
US 20200327241A1
IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2020/0327241 A1

Oct. 15 , 2020 Chhabra et al . (43) Pub . Date :

(54) SUPPORT FOR INCREASED NUMBER OF
CONCURRENT KEYS WITHIN MULTI - KEY
CRYPTOGRAPHIC ENGINE

(71) Applicant : Intel Corporation , Santa Clara , CA
(US)

GO6F 21/31 (2006.01)
G06F 21/78 (2006.01)

(52) U.S. CI .
CPC G06F 21/602 (2013.01) ; H04L 9/08

(2013.01) ; G06F 21/31 (2013.01) ; H04W
12/06 (2013.01) ; H04L 9/0897 (2013.01) ;

H04L 9/0877 (2013.01) ; G06F 21/78
(2013.01) (72) Inventors : Siddhartha Chhabra , Portland , OR

(US) ; David M. Durham , Beaverton ,
OR (US)

(73) Assignee : Intel Corporation , Santa Clara , CA
(US)

(21) Appl . No .: 16 / 913,224

(22) Filed : Jun . 26 , 2020

Related U.S. Application Data
(63) Continuation of application No. 15 / 815,917 , filed on

Nov. 17 , 2017 , now Pat . No. 10,754,960 .

(57) ABSTRACT
A server includes a processor core including system
memory , and a cryptographic engine storing a key data
structure . The data structure is to store multiple keys for
multiple secure domains . The core receives a request to
program a first secure domain into the cryptographic engine .
The request includes first domain information within a first
wrapped binary large object (blob) . In response a determi
nation that there is no available entry in the data structure ,
the core selects a second secure domain within the data
structure to de - schedule and issues a read key command to
read second domain information from a target entry of the
data structure . The core encrypts the second domain infor
mation to generate a second wrapped blob and stores the
second wrapped blob in a determined region of the system
memory , which frees up the target entry for use to program
the first secure domain .

Publication Classification

(51) Int . Ci .
G06F 21/60 (2006.01)
H04L 9/08 (2006.01)

Processor Core (s) 120 Data Storage 134

HW Virtualization Support Circuit 122 Cryptographic Engine 140

Communication Circuitry 136
Secure Enclave Support Circuit 124 Key Data Structure 142

Crypto Engine Programming
Support Circuit 126 Security Engine 138

1

Cache 118 Memory Controller 128

100 Memory Controller 128

Memory 132

Processor Core (s) 120

Data Storage 134

HW Virtualization Support Circuit 122

Cryptographic Engine 140

Patent Application Publication

Communication Circuitry 136

Secure Enclave Support Circuit 124

Key Data Structure 142

Crypto Engine Programming Support Circuit 126

Security Engine 138

|

Cache 118

Memory Controller 128

Oct. 15 , 2020 Sheet 1 of 16

100

Memory Controller 128 Memory 132

US 2020/0327241 A1

FIG . 1

200

System Agent 205

Cryptographic Engine 240

Memory Controller 228

Patent Application Publication

Slot ID

Key Domain

Key

Key Data Structure 142
N (hardware cache

for region 235 of memory)

0

00000

XYZ

1

00001

ABC

2

00010

GHK

Oct. 15 , 2020 Sheet 2 of 16

Die Boundary

/

Memory 132

235

US 2020/0327241 A1

FIG . 2

300

Trusted Software 305

Domain MGMT Software 307

Cryptographic Engine 340

Patent Application Publication

BIND (Domain ID , Key)

310

320

Wrapped blob

330

Send wrapped blob for domain programming .

1

335

UNWRAP (Wrapped blob)
360

Unwrap blob & generate cryptographic response .

Return cryptographic response

Program blob on successful unwrap .

Oct. 15 , 2020 Sheet 3 of 16

370

350

Return cryptographic response .

380

Verify cryptographic response .

US 2020/0327241 A1

FIG . 3

Patent Application Publication Oct. 15 , 2020 Sheet 4 of 16 US 2020/0327241 A1

400 Hardware Independent Mode
410 New (first) secure domain

programming request received by
crypto engine .

430

420
Key

data structure
entry available ?

Yes Store the first secure domain
information at the available
key data structure entry .

No

440 Select second secure domain (at
second entry of key data structure)

to be de - scheduled .

485 450 . Encrypt second secure domain info
retrieved from second entry to generate

wrapped binary large object (blob) . Decrypt (UNWRAP) the
wrapped blob , to generate

second domain info .

460 Store wrapped blob in determined
region of system memory .

470 Store the first secure domain info at the
second entry of key data structure

freed up via the de - scheduling (440) .
Passage of Time

Access 475 No request
to second secure

domain ?
Yes

480
Read wrapped blob from

system memory

FIG . 4

Patent Application Publication Oct. 15 , 2020 Sheet 5 of 16 US 2020/0327241 A1

500 Software Managed Mode
510 Receive new (first) secure domain

programming request with first wrapped
blob . (KD SET KEY)

530

520 Yes Key data structure
entry available ?

Decrypt (UNWRAP) first
wrapped blob to generate first

domain info .

No 535

540 Select second secure domain (at second
entry of key data structure) to be

de - scheduled .

Store first domain info in the
available (first) entry in key

data structure .

Issue read command
(KD_READ_KEY) to read second
domain info from target entry of key

data structure .
* 545

Encrypt second domain info to
generate new (second) wrapped blob . 550

585
Store second wrapped blob in

determined region of system memory . 560 Read second wrapped
blob from

system memory .

Decrypt (UNWRAP) first wrapped blob
to generate first domain info . 570

Store the first secure domain info at the
target entry of key data structure freed

up via the de - scheduling (540) .
575

Passage of Time

580
Access

Yes request
to second secure

domain ?

No FIG . 5

Pipeline 601
Fetch 602

Length Decoding 604

Decode Alloc . Renaming Schedule Register Read

606

610 612

Memory Read 614

Execute Stage

1

Write Back / Memory Write 618

6081

1

616

Exception
i Commit i

Handling
622

620

1

1

1

Pipeline 603

FIGURE OB

Patent Application Publication

Processor Core 600

Branch Prediction Unit 632

Instruction Cache Unit 634 Instruction TLB Unit 636 Instruction Fetch 638

Front End Unit 630

Decode Unit 640

Execution Engine Unit 650

Rename / Allocator Unit 652

1

L

.. Retirement Unit 654

Scheduler Unit (s) 656

.

Oct. 15 , 2020 Sheet 6 of 16

Physical Register Files Unit (s)
658

Execution Unit (s) Memory Access

662

Unit (s) 664

Execution Cluster (s) 660

FIGURE 6A

US 2020/0327241 A1

Memory Unit 670

Data TLB Unit 672 Data Cache Unit 674

Prefetcher 680

L2 Cache Unit 676

Instruction Prefetcher 726

Front End 701

Instruction Decoder 728

Microcode ROM 732

Patent Application Publication

Trace Cache 730

?OP Queue 734

Processor 700

Allocator / Register Renamer

Memory UOP Queue

Integer / Floating Point POP Queue

Out Of Order Engine
703

Memory Scheduler

Fast Scheduler 702

Slow / General FP Scheduler 704

Simple FP Scheduler 706

Oct. 15 , 2020 Sheet 7 of 16

Exe Block 711

Integer Register File / Bypass Network 708

FP Register File / Bypass Network 710

AGU 712

AGU 714

Fast ALU 716

Fast ALU 718

Slow ALUI 720

FP 722

FP Move 724

US 2020/0327241 A1

To Level 1 Cache

To Level 1 Cache

FIG . 7

800

Processor 870

Processor 880

884b

PROC CORE 874a

PROC CORE 884a

Memory 832

IMC 872

874b

IMC 882

Memory 834

Patent Application Publication

850

P - P 876

P - P 878

P - P 888

P - P 886

852

854

P - P 894

Chipset 890

P - P 898

High - Perf Graphics 838

V / F 892

I / F 896

Oct. 15 , 2020 Sheet 8 of 16

-816

BUS Bridge 818

I / O Devices
814

Audio I / O 824

820

Keyboard / Mouse 822

Comm Devices 827

Data Storage 828

US 2020/0327241 A1

Code And Data 830

FIG . 8

900

I / O Devices
914

Patent Application Publication

Processor 870

Processor 880

Memory 832

CL 972

CL 992

Memory 834

850

P - P 876

P - P 878

P - P 888

P - P 886

Oct. 15 , 2020 Sheet 9 of 16

852

854

P - P 894

Chipset 890

P - P 898

V / F 896
Legacy I / O

915

US 2020/0327241 A1

FIG . 9

System on a Chip

1000

Application Processor 1017
Core 1002A

Core 1002N

Cache Unit (s) 1004A

Cache Unit (s) 1004N

Patent Application Publication

System Agent Unit 1010

Media Processor (s)
1020

1 I I

Shared Cache Unit (s)
1006

1 1 1

Integrated Graphics 1008

1

.
1

1

Image Processor 1024

Interconnect Unit (s) 1002

1 1

BUS Controller Unit (s)
1016

Oct. 15 , 2020 Sheet 10 of 16

I 1

Audio Processor 1026 Video Processor 1028

Integrated Memory Controller Unit (s)
1014

SRAM Unit 1030

DMA Unit 1032

Display Unit 1040

US 2020/0327241 A1

FIG . 10

1100

LCD

Bluetooth 1170

MIPI HDMI

Patent Application Publication

Core 1106

Core 1107

GPU 1115

Video Codec 1120

L2 Cache Control 1108

LCD Video IF 1125

3G Modem 1175

BUS Interface Unit 1109

L2 Cache 1110
Interconnect

GPS 1180

Oct. 15 , 2020 Sheet 11 of 16

SIM 1130

Boot ROM 1135

SDRAM Controller 1140

Flash Controller 1145

PC 1150

802.18 WiFi 1185

DRAM 1160

Flash 1165

Power Control

US 2020/0327241 A1

FIG . 11

Patent Application Publication Oct. 15 , 2020 Sheet 12 of 16 US 2020/0327241 A1

1200

Registers
1210

Memory
1212

Code
Storage
1202

Fetch Circuit
1204

Decode
Circuit
1206

Execution
Circuit
1208

Retire or
Commit Circuit

1214

FIG . 12

Patent Application Publication Oct. 15 , 2020 Sheet 13 of 16 US 2020/0327241 A1

1320

START

Fetch , by fetch circuitry , a BIND instruction
from a code storage .

1322

Decode , by decode circuitry , the fetched BIND instruction .
1324

Execute , by execution circuitry , the BIND instruction to encrypt
a group of data as a wrapped binary large object (blob) .

1326

END

FIG . 13A

Patent Application Publication Oct. 15 , 2020 Sheet 14 of 16 US 2020/0327241 A1

1330

START

Fetch , by fetch circuitry , an UNWRAP instruction
from a code storage .

1332

Decode , by decode circuitry , the fetched
UNWRAP instruction .

1334

Execute , by execution circuitry , the UNWRAP instruction to
decrypt a wrapped binary large object (blob) into constituent

decrypted pieces of a group of data .
1336

END

FIG . 13B

Patent Application Publication Oct. 15 , 2020 Sheet 15 of 16 US 2020/0327241 A1

INSTRUCTION 1400

PAGE
ADDRESS

1402

OPCODE
1404

ATTRIBUTE
1406

SECURE
STATE BIT

VALID STATE
BIT
1410 1408

FIG . 14

Patent Application Publication Oct. 15 , 2020 Sheet 16 of 16 US 2020/0327241 A1 2

1500 500] 1508

Processing Device Display Device
Instructions

1526

1502 1510

Main Memory Alphanumeric Input
Device Instructions

1526

1504 1512

Static Memory Cursor Control
Device

1506

1514
Network Interface

Device Bus
1518 Data Storage Device

Computer - Readable
Medium

Network
1519

Instructions
1526
1524 Graphics Processing Unit
1516

1522

Video Processing Unit
Signal Generation

Device

1528
1520

Audio Processing Unit

1532

FIG . 15

US 2020/0327241 A1 Oct. 15 , 2020
1

SUPPORT FOR INCREASED NUMBER OF
CONCURRENT KEYS WITHIN MULTI - KEY

CRYPTOGRAPHIC ENGINE

CROSS - REFERENCE TO RELATED
APPLICATION

[0001] This application is a continuation of , and claims
priority to , U.S. patent application Ser . No. 15 / 815,917 , filed
on Nov. 17 , 2017 , which is incorporated by reference in its
entirety .

TECHNICAL FIELD

[0002] The disclosure relates to protection of data stored
in memory of a computer system , and more particularly , to
support for an increased number of concurrent keys within
multi - key cryptographic engines .

implements hardware support for a multi - key cryptographic
engine , according to an implementation of the disclosure .
[0012] FIG . 8 is a block diagram of a computer system
according to one implementation .
[0013] FIG . 9 is a block diagram of a computer system
according to another implementation .
[0014] FIG . 10 is a block diagram of a system - on - a - chip
according to one implementation .
[0015] FIG . 11 illustrates another implementation of a
block diagram for a computing system .
[0016] FIG . 12 is a block diagram of processing compo
nents for executing instructions that implements hardware
support for a multi - key cryptographic engine , according one
implementation .
[0017] FIG . 13A is a flow diagram of an example method
to be performed by a processor to execute an instruction to
encrypt a group of data as a wrapped binary large object
(blob) .
[0018] FIG . 13B is a flow diagram of an example method
to be performed by a processor to execute an instruction to
decrypt a wrapped blob into constituent pieces of a group of
data .
[0019] FIG . 14 is a block diagram illustrating an example
format for instructions disclosed herein .
[0020] FIG . 15 illustrates another implementation of a
block diagram for a computing system .

BACKGROUND

[0003] Modern computing systems employ disk encryp
tion to protect data stored at rest on hard drive disks or other
data storage . Attackers , however , can use a variety of
techniques including bus scanning , memory scanning , and
the like , to retrieve data from memory . The memory may
itself include the keys used for disk encryption , thus expos
ing the data encrypted on a disk drive . Various techniques ,
therefore , have been employed to protect sensitive data
residing in at least some regions of memory . Doing so has
become challenging , particularly in a cloud or server envi
ronment where multiple customer workloads (from different
entities) may be supported simultaneously on the same

DETAILED DESCRIPTION

server .

