
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2015/0170069 A1

US 2015O170069A1

JUNKER et al. (43) Pub. Date: Jun. 18, 2015

(54) TRANSFORMING RULES INTO Publication Classification
GENERALIZED RULES IN A RULE
MANAGEMENT SYSTEM (51) Int. Cl.

G06Q 10/06 (2006.01)
(71) Applicant: INTERNATIONAL BUSINESS (52) U.S. Cl.

MACHINES CORPORATION, CPC G06O 10/063 (2013.01)
Armonk, NY (US)

(57) ABSTRACT
(72) Inventors: ULRICH JUNKER, BIOT (FR): An original set of rules are transformed into a resulting set of

THIERRY KORMANN, VALBONNE generalized rules in a rule management system. An original
(FR) set of rules stored in a data structure for transforming into a

resulting set of rules are accessed. The original set of rules is
(21) Appl. No.: 14/501,602 automatically processed by building a compact description of

y x- - - 9 one or more rules in the original set of rules and their actions
in the form of logical constraints and solving constraints to

(22) Filed: Sep. 30, 2014 find a solution that represents a case and an applied action,
building a family of cases by taking all logical tests or their

(30) Foreign Application Priority Data negation that are satisfied by the Solution, and generalizing
the family of cases by removal of specific logical tests which

Dec. 18, 2013 (GB) 1322440.7 do not apply to the action, resulting in a most-general rule.

3OO

Na original
rule Set

301

residual Case
detector

nO
residual
C3SC

treated
case family

With
action

treated Case
generalizer

most
general

rule

340

Store of
ost-genera

rules

rule set
builder

resulting
rule Set

Patent Application Publication Jun. 18, 2015 Sheet 1 of 13 US 201S/O170069 A1

100
130 120 10

Age Value Category

) 20; 30)

--
1

10 3

Patent Application Publication Jun. 18, 2015 Sheet 2 of 13 US 201S/O170069 A1

230 240
-- --

30; 50)

< 10

30; 40)

220
--

Age

10; 20)

< 20

20; 30)

10; 30)

30; 50) < 10

FIG. 2A

Patent Application Publication Jun. 18, 2015 Sheet 3 of 13 US 201S/O170069 A1

250

age

230

Value

FIG. 2B

Patent Application Publication Jun. 18, 2015 Sheet 4 of 13 US 201S/O170069 A1

260

age

FIG. 2C

Patent Application Publication Jun. 18, 2015 Sheet 5 of 13 US 201S/O170069 A1

27O

-- - - - -

Age value | Category
aims < 20 | < 20 silver
a mg! (20.50) < 50 Gold
as img2 < 50 (20.50) Gold

FIG. 2D

Patent Application Publication Jun. 18, 2015 Sheet 6 of 13 US 201S/O170069 A1

300

Na original
rule Set

301

residual Case
detectOr

O
residual
CaSO

treated
case family

With
action

treated Case
generalizer

340

most
general

rule

StOre Of
Ost-general

rules

rule Set
builder

resulting
rule Set

FIG. 3

Patent Application Publication Jun. 18, 2015 Sheet 7 of 13 US 201S/O170069 A1

age

401

410 M

FIG. 4A value

age

403

420

FIG. 4C value

age . age 406

430 mg 1

X

FIG. 4E value
407

age 408

M

440

value value

FIG. 4H

Patent Application Publication

500

original
rule Set

Jun. 18, 2015 Sheet 8 of 13

Residual Case Detector

rule Set
application
modeler

rule Set
application

graph

treated Case
family builder

treated
C3S6

family with
action

Store Of
most-general

US 201S/O170069 A1

340

rules

rule Set
violation
modeler

quantification
presolver

and
Conjunction

builder

residual
rule Set

application
graph

treated
C3Se

With action

FIG. 5A

residual

rule Set
violation
graph

logical
Constraint
Solver

O

CaSC

Patent Application Publication Jun. 18, 2015 Sheet 9 of 13 US 201S/O170069 A1

Patent Application Publication Jun. 18, 2015 Sheet 10 of 13 US 201S/O170069 A1

age age

602 v

value value

age </ age

value

Patent Application Publication Jun. 18, 2015 Sheet 11 of 13 US 201S/O170069 A1

700

Original
rule Set

Treated Cast Generalizer

rule Set preference action
inhibition governor extractOr
modeler

rule
instances
inhibition
graph

test
ordering

COnflict
minimizer

relevant
treated
Case tests

mOst
general

rule

304

FIG. 7

Patent Application Publication Jun. 18, 2015 Sheet 12 of 13 US 201S/O170069 A1

800

N
301 303

Treated
S. case family
UIe Se With action

Ruleset inhibition MOceler

ruleset Violation object action
modeler extractOr extraCtOr

rule Set
violation
graph

quantification
pre-Solver

instance
Set action

Violation pre-solver
graph

rule
instances
inhibition
graph

FIG. 8

Patent Application Publication

900

Jun. 18, 2015 Sheet 13 of 13

DISPLAY

DATAPROCESSING
9 SYSTEM

905

90

908

909

910

PROCESSOR

VIDEO
ADAPTER

PRIMARY
STORAGE

US 201S/O170069 A1

NETWORK
ADAPTER

I/O
DEVICES

SECONDARY
STORAGE

911 912

FIG. 9

903 913

US 2015/O 170069 A1

TRANSFORMING RULES INTO
GENERALIZED RULES IN A RULE

MANAGEMENT SYSTEM

1. TECHNICAL FIELD

0001. This invention relates to the field of business rule
management systems and transforming rules. In particular,
the invention relates to transforming rules into generalized
rules in a rule management system.

2. BACKGROUND

0002 Business rules technology, for example, Interna
tional Business Machine Corporation's Operational Decision
Manager software product (ODM), provide a software devel
opment environment, along with dedicated, business user
interfaces, for automating and governing frequently occur
ring, repeatable business decisions across processes and
applications. The business rules technology delivers the abil
ity to centrally manage the business rules that determine the
day-to-day automated decisions that are made in an organi
Zation’s applications and processes. Business rules technol
ogy Supports decision automation inside business processes,
mobile applications and cloud environments
0003 Business rule management systems allow analysts
to carry out collaborative rule authoring and provide easy-to
use decision table editors. Analysts are now able to adapt
policies very easily: copying rows, changing cell ranges, add
ing columns, etc. They are able to enter decision tables
quickly with arbitrary cell ranges.
0004. This causes the problem that the sizes of the tables
may grow very quickly. Due to the changes, rules are getting
more and more fragmented. Tables become difficult to under
stand, to manage, and require more time to execute.
0005. There are customers that have projects with ten or
hundred thousands of rules represented in the form of deci
sion tables. It is well known in the field of business rule
management that the number of the rules grows easily and can
result in slow processing of decision rules.
0006 Large numbers of rules are difficult to manage, to
consolidate, and to execute. Large rule sets constitute a true
problem for customers as far as rule management and execu
tion is concerned and may also be considered a major obstacle
in making rule management systems more pervasive.
0007) If there are more than 20 attributes over a binary
domain, then there will be over 1 million of cases within the
rules. Similarly, if the cases involve more than two attributes
over a numeric range from 1 to 1000 or more, there will be
over 1 million of cases. This illustrates that the number of
cases involved in a set of rules is prohibitive to non-automated
processing.
0008. A solution is therefore required to compress deci
sion tables without changing their semantics.
0009 Rules define which action to take dependent on the
characteristics of a given case, which can have hundreds or
thousands of attribute values that potentially influence the
action. A rule is more general than another rule of same action
if it is applicable to more cases than the other rule and it is
more specific than the other rule if it is applicable to fewer
cases. Conditions of specific rules will consist of many logi
cal tests, whereas conditions of general rules will consist of a
few logical tests. General rules thus are more concise and
correspond to a potentially exponential number of specific

Jun. 18, 2015

rules as those specific rules detail all combinations of values
for those attributes that the general rule leaves unconstrained.
0010 Although a small number of concise general rules
are more desirable than a potentially exponential number of
specific rules, it is easier to understand, to write, to organize
and to adapt specific rules. For example, organizing rules by
geography, topics, and validity periods may lead to a large
number of specific rules having similar patterns.
0011. However, the number of specific rules grows expo
nentially in the number of attributes of the cases. For this
reason, even simple rule languages permit more abstract
forms of rule conditions by omitting tests for irrelevant
attributes, by using wildcards in symbolic values, and by
using intervals for regrouping multiple numeric values. The
resulting rules permit a reduction of the overall number of
rules but are difficult to identify.
0012 Data mining systems automatically generate rules
from historical data and are usually able to identify relevant
attributes and to introduce abstract forms of rule conditions.
However, data mining tools usually generate a huge number
of candidate rules and use numeric indicators to select the
interesting rules among the candidates. These indicators usu
ally provide poor guidance for selecting rules, meaning that
the data mining system will nevertheless end up generating a
large number of quite specific rules.
0013 Rule management systems provide facilities for
capturing, managing, and adapting relatively large numbers
of specific rules. They provide tools for collaborative rule
authoring, rule versioning, rule analysis, and rule execution.
Whereas those systems are able to manage large sets of rules,
they provide only limited support for reducing the number of
rules and for avoiding the combinatorial explosion of specific
rules.
0014) Even the hierarchical grouping of rules in the form
of decision tables does not reduce the number of the rules and
is insufficient to prevent an exponential explosion of the num
ber of rules.
00.15 Binary decision diagrams and their generalizations
are able to represent certain forms of rule sets in a compact
form even if this rule set consists of an exponential number of
rules. Decision diagrams constitute a factored representation
of rule conditions and allow a reduction of the number of rules
if many rules with same action have common factors.
0016. Other methods seek to reduce the set of rules. Rule
management systems and data-mining systems are able to
eliminate rules that are made redundant by the other rules.
Whereas redundancy elimination is an important first step to
reduce the number of rules, it is not able to merge non
redundant specific rules into more general rules.
0017 Methods for rule set compression replace several
specific rules by more general rules and are thus able to
reduce the number of rules by modifying the existing rules.
For example, pairwise merging of rows in decision tables
replaces two similar rows by a single row if those rows have
the same actions and agree in all, but one condition column
and the disjunction of the two conditions in this column can
be represented in the decision table. Other methods apply
Karnaugh-map minimization to minimize the conditions of
multiple rules of same actions, but ignore the semantics of
rule conditions. For example, those methods are not able to
merge conditions about interval membership.
0018 Whereas the previous compression methods are
exact as they reformulate a rule set into an equivalent rule set,
methods based on inductive learning seek to replace specific

US 2015/O 170069 A1

rules by more general rules while allowing over- and under
generalization. Those compression methods first generate a
training set, which consists of cases as well as the actions
made by the specific rules for those cases. This training set is
then passed to a rule learning module, which finds general
rules. The learned rules not only cover the cases in the training
set, but also similar cases. Over-generalization occurs if one
of these additional cases was not treated by the original rules.
Under-generalization occurs if the learned rules do not cover
all the cases treated by the original rules. As a consequence,
the resulting rule set is not equivalent to the original rule set,
but only an approximation of it.
0019. There are also deductive learning techniques that
extract a general concept definition from a proof for a given
property. Those explanation-based generalization methods
cannot directly be applied to the problem of rule set compres
Sion. Moreover, there is no guarantee that explanation-based
generalization produces a most-general rule as there may be
multiple proofs for the given property and some proofs may
lead to more general rules than others.
0020. Therefore, there is a need in the art to address the
aforementioned problems.

