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US 2022/0159307 Al

SYSTEM AND METHOD FOR VIDEO
CODING

BACKGROUND

Technical Field

[0001] This disclosure relates to video coding, and par-
ticularly to video encoding and decoding systems, compo-
nents, and methods in video coding and decoding, such as
for performing a CCALF (cross component adaptive loop
filtering) process.

Description of the Related Art

[0002] With advancements in video coding technology,
from H.261 and MPEG-1 to H.264/AVC (Advanced Video
Coding), MPEG-LA, H.265/HEVC (High Efficiency Video
Coding) and H.266/VVC (Versatile Video Codec), there
remains a constant need to provide improvements and
optimizations to the video coding technology to process an
ever-increasing amount of digital video data in various
applications. This disclosure relates to further advance-
ments, improvements and optimizations in video coding,
particularly in a CCALF (cross component adaptive loop
filtering) process.

BRIEF SUMMARY

[0003] According to one aspect, an encoder is provided
which includes circuitry and memory coupled to the cir-
cuitry. The circuitry, in response to a first reconstructed
image sample being located outside a virtual boundary,
duplicates a reconstructed sample located inside and adja-
cent to the virtual boundary to generate the first recon-
structed image sample. The circuitry generates a first coef-
ficient value by applying a CCALF (cross component
adaptive loop filtering) process to the first reconstructed
image sample of a luma component. The circuitry generates
a second coeflicient value by applying an ALF (adaptive
loop filtering) process to a second reconstructed image
sample of a chroma component. The circuitry generates a
third coefficient value by adding the first coefficient value to
the second coeflicient value, and encodes a third recon-
structed image sample of the chroma component using the
third coefficient value.

[0004] According to a further aspect, the first recon-
structed image sample is located adjacent to the second
reconstructed image sample.

[0005] According to another aspect, the circuitry, in opera-
tion, sets the first coeflicient value to zero in response to the
first coeflicient value being less than 64.

[0006] According to another aspect, an encoder is pro-
vided which includes: a block splitter, which, in operation,
splits a first image into a plurality of blocks; an intra
predictor, which, in operation, predicts blocks included in
the first image, using reference blocks included in the first
image; an inter predictor, which, in operation, predicts
blocks included in the first image, using reference blocks
included in a second image different from the first image; a
loop filter, which, in operation, filters blocks included in the
first image; a transformer, which, in operation, transforms a
prediction error between an original signal and a prediction
signal generated by the intra predictor or the inter predictor,
to generate transform coeflicients; a quantizer, which, in
operation, quantizes the transform coefficients to generate
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quantized coefficients; and an entropy encoder, which, in
operation, variably encodes the quantized coeflicients to
generate an encoded bitstream including the encoded quan-
tized coefficients and control information. The loop filter
performs the following:

[0007] in response to a first reconstructed image sample
being located outside a virtual boundary, duplicating a
reconstructed sample located inside and adjacent to the
virtual boundary to generate the first reconstructed image
sample;

[0008] generating a first coefficient value by applying a
CCALF (cross component adaptive loop filtering) process to
the first reconstructed image sample of a luma component;
[0009] generating a second coefficient value by applying
an ALF (adaptive loop filtering) process to a second recon-
structed image sample of a chroma component;

[0010] generating a third coefficient value by adding the
first coeflicient value to the second coeflicient value, and
[0011] encoding a third reconstructed image sample of the
chroma component using the third coefficient value.
[0012] According to a further aspect, a decoder is provided
which includes circuitry and memory coupled to the cir-
cuitry. The circuitry, in response to a first reconstructed
image sample being located outside a virtual boundary,
duplicates a reconstructed sample located inside and adja-
cent to the virtual boundary to generate the first recon-
structed image sample. The circuitry generates a first coef-
ficient value by applying a CCALF (cross component
adaptive loop filtering) process to the first reconstructed
image sample of a luma component. The circuitry generates
a second coeflicient value by applying an ALF (adaptive
loop filtering) process to a second reconstructed image
sample of a chroma component. The circuitry generates a
third coefficient value by adding the first coefficient value to
the second coeflicient value, and decodes a third recon-
structed image sample of the chroma component using the
third coefficient value.

[0013] According to another aspect, a decoding apparatus
is provided which includes: a decoder, which, in operation,
decodes an encoded bitstream to output quantized coeffi-
cients; an inverse quantizer, which, in operation, inverse
quantizes the quantized coefficients to output transform
coeflicients; an inverse transformer, which, in operation,
inverse transforms the transform coefficients to output a
prediction error; an intra predictor, which, in operation,
predicts blocks included in a first image, using a reference
blocks included in the first image; an inter predictor, which,
in operation, predicts blocks included in the first image,
using reference blocks included in a second image different
from the first image; a loop filter, which, in operation, filters
blocks included in the first image; and an output, which, in
operation, outputs a picture including the first image. The
loop filter performs the following:

[0014] in response to a first reconstructed image sample
being located outside a virtual boundary, duplicating a
reconstructed sample located inside and adjacent to the
virtual boundary to generate the first reconstructed image
sample;

[0015] generating a first coeflicient value by applying a
CCALF (cross component adaptive loop filtering) process to
the first reconstructed image sample of a luma component;
[0016] generating a second coefficient value by applying
an ALF (adaptive loop filtering) process to a second recon-
structed image sample of a chroma component;
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[0017] generating a third coeflicient value by adding the
first coeflicient value to the second coeflicient value, and
[0018] decoding a third reconstructed image sample of the
chroma component using the third coefficient value.
[0019] According to another aspect, an encoding method
is provided, which includes:

[0020] in response to a first reconstructed image sample
being located outside a virtual boundary, duplicating a
reconstructed sample located inside and adjacent to the
virtual boundary to generate the first reconstructed image
sample;

[0021] generating a first coeflicient value by applying a
CCALF (cross component adaptive loop filtering) process to
the first reconstructed image sample of a luma component;
[0022] generating a second coefficient value by applying
an ALF (adaptive loop filtering) process to a second recon-
structed image sample of a chroma component;

[0023] generating a third coefficient value by adding the
first coeflicient value to the second coeflicient value, and
[0024] encoding a third reconstructed image sample of the
chroma component using the third coefficient value.
[0025] According to a further aspect, a decoding method
is provided, which includes:

[0026] in response to a first reconstructed image sample
being located outside a virtual boundary, duplicating a
reconstructed sample located inside and adjacent to the
virtual boundary to generate the first reconstructed image
sample;

[0027] generating a first coeflicient value by applying a
CCALF (cross component adaptive loop filtering) process to
the first reconstructed image sample of a luma component;
[0028] generating a second coefficient value by applying
an ALF (adaptive loop filtering) process to a second recon-
structed image sample of a chroma component;

[0029] generating a third coeflicient value by adding the
first coeflicient value to the second coeflicient value, and
[0030] decoding a third reconstructed image sample of the
chroma component using the third coefficient value.
[0031] In video coding technology, it is desirable to pro-
pose new methods in order to improve coding efficiency,
enhance image quality, and reduce circuit scale. Some
implementations of embodiments of the present disclosure,
including constituent elements of embodiments of the pres-
ent disclosure considered alone or in various combinations,
may facilitate one or more of the following: improvement in
coding efficiency, enhancement in image quality, reduction
in utilization of processing resources associated with encod-
ing/decoding, reduction in circuit scale, improvement in
processing speed of encoding/decoding, etc.

[0032] In addition, some implementations of embodi-
ments of the present disclosure, including constituent ele-
ments of embodiments of the present disclosure considered
alone or in various combinations, may facilitate, in encoding
and decoding, appropriate selection of one or more ele-
ments, such as a filter, a block, a size, a motion vector, a
reference picture, a reference block or an operation. It is to
be noted that the present disclosure includes disclosure
regarding configurations and methods which may provide
advantages other than the above-described advantages.
Examples of such configurations and methods include a
configuration or method for improving coding efficiency
while reducing an increase in the use of processing
resources.
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[0033] Additional benefits and advantages of the disclosed
embodiments will become apparent from the specification
and drawings. The benefits and/or advantages may be indi-
vidually obtained by the various embodiments and features
of the specification and drawings, not all of which need to
be provided in order to obtain one or more of such benefits
and/or advantages.

[0034] It should be noted that general or specific embodi-
ments may be implemented as a system, a method, an
integrated circuit, a computer program, a storage medium, or
any selective combination thereof.

BRIEF DESCRIPTION OF DRAWINGS

[0035] FIG. 1 is a schematic diagram illustrating one
example of a configuration of a transmission system accord-
ing to an embodiment.

[0036] FIG. 2 is a conceptual diagram for illustrating one
example of a hierarchical structure of data in a stream.
[0037] FIG. 3 is a conceptual diagram for illustrating one
example of a slice configuration.

[0038] FIG. 4 is a conceptual diagram for illustrating one
example of a tile configuration.

[0039] FIG. 5 is a conceptual diagram for illustrating one
example of an encoding structure in scalable encoding.
[0040] FIG. 6 is a conceptual diagram for illustrating one
example of an encoding structure in scalable encoding.
[0041] FIG. 7 is a block diagram illustrating a configura-
tion of an encoder according to an embodiment.

[0042] FIG. 8 is functional block diagram illustrating a
mounting example of the encoder.

[0043] FIG. 9 is a flow chart indicating one example of an
overall encoding process performed by the encoder.

[0044] FIG. 10 is a conceptual diagram for illustrating one
example of block splitting.

[0045] FIG. 11 is a block diagram illustrating one example
of'a configuration of a splitter according to an embodiment.
[0046] FIG. 12 is a conceptual diagram for illustrating
examples of splitting patterns.

[0047] FIG. 13A is a conceptual diagram for illustrating
one example of a syntax tree of a splitting pattern.

[0048] FIG. 13B is a conceptual diagram for illustrating
another example of a syntax tree of a splitting pattern.
[0049] FIG. 14 is a chart indicating example transform
basis functions for various transform types.

[0050] FIG. 15 is a conceptual diagram for illustrating
example spatially varying transforms (SVT).

[0051] FIG. 16 is a flow chart illustrating one example of
a process performed by a transformer.

[0052] FIG. 17 is a flow chart illustrating another example
of a process performed by the transformer.

[0053] FIG. 18 is a block diagram illustrating one example
of a configuration of a quantizer according to an embodi-
ment.

[0054] FIG. 19 is a flow chart illustrating one example of
quantization process performed by the quantizer.

[0055] FIG. 20 is a block diagram illustrating one example
of a configuration of an entropy encoder according to an
embodiment.

[0056] FIG. 21 is a conceptual diagram for illustrating an
example flow of a context-based adaptive binary arithmetic
coding (CABAC) process in the entropy encoder.

[0057] FIG. 22 is a block diagram illustrating one example
of'a configuration of loop filter according to an embodiment.
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[0058] FIG. 23A is a conceptual diagram for illustrating
one example of a filter shape used in an adaptive loop filter
(ALF).

[0059] FIG. 23B is a conceptual diagram for illustrating

another example of a filter shape used in an ALF.

[0060] FIG. 23C is a conceptual diagram for illustrating
another example of a filter shape used in an ALF.

[0061] FIG. 23D is a conceptual diagram for illustrating
an example flow of a cross component ALF (CC-ALF).
[0062] FIG.23E is a conceptual diagram for illustrating an
example of a filter shape used in a CC-ALF.

[0063] FIG.23F is a conceptual diagram for illustrating an
example flow of a Joint Chroma CCALF (JC-CCALF).
[0064] FIG. 23G is a table illustrating example weight
index candidates that may be employed in a JC-CCALF.
[0065] FIG. 24 is a block diagram indicating one example
of a specific configuration of a loop filter which functions as
a deblocking filter (DBF).

[0066] FIG. 25 is a conceptual diagram for illustrating an
example of a deblocking filter having a symmetrical filtering
characteristic with respect to a block boundary.

[0067] FIG. 26 is a conceptual diagram for illustrating a
block boundary on which a deblocking filter process is
performed.

[0068] FIG. 27 is a conceptual diagram for illustrating
examples of Boundary strength (Bs) values.

[0069] FIG. 28 is a flow chart illustrating one example of
a process performed by a predictor of the encoder.

[0070] FIG. 29 is a flow chart illustrating another example
of a process performed by the predictor of the encoder.
[0071] FIG. 30 is a flow chart illustrating another example
of a process performed by the predictor of the encoder.
[0072] FIG. 31 is a conceptual diagram for illustrating
sixty-seven intra prediction modes used in intra prediction in
an embodiment.

[0073] FIG. 32 is a flow chart illustrating one example of
a process performed by an intra predictor.

[0074] FIG. 33 is a conceptual diagram for illustrating
examples of reference pictures.

[0075] FIG. 34 is a conceptual diagram for illustrating
examples of reference picture lists.

[0076] FIG. 35 is a flow chart illustrating an example basic
processing flow of inter prediction.

[0077] FIG. 36 is a flow chart illustrating one example of
a process of derivation of motion vectors.

[0078] FIG. 37 is a flow chart illustrating another example
of a process of derivation of motion vectors.

[0079] FIG. 38A is conceptual diagram for illustrating
example characterizations of modes for MV derivation.
[0080] FIG. 38B is conceptual diagram for illustrating
example characterizations of modes for MV derivation.
[0081] FIG. 39 is a flow chart illustrating an example of a
process of inter prediction in normal inter mode.

[0082] FIG. 40 is a flow chart illustrating an example of a
process of inter prediction in normal merge mode.

[0083] FIG. 41 is a conceptual diagram for illustrating one
example of a motion vector derivation process in merge
mode.

[0084] FIG. 42 is a conceptual diagram for illustrating one
example of a MV derivation process for a current picture by
HMVP merge mode.

[0085] FIG. 43 is a flow chart illustrating one example of
a frame rate up conversion (FRUC) process.
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[0086] FIG. 44 is a conceptual diagram for illustrating one
example of pattern matching (bilateral matching) between
two blocks along a motion trajectory.

[0087] FIG. 45 is a conceptual diagram for illustrating one
example of pattern matching (template matching) between a
template in a current picture and a block in a reference
picture.

[0088] FIG. 46A is a conceptual diagram for illustrating
one example of deriving a motion vector of each sub-block
based on motion vectors of a plurality of neighboring blocks.
[0089] FIG. 46B is a conceptual diagram for illustrating
one example of deriving a motion vector of each sub-block
in affine mode in which three control points are used.
[0090] FIG. 47A is a conceptual diagram for illustrating an
example MV derivation at control points in an affine mode.
[0091] FIG. 47B is a conceptual diagram for illustrating an
example MV derivation at control points in an affine mode.
[0092] FIG. 47C is a conceptual diagram for illustrating an
example MV derivation at control points in an affine mode.
[0093] FIG. 48A is a conceptual diagram for illustrating an
affine mode in which two control points are used.

[0094] FIG. 48B is a conceptual diagram for illustrating an
affine mode in which three control points are used.

[0095] FIG. 49A is a conceptual diagram for illustrating
one example of a method for MV derivation at control points
when the number of control points for an encoded block and
the number of control points for a current block are different
from each other.

[0096] FIG. 49B is a conceptual diagram for illustrating
another example of a method for MV derivation at control
points when the number of control points for an encoded
block and the number of control points for a current block
are different from each other.

[0097] FIG. 50 is a flow chart illustrating one example of
a process in affine merge mode.

[0098] FIG. 51 is a flow chart illustrating one example of
a process in affine inter mode.

[0099] FIG. 52A is a conceptual diagram for illustrating
generation of two triangular prediction images.

[0100] FIG. 52B is a conceptual diagram for illustrating
examples of a first portion of a first partition which overlaps
with a second partition, and first and second sets of samples
which may be weighted as part of a correction process.
[0101] FIG. 52C is a conceptual diagram for illustrating a
first portion of a first partition, which is a portion of the first
partition that overlaps with a portion of an adjacent partition.
[0102] FIG. 53 is a flow chart illustrating one example of
a process in a triangle mode.

[0103] FIG. 54 is a conceptual diagram for illustrating one
example of an Advanced Temporal Motion Vector Predic-
tion (ATMVP) mode in which a MV is derived in units of a
sub-block.

[0104] FIG. 55 is a flow chart illustrating a relationship
between a merge mode and dynamic motion vector refresh-
ing (DMVR).

[0105] FIG. 56 is a conceptual diagram for illustrating one
example of DMVR.

[0106] FIG. 57 is a conceptual diagram for illustrating
another example of DMVR for determining a MV.

[0107] FIG. 58A is a conceptual diagram for illustrating
one example of motion estimation in DMVR.

[0108] FIG. 58B is a flow chart illustrating one example of
a process of motion estimation in DMVR.
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[0109] FIG. 59 is a flow chart illustrating one example of
a process of generation of a prediction image.

[0110] FIG. 60 is a flow chart illustrating another example
of a process of generation of a prediction image.

[0111] FIG. 61 is a flow chart illustrating one example of
a correction process of a prediction image by overlapped
block motion compensation (OBMC).

[0112] FIG. 62 is a conceptual diagram for illustrating one
example of a prediction image correction process by
OBMC.

[0113] FIG. 63 is a conceptual diagram for illustrating a
model assuming uniform linear motion.

[0114] FIG. 64 is a flow chart illustrating one example of
a process of inter prediction according to BIO.

[0115] FIG. 65 is a functional block diagram illustrating
one example of a configuration of an inter predictor which
may perform inter prediction according to BIO.

[0116] FIG. 66A is a conceptual diagram for illustrating
one example of process of a prediction image generation
method using a luminance correction process performed by
LIC.

[0117] FIG. 66B is a flow chart illustrating one example of
a process of prediction image generation method using the
LIC.

[0118] FIG. 67 is a block diagram illustrating a configu-
ration of a decoder according to an embodiment.

[0119] FIG. 68 is a functional block diagram illustrating a
mounting example of a decoder.

[0120] FIG. 69 is a flow chart illustrating one example of
an overall decoding process performed by the decoder.
[0121] FIG. 70 is a conceptual diagram for illustrating a
relationship between a splitting determiner and other con-
stituent elements.

[0122] FIG. 711is a block diagram illustrating one example
of a configuration of an entropy decoder.

[0123] FIG. 72 is a conceptual diagram for illustrating an
example flow of a CABAC process in the entropy decoder.
[0124] FIG. 73 is a block diagram illustrating one example
of a configuration of an inverse quantizer.

[0125] FIG. 74 is a flow chart illustrating one example of
a process of inverse quantization performed by the inverse
quantizer.

[0126] FIG. 75 is a flow chart illustrating one example of
a process performed by an inverse transformer.

[0127] FIG. 76 is a flow chart illustrating another example
of a process performed by the inverse transformer.

[0128] FIG. 77 is a block diagram illustrating one example
of a configuration of a loop filter.

[0129] FIG. 78 is a flow chart illustrating one example of
a process performed by a predictor of the decoder.

[0130] FIG. 79 is a flow chart illustrating another example
of a process performed by the predictor of the decoder.
[0131] FIG. 80A is a flow chart illustrating another
example of a process performed by the predictor of the
decoder.

[0132] FIG. 80B is a flow chart illustrating another
example of a process performed by the predictor of the
decoder.

[0133] FIG. 80C is a flow chart illustrating another
example of a process performed by the predictor of the
decoder.

[0134] FIG. 81 is a diagram illustrating one example of a
process performed by an intra predictor of the decoder.
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[0135] FIG. 82 is a flow chart illustrating one example of
a process of MV derivation in the decoder.

[0136] FIG. 83 is a flow chart illustrating another example
of a process of MV derivation in the decoder.

[0137] FIG. 84 is a flow chart illustrating an example of a
process of inter prediction by normal inter mode in the
decoder.

[0138] FIG. 85 is a flow chart illustrating an example of a
process of inter prediction by normal merge mode in the
decoder.

[0139] FIG. 86 is a flow chart illustrating an example of a
process of inter prediction by FRUC mode in the decoder.
[0140] FIG. 87 is a flow chart illustrating an example of a
process of inter prediction by affine merge mode in the
decoder.

[0141] FIG. 88 is a flow chart illustrating an example of a
process of inter prediction by affine inter mode in the
decoder.

[0142] FIG. 89 is a flow chart illustrating an example of a
process of inter prediction by triangle mode in the decoder.
[0143] FIG. 90 is a flow chart illustrating an example of a
process of motion estimation by DMVR in the decoder.
[0144] FIG. 91 is a flow chart illustrating one example
process of motion estimation by DMVR in the decoder.
[0145] FIG. 92 is a flow chart illustrating one example of
a process of generation of a prediction image in the decoder.
[0146] FIG. 93 is a flow chart illustrating another example
of a process of generation of a prediction image in the
decoder.

[0147] FIG. 94 is a flow chart illustrating an example of a
process of correction of a prediction image by OBMC in the
decoder.

[0148] FIG. 95 is a flow chart illustrating an example of a
process of correction of a prediction image by BIO in the
decoder.

[0149] FIG. 96 is a flow chart illustrating an example of a
process of correction of a prediction image by LIC in the
decoder.

[0150] FIG. 97 is a flow chart of a sample process flow of
decoding an image applying a CCALF (cross component
adaptive loop filtering) process according to a first aspect.
[0151] FIG. 98 is a block diagram illustrating a configu-
ration of an encoder and a decoder according to an embodi-
ment.

[0152] FIG. 99 is a block diagram illustrating a configu-
ration of an encoder and a decoder according to an embodi-
ment.

[0153] FIG. 100 is a block diagram illustrating a configu-
ration of an encoder and a decoder according to an embodi-
ment.

[0154] FIG. 101 is a block diagram illustrating a configu-
ration of an encoder and a decoder according to an embodi-
ment.

[0155] FIG. 102 is a flow chart of a sample process flow
of decoding an image applying a CCALF process according
to a second aspect.

[0156] FIG. 103 illustrates sample locations of clip param-
eters to be parsed from, for example, a VPS, APS, SPS, PPS,
slice header, CTU, or TU of a bitstream.

[0157] FIG. 104 illustrate examples of clip parameters.
[0158] FIG. 105 is a flow chart of a sample process flow
of decoding an image applying a CCALF process using a
filter coefficient according to a third aspect.
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[0159] FIG. 106 is conceptual diagram of example indi-
cating locations of filter coefficients to be used in a CCALF
process.

[0160] FIG. 107 is conceptual diagram of example indi-
cating locations of filter coefficients to be used in a CCALF
process.

[0161] FIG. 108 is conceptual diagram of example indi-
cating locations of filter coefficients to be used in a CCALF
process.

[0162] FIG. 109 is conceptual diagram of example indi-
cating locations of filter coefficients to be used in a CCALF
process.

[0163] FIG. 110 is conceptual diagram of example indi-
cating locations of filter coefficients to be used in a CCALF
process.

[0164] FIG. 111 is conceptual diagram of further example
indicating locations of filter coefficients to be used in a
CCALF process.

[0165] FIG. 112 is conceptual diagram of further example
indicating locations of filter coefficients to be used in a
CCALF process.

[0166] FIG. 113 is a block diagram illustrating a configu-
ration of a CCALF process performed by an encoder and a
decoder according to an embodiment.

[0167] FIG. 114 is a flow chart of a sample process flow
of decoding an image applying a CCALF process using a
filter selected from a plurality of filters according to a fourth
aspect.

[0168] FIG. 115 illustrates an example of a process flow of
selecting a filter.

[0169] FIG. 116 illustrates examples of filters.
[0170] FIG. 117 illustrates examples of filters.
[0171] FIG. 118 is a flow chart of a sample process flow

of decoding an image applying a CCALF process using a
parameter according to a fifth aspect.

[0172] FIG. 119 illustrates examples of the number of
coeflicients to be parsed from a bitstream.

[0173] FIG. 120 is a flow chart of a sample process flow
of decoding an image applying a CCALF process using a
parameter according to a sixth aspect.

[0174] FIG. 121 is a conceptual diagram illustrating
example of generating a CCALF value of a luma component
for a current chroma sample by calculating a weighted
average value of neighboring samples.

[0175] FIG. 122 is a conceptual diagram illustrating
example of generating a CCALF value of a luma component
for a current chroma sample by calculating a weighted
average value of neighboring samples.

[0176] FIG. 123 is a conceptual diagram illustrating
example of generating a CCALF value of a luma component
for a current chroma sample by calculating a weighted
average value of neighboring samples.

[0177] FIG. 124 is a conceptual diagram illustrating
example of generating a CCALF value of a luma component
for a current sample by calculating a weighted average value
of neighboring samples, wherein locations of neighboring
samples are determined adaptively to chroma type.

[0178] FIG. 125 is a conceptual diagram illustrating
example of generating a CCALF value of a luma component
for a current sample by calculating a weighted average value
of neighboring samples, wherein locations of neighboring
samples are determined adaptively to chroma type.
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[0179] FIG. 126 is a conceptual diagram illustrating
example of generating a CCALF value of a luma component
by applying a bit shift to an output value of weighting
calculation.

[0180] FIG. 127 is a conceptual diagram illustrating
example of generating a CCALF value of a luma component
by applying a bit shift to an output value of weighting
calculation.

[0181] FIG. 128 is a flow chart of a sample process flow
of decoding an image applying a CCALF process using a
parameter according to a seventh aspect.

[0182] FIG. 129 illustrates sample locations of one or
more parameters to be parsed from a bitstream.

[0183] FIG. 130 shows sample processes of retrieving the
one or more parameters.

[0184] FIG. 131 shows sample values of a second param-
eter.
[0185] FIG. 132 shows an example of parsing a second

parameter using arithmetic coding.

[0186] FIG. 133 is a conceptual diagram of a variation of
this embodiment applied to rectangular partitions and non-
rectangular partitions such as triangular partitions.

[0187] FIG. 134 is a flow chart of a sample process flow
of decoding an image applying a CCALF process using a
parameter according to an eight aspect.

[0188] FIG. 135 is a flow chart of a sample process flow
of decoding an image applying a CCALF process using a
parameter according to the eighth aspect.

[0189] FIG. 136 shows example locations of chroma
sample types 0 to 5.

[0190] FIG. 137 is a conceptual diagram illustrating
sample symmetric padding.

[0191] FIG. 138 is a conceptual diagram illustrating
sample symmetric padding.

[0192] FIG. 139 is a conceptual diagram illustrating
sample symmetric padding.

[0193] FIG. 140 is a conceptual diagram illustrating
sample non-symmetric padding.

[0194] FIG. 141 is a conceptual diagram illustrating
sample non-symmetric padding.

[0195] FIG. 142 is a conceptual diagram illustrating
sample non-symmetric padding.

[0196] FIG. 143 is a conceptual diagram illustrating
sample non-symmetric padding.

[0197] FIG. 144 is a conceptual diagram illustrating fur-
ther sample non-symmetric padding.

[0198] FIG. 145 is a conceptual diagram illustrating fur-
ther sample non-symmetric padding.

[0199] FIG. 146 is a conceptual diagram illustrating fur-
ther sample non-symmetric padding.

[0200] FIG. 147 is a conceptual diagram illustrating fur-
ther sample non-symmetric padding.

[0201] FIG. 148 is a conceptual diagram illustrating fur-
ther sample symmetric padding.

[0202] FIG. 149 is a conceptual diagram illustrating fur-
ther sample symmetric padding.

[0203] FIG. 150 is a conceptual diagram illustrating fur-
ther sample symmetric padding.

[0204] FIG. 151 is a conceptual diagram illustrating fur-
ther sample non-symmetric padding.

[0205] FIG. 152 is a conceptual diagram illustrating fur-
ther sample non-symmetric padding.

[0206] FIG. 153 is a conceptual diagram illustrating fur-
ther sample non-symmetric padding.
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[0207] FIG. 154 is a conceptual diagram illustrating fur-
ther sample non-symmetric padding.

[0208] FIG. 155 illustrates further examples of padding
with a horizontal and vertical virtual boundary.

[0209] FIG. 156 is a block diagram illustrating a configu-
ration of an encoder and a decoder according to an example
where symmetric padding is used on virtual boundary loca-
tions for an ALF and either symmetric or non-symmetric
padding is used on virtual boundary locations for a CC-ALF.
[0210] FIG. 157 is a block diagram illustrating a configu-
ration of an encoder and a decoder according to another
example where symmetric padding is used on virtual bound-
ary locations for an ALF and single-side padding is used on
virtual boundary locations for a CC-ALF.

[0211] FIG. 158 is a conceptual diagram illustrating an
example of single-side padding with either a horizontal or
vertical virtual boundary.

[0212] FIG. 159 is a conceptual diagram illustrating an
example of single-side padding with a horizontal and ver-
tical virtual boundary.

[0213] FIG. 160 is a diagram illustrating an example
overall configuration of a content providing system for
implementing a content distribution service.

[0214] FIG. 161 is a conceptual diagram for illustrating an
example of a display screen of a web page.

[0215] FIG. 162 is a conceptual diagram for illustrating an
example of a display screen of a web page.

[0216] FIG. 163 is a block diagram illustrating one
example of a smartphone.

[0217] FIG. 164 is a block diagram illustrating an example
of a configuration of a smartphone.

DESCRIPTION OF EMBODIMENTS

[0218] In the drawings, identical reference numbers iden-
tify similar elements, unless the context indicates otherwise.
The sizes and relative positions of elements in the drawings
are not necessarily drawn to scale.

[0219] Hereinafter, embodiment(s) will be described with
reference to the drawings. Note that the embodiment(s)
described below each show a general or specific example.
The numerical values, shapes, materials, components, the
arrangement and connection of the components, steps, the
relation and order of the steps, etc., indicated in the follow-
ing embodiment(s) are mere examples, and are not intended
to limit the scope of the claims.

[0220] Embodiments of an encoder and a decoder will be
described below. The embodiments are examples of an
encoder and a decoder to which the processes and/or con-
figurations presented in the description of aspects of the
present disclosure are applicable. The processes and/or
configurations can also be implemented in an encoder and a
decoder different from those according to the embodiments.
For example, regarding the processes and/or configurations
as applied to the embodiments, any of the following may be
implemented:

[0221] (1) Any of the components of the encoder or the
decoder according to the embodiments presented in the
description of aspects of the present disclosure may be
substituted or combined with another component presented
anywhere in the description of aspects of the present dis-
closure.

[0222] (2) In the encoder or the decoder according to the
embodiments, discretionary changes may be made to func-
tions or processes performed by one or more components of
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the encoder or the decoder, such as addition, substitution,
removal, etc., of the functions or processes. For example,
any function or process may be substituted or combined with
another function or process presented anywhere in the
description of aspects of the present disclosure.

[0223] (3) In methods implemented by the encoder or the
decoder according to the embodiments, discretionary
changes may be made such as addition, substitution, and
removal of one or more of the processes included in the
method. For example, any process in the method may be
substituted or combined with another process presented
anywhere in the description of aspects of the present dis-
closure.

[0224] (4) One or more components included in the
encoder or the decoder according to embodiments may be
combined with a component presented anywhere in the
description of aspects of the present disclosure, may be
combined with a component including one or more func-
tions presented anywhere in the description of aspects of the
present disclosure, and may be combined with a component
that implements one or more processes implemented by a
component presented in the description of aspects of the
present disclosure.