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] FIG . 1 is a block diagram of a computing device for
secure programming of a hardware cryptographic engine ,
according to various implementations .
[0005) FIG . 2 is a system block diagram illustrating a key
data structure of the cryptographic engine that is capable of
caching a large number of keys stored in memory , according
to various implementations .
[0006] FIG . 3 is a system flow diagram illustrating
method for software management of programming multiple
secure domains , using corresponding multiple keys , into a
hardware cryptographic engine , according to various imple
mentations .
[0007] FIG . 4 is a flow chart of a method of employing a
hardware mode of managing the large number of keys stored
in memory that a cryptographic engine can access to secure
a number of domains of a server , according to one imple
mentation .
[0008] FIG . 5 is a flow chart of a method for software
management of programming multiple secure domains ,
using corresponding multiple keys , into a hardware crypto
graphic engine , according to various implementations .
[0009] FIG . 6A is a block diagram illustrating an in - order
pipeline and a register renaming stage , out - of - order issue /
execution pipeline according to one implementation .
[0010] FIG . 6B is a block diagram illustrating a micro
architecture for a processor or an integrated circuit that may
implement hardware support for a multi - key cryptographic
engine , according to an implementation of the disclosure .
[0011] FIG . 7 illustrates a block diagram of the micro
architecture for a processor or an integrated circuit that

[0021] Various techniques have been employed to protect
sensitive data residing in regions of memory . Some proces
sors provide cryptographic mechanisms for encryption ,
integrity , and replay protection . Memory encryption protects
the confidentiality of memory - resident data . For example ,
total memory encryption (TME) may encrypt data that is
moving from a processor core to memory , and may decrypt
the encrypted data on its way back to the processor core .
[0022] In some implementations , such as in Intel® Soft
ware Guard Extensions (SGX) technology , for example , a
processor employs a memory encryption engine (MEE) to
protect data when it res in memory , e.g. , within
protected enclaves or portions of memory . The MEE extends
encryption protection (such as provided by the TME) to
provide additional security properties such as integrity and
replay protection . Integrity protection prevents an attacker
from causing hidden modifications to the cipher text (e.g. ,
encrypted data , as opposed to plaintext which is unencrypted
data) in memory . Furthermore , replay protection eliminates
undetected temporal substitution of the cipher text . In the
absence of such protections the MEE provides , an attacker
with physical access to the system can record snapshots of
data lines and replay them at a later point in time to gain
access to the memory - resident data .
[0023] Implementations of the disclosure extend the func
tionality of a TME or MEE engine to support multiple keys
in a multi - key , hardware cryptographic engine . This exten
sion of functionality provides support for a different key per
secure domain serviced by a server , e.g. , up to dozens of
domains on a given server . Domains may refer to workloads ,
such as a client machine (e.g. , virtual machine) , an operating
system , an application , or other types of workloads the
server supports that may be associated with different cus
tomer entities . For example , a secure domain may be a
customer workload , such as an operating system , along with
other ring - 3 applications executing on top of the operating

US 2020/0327241 A1 Oct. 15 , 2020
2

system , or a virtual machine (VM) executing on top of a
virtual machine monitor (VMM) along with other ring - 3
applications . The benefit of supporting the use of multiple
keys is to provide cryptographic isolation between different
customer domains , e.g. , one secure domain cannot access
encrypted data if that encrypted data belongs to a different
secure domain being protected with a different crypto
graphic key . These benefits extend to the ability of a cloud
server provider (CSP) to support a growing number of
customer workloads on the same server , to adapt to growing
demands for cloud - based hardware resources .
[0024] In various implementations , the cryptographic
engine may provide support for multiple keys through use of
a key data structure (such as a key table) resident in
hardware and an associated region of memory for overflow .
The key data structure may store a key and other domain
information associated with each domain programmed into
the cryptographic engine to be protected . As long as an entry
in the key data structure is available , a new domain can be
programmed into the cryptographic engine and protected
with a unique key that is stored with other domain infor
mation (such as a domain identifier) in the available key data
structure entry . As new domains are added and the key data
structure becomes full , inactive or least recently used
domains may be de - scheduled by wrapping the key and
domain information for a de - scheduled domain into a
wrapped binary large object (blob) . The process of wrapping
includes encryption , using a platform key , of a group of data
into a single encrypted package (e.g. , the blob) that may then
be individually managed . This wrapped blob may then be
stored in a determined region of the memory set aside for
secure storage of excess domains . In this way , a key data
structure entry is freed up for a new domain and the key and
the domain information for a de - scheduled domain is pre
served in memory . Subsequently , when a memory access
request to the de - scheduled domain is detected , the previ
ously - stored wrapped blob may be read out of memory and
presented as a new secure domain request to hardware or
software that is managing the scheduling of domains .
[0025] In various implementations , the domain manage
ment discussed above may be performed independently in
cryptographic hardware , or may be performed by domain
management software that the processor core executes . In
one implementation , the process of domain management ,
which involves the multiple cryptographic keys , may be
performed by hardware of the cryptographic engine , which
is discussed in more detail with reference to FIG . 5. The
domain management process may also be managed by
untrusted software , instructions for which are executed by
the processor core . The management code may use the
default platform encryption key . This platform key may not
be evicted and may always be used to protect the VMM and
other management software . When the domain management
process is managed by untrusted software , additional safe
guards may be employed to ensure the management is
performed on wrapped blobs associated with each domain ,
and thus the untrusted software does not access the domain
information or keys in plain text . This software managed
mode of domain management is discussed in more detail
with reference to FIGS . 6-7 .
[0026] These features and others herein described include
many benefits , in particular , the ability to cryptographically
isolate a large number of domains from each other with
potentially unlimited numbers of cryptographic keys . Each

domain may belong to a different customer , and thus there
is a need to isolate access to data in memory of one domain
from that of another domain in memory . For example , each
domain is cryptographically isolated from another domain
being supported by a server when each domain uses a
different key for securing data in memory . Accordingly , as
datacenters expand and endeavor to support multiple cus
tomers on the same server in some cases , the data stored in
memory and associated with different domains are encrypted
with a different key , and thus there can be no access of data
in the memory by a different domain than the domain for
which the data was encrypted . The ability to support mul
tiple keys allows a server , and a datacenter generally , to
expand with increased demand for processing resources that
the server provides .
[0027] FIG . 1 is a block diagram of at least one embodi
ment of a computing device 100 for secure programming of
a hardware cryptographic engine , according to various
implementations . In one implementation , computing device
100 may include , among other components , one or more
processor cores 120 , a memory controller 128 , system
memory 132 , data storage 134 , communication circuitry
136 , a security engine 138 , and a hardware cryptographic
engine 140 .
[0028] In one implementation , the computing device is a
server 100 that services the domains , e.g. , different work
loads such as a client machine , an operating system , an
application , or other types of workloads being supported . In
some implementations , one or more of the processor cores
120 may include cache 118 (e.g. , a multi - level cache) , a
hardware virtualization support circuit 122 , a secure enclave
support circuit 124 , a crypto engine programming support
circuit 126 , a cryptographic engine 140 (such as the
MKTME previously mentioned) , and optionally a proces
sor - side memory controller 128 .
[0029] In one implementation , the cryptographic engine
140 includes a key data structure 142 retained in local
hardware , e.g. , a local hardware cache , registers , or the like .
The key data structure 142 may be a table or other data
structure capable of being indexed within hardware cache . In
various implementations , trusted software may program the
cryptographic engine 140 using one or more specialized
instructions of the processor core to generate wrapped
programming information , e.g. , a group of data that is
encrypted together with a platform key into a single pack
age . The trusted software provides the wrapped program
ming information to untrusted software such as a kernel
mode driver . The untrusted software invokes an unwrapping
engine using one or more specialized instructions of the
processor core to unwrap the programming information and
program the cryptographic engine 140. By using specialized
processor core instructions to wrap (e.g. , encrypt) the pro
gramming information , the computing device 100 may
ensure that trusted software programs the cryptographic
engine 140. By allowing untrusted software to invoke the
unwrapping engine , the computing device 100 allows sys
tem software (e.g. , an operating system and / or VMM) to
manage programming of the cryptographic engine 140 .
[0030] Additionally , by performing wrapping and / or
unwrapping with the processor core , the computing device
100 may reduce complexity of the cryptographic engine
140. The functionality of wrapping and unwrapping is
discussed in more detail with reference to FIG . 3 .

US 2020/0327241 A1 Oct. 15 , 2020
3

[0031] The computing device 100 may be embodied as
any type of computation or computer device capable of
performing the functions described herein , including , with
out limitation , a computer , a desktop computer , a worksta
tion , a server , a laptop computer , a notebook computer , a
tablet computer , a mobile computing device , a wearable
computing device , a network appliance , a web appliance , a
distributed computing system , a processor - based system ,
and / or a consumer electronic device . The computing device
100 may include other or additional components , such as
those commonly found in a desktop computer (e.g. , various
input / output devices) , in other embodiments . Additionally ,
in some embodiments , one or more of the illustrative com
ponents may be incorporated in , or otherwise form a portion
of , another component . For example , the memory 132 , or
portions thereof , may be incorporated in the processor core
in some embodiments . Furthermore , a memory controller for
the memory 132 may be included within the processor core .
[0032] The processor core 120 may be embodied within a
single or multi - core processor (s) , digital signal processor ,
microcontroller , or other processor or processing / controlling
circuit . The hardware virtualization support circuit 122 may
support virtualized execution of operating systems , applica
tions , and other software by the computing device 100. The
hardware virtualization support circuit 122 may include
virtual machine extensions (VMX) support by providing two
modes of execution : VMX - root mode and VMX non - root
mode . The VMX - root mode allows executing software to
have broad control of the computing device 100 and its
hardware resources . Conversely , a hypervisor , virtual
machine monitor (VMM) , or host operating system (OS)
may execute in VMX - root mode . The VMX non - root mode
restricts access to certain hardware instructions while still
implementing the ordinary ring / privilege system of the
processor core . One or more guest OSs may execute in the
VMX non - root mode . Those guest OSs may execute in ring
zero , similar to being executed without virtualization . The
hardware virtualization support circuit 122 may also support
extended page tables (EPT) , which may be embodied as
hardware - assisted second - level page address translation .
The hardware virtualization support circuit 122 may be
embodied as , for example , Intel® VT - x technology .
[0033] The secure enclave support circuit 124 allows the
processor core to establish a trusted execution environment
known as a secure enclave , in which executing code may be
measured , verified , and / or otherwise determined to be
authentic . Additionally , code and data included in the secure
enclave may be encrypted or otherwise protected from being
accessed by code executing outside of the secure enclave .
For example , code and data included in the secure enclave
may be protected by hardware protection mechanisms of the
processor core while being executed or while being stored in
certain protected cache memory of the processor core . The
code and data included in the secure enclave may be
encrypted when stored in a shared cache or the main
memory 132. The secure enclave support circuit 124 may be
embodied as a set of processor instruction extensions that
allows the processor core to establish one or more secure
enclaves in the memory 132. For example , the secure
enclave support circuit 124 may be embodied as Intel
Software Guard Extensions (SGX) technology .
[0034] The crypto engine programming support circuit
126 allows the processor core 120 to program the crypto
graphic engine 140 to provide cryptographic protection of

domain data . In particular , the processor core may enable or
disable encryption for a domain and may securely provide
encryption keys to the cryptographic engine 140. The crypto
engine programming support circuit 126 may be embodied
as one or more specialized processor instructions (e.g. , the
instructions BIND , UNWRAP , or other instructions to be
discussed in more detail) and associated hardware , micro
code , firmware , or other components of the processor core
120 .
[0035] The memory 132 may be embodied as any type of
volatile or non - volatile memory or data storage capable of
performing the functions described herein . In operation , the
memory 132 may store various data and software used
during operation of the computing device 100 such as
operating systems , applications , programs , libraries , and
drivers . The memory controller 128 is coupled the
memory 132 to store to and fetch from the memory , which
in some cases may depend on misses to the cache 118. The
memory controller 128 may be communicatively coupled to ,
or integrated within , the processor core 120 .
[0036] The data storage device 134 may be embodied as
any type of device or devices configured for short - term or
long - term storage of data such as , for example , memory
devices and circuits , memory cards , hard disk drives , solid
state drives , or other data storage devices . In some embodi
ments , the data storage device 134 may be used to store the
contents of one or more secure enclaves . When stored by the
data storage device 134 , the contents of the secure enclave
may be encrypted to prevent unauthorized access .
[0037] The communication circuitry 136 of the computing
device 100 may be embodied as any communication circuit ,
device , or collection thereof , capable of enabling commu
nications between the computing device 100 and other
remote devices over a network . The communication cir
cuitry 136 may be configured to use any one or more
communication technology (e.g. , wired or wireless commu
nications) and associated protocols (e.g. , Ethernet , Blu
etooth® , Wi - Fi® , WiMAX , etc.) to effect such communi
cation .
[0038] In some embodiments , the computing device 100
may include the security engine 138 , which may be embod
ied as any hardware component (s) or circuitry capable of
providing security - related services to the computing device
100. In particular , the security engine 138 may include a
microprocessor , microcontroller , or other embedded control
ler capable of executing firmware and / or other code inde
pendently and securely from the processor core . Thus , the
security engine 138 may be used to establish a trusted
execution environment separate from code executed by the
processor core 120. The security engine 138 may commu
nicate with the processor core 120 and / or other components
of the computing device 100 over a dedicated bus , such as
a host embedded controller interface (HECI) . The security
engine 138 may also provide remote configuration , control ,
or management of the computing device 100. In the illus
trative embodiment , the security engine 138 is embodied as
a converged security and manageability engine (CSME)
incorporated in a system - on - a - chip (SOC) of the computing
device 100. In some embodiments , the security engine 138
may be embodied as a manageability engine , an out - of - band
processor , a Trusted Platform Module (TPM) , or other
security engine device or collection of devices . Further , in
some embodiments , the security engine 138 is also capable
of communicating using the communication circuitry 136 or