SUMMARY

0021. According to one embodiment of the present inven
tion there is provided a method for transforming an original
set of rules into a resulting set of generalized rules in a rule
management system, comprising: providing an original set of
rules stored in a data structure for transforming into a result
ing set of rules; automated processing of the original set of
rules by a processor including: building a compact descrip
tion of one or more rules in the original set of rules and their
actions in the form of logical constraints and solving con
straints to find a solution that represents a case and an applied
action; building a family of cases by taking all logical tests or
their negation that are satisfied by the Solution; generalizing
the family of cases by removal of specific logical tests which
do not limit the applicability of the action, resulting in a
most-general rule; adding the most-general rule to a resulting
set of rules; iterating the automated processing wherein the
step of building a compact description of one or more rules in
the original set of rules and their actions excludes any rules in
the original set of rules which are addressed by the resulting
set of rules.
0022 Generalizing the family of cases may include estab
lishing an ordering of logical tests that prefers more general
tests to more specific ones and applying a conflict minimizer
for computing a preferred Subset of relevant tests.
0023. A most-general rule may treat at least one case that

is treated by the original set of rules, but not yet by the
resulting set of rules and wherein the most-general rule con
forms to the original set of rules as it applies only actions to
cases that are also applied by the original rules to those cases.
0024 Building a family of cases may include usage of
constraint-based models to compute a family of cases for the
action which are treated by the original set of rules but not by
already computed most-general rules. In one embodiment,
building a family of cases may include: building a residual
rule application constraint graph; Solving constraints to find a
Solution and extracting a case and applied action; building a
family of cases by taking all logical tests or their negation that
are satisfied by the extracted case.
0025 Generalizing the family of cases into a most-general
rule may use explanation-based consistency techniques to

Jun. 18, 2015

identify relevant logical tests in the family description to
generalize the family into a most-general rule. Generalizing
the family of cases into a most-general rule may include:
ordering the logical tests by decreasing generality; selecting
all original rules having the action of the extracted case and
building a rule inhibition graph for them; identifying a Subset
of relevant tests that characterizes a most-general family of
cases for the given action by applying a conflict minimizer to
the ordered tests as a foreground and the rule inhibition graph
as background.
0026. In one embodiment, a method may compress an
original set of rules into an equivalent Smaller resulting set of
rules and may remove irrelevant logical tests from the original
set of rules.

0027. The original set of rules may be reconstructed in a
target rule language and the method includes adapting the
target rule language to customize the resulting set of rules.
0028. According to one embodiment of the present inven
tion there is provided a system for transforming an original set
of rules into a resulting set of generalized rules in a rule
management system, comprising: an original set of rules
stored in a data structure for transforming into a resulting set
of rules; a processor for automating rule processing includ
ing: a residual case detector for building a compact descrip
tion of one or more rules in the original set of rules and their
actions in the form of logical constraints and solving con
straints to find a solution that represents a case and an applied
action, and building a family of cases by taking all logical
tests or their negation that are satisfied by the solution; a
treated case generalizer for the family of cases by removal of
specific logical tests which do not limit the applicability of the
action, resulting in a most-general rule; a store of a resulting
set of rules to which generated most-general rules are added;
a rule set builder for iterating the automated rule processing
wherein the step of building a compact description of one or
more rules in the original set of rules and their actions
excludes any rules in the original set of rules which are
addressed by the resulting set of rules.
0029. The treated case generalizer may include a prefer
ence governor for establishing an ordering of logical tests that
prefers more general tests to more specific ones and passes
this ordering to a conflict minimizer for computing a pre
ferred subset of relevant tests.

0030 The residual case detector may use constraint-based
models to compute a family of cases, which are treated by the
original set of rules but not by already computed most-general
rules. The residual case detector may include: a rule set appli
cation modeler for building a residual rule application con
straint graph; a logical constraint solver for Solving con
straints and for extracting a case and applied action; a treated
case family builder for building a family of cases by taking all
logical tests or their negation that are satisfied by the extracted
CaSC.

0031. The treated case generalizer may use explanation
based consistency techniques to identify relevant logical tests
in a family description to generalize the family into a most
general rule. The treated case generalizer may include: a
preference governor for ordering the logical tests by decreas
ing generality; a rule set inhibition modeler for selecting all
original rules having the action of the residual case and build
ing a rule inhibition graph for them; a conflict minimizer for
identifying a Subset of relevant tests that characterizes a most
general family of cases for the given action by applying the

US 2015/O 170069 A1

conflict minimizer to the ordered tests as a foreground and the
rule inhibition graph as background.
0032. In one embodiment, a system may compress an
original set of rules into an equivalent Smaller resulting set of
rules and removes irrelevant logical tests from the original set
of rules.

0033. The original set of rules may be reconstructed in a
target rule language and the target rule language adapted to
customize the resulting set of rules.
0034. According to one embodiment of the present inven
tion there is provided a computer program product for trans
forming an original set of rules into a resulting set of gener
alized rules in a rule management system, the computer
program product comprising: a computer readable storage
medium readable by a processing circuit and storing instruc
tions for execution by the processing circuit for performing a
method according to the first aspect of the present invention.
0035. According to one embodiment of the present inven
tion there is provided computer program stored on a computer
readable medium and loadable into the internal memory of a
digital computer, comprising Software code portions, when
said program is run on a computer, for performing the method
of the first aspect of the present invention.
0036. According to one embodiment of the present inven
tion there is provided a method substantially as described
with reference to the figures.
0037 According to one embodiment of the present inven
tion there is provided a system substantially as described with
reference to the figures.
0038. The described aspects of one embodiment of the
invention provide for transforming each set of specific rules
into an equivalent set of most-general rules with compres
Sion. In one embodiment, the described compression tech
nique may be a way of rephrasing tests in a much more
compact way. In one embodiment, the method may not only
be applicable to decision tables, but to arbitrary sets of rules.
0039. In one embodiment, a method may reduce the num
ber of tests and thus both reduces the rule set size and
improves the overall performance of rule execution. Decision
tables in rule management systems may be reduced in size
while maintaining the semantics for the rules, thereby
improving overall performance of the rule management sys
tem.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

0040. The subject matter regarded as the invention is par
ticularly pointed out and distinctly claimed in the concluding
portion of the specification. The invention, both as to organi
Zation and method of operation, together with objects, fea
tures, and advantages thereof, may best be understood by
reference to the following detailed description when read
with the accompanying drawings.
0041 Preferred embodiments of the present invention will
now be described, by way of example only, with reference to
the following drawings in which:
0042 FIGS. 1A and 1B illustrate a table and correspond
ing graph showing rules to which a method in accordance
with the present invention may be applied;
0043 FIGS. 2A to 2D are a table and corresponding
graphs showing original rules and synthesized rules in accor
dance with the present invention;

Jun. 18, 2015

0044 FIG. 3 is a block diagram showing system compo
nents and data flow of an example embodiment of a system
and method in accordance with the present invention;
0045 FIGS. 4A to 4H are graphs illustrating the process
ing of rules in an example embodiment of a method in accor
dance with the present invention;
0046 FIG. 5A is a block diagram showing system com
ponents and data flow of an aspect of an example embodiment
of a system and method in accordance with the present inven
tion;
0047 FIG. 5B shows an example rule set application
graph in accordance with an aspect of the present invention;
0048 FIGS. 6A to 6D are graphs illustrating the process
ing of rules in an example embodiment of a method in accor
dance with the present invention;
0049 FIG. 7 is a block diagram showing system compo
nents and data flow of an aspect of an example embodiment of
a system and method in accordance with the present inven
tion;
0050 FIG. 8 is a block diagram showing system compo
nents and data flow of an aspect of an example embodiment of
a system and method in accordance with the present inven
tion; and
0051 FIG. 9 is a block diagram of an embodiment of a
computer system in which the present invention may be
implemented.

DETAILED DESCRIPTION

0052. It will be appreciated that for simplicity and clarity
of illustration, elements shown in the figures have not neces
sarily been drawn to scale. For example, the dimensions of
Some of the elements may be exaggerated relative to other
elements for clarity. Further, where considered appropriate,
reference numbers may be repeated among the figures to
indicate corresponding or analogous features.
0053. In the following detailed description, numerous spe
cific details are set forth in order to provide a thorough under
standing of the invention. However, it will be understood by
those skilled in the art that the present invention may be
practiced without these specific details. In other instances,
well-known methods, procedures, and components have not
been described in detail so as not to obscure the present
invention.
0054 Rule management systems, for example, IBM's
Operational Decision Manager (ODM) (IBM is a trade mark
of International Business Machine Corporation), provide a
development environment, along with dedicated, business
user interfaces, for automating and governing frequently
occurring, repeatable business decisions across processes and
applications.
0055 A rule management system generally includes two
main components, which form a platform for managing and
executing business rules. Firstly, a decision center provides
an integrated repository and management components,
allowing Subject matter experts to maintain and govern their
business decisions. This provides a repository and manage
ment component for the creation and maintenance of decision
logic guiding the business systems behavior. It is the central
hub for the coordination of the decision life cycle of business
rules and allowing editing of those rules. Secondly, a decision
server provides the runtime components to automate decision
logic, enabling the detection of business situations and pre
cise response based on the context of the interaction.

US 2015/O 170069 A1

0056 Sets of rules for use in a rule management system
may be provided in decision tables or other forms of data
structures stored in storage media and accessible by the rule
management system. System users may add riles via a user
interface of the rule management system and Such rules are
added to appropriate decision tables and stored for applica
tion by the decision logic.
0057. A described system is provided for transforming an
original set of rules provided in a rule management system in
the form of decision tables or other data structures into a set of
generalized rules. The generalized rules may form a compres
sion of the original set of rules into a reduced number of rules
without affecting the semantics of the original set of rules.
0058 An iterative method and system are provided for
transforming an original set of rules into an equivalent set of
generalized rules. The term “most-general rule' is used
hereinto refer to a rule which generalizes one or more original
rules without affecting the semantics of the rules and which
cannot be generalized furtherina chosen target rule language.
0059. The term “most-general rule' is defined herein as a
rule for which there does not exist any other rule that treats a
proper superset of the cases treated by the first rule. Existence
of a most-general rule may depend on a suitable definition of
a rule language, as not all kinds of logical tests may be
expressible in Such a language. It is a strength of the described
method and system that they are able to generate most-gen
eral rules for a given target rule language where rule condi
tions are conjunctions of logical tests.
0060. In the field of machine learning, it is standard to
define a generalization relation among rules. A seminal ref
erence is the article “Generalization as Search’ by Tom
Mitchell as published in the Artificial Intelligence Journal 18
(1982) 203-226. A short resume of the definition is given in
the article “Generalized Subsumption and Its Applications to
Induction and Redundancy' by Wray Buntine, as published
Artificial Intelligence Journal 36(2) (1988) 149-176. Buntine
writes: “Briefly, rule R1 is more general than rule R2, or R2 is
more specific than R1, if in any world R1 can be used to show
at least the same results as R2 (adapted from Mitchell...I).”
In the currently used terminology, this means that whenever
R2 is applicable then R1 must be applicable as well and result
into the same action as R2. This generalization relation is a
partial order, meaning that not all pairs of rules are compa
rable.
0061 Machine learning is, among other things, concerned
in finding rules expressible in a given rule language that are
consistent with the examples in a given training set (i.e. pro
duce the expected actions for those examples when applicable
to them). Mitchell has introduced the concept of a version
space to characterize those rules. Mitchell represents the ver
sion space in terms of the “most-general rules' among all
rules of the rule language that are consistent with the training
examples and the “most-specific rules” among all rules of the
rule language that are consistent with the training examples.
If a rule is at least as general as some of those “most-specific
rules' and at least as specific as Some of those “most-general
rules” then it belongs to the version space. Hence, “most
general rules' and “most-specific rules' are an integral part of
Mitchell's method for representing large version spaces in a
compact way. It needs to be noted that there is more than one
“most-general rule” and more than one “most-specific rule'
as the generalization relation is a partial order. A good
description of Mitchell's method is included in chapter 19
“Knowledge in Learning of the book “Artificial Intelligence.