[0225] (5) A component including one or more functions
of'the encoder or the decoder according to the embodiments,
or a component that implements one or more processes of
the encoder or the decoder according to the embodiments,
may be combined or substituted with a component presented
anywhere in the description of aspects of the present dis-
closure, with a component including one or more functions
presented anywhere in the description of aspects of the
present disclosure, or with a component that implements one
or more processes presented anywhere in the description of
aspects of the present disclosure.

[0226] (6) In methods implemented by the encoder or the
decoder according to the embodiments, any of the processes
included in the method may be substituted or combined with
aprocess presented anywhere in the description of aspects of
the present disclosure or with any corresponding or equiva-
lent process.

[0227] (7) One or more processes included in methods
implemented by the encoder or the decoder according to the
embodiments may be combined with a process presented
anywhere in the description of aspects of the present dis-
closure.

[0228] (8) The implementation of the processes and/or
configurations presented in the description of aspects of the
present disclosure is not limited to the encoder or the
decoder according to the embodiments. For example, the
processes and/or configurations may be implemented in a
device used for a purpose different from the moving picture
encoder or the moving picture decoder disclosed in the
embodiments.

Definitions of Terms

[0229] The respective terms may be defined as indicated
below as examples.

[0230] An image is a data unit configured with a set of
pixels, is a picture, or includes blocks smaller than a pixel.
Images include a still image in addition to a video.

[0231] A picture is an image processing unit configured
with a set of pixels, and also may be referred to as a frame
or a field. A picture may, for example, take the form of an
array of luma samples in monochrome format or an array of



US 2022/0159307 Al

luma samples and two corresponding arrays of chroma
samples in 4:2:0, 4:2:2, and 4:4:4 color format.

[0232] A block is a processing unit which is a set of a
determined number of pixels. Blocks may have any number
of different shapes. For example, a block may have a
rectangular shape of MxN (M-column by N-row) pixels, a
square shape of MxM pixels, a triangular shape, a circular
shape, etc. Examples of blocks include slices, tiles, bricks,
CTUs, super blocks, basic splitting units, VPDUs, process-
ing splitting units for hardware, CUs, processing block units,
prediction block units (PUs) orthogonal transform block
units (TUs), units, and sub-blocks. A block may take the
form of an MxN array of samples, or an MxN array of
transform coefficients. For example, a block may be a square
or rectangular region of pixels including one Luma and two
Chroma matrices.

[0233] A pixel or sample is a smallest point of an image.
Pixels or samples include a pixel at an integer position, as
well as pixels at sub-pixel positions, e.g., generated based on
a pixel at an integer position.

[0234] A pixel value or a sample value is an eigenvalue of
a pixel. Pixel values or sample values may include one or
more of a luma value, a chroma value, an RGB gradation
level, a depth value, binary values of zero or 1, etc.

[0235] Chroma or chrominance is an intensity of a color,
typically represented by the symbols Cb and Cr, which
specify that values of a sample array or a single sample value
represent values of one of two color difference signals
related to the primary colors.

[0236] Luma or luminance is a brightness of an image,
typically represented by the symbol or the subscript Y or L,
which specity that values of a sample array or a single
sample value represent values of a monochrome signal
related to the primary colors.

[0237] A flag comprises one or more bits which indicate a
value, for example, of a parameter or index. A flag may be
a binary flag which indicates a binary value of the flag,
which also may indicate a non-binary value of a parameter.

[0238] A signal conveys information, which is symbolized
by or encoded into the signal. Signals include discrete digital
signals and continuous analog signals.

[0239] A stream or a bitstream is a digital data string of a
digital data flow. A stream or bitstream may be one stream
or may be configured with a plurality of streams having a
plurality of hierarchical layers. A stream or bitstream may be
transmitted in serial communication using a single transmis-
sion path, or may be transmitted in packet communication
using a plurality of transmission paths.

[0240] A difference refers to various mathematical differ-
ences, such as a simple difference (x-y), an absolute value
of a difference (x-yl), a squared difference (x"2-y"2), a
square root of a difference (V(x-y)), a weighted difference
(ax-by: a and b are constants), an offset difference (x-y+a:
a is an offset), etc. In the case of scalar quantity, a simple
difference may suffice, and a difference calculation be
included.

[0241] A sum refers to various mathematical sums, such as
a simple sum (x+y), an absolute value of a sum (Ix+yl), a
squared sum (x"2+y"2), a square root of a sum (V(x+y)), a
weighted difference (ax+by: a and b are constants), an offset
sum (x+y+a: a is an offset), etc. In the case of scalar quantity,
a simple sum may suffice, and a sum calculation be included.
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[0242] A frame is the composition of a top field and a
bottom field, where sample rows 0, 2, 4, . . . originate from
the top field and sample rows 1, 3, 5, . . . originate from the
bottom field.

[0243] A slice is an integer number of coding tree units
contained in one independent slice segment and all subse-
quent dependent slice segments (if any) that precede the next
independent slice segment (if any) within the same access
unit.

[0244] A tile is a rectangular region of coding tree blocks
within a particular tile column and a particular tile row in a
picture. A tile may be a rectangular region of the frame that
is intended to be able to be decoded and encoded indepen-
dently, although loop-filtering across tile edges may still be
applied.

[0245] A coding tree unit (CTU) may be a coding tree
block of luma samples of a picture that has three sample
arrays, or two corresponding coding tree blocks of chroma
samples. Alternatively, a CTU may be a coding tree block of
samples of one of a monochrome picture and a picture that
is coded using three separate color planes and syntax struc-
tures used to code the samples. A super block may be a
square block of 64x64 pixels that consists of either 1 or 2
mode info blocks or is recursively partitioned into four
32x32 blocks, which themselves can be further partitioned.
[0246] (System Configuration)

[0247] First, a transmission system according to an
embodiment will be described. FIG. 1 is a schematic dia-
gram illustrating one example of a configuration of a trans-
mission system 400 according to an embodiment.

[0248] The transmission system 400 is a system which
transmits a stream generated by encoding an image and
decodes the transmitted stream. As illustrated, transmission
system 400 includes an encoder 100, a network 300, and
decoder 200 as illustrated in FIG. 1.

[0249] An image is input to encoder 100. Encoder 100
generates a stream by encoding the input image, and outputs
the stream to network 300. The stream includes, for
example, the encoded image and control information for
decoding the encoded image. The image is compressed by
the encoding.

[0250] Itis to be noted that an image before being encoded
by the encoder 100 is also referred to as the original image,
the original signal, or the original sample. The image may be
a video or a still image. An image is a generic concept of a
sequence, a picture, and a block, and thus is not limited to
a spatial region having a particular size and to a temporal
region having a particular size unless otherwise specified.
An image is an array of pixels or pixel values, and the signal
representing the image or pixel values are also referred to as
samples. The stream may be referred to as a bitstream, an
encoded bitstream, a compressed bitstream, or an encoded
signal. Furthermore, the encoder 100 may be referred to as
an image encoder or a video encoder. The encoding method
performed by encoder 100 may be referred to as an encoding
method, an image encoding method, or a video encoding
method.

[0251] The network 300 transmits the stream generated by
encoder 100 to decoder 200. The network 200 may be the
Internet, a Wide Area Network (WAN), a Local Area Net-
work (LAN), or any combination of networks. The network
300 is not limited to a bi-directional communication net-
work, and may be a uni-directional communication network
which transmits broadcast waves of digital terrestrial broad-
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casting, satellite broadcasting, or the like. Alternatively, the
network 300 may be replaced by a recording medium such
as a Digital Versatile Disc (DVD) and a Blue-Ray Disc
(BD), etc. on which a stream is recorded.

[0252] The decoder 200 generates, for example, a decoded
image which is an uncompressed image, by decoding a
stream transmitted by network 300. For example, the
decoder decodes a stream according to a decoding method
corresponding to an encoding method employed by encoder
100.

[0253] It is to be noted that the decoder 200 may also be
referred to as an image decoder or a video decoder, and that
the decoding method performed by the decoder 200 may
also be referred to as a decoding method, an image decoding
method, or a video decoding method.

[0254] (Data Structure)

[0255] FIG. 2 is a conceptual diagram for illustrating one
example of a hierarchical structure of data in a stream. For
convenience, FIG. 2 will be described with reference to the
transmission system 400 of FIG. 1. A stream includes, for
example, a video sequence. As illustrated in (a) of FIG. 2,
the video sequence includes a one or more video parameter
sets (VPS), one or more sequence parameter sets (SPS), one
or more picture parameter sets (PPS), supplemental
enhancement information (SEI), and a plurality of pictures.
[0256] In a video having a plurality of layers, a VPS may
include a coding parameter which is common between some
of the plurality of layers, and a coding parameter related to
some of the plurality of layers included in the video or to an
individual layer.

[0257] An SPS includes a parameter which is used for a
sequence, that is, a coding parameter which the decoder 200
refers to in order to decode the sequence. For example, the
coding parameter may indicate the width or height of a
picture. It is to be noted that a plurality of SPSs may be
present.

[0258] A PPS includes a parameter which is used for a
picture, that is, a coding parameter which the decoder 200
refers to in order to decode each of the pictures in the
sequence. For example, the coding parameter may include a
reference value for a quantization width which is used to
decode a picture and a flag indicating application of
weighted prediction. It is to be noted that a plurality of PPSs
may be present. Each of the SPS and the PPS may be simply
referred to as a parameter set.

[0259] As illustrated in (b) of FIG. 2, a picture may
include a picture header and one or more slices. A picture
header includes a coding parameter which the decoder 200
refers to in order to decode the one or more slices.

[0260] As illustrated in (c) of FIG. 2, a slice includes a
slice header and one or more bricks. A slice header includes
a coding parameter which the decoder 200 refers to in order
to decode the one or more bricks.

[0261] As illustrated in (d) of FIG. 2, a brick includes one
or more coding tree units (CTU).

[0262] It is to be noted that a picture may not include any
slice and may include a tile group instead of a slice. In this
case, the tile group includes at least one tile. In addition, a
brick may include a slice.

[0263] A CTU is also referred to as a super block or a basis
splitting unit. As illustrated in (e) of FIG. 2, a CTU includes
a CTU header and at least one coding unit (CU). As
illustrated, the CTU includes four coding units CU(10),
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CU1), (CU®12) and CU(13). A CTU header includes a
coding parameter which the decoder 200 refers to in order to
decode the at least one CU.

[0264] A CU may be split into a plurality of smaller CUs.
As shown, CU(10) is not split into smaller coding units;
CU1) is split into four smaller coding units CU(110),
CU111), CU112) and CU113); CU(12) is not split into
smaller coding units; and CU(13) is split into seven smaller
coding units CU(1310), CU(1311), CU(1312), CU(1313),
CU(132), CU(133) and CU(134) As illustrated in (f) of FIG.
2, a CU includes a CU header, prediction information, and
residual coefficient information. Prediction information is
information for predicting the CU, and the residual coeffi-
cient information is information indicating a prediction
residual to be described later. Although a CU is basically the
same as a prediction unit (PU) and a transform unit (TU), it
is to be noted that, for example, a sub-block transform (SBT)
to be described later may include a plurality of TUs smaller
than the CU. In addition, the CU may be processed for each
virtual pipeline decoding unit (VPDU) included in the CU.
The VPDU is, for example, a fixed unit which can be
processed at one stage when pipeline processing is per-
formed in hardware.

[0265] It is to be noted that a stream may not include all
of the hierarchical layers illustrated in FIG. 2. The order of
the hierarchical layers may be exchanged, or any of the
hierarchical layers may be replaced by another hierarchical
layer. Here, a picture which is a target for a process which
is about to be performed by a device such as encoder 100 or
decoder 200 is referred to as a current picture. A current
picture means a current picture to be encoded when the
process is an encoding process, and a current picture means
a current picture to be decoded when the process is a
decoding process. Likewise, for example, a CU or a block of
CUs which is a target for a process which is about to be
performed by a device such as the encoder 100 or the
decoder 200 is referred to as a current block. A current block
means a current block to be encoded when the process is an
encoding process, and a current block means a current block
to be decoded when the process is a decoding process.
[0266] (Picture Structure: Slice/Tile)

[0267] A picture may be configured with one or more slice
units or one or more tile units to facilitate coding/decoding
of the picture in parallel.

[0268] Slices are basic coding units included in a picture.
A picture may include, for example, one or more slices. In
addition, a slice includes one or more coding tree units
(CTUs).

[0269] FIG. 3 is a conceptual diagram for illustrating one
example of a slice configuration. For example, in FIG. 3 a
picture includes 11x8 CTUs, and is split into four slices
(slices 1 to 4). Slice 1 includes sixteen CTUs, slice 2
includes twenty-one CTUs, slice 3 includes twenty-nine
CTUs, and slice 4 includes twenty-two CTUs. Here, each
CTU in the picture belongs to one of the slices. The shape
of each slice is a shape obtained by splitting the picture
horizontally. A boundary of each slice does not need to
coincide with an image end, and may coincide with any of
the boundaries between CTUs in the image. The processing
order of the CTUs in a slice (an encoding order or a decoding
order) is, for example, a raster-scan order. A slice includes a
slice header and encoded data. Features of the slice may be
written in the slice header. The features may include a CTU
address of a top CTU in the slice, a slice type, etc.
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[0270] A tile is a unit of a rectangular region included in
a picture. Tiles of a picture may be assigned with a number
referred to as Tileld in raster-scan order.

[0271] FIG. 4 is a conceptual diagram for illustrating one
example of a tile configuration. For example, in FIG. 4 a
picture includes 11x8 CTUs, and is split into four tiles of
rectangular regions (tiles 1 to 4). When tiles are used, the
processing order of CTUs may be different from the pro-
cessing order in the case where tiles are not used. When no
tile is used, a plurality of CTUs in a picture generally are
processed in raster-scan order. When a plurality of tiles are
used, at least one CTU in each of the plurality of tiles is
processed in raster-scan order. For example, as illustrated in
FIG. 4 the processing order of the CTUs included in tile 1
from the left-end of the first column of tile 1 toward the
right-end of the first column of tile 1 and then continues
from the left-end of the second column of tile 1 toward the
right-end of the second column of tile 1.

[0272] It is to be noted that the one tile may include one
or more slices, and one slice may include one or more tiles.
[0273] It is to be noted that the picture may be configured
with one or more tile sets. A tile set may include one or more
tile groups, or one or more tiles. A picture may be configured
with one of a tile set, a tile group, and a tile. For example,
an order for scanning a plurality of tiles for each tile set in
raster scan order is assumed to be a basic encoding order of
tiles. A set of one or more tiles which are continuous in the
basic encoding order in each tile set is assumed to be a tile
group. Such a picture may be configured by splitter 102 (see
FIG. 7) to be described later.

[0274] (Scalable Encoding)

[0275] FIGS. 5 and 6 are conceptual diagrams illustrating
examples of scalable stream structures, and will be described
for convenience with reference to FIG. 1.

[0276] As illustrated in FIG. 5, encoder 100 may generate
a temporally/spatially scalable stream by dividing each of a
plurality of pictures into any of a plurality of layers and
encoding the picture in the layer. For example, encoder 100
encodes the picture for each layer, thereby achieving scal-
ability where an enhancement layer is present above a base
layer. Such encoding of each picture is also referred to as
scalable encoding. In this way, decoder 200 is capable of
switching image quality of an image which is displayed by
decoding the stream. In other words, decoder 200 may
determine which layer to decode based on internal factors
such as the processing ability of decoder 200 and external
factors such as a state of a communication bandwidth. As a
result, decoder 200 is capable of decoding a content while
freely switching between low resolution and high resolution.
For example, the user of the stream watches a video of the
stream halfway using a smartphone on the way to home, and
continues watching the video at home on a device such as a
TV connected to the Internet. It is to be noted that each of
the smartphone and the device described above includes
decoder 200 having the same or different performances. In
this case, when the device decodes layers up to the higher
layer in the stream, the user can watch the video at high
quality at home. In this way, encoder 100 does not need to
generate a plurality of streams having different image quali-
ties of the same content, and thus the processing load can be
reduced.

[0277] Furthermore, the enhancement layer may include
meta information based on statistical information on the
image. Decoder 200 may generate a video whose image
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quality has been enhanced by performing super-resolution
imaging on a picture in the base layer based on the metadata.
Super-resolution imaging may include, for example,
improvement in the Signal-to-Noise (SN) ratio in the same
resolution, an increase in resolution, etc. Metadata may
include, for example, information for identifying a linear or
a non-linear filter coefficient, as used in a super-resolution
process, or information identifying a parameter value in a
filter process, machine learning, or a least squares method
used in super-resolution processing, etc.

[0278] In an embodiment, a configuration may be pro-
vided in which a picture is divided into, for example, tiles in
accordance with, for example, the meaning of an object in
the picture. In this case, decoder 200 may decode only a
partial region in a picture by selecting a tile to be decoded.
In addition, an attribute of the object (person, car, ball, etc.)
and a position of the object in the picture (coordinates in
identical images) may be stored as metadata. In this case,
decoder 200 is capable of identifying the position of a
desired object based on the metadata, and determining the
tile including the object. For example, as illustrated in FIG.
6, the metadata may be stored using a data storage structure
different from image data, such as an SEI (supplemental
enhancement information) message in HEVC. This meta-
data indicates, for example, the position, size, or color of the
main object.

[0279] Metadata may be stored in units of a plurality of
pictures, such as a stream, a sequence, or a random access
unit. In this way, decoder 200 is capable of obtaining, for
example, the time at which a specific person appears in the
video, and by fitting the time information with picture unit
information, is capable of identifying a picture in which the
object (person) is present and determining the position of the
object in the picture.

[0280] (Encoder)

[0281] An encoder according to an embodiment will be
described. FIG. 7 is a block diagram illustrating a configu-
ration of encoder 100 according to the embodiment. Encoder
100 is a video encoder which encodes a video in units of a
block.

[0282] As illustrated in FIG. 7, encoder 100 is an appa-
ratus which encodes an image in units of a block, and
includes splitter 102, subtractor 104, transformer 106, quan-
tizer 108, entropy encoder 110, inverse quantizer 112,
inverse transformer 114, adder 116, block memory 118, loop
filter 120, frame memory 122, intra predictor 124, inter
predictor 126, prediction controller 128, and prediction
parameter generator 130. As illustrated, intra predictor 124
and inter predictor 126 are part of a prediction controller.

[0283] Encoder 100 is implemented as, for example, a
generic processor and memory. In this case, when a software
program stored in the memory is executed by the processor,
the processor functions as splitter 102, subtractor 104,
transformer 106, quantizer 108, entropy encoder 110,
inverse quantizer 112, inverse transformer 114, adder 116,
loop filter 120, intra predictor 124, inter predictor 126, and
prediction controller 128. Alternatively, encoder 100 may be
implemented as one or more dedicated electronic circuits
corresponding to splitter 102, subtractor 104, transformer
106, quantizer 108, entropy encoder 110, inverse quantizer
112, inverse transformer 114, adder 116, loop filter 120, intra
predictor 124, inter predictor 126, and prediction controller
128.
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[0284] (Mounting Example of Encoder)

[0285] FIG. 8 is a functional block diagram illustrating a
mounting example of an encoder 100. Encoder 100 includes
processor al and memory a2. For example, the plurality of
constituent elements of encoder 100 illustrated in FIG. 7 are
mounted on processor al and memory a2 illustrated in FIG.
8.

[0286] Processor al is circuitry which performs informa-
tion processing and is coupled to memory a2. For example,
processor al is dedicated or general electronic circuitry
which encodes an image. Processor al may be a processor
such as a CPU. In addition, processor al may be an
aggregate of a plurality of electronic circuits. In addition, for
example, processor al may take the roles of two or more
constituent elements out of the plurality of constituent
elements of encoder 100 illustrated in FIG. 7, etc.

[0287] Memory a2 is dedicated or general memory for
storing information that is used by processor al to encode
the image. Memory a2 may be electronic circuitry, and may
be connected to processor al. In addition, memory a2 may
be included in processor al. In addition, memory a2 may be
an aggregate of a plurality of electronic circuits. In addition,
memory a2 may be a magnetic disc, an optical disc, or the
like, or may be represented as a storage, a recording
medium, or the like. In addition, memory a2 may be
non-volatile memory, or volatile memory.

[0288] For example, memory a2 may store an image to be
encoded or a bitstream corresponding to an encoded image.
In addition, memory a2 may store a program for causing
processor al to encode an image.

[0289] In addition, for example, memory a2 may take the
roles of two or more constituent elements for storing infor-
mation out of the plurality of constituent elements of
encoder 100 illustrated in FIG. 7, etc. For example, memory
a2 may take the roles of block memory 118 and frame
memory 122 illustrated in FIG. 7. More specifically,
memory a2 may store a reconstructed block, a reconstructed
picture, etc.

[0290] It is to be noted that, in encoder 100, all of the
plurality of constituent elements indicated in FIG. 7, etc.
may not be implemented, and all the processes described
herein may not be performed. Part of the constituent ele-
ments indicated in FIG. 7, etc. may be included in another
device, or part of the processes described herein may be
performed by another device.

[0291] Hereinafter, an overall flow of processes performed
by encoder 100 is described, and then each of constituent
elements included in encoder 100 will be described.
[0292] (Overall Flow of Encoding Process)

[0293] FIG. 9 is a flow chart indicating one example of an
overall encoding process performed by encoder 100, and for
convenience will be described with reference to FIG. 7.
[0294] First, splitter 102 of encoder 100 splits each of the
pictures included in an input image into a plurality of blocks
having a fixed size (e.g., 128x128 pixels) (Step Sa_1).
Splitter 102 then selects a splitting pattern for the fixed-size
block (also referred to as a block shape) (Step Sa_2). In other
words, splitter 102 further splits the fixed-size block into a
plurality of blocks which form the selected splitting pattern.
Encoder 100 performs, for each of the plurality of blocks,
Steps Sa_3 to Sa_9 for the block (that is a current block to
be encoded).

[0295] Prediction controller 128 and prediction executor
(which includes intra predictor 124 and inter predictor 126)
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generate a prediction image of a current block (Step Sa-3).
The prediction image may also be referred to as a prediction
signal, a prediction block, or prediction samples.

[0296] Next, subtractor 104 generates a difference
between the current block and a prediction image as a
prediction residual (Step Sa_4). The prediction residual may
also be referred to as a prediction error.

[0297] Next, transformer 106 transforms the prediction
image and quantizer 108 quantizes the result, to generate a
plurality of quantized coefficients (Step Sa_5). The plurality
of quantized coefficients may sometimes be referred to as a
coeflicient block.

[0298] Next, entropy encoder 110 encodes (specifically,
entropy encodes) the plurality of quantized coefficients and
a prediction parameter related to generation of a prediction
image, to generate a stream (Step Sa_6). The stream may
sometimes be referred to as an encoded bitstream or a
compressed bitstream.

[0299] Next, inverse quantizer 112 performs inverse quan-
tization of the plurality of quantized coefficients and inverse
transformer 114 performs inverse transformation of the
result, to restore a prediction residual (Step Sa_7).

[0300] Next, adder 116 adds the prediction image to the
restored prediction residual to reconstruct the current block
(Step Sa_8). In this way, the reconstructed image is gener-
ated. The reconstructed image may also be referred to as a
reconstructed block or a decoded image block.

[0301] When the reconstructed image is generated, loop
filter 120 performs filtering of the reconstructed image as
necessary (Step Sa_9).

[0302] Encoder 100 then determines whether encoding of
the entire picture has been finished (Step Sa_10). When
determining that the encoding has not yet been finished (No
in Step Sa_10), execution of processes from Step Sa_2 are
repeated for the next block of the picture.

[0303] Although encoder 100 selects one splitting pattern
for a fixed-size block, and encodes each block according to
the splitting pattern in the above-described example, it is to
be noted that each block may be encoded according to a
corresponding one of a plurality of splitting patterns. In this
case, encoder 100 may evaluate a cost for each of the
plurality of splitting patterns, and, for example, may select
the stream obtainable by encoding according to the splitting
pattern which yields the smallest cost as a stream which is
output.

[0304] As illustrated, the processes in Steps Sal to Sa_10
are performed sequentially by encoder 100. Alternatively,
two or more of the processes may be performed in parallel,
the processes may be reordered, etc.

[0305] The encoding process employed by encoder 100 is
a hybrid encoding using prediction encoding and transform
encoding. In addition, prediction encoding is performed by
an encoding loop configured with subtractor 104, trans-
former 106, quantizer 108, inverse quantizer 112, inverse
transformer 114, adder 116, loop filter 120, block memory
118, frame memory 122, intra predictor 124, inter predictor
126, and prediction controller 128. In other words, the
prediction executor configured with intra predictor 124 and
inter predictor 126 is part of the encoding loop.

[0306] (Splitter)

[0307] Splitter 102 splits each picture included in the
original image into a plurality of blocks, and outputs each
block to subtractor 104. For example, splitter 102 first splits
a picture into blocks of a fixed size (for example, 128x128
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pixels). Other fixed block sizes may be employed. The
fixed-size block is also referred to as a coding tree unit
(CTU). Splitter 102 then splits each fixed-size block into
blocks of variable sizes (for example, 64x64 pixels or
smaller), based on recursive quadtree and/or binary tree
block splitting. In other words, splitter 102 selects a splitting
pattern. The variable-size block also may be referred to as a
coding unit (CU), a prediction unit (PU), or a transform unit
(TU). It is to be noted that, in various kinds of processing
examples, there is no need to differentiate between CU, PU,
and TU; all or some of the blocks in a picture may be
processed in units of a CU, a PU, or a TU.

[0308] FIG. 10 is a conceptual diagram for illustrating one
example of block splitting according to an embodiment. In
FIG. 10, the solid lines represent block boundaries of blocks
split by quadtree block splitting, and the dashed lines
represent block boundaries of blocks split by binary tree
block splitting.

[0309] Here, block 10 is a square block having 128x128
pixels (128x128 block). This 128x128 block 10 is first split
into four square 64x64 pixel blocks (quadtree block split-
ting).

[0310] The upper-left 64x64 pixel block is further verti-
cally split into two rectangular 32x64 pixel blocks, and the
left 32x64 pixel block is further vertically split into two
rectangular 16x64 pixel blocks (binary tree block splitting).
As a result, the upper-left 64x64 pixel block is split into two
16x64 pixel blocks 11 and 12 and one 32x64 pixel block 13.
[0311] The upper-right 64x64 pixel block is horizontally
split into two rectangular 64x32 pixel blocks 14 and 15
(binary tree block splitting).

[0312] The lower-left square 64x64 pixel block is first
split into four square 32x32 pixel blocks (quadtree block
splitting). The upper-left block and the lower-right block
among the four square 32x32 pixel blocks are further split.
The upper-left square 32x32 pixel block is vertically split
into two rectangle 16x32 pixel blocks, and the right 16x32
pixel block is further horizontally split into two 16x16 pixel
blocks (binary tree block splitting). The lower-right 32x32
pixel block is horizontally split into two 32x16 pixel blocks
(binary tree block splitting). The upper-right square 32x32
pixel block is horizontally split into two rectangle 32x16
pixel blocks (binary tree block splitting). As a result, the
lower-left square 64x64 pixel block is split into rectangle
16x32 pixel block 16, two square 16x16 pixel blocks 17 and
18, two square 32x32 pixel blocks 19 and 20, and two
rectangle 32x16 pixel blocks 21 and 22.

[0313] The lower-right 64x64 pixel block 23 is not split.
[0314] As described above, in FIG. 10, block 10 is split
into thirteen variable-size blocks 11 through 23 based on
recursive quadtree and binary tree block splitting. This type
of splitting is also referred to as quadtree plus binary tree
(QTBT) splitting.

[0315] It is to be noted that, in FIG. 10, one block is split
into four or two blocks (quadtree or binary tree block
splitting), but splitting is not limited to these examples. For
example, one block may be split into three blocks (ternary
block splitting). Splitting including such ternary block split-
ting is also referred to as multi-type tree (MBT) splitting.
[0316] FIG. 11 is a block diagram illustrating one example
of a configuration of splitter 102 according to one embodi-
ment. As illustrated in FIG. 11, splitter 102 may include
block splitting determiner 102a. Block splitting determiner
102a may perform the following processes as examples.
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[0317] For example, block splitting determiner 102a may
obtain or retrieve block information from block memory 118
and/or frame memory 122, and determine a splitting pattern
(e.g., the above-described splitting pattern) based on the
block information. Splitter 102 splits the original image
according to the splitting pattern, and outputs at least one
block obtained by the splitting to subtractor 104.

[0318] In addition, for example, block splitting determiner
102a outputs one or more parameters indicating the deter-
mined splitting pattern (e.g., the above-described splitting
pattern) to transformer 106, inverse transformer 114, intra
predictor 124, inter predictor 126, and entropy encoder 110.
Transformer 106 may transform a prediction residual based
on the one or more parameters. Intra predictor 124 and inter
predictor 126 may generate a prediction image based on the
one or more parameters. In addition, entropy encoder 110
may entropy encode the one or more parameters.

[0319] The parameter related to the splitting pattern may
be written in a stream as indicated below as one example.
[0320] FIG. 12 is a conceptual diagram for illustrating
examples of splitting patterns. Examples of splitting patterns
include: splitting into four regions (QT) in which a block is
split into two regions both horizontally and vertically;
splitting into three regions (HT or VT) in which a block is
split in the same direction in a ratio of 1:2:1; splitting into
two regions (HB or VB) in which a block is split in the same
direction in a ratio of 1:1; and no splitting (NS).

[0321] It is to be noted that the splitting pattern does not
have a block splitting direction in the case of splitting into
four regions and no splitting, and that the splitting pattern
has splitting direction information in the case of splitting
into two regions or three regions.

[0322] FIG. 13A is a conceptual diagram for illustrating
one example of a syntax tree of a splitting pattern.

[0323] FIG. 13B is a conceptual diagram for illustrating
another example of a syntax tree of a splitting pattern.
[0324] FIGS. 13A and 13B are conceptual diagrams for
illustrating examples of a syntax tree of a splitting pattern.
In the example of FIG. 13A, first, information indicating
whether to perform splitting (S: Split flag) is present, and
information indicating whether to perform splitting into four
regions (QT: QT flag) is present next. Information indicating
which one of splitting into three regions and two regions is
to be performed (TT: TT flag or BT: BT flag) is present next,
and information indicating a division direction (Ver: Vertical
flag or Hor: Horizontal flag) is then present. It is to be noted
that each of at least one block obtained by splitting accord-
ing to such a splitting pattern may be further split repeatedly
in a similar process. In other words, as one example, whether
splitting is performed, whether splitting into four regions is
performed, which one of the horizontal direction and the
vertical direction is the direction in which a splitting method
is to be performed, which one of splitting into three regions
and splitting into two regions is to be performed may be
recursively determined, and the determination results may
be encoded in a stream according to the encoding order
disclosed by the syntax tree illustrated in FIG. 13A.
[0325] In addition, although information items respec-
tively indicating S, QT, TT, and Ver are arranged in the listed
order in the syntax tree illustrated in FIG. 13 A, information
items respectively indicating S, QT, Ver, and BT may be
arranged in the listed order. In other words, in the example
of FIG. 13B, first, information indicating whether to perform
splitting (S: Split flag) is present, and information indicating
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whether to perform splitting into four regions (QT: QT flag)
is present next. Information indicating the splitting direction
(Ver: Vertical flag or Hor: Horizontal flag) is present next,
and information indicating which one of splitting into two
regions and splitting into three regions is to be performed
(BT: BT flag or TT: TT flag) is then present.