US 2020/0327241 A1 Oct. 15 , 2020
4

a dedicated communication circuit independently of the state
of the computing device 100 (e.g. , independently of the state
of the main processor core) , also known as " out - of - band ”
communication .
[0039] In various implementations , the cryptographic
engine 140 may be embodied as a microcontroller , micro
processor , functional block , logic , or other circuit or collec
tion of circuits capable of performing the functions
described herein . As further described below , the crypto
graphic engine 140 may encrypt and / or decrypt domain data
read or written to memory . The cryptographic engine 140
may cache the internal key data structure 142 , which the
cryptographic engine 140 may use to identify domain
accesses to be protected . As discussed , the key data structure
142 may be a table or other data structure cable of being
indexed and stored within hardware of the cryptographic
engine 140. In one implementation , the hardware is a cache ,
a set of registers , or other flash memory .
[0040] Accordingly , the key data structure 142 may be
controlled and / or programmed by hardware of the crypto
graphic engine 140 or by trusted software , for example using
the crypto engine programming support circuit 126 of the
processor core 120. The key data structure 142 may be
adapted to store keys and domain information for the
domains . The encryption keys and / or other secret informa
tion of the key data structure 142 may not be available to
untrusted software . In some embodiments , the cryptographic
engine 140 may be incorporated along with the memory
controller 128 and the processor core 120 in a system - on
a - chip (SOC) of the computing device 100 .
[0041] FIG . 2 is a system block diagram 200 illustrating a
key data structure 142 of the cryptographic engine 140 (FIG .
1) that is capable of caching a large number of keys stored
in memory , according to various implementations . The
system block diagram 200 includes a system agent 205 , a
cryptographic engine 240 , and a memory controller 228
coupled together as illustrated . In various implementations ,
the system agent 205 represents a piece of hardware that
receives memory requests from all agents on the system
(e.g. , cores , graphics , 10 devices) . The domains may include
virtual machines or operating systems , for example , running
on the processor core (s) 120. Each domain executing on the
cores may issue memory requests as needed and will go
through the system agent 205. The system agent 205 may in
turn send the requests to the memory controller 228 , which
in turn retrieves the requested data (or writes the requested
data) to the memory 132 .
[0042] In various implementations , the cryptographic
engine 240 may be implemented as part of the memory
controller 228 , so as to perform cryptographic and security
related functions in relation to data read from and written to
the memory 132 on behalf of the domains . As previously
discussed , the key data structure 142 may be stored in
hardware of the cryptographic engine 240 for greater secu
rity , such as in a cache , registers , or the like . The system
memory 132 may include a determined region 235 in which
to store wrapped blobs . In one implementation , the deter
mined region 235 of memory is indexed according to
domain identifier (ID) of each respective secure domain .
Accordingly , the key data structure 142 is effectively cached
for the wrapped blobs that are stored in the determined
region 235 of the memory 132 .
[0043] In various implementations , the key data structure
142 includes indexed rows , each with a slot identifier (ID) ,

a key domain (e.g. , a domain ID) , and a secure key for
performing encryption and decryption on domain data . The
key domain may be used to identify a domain (e.g. , higher
order address bits in one implementation) , and in one
implementation , does not have to be stored in the key data
structure if the index (slot ID) corresponds to the key domain
in a one - to - one correspondence . The key data structure 142
may be of a fixed size to allow for a practical implementa
tion of the cryptographic engine 240 that includes physical
limits .
[0044] In various implementations , the cryptographic
engine 240 may program the key data structure 142 using
wrapped blobs . The wrapped blobs are wrapped using a
platform key that is pre - programmed into the cryptographic
engine for use in domain management of cryptographic
keys . In one embodiment , the platform key is programmed
for one reset cycle and may not persist across resets . The
wrapped blobs may be stored in the determined region 235
of the memory 132 and be restored to the key data structure
142 along with a domain switch (to start execution of a
domain) . The key data structure 142 may thus operate as
cache for secure domain information (cryptographic key and
other domain information) with the system memory , form
ing a virtually unlimited store for encrypted domain infor
mation to the extent the determined region 235 is sufficiently
large . In one implementation , the determined region 235 of
the memory may be identified as a secure enclave and
protected as secure memory , but still be protected with a
double level of security inasmuch as the domain information
is encrypted as wrapped blobs .
[0045] The determined region 235 in the memory 132 may
be memory taken from system memory of the computing
device 100 , and may be set up by system firmware , e.g. , the
basic input - output (1/0) system (BIOS) of the computing
device . For example , upon boot of the computing system
100 , the BIOS may store , within a range register , reservation
information to reserve the determined region 235 of the
system memory for hardware . After boot has completed , the
reservation information may be retrieved from the range
register and be utilized to program the hardware crypto
graphic engine and reserve the determined region 235 of
memory .

[0046] In various implementations , the determined region
235 may be of a size based on the number of secure domains
that can be supported . As just one example , if the size of
each set of domain information (to be programmed into the
cryptographic engine 140) is N bytes and 16K secure
domains are to be supported , then the BIOS may reserve
16N KB of memory for the determined region 235 of
memory . The domain ID may be used to find the address
within the determined region 235 of the memory 132 to
locate a given wrapped blob . In one implementation , there
may be a one - to - one mapping between a domain ID and the
location in the predetermined region 235 of the memory for
storing the wrapped blobs , e.g. , in the case domain infor
mation is to be evicted from the key data structure 142. Note
that when , in response to a memory access of a domain , the
key is not found in the key data structure 142 and should be
fetched from memory , there may be a delay introduced for
the incoming request as a result of the fetch and subsequent
unwrapping of domain information to be stored in the key
data structure 142. Since it is expected that once domain
information is restored to the cryptographic engine 140 , the

US 2020/0327241 A1 Oct. 15 , 2020
5

[0051] The method 300 may continue with the domain
management software 307 receiving the cryptographic
response , which may be passed on to the trusted software
305 (360) . Accordingly , the method 300 may continue with
the domain management software 307 returning the crypto
graphic response to the trusted software 305 (370) , which
signals to the trusted software 305 that the untrusted domain
management software 307 indeed invoked the UNWRAP
instruction to program the cryptographic engine 340 with the
new domain . In this way , the trusted software 305 verifies
the programming was successful (380) and can thus track
number of secure domains currently being supported by the
cryptographic engine 340 .
[0052] The UNWRAP instruction may therefore take the
wrapped blob as a memory operand and program target
specific information (e.g. , key and domain information) to
the target device (e.g. , the cryptographic engine 240) , in
response to successful unwrapping of the wrapped blob . The
UNWRAP instruction may expect a target and a target
specific command on which to operate . For the crypto
graphic engine 240 as the target , Table 1 includes a list of
commands that may be among those target - specific com
mands . Note that “ KD ” stands for “ key domain . "

TABLE 1

Command Encoding Description

KD_SET_KEY 0

KD_CLEAR KEY
KD_READ_KEY

1
2

domain information is used for some time , these overheads
of delay can be amortized over time , and thus minimized .
[0047] The computing system 100 may employ at least
two modes for supporting an enhanced number of keys that
may effectively be unlimited in being able to secure any
number of domains for which domain programming is
requested . The first mode may employ management soft
ware through the use of instruction set architecture (ISA) to
achieve the wrapping and save / restore of secure domain
information to and from the memory 132. The second mode
may be a hardware mode where the cryptographic engine
140 may advertise a large number of keys (more than what
can be provisioned for in the cryptographic hardware 140)
and then manages the keys associated with domains inde
pendently without software intervention .
[0048] FIG . 3 is a system flow diagram illustrating a
method 300 for software management of programming
multiple secure domains , using corresponding multiple
keys , into a hardware cryptographic engine 340 , according
to various implementations . The hardware cryptographic
engine 340 may be the same or similar as the hardware
cryptographic engine 140 or 240. The method 300 may be
executed between trusted software 305 , domain manage
ment software 307 (e.g. , untrusted software executable by
the processor core 120) , and the cryptographic engine 340 .
As discussed previously , the crypto engine programming
support circuit 126 may be embodied as one or more
specialized processor instructions (e.g. , the instructions
BIND , UNWRAP , or other instructions to be discussed in
more detail) and associated hardware , microcode , firmware ,
or other components of the processor core 120 .
[0049] In various implementations , for example , the
method 300 may begin with the trusted software 305 , in
order to set up a domain , invoking special instruction BIND
to encrypt the key associated with the domain and other
domain programming information (e.g. , domain ID) into a
wrapped binary large object (“ blob ”) (310) . This program
ming information may be considered secret keying material
to be encrypted as the wrapped blob (310) so that , when
handled the untrusted domain management software 307 ,
the untrusted domain management software 307 is unable to
access or see the secret keying material . The method 300
may continue with sending the wrapped blob (310) to the
domain management software 307 for programming into the
cryptographic engine 340 (320) . The BIND instruction
therefore wraps information in the form of secret data for a
specific target on the computing device platform , e.g. , the
cryptographic engine 340 in this case .
[0050] Once the domain management software 307 has the
wrapped blob (310) , the method 300 may continue with this
untrusted domain management software 307 invoking an
UNWRAP instruction (330) , which verifies the integrity of
the blob using the platform key , and if verified successfully ,
generating a cryptographic response that can be detected by
the untrusted domain management software 307 and is
verifiable by the trusted software 305 (335) . The method 300
may continue with the domain management software 307
programming the blob into the cryptographic engine 340
upon successful unwrap (350) . This programming of the
cryptographic engine 340 may be performed over a trusted
hardware network within the processor core 120 , and there
fore outside entities cannot snoop this transaction . Accord
ingly , there is no way for an attacker to access the program
ming of the blob at this point in the data flow .

Associate domain key with specific
domain using the wrapped blob
provided .
Clear key associated with the domain .
Read key from the key data structure
142. This command does not read the
key in plain text form , but generates
a wrapped blob with the key for the
domain management software 307 to
manage secure domains .

[0053] Note that for the above commands to work , the
UNWRAP instruction may also expect a domain ID to be
included as part of the domain information to identify the
domain on which to operate . As an example , for software to
associate a key with a domain , the trusted software 305 may
generate a BIND instruction to wrap a blob with the domain
ID and in response to a clear the key command . In some
implementations , in order to ensure security , these com
mands may entail the caller including some ownership
information . As an example , the current key associated with
the domain may have to be provided in the KD_CLEAR_
KEY command . As only the owner that set the key knowns
the key , the authenticity of the KD_CLEAR_KEY command
may be established . In some implementations , the
KD_READ_KEY is a command that allows the domain
management software 307 to use the key data structure 142
as cache with the proposed wrapped keys mechanism , to be
explained in more detail with reference to FIG . 5. In
particular , the KD_READ_KEY command allows untrusted
software to read domain information out of the key data
structure 142 in the form of a wrapped blob , so as to manage
the domains without direct access to secure key and domain
information .
[0054] FIG . 4 is a flow chart of a method 400 of employing
a hardware mode of managing the large number of keys
stored in memory that the cryptographic engine 140 may
access to secure a number of domains of a server , according

US 2020/0327241 A1 Oct. 15 , 2020
6

one

to one implementation . Accordingly , the method 400 may be
performed by processing logic that may comprise hardware
(e.g. , circuitry , dedicated logic , programmable logic , micro
code , etc.) , firmware , or a combination thereof . In one
implementation , method 400 is performed by processor core
120 of FIG . 1 , e.g. , by the cryptographic engine 140. In
another implementation , the method 400 is performed by
any of the processors described with respect to FIGS . 6a - 14 .
[0055] With reference to FIG . 4 , the method 400 may start
with processing logic receiving a new secure domain pro
gramming request (410) . The programming request may be
received by the crypto engine programming support circuit
126 to program the new secure domain into the crypto
graphic engine 140. The method 400 may continue with the
processing logic determining whether there is an entry
available in the key data structure 142 , e.g. , not filled (420) .
If yes , the method 400 may continue with the processing
logic storing first secure domain information at the available
entry in the key data structure (430) . The first domain
information may include a first key and a first domain
identifier , for example .
[0056] If no at block 420 , the method 400 may continue
with the processing logic selecting a second secure domain
to be de - scheduled , wherein the second secure domain is
indexed within the key data structure 142 at a second entry
(440) . The method 400 may continue with the processing
logic encrypting , using a platform key , second domain
information retrieved from the second entry for the second
secure domain , to generate a wrapped binary large object
(blob) (450) . The second domain information may include a
second key and second domain identifier . The method 400
may continue with the processing logic storing the wrapped
blob in a determined region of the system memory that is
indexed according to the second domain identifier (460) .
The method 400 may continue with the processing logic
storing the first domain information in the second entry of
the key data structure , which has been freed up by virtue of
the de - scheduling in block 440 (470) .
[0057] After some time passes , the method 400 may
continue with the processing logic receiving an
request to the second secure domain (475) . Recall that the
second secure domain was de - scheduled from being sup
ported by the cryptographic engine 140 , and therefore , now
needs to be scheduled anew to provide renewed crypto
graphic support to the second domain . Accordingly , the
method 400 may continue with the processing logic reading
the wrapped blob from the determined region 235 of the
memory 132 (480) . The method 400 may continue with the
processing logic decrypting the wrapped blob (like perform
ing an UNWRAP operation) , to generate the second domain
information (485) . This second domain information , now in
the clear at the cryptographic engine , may be used within a
request to again schedule the second domain . The domain
scheduling by the cryptographic engine may therefore be
repeated , as per method 400 , whether it is a request for a new
domain or a renewed requested for a domain previously
archived in memory .
[0058] FIG . 5 is a flow chart of a method 500 for software
management of programming multiple secure domains ,
using corresponding multiple keys , into the hardware cryp
tographic engine 140 or 440 , according to various imple
mentations . The method 500 may be performed by process
ing logic that may comprise hardware (e.g. , circuitry ,
dedicated logic , programmable logic , microcode , etc.) , soft

ware (such as operations being performed by the trusted
software 305 and by the untrusted domain management
software 307) , firmware or a combination thereof .
implementation , the method 500 is performed by the pro
cessor core 120 of FIG . 1. In another implementation , the
method 500 is performed by any of the processors described
with respect to FIGS . 60-15 .
[0059] With reference to FIG . 5 , the method 500 may
begin with the processing logic receiving a new (e.g. , first)
secure domain programming request that includes a first
wrapped blob containing encrypted first domain information
(510) . This request may come from the trusted software 305
with execution of a KD SET KEY command to associate a
domain key with a first secure domain . The method 500 may
continue with the processing logic determining whether an
entry is available in the key data structure 142 (520) . If yes ,
the method 500 may continue with the processing logic
decrypting (e.g. , with use of an UNWRAP command) the
first wrapped blob to generate first domain information in
clear text (530) , and storing the first domain information in
the available (e.g. , first) entry in the key data structure 142
(535) .