Jun. 18, 2015

A Modern Approach.” Third Edition, 2010 by Stuart Russell
and Peter Norvig. Page 774 gives asketch of the version space
characterized by a most-general boundary (consisting of the
“most-general rules”) and a most-specific boundary (consist
ing of the “most-specific rules”).
0062. It needs also be noted that terminology varies from
author to author. Some authors use the term hypothesis for the
rules to be learned. Mitchell himself speaks of generaliza
tions. So the term “most-general rule' does not appear in his
paper. He simply speaks of generalizations g for which there
is no generalization which is both more general than g, and
consistent with the training examples. Some patents are using
the term “most-general rules” (e.g. US 2006/0212412 A1
“Methods and systems for induction and use of probabilistic
patterns to support decisions under uncertainty’). Other
authors speak of "maximally general rules for a target clas
sification' (see the article “A Method for Computing All
Maximally General Rules in Attribute-Value Systems.” by
Wojciech Ziarko, Ning Shan published in Computational
Intelligence 1996).
0063. Whereas machine learning seeks to generalize data
into rules, rule compression seeks to transform original rules
into more compact rules, but without changing the semantics
of the original rules. Hence, any of the resulting rules must
comply to the original rules in the following sense: Whenever
any of the resulting rules is applicable then also some of the
original rules needs to be applicable and the resulting rule
needs to produce the same action as the original rule. In other
terms, each resulting rule needs to be logically implied by the
set of original rules. In the present disclosure, only the most
general rules are considered among all rules of a given rule
language that are logically implied by the set of original rules.
A rule is a most-general rule among all rules of the given rule
language that are logically implied by the set of original rules
if there is no other rule in the given rule language that is more
general than the first rule and this second rule is also logically
implied by the set of original rules. The described method
does not compute all those most-general rules, but just a
minimal set of most-general rules, which is logically equiva
lent to the set of original rules. Minimality means that equiva
lence will be lost if some rule is removed from the resulting
set of rules.

0064. The described method starts with the observation
that a fully compressed rule set will consist of most-general
rules only. So transforming a rule set into most-general rules
is a necessary condition for full compression.
0065. It is possible to transform the original rule set in
different ways in terms of most-general rules, meaning that
there are several sets of most-general rules that compress the
original rules in different ways. So transforming an original
rule set into most-general rules may leave the possibility for
Some choice of the resulting rule set.
0066. The method uses constraint models to compute a
family of cases that are treated by the original set of rules, but
not by already computed generalized rules. Such cases are
referred to as “residual cases” as they remain un-addressed or
un-treated by the newly generated generalized rules. The
method uses explanation-based consistency techniques to
identify relevant logical tests in the family description and
thus generalizes this family into a most-general resulting rule.
0067. A method and system are provided that are able to
transform an original set of rules into an equivalent set of
generalized rules. The method completely reconstructs an
original rule set in a target rule language by seeking combi

US 2015/O 170069 A1

nations of relevant logical tests under which an action is
applicable. It does not directly manipulate representations of
the original rules, but just uses this original rule set to deter
mine which actions are applied to which cases. The target rule
language uses conjunctions of the logical tests of the original
rules and their negations. The target rule language does not
introduce complex rule conditions in form of disjunctions or
conjunctions as those complex conditions are more
adequately expressed as separate rules. In other words, the
method synthesizes rules in this target rule language while
respecting the behavior of the original rule set. The method
works for condition-action rules (also called production
rules), logical implications, and default rules.
0068. The disclosed method iteratively constructs a set of
generalized rules referred to as “a resulting rule set'. In each
iteration, it synthesizes a “most-general rule and adds it to
the resulting rule set. This most-general rule treats at least one
case that is treated by the original rule set, but not yet by the
resulting rule set. Furthermore, the most-general rule con
forms to the original rule set as it applies only actions to cases
that are also applied by the original rules to those cases. In
order to find this most-general rule, the method builds a
compact description of the cases treated by the original rule
set and of their actions in the form of logical constraints. It
furthermore builds a compact description of the cases that are
not treated by the resulting rule set inform of constraints. The
method employs constraint-solving techniques to find a solu
tion of those logical constraints and extracts a case and its
action from it. It then generalizes this treated case into a
family of treated cases for this action.
0069. The description refers throughout to “treating a
case. A case is treated if it is addressed by a rule resulting in
an action, which means that the rule is applicable to the case
(i.e. the case satisfies the condition of the rule).
0070 This family of treated cases is described in terms of
the logical tests of the target language. The method then
explores several candidate Subsets of those logical tests in
order to identify a subset of relevant tests for the considered
action. The method first orders the logical tests in decreasing
order of generality. It then inspects one logical test after the
other in the inverse ordering and removes the logical test from
the candidate set if it is irrelevant for the considered action. A
logical test is relevant for the considered action if its removal
from a candidate set would make the family of treated cases
described by the reduced candidate set too large. This means
that the enlarged family includes a case that is not treated by
the original rule set or the original rule set does not apply the
considered action to this case, but another action. However, if
the removal of a logical test does not include Such a non
conforming case into the family then the logical test is irrel
evant and can be removed. Once the method has identified all
relevant logical tests the method is able to build a most
general rule for the considered action and the relevant logical
tests. This rule generation is repeated until the original rule set
has completely been reconstructed.
0071. The method is thus able to compress a large set of
specific rules into a smaller set of most-general rules. This
compression not only reduces the size of the rule set, but also
removes irrelevant logical tests from rules, thus allowing
shorter and more concise representations of the resulting
rules. If the original rule set is exponential in the number of
attributes and all, but a few of those attributes are irrelevant,
the method will compress this over-huge rule set into a small
set of concise rules.

Jun. 18, 2015

0072 The purpose of the rules consists in making a deci
sion for a given case. The case is described in terms of one or
several objects of given types. Each type has a fixed number
of attributes and each object has a value for each attribute of
its type. Making the decision consists of applying an action to
the objects. Technically, the action can consist of setting the
value of an attribute of some of the given objects.
0073. The described method does not work with given
cases, but generates descriptions of cases that have certain
properties (such as cases that are treated by the original rules,
but not by the resulting rules). In order to generate a case that
has the desired properties, the method builds a constraint
graph where the constraints impose the desired properties.
Such a constraint graph may have one or several solutions
which are represented by graph labeling that respect the
semantics of the graph nodes and that label the root node by
“true'. Each of these labellings corresponds to a case. By
consulting the labeling, the objects of the case can be deter
mined, as well as their types, and the values of the attribute of
those objects. Furthermore, the action that is applied to the
case can be consulted by inspecting the labeling of the node
“the action.

0074 Hence, a labeling of the constraint graph clearly
defines a case and an action, but the description is not in an
explicit form. It is possible to transform a graph labeling into
a set of object-attribute-value triples, which describes the
value of each attribute of each object. This transformation
would be necessary if the case needed to be presented in a
human-readable form.

0075. However, the method does not work with those case
descriptions, but with descriptions of whole families of cases.
A family of cases is the set of cases that satisfy the atomic
logical tests of the original rules in the same way. This means
if some case in the family satisfies such a test, the other cases
in the family also satisfy the test. And if some case in the
family violates Such a test, the other cases in the family also
violate the test. Therefore, the method inspects each logical
test occurring in the rule and selects the test if it is satisfied
(i.e. labeled by “true’ in the graph labeling) or the negation of
the test if the test is violated (i.e. labeled by “false' in the
graph labeling) in order to build a description of the family.
0076 Although the disclosed method produces rules with
most-general conditions, it does not guarantee that the result
ing rule set is free of redundancy. Whereas a rule with most
general condition cannot be made (locally) redundant by a
single rule, it can be made (globally) redundant by multiple
other rules. Hence, the method eliminates local redundancies
between pairs of rules in the original rule set, but it does not
eliminate global redundancies between original rules. Indeed,
the rule synthesis may, in certain cases, generate most-gen
eral rules that together make previously generated rules
redundant. To address those issues, the disclosed method can
be combined with a rule set minimization phase that elimi
nates all global redundancies among the synthesized rules.
The result of this post-processing phase is a minimal set of
most-general rules that has the same behavior as the original
rule set.

0077. The method may also be used as an exact data min
ing method. It is able to transform historical data about past
cases and their actions into most-general rules without over
generalizing those rules. This extraction of most-general
rules may produce meaningful results if the historical data is
dense and actions had been applied in a coherent way.

US 2015/O 170069 A1

0078. The disclosed method is well able to compress mul
tiple rules that all differ in more than one attribute and thus
overcomes the limits of rule set compression through merg
ing. Indeed, the method Supports complex forms of compres
sion as it reconstructs the rule set. Each original rule can
contribute to multiple resulting rules and each resulting rule
may cover multiple original rules.
007.9 The method may be customized by adaptions of the
target rule language. For example, if the conditions of the
original rules are described in form of equations between
attributes and values from an ordered domain, then those
equalities can be replaced by two inequations imposing the
given value as lower bound and as upper bound for the
attribute. Those inequations and their negations will then be
included in the target language, thus permitting the creation
of intervals in the condition of a synthesized rule.
0080 Organizations such as financial institutes, insur
ances, sales organizations, government agencies have to treat
a high Volume of requests and to make decisions for those
requests in a consistent way. Examples are decisions about
acceptance and rejection of loans or insurance claims, deci
sions about discounts and so on. Organizations are not mak
ing those decisions on a case-by-case basis, but they make
those decisions once for the whole population of possible
cases. They decide which decision will be made for which
case and they codify those generic decisions inform of rules.
When processing a Submitted case, the organization then
simply applies the rules decided before. If a case satisfies the
condition of a rule, then the rule is applicable to the case and
able to treat this case. In order to make the decision for this
case, it is then Sufficient to apply that rule. Organizations are
thus able to process high Volumes of cases while guaranteeing
that the same decision is made for equivalent cases. Hence,
rules facilitate organizational decision-making as long as the
number of rules is Small compared to the number of cases.
0081. A case description needs to contain sufficient infor
mation to make a decision. A case may have a structure and
consist of multiple objects such as the different articles in a
shopping cart as those articles may influence decisions about
discounts. Each object is characterized by a fixed set of
attributes of given types. There may be numerical attributes
Such as the customer age or the total value of a shopping cart
and symbolic values such as the country and State of the
customer. Complex cases may have hundred or thousands of
attributes that may influence the decision-making. As a con
sequence, the space of all possible cases may be immense.
Indeed, twenty attributes of Boolean type are sufficient to
define one million cases. Similarly, two attributes ranging
over the integers between 1 and 1000 are sufficient to define
a space containing one million cases.
0082 Rule-based decision-making will only be effective
if the set of employed rules is complete, that means, the rules
are treating all the possible cases. As a single rule is able to
treat a large number of cases, a small number of well-chosen
rules may be sufficient to cover a huge space of cases. How
ever, it is a difficult task to configure such a rule set due to the
combinatorial nature of the case space. It is easier to divide
the case space into families of similar cases and to introduce
a rule for each of these families. This rule will treat only the
cases in its family and no other families.
0083. An example is used to illustrate the described prob
lem and the method and system proposed herein and is used
throughout the description for reference. For example, a mar
keting organization may categories a customer as Silver,

Jun. 18, 2015

Gold, or Platinum depending on the geographic region, the
age of the customer and the total value of items bought by the
customer. The marketing department may organize rules by
geographic region, thus introducing a large number of region
specific rules, although those rules follow similar patterns:

if the region of the customer is Alabama and
the age of the customer is at least 50 and
the value of the customer is at least 1000

then set the category of the customer to Platinum.
if the region of the customer is Alaska and

the age of the customer is at least 50 and
the value of the customer is at least 1000

then set the category of the customer to Platinum.

if the region of the customer is Wyoming and
the age of the customer is at least 50 and
the value of the customer is at least 1000

then set the category of the customer to Platinum.