[0326] Itis to be noted that the splitting patterns described
above are examples, and splitting patterns other than the
described splitting patterns may be used, or part of the
described splitting patterns may be used.

[0327] (Subtractor)

[0328] Subtractor 104 subtracts a prediction image (pre-
diction sample that is input from prediction controller 128
indicated below) from an original image in units of a block
input from splitter 102 and split by splitter 102. In other
words, subtractor 104 calculates prediction residuals (also
referred to as errors) of a current block. Subtractor 104 then
outputs the calculated prediction residuals to transformer
106.

[0329] The original image may be an image which has
been input into encoder 100 as a signal representing an
image of each picture included in a video (for example, a
luma signal and two chroma signals). A signal representing
an image also may be referred to as a sample.

[0330] (Transformer)

[0331] Transformer 106 transforms prediction residuals in
a spatial domain into transform coefficients in a frequency
domain, and outputs the transform coefficients to quantizer
108. More specifically, transformer 106 applies, for
example, a defined discrete cosine transform (DCT) or
discrete sine transform (DST) to prediction residuals in a
spatial domain. The defined DCT or DST may be predefined.
[0332] It is to be noted that transformer 106 may adap-
tively select a transform type from among a plurality of
transform types, and transform prediction residuals into
transform coeflicients by using a transform basis function
corresponding to the selected transform type. This sort of
transform is also referred to as explicit multiple core trans-
form (EMT) or adaptive multiple transform (AMT). A
transform basis function may also be referred to as a basis.
[0333] The transform types include, for example, DCT-II,
DCT-V, DCT-VIII, DST-I, and DST-VIL It is noted that
these transform types may be represented as DCT2, DCTS,
DCT8, DST1 and DST7. FIG. 14 is a chart indicating
example transform basis functions for the example trans-
form types. In FIG. 14, N indicates the number of input
pixels. For example, selection of a transform type from
among the plurality of transform types may depend on a
prediction type (one of intra prediction and inter prediction),
and may depend on an intra prediction mode.

[0334] Information indicating whether to apply such EMT
or AMT (referred to as, for example, an EMT flag or an
AMT flag) and information indicating the selected transform
type is normally signaled at the CU level. It is to be noted
that the signaling of such information does not necessarily
need to be performed at the CU level, and may be performed
at another level (for example, at the sequence level, picture
level, slice level, tile level, or CTU level).

[0335] In addition, transformer 106 may re-transform the
transform coeflicients (which are transform results). Such
re-transform is also referred to as adaptive secondary trans-
form (AST) or non-separable secondary transform (NSST).
For example, transformer 106 performs re-transform in units
of a sub-block (for example, 4x4 pixel sub-block) included
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in a transform coefficient block corresponding to an intra
prediction residual. Information indicating whether to apply
NSST and information related to a transform matrix for use
in NSST are normally signaled at the CU level. It is to be
noted that the signaling of such information does not nec-
essarily need to be performed at the CU level, and may be
performed at another level (for example, at the sequence
level, picture level, slice level, tile level, or CTU level).
[0336] Transformer 106 may employ a separable trans-
form and a non-separable transform. A separable transform
is a method in which a transform is performed a plurality of
times by separately performing a transform for each of a
number of directions according to the number of dimensions
of inputs. A non-separable transform is a method of per-
forming a collective transform in which two or more dimen-
sions in multidimensional inputs are collectively regarded as
a single dimension.

[0337] Inoneexample of a non-separable transform, when
an input is a 4x4 pixel block, the 4x4 pixel block is regarded
as a single array including sixteen elements, and the trans-
form applies a 16x16 transform matrix to the array.

[0338] In another example of a non-separable transform,
an input block of 4x4 pixels is regarded as a single array
including sixteen elements, and then a transform (hypercube
givens transform) in which givens revolution is performed
on the array a plurality of times may be performed.

[0339] In the transform in transformer 106, the transform
types of transform bases functions to be transformed into the
frequency domain according to regions in a CU can be
switched. Examples include a spatially varying transform
(SVT).

[0340] FIG. 15 is a conceptual diagram for illustrating one
example of an SVT.

[0341] In SVT, as illustrated in FIG. 15, CUs are split into
two equal regions horizontally or vertically, and only one of
the regions is transformed into the frequency domain. A
transform basis type can be set for each region. For example,
DST7 and DST8 are used. For example, among the two
regions obtained by splitting a CU vertically into two equal
regions, DST7 and DCT8 may be used for the region at
position 0. Alternatively, among the two regions, DST7 is
used for the region at position 1. Likewise, among the two
regions obtained by splitting a CU horizontally into two
equal regions, DST7 and DCTS8 are used for the region at
position 0. Alternatively, among the two regions, DST7 is
used for the region at position 1. Although only one of the
two regions in a CU is transformed and the other is not
transformed in the example illustrated in FIG. 15, each of'the
two regions may be transformed. In addition, a splitting
method may include not only splitting into two regions but
also splitting into four regions. In addition, the splitting
method can be more flexible. For example, information
indicating the splitting method may be encoded and may be
signaled in the same manner as the CU splitting. It is to be
noted that SVT also may be referred to as sub-block trans-
form (SBT).

[0342] The AMT and EMT described above may be
referred to as MTS (multiple transform selection). When
MTS is applied, a transform type that is DST7, DCTS, or the
like can be selected, and the information indicating the
selected transform type may be encoded as index informa-
tion for each CU. There is another process referred to as
IMTS (implicit MTS) as a process for selecting a transform
type to be used for orthogonal transform performed without
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encoding index information. When IMTS is applied, for
example, when a CU has a rectangle shape, orthogonal
transform of the rectangle shape may be performed using
DST?7 for the short side and DST2 for the long side. In
addition, for example, when a CU has a square shape,
orthogonal transform of the rectangle shape may be per-
formed using DCT2 when MTS is effective in a sequence
and using DST7 when MTS is ineffective in the sequence.
DCT2 and DST7 are mere examples. Other transform types
may be used, and it is also possible to change the combi-
nation of transform types for use to a different combination
of transform types. IMTS may be used only for intra
prediction blocks, or may be used for both intra prediction
blocks and inter prediction block.

[0343] The three processes of MTS, SBT, and IMTS have
been described above as selection processes for selectively
switching transform types for use in orthogonal transform.
However, all of the three selection processes may be
employed, or only part of the selection processes may be
selectively employed. Whether one or more of the selection
processes is employed may be identified, for example, based
on flag information or the like in a header such as an SPS.
For example, when all of the three selection processes are
available for use, one of the three selection processes is
selected for each CU and orthogonal transform of the CU is
performed. It is to be noted that the selection processes for
selectively switching the transform types may be selection
processes different from the above three selection processes,
or each of the three selection processes may be replaced by
another process. Typically, at least one of the following four
transfer functions [1] to [4] is performed. Function [1] is a
function for performing orthogonal transform of the entire
CU and encoding information indicating the transform type
used in the transform. Function [2] is a function for per-
forming orthogonal transform of the entire CU and deter-
mining the transform type based on a determined rule
without encoding information indicating the transform type.
Function [3] is a function for performing orthogonal trans-
form of a partial region of a CU and encoding information
indicating the transform type used in the transform. Function
[4] is a function for performing orthogonal transform of a
partial region of a CU and determining the transform type
based on a determined rule without encoding information
indicating the transform type used in the transform. The
determined rules may be predetermined.

[0344] It is to be noted that whether MTS, IMTS, and/or
SBT is applied may be determined for each processing unit.
For example, whether MTS, IMTS, and/or SBT is applied
may be determined for each sequence, picture, brick, slice,
CTU, or CU.

[0345] It is to be noted that a tool for selectively switching
transform types in the present disclosure may be described
as a method for selectively selecting a basis for use in a
transform process, a selection process, or a process for
selecting a basis. In addition, the tool for selectively switch-
ing transform types may be described as a mode for adap-
tively selecting transform types.

[0346] FIG. 16 is a flow chart illustrating one example of
a process performed by transformer 106, and will be
described for convenience with reference to FIG. 7.

[0347] For example, transformer 106 determines whether
to perform orthogonal transform (Step St_1). Here, when
determining to perform orthogonal transform (Yes in Step
St_1), transformer 106 selects a transform type for use in
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orthogonal transform from a plurality of transform types
(Step St_2). Next, transformer 106 performs orthogonal
transform by applying the selected transform type to the
prediction residual of a current block (Step St_3). Trans-
former 106 then outputs information indicating the selected
transform type to entropy encoder 110, so as to allow
entropy encoder 110 to encode the information (Step St_4).
On the other hand, when determining not to perform
orthogonal transform (No in Step St_1), transformer 106
outputs information indicating that no orthogonal transform
is performed, so as to allow entropy encoder 110 to encode
the information (Step St_5). It is to be noted that whether to
perform orthogonal transform in Step St_1 may be deter-
mined based on, for example, the size of a transform block,
a prediction mode applied to the CU, etc. Alternatively,
orthogonal transform may be performed using a defined
transform type without encoding information indicating the
transform type for use in orthogonal transform. The defined
transform type may be predefined.

[0348] FIG. 17 is a flow chart illustrating one example of
a process performed by transformer 106, and will be
described for convenience with reference to FIG. 7. It is to
be noted that the example illustrated in FIG. 17 is an
example of orthogonal transform in the case where trans-
form types for use in orthogonal transform are selectively
switched as in the case of the example illustrated in FIG. 16.
[0349] As one example, a first transform type group may
include DCT2, DST7, and DCTS8. As another example, a
second transform type group may include DCT2. The trans-
form types included in the first transform type group and the
transform types included in the second transform type group
may partly overlap with each other, or may be totally
different from each other.

[0350] Transformer 106 determines whether a transform
size is smaller than or equal to a determined value (Step
Su_1). Here, when determining that the transform size is
smaller than or equal to the determined value (Yes in Step
Su_1), transformer 106 performs orthogonal transform of
the prediction residual of the current block using the trans-
form type included in the first transform type group (Step
Su_2). Next, transformer 106 outputs information indicating
the transform type to be used among at least one transform
type included in the first transform type group to entropy
encoder 110, so as to allow entropy encoder 110 to encode
the information (Step Su_3). On the other hand, when
determining that the transform size is not smaller than or
equal to the predetermined value (No in Step Su_1), trans-
former 106 performs orthogonal transform of the prediction
residual of the current block using the second transform type
group (Step Su_4). The determined value may be a threshold
value, and may be a predetermined value.

[0351] In Step Su_3, the information indicating the trans-
form type for use in orthogonal transform may be informa-
tion indicating a combination of the transform type to be
applied vertically in the current block and the transform type
to be applied horizontally in the current block. The first type
group may include only one transform type, and the infor-
mation indicating the transform type for use in orthogonal
transform may not be encoded. The second transform type
group may include a plurality of transform types, and
information indicating the transform type for use in orthogo-
nal transform among the one or more transform types
included in the second transform type group may be
encoded.
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[0352] Alternatively, a transform type may be indicated
based on a transform size without encoding information
indicating the transform type. It is to be noted that such
determinations are not limited to the determination as to
whether the transform size is smaller than or equal to the
determined value, and other processes are also possible for
determining a transform type for use in orthogonal transform
based on the transform size.

[0353] (Quantizer)

[0354] Quantizer 108 quantizes the transform coefficients
output from transformer 106. More specifically, quantizer
108 scans, in a determined scanning order, the transform
coeflicients of the current block, and quantizes the scanned
transform coeflicients based on quantization parameters
(QP) corresponding to the transform coefficients. Quantizer
108 then outputs the quantized transform coefficients (here-
inafter also referred to as quantized coefficients) of the
current block to entropy encoder 110 and inverse quantizer
112. The determined scanning order may be predetermined.

[0355] A determined scanning order is an order for quan-
tizing/inverse quantizing transform coeflicients. For
example, a determined scanning order may be defined as
ascending order of frequency (from low to high frequency)
or descending order of frequency (from high to low fre-
quency).

[0356] A quantization parameter (QP) is a parameter
defining a quantization step (quantization width). For
example, when the value of the quantization parameter
increases, the quantization step also increases. In other
words, when the value of the quantization parameter
increases, the error in quantized coefficients (quantization
error) increases.

[0357] In addition, a quantization matrix may be used for
quantization. For example, several kinds of quantization
matrices may be used correspondingly to frequency trans-
form sizes such as 4x4 and 8x8, prediction modes such as
intra prediction and inter prediction, and pixel components
such as luma and chroma pixel components. It is to be noted
that quantization means digitalizing values sampled at deter-
mined intervals correspondingly to determined levels. In this
technical field, quantization may be referred to using other
expressions, such as rounding and scaling, and may employ
rounding and scaling. The determined intervals and deter-
mined levels may be predetermined.

[0358] Methods using quantization matrices may include a
method using a quantization matrix which has been set
directly at the encoder 100 side, and a method using a
quantization matrix which has been set as a default (default
matrix). At the encoder 100 side, a quantization matrix
suitable for features of an image can be set by directly
setting a quantization matrix. This case, however, may have
a disadvantage of increasing a coding amount for encoding
the quantization matrix. It is to be noted that a quantization
matrix to be used to quantize the current block may be
generated based on a default quantization matrix or an
encoded quantization matrix, instead of directly using the
default quantization matrix or the encoded quantization
matrix.

[0359] There is a method for quantizing a high-frequency
coeflicient and a low-frequency coeflicient without using a
quantization matrix. It is to be noted that this method may
be viewed as equivalent to a method using a quantization
matrix (flat matrix) whose coefficients have the same value.
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[0360] The quantization matrix may be encoded, for
example, at the sequence level, picture level, slice level,
brick level, or CTU level. The quantization matrix may be
specified using, for example, a sequence parameter set (SPS)
or a picture parameter set (PPS). The SPS includes a
parameter which is used for a sequence, and the PPS
includes a parameter which is used for a picture. Each of the
SPS and the PPS may be simply referred to as a parameter
set.

[0361] When using a quantization matrix, quantizer 108
scales, for each transform coefficient, for example a quan-
tization width which can be calculated based on a quanti-
zation parameter, etc., using the value of the quantization
matrix. The quantization process performed without using a
quantization matrix may be a process for quantizing trans-
form coefficients based on the quantization width calculated
based on the quantization parameter, etc. It is to be noted
that, in the quantization process performed without using
any quantization matrix, the quantization width may be
multiplied by a determined value which is common for all
the transform coefficients in a block. The determined value
may be predetermined.

[0362] FIG. 18 is a block diagram illustrating one example
of a configuration of a quantizer according to an embodi-
ment. For example, quantizer 108 includes difference quan-
tization parameter generator 108a, predicted quantization
parameter generator 1085, quantization parameter generator
108¢, quantization parameter storage 1084, and quantization
executor 108e.

[0363] FIG. 19 is a flow chart illustrating one example of
a quantization process performed by quantizer 108, and will
be described for convenience with reference to FIGS. 7 and
18.

[0364] As one example, quantizer 108 may perform quan-
tization for each CU based on the flow chart illustrated in
FIG. 19. More specifically, quantization parameter generator
108¢ determines whether to perform quantization (Step
Sv_1). Here, when determining to perform quantization (Yes
in Step Sv_1), quantization parameter generator 108¢ gen-
erates a quantization parameter for a current block (Step
Sv_2), and stores the quantization parameter to quantization
parameter storage 1084 (Step Sv_3).

[0365] Next, quantization executor 108e quantizes trans-
form coefficients of the current block using the quantization
parameter generated in Step Sv_2 (Step Sv_4). Predicted
quantization parameter generator 1085 then obtains a quan-
tization parameter for a processing unit different from the
current block from quantization parameter storage 1084
(Step Sv_5). Predicted quantization parameter generator
1085 generates a predicted quantization parameter of the
current block based on the obtained quantization parameter
(Step Sv_6). Difference quantization parameter generator
108a calculates the difference between the quantization
parameter of the current block generated by quantization
parameter generator 108¢ and the predicted quantization
parameter of the current block generated by predicted quan-
tization parameter generator 1085 (Step Sv_7). The differ-
ence quantization parameter may be generated by calculat-
ing the difference. Difference quantization parameter
generator 108a outputs the difference quantization param-
eter to entropy encoder 110, so as to allow entropy encoder
110 to encode the difference quantization parameter (Step
Sv_8).
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[0366] It is to be noted that the difference quantization
parameter may be encoded, for example, at the sequence
level, picture level, slice level, brick level, or CTU level. In
addition, an initial value of the quantization parameter may
be encoded at the sequence level, picture level, slice level,
brick level, or CTU level. At initialization, the quantization
parameter may be generated using the initial value of the
quantization parameter and the difference quantization
parameter.

[0367] It is to be noted that quantizer 108 may include a
plurality of quantizers, and may apply dependent quantiza-
tion in which transform coefficients are quantized using a
quantization method selected from a plurality of quantiza-
tion methods.

[0368]

[0369] FIG. 20 is a block diagram illustrating one example
of a configuration of entropy encoder 110 according to an
embodiment, and will be described for convenience with
reference to FIG. 7. Entropy encoder 110 generates a stream
by entropy encoding the quantized coefficients input from
quantizer 108 and a prediction parameter input from pre-
diction parameter generator 130. For example, context-
based adaptive binary arithmetic coding (CABAC) is used
as the entropy encoding. More specifically, entropy encoder
110 as illustrated includes binarizer 110a, context controller
1105, and binary arithmetic encoder 110c. Binarizer 110a
performs binarization in which multi-level signals such as
quantized coefficients and a prediction parameter are trans-
formed into binary signals. Examples of binarization meth-
ods include truncated Rice binarization, exponential
Golomb codes, and fixed length binarization. Context con-
troller 1105 derives a context value according to a feature or
a surrounding state of a syntax element, that is an occurrence
probability of a binary signal. Examples of methods for
deriving a context value include bypass, referring to a syntax
element, referring to an upper and left adjacent blocks,
referring to hierarchical information, etc. Binary arithmetic
encoder 110c¢ arithmetically encodes the binary signal using
the derived context.

[0370] FIG. 21 is a conceptual diagram for illustrating an
example flow of a CABAC process in the entropy encoder
110. First, initialization is performed in CABAC in entropy
encoder 110. In the initialization, initialization in binary
arithmetic encoder 110¢ and setting of an initial context
value are performed. For example, binarizer 110a and binary
arithmetic encoder 110¢ may execute binarization and arith-
metic encoding of the plurality of quantization coefficients
in a CTU sequentially. Context controller 1105 may update
the context value each time arithmetic encoding is per-
formed. Context controller 1105 may then save the context
value as a post process. The saved context value may be
used, for example, to initialize the context value for the next
CTU.

[0371]

[0372] Inverse quantizer 112 inverse quantizes quantized
coeflicients which have been input from quantizer 108. More
specifically, inverse quantizer 112 inverse quantizes, in a
determined scanning order, quantized coefficients of the
current block. Inverse quantizer 112 then outputs the inverse
quantized transform coefficients of the current block to
inverse transformer 114. The determined scanning order
may be predetermined.

(Entropy Encoder)

(Inverse Quantizer)
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[0373] (Inverse Transformer)

[0374] Inverse transformer 114 restores prediction residu-
als by inverse transforming transform coefficients which
have been input from inverse quantizer 112. More specifi-
cally, inverse transformer 114 restores the prediction residu-
als of the current block by performing an inverse transform
corresponding to the transform applied to the transform
coeflicients by the transformer 106. Inverse transformer 114
then outputs the restored prediction residuals to adder 116.
[0375] It is to be noted that since information is normally
lost in quantization, the restored prediction residuals do not
match the prediction residuals calculated by subtractor 104.
In other words, the restored prediction residuals normally
include quantization errors.

[0376] (Adder)

[0377] Adder 116 reconstructs the current block by adding
the prediction residuals which have been input from inverse
transformer 114 and prediction images which have been
input from prediction controller 128. Consequently, a recon-
structed image is generated. Adder 116 then outputs the
reconstructed image to block memory 118 and loop filter
120. A reconstructed block may also be referred to as a local
decoded block.

[0378] (Block Memory)

[0379] Block memory 118 is storage for storing blocks in
a current picture, for example, for use in intra prediction.
More specifically, block memory 118 stores reconstructed
images output from adder 116.

[0380] (Frame Memory)

[0381] Frame memory 122 is, for example, storage for
storing reference pictures for use in inter prediction, and is
also referred to as a frame buffer. More specifically, frame
memory 122 stores reconstructed images filtered by loop
filter 120.

[0382] (Loop Filter)

[0383] Loop filter 120 applies a loop filter to a recon-
structed image output by adder 116, and outputs the filtered
reconstructed image to frame memory 122. A loop filter is a
filter used in an encoding loop (in-loop filter). Examples of
loop filters include, for example, an adaptive loop filter
(ALF), a deblocking filter (DB or DBF), a sample adaptive
offset (SAO) filter, etc.

[0384] FIG. 22 is a block diagram illustrating one example
of'a configuration of loop filter 120 according to an embodi-
ment. For example, as illustrated in FIG. 22, loop filter 120
includes deblocking filter executor 120a, SAO executor
1205, and ALF executor 120c¢. Deblocking filter executor
120a performs a deblocking filter process on the recon-
structed image. SAO executor 1205 performs a SAO process
on the reconstructed image after being subjected to the
deblocking filter process. ALF executor 120¢ performs an
ALF process on the reconstructed image after being sub-
jected to the SAO process. The ALF and deblocking filter are
described later in detail. The SAO process is a process for
enhancing image quality by reducing ringing (a phenom-
enon in which pixel values are distorted like waves around
an edge) and correcting deviation in pixel value. Examples
of SAO processes include an edge offset process and a band
offset process. It is to be noted that loop filter 120, in some
embodiments, may not include all the constituent elements
disclosed in FIG. 22, and may include some of the constitu-
ent elements, and may include additional elements. In addi-
tion, loop filter 120 may be configured to perform the above
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processes in a processing order different from the one
disclosed in FIG. 22, may not perform all of the processes,
etc.

[0385] (Loop Filter>Adaptive Loop Filter)

[0386] In an ALF, a least square error filter for removing
compression artifacts is applied. For example, one filter
selected from among a plurality of filters based on the
direction and activity of local gradients is applied for each
2x2 pixel sub-block in the current block.

[0387] More specifically, first, each sub-block (for
example, each 2x2 pixel sub-block) is categorized into one
out of a plurality of classes (for example, fifteen or twenty-
five classes). The classification of the sub-block may be
based on, for example, gradient directionality and activity. In
an example, category index C (for example, C=5D+A) is
calculated or determined based on gradient directionality D
(for example, 0 to 2 or 0 to 4) and gradient activity A (for
example, 0 to 4). Then, based on classification index C, each
sub-block is categorized into one out of a plurality of
classes.

[0388] Forexample, gradient directionality D is calculated
by comparing gradients of a plurality of directions (for
example, the horizontal, vertical, and two diagonal direc-
tions). Moreover, for example, gradient activity A is calcu-
lated by adding gradients of a plurality of directions and
quantizing the result of addition.

[0389] The filter to be used for each sub-block may be
determined from among the plurality of filters based on the
result of such categorization.

[0390] The filter shape to be used in an ALF is, for
example, a circular symmetric filter shape. FIG. 23A
through FIG. 23C are conceptual diagrams for illustrating
examples of filter shapes used in ALFs. FIG. 23 A illustrates
a 5x5 diamond shape filter, FIG. 23B illustrates a 7x7
diamond shape filter, and FIG. 23C illustrates a 9x9 dia-
mond shape filter. Information indicating the filter shape is
normally signaled at the picture level. It is to be noted that
the signaling of such information indicating the filter shape
does not necessarily need to be performed at the picture
level, and may be performed at another level (for example,
at the sequence level, slice level, tile level, CTU level, or CU
level).

[0391] The ON or OFF of the ALF may be determined, for
example, at the picture level or CU level. For example, the
decision of whether to apply the ALF to luma may be made
at the CU level, and the decision of whether to apply ALF
to chroma may be made at the picture level. Information
indicating ON or OFF ofthe ALF is normally signaled at the
picture level or CU level. It is to be noted that the signaling
of information indicating ON or OFF of the ALF does not
necessarily need to be performed at the picture level or CU
level, and may be performed at another level (for example,
at the sequence level, slice level, tile level, or CTU level).

[0392] In addition, as described above, one filter is
selected from the plurality of filters, and an ALF process of
a sub-block is performed. A coefficient set of coefficients to
be used for each of the plurality of filters (for example, up
to the fifteenth or twenty-fifth filter) is normally signaled at
the picture level. It is to be noted that the signaling of the
coeflicient set does not necessarily need to be performed at
the picture level, and may be performed at another level (for
example, at the sequence level, slice level, tile level, CTU
level, CU level, or sub-block level).
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[0393] (Loop Filter>Cross Component Adaptive Loop Fil-
ter)
[0394] FIG. 23D is a conceptual diagram for illustrating

an example flow of a cross component ALF (CC-ALF). FIG.
23K is a conceptual diagram for illustrating an example of a
filter shape used in a CC-ALF, such as the CC-ALF of FIG.
23D. The example CC-ALF of FIGS. 23D and 23E operates
by applying a linear, diamond shaped filter to the luma
channel for each chroma component. The filter coefficients,
for example, may be transmitted in the APS, scaled by a
factor of 2710, and rounded for fixed point representation.
For example, in FIG. 23D, Y samples (first component) are
used for CCALF for Cb and CCALF for Cr (components
different from the first component).

[0395] The application of the filters may be controlled on
a variable block size and signaled by a context-coded flag
received for each block of samples. The block size along
with an CC-ALF enabling flag may be received at the
slice-level for each chroma component. CC-ALF may sup-
port various block sizes, for example (in chroma samples)
16x16 pixels, 32x32 pixels, 64x64 pixels, 128x128 pixels.
[0396] (Loop Filter>Joint Chroma Cross Component
Adaptive Loop Filter)

[0397] One example of Joint Chroma-CCALF, is illus-
trated in FIGS. 23F and 23G. FIG. 23F is a conceptual
diagram for illustrating an example flow of a Joint Chroma
CCALF. FIG. 23G is a table illustrating example weight
index candidates. As illustrated, one CCALF filter is used to
generate one CCALF filtered output as the chroma refine-
ment signal for one color component, while a weighted
version of the same chroma refinement signal is applied to
the other color component. In this way, the complexity of
existing CCALF is reduced roughly by half. The weight
value may be coded into a sign flag and a weight index. The
weight index (denoted as weight_index) may be coded into
3 bits, and specifies the magnitude of the JC-CCALF weight
JeCcWeight, which is a non-zero magnitude. The magnitude
of JcCcWeight may, for example, be determined as follows:
[0398] If weight_index is less than or equal to 4, JcCc-
Weight is equal to weight_index>>2;

[0399] Otherwise, JcCcWeight is equal to 4/(weight_in-
dex-4).
[0400] The block-level on/off control of ALF filtering for

Cb and Cr may be separate. This is the same as in CCALF,
and two separate sets of block-level on/off control flags may
be coded. Different from CCALF, herein, the Cb, Cr on/off
control block sizes are the same, and thus, only one block
size variable may be coded.

[0401] (Loop Filter>Deblocking Filter)

[0402] In a deblocking filter process, loop filter 120 per-
forms a filter process on a block boundary in a reconstructed
image so as to reduce distortion which occurs at the block
boundary.

[0403] FIG. 24 is a block diagram illustrating one example
of'a specific configuration of deblocking filter executor 120a
of'a loop filter 120 (see FIGS. 7 and 22) which functions as
a deblocking filter.

[0404] Deblocking filter executor 120a includes: bound-
ary determiner 1201; filter determiner 1203; filtering execu-
tor 1205; process determiner 1208; filter characteristic deter-
miner 1207; and switches 1202, 1204, and 1206.

[0405] Boundary determiner 1201 determines whether a
pixel to be deblock-filtered (that is, a current pixel) is present
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around a block boundary. Boundary determiner 1201 then
outputs the determination result to switch 1202 and process-
ing determiner 1208.

[0406] In the case where boundary determiner 1201 has
determined that a current pixel is present around a block
boundary, switch 1202 outputs an unfiltered image to switch
1204. In the opposite case where boundary determiner 1201
has determined that no current pixel is present around a
block boundary, switch 1202 outputs an unfiltered image to
switch 1206. It is to be noted that the unfiltered image is an
image configured with a current pixel and at least one
surrounding pixel located around the current pixel.

[0407] Filter determiner 1203 determines whether to per-
form deblocking filtering of the current pixel, based on the
pixel value of at least one surrounding pixel located around
the current pixel. Filter determiner 1203 then outputs the
determination result to switch 1204 and process determiner
1208.

[0408] In the case where filter determiner 1203 has deter-
mined to perform deblocking filtering of the current pixel,
switch 1204 outputs the unfiltered image obtained through
switch 1202 to filtering executor 1205. In the opposite case
where filter determiner 1203 has determined not to perform
deblocking filtering of the current pixel, switch 1204 outputs
the unfiltered image obtained through switch 1202 to switch
1206.

[0409] When obtaining the unfiltered image through
switches 1202 and 1204, filtering executor 1205 executes,
for the current pixel, deblocking filtering with the filter
characteristic determined by filter characteristic determiner
1207. Filtering executor 1205 then outputs the filtered pixel
to switch 1206.

[0410] Under control by processing determiner 1208,
switch 1206 selectively outputs one of a pixel which has not
been deblock-filtered and a pixel which has been deblock-
filtered by filtering executor 1205.

[0411] Processing determiner 1208 controls switch 1206
based on the results of determinations made by boundary
determiner 1201 and filter determiner 1203. In other words,
processing determiner 1208 causes switch 1206 to output the
pixel which has been deblock-filtered when boundary deter-
miner 1201 has determined that the current pixel is present
around the block boundary and when filter determiner 1203
has determined to perform deblocking filtering of the current
pixel. In addition, other than the above case, processing
determiner 1208 causes switch 1206 to output the pixel
which has not been deblock-filtered. A filtered image is
output from switch 1206 by repeating output of a pixel in
this way. It is to be noted that the configuration illustrated in
FIG. 24 is one example of a configuration in deblocking
filter executor 120a. Deblocking filter executor 120a may
have various configurations.

[0412] FIG. 25 is a conceptual diagram for illustrating an
example of a deblocking filter having a symmetrical filtering
characteristic with respect to a block boundary.

[0413] In a deblocking filter process, one of two deblock-
ing filters having different characteristics, that is, a strong
filter and a weak filter, may be selected using pixel values
and quantization parameters. In the case of the strong filter,
when pixels p0 to p2 and pixels q0 to q2 are present across
a block boundary as illustrated in FIG. 25, the pixel values
of the respective pixel q0 to g2 are changed to pixel values
WO to q2 by performing, for example, computations
according to the expressions below.
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q0=(p1+2xp0+2xq0+2xq1+q2+4)/8
q'1=(p0+q0+q1+42+2)/4
q2=(p0+q0+q1+3xq2+2xq3+4)/8

[0414] It is to be noted that, in the above expressions, p0O
to p2 and q0 to q2 are the pixel values of respective pixels
pO to p2 and pixels qO to q2. In addition, g3 is the pixel value
of neighboring pixel g3 located at the opposite side of pixel
q2 with respect to the block boundary. In addition, in the
right side of each of the expressions, coeflicients which are
multiplied with the respective pixel values of the pixels to be
used for deblocking filtering are filter coefficients.