[0060] With continued reference to FIG . 5 , if there is no
entry available in the key data structure 142 (520) , the
method 500 may continue with the processing logic select
ing a second secure domain at a second entry of the key data
structure to be de - scheduled (540) . In various implementa
tions , the processing logic may determine which pro
grammed domain is inactive or been least recently used
(LRU) , or perform some other similar algorithm to select a
domain to be de - scheduled , e.g. , as “ the second secure
domain ” in method 500. The method 500 may continue with
the processing logic issuing a key read command (e.g. ,
KD_READ_KEY from Table 1) to read second domain
information from a target entry of the key data structure 142
(545) . In response to the key read command , the method 500
may continue with the processing logic encrypting the
second domain information to generate a new (e.g. , second)
wrapped blob (550) and storing the second wrapped blob in
the determined region of system memory 132 (560) . The
method 500 may continue with the processing logic pro
gramming the first secure domain into the cryptographic
engine by decrypting (e.g. , via an UNWRAP command) the
first wrapped blob to generate first domain information (570)
and storing the first domain information at the target entry of
the key data structure freed up via the de - scheduling of the
second domain (575) .
[0061] After some time passes , the method 500 may
continue with the processing logic receiving an access
request to the second secure domain (580) . Recall that the
second secure domain was de - scheduled from being sup
ported by the cryptographic engine 140 , and therefore , now
needs to be scheduled anew to provide renewed crypto
graphic support to the second domain . Accordingly , the
method 500 may continue with the processing logic reading
the second wrapped blob from the determined region 235 of
the memory 132 (585) . The method may new respond to the
second wrapped blob as a request to program the second
secure domain into the hardware cryptographic engine
(510) . In this way , the software mode of domain manage
ment may repeat itself in handling the second wrapped blob
as a new , e.g. , third request for a third secure domain .

SS

US 2020/0327241 A1 Oct. 15 , 2020
7

Although the second wrapped blob was read out of memory ,
it may be treated as if it were a new request from the trusted
software 305 .
[0062] Domain information was previously referred to
generically , e.g. , that a single base key would be stored
wrapped in memory . However , in order to reduce perfor
mance overheads , an expanded key schedule may also be
stored in memory instead of just the base key . This is made
possible since the memory requirements for expanded key
schedule are relatively small (e.g. , 176B for AES - 128) . This
optimization will allow 10 cycles for expansion to be saved
on restoring a domain from memory . When the hardware
AES encryption needs these keys , hardware of the crypto
graphic engine 140 (or other security hardware) may request
this blob or unwrap the blob out of memory for use in the ten
rounds (or however many rounds) of AES encryption (or
other type of encryption) to be performed . This optimization
allows access to all ten keys , and saves 9 cycles that would
otherwise be needed for expansion of each individual key , to
be saved on restoring a domain from the determined region
235 of the memory 132 .
[0063] FIG . 6A is a block diagram illustrating a micro
architecture for a processor 600 that implements hardware
support for a multi - key cryptographic engine , according to
an implementation . Specifically , processor 600 depicts an
in - order architecture core and a register renaming logic ,
out - of - order issue / execution logic to be included in a pro
cessor according to at least one implementation of the
disclosure .
[0064] Processor 600 includes a front end unit 630
coupled to an execution engine unit 650 , and both are
coupled to a memory unit 670. The processor 600 may
include a reduced instruction set computing (RISC) core , a
complex instruction set computing (CISC) core , a very long
instruction word (VLIW) core , or a hybrid or alternative
core type . As yet another option , processor 600 may include
a special - purpose core , such as , for example , a network or
communication core , compression engine , graphics core , or
the like . In one implementation , processor 600 may be a
multi - core processor or may be part of a multiprocessor
system .
[0065] The front end unit 630 includes a branch prediction
unit 632 coupled to an instruction cache unit 634 , which is
coupled to an instruction translation lookaside buffer (TLB)
636 , which is coupled to an instruction fetch unit 638 , which
is coupled to a decode unit 640. The decode unit 640 (also
known as a decoder) may decode instructions , and generate
as an output one or more micro - operations , micro - code entry
points , microinstructions , other instructions , or other control
signals , which are decoded from , or which otherwise reflect ,
or are derived from , the original instructions . The decoder
640 may be implemented using various different mecha
nisms . Examples of suitable mechanisms include , but are not
limited to , look - up tables , hardware implementations , pro
grammable logic arrays (PLAs) , microcode read only
memories (ROMs) , etc. The instruction cache unit 634 is
further coupled to the memory unit 670. The decode unit 640
is coupled to a rename / allocator unit 652 in the execution
engine unit 650 .
[0066] The execution engine unit 650 includes the rename /
allocator unit 652 coupled to a retirement unit 654 and a set
of one or more scheduler unit (s) 656. The scheduler unit (s)
656 represents any number of different scheduler circuits ,
including reservations stations (RS) , central instruction win

dow , etc. The scheduler unit (s) 656 is coupled to the physical
register set (s) unit (s) 658. Each of the physical register set (s)
units 658 represents one or more physical register sets ,
different ones of which store one or more different data
types , such as scalar integer , scalar floating point , packed
integer , packed floating point , vector integer , vector floating
point , etc. , status (e.g. , an instruction pointer that is the
address of the next instruction to be executed) , etc. The
physical register set (s) unit (s) 658 is overlapped by the
retirement unit 654 to illustrate various ways in which
register renaming and out - of - order execution may be imple
mented (e.g. , using a reorder buffer (s) and a retirement
register set (s) , using a future file (s) , a history buffer (s) , and
a retirement register set (s) ; using a register maps and a pool
of registers ; etc.) .
[0067] Generally , the architectural registers are visible
from the outside of the processor or from a programmer's
perspective . The registers are not limited to any known
particular type of circuit . Various different types of registers
are suitable as long as they are capable of storing and
providing data as described herein . Examples of suitable
registers include , but are not limited to , dedicated physical
registers , dynamically allocated physical registers using
register renaming , combinations of dedicated and dynami
cally allocated physical registers , etc. The retirement unit
654 and the physical register set (s) unit (s) 658 are coupled
to the execution cluster (s) 660. The execution cluster (s) 660
includes a set of one or more execution units 662 and a set
of one or more memory access units 664. The execution
units 662 may perform various operations (e.g. , shifts ,
addition , subtraction , multiplication) and operate on various
types of data (e.g. , scalar floating point , packed integer ,
packed floating point , vector integer , vector floating point) .
[0068] While some implementations may include a num
ber of execution units dedicated to specific functions or sets
of functions , other implementations may include only one
execution unit or multiple execution units that all perform all
functions . The scheduler unit (s) 656 , physical register set (s)
unit (s) 658 , and execution cluster (s) 660 are shown as being
possibly plural because certain implementations create sepa
rate pipelines for certain types of data / operations (e.g. , a
scalar integer pipeline , a scalar floating point / packed inte
ger / packed floating point / vector integer / vector floating point
pipeline , and / or a memory access pipeline that each have
their own scheduler unit , physical register set (s) unit , and / or
execution cluster — and in the case of a separate memory
access pipeline , certain implementations are implemented in
which only the execution cluster of this pipeline has the
memory access unit (s) 664) . It should also be understood
that where separate pipelines are used , one or more of these
pipelines may be out - of - order issue / execution and the rest
in - order .

[0069] The set of memory access units 664 is coupled to
the memory unit 670 , which may include a data prefetcher
680 , a data TLB unit 672 , a data cache unit (DCU) 674 , and
a level 2 (L2) cache unit 676 , to name a few examples . In
some implementations DCU 674 is also known as a first
level data cache (L1 cache) . The DCU 674 may handle
multiple outstanding cache misses and continue to service
incoming stores and loads . It also supports maintaining
cache coherency . The data TLB unit 672 is a cache used to
improve virtual address translation speed by mapping virtual
and physical address spaces . In one exemplary implemen
tation , the memory access units 664 may include a load unit ,

US 2020/0327241 A1 Oct. 15 , 2020
8

a store address unit , and a store data unit , each of which is
coupled to the data TLB unit 672 in the memory unit 670 .
The L2 cache unit 676 may be coupled to one or more other
levels of cache and eventually to a main memory .
[0070] In one implementation , the data prefetcher 680
speculatively loads / prefetches data to the DCU 674 by
automatically predicting which data a program is about to
consume . Prefetching may refer to transferring data stored in
one memory location (e.g. , position) of a memory hierarchy
(e.g. , lower level caches or memory) to a higher - level
memory location that is closer (e.g. , yields lower access
latency) to the processor before the data is actually
demanded by the processor . More specifically , prefetching
may refer to the early retrieval of data from one of the lower
level caches / memory to a data cache and / or prefetch buffer
before the processor issues a demand for the specific data
being returned .
[0071] The processor 600 may support one or more
instructions sets (e.g. , the x86 instruction set (with some
extensions that have been added with newer versions) ; the
MIPS instruction set of Imagination Technologies of Kings
Langley , Hertfordshire , UK ; the ARM instruction set (with
optional additional extensions such as NEON) of ARM
Holdings of Sunnyvale , Calif .) .
[0072] It should be understood that the core may support
multithreading (executing two or more parallel sets of
operations or threads) , and may do so in a variety of ways
including time sliced multithreading , simultaneous multi threading (where a single physical core provides a logical
core for each of the threads that physical core is simultane
ously multithreading) , or a combination thereof (e.g. , time
sliced fetching and decoding and simultaneous multithread
ing thereafter such as in the Intel® Hyperthreading technol
ogy) .
[0073] While register renaming is described in the context
of out - of - order execution , it should be understood that
register renaming may be used in an in - order architecture .
While the illustrated implementation of the processor also
includes a separate instruction and data cache units and a
shared L2 cache unit , alternative implementations may have
a single internal cache for both instructions and data , such
as , for example , a Level 1 (L1) internal cache , or multiple
levels of internal cache . In some implementations , the
system may include a combination of an internal cache and
an external cache that is external to the core and / or the
processor . Alternatively , all of the cache may be external to
the core and / or the processor .
[0074] FIG . 6B is a block diagram illustrating an in - order
pipeline and a register renaming stage , out - of - order issue /
execution pipeline implemented by processor 600 of FIG .
6A according to some implementations of the disclosure .
The solid lined boxes in FIG . 6B illustrate an in - order
pipeline 601 , while the dashed lined boxes illustrate a
register renaming , out - of - order issue / execution pipeline
603. In FIG . 6B , the pipelines 601 and 603 include a fetch
stage 602 , a length decode stage 604 , a decode stage 606 , an
allocation stage 608 , a renaming stage 610 , a scheduling
(also known as a dispatch or issue) stage 612 , a register
read / memory read stage 614 , an execute stage 616 , a write
back / memory write stage 618 , an exception handling stage
620 , and a commit stage 622. In some implementations , the
ordering of stages 602-622 may be different than illustrated
and are not limited to the specific ordering shown in FIG .
6B .

[0075] FIG . 7 illustrates a block diagram of the micro
architecture for a processor 700 that includes logic circuits
of a processor or an integrated circuit that implements
hardware support for a multi - key cryptographic engine ,
according to an implementation of the disclosure . In some
implementations , an instruction in accordance with one
implementation can be implemented to operate on data
elements having sizes of byte , word , doubleword , quadword ,
etc. , as well as datatypes , such as single and double precision
integer and floating point datatypes . In one implementation
the in - order front end 701 is the part of the processor 700
that fetches instructions to be executed and prepares them to
be used later in the processor pipeline . The implementations
of the page additions and content copying can be imple
mented in processor 700 .
[0076] The front end 701 may include several units . In one
implementation , the instruction prefetcher 716 fetches
instructions from memory and feeds them to an instruction
decoder 718 which in turn decodes or interprets them . For
example , in one implementation , the decoder decodes a
received instruction into one or more operations called
“ micro - instructions ” or “ micro - operations ” (also called
micro op or uops) that the machine can execute . In other
implementations , the decoder parses the instruction into an
opcode and corresponding data and control fields that are
used by the micro - architecture to perform operations in
accordance with one implementation . In one implementa
tion , the trace cache 730 takes decoded uops and assembles
them into program ordered sequences or traces in the uop
queue 734 for execution . When the trace cache 730 encoun
ters a complex instruction , microcode ROM (or RAM) 732
provides the uops needed to complete the operation .
[0077] Some instructions are converted into a single
micro - op , whereas others need several micro - ops to com
plete the full operation . In one implementation , if more than
four micro - ops are needed to complete an instruction , the
decoder 718 accesses the microcode ROM 732 to do the
instruction . For one implementation , an instruction can be
decoded into a small number of micro ops for processing at
the instruction decoder 718. In another implementation , an
instruction can be stored within the microcode ROM 732
should a number of micro - ops be needed to accomplish the
operation . The trace cache 730 refers to an entry point
programmable logic array (PLA) to determine a correct
micro - instruction pointer for reading the micro - code
sequences to complete one or more instructions in accor
dance with one implementation from the micro - code ROM
732. After the microcode ROM 732 finishes sequencing
micro - ops for an instruction , the front end 701 of the
machine resumes fetching micro - ops from the trace cache
730 .
[0078] The out - of - order execution engine 703 is where the
instructions are prepared for execution . The out - of - order
execution logic has a number of buffers to smooth out and
reorder the flow of instructions to optimize performance as
they go down the pipeline and get scheduled for execution .
The allocator logic allocates the machine buffers and
resources that each uop needs in order to execute . The
register renaming logic renames logic registers onto entries
in a register set . The allocator also allocates an entry for each
uop in one of the two uop queues , one for memory opera
tions and one for non - memory operations , in front of the
instruction schedulers : memory scheduler , fast scheduler
702 , slow / general floating point scheduler 704 , and simple