I0084. If those rules impose the same restrictions on age
and value for all regions without exception then those region
specific rules are equivalent to a region-independent rule:
I0085 if the age of the customer is at least 50 and

0086 the value of the customer is at least 1000
I0087 then set the category of the customer to Platinum.
I0088 A first rule is more general than a second rule of
same action if the first rule treats all the cases treated by the
second rule and there is at least one case treated by the first
rule, but not by the second rule. A first rule is more specific
than a second rule of same action if the first rule treats only
cases also treated by the second rule and there is at least one
case not treated by the first rule, but by the second rule. Hence,
if a first rule is more general than a second rule, then the
second rule is more specific than the first rule and vice versa.
I0089 For example, the region-specific rules listed above
are more specific than the region-independent rule, which is
more general. Indeed, the region-specific rules distinguish the
cases by their regions, which is not done by the more general
rule. Specific rules thus make additional distinctions which
increase the number of rules and which are encoded by addi
tional tests in the rule condition. Imposing Such additional
distinctions can thus multiply the number of rules and
increase the size of the representation of the rules in a rule
language. For example, a set of region-independent rules will
be multiplied by the number of regions if each region needs to
have a region-specific copy of those rules. If those distinc
tions are introduced for several other attributes, then a com
binatorial explosion of the number of rules with respect to the
number of attributes is encountered. Moreover, the resulting
rules will impose a test on each of those attributes, meaning
that the rule representations get lengthy. So there is no interest
in introducing additional distinctions by region or other cri
teria if rules are already in a general form.
0090 Whereas a small number of concise general rules are
more desirable than a potentially exponential number of spe
cific rules, it is easier to understand, to write, to organize, and
to adapt specific rules. Indeed, an organization may organize
its rules from the beginning by geography, topics, and validity
periods. A rule author may then fill in specific rules within
these different categories without noticing similarities among
those rules. Furthermore, a large number of specific rules may
also be obtained as result of collaborative rule authoring
where domain experts enter rules that are specific to particular
domains. Finally, specific rules are a natural result of rule

US 2015/O 170069 A1

evolution. For example, a marketing organization may
change its fidelity categorization for some customers. For
example, it may increase the eligibility age for Platinum from
50 to 52, thus requiring a modification of the following rule:

action rule r1:
if the age of the customer is at least 50 and

the value of the customer is at least 1000
then set the category of the customer to Platinum.

0091. The modification should ensure that Platinum is
only assigned to customers older than 52 who bought items
for a value of more than 1000. As a consequence, another
category, Such as Gold, needs to be chosen for customeraged
between 50 and 52 who bought items for a value of more than
1000. Hence, the modification corresponds to splitting the
rule r1 into two more specific rules r1a and r1b:

action rule r1a:
if the age of the customer is at least 52 and

the value of the customer is at least 1000
then set the category of the customer to Platinum
action rule r1b:
if the age of the customer is at least 50 and

the age of the customer is less than 52 and
the value of the customer is at least 1000

then set the category of the customer to Gold.

0092. It may be possible to merge the second rule with
Some other rule. For example, there may be a rule r2 assigning
Gold to customers between 30 and 50 who bought items for
more than 1000:

action rule r2:
if the age of the customer is at least 30 and

the age of the customer is less than 50 and
the value of the customer is at least 1000

then set the category of the customer to Gold.

0093 Merging the two rules r1b and r2 would thus result
into a single rule r3, thus restoring the original number of
rules:

action rule 3:
if the age of the customer is at least 30 and

the age of the customer is less than 52 and
the value of the customer is at least 1000

then set the category of the customer to Gold.

0094. Hence, additional effort is necessary to consolidate
a rule set after making a modification. This consolidation is
not always that straightforward. Reducing the number of
rules by pairwise merging only works if two rules impose the
same tests on all, but one attribute. Furthermore, it must be
possible to merge the tests on this attribute, that means, to
represent the disjunction of those tests in the rule language. In
the example, the first rule checks whether the age is in the
interval 50, 52) and the second rule checks whether the age is
in the interval 30, 50). The disjunction of these tests is
equivalent of testing whether the age is in the interval 30,52).
As this merged test can be represented in the rule language,
the rules could be merged. Hence, the merge was possible

Jun. 18, 2015

since the rule set contained another rule and the regions
covered by both rules in the case space could be merged
together to a regular region.
0.095 However, such a merge will not be possible in more
complex scenarios. If a rule set is modified frequently, there is
the risk that the rules in the set are split more and more. Rule
evolution will therefore have a natural tendency of making the
rules more and more specific and to increase the size of the
rule set. Uncontrolled rule set modification may thus lead to
rule sets of unmanageable size. Whereas the purpose of rules
is to facilitate the processing of a huge Volume of cases, a
large number of rules may make this processing obscure,
difficult to understand and to justify. It therefore appears to be
important to consolidate the rule set after long sequences of
modifications and to simplify it by reducing the number of
rules.

(0096 FIGS. 1A and 1B show an example embodiment the
problem addressed by the described method and system.
FIGS. 1A and 1B show a decision table 100 and a correspond
ing graph 150 to illustrate a set offive rules g1 101 g2 102, g3
103, g4 104 and g5 105 that might have resulted from a
sequence of rule modifications.
(0097 FIG. 1A shows a table 100 with columns for “Age”
110, “Value 120, and “Category” 130. FIG. 1B shows a
graph 150 of “Age' 110 against “Value” 120. All rules are
assigning a Gold category to customers differing in age and
the value of the items that they have bought:

if the age of the customer is at least 0 and less than 10 and
the value of the customer is at least O and less than 20

hen set the category of the customer to Go

if the age of the customer is at least 0 and less than 20 and
the value of the customer is at least 10 and less than 30

hen set the category of the customer to Go

if the age of the customer is at least 10 and less than 30 and
the value of the customer is at least O and less than 10

hen set the category of the customer to Go

if the age of the customer is at least 10 and less than 20 and
the value of the customer is at least 10 and less than 20

hen set the category of the customer to Go

if the age of the customer is at least 20 and less than 30 and
the value of the customer is at least 10 and less than 30

hen set the category of the customer to Gold.

0098. It is not possible to merge any of these rules since
each pair of rules imposes different tests on more than one
attribute. Nevertheless, the five rules are logically equivalent
to a single rule:

if the age of the customer is at least 0 and less than 30 and
the value of the customer is at least O and less than 30

then set the category of the customer to Gold.

0099 Hence, it is possible to simplify the rule set and to
replace the specific rules by a more general rule. This requires
the identification of large regions in the combinatorial case
space for which the same decision is made.
0100. The described method and system transform a set of
specific rules into an equivalent set of most-general rules. It
will be explained with respect to the rule set given in FIG. 2A.

US 2015/O 170069 A1

0101 FIG. 2A shows a decision table 200 consisting of
eleven rows. Each row corresponds to a rule 201-211 deciding
a customer category 240 depending on the customer age 220
and the value 230 of items bought by the customer. For some
of the cases, the rules are choosing a Silver category. For the
other cases, a Gold category is chosen. It is not possible to
merge any of the rules as they all differ in more than one
attribute. The decision table does not show any regularity or
pattern allowing replacement those specific rules by more
general rules.
0102 FIG. 2B shows a graph 250 of age 220 against value
230 and depicts the cases treated by each rule 201-211 of FIG.
2A in the two-dimensional case space in form of rectangular
blocks. This figure shows that the rules do not overlap, but
complement each other in a way that permits a simplification
of the rule set. The eleven specific rules 201-211 can be
transformed into three most-general rules without changing
the decisions made for the cases.
0103 FIG. 2C shows a graph 260 of age 220 against value
230 and depicts the cases treated by the most general rules
msl 261, mgl 262, and mg2263 as rectangular blocks in the
case Space.
0104 FIG. 2D shows a decision table 270 of the most
general rules msl 261, mgil 262, and mg2 263.
0105 FIGS. 2B and 2C show that the rule generalization
does not correspond to a simple pairwise merging of rules.
Indeed, some of the original rules contribute to several of the
resulting rules. For example, some of the cases treated by rule
g2 204 are treated by the resulting rule mg2 263 and some
other cases treated by rule g2 204 are also treated by the
resulting rule mgil 262. Hence, the regions covered by the
resulting rules are obtained by dividing and merging the
regions of the original rules. This means that the generaliza
tion process corresponds to a complete reconstruction of the
rules. The disclosed method achieves this reconstruction for
an arbitrary number of dimensions. It is thus able to handle
combinatorial case spaces for which it is no longer possible to
draw the rectangular regions covered by the rules. A two
dimensional space nevertheless is sufficient to understand the
operations of the method.
0106 FIG. 3 shows a block diagram of an example
embodiment of the described system 300 with data-flow of
the disclosed method for synthesizing original rules into
most-general rules. The system components are shown as
rectangular blocks and the data-flow is shown as oval shapes.
0107 Software routines for aspects of the described
method are used with the input and output of those routines
provided. Data-flow diagrams show the software routines as
components with inputs and outputs. The diagram shows how
those components are connected together and how informa
tion is passed from one component to the other one. It is a
hardware-oriented way to describe a software system and, in
principle, parts of it could be implemented by dedicated hard
ware as well. The data-flow diagrams define how information
flows through the system and thus explains the steps in which
this information is processed. It constrains the ordering of
those steps, but does not fix this ordering.
0108 Given a set of original rules 301, the system 300
iteratively constructs a resulting rule set. In each iteration, the
method synthesizes a most-general or generalized rule 304
and adds it to a store of resulting rules 340. This most-general
rule 304 treats at least one of the residual cases that are treated
by the original rules 301, but not by the resulting rules that
have been added to the store 340 in previous iterations. Fur

Jun. 18, 2015

thermore, the most-general rule conforms to the original rule
set 301 as it applies only actions to cases that are also applied
by the original rules to those cases.
0109. In order to find this most-general rule 304, the sys
tem proceeds in two steps. In the first step, a residual case
detector 310 is provided with the original rule set 301 and the
resulting rules in the store 340. This residual case detector 310
builds a compact description of the residual cases and their
actions inform of logical constraints. The residual case detec
tor 310 employs constraint-solving techniques to find a solu
tion of those logical constraints and extracts a case and its
action from it. It then transforms this treated case into a family
of treated cases 303 for this action. This family of treated
cases 303 is described in terms of the logical tests of a target
rule language.
0110. If the residual case detector 310 has computed such
a family of treated cases 303 and their action, it passes them
to a treated case generalizer 320. This component explores
several candidate Subsets of those logical tests in order to
identify a subset of relevant tests for the considered action.
The generalizer 320 first orders the logical tests in decreasing
order of generality. It then inspects one logical test after the
other in the inverse ordering and removes the logical test from
the candidate set if it is irrelevant for the considered action. A
logical test is relevant for the considered action if its removal
from a candidate set would make the family of treated cases
described by the reduced candidate set too large. This means
that the enlarged family includes a case that is not treated by
the original rule set 301 or the original rule set 301 does not
apply the considered action to this case, but some other
action. However, if the removal of a logical test does not
include Such a non-conforming case into the family then the
logical test is irrelevant and can be removed. Once the treated
case generalizer 320 has identified all relevant logical tests, it
is able to build a most-general rule 304 for the considered
action and the relevant logical tests. The resulting most-gen
eral rule 304 is added to the Store 340.
0111. This rule generation is repeated until the residual
case detector 310 no longer detects any residual case 302 as
the original rule set 301 has completely been reconstructed in
terms of resulting rules. The residual case detector 310 passes
this information to a rule set builder 330, which uses the
contents of the store 340 of resulting rules to build the result
ing rule set 305.
0112 Each iteration except the final one thus adds a most
general rule to the store of resulting rules and thus reduces the
set of residual cases. In the example given in relation to FIGS.
2A to 2D, the system needs four iterations to synthesize the
three most-general rules msl, mg1, and mg2 for the example
rule set.
0113 FIGS. 4A to 4H depict graphs of age versus value
showing the resulting rule sets 401, 403, 405, 407 and the
residual rule set 402, 404, 406, 408 of each iteration in the
case space. FIGS. 4A and 4B show the resulting rule set 401
and the residual rule set 402 of the first iteration 410. FIGS.
4C and 4D show the resulting rule set 403 and the residual rule
set 404 of the second iteration 420. FIGS. 4E and 4F show the
resulting rule set 405 and the residual rule set 406 of the third
iteration 430. FIGS. 4G and 4H show the resulting rule set
407 and the residual rule set 408 of the fourth iteration 440.
0114. In the first iteration 410, there is no resulting rule,
meaning that all the cases treated by the original rules are
residual cases. As result of the first iteration 410, the system
synthesizes the most-general rule msl that treats a case for

