior to processing the first embedding data using a

10

20

25

30

35

40

45

50

55

60

65

36

third portion of the first MLL model, send the first

embedding data to the second device to complete the

processing of the first input data using a second ML

model, wherein:

the third portion of the first ML model comprises a
second node of the first ML, model,

the first ML model and the second ML model are
configured to perform a first type of processing,
and

sending the first embedding data to the second device
causes the second device to complete the first type
of processing of the first input data using the
second ML model to determine a response to the
first input.

15. The system of claim 14, wherein the first embedding
data is determined by the first node of the second portion of
the first ML model, and the instructions that, when executed
by the at least one processor, further cause the first device to:

process the first embedding data using the second node of

the third portion of the first ML, model;

determine second embedding data output by the second

node;

process the first embedding data with respect to the

second embedding data; and

send the second embedding data to the second device

based at least in part on processing the first embedding
data with respect to the second embedding data.

16. The system of claim 14, wherein:

the first input data comprises audio data representing a

spoken input, and

the first ML model and the second ML model are con-

figured for SLU processing.

17. The system of claim 14, wherein:

the first input data comprises image data representing an

object, and

the first ML model and the second ML model are con-

figured for object recognition.

18. The system of claim 14, wherein the instructions that,
when executed by the at least one processor, further cause
the first device to:

receive second input data corresponding to a second

input;

process a fourth portion of the second input data using the

first node of the second portion of the first ML, model;
determine second embedding data output by the first
node;

processing the second embedding data to determine an

entropy value corresponding to the second embedding
data;

determine the entropy value satisfies a threshold value;

and

based on the entropy value satisfying the threshold value,

determine, using the second embedding data, first out-
put data responsive to the second input.

19. The system of claim 14, wherein the instructions that,
when executed by the at least one processor, further cause
the first device to:

receive second input data corresponding to a second

input;
using a classifier, process the second input data to deter-
mine a likelihood that the first ML model is able to
process the second input data to generate a first output;

based on the likelihood failing to meet a threshold,
determine to send the second input data to the second
device for processing; and

send the second input data to the second device to

generate the first output responsive to the second input.

US 11,900,921 B1
37 38

20. The system of claim 14, wherein the instructions that,
when executed by the at least one processor, further cause
the first device to:

receive second input data;

using the first node of the second portion of the first ML, 5

model, process a fourth portion of the second input data
to determine second embedding data;

determine the second embedding data satisfies a first

threshold condition;

using the second node of the second portion of the first 10

ML model, process the second embedding data to
determine third embedding data;

determine the third embedding data satisfies a second

threshold condition; and

send the third embedding data to the second device to 15

perform processing using the second ML model.

#* #* #* #* #*