US 2020/0327241 A1 Oct. 15 , 2020
9

floating point scheduler 706. The uop schedulers 702 , 704 ,
706 , determine when a uop is ready to execute based on the
readiness of their dependent input register operand sources
and the availability of the execution resources the uops need
to complete their operation . The fast scheduler 702 of one
implementation can schedule on each half of the main clock
cycle while the other schedulers can only schedule once per
main processor clock cycle . The schedulers arbitrate for the
dispatch ports to schedule uops for execution .
[0079] Register sets 708 , 710 , sit between the schedulers
702 , 704 , 706 , and the execution units 712 , 714 , 716 , 718 ,
720 , 722 , 724 in the execution block 711. There is a separate
register set 708 , 710 , for integer and floating point opera
tions , respectively . Each register set 708 , 710 , of one imple
mentation also includes a bypass network that can bypass or
forward just completed results that have not yet been written
into the register set to new dependent uops . The integer
register set 708 and the floating point register set 710 are
also capable of communicating data with the other . For one
implementation , the integer register set 708 is split into two
separate register sets , one register set for the low order 32
bits of data and a second register set for the high order 32
bits of data . The floating point register set 710 of one
implementation has 128 bit wide entries because floating
point instructions typically have operands from 64 to 128
bits in width .
[0080] The execution block 711 contains the execution
units 712 , 714 , 716 , 718 , 720 , 722 , 724 , where the instruc
tions are actually executed . This section includes the register
sets 708 , 710 , that store the integer and floating point data
operand values that the micro - instructions need to execute .
The processor 700 of one implementation is comprised of a
number of execution units : address generation unit (AGU)
712 , AGU 714 , fast ALU 716 , fast ALU 718 , slow ALU 720 ,
floating point ALU 712 , floating point move unit 714. For
one implementation , the floating point execution blocks 712 ,
714 , execute floating point , MMX , SIMD , and SSE , or other
operations . The floating point ALU 712 of one implemen
tation includes a 64 bit by 64 bit floating point divider to
execute divide , square root , and remainder micro - ops . For
implementations of the disclosure , instructions involving a
floating point value may be handled with the floating point
hardware .
[0081] In one implementation , the ALU operations go to
the high - speed ALU execution units 716 , 718. The fast
ALUS 716 , 718 , of one implementation can execute fast
operations with an effective latency of half a clock cycle . For
one implementation , most complex integer operations go to
the slow ALU 720 as the slow ALU 720 includes integer
execution hardware for long latency type of operations , such
as a multiplier , shifts , flag logic , and branch processing .
Memory load / store operations are executed by the AGUS
722 , 724. For one implementation , the integer ALUS 716 ,
718 , 720 , are described in the context of performing integer
operations on 64 bit data operands . In alternative implemen
tations , the ALUs 716 , 718 , 720 , can be implemented to
support a variety of data bits including 16 , 32 , 128 , 256 , etc.
Similarly , the floating point units 722 , 724 , can be imple
mented to support a range of operands having bits of various
widths . For one implementation , the floating point units 722 ,
724 , can operate on 128 bits wide packed data operands in
conjunction with SIMD and multimedia instructions .
[0082] In one implementation , the uops schedulers 702 ,
704 , 706 , dispatch dependent operations before the parent

load has finished executing . As uops are speculatively
scheduled and executed in processor 700 , the processor 700
also includes logic to handle memory misses . If a data load
misses in the data cache , there can be dependent operations
in flight in the pipeline that have left the scheduler with
temporarily incorrect data . A replay mechanism tracks and
re - executes instructions that use incorrect data . Only the
dependent operations need to be replayed and the indepen
dent ones are allowed to complete . The schedulers and
replay mechanism of one implementation of a processor are
also designed to catch instruction sequences for text string
comparison operations .
[0083] The term “ registers ” may refer to the on - board
processor storage locations that are used as part of instruc
tions to identify operands . In other words , registers may be
those that are usable from the outside of the processor (from
a programmer's perspective) . However , the registers of an
implementation should not be limited in meaning to a
particular type of circuit . Rather , a register of an implemen
tation is capable of storing and providing data , and perform
ing the functions described herein . The registers described
herein can be implemented by circuitry within a processor
using any number of different techniques , such as dedicated
physical registers , dynamically allocated physical registers
using register renaming , combinations of dedicated and
dynamically allocated physical registers , etc. In one imple
mentation , integer registers store 32 - bit integer data . A
register set of one implementation also contains eight mul
timedia SIMD registers for packed data .
[0084] For the discussions herein , the registers are under
stood to be data registers designed to hold packed data , such
as 64 bits wide MMXTM registers (also referred to as “ mm '
registers in some instances) in microprocessors enabled with
MMX technology from Intel Corporation of Santa Clara ,
Calif . These MMX registers , available in both integer and
floating point forms , can operate with packed data elements
that accompany SIMD and SSE instructions . Similarly , 128
bits wide XMM registers relating to SSE2 , SSE3 , SSE4 , or
beyond (referred to generically as “ SSEx ”) technology can
also be used to hold such packed data operands . In one
implementation , in storing packed data and integer data , the
registers do not need to differentiate between the two data
types . In one implementation , integer and floating point are
either contained in the same register set or different register
sets . Furthermore , in one implementation , floating point and
integer data may be stored in different registers or the same
registers .
[0085] Implementations may be implemented in many
different system types . Referring now to FIG . 8 , shown is a
block diagram of a multiprocessor system 800 that may
implement hardware support for a multi - key cryptographic
engine , in accordance with an implementation . As shown in
FIG . 8 , multiprocessor system 800 is a point - to - point inter
connect system , and includes a first processor 870 and a
second processor 880 coupled via a point - to - point intercon
nect 850. As shown in FIG . 8 , each of processors 870 and
880 may be multicore processors , including first and second
processor cores (i.e. , processor cores 874a and 874b and
processor cores 884a and 884b) , although potentially many
more cores may be present in the processors . While shown
with two processors 870 , 880 , it is to be understood that the
scope of the disclosure is not so limited . In other implemen
tations , one or more additional processors may be present in
a given processor .

US 2020/0327241 A1 Oct. 15 , 2020
10

[0086] Processors 870 and 880 are shown including inte
grated memory controller units 872 and 882 , respectively .
Processor 870 also includes as part of its bus controller units
point - to - point (P - P) interfaces 876 and 878 ; similarly , sec
ond processor 880 includes P - P interfaces 886 and 888 .
Processors 870 , 880 may exchange information via a point
to - point (PPP) interface 850 using P - P interface circuits 878 ,
888. As shown in FIG . 8 , IMCs 872 and 882 couple the
processors to respective memories , namely a memory 832
and a memory 834 , which may be portions of main memory
locally attached to the respective processors .
[0087] Processors 870 , 880 may exchange information
with a chipset 890 via individual P - P interfaces 852 , 854
using point to point interface circuits 876 , 894 , 886 , 898 .
Chipset 890 may also exchange information with a high
performance graphics circuit 838 via a high - performance
graphics interface 892 .
[0088] Chipset 890 may be coupled to a first bus 816 via
an interface 896. In one implementation , first bus 816 may
be a Peripheral Component Interconnect (PCI) bus , or a bus
such as a PCI Express bus or interconnect bus , although the
scope of the disclosure is not so limited . Various I / O devices
814 may be coupled to first bus 816 , along with a bus bridge
818 which couples first bus 816 to a second bus 820. In one
embodiment , second bus 820 may be a low pin count (LPC)
bus . Various devices may be coupled to a second bus 820
including , for example , a keyboard and / or mouse 822 ,
communication devices 827 and a storage unit 828 such as
a disk drive or other mass storage device which may include
instructions / code and data 830 , in one embodiment . Further ,
an audio I / O 824 may be coupled to the second bus 820 .
Note that other architectures are possible . For example ,
instead of the point - to - point architecture of FIG . 8 , a system
may implement a multi - drop bus or other such architecture .
[0089] Referring now to FIG . 9 , shown is a block diagram
of a third system 900 that may implement hardware support
for a multi - key cryptographic engine , in accordance with an
implementation of the disclosure . Like elements in FIGS . 8
and 9 bear like reference numerals and certain aspects of
FIG . I have been omitted from FIG . 8 in order to avoid
obscuring other aspects of FIG . 9 .
[0090] FIG.9 illustrates that the processors 870 , 880 may
include integrated memory and I / O control logic (" CL ") 972
and 992 , respectively . For at least one implementation , the
CL 972 , 982 may include integrated memory controller units
such as described herein . In addition . CL 972 , 992 may also
include I / O control logic . FIG . 9 illustrates that the memo
ries 832 , 834 are coupled to the CL 972 , 992 , and that I / O
devices 914 are also coupled to the control logic 972 , 992 .
Legacy I / O devices 915 are coupled to the chipset 890 .
[0091] FIG . 10 is an exemplary system on a chip (SOC)
1000 that may include one or more of the cores 1002A ...
1002N that may implement hardware support for a multi
key cryptographic engine . Other system designs and con
figurations known in the arts for laptops , desktops , handheld
PCs , personal digital assistants , engineering workstations ,
servers , network devices , network hubs , switches , embed
ded processors , digital signal processors (DSPs) , graphics
devices , video game devices , set - top boxes , micro control
lers , cell phones , portable media players , hand held devices ,
and various other electronic devices , are also suitable . In
general , a huge variety of systems or electronic devices
capable of incorporating a processor and / or other execution
logic as disclosed herein are generally suitable .

[0092] Within the exemplary SoC 1000 of FIG . 10 , dashed
lined boxes are features on more advanced SoCs . An inter
connect unit (s) 1002 may be coupled to : an application
processor 1017 which includes a set of one or more cores
1002A - N , which include cache units 1004A - N , and shared
cache unit (s) 1006 ; a system agent unit 1010 ; a bus con
troller unit (s) 1016 ; an integrated memory controller unit (s)
1014 ; a set of one or more media processors 1020 which
may include integrated graphics logic 1008 , an image pro
cessor 1024 for providing still and / or video camera func
tionality , an audio processor 1026 for providing hardware
audio acceleration , and a video processor 1028 for providing
video encode / decode acceleration ; a static random access
memory (SRAM) unit 1030 ; a direct memory access (DMA)
unit 1032 ; and a display unit 1040 for coupling to one or
more external displays .
[0093] Turning next to FIG . 11 , an implementation of a
system on - chip (SOC) design that may implement hardware
support for a multi - key cryptographic engine , in accordance
with implementations of the disclosure is depicted . As an
illustrative example , SoC 1100 is included in user equipment
(UE) . In one implementation , UE refers to any device to be
used by an end - user to communicate , such as a hand - held
phone , smartphone , tablet , ultra - thin notebook , notebook
with broadband adapter , or any other similar communication
device . A UE may connect to a base station or node , which
can correspond in nature to a mobile station (MS) in a GSM
network . The implementations of the page additions and
content copying can be implemented in SoC 1100 .
[0094] Here , SoC 1100 includes 2 cores -1106 and 1107 .
Similar to the discussion above , cores 1106 and 1107 may
conform to an Instruction Set Architecture , such as a pro
cessor having the Intel® Architecture CoreTM , an Advanced
Micro Devices , Inc. (AMD) processor , a MIPS - based pro
cessor , an ARM - based processor design , or a customer
thereof , as well as their licensees or adopters . Cores 1106
and 1107 are coupled to cache control 1108 that is associated
with bus interface unit 1109 and L2 cache 1110 to commu
nicate with other parts of system 1100. Interconnect 1111
includes an on - chip interconnect , such as an IOSF , AMBA ,
or other interconnects discussed above , which can imple
ment one or more aspects of the described disclosure .
[0095] In one implementation , SDRAM controller 1140
may connect to interconnect 1111 via cache 1110. Intercon
nect 1111 provides communication channels to the other
components , such as a Subscriber Identity Module (SIM)
1130 to interface with a SIM card , a boot ROM 1135 to hold
boot code for execution by cores 1106 and 1107 to initialize
and boot SoC 1100 , a SDRAM controller 1140 to interface
with external memory (e.g. DRAM 1160) , a flash controller
1145 to interface with non - volatile memory (e.g. Flash
1165) , a peripheral control 1150 (e.g. Serial Peripheral
Interface) to interface with peripherals , video codecs 1120
and Video interface 1125 to display and receive input (e.g.
touch enabled input) , GPU 1115 to perform graphics related
computations , etc. Any of these interfaces may incorporate
aspects of the implementations described herein .
[0096] In addition , the system illustrates peripherals for
communication , such as Bluetooth® module 1170 , 3G
modem 1175 , GPS 1180 , and Wi - Fi® 1185. Note as stated
above , a UE includes a radio for communication . As a result ,
these peripheral communication modules may not all be
included . However , in a UE some form of a radio for
external communication should be included .