[0415] Furthermore, in the deblocking filtering, clipping
may be performed so that the calculated pixel values are not
changed more than a threshold value. For example, in the
clipping process the pixel values calculated according to the
above expressions may be clipped to a value obtained
according to “a computation pixel value *2xa threshold
value” using a threshold value determined based on a
quantization parameter. In this way, it is possible to prevent
excessive smoothing.

[0416] FIG. 26 is a conceptual diagram for illustrating a
block boundary on which a deblocking filter process is
performed. FIG. 27 is a conceptual diagram for illustrating
examples of Boundary strength (Bs) values.

[0417] The block boundary on which the deblocking filter
process is performed is, for example, a boundary between
CUs, Pus, or TUs having 8x8 pixel blocks as illustrated in
FIG. 26. The deblocking filter process may be performed,
for example, in units of four rows or four columns. First,
boundary strength (Bs) values are determined as indicated in
FIG. 27 for block P and block Q illustrated in FIG. 26.

[0418] According to the Bs values in FIG. 27, whether to
perform deblocking filter processes of block boundaries
belonging to the same image using different strengths may
be determined. The deblocking filter process for a chroma
signal is performed when a Bs value is 2. The deblocking
filter process for a luma signal is performed when a Bs value
is 1 or more and a determined condition is satisfied. The
determined condition may be predetermined. It is noted that
conditions for determining Bs values are not limited to those
indicated in FIG. 27, and a Bs value may be determined
based on another parameter.

[0419] (Predictor (Intra Predictor, Inter Predictor, Predic-
tion Controller))

[0420] FIG. 28 is a flow chart illustrating one example of
a process performed by a predictor of encoder 100. It is to
be noted that the predictor includes all or part of the
following constituent elements: intra predictor 124; inter
predictor 126; and prediction controller 128. The prediction
executor includes, for example, intra predictor 124 and inter
predictor 126.

[0421] The predictor generates a prediction image of a
current block (Step Sb_1). This prediction image may also
be referred to as a prediction signal or a prediction block. It
is to be noted that the prediction signal is, for example, an
intra prediction image (image prediction signal) or an inter
prediction image (inter prediction signal). The predictor
generates the prediction image of the current block using a
reconstructed image which has been already obtained
through another block through generation of a prediction
image, generation of a prediction residual, generation of
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quantized coeflicients, restoring of a prediction residual, and
addition of the prediction image.

[0422] The reconstructed image may be, for example, an
image in a reference picture, or an image of an encoded
block (that is, the other block described above) in a current
picture which is the picture including the current block. The
encoded block in the current picture is, for example, a
neighboring block of the current block.

[0423] FIG. 29 is a flow chart illustrating another example
of a process performed by the predictor of the encoder 100.

[0424] The predictor generates a prediction image using a
first method (Step Sc_la), generates a prediction image
using a second method (Step Sc_1b), and generates a
prediction image using a third method (Step Sc_1¢). The
first method, the second method, and the third method may
be mutually different methods for generating a prediction
image. Each of the first to third methods may be an inter
prediction method, an intra prediction method, or another
prediction method. The above-described reconstructed
image may be used in these prediction methods.

[0425] Next, the prediction processor evaluates the pre-
diction images generated in Steps Sc_1la, Sc_1b, and Sc_1c¢
(Step Sc_2). For example, the predictor calculates costs C
for the prediction images generated in Step Sc_1a, Sc_15b,
and Sc_1, and evaluates the prediction images by comparing
the costs C of the prediction images. It is to be noted that
cost C may be calculated, for example, according to an
expression of an R-D optimization model, for example,
C=D+AxR. In this expression, D indicates compression
artifacts of a prediction image, and is represented as, for
example, a sum of absolute differences between the pixel
value of a current block and the pixel value of a prediction
image. In addition, R indicates a bit rate of a stream. In
addition, A indicates, for example, a multiplier according to
the method of Lagrange multipliers.

[0426] The predictor then selects one of the prediction
images generated in Steps Sc_la, Sc_1b, and Sc_1c¢ (Step
Sc_3). In other words, the predictor selects a method or a
mode for obtaining a final prediction image. For example,
the predictor selects the prediction image having the small-
est cost C, based on costs C calculated for the prediction
images. Alternatively, the evaluation in Step Sc_2 and the
selection of the prediction image in Step Sc_3 may be made
based on a parameter which is used in an encoding process.
Encoder 100 may transform information for identifying the
selected prediction image, the method, or the mode into a
stream. The information may be, for example, a flag or the
like. In this way, decoder 200 is capable of generating a
prediction image according to the method or the mode
selected by encoder 100, based on the information. It is to be
noted that, in the example illustrated in FIG. 29, the pre-
dictor selects any of the prediction images after the predic-
tion images are generated using the respective methods.
However, the predictor may select a method or a mode based
on a parameter for use in the above-described encoding
process before generating prediction images, and may gen-
erate a prediction image according to the method or mode
selected.

[0427] For example, the first method and the second
method may be intra prediction and inter prediction, respec-
tively, and the predictor may select a final prediction image
for a current block from prediction images generated accord-
ing to the prediction methods.
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[0428] FIG. 30 is a flow chart illustrating another example
of a process performed by the predictor of encoder 100.
[0429] First, the predictor generates a prediction image
using intra prediction (Step Sd_1a), and generates a predic-
tion image using inter prediction (Step Sd_15). It is to be
noted that the prediction image generated by intra prediction
is also referred to as an intra prediction image, and the
prediction image generated by inter prediction is also
referred to as an inter prediction image.

[0430] Next, the predictor evaluates each of the intra
prediction image and the inter prediction image (Step Sd_2).
Cost C described above may be used in the evaluation. The
predictor may then select the prediction image for which the
smallest cost C has been calculated among the intra predic-
tion image and the inter prediction image, as the final
prediction image for the current block (Step Sd_3). In other
words, the prediction method or the mode for generating the
prediction image for the current block is selected.

[0431] The prediction processor then selects the prediction
image for which the smallest cost C has been calculated
among the intra prediction image and the inter prediction
image, as the final prediction image for the current block
(Step Sd_3). In other words, the prediction method or the
mode for generating the prediction image for the current
block is selected.

[0432] (Intra Predictor)

[0433] Intra predictor 124 generates a prediction signal
(that is, intra prediction image) by performing intra predic-
tion (also referred to as intra frame prediction) of the current
block by referring to a block or blocks in the current picture
and stored in block memory 118. More specifically, intra
predictor 124 generates an intra prediction image by per-
forming intra prediction by referring to pixel values (for
example, luma and/or chroma values) of a block or blocks
neighboring the current block, and then outputs the intra
prediction image to prediction controller 128.

[0434] For example, intra predictor 124 performs intra
prediction by using one mode from among a plurality of
intra prediction modes which have been defined. The intra
prediction modes typically include one or more non-direc-
tional prediction modes and a plurality of directional pre-
diction modes. The defined modes may be predefined.
[0435] The one or more non-directional prediction modes
include, for example, the planar prediction mode and DC
prediction mode defined in the H.265/high-efficiency video
coding (HEVC) standard.

[0436] The plurality of directional prediction modes
include, for example, the thirty-three directional prediction
modes defined in the H.265/HEVC standard. It is to be noted
that the plurality of directional prediction modes may further
include thirty-two directional prediction modes in addition
to the thirty-three directional prediction modes (for a total of
sixty-five directional prediction modes). FIG. 31 is a con-
ceptual diagram for illustrating sixty-seven intra prediction
modes in total that may be used in intra prediction (two
non-directional prediction modes and sixty-five directional
prediction modes). The solid arrows represent the thirty-
three directions defined in the H.265/HEVC standard, and
the dashed arrows represent the additional thirty-two direc-
tions (the two non-directional prediction modes are not
illustrated in FIG. 31).

[0437] In various kinds of processing examples, a luma
block may be referred to in intra prediction of a chroma
block. In other words, a chroma component of the current
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block may be predicted based on a luma component of the
current block. Such intra prediction is also referred to as
cross-component linear model (CCLM) prediction. The intra
prediction mode for a chroma block in which such a luma
block is referred to (also referred to as, for example, a
CCLM mode) may be added as one of the intra prediction
modes for chroma blocks.

[0438] Intra predictor 124 may correct intra-predicted
pixel values based on horizontal/vertical reference pixel
gradients. Intra prediction accompanied by this sort of
correcting is also referred to as position dependent intra
prediction combination (PDPC). Information indicating
whether to apply PDPC (referred to as, for example, a PDPC
flag) is normally signaled at the CU level. It is to be noted
that the signaling of such information does not necessarily
need to be performed at the CU level, and may be performed
at another level (for example, at the sequence level, picture
level, slice level, tile level, or CTU level).

[0439] FIG. 32 is a flow chart illustrating one example of
a process performed by intra predictor 124.

[0440] Intra predictor 124 selects one intra prediction
mode from a plurality of intra prediction modes (Step
Sw_1). Intra predictor 124 then generates a prediction image
according to the selected intra prediction mode (Step Sw_2).
Next, intra predictor 124 determines most probable modes
(MPMs) (Step Sw_3). MPMs include, for example, six intra
prediction modes. For example, two modes among the six
intra prediction modes may be planar mode and DC predic-
tion mode, and the other four modes may be directional
prediction modes. Intra predictor 124 determines whether
the intra prediction mode selected in Step Sw__1 is included
in the MPMs (Step Sw_4).

[0441] Here, when determining that the intra prediction
mode selected in Step Sw_1 is included in the MPMs (Yes
in Step Sw_4), intra predictor 124 sets an MPM flag to 1
(Step Sw_5), and generates information indicating the
selected intra prediction mode among the MPMs (Step
Sw_6). It is to be noted that the MPM flag set to 1 and the
information indicating the intra prediction mode may be
encoded as prediction parameters by entropy encoder 110.

[0442] When determining that the selected intra prediction
mode is not included in the MPMs (No in Step Sw_4), intra
predictor 124 sets the MPM flag to 0 (Step Sw_7). Alter-
natively, intra predictor 124 does not set any MPM flag. Intra
predictor 124 then generates information indicating the
selected intra prediction mode among at least one intra
prediction mode which is not included in the MPMs (Step
Sw_8). It is to be noted that the MPM flag set to 0 and the
information indicating the intra prediction mode may be
encoded as prediction parameters by entropy encoder 110.
The information indicating the intra prediction mode indi-
cates, for example, any one of 0 to 60.

[0443] (Intra Predictor)

[0444] Inter predictor 126 generates a prediction image
(inter prediction image) by performing inter prediction (also
referred to as inter frame prediction) of the current block by
referring to a block or blocks in a reference picture, which
is different from the current picture and is stored in frame
memory 122. Inter prediction is performed in units of a
current block or a current sub-block (for example, a 4x4
block) in the current block. The sub-block is included in the
block and is a unit smaller than the block. The size of the
sub-block may be in the form of a slice, brick, picture, etc.
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[0445] For example, inter predictor 126 performs motion
estimation in a reference picture for a current block or a
current sub-block, and finds a reference block or a reference
sub-block which best matches the current block or the
current sub-block. Inter predictor 126 then obtains motion
information (for example, a motion vector) which compen-
sates a motion or a change from the reference block or the
reference sub-block to the current block or the sub-block.
Inter predictor 126 generates an inter prediction image of the
current block or the sub-block by performing motion com-
pensation (or motion prediction) based on the motion infor-
mation. Inter predictor 126 outputs the generated inter
prediction image to prediction controller 128.

[0446] The motion information used in motion compen-
sation may be signaled as inter prediction signals in various
forms. For example, a motion vector may be signaled. As
another example, the difference between a motion vector and
a motion vector predictor may be signaled.

[0447] (Reference Picture List)

[0448] FIG. 33 is a conceptual diagram for illustrating
examples of reference pictures. FIG. 34 is a conceptual
diagram for illustrating examples of reference picture lists.
A reference picture list is a list indicating at least one
reference picture stored in frame memory 122. It is to be
noted that, in FIG. 33, each of rectangles indicates a picture,
each of arrows indicates a picture reference relationship, the
horizontal axis indicates time, I, P, and B in the rectangles
indicate an intra prediction picture, a uni-prediction picture,
and a bi-prediction picture, respectively, and numerals in the
rectangles indicate a decoding order. As illustrated in FIG.
33, the decoding order of the pictures is an order of 10, P1,
B2, B3, and B4, and the display order of the pictures is an
order of 10, B3, B2, B4, and P1. As illustrated in FIG. 34, the
reference picture list is a list representing reference picture
candidates. For example, one picture (or a slice) may include
at least one reference picture list. For example, one reference
picture list is used when a current picture is a uni-prediction
picture, and two reference picture lists are used when a
current picture is a bi-prediction picture. In the examples of
FIGS. 33 and 34, picture B3 which is current picture currPic
has two reference picture lists which are the LO list and the
L1 list. When current picture currPic is picture B3, reference
picture candidates for current picture currPic are 10, P1, and
B2, and the reference picture lists (which are the L0 list and
the L1 list) indicate these pictures. Inter predictor 126 or
prediction controller 128 specifies which picture in each
reference picture list is to be actually referred to in form of
a reference picture index refidx[.x. In FIG. 34, reference
pictures P1 and B2 are specified by reference picture indices
refldxL.O and refldxL1.

[0449] Such a reference picture list may be generated for
each unit such as a sequence, picture, slice, brick, CTU, or
CU. In addition, among reference pictures indicated in
reference picture lists, a reference picture index indicating a
reference picture to be referred to in inter prediction may be
signaled at the sequence level, picture level, slice level, brick
level, CTU level, or CU level. In addition, a common
reference picture list may be used in a plurality of inter
prediction modes.

[0450] (Basic Flow of Inter Prediction)

[0451] FIG. 35 is a flow chart illustrating an example basic
processing flow of a process of inter prediction.

[0452] First, inter predictor 126 generates a prediction
signal (Steps Se_1 to Se_3). Next, subtractor 104 generates
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the difference between a current block and a prediction
image as a prediction residual (Step Se_4).

[0453] Here, in the generation of the prediction image,
inter predictor 126 generates the prediction image through
determination of a motion vector (MV) of the current block
(Steps Se_1 and Se_2) and motion compensation (Step
Se_3). Furthermore, in determination of a MV, inter predic-
tor 126 determines the MV through selection of a motion
vector candidate (MV candidate) (Step Se_1) and derivation
of'a MV (Step Se_2). The selection of the MV candidate is
made by, for example, inter predictor 126 generating a MV
candidate list and selecting at least one MV candidate from
the MV candidate list. It is to be noted that MVs derived in
the past may be added to the MV candidate list. Alterna-
tively, in derivation of a MV, inter predictor 126 may further
select at least one MV candidate from the at least one MV
candidate, and determine the selected at least one MV
candidate as the MV for the current block. Alternatively,
inter predictor 126 may determine the MV for the current
block by performing estimation in a reference picture region
specified by each of the selected at least one MV candidate.
It is to be noted that the estimation in a reference picture
region may be referred to as motion estimation.

[0454] In addition, although Steps Se_1 to Se_3 are per-
formed by inter predictor 126 in the above-described
example, a process that is for example Step Se_1, Step Se_2,
or the like may be performed by another constituent element
included in encoder 100.

[0455] It is to be noted that a MV candidate list may be
generated for each process in inter prediction mode, or a
common MV candidate list may be used in a plurality of
inter prediction modes. The processes in Steps Se_3 and
Se_4 correspond to Steps Sa_3 and Sa_4 illustrated in FIG.
9, respectively. The process in Step Se__3 corresponds to the
process in Step Sd_15 in FIG. 30.

[0456] (Motion Vector Derivation Flow)

[0457] FIG. 36 is a flow chart illustrating one example of
a process of derivation of motion vectors.

[0458] Inter predictor 126 may derive a MV of a current
block in a mode for encoding motion information (for
example, a MV). In this case, for example, the motion
information may be encoded as a prediction parameter, and
may be signaled. In other words, the encoded motion
information is included in a stream.

[0459] Alternatively, inter predictor 126 may derive a MV
in a mode in which motion information is not encoded. In
this case, no motion information is included in the stream.
[0460] Here, MV derivation modes may include a normal
inter mode, a normal merge mode, a FRUC mode, an affine
mode, etc. which are described later. Modes in which motion
information is encoded among the modes include the normal
inter mode, the normal merge mode, the affine mode (spe-
cifically, an affine inter mode and an affine merge mode), etc.
It is to be noted that motion information may include not
only a MV but also motion vector predictor selection infor-
mation which is described later. Modes in which no motion
information is encoded include the FRUC mode, etc. Inter
predictor 126 selects a mode for deriving a MV of the
current block from the plurality of modes, and derives the
MYV of the current block using the selected mode.

[0461] FIG. 37 is a flow chart illustrating another example
of derivation of motion vectors.

[0462] Inter predictor 126 may derives a MV for a current
block in a mode in which a MV difference is encoded. In this
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case, for example, the MV difference may be encoded as a
prediction parameter, and may be signaled. In other words,
the encoded MV difference is included in a stream. The MV
difference is the difference between the MV of the current
block and the MV predictor. It is to be noted that the MV
predictor is a motion vector predictor.

[0463] Alternatively, inter predictor 126 may derive a MV
in a mode in which no MV difference is encoded. In this
case, no encoded MV difference is included in the stream.
[0464] Here, as described above, the MV derivation
modes include the normal inter mode, the normal merge
mode, the FRUC mode, the affine mode, etc. which are
described later. Modes in which a MV difference is encoded
among the modes include the normal inter mode, the affine
mode (specifically, the affine inter mode), etc. Modes in
which no MV difference is encoded include the FRUC
mode, the normal merge mode, the affine mode (specifically,
the affine merge mode), etc. Inter predictor 126 selects a
mode for deriving a MV of the current block from the
plurality of modes, and derives the MV of the current block
using the selected mode.

[0465] (Motion Vector Derivation Modes)

[0466] FIGS. 38A and 38B are conceptual diagrams for
illustrating example categorization of modes for MV deri-
vation. For example, as illustrated in FIG. 38A, MV deri-
vation modes are roughly categorized into three modes
according to whether to encode motion information and
whether to encode MV differences. The three modes are
inter mode, merge mode, and frame rate up-conversion
(FRUC) mode. The inter mode is a mode in which motion
estimation is performed, and in which motion information
and a MV difference are encoded. For example, as illustrated
in FIG. 38B, the inter mode includes affine inter mode and
normal inter mode. The merge mode is a mode in which no
motion estimation is performed, and in which a MV is
selected from an encoded surrounding block and a MV for
the current block is derived using the MV. The merge mode
is a mode in which, basically, motion information is encoded
and no MV difference is encoded. For example, as illustrated
in FIG. 38B, the merge modes include normal merge mode
(also referred to as normal merge mode or regular merge
mode), merge with motion vector difference (MMVD)
mode, combined inter merge/intra prediction (CIIP) mode,
triangle mode, ATMVP mode, and affine merge mode. Here,
a MV difference is encoded exceptionally in the MMVD
mode among the modes included in the merge modes. It is
to be noted that the affine merge mode and the affine inter
mode are modes included in the affine modes. The affine
mode is a mode for deriving, as a MV of a current block, a
MYV of each of a plurality of sub-blocks included in the
current block, assuming affine transform. The FRUC mode
is a mode which is for deriving a MV of the current block
by performing estimation between encoded regions, and in
which neither motion information nor any MV difference is
encoded. It is to be noted that the respective modes will be
described later in more detail.

[0467] Itis to be noted that the categorization of the modes
illustrated in FIGS. 38A and 38B are examples, and catego-
rization is not limited thereto. For example, when a MV
difference is encoded in CIIP mode, the CIIP mode is
categorized into inter modes.

[0468] (MV Derivation>Normal Inter Mode)

[0469] The normal inter mode is an inter prediction mode
for deriving a MV of a current block based on a block similar
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to the image of the current block from a reference picture
region specified by a MV candidate. In this normal inter
mode, a MV difference is encoded.

[0470] FIG. 39 is a flow chart illustrating an example of a
process of inter prediction in normal inter mode.

[0471] First, inter predictor 126 obtains a plurality of MV
candidates for a current block based on information such as
MVs of a plurality of encoded blocks temporally or spatially
surrounding the current block (Step Sg_1). In other words,
inter predictor 126 generates a MV candidate list.

[0472] Next, inter predictor 126 extracts N (an integer of
2 or larger) MV candidates from the plurality of MV
candidates obtained in Step Sg_1, as motion vector predictor
candidates (also referred to as MV predictor candidates)
according to a determined priority order (Step Sg_2). Itis to
be noted that the priority order may be determined in
advance for each of the N MV candidates.

[0473] Next, inter predictor 126 selects one motion vector
predictor candidate from the N motion vector predictor
candidates, as the motion vector predictor (also referred to
as a MV predictor) of the current block (Step Sg_3). At this
time, inter predictor 126 encodes, in a stream, motion vector
predictor selection information for identifying the selected
motion vector predictor. In other words, inter predictor 126
outputs the MV predictor selection information as a predic-
tion parameter to entropy encoder 110 through prediction
parameter generator 130.

[0474] Next, inter predictor 126 derives a MV of a current
block by referring to an encoded reference picture (Step
Sg_4). At this time, inter predictor 126 further encodes, in
the stream, the difference value between the derived MV and
the motion vector predictor as a MV difference. In other
words, inter predictor 126 outputs the MV difference as a
prediction parameter to entropy encoder 110 through pre-
diction parameter generator 130. It is to be noted that the
encoded reference picture is a picture including a plurality of
blocks which have been reconstructed after being encoded.
[0475] Lastly, inter predictor 126 generates a prediction
image for the current block by performing motion compen-
sation of the current block using the derived MV and the
encoded reference picture (Step Sg 5). The processes in
Steps Sg 1 to Sg_5 are executed on each block. For
example, when the processes in Steps Sg_1 to Sg_5 are
executed on all the blocks in the slice, inter prediction of the
slice using the normal inter mode finishes. For example,
when the processes in Steps Sg_1 to Sg_5 are executed on
all the blocks in the picture, inter prediction of the picture
using the normal inter mode finishes. It is to be noted that not
all the blocks included in the slice the processes may be
subjected to in Steps Sg_1 to Sg_5, and inter prediction of
the slice using the normal inter mode may finish when part
of'the blocks are subjected to the processes. This also applies
to processes in Steps Sg_1 to Sg_5. Inter prediction of the
picture using the normal inter mode may finish when the
processes are executed on part of the blocks in the picture.
[0476] Itis to be noted that the prediction image is an inter
prediction signal as described above. In addition, informa-
tion indicating the inter prediction mode (normal inter mode
in the above example) used to generate the prediction image
is, for example, encoded as a prediction parameter in an
encoded signal.

[0477] Tt is to be noted that the MV candidate list may be
also used as a list for use in another mode. In addition, the
processes related to the MV candidate list may be applied to
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processes related to the list for use in another mode. The
processes related to the MV candidate list include, for
example, extraction or selection of a MV candidate from the
MYV candidate list, reordering of MV candidates, or deletion
of a MV candidate.

[0478] (MV Derivation>Normal Merge Mode)

[0479] The normal merge mode is an inter prediction
mode for selecting a MV candidate from a MV candidate list
as a MV of a current block, thereby deriving the MV. It is
to be noted that the normal merge mode is a type of merge
mode and may simply be referred to as a merge mode. In this
embodiment, the normal merge mode and the merge mode
are distinguished, and the merge mode is used in a broader
meaning.

[0480] FIG. 40 is a flow chart illustrating an example of
inter prediction in normal merge mode.

[0481] First, inter predictor 126 obtains a plurality of MV
candidates for a current block based on information such as
MV of a plurality of encoded blocks temporally or spatially
surrounding the current block (Step Sh_1). In other words,
inter predictor 126 generates a MV candidate list.

[0482] Next, inter predictor 126 selects one MV candidate
from the plurality of MV candidates obtained in Step Sh_1,
thereby deriving a MV of the current block (Step Sh_2). At
this time, inter predictor 126 encodes, in a stream, MV
selection information for identifying the selected MV can-
didate. In other words, inter predictor 126 outputs the MV
selection information as a prediction parameter to entropy
encoder 110 through prediction parameter generator 130.
[0483] Lastly, inter predictor 126 generates a prediction
image for the current block by performing motion compen-
sation of the current block using the derived MV and the
encoded reference picture (Step Sh_3). The processes in
Steps Sh_1 to Sh_3 are executed, for example, on each
block. For example, when the processes in Steps Sh_1 to
Sh_3 are executed on all the blocks in the slice, inter
prediction of the slice using the normal merge mode finishes.
In addition, when the processes in Steps Sh_1 to Sh_3 are
executed on all the blocks in the picture, inter prediction of
the picture using the normal merge mode finishes. It is to be
noted that not all the blocks included in the slice may be
subjected to the processes in Steps Sh_1 to Sh_3, and inter
prediction of the slice using the normal merge mode may
finish when part of the blocks are subjected to the processes.
This also applies to processes in Steps Sh_1 to Sh_3. Inter
prediction of the picture using the normal merge mode may
finish when the processes are executed on part of the blocks
in the picture.

[0484] In addition, information indicating the inter pre-
diction mode (normal merge mode in the above example)
used to generate the prediction image and included in the
encoded signal is, for example, encoded as a prediction
parameter in a stream.

[0485] FIG. 41 is a conceptual diagram for illustrating one
example of a motion vector derivation process of a current
picture by a normal merge mode.

[0486] First, inter predictor 126 generates a MV candidate
list in which MV candidates are registered. Examples of MV
candidates include: spatially neighboring MV candidates
which are MVs of a plurality of encoded blocks located
spatially surrounding a current block; temporally neighbor-
ing MV candidates which are M Vs of surrounding blocks on
which the position of a current block in an encoded reference
picture is projected; combined MV candidates which are
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MVs generated by combining the MV value of a spatially
neighboring MV predictor and the MV value of a temporally
neighboring MV predictor; and a zero MV candidate which
is a MV having a zero value.

[0487] Next, inter predictor 126 selects one MV candidate
from a plurality of MV candidates registered in a MV
candidate list, and determines the MV candidate as the MV
of the current block.

[0488] Furthermore, entropy encoder 110 writes and
encodes, in a stream, merge_idx which is a signal indicating
which MV candidate has been selected.

[0489] It is to be noted that the MV candidates registered
in the MV candidate list described in FIG. 41 are examples.
The number of MV candidates may be different from the
number of MV candidates in the diagram, the MV candidate
list may be configured in such a manner that some of the
kinds of the MV candidates in the diagram may not be
included, or that one or more MV candidates other than the
kinds of MV candidates in the diagram are included.
[0490] A final MV may be determined by performing a
dynamic motion vector refreshing (DMVR) to be described
later using the MV of the current block derived by normal
merge mode. It is to be noted that, in normal merge mode,
motion information is encoded and no MV difference is
encoded. In MMVD mode, one MV candidate is selected
from a MV candidate list as in the case of normal merge
mode, a MV difference is encoded. As illustrated in FIG.
38B, MMVD may be categorized into merge modes together
with normal merge mode. It is to be noted that the MV
difference in MMVD mode does not always need to be the
same as the MV difference for use in inter mode. For
example, MV difference derivation in MM VD mode may be
a process that requires a smaller amount of processing than
the amount of processing required for MV difference deri-
vation in inter mode.

[0491] In addition, a combined inter merge/intra predic-
tion (CIIP) mode may be performed. The mode is for
overlapping a prediction image generated in inter prediction
and a prediction image generated in intra prediction to
generate a prediction image for a current block.

[0492] It is to be noted that the MV candidate list may be
referred to as a candidate list. In addition, merge_idx is MV
selection information.

[0493] (MV Derivation>HMVP Mode)

[0494] FIG. 42 is a conceptual diagram for illustrating one
example of a MV derivation process for a current picture
using HMVP merge mode.

[0495] In normal merge mode, a MV for, for example, a
CU which is a current block is determined by selecting one
MYV candidate from a MV list generated by referring to an
encoded block (for example, a CU). Here, another MV
candidate may be registered in the MV candidate list. The
mode in which such another MV candidate is registered is
referred to as HMVP mode.

[0496] In HMVP mode, MV candidates are managed
using a first-in first-out (FIFO) server for HMVP, separately
from the MV candidate list for normal merge mode.
[0497] In a FIFO buffer, motion information such as MV's
of'blocks processed in the past are stored newest first. In the
management of the FIFO buffer, each time when one block
is processed, the MV for the newest block (that is the CU
processed immediately before) is stored in the FIFO buffer,
and the MV of the oldest CU (that is, the CU processed
earliest) is deleted from the FIFO buffer. In the example
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illustrated in FIG. 42, HMVP1 is the MV for the newest
block, and HMVPS is the MV for the oldest MV.

[0498] Inter predictor 126 then, for example, checks
whether each MV managed in the FIFO buffer is a MV
different from all the MV candidates which have been
already registered in the MV candidate list for normal merge
mode starting from HMVP1. When determining that the MV
is different from all the MV candidates, inter predictor 126
may add the MV managed in the FIFO buffer in the MV
candidate list for normal merge mode as a MV candidate. At
this time, one or more of the MV candidates in the FIFO
buffer may be registered (added to the MV candidate list).
[0499] By using the HMVP mode in this way, it is possible
to add not only the MV of a block which neighbors the
current block spatially or temporally but also a MV for a
block processed in the past. As a result, the variation of MV
candidates for normal merge mode is expanded, which
increases the probability that coding efficiency can be
increased.

[0500] It is to be noted that the MV may be motion
information. In other words, information stored in the MV
candidate list and the FIFO buffer may include not only MV
values but also reference picture information, reference
directions, the numbers of pictures, etc. In addition, the
block may be, for example, a CU.

[0501] It is to be noted that the MV candidate list and the
FIFO buffer illustrated in FIG. 42 are examples. The MV
candidate list and FIFO buffer may be different in size from
those in FIG. 42, or may be configured to register MV
candidates in an order different from the one in FIG. 42. In
addition, the process described here may be common
between encoder 100 and decoder 200.

[0502] It is to be noted that the HMVP mode can be
applied for modes other than the normal merge mode. For
example, it is also possible that motion information such as
MV of blocks processed in affine mode in the past may be
stored newest first, and may be used as MV candidates,
which may facilitate better efficiency. The mode obtained by
applying HMVP mode to affine mode may be referred to as
history affine mode.

[0503] (MV Derivation>FRUC Mode)

[0504] Motion information may be derived at the decoder
side without being signaled from the encoder side. For
example, motion information may be derived by performing
motion estimation at the decoder 200 side. In an embodi-
ment, at the decoder side, motion estimation is performed
without using any pixel value in a current block. Modes for
performing motion estimation at the decoder 200 side with-
out using any pixel value in a current block include a frame
rate up-conversion (FRUC) mode, a pattern matched motion
vector derivation (PMMVD) mode, etc.