US 2015/O 170069 A1

which the decision Silver is made. The treated-case general
izer identifies the relevant tests for making this decision,
which check whether the age is less than 20 and the value is
less than 20. Using any smaller value than 20 will lead to a
rule that is too specific and using any value greater than 20
will include a case that has decision Gold in the original rule
set. As a consequence, the following rule msl is most-general
and therefore added to the store of the resulting rules:

action rulems 1:
if the age of the customer is less than 20 and

the value of the customer is less than 20
then set the category of the customer to Silver.

0115. In the second iteration 420, the cases treated by this
resulting rule are depicted in the FIG. 4C and they are
removed from FIG. 4D. FIG. 4D of the Second iteration 420
thus shows the residual cases obtained after adding resulting
rule msl. The system now generates a new most-general rule
that treats at least one of those residual cases. For example,
this may be the residual case concerning customers of age 30
who bought items for a value of 10. Those customers receive
a Gold category. The treated-case generalizer will again iden
tify the relevant tests. If the age were smaller than 20, then a
case with a Silver decision would be included. Furthermore,
the age cannot exceed 50 since the original rules do not treat
cases for ages above 50. Similarly, the value cannot be larger
than 50 since the original rules do not treat those cases.
Hence, the treated-case generalizer produces the most-gen
eral rule mg1 by using these tests and the decision Gold:

action rule mg1:
if the age of the customer is at least 20 and

the age of the customer is less than 50 and
the value of the customer is less than 50

then set the category of the customer to Gold.

0116. As rule mg1 is added to the store of resulting rules
when finishing the second iteration, FIG. 4E shows the cases
treated by the rules msl and mgl. Those cases are removed
from the residual cases in FIG. 4F of the third iteration 430.
This reduces the regions covered by some of the rules such as
g2, g3, and g5.
0117 The residual-case detector is still able to find a
residual case. For example, it may compute a case concerning
customers of age 10 who bought items for a value of 30. The
treated-case generalizer then identifies critical tests for this
residual case. The value cannot be smaller than 20 since this
would include a case with decision Silver. Furthermore, the
value cannot be larger than 50 since the original rules do not
treat those cases. And the age may not exceed 50 since the
original rules do not treat those cases. As the resulting rules
should be as general as possible, the treated-case generalizer
ensures that all cases treated by a resulting rule are also
treated by the original rules and that the resulting rule is
making the same decision as the original rules for those cases.
However, the resulting rule may treat residual cases that are
already treated by other resulting rules. This overlap between
resulting rules is non-problematic since those resulting rules
are applying the same decision. Overlaps between rules of
same decision (or action) are indeed a consequence of having

Jun. 18, 2015

most-general rules. In the example, the treated-case general
izer thus creates a most-general rule mg2, which overlaps
with most-general rule mg1:

action rule mg2:
if the age of the customer is less than 50 and

the value of the customer is at least 20 and
the value of the customer is less than 50

then set the category of the customer to Gold.

0118. Adding rule mg2 to the store of resulting rules
closes the third iteration 430. The resulting rules in the fourth
iteration 440 then cover all the cases treated by the original
rules as depicted in FIG. 4G of the fourth iteration 440. As a
consequence, there is no residual case left any more as shown
by FIG. 4H of the fourth iteration 440. The residual-case
detector is no longer able to compute a residual case and it
informs the rule set builder of this fact. This component builds
a resulting rule set by using the resulting rules in the store.
0119 The two main components, namely the residual
case detector and the treated-case generalizer will now be
described in more detail.
I0120 FIG. 5A shows a block diagram 500 of an example
embodiment of the aspect of the residual-case detector 310 as
shown in FIG. 3 with data-flow. The system components are
shown as rectangular blocks and the data-flow is shown as
oval shapes.
I0121 The residual-case detector 310 is supplied with a set
of original rules 301 and a store of most-general rules 340. If
there is a residual case treated by the original rules, but not by
the resulting rules, the residual-case detector 310 computes
Such a case and transforms it into a family of similar cases
303, which is returned as result. Otherwise, the residual-case
detector 310 informs about the fact that there is no residual
case 302.
I0122. In a first phase, the residual-case detector 310 builds
a compact description of the residual cases in form of logical
constraints. It uses a rule set application modeler 510 to build
a description of the treated cases of the original rule set 301
and their actions. The resulting description is a constraint
graph, namely a rule set application graph 501 for the original
rules. An example part of a rule set application graph. 501 is
shown at FIG. 5B for rules S1 and G5. The illustrated graph
has labels showing the rules.
(0123. Furthermore, the residual-case detector 310 uses a
rule set violation modeler 530 to build a description of cases
and their actions that do not correspond to the application of
a resulting rule. Either such a case is not treated by any of the
resulting rules or its action is different to the actions obtained
by applying the resulting rules. Again this description has the
form of a constraint graph, namely a rule set violation graph
502 for the resulting rules.
0.124. A quantification pre-solver and conjunction builder
520 replaces logical variables occurring in the rule set viola
tion graph. 502 by objects occurring in the rule set application
graph. 501. The result is a residual rule instances violation
graph. The conjunction builder combines the rule set appli
cation graph 501 for the original rules and the rule instances
violation graph into a single constraint graph that represents
the residual cases and their actions.
0.125. This residual rule set application graph. 503 is
passed to a logical constraint solver 550. This constraint
Solver seeks a labeling of graph nodes that respects the con
straints represented by those nodes and that labels the root

US 2015/O 170069 A1

node of the graph by “true'. The logical constraint solver 550
may uses any of the constraint Solving techniques as known in
the literature including search and inference techniques. If the
solver does not find such a labeling, no residual case 302
exists and the residual-case detector 310 stops its operations,
while informing other components about this. If the logical
constraint solver 550 finds a labeling, then it extracts a
description of a treated case 504 and its action from this
labeling. This treated case 504 and action is passed to a
treated-case family builder 540. This component examines all
logical tests occurring in the residual rule set application
graph 503. If a logical test is satisfied by the treated case, then
the family builder 540 adds this test to the description of the
family. If a test is violated by the treated case, then the treated
case satisfies the negation of the test. The family builder 540
therefore adds the negated test to the family description. Once
all tests have been examined in this way, the family of treated
cases and the action 303 are returned as result.

0126 The operations of the residual-case detector are now
described with respect to the third iteration of the example
shown in FIGS. 4E and 4F.

0127. The rule set application modeler proceeds as
described in US patent application 2013/0085977 "Minimiz
ing Rule Sets in a Rule Management System’. It recursively
traverses the conditions of the rules in the original rule set and
maps each visited Sub-expression to a graph node. It guaran
tees a unique representation, i.e. two occurrences of the same
Sub-expression are mapped to the same graph node. It maps
primitive expressions such as the numeric values 10, 20, 30,
40, 50, the symbolic values Silver, Gold, Platinum, as well as
the objects matched by the rules to leaf nodes. The rule set
application graph states that there is some instance of one of
the original rules that has been applied. Hence, there exist
objects that are matched by one of the original rules. Those
objects can be represented by Skolem-constants of adequate
type. For example, if a rule matched an object of type cus
tomer, a single Skolem-constant “Customer 1 (or “C1 for
short) of type Customer will be introduced. If some other rule
matches three costumer objects, two further Skolem-con
stants “Customer2 and “Customer3 of type Customer will
be introduced. In order to keep the number of objects small,
the Skolem-constants for the different rules are canonically
named by type and number. Each Skolem-constant will be
represented by a single leaf node in the rule set application
graph.
0128. The rule set application modeler maps composed
expressions such as arithmetic operations, comparisons,
accesses to attributes of objects to inner graph nodes which
are labeled by an operator and which have outgoing edges to
the nodes that represent their Sub-expressions. The node age
(C1) represents the age of customer C1 and has an outgoing
edge to the node C1. Similarly, the node value(C1) represents
the value of the customer C1 and has an outgoing edge to C1.
The logical test “age(C1)-10 is represented by a graph node
for the operator-that has outgoing edges to the nodes for
age(C1) and 10. Furthermore, the modeler introduces a graph
node for each original rule. This graph node represents a
conjunction. It has outgoing edges to the nodes for the logical
tests in the rule condition. Furthermore, it has an outgoing
edge to a node that represents the application of the action of
a rule. Actions are represented by graph nodes having outgo
ing edges to nodes that are Subject of the action. For example,
the action of assigning a category of Gold to a customer C1 is
represented by a node for action “setCategory'. This node has

Jun. 18, 2015

outgoing edges to the nodes for C1 and Gold. This action node
corresponds to a logical term setCategory(C1, Gold). The rule
set application modeler has to State which action is executed
by which rule. As it is Supposed that a single rule instance is
applied, the rule set application modeleruses a constant “the
Action” to refer to the action of the applied rule instance. Each
rule has then a node that represents the application of the rule
action by the equality of the constant “the Action' and the
node for the rule action. For example, ifa rule instance has the
action setCategory(C1, Gold), the modeler creates a graph
node for “the Action=setCategory(C1, Gold)”.
I0129. Finally, the rule set application modeler creates a
single root node of the rule set application graph. This root
node represents the disjunction of the applications of the
original rules. It thus has outgoing edges to all the nodes
representing the applications of the original rules. The root
node of the rule set application graph for the example repre
sents the following logical formula:

one of the following conditions is true:
age(C1) < 10 and value(C1) < 10 and the Action = setCategory (C1, Silver)
age(C1) <10 and value(C1) >= 30 and value(C1) < 50 and the Action =

setCategory (C1, Gold)
age(C1) >= 10 and age(C1) < 20 and value(C1) < 10 and the Action =

setCategory (C1, Silver)
age(C1) >= 10 and age(C1) < 40 and value(C1) >= 30 and value(C1) < 40

and the Action = setCategory(C1, Gold)
age(C1) >= 10 and age(C1) < 50 and value(C1) >= 40 and value(C1) < 50

and the Action = setCategory(C1, Gold)
age(C1) < 20 and value(C1) >= 10 and value(C1) < 20 and the Action =

setCategory (C1, Silver)
age(C1) >= 20 and age(C1) < 30 and value(C1) < 20 and the Action =

setCategory (C1, Gold)
age(C1) < 30 and value(C1) >= 20 and value(C1) < 30 and the Action =

setCategory (C1, Gold)
age(C1) >= 30 and age(C1) < 40 and value(C1) >= 10 and value(C1) < 30

and the Action = setCategory(C1, Gold)
age(C1) >= 30 and age(C1) < 50 and value(C1) < 10 and the Action =

setCategory (C1, Gold)
age(C1) >= 40 and age(C1) < 50 and value(C1) >= 10 and value(C1) < 40

and the Action = setCategory(C1, Gold).