US 2020/0327241 A1 Oct. 15 , 2020
11

[0097] FIG . 12 is a block diagram of processing compo
nents for executing instructions that implements hardware
support for a multi - key cryptographic engine . As shown ,
computing system 1200 includes code storage 1202 , fetch
circuit 1204 , decode circuit 1206 , execution circuit 1208 ,
registers 1210 , memory 1212 , and retire or commit circuit
1214. In operation , an instruction (e.g. , BIND , UNWRAP)
is to be fetched by fetch circuit 1204 from code storage
1202 , which may comprise a cache memory , an on - chip
memory , a memory on the same die as the processor , an
instruction register , a general register , or system memory ,
without limitation . In one embodiment , the instruction may
have a format similar to that of instruction 1400 in FIG . 14 .
After fetching the instruction from code storage 1202 ,
decode circuit 1206 may decode the fetched instruction ,
including by parsing the various fields of the instruction .
After decoding the fetched instruction , execution circuit
1208 is to execute the decoded instruction . In performing the
step of executing the instruction , execution circuit 1208 may
read data from and write data to registers 1210 and memory
1212. Registers 1210 may include a data register , an instruc
tion register , a vector register , a mask register , a general
register , an on - chip memory , a memory on the same die as
the processor , or a memory in the same package as the
processor , without limitation . Memory 1212 may include an
on - chip memory , a memory on the same die as the processor ,
a memory in the same package as the processor , a cache
memory , or system memory , without limitation . After the
execution circuit executes the instruction , retire or commit
circuit 1214 may retire the instruction , ensuring that execu
tion results are written to or have been written to their
destinations , and freeing up or releasing resources for later

opcode 1404 , optional attribute 1406 , optional secure state
bit 1408 , and optional valid state bit 1410 .
[0101] FIG . 15 illustrates a diagrammatic representation
of a machine in the example form of a computing system
1500 within which a set of instructions , for causing the
machine to implement hardware support for a multi - key
cryptographic engine according any one or more of the
methodologies discussed herein . In alternative implementa
tions , the machine may be connected (e.g. , networked) to
other machines in a LAN , an intranet , an extranet , or the
Internet . The machine may operate in the capacity of a server
or a client device in a client - server network environment , or
as a peer machine in a peer - to - peer (or distributed) network
environment . The machine may be a personal computer
(PC) , a tablet PC , a set - top box (STB) , a Personal Digital
Assistant (PDA) , a cellular telephone , a web appliance , a
server , a network router , switch or bridge , or any machine
capable of executing a set of instructions (sequential or
otherwise) that specify actions to be taken by that machine .
Further , while only a single machine is illustrated , the term
“ machine ” shall also be taken to include any collection of
machines that individually or jointly execute a set (or
multiple sets) of instructions to perform any one or more of
the methodologies discussed herein . The implementations of
the page additions and content copying can be implemented
in computing system 1500 .
[0102] The computing system 1500 includes a processing
device 1502 , main memory 1504 (e.g. , flash memory ,
dynamic random access memory (DRAM) (such as synchro
nous DRAM (SDRAM) or DRAM (RDRAM) , etc.) , a static
memory 1506 (e.g. , flash memory , static random access
memory (SRAM) , etc.) , and a data storage device 1516 ,
which communicate with each other via a bus 1508 .
[0103] Processing device 1502 represents one or more
general - purpose processing devices such as a microproces
sor , central processing unit , or the like . More particularly ,
the processing device may be complex instruction set com
puting (CISC) microprocessor , reduced instruction set com
puter (RISC) microprocessor , very long instruction word
(VLIW) microprocessor , or processor implementing other
instruction sets , or processors implementing a combination
of instruction sets . Processing device 1502 may also be one
or more special - purpose processing devices such as an
application - specific integrated circuit (ASIC) , a field pro
grammable gate array (FPGA) , a digital signal processor
(DSP) , network processor , or the like . In one implementa
tion , processing device 1502 may include one or more
processor cores . The processing device 1502 is configured to
execute the processing logic 1526 for performing the opera
tions discussed herein .
[0104] In one implementation , processing device 1502 can
be part of a processor or an integrated circuit that includes
the disclosed LLC caching architecture . Alternatively , the
computing system 1500 can include other components as
described herein . It should be understood that the core may
support multithreading (executing two or more parallel sets
of operations or threads) , and may do so in a variety of ways
including time sliced multithreading , simultaneous multi
threading (where a single physical core provides a logical
core for each of the threads that physical core is simultane
ously multithreading) , or a combination thereof (e.g. , time
sliced fetching and decoding and simultaneous multithread
ing thereafter such as in the Intel® Hyperthreading technol
ogy) .

use .

[0098] FIG . 13A is a flow diagram of an example method
1320 to be performed by a processor to execute a BIND to
encrypt a group of data as a wrapped binary large object
(blob) . After starting the process , a fetch circuit at block
1322 is to fetch the BIND instruction from a code storage .
At optional block 1324 , a decode circuit may decode the
fetched BIND instruction . At block 1326 , an execution
circuit is to execute the BIND instruction to encrypt a group
of data as a wrapped binary large object (blob) , e.g. , as
explained with reference to block 310 in the method 300 of
FIG . 3 .

[0099] FIG . 13B is a flow diagram of an example method
1330 to be performed by a processor to execute an
UNWRAP instruction to decrypt a wrapped blob into con
stituent pieces of a group of data . After starting the process ,
a fetch circuit at block 1332 is to fetch the UNWRAP
instruction from a code storage . At optional block 1334 , a
decode circuit may decode the fetched UNWRAP instruc
tion . At block 1336 , an execution circuit is to execute the
UNWRAP instruction to decrypt a wrapped blob into con
stituent pieces of a group of data , e.g. , as explained with
reference to blocks 330-360 of the method 300 of FIG . 3 .

[0100] FIG . 14 is a block diagram illustrating an example
format for instructions 1400 disclosed herein that implement
hardware support for a multi - key cryptographic engine . The
instruction 1400 may be BIND or UNWRAP . The param
eters in the format of the instruction 1400 may be different
for BIND , or UNWRAP . As such , some of the parameters
are depicted as optional with dashed lines . As shown ,
instruction 1400 includes a page address 1402 , optional

US 2020/0327241 A1 Oct. 15 , 2020
12

[0105] The computing system 1500 may further include a
network interface device 1518 communicably coupled to a
network 1519. The computing system 1500 also may include
a video display device 1510 (e.g. , a liquid crystal display
(LCD) or a cathode ray tube (CRT)) , an alphanumeric input
device 1512 (e.g. , a keyboard) , a cursor control device 1514
(e.g. , a mouse) , a signal generation device 1520 (e.g. , a
speaker) , or other peripheral devices . Furthermore , comput
ing system 1500 may include a graphics processing unit
1522 , a video processing unit 1528 and an audio processing
unit 1532. In another implementation , the computing system
1500 may include a chipset (not illustrated) , which refers to
a group of integrated circuits , or chips , that are designed to
work with the processing device 1502 and controls commu
nications between the processing device 1502 and external
devices . For example , the chipset may be a set of chips on
a motherboard that links the processing device 1502 to very
high - speed devices , such as main memory 1504 and graphic
controllers , as well as linking the processing device 1502 to
lower - speed peripheral buses of peripherals , such as USB ,
PCI or ISA buses .
[0106] The data storage device 1516 may include a com
puter - readable storage medium 1524 on which is stored
software 1526 embodying any one or more of the method
ologies of functions described herein . The software 1526
may also reside , completely or at least partially , within the
main memory 1504 as instructions 1526 and / or within the
processing device 1502 as processing logic during execution
thereof by the computing system 1500 ; the main memory
1504 and the processing device 1502 also constituting
computer - readable storage media .
[0107] The computer - readable storage medium 1524 may
also be used to store instructions 1526 utilizing the process
ing device 1502 , and / or a software library containing meth
ods that call the above applications . While the computer
readable storage medium 1524 is shown in an example
implementation to be a single medium , the term “ computer
readable storage medium ” should be taken to include a
single medium or multiple media (e.g. , a centralized or
distributed database , and / or associated caches and servers)
that store the one or more sets of instructions . The term
" computer - readable storage medium ” shall also be taken to
include any medium that is capable of storing , encoding or
carrying a set of instruction for execution by the machine
and that cause the machine to perform any one or more of
the methodologies of the disclosed implementations . The
term " computer - readable storage medium ” shall accordingly
be taken to include , but not be limited to , solid - state memo
ries , and optical and magnetic media .
[0108] The following examples pertain to further imple
mentations .
[0109] Example 1 is processor comprising : 1) a memory
controller of a server ; and 2) a hardware cryptographic
engine coupled to the memory controller , the hardware
cryptographic engine comprising a key data structure to
store multiple keys for corresponding multiple secure
domains , each secure domain comprising a different work
load to be serviced by the server , wherein the hardware
cryptographic engine is to : a) receive a request to program
a first secure domain into the hardware cryptographic
engine , wherein the first secure domain comprises a new
workload to be serviced by the server , and wherein the
request comprises first domain information ; b) determine
whether there is an entry in the key data structure that is

available ; and c) in response to a determination that the entry
is available , store the first domain information in the entry
of the key data structure .
[0110] In Example 2 , the processor of Example 1 , wherein
the first domain information comprises a first key and a first
domain identifier for the first secure domain , and wherein
the multiple keys provide cryptographic isolation between
ones of the multiple secure domains .
[0111] In Example 3 , the processor of Example 1 , wherein
the hardware cryptographic engine comprises a cache to
store the key data structure , and wherein the key data
structure is indexed according to cache lines of the cache ,
with a domain identifier of a secure domain corresponding
to a number associated with the cache line .
[0112] In Example 4 , the processor of Example 1 , wherein
in response to a determination that there is no entry available
in the key data structure , the hardware cryptographic engine
is further to : a) select a second secure domain to be de
scheduled , wherein the second secure domain is indexed
within the key data structure at a second entry ; b) encrypt ,
with use of a platform key , second domain information
retrieved from the second entry for the second secure
domain , to generate a wrapped binary large object (blob) ;
and c) store the wrapped blob in a determined region of
system memory that is indexed according to a domain
identifier of the second secure domain .
[0113] In Example 5 , the processor of Example 4 , wherein
the hardware cryptographic engine is further to store the first
domain information in the second entry of the key data
structure .
[0114] In Example 6 , the processor of Example 4 , wherein
the hardware cryptographic engine is further to : a) detect a
memory access request to the second secure domain ; b) read
the wrapped blob from the system memory ; c) decrypt the
wrapped blob , to generate the second domain information ;
and d) respond to the second domain information as a
request to program the second secure domain into the
hardware cryptographic engine .
[0115] In Example 7 , the processor of Example 4 , wherein
upon boot of the server , a basic input / output system (BIOS)
is to store , within a range register , reservation information to
reserve the determined region of the system memory for
hardware , and wherein the reservation information is uti
lized to program the hardware cryptographic engine .
[0116] Various implementations may have different com
binations of the structural features described above . For
instance , all optional features of the processors and methods
described above may also be implemented with respect to a
system described herein and specifics in the examples may
be used anywhere in one or more implementations .
[0117] Example 8 is a server computing system compris
ing : 1) a processor core including a memory controller
coupled to system memory ; and 2) a hardware cryptographic
engine coupled to the processor core and the memory
controller , the hardware cryptographic engine comprising a
key data structure to store multiple keys for corresponding
multiple secure domains ; wherein the processor core is to
execute instructions to : a) receive a request to program a first
secure domain into the hardware cryptographic engine ,
wherein the request comprises first domain information
within a first wrapped binary large object (blob) ; and b) in
response to the request and to a determination that there is
no available entry in the key data structure : c) select a
second secure domain to be de - scheduled , wherein the

US 2020/0327241 A1 Oct. 15 , 2020
13

second secure domain is indexed within the key data struc
ture at a target entry ; d) issue a read key command to read
second domain information from the target entry of the key
data structure ; e) encrypt , with use of a platform key , the
second domain information retrieved from the target entry
for the second secure domain , to generate a second wrapped
blob ; and f) store the second wrapped blob in a determined
region of the system memory .
[0118] In Example 9 , the server computing system of
Example 8 , wherein the first domain information comprises
a first key and a first domain identifier for the first secure
domain , and wherein the multiple keys provide crypto
graphic isolation between ones of the multiple secure
domains .
[0119] In Example 10 , the server computing system of
Example 8 , wherein in response to the request and to a first
entry in the key data structure being available , the processor
core is further to execute the instructions to : a) perform an
unwrap operation to decrypt the first wrapped blob and
generate the first domain information ; b) program the first
secure domain into the hardware cryptographic engine ,
wherein to program includes to store the first domain
information in the first entry of the key data structure ; and
c) generate a cryptographic response indicative of a suc
cessful unwrap of the first wrapped blob .
[0120] In Example 11 , the server computing system of
Example 8 , wherein the processor core is further to execute
the instructions to : a) perform an unwrap operation to
decrypt the first wrapped blob and generate the first domain
information ; and b) program the first secure domain into the
hardware cryptographic engine , wherein to program
includes to store the first domain information in the target
entry of the key data structure .
[0121] In Example 12 , the server computing system of
Example 8 , wherein the processor core is further to execute
the instructions to : a) detect a memory access request to the
second secure domain ; b) read the second wrapped blob
from the system memory at a location corresponding to a
domain identifier of the second secure domain ; and c)
respond to the second wrapped blob as a request to program
the second secure domain into the hardware cryptographic
engine .
[0122] In Example 13 , the server computing system of
Example 8 , wherein the determined region of the system
memory is indexed according to domain identifiers of
respective secure domains of the multiple secure domains .
[0123] In Example 14 , the server computing system of
Example 8 , wherein upon boot of the server computing
system , a basic input / output system (BIOS) is to store ,
within a range register , reservation information to reserve
the determined region of the system memory for hardware
that depends on a number of the multiple secure domains ,
and wherein the reservation information is utilized to pro
gram the hardware cryptographic engine .
[0124] Various implementations may have different com
binations of the structural features described above . For
instance , all optional features of the processors and methods
described above may also be implemented with respect to a
system described herein and specifics in the examples may
be used anywhere in one or more implementations .
(0125] Example 15 is a non - transitory computer - readable
medium storing instructions , which when executed by a
processor having a core coupled to a system memory , cause
the processor to execute a plurality of logic operations

comprising : a) receiving a request to program a first secure
domain into a hardware cryptographic engine of the proces
sor , wherein the request includes first domain information
within a first wrapped binary large object (blob) ; b) in
response to the request and to a determination that there is
no available entry in a key data structure stored within the
hardware cryptographic engine : c) selecting a second secure
domain to be de - scheduled , wherein the second secure
domain is indexed within the key data structure at a target
entry ; d) issuing a read key command to read second domain
information from the target entry of the key data structure ;
e) encrypting , using a platform key , the second domain
information retrieved from the target entry for the second
secure domain , to generate a second wrapped blob ; and f)
storing the second wrapped blob in a determined region of
the system memory .
[0126] In Example 16 , the non - transitory computer - read
able medium of Example 15 , wherein the first domain
information comprises a first key and a first domain identi
fier for the first secure domain , wherein the key data
structure is to store multiple keys for corresponding multiple
secure domains , and wherein the multiple keys provide
cryptographic isolation between ones of the multiple secure
domains .
[0127] In Example 17 , the non - transitory computer - read
able medium of Example 15 , wherein in response to the
request and to a first entry in the key data structure being
available , the plurality of logic operations further comprises :
a) performing an unwrap operation to decrypt the first
wrapped blob and generate the first domain information ; b)
programming the first secure domain into the hardware
cryptographic engine , wherein programming includes stor
ing the first domain information in the first entry of the key
data structure ; and c) generating a cryptographic response
indicative of successful unwrapping of the first wrapped
blob .
(0128] In Example 18 , the non - transitory computer - read
able medium of Example 15 , wherein the plurality of logic
operations further comprises : a) performing an unwrap
operation to decrypt the first wrapped blob and generate the
first domain information ; and b) programming the first
secure domain into the hardware cryptographic engine ,
wherein programming includes storing the first domain
information in the target entry of the key data structure .
[0129] In Example 19 , the non - transitory computer - read
able medium of Example 15 , wherein the plurality of logic
operations further comprises : a) detecting a memory access
request to the second secure domain ; b) reading the second
wrapped blob from the system memory at a location corre
sponding to a domain identifier of the second secure domain ;
and c) responding to the second wrapped blob as a request
to program the second secure domain into the hardware
cryptographic engine .
[0130] In Example 20 , the non - transitory computer - read
able medium of Example 15 , wherein the key data structure
is to store multiple keys for corresponding multiple secure
domains , and wherein the determined region of the system
memory is indexed according to domain identifiers of
respective secure domains of the multiple secure domains .
[0131] Various implementations may have different com
binations of the structural features described above . For
instance , all optional features of the processors and methods
described above may also be implemented with respect to a