[0505] One example of a FRUC process in the form of a
flow chart is illustrated in FIG. 43. First, a list which
indicates, as MV candidates, MVs for encoded blocks each
of which neighbors the current block spatially or temporally
by referring to the MVs (the list may be a MV candidate list,
and be also used as the MV candidate list for normal merge
mode) (Step Si_1).

[0506] Next, a best MV candidate is selected from the
plurality of MV candidates registered in the MV candidate
list (Step Si_2). For example, the evaluation values of the
respective MV candidates included in the MV candidate list
are calculated, and one MV candidate is selected based on
the evaluation values. Based on the selected motion vector
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candidates, a motion vector for the current block is then
derived (Step Si_4). More specifically, for example, the
selected motion vector candidate (best MV candidate) is
derived directly as the motion vector for the current block.
In addition, for example, the motion vector for the current
block may be derived using pattern matching in a surround-
ing region of a position in a reference picture where the
position in the reference picture corresponds to the selected
motion vector candidate. In other words, estimation using
the pattern matching and the evaluation values may be
performed in the surrounding region of the best MV candi-
date, and when there is a MV that yields a better evaluation
value, the best MV candidate may be updated to the MV that
yields the better evaluation value, and the updated MV may
be determined as the final MV for the current block. In some
embodiments, updating of the motion vector which yields a
better evaluation value may not be performed.

[0507] Lastly, inter predictor 126 generates a prediction
image for the current block by performing motion compen-
sation of the current block using the derived MV and the
encoded reference picture (Step Si_5). The processes in
Steps Si_1 to Si_5 are executed, for example, on each block.
For example, when the processes in Steps Si_1 to Si_5 are
executed on all the blocks in the slice, inter prediction of the
slice using the FRUC mode finishes. For example, when the
processes in Steps Si_1 to Si_5 are executed on all the
blocks in the picture, inter prediction of the picture using the
FRUC mode finishes. It is to be noted that not all the blocks
included in the slice may be subjected to the processes in
Steps Si_1 to Si_5, and inter prediction of the slice using the
FRUC mode may finish when part of the blocks are sub-
jected to the processes. When the processes in Steps Si_1 to
Si_5 are executed on part of blocks included in a picture in
a similar manner, inter prediction of the picture using the
FRUC mode may finish.

[0508] A similar process may be performed in units of a
sub-block.
[0509] Evaluation values may be calculated according to

various kinds of methods. For example, a comparison is
made between a reconstructed image in a region in a
reference picture corresponding to a motion vector, and a
reconstructed image in a determined region (the region may
be, for example, a region in another reference picture or a
region in a neighboring block of a current picture, as
indicated below). The determined region may be predeter-
mined.

[0510] The difference between the pixel values of the two
reconstructed images may be used for an evaluation value of
the motion vectors. It is to be noted that an evaluation value
may be calculated using information other than the value of
the difference.

[0511] Next, an example of pattern matching is described
in detail. First, one MV candidate included in a MV candi-
date list (for example, a merge list) is selected as a start point
of estimation by the pattern matching. For example, as the
pattern matching, either a first pattern matching or a second
pattern matching may be used. The first pattern matching
and the second pattern matching may be referred to as
bilateral matching and template matching, respectively.
[0512] (MYV Derivation>FRUC>Bilateral Matching)
[0513] In the first pattern matching, pattern matching is
performed between two blocks which are located along a
motion trajectory of a current block and are included in two
different reference pictures. Accordingly, in the first pattern
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matching, a region in another reference picture along the
motion trajectory of the current block is used as a deter-
mined region for calculating the evaluation value of the
above-described candidate. The determined region may be
predetermined.

[0514] FIG. 44 is a conceptual diagram for illustrating one
example of the first pattern matching (bilateral matching)
between the two blocks in the two reference pictures along
the motion trajectory. As illustrated in FIG. 44, in the first
pattern matching, two motion vectors (MV0, MV1) are
derived by estimating a pair which best matches among pairs
in the two blocks included in the two different reference
pictures (Ref0, Refl) and located along the motion trajec-
tory of the current block (Cur block). More specifically, a
difference between the reconstructed image at a specified
location in the first encoded reference picture (Retf0) speci-
fied by a MV candidate, and the reconstructed image at a
specified location in the second encoded reference picture
(Refl) specified by a symmetrical MV obtained by scaling
the MV candidate at a display time interval is derived for the
current block, and an evaluation value is calculated using the
value of the obtained difference. It is possible to select, as
the final MV, the MV candidate which yields the best
evaluation value among the plurality of MV candidates, and
which is likely to produce good results.

[0515] In the assumption of a continuous motion trajec-
tory, the motion vectors (MV0, MV1) specifying the two
reference blocks are proportional to temporal distances
(TDO, TD1) between the current picture (Cur Pic) and the
two reference pictures (Ref0, Refl). For example, when the
current picture is temporally located between the two ref-
erence pictures and the temporal distances from the current
picture to the respective two reference pictures are equal to
each other, mirror-symmetrical bi-directional motion vec-
tors are derived in the first pattern matching.

[0516] (MV Derivation>FRUC>Template Matching)

[0517] In the second pattern matching (template match-
ing), pattern matching is performed between a block in a
reference picture and a template in the current picture (the
template is a block neighboring the current block in the
current picture (the neighboring block is, for example, an
upper and/or left neighboring block(s))). Accordingly, in the
second pattern matching, the block neighboring the current
block in the current picture is used as the determined region
for calculating the evaluation value of the above-described
MYV candidate.

[0518] FIG. 45 is a conceptual diagram for illustrating one
example of pattern matching (template matching) between a
template in a current picture and a block in a reference
picture. As illustrated in FIG. 45, in the second pattern
matching, the motion vector of the current block (Cur block)
is derived by estimating, in the reference picture (Ref0), the
block which best matches the block neighboring the current
block in the current picture (Cur Pic). More specifically, the
difference between a reconstructed image in an encoded
region which neighbors both left and above or either left or
above and a reconstructed image which is in a corresponding
region in the encoded reference picture (Ref0) and is speci-
fied by a MV candidate is derived, and an evaluation value
is calculated using the value of the obtained difference. The
MYV candidate which yields the best evaluation value among
a plurality of MV candidates may be selected as the best MV
candidate.
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[0519] Such information indicating whether to apply the
FRUC mode (referred to as, for example, a FRUC flag) may
be signaled at the CU level. In addition, when the FRUC
mode is applied (for example, when a FRUC flag is true),
information indicating an applicable pattern matching
method (e.g., the first pattern matching or the second pattern
matching) may be signaled at the CU level. It is to be noted
that the signaling of such information does not necessarily
need to be performed at the CU level, and may be performed
at another level (for example, at the sequence level, picture
level, slice level, tile level, CTU level, or sub-block level).
[0520] (MYV Derivation>Affine Mode)

[0521] The affine mode is a mode for generating a MV
using affine transform. For example, a MV may be derived
in units of a sub-block based on motion vectors of a plurality
of neighboring blocks. This mode is also referred to as an
affine motion compensation prediction mode.

[0522] FIG. 46A is a conceptual diagram for illustrating
one example of MV derivation in units of a sub-block based
on motion vectors of a plurality of neighboring blocks. In
FIG. 46A, the current block includes, for example, sixteen
4x4 sub-blocks. Here, motion vector V, at an upper-left
corner control point in the current block is derived based on
a motion vector of a neighboring block, and likewise,
motion vector V, at an upper-right corner control point in the
current block is derived based on a motion vector of a
neighboring sub-block. Two motion vectors v, and v, may
be projected according to an expression (1A) indicated
below, and motion vectors (v,, v,) for the respective sub-
blocks in the current block may be derived.

[Math. 1]
iz =vox)  (Viy —voy) (1A)
f =X - ————— Y+
w w
iy =voy)  (vix = vox)
vy = #x— Ty+v0y
[0523] Here, x and y indicate the horizontal position and

the vertical position of the sub-block, respectively, and w
indicates a determined weighting coefficient. The deter-
mined weighting coefficient may be predetermined.

[0524] Such information indicating the affine mode (for
example, referred to as an affine flag) may be signaled at the
CU level. It is to be noted that the signaling of the infor-
mation indicating the affine mode does not necessarily need
to be performed at the CU level, and may be performed at
another level (for example, at the sequence level, picture
level, slice level, tile level, CTU level, or sub-block level).
[0525] In addition, the affine mode may include several
modes for different methods for deriving motion vectors at
the upper-left and upper-right corner control points. For
example, the affine mode include two modes which are the
affine inter mode (also referred to as an affine normal inter
mode) and the affine merge mode.

[0526] (MYV Derivation>Affine Mode)

[0527] FIG. 46B is a conceptual diagram for illustrating
one example of MV derivation in units of a sub-block in
affine mode in which three control points are used. In FIG.
46B, the current block includes, for example, sixteen 4x4
blocks. Here, motion vector V, at the upper-left corner
control point in the current block is derived based on a
motion vector of a neighboring block. Here, motion vector
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V, atthe upper-right corner control point in the current block
is derived based on a motion vector of a neighboring block,
and likewise motion vector V, at the lower-left corner
control point for the current block is derived based on a
motion vector of a neighboring block. Three motion vectors
Vo, vy, and v, may be projected according to an expression
(1B) indicated below, and motion vectors (v,, v,) for the
respective sub-blocks in the current block may be derived.

Math. 2]
(Vix = Vo) (vax —Vox) (1B)
V= - Ty vy,
w h
(Viy —voy)  (v2y —voy)
b= B, Om2ed,

[0528] Here, x and y indicate the horizontal position and
the vertical position of the sub-block, respectively, and w
and h may be weighting coefficients, which may be prede-
termined weighting coefficients. In an embodiment, w may
indicate the width of the current block, and h may indicate
the height of the current block.

[0529] Affine modes in which different numbers of control
points (for example, two and three control points) are used
may be switched and signaled at the CU level. It is to be
noted that information indicating the number of control
points in affine mode used at the CU level may be signaled
at another level (for example, the sequence level, picture
level, slice level, tile level, CTU level, or sub-block level).
[0530] In addition, such an affine mode in which three
control points are used may include different methods for
deriving motion vectors at the upper-left, upper-right, and
lower-left corner control points. For example, the affine
modes in which three control points are used may include
two modes which are the affine inter mode and the affine
merge mode, as in the case of affine modes in which two
control points are used.

[0531] It is to be noted that, in the affine modes, the size
of each sub-block included in the current block may not be
limited to 4x4 pixels, and may be another size. For example,
the size of each sub-block may be 8x8 pixels.

[0532] (MYV Derivation>Affine Mode>Control Point)
[0533] FIG. 47A, FIG. 47B, and FIG. 47C are conceptual
diagrams for illustrating examples of MV derivation at
control points in an affine mode.

[0534] As illustrated in FIG. 47A, in the affine mode, for
example, motion vector predictors at respective control
points of a current block are calculated based on a plurality
of motion vectors corresponding to blocks encoded accord-
ing to the affine mode among encoded block A (left), block
B (upper), block C (upper-right), block D (lower-left), and
block E (upper-left) which neighbor the current block. More
specifically, encoded block A (left), block B (upper), block
C (upper-right), block D (lower-left), and block E (upper-
left) are checked in the listed order, and the first effective
block encoded according to the affine mode is identified.
Motion vector predictors at the control points of the current
block are calculated based on a plurality of motion vectors
corresponding to the identified block.

[0535] For example, as illustrated in FIG. 47B, when
block A which neighbors to the left of the current block has
been encoded according to an affine mode in which two
control points are used, motion vectors v, and v, projected
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at the upper-left corner position and the upper-right corner
position of the encoded block including block A are derived.
Motion vector v, at the upper-left corner control point of the
current block and motion vector v, at the upper-right corner
control point of the current block are then calculated from
derived motion vectors v, and v,.

[0536] For example, as illustrated in FIG. 47C, when
block A which neighbors to the left of the current block has
been encoded according to an affine mode in which three
control points are used, motion vectors v;, v, and vg
projected at the upper-left corner position, the upper-right
corner position, and the lower-left corner position of the
encoded block including block A are derived. Motion vector
v, at the upper-left corner control point of the current block,
motion vector v, at the upper-right corner control point of
the current block, and motion vector v, at the lower-left
corner control point of the current block are then calculated
from derived motion vectors v;, v,, and vs.

[0537] The MV derivation methods illustrated in FIGS.
47A to 47C may be used in the MV derivation at each
control point for the current block in Step Sk_1 illustrated in
FIG. 50, or may be used for MV predictor derivation at each
control point for the current block in Step Sj_1 illustrated in
FIG. 51 described later.

[0538] FIGS. 48A and 48B are conceptual diagrams for
illustrating examples of MV derivation at control points in
affine mode.

[0539] FIG. 48A is a conceptual diagram for illustrating an
example affine mode in which two control points are used.

[0540] Inthe affine mode, as illustrated in FIG. 48A, a MV
selected from MVs at encoded block A, block B, and block
C which neighbor the current block is used as motion vector
v, at the upper-left corner control point for the current block.
Likewise, a MV selected from MV's of encoded block D and
block E which neighbor the current block is used as motion
vector v, at the upper-right corner control point for the
current block.

[0541] FIG. 48B is a conceptual diagram for illustrating an
example affine mode in which three control points are used.

[0542] In the affine mode, as illustrated in FIG. 48B, a MV
selected from MVs at encoded block A, block B, and block
C which neighbor the current block is used as motion vector
v, at the upper-left corner control point for the current block.
Likewise, a MV selected from MV's of encoded block D and
block E which neighbor the current block is used as motion
vector v, at the upper-right corner control point for the
current block. Furthermore, a MV selected from MVs of
encoded block F and block G which neighbor the current
block is used as motion vector v, at the lower-left corner
control point for the current block.

[0543] It is to be noted that the MV derivation methods
illustrated in FIGS. 48A and 48B may be used in the MV
derivation at each control point for the current block in Step
Sk_1 illustrated in FIG. 50 described later, or may be used
for MV predictor derivation at each control point for the
current block in Step Sj_1 illustrated in FIG. 51 described
later.

[0544] Here, when affine modes in which different num-
bers of control points (for example, two and three control
points) are used may be switched and signaled at the CU
level, the number of control points for an encoded block and
the number of control points for a current block may be
different from each other.
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[0545] FIGS. 49A and 49B are conceptual diagrams for
illustrating examples of a method for MV derivation at
control points when the number of control points for an
encoded block and the number of control points for a current
block are different from each other.

[0546] For example, as illustrated in FIG. 49A, a current
block has three control points at the upper-left corner, the
upper-right corner, and the lower-left corner, and block A
which neighbors to the left of the current block has been
encoded according to an affine mode in which two control
points are used. In this case, motion vectors v, and v,
projected at the upper-left corner position and the upper-
right corner position in the encoded block including block A
are derived. Motion vector v, at the upper-left corner control
point and motion vector v, at the upper-right corner control
point for the current block are then calculated from derived
motion vectors v and v,. Furthermore, motion vector v, at
the lower-left corner control point is calculated from derived
motion vectors v, and v;.

[0547] For example, as illustrated in FIG. 49B, a current
block has two control points at the upper-left corner and the
upper-right corner, and block A which neighbors to the left
of the current block has been encoded according to an affine
mode in which three control points are used. In this case,
motion vectors v, v,, and vs projected at the upper-left
corner position in the encoded block including block A, the
upper-right corner position in the encoded block, and the
lower-left corner position in the encoded block are derived.
Motion vector v, at the upper-left corner control point for the
current block and motion vector v, at the upper-right corner
control point for the current block are then calculated from
derived motion vectors vs, v,, and vs.

[0548] It is to be noted that the MV derivation methods
illustrated in FIGS. 49A and 49B may be used in the MV
derivation at each control point for the current block in Step
Sk_1 illustrated in FIG. 50 described later, or may be used
for MV predictor derivation at each control point for the
current block in Step Sj_1 illustrated in FIG. 51 described
later.

[0549] (MV Derivation>Affine Mode>Affine Merge
Mode)
[0550] FIG. 50 is a flow chart illustrating one example of

a process in the affine merge mode.

[0551] In affine merge mode as illustrated, first, inter
predictor 126 derives M Vs at respective control points for a
current block (Step Sk_1). The control points are an upper-
left corner point of the current block and an upper-right
corner point of the current block as illustrated in FIG. 46A,
or an upper-left corner point of the current block, an upper-
right corner point of the current block, and a lower-left
corner point of the current block as illustrated in FIG. 46B.
Inter predictor 126 may encode MV selection information
for identifying two or three derived MVs in a stream.
[0552] For example, when MV derivation methods illus-
trated in FIGS. 47A to 47C are used, as illustrated in FIG.
47A, inter predictor 126 checks encoded block A (left),
block B (upper), block C (upper-right), block D (lower-left),
and block E (upper-left) in the listed order, and identifies the
first effective block encoded according to the affine mode.
[0553] Inter predictor 126 derives the MV at the control
point using the identified first effective block encoded
according to the identified affine mode. For example, when
block A is identified and block A has two control points, as
illustrated in FIG. 47B, inter predictor 126 calculates motion
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vector v, at the upper-left corner control point of the current
block and motion vector v, at the upper-right corner control
point of the current block from motion vectors v; and v, at
the upper-left corner of the encoded block including block A
and the upper-right corner of the encoded block. For
example, inter predictor 126 calculates motion vector v,, at
the upper-left corner control point of the current block and
motion vector v, at the upper-right corner control point of
the current block by projecting motion vectors v, and v, at
the upper-left corner and the upper-right corner of the
encoded block onto the current block.

[0554] Alternatively, when block A is identified and block
A has three control points, as illustrated in FIG. 47C, inter
predictor 126 calculates motion vector v, at the upper-left
corner control point of the current block, motion vector v,
at the upper-right corner control point of the current block,
and motion vector v, at the lower-left corner control point of
the current block from motion vectors v, v,, and v at the
upper-left corner of the encoded block including block A,
the upper-right corner of the encoded block, and the lower-
left corner of the encoded block. For example, inter predic-
tor 126 calculates motion vector v, at the upper-left corner
control point of the current block, motion vector v, at the
upper-right corner control point of the current block, and
motion vector v, at the lower-left corner control point of the
current block by projecting motion vectors v;, v,, and v at
the upper-left corner, the upper-right corner, and the lower-
left corner of the encoded block onto the current block.
[0555] It is to be noted that, as illustrated in FIG. 49A
described above, MVs at three control points may be cal-
culated when block A is identified and block A has two
control points, and that, as illustrated in FIG. 49B described
above, MVs at two control points may be calculated when
block A is identified and block A has three control points.
[0556] Next, inter predictor 126 performs motion com-
pensation of each of a plurality of sub-blocks included in the
current block. In other words, inter predictor 126 calculates
a MV for each of a plurality of sub-blocks as an affine MV,
for example using two motion vectors v, and v, and the
above expression (1A) or three motion vectors v, v,, and v,
and the above expression (1B) (Step Sk_2). Inter predictor
126 then performs motion compensation of the sub-blocks
using these affine MVs and encoded reference pictures (Step
Sk_3). When the processes in Steps Sk_2 and Sk_3 are
executed for each of all the sub-blocks included in the
current block, the process for generating a prediction image
using the affine merge mode for the current block finishes.
In other words, motion compensation of the current block is
performed to generate a prediction image of the current
block.

[0557] It is to be noted that the above-described MV
candidate list may be generated in Step Sk_1. The MV
candidate list may be, for example, a list including MV
candidates derived using a plurality of MV derivation meth-
ods for each control point. The plurality of MV derivation
methods may be, for example, any combination of the MV
derivation methods illustrated in FIGS. 47A to 47C, the MV
derivation methods illustrated in FIGS. 48A and 48B, the
MYV derivation methods illustrated in FIGS. 49A and 49B,
and other MV derivation methods.

[0558] It is to be noted that MV candidate lists may
include MV candidates in a mode in which prediction is
performed in units of a sub-block, other than the affine
mode.
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[0559] It is to be noted that, for example, a MV candidate
list including MV candidates in an affine merge mode in
which two control points are used and an affine merge mode
in which three control points are used may be generated as
a MV candidate list. Alternatively, a MV candidate list
including MV candidates in the affine merge mode in which
two control points are used and a MV candidate list includ-
ing MV candidates in the affine merge mode in which three
control points are used may be generated separately. Alter-
natively, a MV candidate list including MV candidates in
one of the affine merge mode in which two control points are
used and the affine merge mode in which three control points
are used may be generated. The MV candidate(s) may be, for
example, MVs for encoded block A (left), block B (upper),
block C (upper-right), block D (lower-left), and block E
(upper-left), or a MV for an effective block among the
blocks.

[0560] It is to be noted that index indicating one of the
MVs in a MV candidate list may be transmitted as MV
selection information.

[0561] (MYV Derivation>Affine Mode>Affine Inter Mode)
[0562] FIG. 51 is a flow chart illustrating one example of
a process in an affine inter mode.

[0563] In the affine inter mode, first, inter predictor 126
derives MV predictors (v, v,) or (vo, v,, V,) of respective
two or three control points for a current block (Step Sj_1).
The control points may be, for example, an upper-left corner
point for the current block, an upper-right corner point of the
current block, and an upper-right corner point for the current
block as illustrated in FIG. 46A or FIG. 46B.

[0564] For example, when the MV derivation methods
illustrated in FIGS. 48A and 48B are used, inter predictor
126 derives the MV predictors (v, v;) or (v,, v, V,) at
respective two or three control points for the current block
by selecting MVs of any of the blocks among encoded
blocks in the vicinity of the respective control points for the
current block illustrated in FIG. 48A or FIG. 48B. At this
time, inter predictor 126 encodes, in a stream, MV predictor
selection information for identifying the selected two or
three MV predictors.

[0565] For example, inter predictor 126 may determine,
using a cost evaluation or the like, the block from which a
MYV as a MV predictor at a control point is selected from
among encoded blocks neighboring the current block, and
may write, in a bitstream, a flag indicating which MV
predictor has been selected. In other words, inter predictor
126 outputs, as a prediction parameter, the MV predictor
selection information such as a flag to entropy encoder 110
through prediction parameter generator 130.

[0566] Next, inter predictor 126 performs motion estima-
tion (Step Sj_3 and Sj_4) while updating the MV predictor
selected or derived in Step Sj_1 (Step Sj_2). In other words,
inter predictor 126 calculates, as an affine MV, a MV of each
of sub-blocks which corresponds to an updated MV predic-
tor, using the expression (1A) or expression (1B) described
above (Step Sj_3). Inter predictor 126 then performs motion
compensation of the sub-blocks using these affine MVs and
encoded reference pictures (Step Sj_4). The processes in
Step Sj_3 and Sj_4 are executed on all the blocks in the
current block when a MV predictor is updated in Step Sj_2.
As a result, for example, inter predictor 126 determines the
MYV predictor which yields the smallest cost as the MV at a
control point in a motion estimation loop (Step Sj_5). At this
time, inter predictor 126 further encodes, in the stream, the
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difference value between the determined MV and the MV
predictor as a MV difference. In other words, inter predictor
126 outputs the MV difference as a prediction parameter to
entropy encoder 110 through prediction parameter generator
130.

[0567] Lastly, inter predictor 126 generates a prediction
image for the current block by performing motion compen-
sation of the current block using the determined MV and the
encoded reference picture (Step Sj_6).

[0568] It is to be noted that the above-described MV
candidate list may be generated in Step Sj_1. The MV
candidate list may be, for example, a list including MV
candidates derived using a plurality of MV derivation meth-
ods for each control point. The plurality of MV derivation
methods may be, for example, any combination of the MV
derivation methods illustrated in FIGS. 47A to 47C, the MV
derivation methods illustrated in FIGS. 48A and 48B, the
MYV derivation methods illustrated in FIGS. 49A and 49B,
and other MV derivation methods.

[0569] It is to be noted that MV candidate lists may
include MV candidates in a mode in which prediction is
performed in units of a sub-block, other than the affine
mode.

[0570] It is to be noted that, for example, a MV candidate
list including MV candidates in an affine inter mode in
which two control points are used and an affine inter mode
in which three control points are used may be generated as
a MV candidate list. Alternatively, a MV candidate list
including MV candidates in the affine inter mode in which
two control points are used and a MV candidate list includ-
ing MV candidates in the affine inter mode in which three
control points are used may be generated separately. Alter-
natively, a MV candidate list including MV candidates in
one of the affine inter mode in which two control points are
used and the affine inter mode in which three control points
are used may be generated. The MV candidate(s) may be, for
example, MVs for encoded block A (left), block B (upper),
block C (upper-right), block D (lower-left), and block E
(upper-left), or a MV for an effective block among the
blocks.

[0571] Itis to be noted that index indicating one of the MV
candidates in a MV candidate list may be transmitted as MV
predictor selection information.

[0572] (MYV Derivation>Triangle Mode)

[0573] Inter predictor 126 generates one rectangular pre-
diction image for a current rectangular block in the above
example. However, inter predictor 126 may generate a
plurality of prediction images each having a shape different
from a rectangle for the current rectangular block, and may
combine the plurality of prediction images to generate the
final rectangular prediction image. The shape different from
a rectangle may be, for example, a triangle.

[0574] FIG. 52A is a conceptual diagram for illustrating
generation of two triangular prediction images.

[0575] Inter predictor 126 generates a triangular predic-
tion image by performing motion compensation of a first
partition having a triangular shape in a current block by
using a first MV of the first partition, to generate a triangular
prediction image. Likewise, inter predictor 126 generates a
triangular prediction image by performing motion compen-
sation of a second partition having a triangular shape in a
current block by using a second MV of the second partition,
to generate a triangular prediction image. Inter predictor 126
then generates a prediction image having the same rectan-
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gular shape as the rectangular shape of the current block by
combining these prediction images.

[0576] It is to be noted that a first prediction image having
a rectangular shape corresponding to a current block may be
generated as a prediction image for a first partition, using a
first MV. In addition, a second prediction image having a
rectangular shape corresponding to a current block may be
generated as a prediction image for a second partition, using
a second MV. A prediction image for the current block may
be generated by performing a weighted addition of the first
prediction image and the second prediction image. It is to be
noted that the part which is subjected to the weighted
addition may be a partial region across the boundary
between the first partition and the second partition.

[0577] FIG. 52B is a conceptual diagram for illustrating
examples of a first portion of a first partition which overlaps
with a second partition, and first and second sets of samples
which may be weighted as part of a correction process. The
first portion may be, for example, one quarter of the width
or height of the first partition. In another example, the first
portion may have a width corresponding to N samples
adjacent to an edge of the first partition, where N is an
integer greater than zero, for example, N may be the integer
2. As illustrated, the left example of FIG. 52B shows a
rectangular partition having a rectangular portion with a
width which is one fourth of the width of the first partition,
with the first set of samples including samples outside of the
first portion and samples inside of the first portion, and the
second set of samples including samples within the first
portion. The center example of FIG. 52B shows a rectan-
gular partition having a rectangular portion with a height
which is one fourth of the height of the first partition, with
the first set of samples including samples outside of the first
portion and samples inside of the first portion, and the
second set of samples including samples within the first
portion. The right example of FIG. 52B shows a triangular
partition having a polygonal portion with a height which
corresponds to two samples, with the first set of samples
including samples outside of the first portion and samples
inside of the first portion, and the second set of samples
including samples within the first portion.

[0578] The first portion may be a portion of the first
partition which overlaps with an adjacent partition. FIG.
52C is a conceptual diagram for illustrating a first portion of
a first partition, which is a portion of the first partition that
overlaps with a portion of an adjacent partition. For ease of
illustration, a rectangular partition having an overlapping
portion with a spatially adjacent rectangular partition is
shown. Partitions having other shapes, such as triangular
partitions, may be employed, and the overlapping portions
may overlap with a spatially or temporally adjacent parti-
tion.

[0579] In addition, although an example is given in which
a prediction image is generated for each of two partitions
using inter prediction, a prediction image may be generated
for at least one partition using intra prediction.

[0580] FIG. 53 is a flow chart illustrating one example of
a process in a triangle mode.

[0581] In the triangle mode, first, inter predictor 126 splits
the current block into the first partition and the second
partition (Step Sx_1). At this time, inter predictor 126 may
encode, in a stream, partition information which is informa-
tion related to the splitting into the partitions as a prediction
parameter. In other words, inter predictor 126 may output
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the partition information as the prediction parameter to
entropy encoder 110 through prediction parameter generator
130.

[0582] First, inter predictor 126 obtains a plurality of MV
candidates for a current block based on information such as
MVs of a plurality of encoded blocks temporally or spatially
surrounding the current block (Step Sx_2). In other words,
inter predictor 126 generates a MV candidate list.

[0583] Inter predictor 126 then selects the MV candidate
for the first partition and the MV candidate for the second
partition as a first MV and a second MV, respectively, from
the plurality of MV candidates obtained in Step Sx_1 (Step
Sx_3). At this time, inter predictor 126 encodes, in a stream,
MYV selection information for identifying the selected MV
candidate as a prediction parameter. In other words, inter
predictor 126 outputs the MV selection information as a
prediction parameter to entropy encoder 110 through pre-
diction parameter generator 130.

[0584] Next, inter predictor 126 generates a first predic-
tion image by performing motion compensation using the
selected first MV and an encoded reference picture (Step
Sx_4). Likewise, inter predictor 126 generates a second
prediction image by performing motion compensation using
the selected second MV and an encoded reference picture
(Step Sx_5).

[0585] Lastly, inter predictor 126 generates a prediction
image for the current block by performing a weighted
addition of the first prediction image and the second pre-
diction image (Step Sx_6).

[0586] It is to be noted that, although the first partition and
the second partition are triangles in the example illustrated
in FIG. 52A, the first partition and the second partition may
be trapezoids, or other shapes different from each other.
Furthermore, although the current block includes two par-
titions in the examples illustrated in FIGS. 52A and 52C, the
current block may include three or more partitions.

[0587] In addition, the first partition and the second par-
tition may overlap with each other. In other words, the first
partition and the second partition may include the same pixel
region. In this case, a prediction image for a current block
may be generated using a prediction image in the first
partition and a prediction image in the second partition.

[0588] In addition, although the example in which the
prediction image is generated for each of the two partitions
using inter prediction has been illustrated, a prediction
image may be generated for at least one partition using intra
prediction.

[0589] It is to be noted that the MV candidate list for
selecting the first MV and the MV candidate list for selecting
the second MV may be different from each other, or the MV
candidate list for selecting the first MV may be also used as
the MV candidate list for selecting the second MV.

[0590] It is to be noted that partition information may
include an index indicating the splitting direction in which
at least a current block is split into a plurality of partitions.
The MV selection information may include an index indi-
cating the selected first MV and an index indicating the
selected second MV. One index may indicate a plurality of
pieces of information. For example, one index collectively
indicating a part or the entirety of partition information and
a part or the entirety of MV selection information may be
encoded.
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[0591] (MV Derivation>ATMVP Mode)

[0592] FIG. 54 is a conceptual diagram for illustrating one
example of an Advanced Temporal Motion Vector Predic-
tion (ATMVP) mode in which a MV is derived in units of a
sub-block.

[0593] The ATMVP mode is a mode categorized into the
merge mode. For example, in the ATMVP mode, a MV
candidate for each sub-block is registered in a MV candidate
list for use in normal merge mode.