0.130. The rule set violation modeler proceeds similar as
described in US patent application 2013/0085977 "Minimiz
ing Rule Sets in a Rule Management System’. It recursively
traverses the conditions and actions of the rules in the result
ing rule set and maps each visited Sub-expression to a graph
node. The rule set violation graph describes that each instance
of each resulting rule is either non-applicable or has an action
different to the applied action. The rule set violation modeler
introduces logical variables for the objects matched by the
resulting rules. Hence, the modeler will introduce a variable
“?customerl” (or “2c1” for short) of type Customer if one of
the resulting rules matches an object of type Customer. If
Some other rule matches two customer objects, the modeler
introduces two variables “?customer1' and "?customer2.
Each logical variable is represented by a unique graph node.
Other sub-expressions are constructed in the same way as by
the rule set application modeler. For each test occurring in a
rule condition, the modeler introduces a graph node repre
senting the negation of the test. This graph node has an out
going edge to the node representing a test. Similarly, the
modeler introduces a graph node representing the negation of
the equality between the constant “the Action' and the action
of a rule. For each resulting rule, the modeler further intro
duces a graph node that represents the rule body, i.e. the
disjunction of the negated tests in the rule condition and of the

US 2015/O 170069 A1

negated equality of the rule set action and the action of the
rule. This node has outgoing edges to the nodes representing
the negated tests and the negated equality. Furthermore, the
modeler constructs a node for each resulting rule, which
represents the universal closure of the rule body. This closure
lists all the variables occurring in the rule and describes that
the rule body holds for all combination of objects that can be
used to instantiate the variables. The node thus describes the
violation (i.e. the non-respect) of the rule.
0131 Finally, the rule set violation modeler creates a
single root node of the rule set violation graph. This root node
represents the conjunction of the violation of all resulting
rules. It thus has outgoing edges to all the nodes representing
the violations of the resulting rules. For the example, the root
node of the rule set violation graph constructed for the result
ing rules in iteration 3 represents the following logical for
mula:

all of the following conditions are true:
for all?cl: not age(?cl) < 20 or not value(?cl) < 20 or not the Action =

setCategory(?cl, Silver)
for all?cl: not age(?cl) >= 20 or not age(?cl) < 50 or not value(?cl) < 50

or not the Action = setCategory(?cl, Gold).

0132) This graph is passed to a quantification pre-solver.
This pre-solver eliminates the universally quantified vari
ables and transforms the rule set violation graph into a vari
able-free form. For this purpose, it constructs an object
domain by collecting the Skolem-constants in the rule set
application graph. For example, if there is a single Skolem
constant C1, the object domain is the singleton C1. For each
universal quantified constraint with variables 2x1,..., xk,
the pre-solver considers each combination of k objects from
the object domain and creates an instance of the constraint.
When instantiating the constraint, the variables are replaced
by the chosen objects. For example, the pre-solver will trans
form the rule set violation graph of iteration 3 into the fol
lowing rule instances violation graph:

all of the following conditions are true:
not age(C1) < 20 or not value(C1) < 20 or not the Action = setCategory

(C1, Silver)
not age(C1) >= 20 or not age(C1) < 50 or value(C1) < 50 or not

the Action = setCategory (C1, Gold).

0133) If the object domain contains several Skolem-con
stants, the instantiation process will create multiple instances
of the same constraint.
0134. The conjunction builder then constructs a graph
node representing the conjunction of the rule set application
graph of the original rules and the rule instances violation
graph of the resulting rules. The result is a residual rule
instances application graph, which is passed to a logical con
straint solver.

0135 The logical constraint solver seeks a labeling of the
graph nodes such that the root node of the residual rule
instances application graph is labeled by true and the opera
tions and types of the graph nodes are respected. In FIG. 5B,
Such a labeling of the graph nodes is shown in rectangular
boxes, which are imposed on the corresponding graph nodes.
The solver uses search and inference techniques for this pur
pose. For example, it may label the node age (C1) by 17 and
the node value(C1) by 26. Furthermore, it labels leaf nodes

Jun. 18, 2015

representing numeric and symbolic values by those values.
Leaf nodes that represent Skolem-constants such as C1 are
labeled by this or some other Skolem-constant. Furthermore,
the leaf node representing the constant “the Action' is labeled
by a logical term such as “setCategory(C1, Gold). Other
graph nodes are labeled correspondingly. For example the test
“age(C1)-10' will be labeled by false since an age of 17 has
been chosen. The test “value(C1)>=10” will be labeled by
true since a value of 26 has been chosen. The action node
representing the logical term “setCategory(C1, Gold)” will be
labeled by this term. Hence, the nodes for “the Action' and
“setCategory(C1, Gold) have the same label, meaning that
the node for “the Action=setCategory(C1, Gold) will be
labeled true. Furthermore, the node for
“the Action=setCategory(C1, Silver) will be labeled false.
Among the different disjuncts of the rule set application
graph, the following one will be labeled true:

age(C1) < 30 and value(C1) >= 20 and value(C1) < 30 and the Action =
setCategory (C1, Gold)

0.136 Furthermore, all the conjuncts of the rule instances
violation graph will be labeled true since the node for “not
value(C1)-20” and for “not age(C1)>–20 are labeled true:

not age(C1) < 20 or not value(C1) < 20 or not the Action = setCategory
(C1, Silver)

not age(C1) >= 20 or not age(C1) < 50 or not value(C1) < 50 or not
the Action = setCategory (C1, Gold).

I0137 Referring to FIGS. 6A to 6D, graphs 610, 620, 630,
640 show the described rule synthesis.
0.138. As a consequence the root node of the residual rule
instances application graph is labeled by true. This means that
the labeling corresponds to a residual case. The FIG. 6A
depicts the treated case 601 with action among the residual
rules. The logical constraint solver passes the labeling to the
treated-case family builder.
0.139. It may happen that the logical constraint solver runs
into a time out and does not find a residual case, although one
exists. In that situation, the method will not be able to recon
struct the whole rule set.

0140. The treated-case family builder extracts the action
of the residual case by taking the label of the node “the Ac
tion” which is “setCategory(C1, Gold)” in iteration 3 of the
example. Furthermore, the treated-case family builder
inspects each logical test in the labeled residual rule instances
application graph. If a logical test such as “value(C1)->=10” is
labeled true, then the test is added to the description of the
treated-case family. If a logical test such as “age(C1)-10 is
labeled false, the logical negation of the test, that means
“age(C1)->=10”, is added to the family description. This will
result into the following family description:

age(C1) >= 10, value(C1) >= 10, value(C1) < 30, value(C1) < 50, age(C1)
< 20,
age(C1) < 40, value(C1) < 40, age(C1) < 50, value(C1) >= 20, age(C1) < 30.

0.141. The family contains all cases that satisfy those logi
cal tests. The FIG. 6B depicts those cases by a rectangular
block f1 602 with thick lines.

US 2015/O 170069 A1

0142. The treated-case generalizer is supplied with the
treated case family and the action. It removes irrelevant tests
from the family and thus enlarges the family. The enlarged
family thus contains additional cases. A case may be included
if there is an additional rule that is applicable to this case and
that applies the action of the family to the case. FIG. 6C shows
the eligible cases. FIG. 6D shows how the family f1 603 is
enlarged after the removal of all irrelevant tests.
0143 FIG. 7 shows a block diagram 700 of an example
embodiment of the aspect of the treated-case generalizer 320
as shown in FIG. 3 with data-flow. The system components
are shown as rectangular blocks and the data-flow is shown as
oval shapes.
0144. The components of the treated-case generalizer 320
are illustrated for iteration 3 of the example.
0145 The treated-case generalizer 320 employs a rule set
inhibition modeler 710 to build a compact description of all
the cases that are not eligible. This modeler 710 selects all the
rules from the original rule set 301 that may apply the action
of the treated case family 303. It then builds a rule instances
inhibition graph 701 for those rules. This graph is satisfied by
a case if this case makes all the selected rules inapplicable.
These are exactly the cases that are not depicted the graph of
FIG. 6C. The treated-case family does not overlap with those
non-eligible cases. Therefore, there is not any case that satis
fies both the logical tests in the family and the rules instances
inhibition graph 701. Hence, the logical tests in the family are
logically inconsistent and constitute a conflict set if the con
straint of the rules instances inhibition graph 701 is imposed.
The treated-case generalizer 320 uses a conflict minimizer
740 to compute a minimal subset of logical tests while using
the rules instances inhibition graph 701 as background con
straint. The conflict minimizer 740 explores different candi
date Subsets. The initial candidate set contains all logical
tests. The conflict minimizer 740 may then remove one logi
cal test after the other one from the candidate subset. The
removal of a test leads to a new candidate subset. If the family
described by this candidate subset includes a non-eligible
case, then this case also satisfies the rules instances inhibition
graph 701, meaning that the candidate Subset is consistent
under the background constraint. The conflict minimizer 740
therefore rejects such a candidate subset and restores the
previous candidate subset. However, if the family of a candi
date Subset contains only eligible cases, then this candidate
subset is inconsistent. The conflict minimizer 740 can then
accept this candidate Subset. Repeating this method results
into a minimal set of logical tests. Removing any logical test
from this minimal set would include any non-eligible case.
0146) However, there may be many minimal subsets of
logical tests that are inconsistent under the given background
constraint. If most specific logical tests have been removed
first from the candidate set, then the result will be a most
general family of eligible cases. However, if relevant general
tests are removed before specific tests, then the result will not
be a most-general family. The treated-case generalizer 320
therefore orders the logical tests by employing a preference
governor 720 (see US Patent Application 2012/0158628
“Method and System for Detecting Missing Rules with Most
General Conditions). The conflict minimizer 740 then
respects the test ordering 702 maintained by the preference
governor 720. Based on this, the conflict minimizer 740 com
putes a set of relevant treated-case tests 703 that describe a
most-general family of eligible cases. A rule builder 750 then
constructs a most-general rule 304 by using this set of tests as