US 2020/0327241 A1 Oct. 15 , 2020
14

system described herein and specifics in the examples may
be used anywhere in one or more implementations .
[0132] Example 21 is a processor comprising : 1) means
for controller memory of a server ; 2) means for storing
multiple keys in a key data structure of a hardware crypto
graphic engine for corresponding multiple domains of the
server , each secure domain comprising a different workload
to be serviced by the server ; 3) means for receiving a request
to program a first secure domain into the hardware crypto
graphic engine , wherein the first secure domain comprises a
new workload to be serviced by the server , and wherein the
request comprises first domain information ; 4) means for
determining whether there is an entry in the key data
structure that is available ; and 5) in response to a determi
nation that the entry is available , means for storing the first
domain information in the entry of the key data structure .
[0133] In Example 22 , the processor of Example 21 ,
wherein the first domain information comprises a first key
and a first domain identifier for the first secure domain , and
wherein the multiple keys provide cryptographic isolation
between ones of the multiple secure domains .
[0134] In Example 23 , the processor of Example 21 ,
wherein the means for storing comprises a cache to store the
key data structure , and wherein the key data structure is
indexed according to cache lines of the cache , with a domain
identifier of a secure domain corresponding to a number
associated with the cache line .
[0135] In Example 24 , the processor of Example 21 ,
wherein in response to a determination that there is no entry
available in the key data structure , further comprising : 1)
means for selecting a second secure domain to be de
scheduled , wherein the second secure domain is indexed
within the key data structure at a second entry ; 2) means for
encrypting , with use of a platform key , second domain
information retrieved from the second entry for the second
secure domain , to generate a wrapped binary large object
(blob) ; and 3) means for storing the wrapped blob in a
determined region of system memory that is indexed accord
ing to a domain identifier of the second secure domain .
[0136] In Example 25 , the processor of Example 24 ,
further comprising means for storing the first domain infor
mation in the second entry of the key data structure .
[0137] In Example 26 , the processor of Example 24 ,
further comprising : 1) means for detecting a memory access
request to the second secure domain ; 2) means for reading
the wrapped blob from the system memory ; 3) means for
decrypting the wrapped blob , to generate the second domain
information ; and 4) means for responding to the second
domain information as a request to program the second
secure domain into the hardware cryptographic engine .
[0138] In Example 27 , the processor of Example 24 ,
wherein upon boot of the server , means for storing , within
a range register , reservation information to reserve the
determined region of the system memory for hardware , and
wherein the reservation information is utilized to program
the hardware cryptographic engine .
[0139] Various implementations may have different com
binations of the structural features described above . For
instance , all optional features of the processors and methods
described above may also be implemented with respect to a
system described herein and specifics in the examples may
be used anywhere in one or more implementations .
[0140] Example 28 is a method comprising : 1) storing , by
a processing device of a server computing system , multiple

keys in a key data structure of a hardware cryptographic
engine , the multiple keys corresponding to multiple secure
domains ; 2) receiving , using the processing device , a request
to program a first secure domain into the hardware crypto
graphic engine , wherein the request comprises first domain
information within a first wrapped binary large object
(blob) ; and 3) in response to receipt of the request and to a
determination that there is no available entry in the key data
structure , the processing device : a) selecting a second secure
domain to be de - scheduled , wherein the second secure
domain is indexed within the key data structure at a target
entry ; b) issuing a read key command to read second domain
information from the target entry of the key data structure ;
c) encrypting , with use of a platform key , the second domain
information retrieved from the target entry for the second
secure domain , to generate a second wrapped blob ; and d)
storing the second wrapped blob in a determined region of
system memory .
[0141] In Example 29 , the method of Example 28 , wherein
the first domain information comprises a first key and a first
domain identifier for the first secure domain , and wherein
the multiple keys provide cryptographic isolation between
ones of the multiple secure domains .
[0142] In Example 30 , the method of Example 28 , wherein
in response to the request and to a first entry in the key data
structure being available , the method further comprising : 1)
performing an unwrap operation to decrypt the first wrapped
blob and generate the first domain information ; 2) program
ming the first secure domain into the hardware crypto
graphic engine , wherein to program includes to store the first
domain information in the first entry of the key data struc
ture ; and 3) generating a cryptographic response indicative
of a successful unwrap of the first wrapped blob .
[0143] In Example 31 , the method of Example 28 , further
comprising : 1) performing an unwrap operation to decrypt
the first wrapped blob and generate the first domain infor
mation ; and 2) programming the first secure domain into the
hardware cryptographic engine , wherein to program
includes to store the first domain information in the target
entry of the key data structure .
[0144] In Example 32 , the method of Example 28 , further
comprising : 1) detecting a memory access request to the
second secure domain ; 2) reading the second wrapped blob
from the system memory at a location corresponding to a
domain identifier of the second secure domain ; and 3)
responding to the second wrapped blob as a request to
program the second secure domain into the hardware cryp
tographic engine .
[0145] In Example 33 , the method of Example 28 , further
comprising indexing the determined region of the system
memory according to domain identifiers of respective secure
domains of the multiple secure domains .
[0146] In Example 34 , the method of Example 28 , further
comprising , upon boot of the server computing system ,
storing by a basic input / output system (BIOS) , within a
range register , reservation information to reserve the deter
mined region of the system memory for hardware that
depends on a number of the multiple secure domains , and
wherein the reservation information is utilized to program
the hardware cryptographic engine .
[0147] While the disclosure has been described with
respect to a limited number of implementations , those
skilled in the art will appreciate numerous modifications and
variations therefrom . It is intended that the appended claims

US 2020/0327241 A1 Oct. 15 , 2020
15

cover all such modifications and variations as fall within the
true spirit and scope of this disclosure .
[0148] In the description herein , numerous specific details
are set forth , such as examples of specific types of proces
sors and system configurations , specific hardware structures ,
specific architectural and micro architectural details , specific
register configurations , specific instruction types , specific
system components , specific measurements / heights , specific
processor pipeline stages and operation etc. in order to
provide a thorough understanding of the disclosure . It will
be apparent , however , to one skilled in the art that these
specific details need not be employed to practice the disclo
sure . In other instances , well known components or meth
ods , such as specific and alternative processor architectures ,
specific logic circuits / code for described algorithms , specific
firmware code , specific interconnect operation , specific
logic configurations , specific manufacturing techniques and
materials , specific compiler implementations , specific
expression of algorithms in code , specific power down and
gating techniques / logic and other specific operational details
of a computer system have not been described in detail in
order to avoid unnecessarily obscuring the disclosure .
[0149] The implementations are described with reference
to determining validity of data in cache lines of a sector
based cache in specific integrated circuits , such as in com
puting platforms or microprocessors . The implementations
may also be applicable to other types of integrated circuits
and programmable logic devices . For example , the disclosed
implementations are not limited to desktop computer sys
tems or portable computers , such as the Intel® UltrabooksTM
computers . And may be also used in other devices , such as
handheld devices , tablets , other thin notebooks , systems on
a chip (SOC) devices , and embedded applications . Some
examples of handheld devices include cellular phones , Inter
net protocol devices , digital cameras , personal digital assis
tants (PDAs) , and handheld PCs . Embedded applications
typically include a microcontroller , a digital signal processor
(DSP) , a system on a chip , network computers (NetPC) ,
set - top boxes , network hubs , wide area network (WAN)
switches , or any other system that can perform the functions
and operations taught below . It is described that the system
can be any kind of computer or embedded system . The
disclosed implementations may especially be used for low
end devices , like wearable devices (e.g. , watches) , electronic
implants , sensory and control infrastructure devices , con
trollers , supervisory control and data acquisition (SCADA)
systems , or the like . Moreover , the apparatuses , methods ,
and systems described herein are not limited to physical
computing devices , but may also relate to software optimi
zations for energy conservation and efficiency . As will
become readily apparent in the description below , the imple
mentations of methods , apparatuses , and systems described
herein (whether in reference to hardware , firmware , soft
ware , or a combination thereof) are vital to a “ green tech
nology ' future balanced with performance considerations .
[0150] Although the implementations herein are described
with reference to a processor , other implementations are
applicable to other types of integrated circuits and logic
devices . Similar techniques and teachings of implementa
tions of the disclosure can be applied to other types of
circuits or semiconductor devices that can benefit from
higher pipeline throughput and improved performance . The
teachings of implementations of the disclosure are appli
cable to any processor or machine that performs data

manipulations . However , the disclosure is not limited to
processors or machines that perform 512 bit , 256 bit , 128 bit ,
64 bit , 32 bit , or 16 bit data operations and can be applied
to any processor and machine in which manipulation or
management of data is performed . In addition , the descrip
tion herein provides examples , and the accompanying draw
ings show various examples for the purposes of illustration .
However , these examples should not be construed in a
limiting sense as they are merely intended to provide
examples of implementations of the disclosure rather than to
provide an exhaustive list of all possible implementations of
implementations of the disclosure .
[0151] Although the above examples describe instruction
handling and distribution in the context of execution units
and logic circuits , other implementations of the disclosure
can be accomplished by way of a data or instructions stored
on a machine - readable , tangible medium , which when per
formed by a machine cause the machine to perform func
tions consistent with at least one implementation of the
disclosure . In one implementation , functions associated with
implementations of the disclosure are embodied in machine
executable instructions . The instructions can be used to
cause a general - purpose or special - purpose processor that is
programmed with the instructions to perform the steps of the
disclosure . Implementations of the disclosure may be pro
vided as a computer program product or software which may
include a machine or computer - readable medium having
stored thereon instructions which may be used to program a
computer (or other electronic devices) to perform one or
more operations according to implementations of the dis
closure . Alternatively , operations of implementations of the
disclosure might be performed by specific hardware com
ponents that contain fixed - function logic for performing the
operations , or by any combination of programmed computer
components and fixed - function hardware components .
[0152] Instructions used to program logic to perform
implementations of the disclosure can be stored within a
memory in the system , such as DRAM , cache , flash
memory , or other storage . Furthermore , the instructions can
be distributed via a network or by way of other compute
readable media . Thus a machine - readable medium may
include any mechanism for storing or transmitting informa
tion in a form readable by a machine (e.g. , a computer) , but
is not limited to , floppy diskettes , optical disks , Compact
Disc , Read - Only Memory (CD - ROMs) , and magneto - opti
cal disks , Read - Only Memory (ROMs) , Random Access
Memory (RAM) , Erasable Programmable Read - Only
Memory (EPROM) , Electrically Erasable Programmable
Read - Only Memory (EEPROM) , magnetic or optical cards ,
flash memory , or a tangible , machine - readable storage used
in the transmission of information over the Internet via
electrical , optical , acoustical or other forms of propagated
signals (e.g. , carrier waves , infrared signals , digital signals ,
etc.) . Accordingly , the computer - readable medium includes
any type of tangible machine - readable medium suitable for
storing or transmitting electronic instructions or information
in a form readable by a machine (e.g. , a computer) .
[0153] A design may go through various stages , from
creation to simulation to fabrication . Data representing a
design may represent the design in a number of manners .
First , as is useful in simulations , the hardware may be
represented using a hardware description language or
another functional description language . Additionally , a cir
cuit level model with logic and / or transistor gates may be

US 2020/0327241 A1 Oct. 15 , 2020
16

produced at some stages of the design process . Furthermore ,
most designs , at some stage , reach a level of data represent
ing the physical placement of various devices in the hard
ware model . In the case where conventional semiconductor
fabrication techniques are used , the data representing the
hardware model may be the data specifying the presence or
absence of various features on different mask layers for
masks used to produce the integrated circuit . In any repre
sentation of the design , the data may be stored in any form
of a machine readable medium . A memory or a magnetic or
optical storage such as a disc may be the machine readable
medium to store information transmitted via optical or
electrical wave modulated or otherwise generated to trans
mit such information . When an electrical carrier wave
indicating or carrying the code or design is transmitted , to
the extent that copying , buffering , or re - transmission of the
electrical signal is performed , a new copy is made . Thus , a
communication provider or a network provider may store on
a tangible , machine - readable medium , at least temporarily ,
an article , such as information encoded into a carrier wave ,
embodying techniques of implementations of the disclosure .
[0154] A module as used herein refers to any combination
of hardware , software , and / or firmware . As an example , a
module includes hardware , such as a micro - controller , asso
ciated with a non - transitory medium to store code adapted to
be executed by the micro - controller . Therefore , reference to
a module , in one implementation , refers to the hardware ,
which is specifically configured to recognize and / or execute
the code to be held on a non - transitory medium . Further
more , in another implementation , use of a module refers to
the non - transitory medium including the code , which is
specifically adapted to be executed by the microcontroller to
perform predetermined operations . And as can be inferred ,
in yet another implementation , the term module (in this
example) may refer to the combination of the microcon
troller and the non - transitory medium . Often module bound
aries that are illustrated as separate commonly vary and
potentially overlap . For example , a first and a second
module may share hardware , software , firmware , or a com
bination thereof , while potentially retaining some indepen
dent hardware , software , or firmware . In one implementa
tion , use of the term logic includes hardware , such as
transistors , registers , or other hardware , such as program
mable logic devices .
(0155] Use of the phrase " configured to , ' in one imple
mentation , refers to arranging , putting together , manufac
turing , offering to sell , importing and / or designing an appa
ratus , hardware , logic , or element to perform a designated or
determined task . In this example , an apparatus or element
thereof that is not operating is still ‘ configured to perform
a designated task if it is designed , coupled , and / or intercon
nected to perform said designated task . As a purely illustra
tive example , a logic gate may provide a 0 or a 1 during
operation . But a logic gate configured to provide an enable
signal to a clock does not include every potential logic gate
that may provide a 1 or 0. Instead , the logic gate is one
coupled in some manner that during operation the 1 or 0
output is to enable the clock . Note once again that use of the
term ' configured to ’ does not require operation , but instead
focus on the latent state of an apparatus , hardware , and / or
element , where in the latent state the apparatus , hardware ,
and / or element is designed to perform a particular task when
the apparatus , hardware , and / or element is operating .