[0594] More specifically, in the ATMVP mode, first, as
illustrated in FIG. 54, a temporal MV reference block
associated with a current block is identified in an encoded
reference picture specified by a MV (MVO0) of a neighboring
block located at the lower-left position with respect to the
current block. Next, in each sub-block in the current block,
the MV used to encode the region corresponding to the
sub-block in the temporal MV reference block is identified.
The MV identified in this way is included in a MV candidate
list as a MV candidate for the sub-block in the current block.
When the MV candidate for each sub-block is selected from
the MV candidate list, the sub-block is subjected to motion
compensation in which the MV candidate is used as the MV
for the sub-block. In this way, a prediction image for each
sub-block is generated.

[0595] Although the block located at the lower-left posi-
tion with respect the current block is used as a surrounding
MYV reference block in the example illustrated in FIG. 54, it
is to be noted that another block may be used. In addition,
the size of the sub-block may be 4x4 pixels, 8x8 pixels, or
another size. The size of the sub-block may be switched for
a unit such as a slice, brick, picture, etc.

[0596] (MV Derivation>DMVR)

[0597] FIG. 55 is a flow chart illustrating a relationship
between the merge mode and Decoder Motion Vector
Refinement DMVR.

[0598] Inter predictor 126 derives a motion vector for a
current block according to the merge mode (Step SI_1).
Next, inter predictor 126 determines whether to perform
estimation of a motion vector, that is, motion estimation
(Step S1_2). Here, when determining not to perform motion
estimation (No in Step S1_2), inter predictor 126 determines
the motion vector derived in Step S1_1 as the final motion
vector for the current block (Step S1_4). In other words, in
this case, the motion vector of the current block is deter-
mined according to the merge mode.

[0599] When determining to perform motion estimation in
Step SI__1 (Yes in Step S1_2), inter predictor 126 derives the
final motion vector for the current block by estimating a
surrounding region of the reference picture specified by the
motion vector derived in Step S1__1 (Step SI_3). In other
words, in this case, the motion vector of the current block is
determined according to the DMVR.

[0600] FIG. 56 is a conceptual diagram for illustrating one
example of a DMVR process for determining a MV.
[0601] First, in the merge mode for example, MV candi-
dates (O and L1) are selected for the current block. A
reference pixel is identified from a first reference picture
(LO) which is an encoded picture in the L0 list according to
the MV candidate (L0O). Likewise, a reference pixel is
identified from the second reference picture (L.1) which is an
encoded picture in the L1 list according to the MV candidate
(L1). A template is generated by calculating an average of
these reference pixels.

[0602] Next, each of the surrounding regions of MV
candidates of the first reference picture (L.O) and the second
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reference picture (L1) are estimated using the template, and
the MV which yields the smallest cost is determined to be
the final MV. It is to be noted that the cost may be calculated,
for example, using a difference value between each of the
pixel values in the template and a corresponding one of the
pixel values in the estimation region, the values of MV
candidates, etc.

[0603] Exactly the same processes described here do not
always need to be performed. Other process for enabling
derivation of the final MV by estimation in surrounding
regions of MV candidates may be used.

[0604] FIG. 57 is a conceptual diagram for illustrating
another example of DMVR for determining a MV. Unlike
the example of DM VR illustrated in FIG. 56, in the example
illustrated in FIG. 57, costs are calculated without generat-
ing a template.

[0605] First, inter predictor 126 estimates a surrounding
region of a reference block included in each of reference
pictures in the L0 list and L1 list, based on an initial MV
which is a MV candidate obtained from each MV candidate
list. For example, as illustrated in FIG. 57, the initial MV
corresponding to the reference block in the LO list is
InitMV_L0, and the initial MV corresponding to the refer-
ence block in the L1 list is InitMV_L1. In motion estimation,
inter predictor 126 first sets the search position for the
reference picture in the LO list. Based on the position
indicated by the vector difference indicating the search
position to be set, specifically, the initial MV (that is,
InitMV_L0, the vector difference to the search position is
MVd_LO. Inter predictor 126 then determines the estimation
position in the reference picture in the L1 list. This search
position is indicated by the vector difference to the search
position from the position indicated by the initial MV (that
is, InitMV_L1). More specifically, inter predictor 126 deter-
mines the vector difference as MVd_L.1 by mirroring of
MVd_LO. In other words, inter predictor 126 determines the
position which is symmetrical with respect to the position
indicated by the initial MV to be the search position in each
reference picture in the L0 list and the L1 list. Inter predictor
126 calculates, for each search position, the total sum of the
absolute differences (SADs) between values of pixels at
search positions in blocks as a cost, and finds out the search
position that yields the smallest cost.

[0606] FIG. 58A is a conceptual diagram for illustrating
one example of motion estimation in DMVR, and FIG. 58B
is a flow chart illustrating one example of a process of
motion estimation.

[0607] First, in Step 1, inter predictor 126 calculates the
cost between the search position (also referred to as a
starting point) indicated by the initial MV and eight sur-
rounding search positions. Inter predictor 126 then deter-
mines whether the cost at each of the search positions other
than the starting point is the smallest. Here, when determin-
ing that the cost at the search position other than the starting
point is the smallest, inter predictor 126 changes a target to
the search position at which the smallest cost is obtained,
and performs the process in Step 2. When the cost at the
starting point is the smallest, inter predictor 126 skips the
process in Step 2 and performs the process in Step 3.
[0608] In Step 2, inter predictor 126 performs the search
similar to the process in Step 1, regarding, as a new starting
point, the search position after the target change according
to the result of the process in Step 1. Inter predictor 126 then
determines whether the cost at each of the search positions
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other than the starting point is the smallest. Here, when
determining that the cost at the search position other than the
starting point is the smallest, inter predictor 126 performs
the process in Step 4. When the cost at the starting point is
the smallest, inter predictor 126 performs the process in Step
3.

[0609] In Step 4, inter predictor 126 regards the search
position at the starting point as the final search position, and
determines the difference between the position indicated by
the initial MV and the final search position to be a vector
difference.

[0610] In Step 3, inter predictor 126 determines the pixel
position at sub-pixel accuracy at which the smallest cost is
obtained, based on the costs at the four points located at
upper, lower, left, and right positions with respect to the
starting point in Step 1 or Step 2, and regards the pixel
position as the final search position. The pixel position at the
sub-pixel accuracy is determined by performing weighted
addition of each of the four upper, lower, left, and right
vectors ((0, 1), (0, -1), (-1, 0), and (1, 0)), using, as a
weight, the cost at a corresponding one of the four search
positions. Inter predictor 126 then determines the difference
between the position indicated by the initial MV and the
final search position to be the vector difference.

[0611] (Motion Compensation>BIO/OBMC/LIC)

[0612] Motion compensation involves a mode for gener-
ating a prediction image, and correcting the prediction
image. The mode is, for example, bi-directional optical flow
(BIO), overlapped block motion compensation (OBMC),
local illumination compensation (LIC), to be described later,
etc.

[0613] FIG. 59 is a flow chart illustrating one example of
a process of generation of a prediction image.

[0614] Inter predictor 126 generates a prediction image
(Step Sm_1), and corrects the prediction image, for
example, according to, for example, any of the modes
described above (Step Sm_2).

[0615] FIG. 60 is a flow chart illustrating another example
of a process of generation of a prediction image.

[0616] Inter predictor 126 determines a motion vector of a
current block (Step Sn_1). Next, inter predictor 126 gener-
ates a prediction image using the motion vector (Step Sn_2),
and determines whether to perform a correction process
(Step Sn_3). Here, when determining to perform a correc-
tion process (Yes in Step Sn_3), inter predictor 126 gener-
ates the final prediction image by correcting the prediction
image (Step Sn_4). It is to be noted that, in LIC described
later, luminance and chrominance may be corrected in Step
Sn_4. When determining not to perform a correction process
(No in Step Sn_3), inter predictor 126 outputs the prediction
image as the final prediction image without correcting the
prediction image (Step Sn_5).

[0617] (Motion Compensation>OBMC)

[0618] It is to be noted that an inter prediction image may
be generated using motion information for a neighboring
block in addition to motion information for the current block
obtained by motion estimation. More specifically, an inter
prediction image may be generated for each sub-block in a
current block by performing weighted addition of a predic-
tion image based on the motion information obtained by
motion estimation (in a reference picture) and a prediction
image based on the motion information of the neighboring
block (in the current picture). Such inter prediction (motion
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compensation) is also referred to as overlapped block
motion compensation (OBMC) or an OBMC mode.

[0619] In OBMC mode, information indicating a sub-
block size for OBMC (referred to as, for example, an OBMC
block size) may be signaled at the sequence level. Moreover,
information indicating whether to apply the OBMC mode
(referred to as, for example, an OBMC flag) may be signaled
at the CU level. It is to be noted that the signaling of such
information does not necessarily need to be performed at the
sequence level and CU level, and may be performed at
another level (for example, at the picture level, slice level,
brick level, CTU level, or sub-block level).

[0620] The OBMC mode will be described in further
detail. FIGS. 61 and 62 are a flow chart and a conceptual
diagram for illustrating an outline of a prediction image
correction process performed by OBMC.

[0621] First, as illustrated in FIG. 62, a prediction image
(Pred) by normal motion compensation is obtained using a
MYV assigned to a current block. In FIG. 62, the arrow “MV”
points a reference picture, and indicates what the current
block of the current picture refers to in order to obtain the
prediction image.

[0622] Next, a prediction image (Pred_L.) is obtained by
applying a motion vector (MV_L) which has been already
derived for the encoded block neighboring to the left of the
current block to the current block (re-using the motion
vector for the current block). The motion vector (MV_L) is
indicated by an arrow “MV_L” indicating a reference pic-
ture from a current block. A first correction of a prediction
image is performed by overlapping two prediction images
Pred and Pred_L. This provides an effect of blending the
boundary between neighboring blocks.

[0623] Likewise, a prediction image (Pred_U) is obtained
by applying a MV (MV_U) which has been already derived
for the encoded block neighboring above the current block
to the current block (re-using the MV for the current block).
The MV (MV_U) is indicated by an arrow “MV_U” indi-
cating a reference picture from a current block. A second
correction of a prediction image is performed by overlap-
ping the prediction image Pred_U to the prediction images
(for example, Pred and Pred_I) on which the first correction
has been performed. This provides an effect of blending the
boundary between neighboring blocks. The prediction
image obtained by the second correction is the one in which
the boundary between the neighboring blocks has been
blended (smoothed), and thus is the final prediction image of
the current block.

[0624] Although the above example is a two-path correc-
tion method using left and upper neighboring blocks, it is to
be noted that the correction method may be three- or
more-path correction method using also the right neighbor-
ing block and/or the lower neighboring block.

[0625] It is to be noted that the region in which such
overlapping is performed may be only part of a region near
a block boundary instead of the pixel region of the entire
block.

[0626] Itis to be noted that the prediction image correction
process according to OBMC for obtaining one prediction
image Pred from one reference picture by overlapping
additional prediction image Pred_L and Pred_U have been
described above. However, when a prediction image is
corrected based on a plurality of reference images, a similar
process may be applied to each of the plurality of reference
pictures. In such a case, after corrected prediction images are
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obtained from the respective reference pictures by perform-
ing OBMC image correction based on the plurality of
reference pictures, the obtained corrected prediction images
are further overlapped to obtain the final prediction image.

[0627] Itis to be noted that, in OBMC, a current block unit
may be a PU or a sub-block unit obtained by further splitting
the PU.

[0628] One example of a method for determining whether
to apply OBMC is a method for using an obmc_flag which
is a signal indicating whether to apply OBMC. As one
specific example, encoder 100 may determine whether the
current block belongs to a region having complicated
motion. Encoder 100 sets the obmc_flag to a value of “1”
when the block belongs to a region having complicated
motion and applies OBMC when encoding, and sets the
obmc_flag to a value of “0” when the block does not belong
to a region having complicated motion and encodes the
block without applying OBMC. Decoder 200 switches
between application and non-application of OBMC by
decoding the obmc_flag written in a stream.

[0629] (Motion Compensation>BIO)

[0630] Next, a MV derivation method is described. First,
a mode for deriving a MV based on a model assuming
uniform linear motion is described. This mode is also
referred to as a bi-directional optical flow (BIO) mode. In
addition, this bi-directional optical flow may be written as
BDOF instead of BIO.

[0631] FIG. 63 is a conceptual diagram for illustrating a
model assuming uniform linear motion. In FIG. 63, (v,, v,)
indicates a velocity vector, and t0 and t1 indicate temporal
distances between a current picture (Cur Pic) and two
reference pictures (Ref,, Ref)). (MV ,, MV ;) indicate MVs
corresponding to reference picture Ref,,, and (MV,;, MV )
indicate MVs corresponding to reference picture Ref;.

[0632] Here, under the assumption of uniform linear
motion exhibited by a velocity vector (v,, v,), (MV,,, MV )

X9 »
and (MV_;, MV _ ) are represented as (v, T, v,T,) and (-v

xTl?
=V,.1); respectively, and the following optical flow equation

(2) is given.

[Math. 3]
P /3t+v, 1P Bx+v,BIP/3, =0 )
[0633] Here, I(k) indicates a motion-compensated luma

value of reference picture k (k=0, 1) after motion compen-
sation. This optical flow equation shows that the sum of (i)
the time derivative of the luma value, (ii) the product of the
horizontal velocity and the horizontal component of the
spatial gradient of a reference image, and (iii) the product of
the vertical velocity and the vertical component of the
spatial gradient of a reference image is equal to zero. A
motion vector of each block obtained from, for example, a
MYV candidate list may be corrected in units of a pixel, based
on a combination of the optical flow equation and Hermite
interpolation.

[0634] It is to be noted that a motion vector may be
derived on the decoder side 200 using a method other than
deriving a motion vector based on a model assuming uni-
form linear motion. For example, a motion vector may be
derived in units of a sub-block based on motion vectors of
a plurality of neighboring blocks.

[0635] FIG. 64 is a flow chart illustrating one example of
a process of inter prediction according to BIO. FIG. 65 is a
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functional block diagram illustrating one example of a
configuration of inter predictor 126 which may perform inter
prediction according to BIO.

[0636] As illustrated in FIG. 65, inter predictor 126
includes, for example, memory 1264, interpolated image
deriver 1265, gradient image deriver 126¢, optical tflow
deriver 1264, correction value deriver 126¢, and prediction
image corrector 126f. It is to be noted that memory 1264
may be frame memory 122.

[0637] Inter predictor 126 derives two motion vectors
(M,, M), using two reference pictures (Ref,,, Ref)) different
from the picture (Cur Pic) including a current block. Inter
predictor 126 then derives a prediction image for the current
block using the two motion vectors (M,, M,) (Step Sy_1).
It is to be noted that motion vector M,, is motion vector
(MV o, MV ) corresponding to reference picture Ref,, and
motion vector M, is motion vector (MV,,, MV ) corre-
sponding to reference picture Ref;.

[0638] Next, interpolated image deriver 1265 derives
interpolated image 1I° for the current block, using motion
vector M, and reference picture L, by referring to memory
126a. Next, interpolated image deriver 1265 derives inter-
polated image I* for the current block, using motion vector
M, and reference picture L, by referring to memory 126a
(Step Sy_2). Here, interpolated image I° is an image
included in reference picture Ref,, and to be derived for the
current block, and interpolated image I' is an image included
in reference picture Ref; and to be derived for the current
block. Each of interpolated image I° and interpolated image
I' may be the same in size as the current block. Alternatively,
each of interpolated image I° and interpolated image I' may
be an image larger than the current block. Furthermore,
interpolated image I° and interpolated image I' may include
a prediction image obtained by using motion vectors (M,,
M,) and reference pictures (L, L.,) and applying a motion
compensation filter.

[0639] In addition, gradient image deriver 126¢ derives
gradient images (Ix°, Ix*, Iy°, Iy*) of the current block, from
interpolated image I° and interpolated image I' (Step Sy_3).
It is to be noted that the gradient images in the horizontal
direction are (Ix°, Ix'), and the gradient images in the
vertical direction are (Iy°, Iy') Gradient image deriver 126¢
may derive each gradient image by, for example, applying a
gradient filter to the interpolated images. The gradient image
may indicate the amount of spatial change in pixel value
along the horizontal direction, along the vertical direction, or
both.
[0640]
sub-block of the current block, an optical flow (v,, v,) which
is a velocity vector, using the interpolated images (IOV, I')and
the gradient images (Ix°, Ix', Iy°, Iy") (Step Sy_4). The
optical flow indicates coefficients for correcting the amount
of spatial pixel movement, and may be referred to as a local
motion estimation value, a corrected motion vector, or a
corrected weighting vector. As one example, a sub-block
may be 4x4 pixel sub-CU. It is to be noted that the optical
flow derivation may be performed for each pixel unit, or the
like, instead of being performed for each sub-block.
[0641] Next, inter predictor 126 corrects a prediction
image for the current block using the optical flow (v, v,).
For example, correction value deriver 126e derives a cor-
rection value for the value of a pixel included in a current
block, using the optical flow (v,, v,) (Step Sy_5). Prediction
image corrector 126 may then correct the prediction image

Next, optical flow deriver 1264 derives, for each
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for the current block using the correction value (Step Sy_6).
It is to be noted that the correction value may be derived in
units of a pixel, or may be derived in units of a plurality of
pixels or in units of a sub-block.

[0642] It is to be noted that the BIO process flow is not
limited to the process disclosed in FIG. 64. For example,
only part of the processes disclosed in FIG. 64 may be
performed, or a different process may be added or used as a
replacement, or the processes may be executed in a different
processing order, etc.

[0643] (Motion Compensation>LIC)

[0644] Next, one example of a mode for generating a
prediction image (prediction) using a local illumination
compensation (LIC) process is described.

[0645] FIG. 66A is a conceptual diagram for illustrating
one example of process of a prediction image generation
method using a luminance correction process performed by
LIC. FIG. 66B is a flow chart illustrating one example of a
process of prediction image generation method using the
LIC.

[0646] First, inter predictor 126 derives a MV from an
encoded reference picture, and obtains a reference image
corresponding to the current block (Step Sz_1).

[0647] Next, inter predictor 126 extracts, for the current
block, information indicating how the luma value has
changed between the current block and the reference picture
(Step Sz_2). This extraction is performed based on the luma
pixel values of the encoded left neighboring reference region
(surrounding reference region) and the encoded upper neigh-
boring reference region (surrounding reference region) in
the current picture, and the luma pixel values at the corre-
sponding positions in the reference picture specified by the
derived MVs. Inter predictor 126 calculates a luminance
correction parameter, using the information indicating how
the luma value has changed (Step Sz_3).

[0648] Inter predictor 126 generates a prediction image for
the current block by performing a luminance correction
process in which the luminance correction parameter is
applied to the reference image in the reference picture
specified by the MV (Step Sz_4). In other words, the
prediction image which is the reference image in the refer-
ence picture specified by the MV is subjected to the correc-
tion based on the luminance correction parameter. In this
correction, luminance may be corrected, or chrominance
may be corrected, or both. In other words, a chrominance
correction parameter may be calculated using information
indicating how chrominance has changed, and a chromi-
nance correction process may be performed.

[0649] It is to be noted that the shape of the surrounding
reference region illustrated in FIG. 66A is one example;
another shape may be used.

[0650] Moreover, although the process in which a predic-
tion image is generated from a single reference picture has
been described here, cases in which a prediction image is
generated from a plurality of reference pictures can be
described in the same manner. The prediction image may be
generated after performing a luminance correction process
of the reference images obtained from the reference pictures
in the same manner as described above.

[0651] One example of a method for determining whether
to apply LIC is a method for using a lic_flag which is a
signal indicating whether to apply the LIC. As one specific
example, encoder 100 determines whether the current block
belongs to a region having a luminance change. Encoder 100
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sets the lic_flag to a value of “1” when the block belongs to
a region having a luminance change and applies LIC when
encoding, and sets the lic_flag to a value of “0” when the
block does not belong to a region having a luminance change
and performs encoding without applying LIC. Decoder 200
may decode the lic_flag written in the stream and decode the
current block by switching between application and non-
application of LIC in accordance with the flag value.

[0652] One example of a different method of determining
whether to apply a LIC process is a determining method in
accordance with whether a LIC process has been applied to
a surrounding block. As one specific example, when a
current block has been processed in merge mode, inter
predictor 126 determines whether an encoded surrounding
block selected in MV derivation in merge mode has been
encoded using LIC. Inter predictor 126 performs encoding
by switching between application and non-application of
LIC according to the result. It is to be noted that, also in this
example, the same processes are applied in processes at the
decoder 200 side.

[0653] The luminance correction (LIC) process has been
described with reference to FIGS. 66A and 66B, and is
further described below.

[0654] First, inter predictor 126 derives a MV for obtain-
ing a reference image corresponding to a current block to be
encoded from a reference picture which is an encoded
picture.

[0655] Next, inter predictor 126 extracts information indi-
cating how the luma value of the reference picture has been
changed to the luma value of the current picture, using the
luma pixel values of encoded surrounding reference regions
which neighbor to the left of and above the current block and
the luma values in the corresponding positions in the refer-
ence pictures specified by MVs, and calculates a luminance
correction parameter. For example, it is assumed that the
luma pixel value of a given pixel in the surrounding refer-
ence region in the current picture is p0, and that the luma
pixel value of the pixel corresponding to the given pixel in
the surrounding reference region in the reference picture is
pl. Inter predictor 126 calculates coefficients A and B for
optimizing Axp1+B=p0 as the luminance correction param-
eter for a plurality of pixels in the surrounding reference
region.

[0656] Next, inter predictor 126 performs a luminance
correction process using the luminance correction parameter
for the reference image in the reference picture specified by
the MV, to generate a prediction image for the current block.
For example, it is assumed that the luma pixel value in the
reference image is p2, and that the luminance-corrected
luma pixel value of the prediction image is p3. Inter pre-
dictor 126 generates the prediction image after being sub-
jected to the luminance correction process by calculating
Axp2+B=p3 for each of the pixels in the reference image.

[0657] Forexample, a region having a determined number
of pixels extracted from each of an upper neighboring pixel
and a left neighboring pixel may be used as a surrounding
reference region. In addition, the surrounding reference
region is not limited to a region which neighbors the current
block, and may be a region which does not neighbor the
current block. In the example illustrated in FIG. 66A, the
surrounding reference region in the reference picture may be
a region specified by another MV in a current picture, from
a surrounding reference region in the current picture. For
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example, the other MV may be a MV in a surrounding
reference region in the current picture.

[0658] Although operations performed by encoder 100
have been described here, it is to be noted that decoder 200
performs similar operations.

[0659] It is to be noted that LIC may be applied not only
to luma but also to chroma. At this time, a correction
parameter may be derived individually for each of Y, Cb, and
Cr, or a common correction parameter may be used for any
of Y, Cb, and Cr.

[0660] In addition, the LIC process may be applied in units
of a sub-block. For example, a correction parameter may be
derived using a surrounding reference region in a current
sub-block and a surrounding reference region in a reference
sub-block in a reference picture specified by a MV of the
current sub-block.

[0661]

[0662] Prediction controller 128 selects one of an intra
prediction signal (an image or a signal output from intra
predictor 124) and an inter prediction signal (an image or a
signal output from inter predictor 126), and outputs the
selected prediction image to subtractor 104 and adder 116 as
a prediction signal.

[0663]

[0664] Prediction parameter generator 130 may output
information related to intra prediction, inter prediction,
selection of a prediction image in prediction controller 128,
etc. as a prediction parameter to entropy encoder 110.
Entropy encoder 110 may generate a stream, based on the
prediction parameter which is input from prediction param-
eter generator 130 and quantized coeflicients which are input
from quantizer 108. The prediction parameter may be used
in decoder 200. Decoder 200 may receive and decode the
stream, and perform the same processes as the prediction
processes performed by intra predictor 124, inter predictor
126, and prediction controller 128. The prediction parameter
may include, for example, (i) a selection prediction signal
(for example, a MV, a prediction type, or a prediction mode
used by intra predictor 124 or inter predictor 126), or (ii) an
optional index, a flag, or a value which is based on a
prediction process performed in each of intra predictor 124,
inter predictor 126, and prediction controller 128, or which
indicates the prediction process.

[0665] (Decoder)

[0666] Next, decoder 200 capable of decoding a stream
output from encoder 100 described above is described. FIG.
67 is a block diagram illustrating a configuration of decoder
200 according to this embodiment. Decoder 200 is an
apparatus which decodes a stream that is an encoded image
in units of a block.

[0667] As illustrated in FIG. 67, decoder 200 includes
entropy decoder 202, inverse quantizer 204, inverse trans-
former 206, adder 208, block memory 210, loop filter 212,
frame memory 214, intra predictor 216, inter predictor 218,
prediction controller 220, prediction parameter generator
222, and splitting determiner 224. It is to be noted that intra
predictor 216 and inter predictor 218 are configured as part
of a prediction executor.

[0668]
[0669] FIG. 68 is a functional block diagram illustrating a

mounting example of decoder 200. Decoder 200 includes
processor bl and memory b2. For example, the plurality of

(Prediction Controller)

(Prediction Parameter Generator)

(Mounting Example of Decoder)
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constituent elements of decoder 200 illustrated in FIG. 67
are mounted on processor bl and memory b2 illustrated in
FIG. 68.

[0670] Processor bl is circuitry which performs informa-
tion processing and is coupled to memory b2. For example,
processor b 1 is a dedicated or general electronic circuit
which decodes a stream. Processor b 1 may be a processor
such as a CPU. In addition, processor b 1 may be an
aggregate of a plurality of electronic circuits. In addition, for
example, processor b 1 may take the roles of two or more
constituent elements other than a constituent element for
storing information out of the plurality of constituent ele-
ments of decoder 200 illustrated in FIG. 67, etc.

[0671] Memory b2 is dedicated or general memory for
storing information that is used by processor b1 to decode a
stream. Memory b2 may be electronic circuitry, and may be
connected to processor b 1. In addition, memory b2 may be
included in processor b 1. In addition, memory b2 may be an
aggregate of a plurality of electronic circuits. In addition,
memory b2 may be a magnetic disc, an optical disc, or the
like, or may be represented as a storage, a recording
medium, or the like. In addition, memory b2 may be a
non-volatile memory, or a volatile memory.

[0672] For example, memory b2 may store an image or a
stream. In addition, memory b2 may store a program for
causing processor b 1 to decode a stream.

[0673] In addition, for example, memory b2 may take the
roles of two or more constituent elements for storing infor-
mation out of the plurality of constituent elements of
decoder 200 illustrated in FIG. 67, etc. More specifically,
memory b2 may take the roles of block memory 210 and
frame memory 214 illustrated in FIG. 67. More specifically,
memory b2 may store a reconstructed image (specifically, a
reconstructed block, a reconstructed picture, or the like).
[0674] It is to be noted that, in decoder 200, not all of the
plurality of constituent elements illustrated in FIG. 67, etc.
may be implemented, and not all the processes described
herein may be performed. Part of the constituent elements
indicated in FIG. 67, etc. may be included in another device,
or part of the processes described herein may be performed
by another device.

[0675] Hereinafter, an overall flow of the processes per-
formed by decoder 200 is described, and then each of the
constituent elements included in decoder 200 is described. It
is to be noted that, some of the constituent elements included
in decoder 200 perform the same processes as performed by
some of encoder 100, and thus the same processes are not
repeatedly described in detail. For example, inverse quan-
tizer 204, inverse transformer 206, adder 208, block memory
210, frame memory 214, intra predictor 216, inter predictor
218, prediction controller 220, and loop filter 212 included
in decoder 200 perform similar processes as performed by
inverse quantizer 112, inverse transformer 114, adder 116,
block memory 118, frame memory 122, intra predictor 124,
inter predictor 126, prediction controller 128, and loop filter
120 included in decoder 200, respectively.

[0676] (Overall Flow of Decoding Process)

[0677] FIG. 69 is a flow chart illustrating one example of
an overall decoding process performed by decoder 200.
[0678] First, splitting determiner 224 in decoder 200
determines a splitting pattern of each of a plurality of
fixed-size blocks (128x128 pixels) included in a picture,
based on a parameter which is input from entropy decoder
202 (Step Sp_1). This splitting pattern is a splitting pattern
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selected by encoder 100. Decoder 200 then performs pro-
cesses of Step Sp__2 to Sp__6 for each of a plurality of
blocks of the splitting pattern.

[0679] Entropy decoder 202 decodes (specifically, entropy
decodes) encoded quantized coefficients and a prediction
parameter of a current block (Step Sp_2).

[0680] Next, inverse quantizer 204 performs inverse quan-
tization of the plurality of quantized coefficients and inverse
transformer 206 performs inverse transform of the result, to
restore prediction residuals (that is, a difference block) (Step
Sp_3).

[0681] Next, the prediction executor including all or part
of intra predictor 216, inter predictor 218, and prediction
controller 220 generates a prediction signal of the current
block (Step Sp_4).

[0682] Next, adder 208 adds the prediction image to a
prediction residual to generate a reconstructed image (also
referred to as a decoded image block) of the current block
(Step Sp_5).

[0683] When the reconstructed image is generated, loop
filter 212 performs filtering of the reconstructed image (Step
Sp_6).

[0684] Decoder 200 then determines whether decoding of
the entire picture has been finished (Step Sp_7). When
determining that the decoding has not yet been finished (No
in Step Sp_7), decoder 200 repeats to the processes starting
with Step Sp_1.

[0685] It is to be noted that the processes of these Steps
Sp__1 to Sp__7 may be performed sequentially by decoder
200, or two or more of the processes may be performed in
parallel. The processing order of the two or more of the
processes may be modified.

[0686] (Splitting Determiner)

[0687] FIG. 70 is a conceptual diagram for illustrating a
relationship between splitting determiner 224 and other
constituent elements in an embodiment. Splitting determiner
224 may perform the following processes as examples.
[0688] For example, splitting determiner 224 collects
block information from block memory 210 or frame
memory 214, and furthermore obtains a parameter from
entropy decoder 202. Splitting determiner 224 may then
determine the splitting pattern of a fixed-size block, based on
the block information and the parameter. Splitting deter-
miner 224 may then output the information indicating the
determined splitting pattern to inverse transformer 206, intra
predictor 216, and inter predictor 218. Inverse transformer
206 may perform inverse transform of transform coeffi-
cients, based on the splitting pattern indicated by the infor-
mation from splitting determiner 224. Intra predictor 216
and inter predictor 218 may generate a prediction image,
based on the splitting pattern indicated by the information
from splitting determiner 224.

[0689] (Entropy Decoder)

[0690] FIG. 71 is a block diagram illustrating one example
of a configuration of entropy decoder 202.