Jun. 18, 2015

condition. The action 704 of the constructed rule is the action
of the treated-case family 303 given as input to the treated
case generalizer 320 and extracted by an action extractor 730.
0147 The preference governor is supplied with a set of
logical tests in Some arbitrary order. It may further be Sup
plied with background constraints that limit the set of all cases
to a Subset of relevant cases. If no background constraint is
given, each case is relevant. Otherwise, only cases satisfying
the background constraints are relevant. The preference gov
ernor returns a total ordering of the given logical tests Such
that no logical test is ill placed in this resulting ordering. A
logical test is ill placed in an ordering if all relevant cases that
satisfy the conjunction of the preceding logical tests also
satisfy the considered logical test and there is a relevant case
that satisfies this logical test, but not the conjunction of the
preceding tests. An ill-placed logical test is thus more general
than the conjunction of its preceding tests.
0.148. For example, the logical test “x>=10' is ill placed in
the ordering (1) “x>=20, (2) “y>=20, (3) “x>=10 as it is
satisfied by more cases than the logical test “x>-20. The
preference governor will reorder the tests as follows (1)
“x>=10”, (2) “x>=20, (3) “y>=20. In this resulting order
ing, the more general test“x>-10 precedes the more specific
test“x>-20', meaning that more general tests are preferred to
more specific tests.
0149. In more complex examples, a logical test may be ill
placed due to the combination of several preceding tests. For
example, the test x+y=20' is ill-placed in the ordering (1)
“x>-10”, (2) “y>=10”, (3) “x+y>–20 since each case that
satisfies both “x>-10 and “yd=10 also satisfies
“x-y>=20, and there are cases such as x=25, y=5 that satisfy
“x-y>=20, but violate some logical tests among “x>-10
and “yo-10'. The preference governor will reorder these
tests as follows (1) “x>=10”, (2) “x+y>=20, (3) “y>=10”.
The logical test“x+yd-20 is not more general than “x>-10'
as, for example, it does not include the case x=15, y=0, which
satisfies “x>-10. Similarly, the logical test “yo-10 is not
more general than the conjunction of “x>-10' and
“x-y>=20” as it does not include the case x=25, y=5.
0150. The preference governor constructs the resulting
ordering starting from the end. In each iteration, it seeks the
latest well-placed logical test in the initial ordering of the
tests. It removes this well-placed logical test from the initial
ordering and adds it at the beginning of the resulting ordering.
This procedure is repeated until all logical tests have been
moved from the initial ordering to the resulting ordering.
0151. To find the latest well-placed test, the preference
governor inspects each logical test in the initial ordering
while starting from the end. This inspection consists in deter
mining whether the logical test is entailed by the conjunction
of the preceding tests. Entailment is checked by passing the
preceding logical tests as well as the negation of the inspected
test to a constraint solver. If the solver finds no solution, the
inspected test is entailed and the preference governor contin
ues the inspection process. Otherwise, the Solver has found a
Solution that satisfies the preceding tests and that violates the
inspected test, meaning that the inspected test is not more
general than the conjunction of its preceding tests. Hence, it is
well placed.
0152 The preference governor thus establishes an order
ing of logical tests that prefers more general tests to more
specific ones and passes this ordering to the conflict mini
mizer. The conflict minimizer will then determine one rel
evant logical test after the other. When it detects a relevant

US 2015/O 170069 A1

logical test, then this logical test becomes a background con
straint, thus requiring a reordering of the remaining tests. For
example, the test “x>=10” is more specific than “x+y>=20
under the background constrainty)=10'. The conflict mini
mizer therefore requests the preference governor to reorder
the logical tests when this is required by the detection of new
background constraints.
0153 FIG. 8 shows a block diagram 800 of an example
embodiment of the aspect of the rule set inhibition modeler
710 as shown in FIG. 7 with data-flow. The system compo
nents are shown as rectangular blocks and the data-flow is
shown as oval shapes.
0154) In a first step, the rule set inhibition modeler 710
builds a rule set violation graph 801 for the original rule set
301 using a rule set violation modeler 810. It then uses an
object extractor 820 to extract all objects occurring in the
logical tests of the treated case family and builds an object
domain 802 containing all those objects. The family com
puted in iteration 3 of the example contains a single object,
namely the Skolem-constant C1. Hence, the constructed
object domain is the singleton C1. A quantification pre-solver
830 uses this object domain 802 to instantiate all quantified
constraints represented by the rule set violation graph 801.
This results into an instance set violation graph 803 that
represents the following constraint (for the sake of readabil
ity, a negated test Such as “not age(C1)-10” has been simpli
fied into the test “age(C1)>=10):

all of the following conditions are true:
age(C1) >= 10 or value(C1) >= 10 or the Action = setCategory (C1, Sil

ver)
age(C1) >= 10 or value(C1) < 30 or value(C1) >= 50 or the Action =

setCategory (C1, Gold)
age(C1) < 10 or age(C1) >= 20 or value(C1) >= 10 or theAction =

setCategory (C1, Silver)
age(C1) < 10 or age(C1) >= 40 or value(C1) < 30 or value(C1) >=

40 or the Action = setCategory (C1, Gold)
age(C1) < 10 or age(C1) >= 50 or value(C1) < 40 or value(C1) >=

50 or the Action = setCategory (C1, Gold)
age(C1) >= 20 or value(C1) < 10 or value(C1) >= 20 or the Action =

setCategory (C1, Silver)
age(C1) < 20 or age(C1) >= 30 or value(C1) >= 20 or theAction =

setCategory (C1, Gold)
age(C1) >= 30 or value(C1) < 20 or value(C1) >= 30 or the Action =

setCategory (C1, Gold)
age(C1) < 30 or age(C1) >= 40 or value(C1) < 10 or value(C1) >=

30 or the Action = setCategory (C1, Gold)
age(C1) < 30 or age(C1) >= 50 or value(C1) >= 10 or theAction =

setCategory (C1, Gold)
age(C1) < 40 or age(C1) >= 50 or value(C1) < 10 or value(C1) >=

40 or the Action = setCategory (C1, Gold).

0155. An action pre-solver 840 imposes that the action
704 must be equal to that chosen for the given treated case
family fl. As this chosen action is “setCategory(C1, Gold).
it is different to otheractions such as “setCategory(C1, Silver)
”, meaning that tests such as “the Action =SetCategory(C1,
Silver) are necessarily true. Hence, disjunctions containing
Such a test are necessarily true as well and can be removed
from the rule instances violation graph. Furthermore, the
logical test “the Action=setCategory(C1, Gold) is necessar
ily false and can thus be removed from all disjunctions. The
action pre-solver does these modifications and reduces the
rule instances violation graph into a rule instances inhibition
graph. The rule instances inhibition graph 701 computed in
iteration 3 of the example represents the following constraint,
which is satisfied by the non-eligible cases:

Jun. 18, 2015

all of the following conditions are true:
age(C1) >= 10 or value(C1) < 30 or value(C1) >= 50
age(C1) < 10 or age(C1) >= 40 or value(C1) < 30 or value(C1) >= 40
age(C1) < 10 or age(C1) >= 50 or value(C1) < 40 or value(C1) >= 50
age(C1) < 20 or age(C1) >= 30 or value(C1) >= 20
age(C1) >= 30 or value(C1) < 20 or value(C1) >= 30
age(C1) < 30 or age(C1) >= 40 or value(C1) < 10 or value(C1) >= 30
age(C1) < 30 or age(C1) >= 50 or value(C1) >= 10
age(C1) < 40 or age(C1) >= 50 or value(C1) < 10 or value(C1) >= 40.

0156 There is not any case that satisfies this conjunction
and all the tests that characterize the treated case family fl:

age(C1) >= 10, value(C1) >= 10, value(C1) < 30, value(C1) < 50, age(C1)
< 20,
age(C1) < 40, value(C1) < 40, age(C1) < 50, value(C1) >= 20, age(C1)
< 30.

015.7 Indeed, those tests violate the fifth conjunct “age
(C1)>=30 or value(C1)-20 or value(C1)>=30. A conflict
minimizer such as QuickXplain Junker, 2004 is then able to
determine a minimal inconsistent subset of the tests if the rule
instances inhibition graph 701 is passed as background con
straint. In general there are multiple minimal inconsistent
subsets, but the ordering of the tests permits the definition of
a unique most preferred inconsistent Subset. Tests that come
earlier in the ordering are preferred to tests coming later in the
ordering. As a consequence, the conflict minimizer starts
removing tests in the inverse ordering. Given the ordering
above, this results in a most-preferred minimal inconsistent
subset of the tests:

0158 value(C1)-30, age(C1)-20, value(C1)>=20.
0159. The family described by this set of tests contains
more cases than the family fl, but is not a most-general family
of eligible cases. The reason is that more specific tests such as
“value(C1)-30' precede more general tests such as “value
(C1)-50' in the given ordering, meaning that those more
specific tests have been considered more important by the
conflict minimizer. This family of cases could be used to build
the following resulting rule, but this rule is not a most-general
rule. Indeed it is even more specific than the original rule g5:

if the age of the customer is less than 20 and
the value of the customer is at least 20 and
the value of the customer is less than 30

then set the category of the customer to Gold.

0160. In order to guarantee that the resulting rules are at
least as general as the original rules, the system needs to be
able to produce most-general rules and to keep the more
general logical tests when identifying relevant tests. The
treated-case generalizer 320 therefore employs a preference
governor 720. This preference governor 720 imposes that
more general tests precede more specific tests in the ordering.
For example, the preference governor may order the logical
tests as follows:

age(C1) >= 10, value(C1) >= 10, value(C1) < 50, value(C1) < 40,
value(C1) < 30,
age(C1) < 50, age(C1) < 40, age(C1) < 30, age(C1) < 20,
value(C1) >= 20.

US 2015/O 170069 A1

0161 Given this ordering, the conflict minimizer then is
able to find the following set of logical tests, which describes
a most-general family of eligible test.

(0162 value(C1)-50, age(C1)-50, value(C1)>=20.
(0163 The rule builder 750 then uses this set of tests as well
as the action “setCategory(C1, Gold)' and builds a most
general rule for them. In order to do this, it replaces the
Skolem-constant C1 by a rule variable. The result is action
rule mg2.

action rule mg2:
if the age of the customer is less than 50 and

the value of the customer is at least 20 and
the value of the customer is less than 50

then set the category of the customer to Gold.

0164. As this rule is built from relevant tests only, it may
have a smaller number of tests than the specific rules that it
replaces. This reduction of the number of tests in a rule
facilitates rule management and may improve the perfor
mance of rule execution.
0.165. It may happen that the conflict minimizer runs into a
time out. In this situation, it will not be able to remove all
irrelevant tests. It then returns a set of tests, which describes a
family that only contains eligible cases, but which may not be
a most-general family of eligible cases. The resulting rule
build for this case is then still a valid rule, albeit not a most
general one.
0166 Furthermore, the resulting rule set constructed by
the rule synthesis method may contain redundant rules.
Whereas a newly generated resulting rule is not made redun
dant by the previously generated resulting rules, the inverse
may happen. Therefore, a rule set minimizer as described in
US patent application 2013/0085977 “Minimizing Rule Sets
in a Rule Management System’ can be applied to the resulting
rule set in order to eliminate redundant resulting rules.
0167. The whole rule synthesis method does not only
work for condition-action rules, but also for logical implica
tions and for default rules. Those rules do not apply an action,
but infer a logical conclusion. The method will then use this
logical conclusion instead of equalities between the constant
“the Action' and a logical term representing an action.
0168 The method as explained above uses a target rule
language where rule conditions are conjunctions of logical
tests of the original rules and the negations of those tests.
Variants of target languages are possible. For example, a test
stating an equality of an attribute and a numerical value can be
replaced by two logical tests that impose that value as upper
and as lower bound for the attribute. Thus, a test such as “the
age of the customer is 20 can be replaced by two tests “the
age of the customer is at least 20 and “the age of the customer
is at most 20 in the target language. This modified target
language permits the generation of more general rules than
the direct target language.
0169. The described method and system address rule com
pression in a broad and exhaustive way. It opens the door to
refactoring of rule sets and will allow business users to fight
the natural tendency of rule fragmentation and rule special
ization. It brings rules back into a most-general form and thus
permits business users to avoid an uncontrolled growth of
their rule sets.
0170 A similar problem exists in access control rules for
firewalls. So although this document is couch in terms of
business rules, other rule application may also apply.