[0156] Furthermore , use of the phrases “ to , ' ' capable
of / to , ' and / or ‘ operable to , ' in one implementation , refers to
some apparatus , logic , hardware , and / or element designed in
such a way to enable use of the apparatus , logic , hardware ,
and / or element in a specified manner . Note as above that use
of “ to , ' “ capable to , ' or ' operable to , ' in one implementation ,
refers to the latent state of an apparatus , logic , hardware ,
and / or element , where the apparatus , logic , hardware , and / or
element is not operating but is designed in such a manner to
enable use of an apparatus in a specified manner .
[0157] A value , as used herein , includes any known rep
resentation of a number , a state , a logical state , or a binary
logical state . Often , the use of logic levels , logic values , or
logical values is also referred to as l’s and O's , which simply
represents binary logic states . For example , a 1 refers to a
high logic level and 0 refers to a low logic level . In one
implementation , a storage cell , such as a transistor or flash
cell , may be capable of holding a single logical value or
multiple logical values . However , other representations of
values in computer systems have been used . For example the
decimal number ten may also be represented as a binary
value of 1010 and a hexadecimal letter A. Therefore , a value
includes any representation of information capable of being
held in a computer system .
[0158] Moreover , states may be represented by values or
portions of values . As an example , a first value , such as a
logical one , may represent a default or initial state , while a
second value , such as a logical zero , may represent a
non - default state . In addition , the terms reset and set , in one
implementation , refer to a default and an updated value or
state , respectively . For example , a default value potentially
includes a high logical value , i.e. reset , while an updated
value potentially includes a low logical value , i.e. set . Note
that any combination of values may be utilized to represent
any number of states .
[0159] The implementations of methods , hardware , soft
ware , firmware or code set forth above may be implemented
via instructions or code stored on a machine - accessible ,
machine readable , computer accessible , or computer read
able medium which are executable by a processing element .
A non - transitory machine - accessible / readable medium
includes any mechanism that provides (i.e. , stores and / or
transmits) information in a form readable by a machine , such
as a computer or electronic system . For example , a non
transitory machine - accessible medium includes random - ac
cess memory (RAM) , such as static RAM (SRAM) or
dynamic RAM (DRAM) ; ROM ; magnetic or optical storage
medium ; flash memory devices , electrical storage devices ;
optical storage devices ; acoustical storage devices ; other
form of storage devices for holding information received
from transitory (propagated) signals (e.g. , carrier waves ,
infrared signals , digital signals) ; etc. , which are to be dis
tinguished from the non - transitory mediums that may
receive information there from .
[0160] Instructions used to program logic to perform
implementations of the disclosure may be stored within a
memory in the system , such as DRAM , cache , flash
memory , or other storage . Furthermore , the instructions can
be distributed via a network or by way of other computer
readable media . Thus a machine - readable medium may
include any mechanism for storing or transmitting informa
tion in a form readable by a machine (e.g. , a computer) , but
is not limited to , floppy diskettes , optical disks , Compact
Disc , Read - Only Memory (CD - ROMs) , and magneto - opti

US 2020/0327241 A1 Oct. 15 , 2020
17

cal disks , Read - Only Memory (ROMs) , Random Access
Memory (RAM) , Erasable Programmable Read - Only
Memory (EPROM) , Electrically Erasable Programmable
Read - Only Memory (EEPROM) , magnetic or optical cards ,
flash memory , or a tangible , machine - readable storage used
in the transmission of information over the Internet via
electrical , optical , acoustical or other forms of propagated
signals (e.g. , carrier waves , infrared signals , digital signals ,
etc.) . Accordingly , the computer - readable medium includes
any type of tangible machine - readable medium suitable for
storing or transmitting electronic instructions or information
in a form readable by a machine (e.g. , a computer)
[0161] Reference throughout this specification to " one
implementation ” or “ an implementation ” means that a par
ticular feature , structure , or characteristic described in con
nection with the implementation is included in at least one
implementation of the disclosure . Thus , the appearances of
the phrases in one implementation ” or “ in an implementa
tion ” in various places throughout this specification are not
necessarily all referring to the same implementation . Fur
thermore , the particular features , structures , or characteris
tics may be combined in any suitable manner in one or more implementations .
[0162] In the foregoing specification , a detailed descrip
tion has been given with reference to specific exemplary
implementations . It will , however , be evident that various
modifications and changes may be made thereto without
departing from the broader spirit and scope of the disclosure
as set forth in the appended claims . The specification and
drawings are , accordingly , to be regarded in an illustrative
sense rather than a restrictive sense . Furthermore , the fore
going use of implementation and other exemplarily language
does not necessarily refer to the same implementation or the
same example , but may refer to different and distinct imple
mentations , as well as potentially the same implementation .
[0163] Some portions of the detailed description are pre
sented in terms of algorithms and symbolic representations
of operations on data bits within a computer memory . These
algorithmic descriptions and representations are the means
used by those skilled in the data processing arts to most
effectively convey the substance of their work to others
skilled in the art . An algorithm is , here and generally ,
conceived to be a self - consistent sequence of operations
leading to a desired result . The operations are those requir
ing physical manipulations of physical quantities . Usually ,
though not necessarily , these quantities take the form of
electrical or magnetic signals capable of being stored , trans
ferred , combined , compared and otherwise manipulated . It
has proven convenient at times , principally for reasons of
common usage , to refer to these signals as bits , values ,
elements , symbols , characters , terms , numbers or the like .
The blocks described herein can be hardware , software ,
firmware or a combination thereof .
[0164] It should be borne in mind , however , that all of
these and similar terms are to be associated with the appro
priate physical quantities and are merely convenient labels
applied to these quantities . Unless specifically stated other
wise as apparent from the above discussion , it is appreciated
that throughout the description , discussions utilizing terms
such as “ defining , " “ receiving , " " determining , " " issuing , "
" linking , ” “ associating , " " obtaining , " " authenticating , "
“ prohibiting , ” “ executing , ” “ requesting , " " communicating , "
or the like , refer to the actions and processes of a computing
system , or similar electronic computing device , that manipu

lates and transforms data represented as physical (e.g. ,
electronic) quantities within the computing system's regis
ters and memories into other data similarly represented as
physical quantities within the computing system memories
or registers or other such information storage , transmission
or display devices .
[0165] The words “ example ” or “ exemplary ” are used
herein to mean serving as an example , instance or illustra
tion . Any aspect or design described herein as " example ” or
" exemplary ” is not necessarily to be construed as preferred
or advantageous over other aspects or designs . Rather , use of
the words “ example ” or “ exemplary ” is intended to present
concepts in a concrete fashion . As used in this application ,
the term “ or ” is intended to mean an inclusive “ or ” rather
than an exclusive “ or . ” That is , unless specified otherwise , or
clear from context , “ X includes A or B ” is intended to mean
any of the natural inclusive permutations . That is , if X
includes A ; X includes B ; or X includes both A and B , then
“ X includes A or B ” is satisfied under any of the foregoing
instances . In addition , the articles “ a ” and “ an ” as used in
this application and the appended claims should generally be
construed to mean “ one or more ” unless specified otherwise
or clear from context to be directed to a singular form .
Moreover , use of the term “ an implementation ” or “ one
implementation ” or “ an implementation ” or “ one implemen
tation ” throughout is not intended to mean the same imple
mentation or implementation unless described as such . Also ,
the terms “ first , ” “ second , ” “ third , ” “ fourth , ” etc. as used
herein are meant as labels to distinguish among different
elements and may not necessarily have an ordinal meaning
according to their numerical designation .
What is claimed is :
1. An apparatus comprising :
a memory controller of a system ; and
hardware cryptographic circuitry comprising storage to

store a key data structure , wherein the key data struc
ture is to store a plurality of keys for a corresponding
plurality of secure domains , wherein the hardware
cryptographic circuitry is to :
receive a request to program a first secure domain ,

wherein the first secure domain comprises a new
workload for the system , and wherein the request
comprises first domain information ;

when an entry at a storage location of the key data
structure is available to be written , store the first
domain information in the entry at the storage loca
tion of the key data structure ,

when no entry is available to be written :
select a second secure domain to be de - scheduled ,

wherein the second secure domain is indexed
within the key data structure at a second entry ,

encrypt second domain information retrieved from
the second entry for the second secure domain to
generate a wrapped binary large object (blob) , and

store the wrapped blob in a determined region of
system memory that is indexed according to a
domain identifier of the second secure domain .

2. The apparatus of claim 1 , wherein the first domain
information comprises a first key and a first domain identi
fier for the first secure domain , and wherein the plurality of
keys provide cryptographic isolation between the plurality
of secure domains .

US 2020/0327241 A1 Oct. 15 , 2020
18

3. The apparatus of claim 1 , wherein the key data structure
is indexed according to cache lines of a cache , with a domain
identifier of a secure domain corresponding to a number
associated with a cache line .

4. The apparatus of claim 1 , wherein the storage is a cache
and the storage location of the key data structure is a cache
line .

5. The apparatus of claim 1 , wherein , when no entry is
available to be written , the hardware cryptographic circuitry
is further to store the first domain information in the second
entry of the key data structure .

6. The apparatus of claim 1 , wherein the hardware cryp
tographic circuitry is further to :

detect a memory access request to the second secure
domain ;

read the wrapped blob from the system memory ;
decrypt the wrapped blob to generate the second domain

information , and
respond to the second domain information as a request to
program the second secure domain into the hardware
cryptographic engine .

7. The apparatus of claim 1 , wherein upon boot of the
system , a basic input / output system (BIOS) is to store ,
within a range register , reservation information to reserve
the determined region of the system memory for hardware ,
and wherein the reservation information is utilized to pro
gram the hardware cryptographic circuitry .

8. A computing system comprising :
a memory ; and
a processing core comprising storage to store a key data

structure , wherein the key data structure is to store a
plurality of keys for a plurality of secure domains ,
wherein the processing core is to execute instructions
to :
receive a request to program a secure domain of the

plurality of secure domains , wherein first secure
domain comprises a new workload to be serviced by
the computing system , and wherein the request com
prises a wrapped binary large object (blob) ,

decrypt the wrapped blob to generate domain informa
tion , and

store the domain information in the key data structure .
9. The computing system of claim 8 , wherein the domain

information comprises a first key and a first domain identi
fier for the secure domain , and wherein the plurality of keys
provide cryptographic isolation between the plurality of
secure domains .

10. The computing system of claim 8 , wherein processing
core is to further execute instructions to :

determine whether an entry of the key data structure is
available to be written to ;

when no entry of the key data structure is available to be
written :
select a second secure domain of the plurality of secure

domains to be de - scheduled ,
generate a second wrapped blob based on second

domain information retrieved for the second secure
domain ,

store the second wrapped blob in a determined region
of memory that is indexed according to a domain
identifier of the second secure domain , and

store the domain information in a target entry of the key
data structure available based the selection of the
second secure domain to be de - scheduled .

11. The computing system of claim 10 , wherein the
second domain information is encrypted prior to generating
the second wrapped blob .

12. The computing system of claim 10 , wherein the
second secure domain is indexed within the key data struc
ture at a second entry .

13. The computing system of claim 10 , wherein the
processing core is further to :

detect a memory access request to the second secure
domain ;

read the second wrapped blob from the memory ;
decrypt the second wrapped blob to generate the second

domain information ; and
respond to the second domain information as a request to

program the second secure domain into the hardware
cryptographic circuitry .

14. A computer - implemented method comprising :
receiving a request to program a first secure domain of a

plurality of secure domains in a system , wherein the
request comprises first domain information ;

when an entry at a storage location of a key data structure
is available to be written , store the first domain infor
mation in the entry of the key data structure , wherein
the key data structure is to store a plurality of keys for
the plurality of secure domains ,

when no entry is available to be written :
select a second secure domain of the plurality of secure

domains to be de - scheduled , wherein the second
secure domain is indexed within the key data struc
ture at a second entry ,

encrypt second domain information retrieved from the
second entry for the second secure domain , to gen
erate a wrapped binary large object (blob) , and

store the wrapped blob in a determined region of
system memory that is indexed according to a
domain identifier of the second secure domain .

15. The computer - implemented method of claim 14 ,
wherein the first domain information comprises a first key
and a first domain identifier for the first secure domain , and
wherein the plurality of keys provide cryptographic isolation
between the plurality of secure domains .

16. The computer - implemented method of claim 14 ,
wherein the key data structure is indexed according to cache
lines of a cache , wherein a domain identifier of a secure
domain corresponds to a number associated with a cache
line .

17. The computer - implemented method of claim 14 , fur
ther comprising :

storing the first domain information in the second entry of
the key data structure .

18. The computer - implemented method of claim 14 , fur
ther comprising :

detecting a memory access request to the second secure
domain ;

reading the wrapped blob from the system memory ;
decrypting the wrapped blob to generate the second

domain information ; and
responding to the second domain information as a request

to program the second secure domain into the hardware
cryptographic engine .

19. The computer - implemented method of claim 14 ,
wherein the second domain information is encrypted prior to
generating the second wrapped blob .

US 2020/0327241 A1 Oct. 15 , 2020
19

20. The computer - implemented method of claim 14 , fur
ther comprising storing reservation information to reserve
the determined region of the system memory .