[0691] Entropy decoder 202 generates quantized coeffi-
cients, a prediction parameter, and a parameter related to a
splitting pattern, by entropy decoding the stream. For
example, CABAC is used in the entropy decoding. More
specifically, entropy decode 202 includes, for example,
binary arithmetic decoder 202a, context controller 2025, and
debinarizer 202¢. Binary arithmetic decoder 202¢a arithmeti-
cally decodes the stream using a context value derived by
context controller 2025 to a binary signal. Context controller
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2025 derives a context value according to a feature or a
surrounding state of a syntax element, that is an occurrence
probability of a binary signal, in the same manner as
performed by context controller 11056 of encoder 100. Debi-
narizer 202¢ performs debinarization for transforming the
binary signal output from binary arithmetic decoder 202a to
a multi-level signal indicating quantized coefficients as
described above. This binarization may be performed
according to the binarization method described above.
[0692] With this, entropy decoder 202 outputs quantized
coeflicients of each block to inverse quantizer 204. Entropy
decoder 202 may output a prediction parameter included in
a stream (see FIG. 1) to intra predictor 216, inter predictor
218, and prediction controller 220. Intra predictor 216, inter
predictor 218, and prediction controller 220 are capable of
executing the same prediction processes as those performed
by intra predictor 124, inter predictor 126, and prediction
controller 128 at the encoder 100 side.

[0693] FIG. 72 is a conceptual diagram for illustrating a
flow of an example CABAC process in entropy decoder 202.
[0694] First, initialization is performed in CABAC in
entropy decoder 202. In the initialization, initialization in
binary arithmetic decoder 202a and setting of an initial
context value are performed. Binary arithmetic decoder
202a and debinarizer 202¢ then execute arithmetic decoding
and debinarization of, for example, encoded data of a CTU.
At this time, context controller 2025 updates the context
value each time arithmetic decoding is performed. Context
controller 2025 then saves the context value as a post
process. The saved context value is used, for example, to
initialize the context value for the next CTU.

[0695] (Inverse Quantizer)

[0696] Inverse quantizer 204 inverse quantizes quantized
coeflicients of a current block which are inputs from entropy
decoder 202. More specifically, inverse quantizer 204
inverse quantizes the quantized coefficients of the current
block, based on quantization parameters corresponding to
the quantized coefficients. Inverse quantizer 204 then out-
puts the inverse quantized transform coefficients (that are
transform coefficients) of the current block to inverse trans-
former 206.

[0697] FIG. 73 is a block diagram illustrating one example
of a configuration of inverse quantizer 204.

[0698] Inverse quantizer 204 includes, for example, quan-
tization parameter generator 204a, predicted quantization
parameter generator 2045, quantization parameter storage
204d, and inverse quantization executor 204e.

[0699] FIG. 74 is a flow chart illustrating one example of
a process of inverse quantization performed by inverse
quantizer 204.

[0700] Inverse quantizer 204 may perform an inverse
quantization process as one example for each CU based on
the flow illustrated in FIG. 74. More specifically, quantiza-
tion parameter generator 204a determines whether to per-
form inverse quantization (Step Sv_11). Here, when deter-
mining to perform inverse quantization (Yes in Step Sv_11),
quantization parameter generator 204a obtains a difference
quantization parameter for the current block from entropy
decoder 202 (Step Sv_12).

[0701] Next, predicted quantization parameter generator
2045 then obtains a quantization parameter for a processing
unit different from the current block from quantization
parameter storage 2044 (Step Sv_13). Predicted quantiza-
tion parameter generator 2045 generates a predicted quan-

May 19, 2022

tization parameter of the current block based on the obtained
quantization parameter (Step Sv_14).

[0702] Quantization parameter generator 204a then gen-
erates a quantization parameter for the current block based
on the difference quantization parameter for the current
block obtained from entropy decoder 202 and the predicted
quantization parameter for the current block generated by
predicted quantization parameter generator 2046 (Step
Sv_15). For example, the difference quantization parameter
for the current block obtained from entropy decoder 202 and
the predicted quantization parameter for the current block
generated by predicted quantization parameter generator
2045 may be added together to generate the quantization
parameter for the current block. In addition, quantization
parameter generator 204a stores the quantization parameter
for the current block in quantization parameter storage 2044
(Step Sv_16).

[0703] Next, inverse quantization executor 204e inverse
quantizes the quantized coefficients of the current block into
transform coeflicients, using the quantization parameter gen-
erated in Step Sv_15 (Step Sv_17).

[0704] It is to be noted that the difference quantization
parameter may be decoded at the bit sequence level, picture
level, slice level, brick level, or CTU level. In addition, the
initial value of the quantization parameter may be decoded
at the sequence level, picture level, slice level, brick level,
or CTU level. At this time, the quantization parameter may
be generated using the initial value of the quantization
parameter and the difference quantization parameter.
[0705] It is to be noted that inverse quantizer 204 may
include a plurality of inverse quantizers, and may inverse
quantize the quantized coefficients using an inverse quanti-
zation method selected from a plurality of inverse quanti-
zation methods.

[0706] (Inverse Transformer)

[0707] Inverse transformer 206 restores prediction residu-
als by inverse transforming the transform coefficients which
are inputs from inverse quantizer 204.

[0708] For example, when information parsed from a
stream indicates that EMT or AMT is to be applied (for
example, when an AMT flag is true), inverse transformer
206 inverse transforms the transform coefficients of the
current block based on information indicating the parsed
transform type.

[0709] Moreover, for example, when information parsed
from a stream indicates that NSST is to be applied, inverse
transformer 206 applies a secondary inverse transform to the
transform coefficients.

[0710] FIG. 75 is a flow chart illustrating one example of
a process performed by inverse transformer 206.

[0711] For example, inverse transformer 206 determines
whether information indicating that no orthogonal transform
is performed is present in a stream (Step St_11). Here, when
determining that no such information is present (No in Step
St_11) (e.g.: the absence of any indication as to whether an
orthogonal transform is performed; the presence of an
indication that an orthogonal transform is to be performed);
inverse transformer 206 obtains the information indicating
the transform type decoded by entropy decoder 202 (Step
St_12). Next, based on the information, inverse transformer
206 determines the transform type used for the orthogonal
transform in encoder 100 (Step St_13). Inverse transformer
206 then performs inverse orthogonal transform using the
determined transform type (Step St_14). As illustrated in
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FIG. 75, when determining that information indicating that
no orthogonal transform is performed is present (Yes in Step
St_11) (e.g., an express indication that no orthogonal trans-
form is performed; the absence of an indication an orthogo-
nal transform is performed), no orthogonal transform is
performed.

[0712] FIG. 76 is a flow chart illustrating one example of
a process performed by inverse transformer 206.

[0713] For example, inverse transformer 206 determines
whether a transform size is smaller than or equal to a
determined value (Step Su_11). The determined value may
be predetermined. Here, when determining that the trans-
form size is smaller than or equal to a determined value (Yes
in Step Su_11), inverse transformer 206 obtains, from
entropy decoder 202, information indicating which trans-
form type has been used by encoder 100 among the at least
one transform type included in the first transform type group
(Step Su_12). It is to be noted that such information is
decoded by entropy decoder 202 and output to inverse
transformer 206.

[0714] Based on the information, inverse transformer 206
determines the transform type used for the orthogonal trans-
form in encoder 100 (Step Su_13). Inverse transformer 206
then inverse orthogonal transforms the transform coeffi-
cients of the current block using the determined transform
type (Step Su_14). When determining that a transform size
is not smaller than or equal to the determined value (No in
Step Su_11), inverse transformer 206 inverse transforms the
transform coefficients of the current block using the second
transform type group (Step Su_15).

[0715] It is to be noted that the inverse orthogonal trans-
form by inverse transformer 206 may be performed accord-
ing to the flow illustrated in FIG. 75 or FIG. 76 for each TU
as one example. In addition, inverse orthogonal transform
may be performed by using a defined transform type without
decoding information indicating a transform type used for
orthogonal transform. The defined transform type may be a
predefined transform type or a default transform type. In
addition, the transform type may be specifically DST7,
DCT8, or the like. In an inverse orthogonal transform, an
inverse transform basis function corresponding to the trans-
form type is used.

[0716] (Adder)

[0717] Adder 208 reconstructs the current block by adding
a prediction residual which is an input from inverse trans-
former 206 and a prediction image which is an input from
prediction controller 220. In other words, a reconstructed
image of the current block is generated. Adder 208 then
outputs the reconstructed image of the current block to block
memory 210 and loop filter 212.

[0718] (Block Memory)

[0719] Block memory 210 is storage for storing a block
which is included in a current picture and may be referred to
in intra prediction. More specifically, block memory 210
stores a reconstructed image output from adder 208.
[0720] (Loop Filter)

[0721] Loop filter 212 applies a loop filter to the recon-
structed image generated by adder 208, and outputs the
filtered reconstructed image to frame memory 214 and
provides an output of the decoder 200, e.g., and output to a
display device, etc.

[0722] When information indicating ON or OFF of an
ALF parsed from a stream indicates that an ALF is ON, one
filter from among a plurality of filters may be selected, for
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example, based on the direction and activity of local gradi-
ents, and the selected filter is applied to the reconstructed
image.

[0723] FIG. 77 is a block diagram illustrating one example
of'a configuration of loop filter 212. It is to be noted that loop
filter 212 has a configuration similar to the configuration of
loop filter 120 of encoder 100.

[0724] For example, as illustrated in FIG. 77, loop filter
212 includes deblocking filter executor 2124, SAO executor
212b, and ALF executor 212¢. Deblocking filter executor
212a performs a deblocking filter process on the recon-
structed image. SAO executor 2125 performs a SAO process
on the reconstructed image after being subjected to the
deblocking filter process. ALF executor 212¢ performs an
ALF process on the reconstructed image after being sub-
jected to the SAO process. It is to be noted that loop filter
212 does not always need to include all the constituent
elements disclosed in FIG. 77, and may include only part of
the constituent elements. In addition, loop filter 212 may be
configured to perform the above processes in a processing
order different from the one disclosed in FIG. 77, may not
perform all of the processes illustrated in FIG. 77, etc.
[0725] (Frame Memory)

[0726] Frame memory 214 is, for example, storage for
storing reference pictures for use in inter prediction, and
may also be referred to as a frame buffer. More specifically,
frame memory 214 stores a reconstructed image filtered by
loop filter 212.

[0727] (Predictor (Intra Predictor, Inter Predictor, Predic-
tion Controller))

[0728] FIG. 78 is a flow chart illustrating one example of
a process performed by a predictor of decoder 200. It is to
be noted that the prediction executor may include all or part
of the following constituent elements: intra predictor 216;
inter predictor 218; and prediction controller 220. The
prediction executor includes, for example, intra predictor
216 and inter predictor 218.

[0729] The predictor generates a prediction image of a
current block (Step Sq_1). This prediction image is also
referred to as a prediction signal or a prediction block. It is
to be noted that the prediction signal is, for example, an intra
prediction signal or an inter prediction signal. More specifi-
cally, the predictor generates the prediction image of the
current block using a reconstructed image which has been
already obtained for another block through generation of a
prediction image, restoration of a prediction residual, and
addition of a prediction image. The predictor of decoder 200
generates the same prediction image as the prediction image
generated by the predictor of encoder 100. In other words,
the prediction images are generated according to a method
common between the predictors or mutually corresponding
methods.

[0730] The reconstructed image may be, for example, an
image in a reference picture, or an image of a decoded block
(that is, the other block described above) in a current picture
which is the picture including the current block. The
decoded block in the current picture is, for example, a
neighboring block of the current block.

[0731] FIG. 79 is a flow chart illustrating another example
of a process performed by the predictor of decoder 200.
[0732] The predictor determines either a method or a
mode for generating a prediction image (Step Sr_1). For
example, the method or mode may be determined based on,
for example, a prediction parameter, etc.
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[0733] When determining a first method as a mode for
generating a prediction image, the predictor generates a
prediction image according to the first method (Step Sr_2a).
When determining a second method as a mode for gener-
ating a prediction image, the predictor generates a prediction
image according to the second method (Step Sr_24). When
determining a third method as a mode for generating a
prediction image, the predictor generates a prediction image
according to the third method (Step Sr_2c¢).

[0734] The first method, the second method, and the third
method may be mutually different methods for generating a
prediction image. Each of the first to third methods may be
an inter prediction method, an intra prediction method, or
another prediction method. The above-described recon-
structed image may be used in these prediction methods.
[0735] FIGS. 80A to 80C (collectively, FIG. 80) are a flow
chart illustrating another example of a process performed by
a predictor of decoder 200.

[0736] The predictor may perform a prediction process
according to the flow illustrated in FIG. 80 as one example.
It is to be noted that intra block copy illustrated in FIG. 80
is one mode which belongs to inter prediction, and in which
a block included in a current picture is referred to as a
reference image or a reference block. In other words, a
picture different from the current picture is not referred to in
intra block copy. In addition, the PCM mode illustrated in
FIG. 80 is one mode which belongs to intra prediction, and
in which no transform and quantization is performed.

[0737] (Intra Predictor)

[0738] Intra predictor 216 performs intra prediction by
referring to a block in a current picture stored in block
memory 210, based on the intra prediction mode parsed
from the stream, to generate a prediction image of a current
block (that is, an intra prediction block). More specifically,
intra predictor 216 performs intra prediction by referring to
pixel values (for example, luma and/or chroma values) of a
block or blocks neighboring the current block to generate an
intra prediction image, and then outputs the intra prediction
image to prediction controller 220.

[0739] It is to be noted that when an intra prediction mode
in which a luma block is referred to in intra prediction of a
chroma block is selected, intra predictor 216 may predict the
chroma component of the current block based on the luma
component of the current block.

[0740] Moreover, when information parsed from a stream
indicates that PDPC is to be applied, intra predictor 216
corrects intra predicted pixel values based on horizontal/
vertical reference pixel gradients.

[0741] FIG. 81 is a diagram illustrating one example of a
process performed by intra predictor 216 of decoder 200.

[0742] Intra predictor 216 first determines whether an
MPM is to be employed. As illustrated in FIG. 81, intra
predictor 216 determines whether an MPM flag indicating 1
is present in the stream (Step Sw_11). Here, when deter-
mining that the MPM flag indicating 1 is present (Yes in Step
Sw_11), intra predictor 216 obtains, from entropy decoder
202, information indicating the intra prediction mode
selected in encoder 100 among MPMs. It is to be noted that
such information is decoded by entropy decoder 202 and
output to intra predictor 216. Next, intra predictor 216
determines the MPMs (Step Sw_13). MPMs include, for
example, six intra prediction modes. Intra predictor 216 then
determines the intra prediction mode which is included in a
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plurality of intra prediction modes included in the MPMs
and is indicated by the information obtained in Step Sw_12
(Step Sw_14).

[0743] When determining that no MPM flag indicating 1
is present (No in Step Sw_11), intra predictor 216 obtains
information indicating the intra prediction mode selected in
encoder 100 (Step Sw_15). In other words, intra predictor
216 obtains, from entropy decoder 202, information indi-
cating the intra prediction mode selected in encoder 100
from among the at least one intra prediction mode which is
not included in the MPMs. It is to be noted that such
information is decoded by entropy decoder 202 and output
to intra predictor 216. Intra predictor 216 then determines
the intra prediction mode which is not included in a plurality
of intra prediction modes included in the MPMs and is
indicated by the information obtained in Step Sw_15 (Step
Sw_17).

[0744] Intra predictor 216 generates a prediction image
according to the intra prediction mode determined in Step
Sw_14 or Step Sw_17 (Step Sw_18).

[0745] (Inter Predictor)

[0746] Inter predictor 218 predicts the current block by
referring to a reference picture stored in frame memory 214.
Prediction is performed in units of a current block or a
current sub-block in the current block. It is to be noted that
the sub-block is included in the block and is a unit smaller
than the block. The size of the sub-block may be 4x4 pixels,
8x8 pixels, or another size. The size of the sub-block may be
switched for a unit such as a slice, brick, picture, etc.
[0747] For example, inter predictor 218 generates an inter
prediction image of a current block or a current sub-block by
performing motion compensation using motion information
(for example, a MV) parsed from a stream (for example, a
prediction parameter output from entropy decoder 202), and
outputs the inter prediction image to prediction controller
220.

[0748] When the information parsed from the stream
indicates that the OBMC mode is to be applied, inter
predictor 218 generates the inter prediction image using
motion information of a neighboring block in addition to
motion information of the current block obtained through
motion estimation.

[0749] Moreover, when the information parsed from the
stream indicates that the FRUC mode is to be applied, inter
predictor 218 derives motion information by performing
motion estimation in accordance with a pattern matching
method (e.g., bilateral matching or template matching)
parsed from the stream. Inter predictor 218 then performs
motion compensation (prediction) using the derived motion
information.

[0750] Moreover, when the BIO mode is to be applied,
inter predictor 218 derives a MV based on a model assuming
uniform linear motion. In addition, when the information
parsed from the stream indicates that the affine mode is to be
applied, inter predictor 218 derives a MV for each sub-
block, based on the MVs of a plurality of neighboring
blocks.

[0751] (MYV Derivation Flow)

[0752] FIG. 82 is a flow chart illustrating one example of
a process of MV derivation in decoder 200.

[0753] Inter predictor 218 determines, for example,
whether to decode motion information (for example, a MV).
For example, inter predictor 218 may make the determina-
tion according to the prediction mode included in the stream,
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or may make the determination based on other information
included in the stream. Here, when determining to decode
motion information, inter predictor 218 derives a MV for a
current block in a mode in which the motion information is
decoded. When determining not to decode motion informa-
tion, inter predictor 218 derives a MV in a mode in which no
motion information is decoded.

[0754] Here, MV derivation modes include a normal inter
mode, a normal merge mode, a FRUC mode, an affine mode,
etc. which are described later. Modes in which motion
information is decoded among the modes include the normal
inter mode, the normal merge mode, the affine mode (spe-
cifically, an affine inter mode and an affine merge mode), etc.
It is to be noted that motion information may include not
only a MV but also MV predictor selection information
which is described later. Modes in which no motion infor-
mation is decoded include the FRUC mode, etc. Inter
predictor 218 selects a mode for deriving a MV for the
current block from the plurality of modes, and derives the
MYV for the current block using the selected mode.

[0755] FIG. 83 is a flow chart illustrating one example of
a process of MV derivation in decoder 200.

[0756] For example, inter predictor 218 may determine
whether to decode a MV difference, that is for example, may
make the determination according to the prediction mode
included in the stream, or may make the determination based
on other information included in the stream. Here, when
determining to decode a MV difference, inter predictor 218
may derive a MV for a current block in a mode in which the
MYV difference is decoded. In this case, for example, the MV
difference included in the stream is decoded as a prediction
parameter.

[0757] When determining not to decode any MV differ-
ence, inter predictor 218 derives a MV in a mode in which
no MV difference is decoded. In this case, no encoded MV
difference is included in the stream.

[0758] Here, as described above, the MV derivation
modes include the normal inter mode, the normal merge
mode, the FRUC mode, the affine mode, etc. which are
described later. Modes in which a MV difference is encoded
among the modes include the normal inter mode and the
affine mode (specifically, the affine inter mode), etc. Modes
in which no MV difference is encoded include the FRUC
mode, the normal merge mode, the affine mode (specifically,
the affine merge mode), etc. Inter predictor 218 selects a
mode for deriving a MV for the current block from the
plurality of modes, and derives the MV for the current block
using the selected mode.

[0759] (MYV Derivation>Normal Inter Mode)

[0760] For example, when information parsed from a
stream indicates that the normal inter mode is to be applied,
inter predictor 218 derives a MV based on the information
parsed from the stream and performs motion compensation
(prediction) using the MV.

[0761] FIG. 84 is a flow chart illustrating an example of a
process of inter prediction by normal inter mode in decoder
200.

[0762] Inter predictor 218 of decoder 200 performs motion
compensation for each block. First, inter predictor 218
obtains a plurality of MV candidates for a current block
based on information such as MV of a plurality of decoded
blocks temporally or spatially surrounding the current block
(Step Sg_11). In other words, inter predictor 218 generates
a MV candidate list.
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[0763] Next, inter predictor 218 extracts N (an integer of
2 or larger) MV candidates from the plurality of MV
candidates obtained in Step Sg_11, as motion vector pre-
dictor candidates (also referred to as MV predictor candi-
dates) according to the determined ranks in priority order
(Step Sg_12). It is to be noted that the ranks in priority order
may be determined in advance for the respective N MV
predictor candidates and may be predetermined.

[0764] Next, inter predictor 218 decodes the MV predictor
selection information from the input stream, and selects one
MYV predictor candidate from the N MV predictor candidates
as the MV predictor for the current block using the decoded
MYV predictor selection information (Step Sg_13).

[0765] Next, inter predictor 218 decodes a MV difference
from the input stream, and derives a MV for the current
block by adding a difference value which is the decoded MV
difference and the selected MV predictor (Step Sg_14).
[0766] Lastly, inter predictor 218 generates a prediction
image for the current block by performing motion compen-
sation of the current block using the derived MV and the
decoded reference picture (Step Sg_15). The processes in
Steps Sg 11 to Sg_15 are executed on each block. For
example, when the processes in Steps Sg_11 to Sg_15 are
executed on each of all the blocks in the slice, inter predic-
tion of the slice using the normal inter mode finishes. For
example, when the processes in Steps Sg_11 to Sg_15 are
executed on each of all the blocks in the picture, inter
prediction of the picture using the normal inter mode fin-
ishes. It is to be noted that not all the blocks included in the
slice may be subjected to the processes in Steps Sg_11 to
Sg 15, and inter prediction of the slice using the normal
inter mode may finish when part of the blocks are subjected
to the processes. This also applies to pictures in Steps Sg_11
to Sg_15. Inter prediction of the picture using the normal
inter mode may finish when the processes are executed on
part of the blocks in the picture.

[0767] (MV Derivation>Normal Merge Mode)

[0768] For example, when information parsed from a
stream indicates that the normal merge mode is to be
applied, inter predictor 218 derives a MV and performs
motion compensation (prediction) using the MV.

[0769] FIG. 85 is a flow chart illustrating an example of a
process of inter prediction by normal merge mode in decoder
200.

[0770] First, inter predictor 218 obtains a plurality of MV
candidates for a current block based on information such as
MVs of a plurality of decoded blocks temporally or spatially
surrounding the current block (Step Sh_11). In other words,
inter predictor 218 generates a MV candidate list.

[0771] Next, inter predictor 218 selects one MV candidate
from the plurality of MV candidates obtained in Step Sh_11,
deriving a MV for the current block (Step Sh_12). More
specifically, inter predictor 218 obtains MV selection infor-
mation included as a prediction parameter in a stream, and
selects the MV candidate identified by the MV selection
information as the MV for the current block.

[0772] Lastly, inter predictor 218 generates a prediction
image for the current block by performing motion compen-
sation of the current block using the derived MV and the
decoded reference picture (Step Sh_13). The processes in
Steps Sh_11 to Sh_13 are executed, for example, on each
block. For example, when the processes in Steps Sh_11 to
Sh_13 are executed on each of all the blocks in the slice,
inter prediction of the slice using the normal merge mode
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finishes. In addition, when the processes in Steps Sh_11 to
Sh_13 are executed on each of all the blocks in the picture,
inter prediction of the picture using the normal merge mode
finishes. It is to be noted that not all the blocks included in
the slice are subjected to the processes in Steps Sh_11 to
Sh_13, and inter prediction of the slice using the normal
merge mode may finish when part of the blocks are sub-
jected to the processes. This also applies to pictures in Steps
Sh_11 to Sh_13. Inter prediction of the picture using the
normal merge mode may finish when the processes are
executed on part of the blocks in the picture.

[0773] (MV Derivation>FRUC Mode)

[0774] For example, when information parsed from a
stream indicates that the FRUC mode is to be applied, inter
predictor 218 derives a MV in the FRUC mode and performs
motion compensation (prediction) using the MV. In this
case, the motion information is derived at the decoder 200
side without being signaled from the encoder 100 side. For
example, decoder 200 may derive the motion information by
performing motion estimation. In this case, decoder 200
performs motion estimation without using any pixel values
in a current block.

[0775] FIG. 86 is a flow chart illustrating an example of a
process of inter prediction by FRUC mode in decoder 200.

[0776] First, inter predictor 218 generates a list indicating
MVs of decoded blocks spatially or temporally neighboring
the current block by referring to the MVs as MV candidates
(the list is a MV candidate list, and may, for example, be
used also as a MV candidate list for normal merge mode
(Step Si_11). Next, a best MV candidate is selected from the
plurality of MV candidates registered in the MV candidate
list (Step Si_12). For example, inter predictor 218 calculates
the evaluation value of each MV candidate included in the
MYV candidate list, and selects one of the MV candidates as
the best MV candidate based on the evaluation values. Based
on the selected best MV candidates, inter predictor 218 then
derives a MV for the current block (Step Si_14). More
specifically, for example, the selected best MV candidates
are directly derived as the MV for the current block. In
addition, for example, the MV for the current block may be
derived using pattern matching in a surrounding region of a
position which is included in a reference picture and corre-
sponds to the selected best MV candidate. In other words,
estimation using the pattern matching in a reference picture
and the evaluation values may be performed in the surround-
ing region of the best MV candidate, and when there is a MV
that yields a better evaluation value, the best MV candidate
may be updated to the MV that yields the better evaluation
value, and the updated MV may be determined as the final
MV for the current block. In an embodiment, updating to a
MYV that yields a better evaluation value may not be per-
formed.

[0777] Lastly, inter predictor 218 generates a prediction
image for the current block by performing motion compen-
sation of the current block using the derived MV and the
decoded reference picture (Step Si_15). The processes in
Steps Si_11 to Si_15 are executed, for example, on each
block. For example, when the processes in Steps Si_11 to
Si_15 are executed on each of all the blocks in the slice, inter
prediction of the slice using the FRUC mode finishes. For
example, when the processes in Steps Si_11 to Si_15 are
executed on each of all the blocks in the picture, inter

May 19, 2022

prediction of the picture using the FRUC mode finishes.
Each sub-block may be processed similarly to the case of
each block.

[0778] (MV Derivation>FRUC Mode)

[0779] For example, when information parsed from a
stream indicates that the affine merge mode is to be applied,
inter predictor 218 derives a MV in the affine merge mode
and performs motion compensation (prediction) using the
MV.

[0780] FIG. 87 is a flow chart illustrating an example of a
process of inter prediction by the affine merge mode in
decoder 200.

[0781] In the affine merge mode, first, inter predictor 218
derives MV at respective control points for a current block
(Step Sk_11). The control points are an upper-left corner
point of the current block and an upper-right corner point of
the current block as illustrated in FIG. 46A, or an upper-left
corner point of the current block, an upper-right corner point
of the current block, and a lower-left corner point of the
current block as illustrated in FIG. 46B.

[0782] For example, when the MV derivation methods
illustrated in FIGS. 47A to 47C are used, as illustrated in
FIG. 47A, inter predictor 218 checks decoded block A (left),
block B (upper), block C (upper-right), block D (lower-left),
and block E (upper-lett) in this order, and identifies the first
effective block decoded according to the affine mode. Inter
predictor 218 derives the MV at the control point using the
identified first effective block decoded according to the
affine mode. For example, when block A is identified and
block A has two control points, as illustrated in FIG. 47B,
inter predictor 218 calculates motion vector v0 at the upper-
left corner control point of the current block and motion
vector vl at the upper-right corner control point of the
current block from motion vectors v3 and v4 at the upper-
left corner and the upper-right corner of the decoded block
including block A. In this way, the MV at each control point
is derived.

[0783] It is to be noted that, as illustrated in FIG. 49A,
MVs at three control points may be calculated when block
A is identified and block A has two control points, and that,
as illustrated in FIG. 49B, MVs at two control points may be
calculated when block A is identified and when block A has
three control points.

[0784] In addition, when MV selection information is
included as a prediction parameter in a stream, inter predic-
tor 218 may derive the MV at each control point for the
current block using the MV selection information.

[0785] Next, inter predictor 218 performs motion com-
pensation of each of a plurality of sub-blocks included in the
current block. In other words, inter predictor 218 calculates
a MV for each of a plurality of sub-blocks as an affine MV,
using either two motion vectors vO and v1 and the above
expression (1A) or three motion vectors v0, v1, and v2 and
the above expression (1B) (Step Sk_12). Inter predictor 218
then performs motion compensation of the sub-blocks using
these affine MVs and decoded reference pictures (Step
Sk_13). When the processes in Steps Sk_12 and Sk_13 are
executed for each of the sub-blocks included in the current
block, the inter prediction using the affine merge mode for
the current block finishes. In other words, motion compen-
sation of the current block is performed to generate a
prediction image of the current block.

[0786] It is to be noted that the above-described MV
candidate list may be generated in Step Sk_11. The MV
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candidate list may be, for example, a list including MV
candidates derived using a plurality of MV derivation meth-
ods for each control point. The plurality of MV derivation
methods may, for example, be any combination of the MV
derivation methods illustrated in FIGS. 47A to 47C, the MV
derivation methods illustrated in FIGS. 48A and 48B, the
MYV derivation methods illustrated in FIGS. 49A and 49B,
and other MV derivation methods.

[0787] It is to be noted that a MV candidate list may
include MV candidates in a mode in which prediction is
performed in units of a sub-block, other than the affine
mode.

[0788] It is to be noted that, for example, a MV candidate
list including MV candidates in an affine merge mode in
which two control points are used and an affine merge mode
in which three control points are used may be generated as
a MV candidate list. Alternatively, a MV candidate list
including MV candidates in the affine merge mode in which
two control points are used and a MV candidate list includ-
ing MV candidates in the affine merge mode in which three
control points are used may be generated separately. Alter-
natively, a MV candidate list including MV candidates in
one of the affine merge mode in which two control points are
used and the affine merge mode in which three control points
are used may be generated.

[0789] (MYV Derivation>Affine Inter Mode)

[0790] For example, when information parsed from a
stream indicates that the affine inter mode is to be applied,
inter predictor 218 derives a MV in the affine inter mode and
performs motion compensation (prediction) using the MV.
[0791] FIG. 88 is a flow chart illustrating an example of a
process of inter prediction by the affine inter mode in
decoder 200.

[0792] In the affine inter mode, first, inter predictor 218
derives MV predictors (v0, v1) or (v0, v1, v2) of respective
two or three control points for a current block (Step Sj_11).
The control points are an upper-left corner point of the
current block, an upper-right corner point of the current
block, and a lower-left corner point of the current block as
illustrated in FIG. 46A or FIG. 46B.

[0793] Inter predictor 218 obtains MV predictor selection
information included as a prediction parameter in the stream,
and derives the MV predictor at each control point for the
current block using the MV identified by the MV predictor
selection information. For example, when the MV derivation
methods illustrated in FIGS. 48A and 48B are used, inter
predictor 218 derives the motion vector predictors (vO0, v1)
or (v0, vl, v2) at control points for the current block by
selecting the MV of the block identified by the MV predictor
selection information among decoded blocks in the vicinity
of the respective control points for the current block illus-
trated in either FIG. 48A or FIG. 48B.

[0794] Next, inter predictor 218 obtains each MV differ-
ence included as a prediction parameter in the stream, and
adds the MV predictor at each control point for the current
block and the MV difference corresponding to the MV
predictor (Step Sj_12). In this way, the MV at each control
point for the current block is derived.

[0795] Next, inter predictor 218 performs motion com-
pensation of each of the plurality of sub-blocks included in
the current block. In other words, inter predictor 218 cal-
culates a MV for each of a plurality of sub-blocks as an
affine MV, using either two motion vectors v0 and v1 and the
above expression (1A) or three motion vectors v0, v1, and
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v2 and the above expression (1B) (Step Sj_13). Inter pre-
dictor 218 then performs motion compensation of the sub-
blocks using these affine MVs and decoded reference pic-
tures (Step Sj_14). When the processes in Steps Sj_13 and
Sj_14 are executed for each of the sub-blocks included in the
current block, the inter prediction using the affine merge
mode for the current block finishes. In other words, motion
compensation of the current block is performed to generate
a prediction image of the current block.