Jun. 18, 2015

0171 The example described herein shows that the rule
manipulation is sufficiently difficult that even an expert in
rule authoring will not find the three most-general rules with
out drawing the two-dimensional graphs that are shown for
illustration. However, drawing Such graphs will no longer be
possible if there are more than two or three dimensions.
Realistic decision tables have tens or hundreds of columns.
The described method is able to treat those cases as well. The
reason is that it uses explanation techniques for reducing the
dimensionality to the relevant dimensions.
0172 An example implementation has been carried out
with eleven rules and with three added dimensions. For each
dimension, the number of rules was duplicated by adding
Some logical test over this dimension and the negation of this
test. The implemented system efficiently processes a result
ing set of eighty-eight rules and finds the three most-general
rules in approximately five seconds.
0173 The described method and system leverages
advanced problem solving techniques such as constraint solv
ing and consistency-based explanation techniques. It is well
known in constraint solving how to set up the data structures
to represent the constraints and how to apply a constraint
solver such that it solves those constraints. Given this, it is
sufficient to explain which constraints are built by the system
in order to achieve the desired effects. The constraints may be
represented in the form of graphs (made of nodes and arcs).
0.174 Some organizations may want to keep their rules
specialized by geographic region or by other criteria. But
even in that case, the described method and system will bring
value as it allows the compression of the rule set for the
purpose of rule execution, thus making the execution faster.
0.175 Referring to FIG.9, an exemplary system for imple
menting aspects of the invention includes a data processing
system 900 suitable for storing and/or executing program
code including at least one processor 901 coupled directly or
indirectly to memory elements through a bus system 903. The
memory elements may include local memory employed dur
ing actual execution of the program code, bulk storage, and
cache memories which provide temporary storage of at least
Some program code in order to reduce the number of times
code must be retrieved from bulk storage during execution.
0176 The memory elements may include system memory
902 in the form of read only memory (ROM)904 and random
access memory (RAM) 905. A basic input/output system
(BIOS)906 may be stored in ROM904. System software 907
may be stored in RAM 905 including operating system soft
ware 908. Software applications 910 may also be stored in
RAM 905.
0177. The system 900 may also include a primary storage
means 911 Such as a magnetic hard disk drive and secondary
storage means 912 Such as a magnetic disc drive and an
optical disc drive. The drives and their associated computer
readable media provide non-volatile storage of computer
executable instructions, data structures, program modules
and other data for the system 900. Software applications may
be stored on the primary and secondary storage means 911,
912 as well as the system memory 902.
0.178 The computing system 900 may operate in a net
worked environment using logical connections to one or more
remote computers via a network adapter 916.
(0179 Input/output devices 913 may be coupled to the
system either directly or through intervening I/O controllers.
A user may enter commands and information into the system
900 through input devices such as a keyboard, pointing

US 2015/O 170069 A1

device, or other input devices (for example, microphone, joy
Stick, game pad, satellite dish, Scanner, or the like). Output
devices may include speakers, printers, etc. A display device
914 is also connected to system bus 903 via an interface, such
as video adapter 915.
0180. The invention can take the form of an entirely hard
ware embodiment, an entirely software embodiment or an
embodiment containing both hardware and Software ele
ments. In a preferred embodiment, the invention is imple
mented in software, which includes but is not limited to
firmware, resident Software, microcode, etc.
0181. The invention can take the form of a computer pro
gram product accessible from a computer-usable or com
puter-readable medium providing program code for use by or
in connection with a computer or any instruction execution
system. For the purposes of this description, a computer
usable or computer readable medium can be any apparatus
that can contain, store, communicate, propagate, or transport
the program for use by or in connection with the instruction
execution system, apparatus or device.
0182. The medium can be an electronic, magnetic, optical,
electromagnetic, infrared, or semiconductor system (or appa
ratus or device) or a propagation medium. Examples of a
computer-readable medium include a semiconductor or
Solid-state memory, magnetic tape, a removable computer
diskette, a random access memory (RAM), a read only
memory (ROM), a rigid magnetic disk and an optical disk.
Current examples of optical disks include compact disk read
only memory (CD-ROM), compact disk read/write (CD-R/
W), and DVD. Improvements and modifications can be made
to the foregoing without departing from the scope of the
present invention.
What is claimed is:
1. A method for transforming an original set of rules into a

resulting set of generalized rules in a rule management sys
tem, comprising:

providing an original set of rules stored in a data structure
for transforming into a resulting set of rules;

performing an automated processing of the original set of
rules by a processor by:
building a compact description of one or more rules in

the original set of rules and one or more actions of the
one or more rules in the form of one or more logical
constraints and solving constraints to find a solution
that represents a case and an applied action;

building a family of cases by taking a selection from
among at least one of one or more logical tests of the
one or more rules that are satisfied by the solution and
one or more negations of the one or more logical tests
of the one or more rules that are satisfied by the
Solution;

generalizing the family of cases by removing one or
more specific logical tests from among the selection
that do not limit the applicability of the applied action,
to identify a most-general rule; and

adding the most-general rule to the resulting set of rules;
and

iterating the automated processing wherein building the
compact description of the one or more rules in the
original set of rules and the one or more actions excludes
any rules in the original set of rules which are addressed
by the resulting set of rules.

2. The method according to claim 1, wherein generalizing
the family of cases further comprises:

Jun. 18, 2015

establishing an ordering of the one or more logical tests
ordered according from characterization as general tests
to more specific tests; and

applying a conflict minimizer for computing a selection of
relevant tests according to the ordering from among the
one or more logical tests.

3. The method according to claim 1, wherein generalizing
the family of cases by removing one or more specific logical
tests from among the selection that do not limit the applica
bility of the applied action, to identify the most-general rule,
further comprises:

generalizing the family of cases by removing one or more
specific logical tests from among the selection that do
not limit the applicability of the applied action, to iden
tify the most-general rule, wherein the most-general rule
treats at least one case of the family of cases that is
treated by the original set of rules, but not yet treated by
the resulting set of rules, wherein the most-general rule
conforms to the original set of rules as the most-general
rules applies only a selection of actions to one or more
particular cases that are also applied by the original set of
rules to those one or more particular cases.

4. The method according to claim 1, wherein building the
family of cases further comprises:

computing the family of cases for the applied action that
are treated by the original set of rules but not by one or
more previously computed most-general rules using a
constraint-based model.

5. The method according to claim 1, wherein building the
family of cases further comprises:

building a residual rule application constraint graph;
Solving constraints to find the solution and extracting the

case and the applied action; and
building the family of cases by taking the selection from
among the at least one of one or more logical tests that
are satisfied by the extracted case and the one or more
negations of the one or more logical tests that are satis
fied by the extracted case.

6. The method according to claim 1, wherein generalizing
the family of cases further comprises:

generating the family of cases into the most-general rule
using one or more explanation-based consistency tech
niques to identify a selection of one or more relevant
logical tests from among the one or more logical tests in
the compact description to generalize the family of cases
into the most-general rule.

7. The method according to claim 1, wherein generalizing
the family of cases further comprises:

ordering the one or more logical tests by decreasing gen
erality;

selecting one or more original rules having the action of the
extracted case and building a rule inhibition graph for
the selected one or more original rules; and

identifying a selection of one or more relevant tests from
among the one or more logical tests that characterizes a
most-general family of cases for the action by applying
a conflict minimizer to the ordered tests as a foreground
and the rule inhibition graph as background.

8. The method according to claim 1, further comprising:
compressing the original set of rules into the resulting set of

rules that is a smaller more compact version of the origi
nal set of rules; and

US 2015/O 170069 A1

removing one or more irrelevant logical tests from among
the one or more logical tests, from the original set of
rules.

9. The method according to claim 1, further comprising:
reconstructing the original set of rules in a target rule

language; and
adapting the target rule language to customize the resulting

set of rules.
10. A system for transforming an original set of rules into

a resulting set of generalized rules in a rule management
System, comprising:

an original set of rules Stored in a data structure for trans
forming into a resulting set of rules;

a processor for automating rule processing, the processor
further comprising:
a residual case detector operative for building a compact

description of one or more rules in the original set of
rules and one or more actions of the one or more rules
in the form of one or more logical constraints and
Solving constraints to find a solution that represents a
case and an applied action and building a family of
cases by taking a selection from among at least one of
one or more logical tests that are satisfied by the
Solution and one or more negations of one or more
logical tests that are satisfied by the Solution;

a treated case generalizer operative for generalizing the
family of cases by removing one or more specific
logical tests from among the selection that do not limit
the applicability of the one or more actions, resulting
in a most-general rule; and

a controller operative for adding the most-general rule to
the resulting set of rules; and

a rule set builder for iterating the automated rule processing
wherein the residual case detector is further operative to
build the compact description of the one or more rules in
the original set of rules and the one or more actions
excludes any rules in the original set of rules which are
addressed by the resulting set of rules.

11. The system according to claim 10, further comprising:
the treated case generalizer operative to establish an order

ing of the one or more logical tests ordered from char
acterization as more general tests to more specific tests;
and

the treated case generalizer operative to pass this ordering
to a conflict minimizer for computing a selection of
relevant tests from among the one or more logical tests.

12. The system according to claim 10, further comprising:
the residual case detector operative to use constraint-based

models to compute the family of cases which are treated
by the original set of rules but not by one or more
previously computed most-general rules.

13. The system according to claim 10, wherein the residual
case detector further comprises:

a rule set application modeler operative to build a residual
rule application constraint graph;

a logical constraint solver operative to solve constraints
and extract the case and the applied action; and

a treated case family builder operative to build the family of
cases by taking the selection from among the at least one
of one or more logical tests that are satisfied by the
extracted case and the one or more negations of the one
or more logical tests that are satisfied by the extracted
CaSC.

Jun. 18, 2015

14. The system according to claim 10, further comprising:
the treated case generalizer operative to use one or more

explanation-based consistency techniques to identify a
Selection of one or more relevant logical tests from
among the one or more logical tests in the compact
description to generalize the family of cases into the
most-general rule.

15. The system according to claim 10, wherein the treated
case generalizer further comprises:

a preference governor operative to order the one or more
logical tests by decreasing generality;

a rule set inhibition modeler operative to select one or more
original rules having the action of the extracted case and
build a rule inhibition graph for the one or more original
rules; and

a conflict minimizer operative to identify a selection of one
or more relevant tests from among the one or more
logical tests that characterizes a most-general family of
cases for the action by applying the conflict minimizerto
the ordered tests as a foreground and the rule inhibition
graph as background.

16. The system according to claim 10, further comprising:
the processor operative to compress the original set of rules

into the resulting set of rules that is a smaller more
compact version of the original set of rules; and

the processor operative to remove one or more irrelevant
logical tests from among the one or more logical tests,
from the original set of rules.

17. The system according to claim 10, further comprising:
the processor operative to reconstruct the original set of

rules in a target rule language; and
the processor operative to adapt the target rule language to

customize the resulting set of rules.
18. A computer program product for transforming an origi

nal set of rules into a resulting set of generalized rules in a rule
management system, the computer program product com
prising a computer readable storage medium having program
instructions embodied therewith, the program instructions
readable by a processor to cause the processor to:

accessing, by the processor, an original set of rules stored
in a data structure for transforming into a resulting set of
rules;

performing an automated processing of the original set of
rules by the processor by:
building a compact description of one or more rules in

the original set of rules and one or more actions of the
one or more rules in the form of one or more logical
constraints and solving constraints to find a solution
that represents a case and an applied action;

building a family of cases by taking a selection from
among at least one of one or more logical tests of the
one or more rules that are satisfied by the solution and
one or more negations of the one or more logical tests
of the one or more rules that are satisfied by the
Solution;

generalizing the family of cases by removing one or
more specific logical tests from among the selection
that do not limit the applicability of the applied action,
to identify a most-general rule; and

adding the most-general rule to the resulting set of rules;
and

iterating, by the processor, the automated processing
wherein building the compact description of the one or
more rules in the original set of rules and the one or more
actions excludes any rules in the original set of rules
which are addressed by the resulting set of rules.

k k k k k