[0796] It is to be noted that the above-described MV
candidate list may be generated in Step Sj_11 as in Step
Sk_11.

[0797] (MV Derivation>Triangle Mode)

[0798] For example, when information parsed from a
stream indicates that the triangle mode is to be applied, inter
predictor 218 derives a MV in the triangle mode and
performs motion compensation (prediction) using the MV.
[0799] FIG. 89 is a flow chart illustrating an example of a
process of inter prediction by the triangle mode in decoder
200.

[0800] In the triangle mode, first, inter predictor 218 splits
the current block into the first partition and the second
partition (Step Sx_11). For example, inter predictor 218 may
obtain, from the stream, partition information which is
information related to the splitting as a prediction parameter.
Inter predictor 218 may then split a current block into a first
partition and a second partition according to the partition
information.

[0801] Next, inter predictor 218 obtains a plurality of MV
candidates for a current block based on information such as
MVs of a plurality of decoded blocks temporally or spatially
surrounding the current block (Step Sx_12). In other words,
inter predictor 218 generates a MV candidate list.

[0802] Inter predictor 218 then selects the MV candidate
for the first partition and the MV candidate for the second
partition as a first MV and a second MV, respectively, from
the plurality of MV candidates obtained in Step Sx_11 (Step
Sx_13). At this time, inter predictor 218 may obtain, from
the stream, MV selection information for identifying each
selected MV candidate as a prediction parameter. Inter
predictor 218 may then select the first MV and the second
MYV according to the MV selection information.

[0803] Next, inter predictor 218 generates a first predic-
tion image by performing motion compensation using the
selected first MV and a decoded reference picture (Step
Sx_14). Likewise, inter predictor 218 generates a second
prediction image by performing motion compensation using
the selected second MV and a decoded reference picture
(Step Sx_15).

[0804] Lastly, inter predictor 218 generates a prediction
image for the current block by performing a weighted
addition of the first prediction image and the second pre-
diction image (Step Sx_16).

[0805] (MV Estimation>DMVR)

[0806] For example, information parsed from a stream
indicates that DMVR is to be applied, inter predictor 218
performs motion estimation using DMVR.

[0807] FIG. 90 is a flow chart illustrating an example of a
process of motion estimation by DMVR in decoder 200.
[0808] Inter predictor 218 derives a MV for a current
block according to the merge mode (Step SI_11). Next, inter
predictor 218 derives the final MV for the current block by
searching the region surrounding the reference picture indi-
cated by the MV derived in SI_11 (Step S1_12). In other
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words, in this case, the MV of the current block is deter-
mined according to the DMVR.

[0809] FIG. 91 is a flow chart illustrating an example of a
process of motion estimation by DMVR in decoder 200, and
is the same as FIG. 58B.

[0810] First, in Step 1 illustrated in FIG. 58A, inter
predictor 218 calculates the cost between the search position
(also referred to as a starting point) indicated by the initial
MYV and eight surrounding search positions. Inter predictor
218 then determines whether the cost at each of the search
positions other than the starting point is the smallest. Here,
when determining that the cost at one of the search positions
other than the starting point is the smallest, inter predictor
218 changes a target to the search position at which the
smallest cost is obtained, and performs the process in Step
2 illustrated in FIG. 58. When the cost at the starting point
is the smallest, inter predictor 218 skips the process in Step
2 illustrated in FIG. 58A and performs the process in Step 3.
[0811] In Step 2 illustrated in FIG. 58A, inter predictor
218 performs search similar the process in Step 1, regarding
the search position after the target change as new starting
point according to the result of the process in Step 1. Inter
predictor 218 then determines whether the cost at each of the
search positions other than the starting point is the smallest.
Here, when determining that the cost at one of the search
positions other than the starting point is the smallest, inter
predictor 218 performs the process in Step 4. When the cost
at the starting point is the smallest, inter predictor 218
performs the process in Step 3.

[0812] In Step 4, inter predictor 218 regards the search
position at the starting point as the final search position, and
determines the difference between the position indicated by
the initial MV and the final search position to be a vector
difference.

[0813] In Step 3 illustrated in FIG. 58A, inter predictor
218 determines the pixel position at sub-pixel accuracy at
which the smallest cost is obtained, based on the costs at the
four points located at upper, lower, left, and right positions
with respect to the starting point in Step 1 or Step 2, and
regards the pixel position as the final search position.
[0814] The pixel position at the sub-pixel accuracy is
determined by performing weighted addition of each of the
four upper, lower, left, and right vectors ((0, 1), (0, -1), (-1,
0), and (1, 0)), using, as a weight, the cost at a corresponding
one of the four search positions. Inter predictor 218 then
determines the difference between the position indicated by
the initial MV and the final search position to be the vector
difference.

[0815] (Motion Compensation>BIO/OBMC/LIC)

[0816] For example, when information parsed from a
stream indicates that correction of a prediction image is to be
performed, upon generating a prediction image, inter pre-
dictor 218 corrects the prediction image based on the mode
for the correction. The mode is, for example, one of BIO,
OBMC, and LIC described above.

[0817] FIG. 92 is a flow chart illustrating one example of
aprocess of generation of a prediction image in decoder 200.
[0818] Inter predictor 218 generates a prediction image
(Step Sm_11), and corrects the prediction image according
to any of the modes described above (Step Sm_12).
[0819] FIG. 93 is a flow chart illustrating another example
of a process of generation of a prediction image in decoder
200.
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[0820] Inter predictor 218 derives a MV for a current
block (Step Sn_11). Next, inter predictor 218 generates a
prediction image using the MV (Step Sn_12), and deter-
mines whether to perform a correction process (Step Sn_13).
For example, inter predictor 218 obtains a prediction param-
eter included in the stream, and determines whether to
perform a correction process based on the prediction param-
eter. This prediction parameter is, for example, a flag indi-
cating whether one or more of the above-described modes is
to be applied. Here, when determining to perform a correc-
tion process (Yes in Step Sn_13), inter predictor 218 gen-
erates the final prediction image by correcting the prediction
image (Step Sn_14). It is to be noted that, in LIC, luminance
and chrominance may be corrected in Step Sn_14. When
determining not to perform a correction process (No in Step
Sn_13), inter predictor 218 outputs the final prediction
image without correcting the prediction image (Step Sn_15).
[0821] (Motion Compensation>OBMC)

[0822] For example, when information parsed from a
stream indicates that OBMC is to be performed, upon
generating a prediction image, inter predictor 218 corrects
the prediction image according to the OBMC.

[0823] FIG. 94 is a flow chart illustrating an example of a
process of correction of a prediction image by OBMC in
decoder 200. It is to be noted that the flow chart in FIG. 94
indicates the correction flow of a prediction image using the
current picture and the reference picture illustrated in FIG.
62.

[0824] First, as illustrated in FIG. 62, inter predictor 218
obtains a prediction image (Pred) by normal motion com-
pensation using a MV assigned to the current block.
[0825] Next, inter predictor 218 obtains a prediction
image (Pred_L) by applying a motion vector (MV_L) which
has been already derived for the decoded block neighboring
to the left of the current block to the current block (re-using
the motion vector for the current block). Inter predictor 218
then performs a first correction of a prediction image by
overlapping two prediction images Pred and Pred_L. This
provides an effect of blending the boundary between neigh-
boring blocks.

[0826] Likewise, inter predictor 218 obtains a prediction
image (Pred_U) by applying a MV (MV_U) which has been
already derived for the decoded block neighboring above the
current block to the current block (re-using the motion
vector for the current block). Inter predictor 218 then
performs a second correction of a prediction image by
overlapping the prediction image Pred U to the prediction
images (for example, Pred and Pred_I.) on which the first
correction has been performed. This provides an effect of
blending the boundary between neighboring blocks. The
prediction image obtained by the second correction is the
one in which the boundary between the neighboring blocks
has been blended (smoothed), and thus is the final prediction
image of the current block.

[0827] (Motion Compensation>BIO)

[0828] For example, when information parsed from a
stream indicates that BIO is to be performed, upon gener-
ating a prediction image, inter predictor 218 corrects the
prediction image according to the BIO.

[0829] FIG. 95 is a flow chart illustrating an example of a
process of correction of a prediction image by the BIO in
decoder 200.

[0830] As illustrated in FIG. 63, inter predictor 218
derives two motion vectors (M,, M,), using two reference
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pictures (Ref,, Ref)) different from the picture (Cur Pic)
including a current block. Inter predictor 218 then derives a
prediction image for the current block using the two motion
vectors (M, M;) (Step Sy_11). It is to be noted that motion
vector M, is a motion vector (MV,,, MV ;) corresponding
to reference picture Ref,,, and motion vector M, is a motion
vector (MV,4, MVyl) corresponding to reference picture
Ref].

[0831] Next, inter predictor 218 derives interpolated
image I° for the current block using motion vector M, and
reference picture L. In addition, inter predictor 218 derives
interpolated image 1' for the current block using motion
vector M, and reference picture L, (Step Sy_12). Here,
interpolated image 1° is an image included in reference
picture Ref, and to be derived for the current block, and
interpolated image I' is an image included in reference
picture Ref| and to be derived for the current block. Each of
interpolated image I° and interpolated image I' may be the
same in size as the current block. Alternatively, each of
interpolated image I° and interpolated image I' may be an
image larger than the current block. Furthermore, interpo-
lated image I° and interpolated image I' may include a
prediction image obtained by using motion vectors (M,, M)
and reference pictures (Lo, L,) and applying a motion
compensation filter.

[0832] In addition, inter predictor 218 derives gradient
images (Ix°, Ix', Iy°, Iy!) of the current block, from inter-
polated image I° and interpolated image I' (Step Sy_13). It
is to be noted that the gradient images in the horizontal
direction are (Ix°, Ix'), and the gradient images in the
vertical direction are (Iy°, Iy'). Inter predictor 218 may
derive the gradient images by, for example, applying a
gradient filter to the interpolated images. The gradient
images may be the ones each of which indicates the amount
of spatial change in pixel value along the horizontal direc-
tion or the amount of spatial change in pixel value along the
vertical direction.

[0833] Next, inter predictor 218 derives, for each sub-
block of the current block, an optical flow (vx, vy) which is
a velocity vector, using the interpolated images (I°, I') and
the gradient images (Ix°, Ix', Iy°, Iy") (Step Sy_14). As one
example, a sub-block may be 4x4 pixel sub-CU.

[0834] Next, inter predictor 218 corrects a prediction
image for the current block using the optical flow (vx, vy).
For example, inter predictor 218 derives a correction value
for the value of a pixel included in a current block, using the
optical flow (vx, vy) (Step Sy 15). Inter predictor 218 may
then correct the prediction image for the current block using
the correction value (Step Sy_16). It is to be noted that the
correction value may be derived in units of a pixel, or may
be derived in units of a plurality of pixels or in units of a
sub-block, etc.

[0835] It is to be noted that the BIO process flow is not
limited to the process disclosed in FIG. 95. Only part of the
processes disclosed in FIG. 95 may be performed, or a
different process may be added or used as a replacement, or
the processes may be executed in a different processing
order.

[0836] (Motion Compensation>LIC)

[0837] For example, when information parsed from a
stream indicates that LIC is to be performed, upon gener-
ating a prediction image, inter predictor 218 corrects the
prediction image according to the LIC.
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[0838] FIG. 96 is a flow chart illustrating an example of a
process of correction of a prediction image by the LIC in
decoder 200.

[0839] First, inter predictor 218 obtains a reference image
corresponding to a current block from a decoded reference
picture using a MV (Step Sz_11).

[0840] Next, inter predictor 218 extracts, for the current
block, information indicating how the luminance value has
changed between the current picture and the reference
picture (Step Sz_12). This extraction may be performed
based on the luma pixel values for the decoded left neigh-
boring reference region (surrounding reference region) and
the decoded upper neighboring reference region (surround-
ing reference region), and the luma pixel values at the
corresponding positions in the reference picture specified by
the derived MVs. Inter predictor 218 calculates a luminance
correction parameter, using the information indicating how
the luma value changed (Step Sz_13).

[0841] Inter predictor 218 generates a prediction image for
the current block by performing a luminance correction
process in which the luminance correction parameter is
applied to the reference image in the reference picture
specified by the MV (Step Sz_14). In other words, the
prediction image which is the reference image in the refer-
ence picture specified by the MV is subjected to the correc-
tion based on the luminance correction parameter. In this
correction, luminance may be corrected, or chrominance
may be corrected.

[0842] (Prediction Controller)

[0843] Prediction controller 220 selects an intra prediction
image or an inter prediction image, and outputs the selected
image to adder 208. As a whole, the configurations, func-
tions, and processes of prediction controller 220, intra
predictor 216, and inter predictor 218 at the decoder 200 side
may correspond to the configurations, functions, and pro-
cesses of prediction controller 128, intra predictor 124, and
inter predictor 126 at the encoder 100 side.

[0844] (First Aspect)

[0845] FIG. 97 is a flow chart of an example of a process
flow 1000 of decoding an image using a CCALF (cross
component adaptive loop filtering) process according to a
first aspect. The process flow 1000 may be performed, for
example, by the decoder 200 of FIG. 67, etc.

[0846] In step S1001, a filtering process is applied to
reconstructed image samples of a first component. The first
component may be, for example, a luma component. The
luma component may be represented as a Y component. The
reconstructed image samples of luma may be the output
signals of an ALF process. The output signals of an ALF
may be reconstructed luma samples generated through a
SAO process. In some embodiments, this filtering process
performed in step S1001 may be represented as a CCALF
process. The numbers of the reconstructed luma samples
may be the same as the number of coefficients of a filter to
be used in the CCALF process. In other embodiments, a
clipping process may be performed on the filtered recon-
structed luma samples.

[0847] In step S1002, a reconstructed image sample of a
second component is modified. The second component may
be a chroma component. The chroma component may be
represented as a Cb and/or Cr component. The reconstructed
image samples of chroma may be the output signals of an
ALF process. The output signals of an ALF may be recon-
structed chroma samples generated through a SAO process.
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The modified reconstructed image sample may be the sum of
the reconstructed samples of chroma and the filtered recon-
structed samples of luma, which are the output of step
S1001. In other words, the modification process may be
performed by adding the filtered value of the reconstructed
luma samples generated by the CCALF process of step
S1001 to the filtered value of the reconstructed chroma
samples generated by an ALF process. In some embodi-
ments, a clipping process may be performed on the recon-
structed chroma samples. The first component and the
second component may belong to the same block or may
belong to different blocks.

[0848] In step S1003, the value of the modified recon-
structed image sample of a chroma component is clipped. By
performing the clipping process, the value of samples may
be guaranteed to be in a determined range. Further, the
clipping may facilitate better convergence in the process of
least square optimization, etc., to minimize the difference
between a residual (a difference between the original sample
value and the reconstructed sample value) and the filtered
value of chroma samples in order to determine filter coef-
ficients.

[0849] In step S1004, an image is decoded using the
clipped reconstructed image sample of a chroma component.
In some embodiments, step S1003 need not be performed. In
this case, an image is decoded using the modified recon-
structed chroma sample which is not clipped.

[0850] FIG. 98 is a block diagram illustrating a configu-
ration of an encoder and a decoder according to an embodi-
ment. In this embodiment, a clipping process is applied to a
modified reconstructed image sample of a chroma compo-
nent, as in step S1003 of FIG. 97. For example, the modified
reconstructed image sample may be clipped to be in a range
of [0, 1023] for a 10 bit output. When filtered reconstructed
image samples of a luma component generated by the
CCALF process are clipped, it may not be necessary to clip
the modified reconstructed image sample of a chroma com-
ponent in some embodiments.

[0851] FIG. 99 is a block diagram illustrating a configu-
ration of an encoder and a decoder according to an embodi-
ment. In this embodiment, a clipping process is applied to a
modified reconstructed image sample of a chroma compo-
nent, as in step S1003 of FIG. 97. A clipping process is not
applied to filtered reconstructed luma samples generated by
the CCALF process. The filtered value of the reconstructed
chroma samples generated by an ALF process need not be
clipped, as shown by “No clipping” in FIG. 99. In other
words, the reconstructed image sample to be modified is
generated using a filtered value (ALF chroma) and a differ-
ence value (CCALF Cb/Cr), wherein no clipping is applied
to the output of the generated sample value.

[0852] FIG. 100 is a block diagram illustrating a configu-
ration of an encoder and a decoder according to an embodi-
ment. In this embodiment, a clipping process is applied to
filtered reconstructed luma samples generated by the
CCALF process (“Clipping output samples”) and modified
reconstructed image samples of a chroma component (“Clip-
ping after sum”). The filtered value of the reconstructed
chroma samples generated by an ALF process is not clipped
(“No clipping”). As an example, a clipped range applied to
the filtered reconstructed image sample of a luma compo-
nent may be [-2"15, 2"15-1] or [-2"7, 277-1].

[0853] FIG. 101 shows another example in which a clip-
ping process is applied to filtered reconstructed luma
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samples generated by the CCALF process (“Clipping output
samples™), to modified reconstructed image samples of a
chroma component (“Clipping after sum™), and to filtered
reconstructed chroma samples generated by an ALF process
(“clipping”). In other words, output values from the CCALF
process and the ALF Chroma process are separately clipped,
and clipped again after they are summed. In this embodi-
ment, the modified reconstructed image sample of a chroma
component need not be clipped. As an example, the final
output from the ALF Chroma process may be clipped to a 10
bit value. As an example, a clipped range applied to the
filtered reconstructed image samples of a luma component
may be [-2" 15, 2°15-1] or [-2"7, 2"7-1]. This range may
be fixed or may be adaptively determined. In either case, the
rage can be signaled in header information, for example, in
SPS (Sequence Parameter set) or APS (Adaptation Param-
eter set). In the case when a non-linear ALF is used, clipping
parameters may be defined for “Clipping after sum” in FIG.
101.

[0854] The reconstructed image samples of a luma com-
ponent to be filtered by the CCALF process may be neigh-
boring samples which are adjacent to a current reconstructed
image sample of a chroma component. That is, the modified
current reconstructed image sample may be generated by
adding a filtered value of neighboring image samples of a
luma component located adjacent to the current image
sample to the filtered value of the current image sample of
a chroma component. The filtered value of image samples of
a luma component may be represented as a difference value.
[0855] Processes disclosed in this aspect may reduce hard-
ware internal memory size required to store filtered image
sample values.

[0856] (Second Aspect)

[0857] FIG. 102 is a flow chart of an example of a process
flow 2000 of decoding an image applying a CCALF process
using defined information, according to a second aspect. The
process flow 2000 may be performed, for example, by the
decoder 200 of FIG. 67, etc.

[0858] In step S2001, a clip parameter is parsed from a
bitstream. The clip parameter may be parsed from a VPS,
APS, SPS, PPS, slice header, at CTU or TU level, as
described in FIG. 103. FIG. 103 is a conceptual diagram
indicating location(s) of clip parameters. A parameter
described in FIG. 103 may be replaced by a different type of
clip parameter, a flag, or an index. Two or more clip
parameters may be parsed from two or more parameter sets
in the bitstream.

[0859] In step S2002, a difference is clipped using the clip
parameter. The difference is generated based on recon-
structed image samples of a first component (e.g., the
difference value (CCALF Cb/Cr) in FIGS. 98-101). As an
example, the first component is a luma component and the
difference is filtered reconstructed luma samples generated
by the CCALF process. In this case, a clipping process is
applied to the filtered reconstructed luma samples using a
parsed clip parameter.

[0860] The clip parameter restricts a value to be within a
desired range. If a desired range is [-3, 3], for an example,
value 5 is clipped to 3 using operation clip(-3, 3, 5). In this
example, value -3 is the lower range and value 3 is the upper
range.

[0861] The clip parameter may indicate an index to derive
a lower range and an upper range, as shown in (i) of FIG.
104. In this example, ccalf luma_clip_idx| ] is the index,
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-range_array| | is the lower range, and range_array] | is the
upper range. In this example, range_array][ | is a determined
range array which may be different from the range array
used for an ALF. The determined range array may be
predetermined.

[0862] The clip parameter may indicate a lower range and
an upper range, as shown in (ii) of FIG. 104. In this example,
—ccalf_luma_clip_low_range[ | is the lower range, and
ccalf_luma_clip_up_range[ | is the upper range.

[0863] The clip parameter may indicate a common range
for both a lower range and an upper range, as shown in (iii)
of FIG. 104. In this example, —ccalf_luma_clip_range is the
lower range, and ccalf_luma_clip_range is the upper range.
[0864] The difference is generated by multiplying, divid-
ing, adding or subtracting at least two reconstructed image
samples of the first component. The two reconstructed image
samples, for example, may come from current and neigh-
boring image samples or two neighboring image samples.
The locations of the current and neighboring image samples
may be predetermined.

[0865] In step S2003, a reconstructed image sample of a
second component different from the first component is
modified using the clipped value. The clipped value may be
a clipped value of a reconstructed image sample of a luma
component. The second component may be a chroma com-
ponent. The modification may include an operation to mul-
tiply, divide, add or subtract the clipped value with respect
to the reconstructed image sample of the second component.
[0866] In step S2004, an image is decoded using the
modified reconstructed image sample.

[0867] In the present disclosure, one or more clip param-
eters for cross component adaptive loop filtering are sig-
naled in a bitstream. With this signaling, the syntax of cross
component adaptive loop filtering and the syntax of adaptive
loop filter can be combined for syntax simplification. Fur-
thermore, with this signaling, the design of cross component
adaptive loop filtering may be more flexible for coding
efficiency improvement.

[0868] The clip parameters may be defined or predefined
for both encoder and decoder without being signaled. The
clip parameters may also be derived using luma information
without being signaled. For example, the clip parameters
corresponding to a large clip range may be derived if a
strong gradient or edge is detected in a luma reconstructed
image, and the clip parameters corresponding to a short clip
range may be derived if a weak gradient or edge is detected
in a luma reconstructed image.

[0869] (Third Aspect)

[0870] FIG. 105 is a flow chart of an example of a process
flow 3000 of decoding an image applying CCALF process
using a filter coefficient according to a third aspect. The
process flow 3000 may be performed, for example, by the
decoder 200 of FIG. 67, etc. A filter coefficient is used in a
filtering step of a CCALF process to generate a filtered
reconstructed image sample of a luma component.

[0871] In step S3001, it is determined whether a filtering
coeflicient is located inside a defined symmetric region of a
filter. Optionally, an additional step of judging if a shape of
the filter coefficients is symmetric or not may be performed.
Information indicating whether the sample of filter coeffi-
cients is symmetric or not may be coded into a bitstream. If
the shape is symmetric, the locations of coefficients that are
inside the symmetric region may be determined or prede-
termined.
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[0872] In step S3002, if the filtering coefficient is inside a
defined symmetric region (Yes in step S3001), the filter
coeflicient is copied to the symmetric position and a set of
filter coefficients is generated.

[0873] In step S3003, the filter coefficients are used to
filter the reconstructed image samples of a first component.
A first component may be a luma component.

[0874] In step S3004, an output of the filtering is used to
modify a reconstructed image sample of a second compo-
nent different from the first component. The second com-
ponent may be a chroma component.

[0875] In step S3005, an image is decoded using the
modified reconstructed image sample.

[0876] If filter coefficients are not symmetric (No in step
S3001), all the filter coefficients can be coded from a
bitstream and a set of the filter coefficients may be generated
without copying.

[0877] This aspect may reduce the amount of information
to be coded into the bitstream. That is, only one of the filter
coeflicients that are symmetric may need to be coded in the
bitstream.

[0878] FIGS. 106, 107, 108, 109, and 110 are conceptual
diagrams of examples indicating locations of filter coeffi-
cients to be used in a CCALF process. In these examples,
some coefficients included in a set of coefficients are sig-
naled, assuming symmetry exists.

[0879] Specifically, examples (a), (b), (c), and (d) of FIG.
106 indicate examples in which a part of a set of CCALF
coeflicients (marked by diagonal lines and grid patterns) is
located inside a defined symmetric region. In these
examples, symmetric regions have line-symmetric shape.
Only some marked coefficients (marked by diagonal lines or
grid patterns) and white colored coefficients may be coded
into a bitstream and other coefficients may be generated by
using coded coefficients. As other examples, only marked
coeflicients may be generated and used in a filtering process.
Other white colored coefficients (not marked by any pattern)
need not be used in a filtering process.

[0880] Examples (e), (f), (g), and (h) of FIG. 106 indicate
examples in which the shape of the symmetric region is
horizontal, vertical, diagonal, along with a direction, point
symmetric, or point symmetric with a direction.

[0881] In these figures, only a part of the coefficients that
are marked by diagonal lines or grid patterns may need to be
coded. Locations of coefficients to be coded may be deter-
mined or predetermined. For example, coefficients may be
coded in determined scanning order and the one appears first
may be coded first. The coefficient in the symmetric region
whose coefficient is not coded may be copied from the
coeflicient that is located at its symmetric position. In some
embodiments, it may not be necessary to process coeflicients
based on symmetry. For example, when it is determined that
i-th coefficient is the same as j-th coefficient in the scanning
order, the process may just copy j-th value to i-th value. The
location may be determined based on other parameters.

[0882] Examples (a), (b), (c), and (d) of FIG. 107 indicate
examples in which a part of a set of CCALF coefficients
(marked by diagonal lines and grid patterns) is located inside
a defined symmetric region. In these examples, the number
of symmetric coefficients may be different. The number of
symmetric coefficients may be determined, predetermined,
or may be signaled at a picture level, a slice level, or a block
level.
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[0883] Examples (e), (f), (g), and (h) of FIG. 107 indicate
examples in which a part of a set of CCALF coefficients
(marked by diagonal lines and grid patterns) is located inside
a defined symmetric region. In these examples, symmetric
coeflicients in one symmetric side may be different from the
corresponding coefficients in the other symmetric side, that
is, some coeflicients (e.g., a set of coefficients) in one side
are symmetric with different coefficient values (e.g., another
set of coeflicients) in the other side. As an example, only a
part of “grid pattern” coefficients in one symmetric side may
be coded into a bitstream and copied to generate “diagonal-
line pattern” coeflicients in the other symmetric side.
[0884] Examples (a), (b), (c), and (d) of FIG. 108 indicate
examples of filter shapes in which a chroma type serves as
a determined format. The determined format may be YUV
420 Type 0, for example. Marked coefficients (diagonal-
lined coefficients or grid-patterned coeflicients) are symmet-
ric about the chroma position of the chroma type. The filter
shape may be designed to be symmetric about the chroma
position of other YUV formats. For example, these filter
shapes of (a)-(d) of FIG. 108 may be used as a default, and
other filter shapes may be determined to be used in a filtering
process when a parameter coded in a bitstream indicates
other formats.

[0885] Examples (e), (f), (g), and (h) of FIG. 108 indicate
examples of filter shapes in which a chroma type serves as
a determined format. The determined format may be the
YUV chroma format different from YUV 420 Type 0.
Different filter shapes can be used for other formats.
[0886] Examples (a), (b), (¢), and (d) of FIG. 109 indicate
other examples of filter shapes. In (a) of FIG. 109, the
number of symmetric coefficients may be zero and all
coeflicients are signaled independently. The number of sym-
metric coeflicients need not be coded into a bitstream. In (b)
of FIG. 109, the number of symmetric coefficients may be
one half of all coefficients.

[0887] Examples (a), (b), (c), and (d) of FIG. 110 indicate
other examples of filter shapes and signals to be coded with
scan order indicated by arrows. In (a) of FIG. 110, raster
scan order is applied to filter coefficients regardless of a
symmetry type. In (b) of FIG. 110, raster scan order is
applied to filter coefficients, regardless of a symmetry type,
and only white colored coefficients and grid-patterned coef-
ficients are signaled in the bitstream in the raster scan order.
The decoder may use a LUT (look up table) to duplicate the
grid patterned coeflicients to generate diagonal line pat-
terned coefficients. In (¢) of FIG. 110, grid patterned coef-
ficients located in a symmetric region are scanned and
signaled, and then white colored coefficients located in an
asymmetric region are scanned and signaled. In (d) of FIG.
110, coefficients located in an asymmetric region are
scanned and signaled, and then grid-patterned coefficients
are scanned and signaled.

[0888] FIGS. 111 and 112 are conceptual diagrams of
further examples indicating locations of filter coefficients to
be used in a CCALF process. In these examples, symmetric
positions, locations, or numbers of coefficients in the set of
filter coefficients may be adaptive to chroma type.

[0889] FIG. 113 is a block diagram illustrating a configu-
ration of a CCALF process performed by an encoder and a
decoder according to an embodiment. After filtering the
luma picture using the generated filter coeflicients, the
output samples are applied on the chroma picture. The filter
with the generated filter coefficients is applied on the SAO
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Luma output picture. The filtered samples (CC ALF Cb and
CC ALF Cr) are then added to the ALF Chroma output

picture.
[0890] (Fourth Aspect)
[0891] FIG. 114 is a flow chart of an example of a process

flow 4000 of decoding an image applying a CCALF process
using a filter selected from a plurality of filters according to
a fourth aspect. The process flow 4000 may be performed,
for example, by the decoder 200 of FIG. 67, etc. This
embodiment discloses methods of modifying reconstructed
samples of a component using information from a different
component.

[0892] In step S4001, a parameter is determined. The
parameter may be parsed from a VPS, APS, SPS, PPS, slice
header, or at a CTU or TU level as described in FIG. 103.
The parameter is parsed from a bitstream to specify a filter.
For example, the parameter may indicate an index to select
a filter from a determined plurality of filters. The parameter
may be parsed from a bitstream to indicate a chroma
sub-sampling format as 4:4:4, 4:2:0, 4:2:2, or 4:1:1. The
parameter may be parsed from a bitstream to indicate a color
space as YCbCr or RGB. The parameter may be parsed from
a bitstream to indicate a picture resolution as 4K, FHD, CIF,
QCIF. The parameter may indicate a color component as Y,
Cb, or Cr. The parameter may also be derived using luma
information without being signaled. For an example, the
parameter corresponding to a short tap filter may be derived
if a strong gradient or edge is detected in a luma recon-
structed image, and the parameter corresponding to a long
tap filter may be derived if a weak gradient or edge is
detected in a luma reconstructed image. As another example,
the parameter corresponding to a long tap filter may be
derived if a strong gradient or edge is detected in a luma
reconstructed image, and the parameter corresponding to a
short tap filter may be derived if a weak gradient or edge is
detected in a luma reconstructed image.

[0893] In step S4002, a filter is selected from a plurality of
filters based on the parameter. The plurality of filters may be
of different shapes or sizes. The plurality of filters may be of
the same shape and have different coefficient values. The
parameter may indicate the coefficient values to be used to
generate a set of filter coefficients.

[0894] FIG. 115 shows an example of a process flow of
selecting a filter.

[0895] In step S4011, it is determined if the parameter
indicates a determined format. The format may be prede-
termined. The determined format may indicate a chroma
sub-sampling format as 4:4:4, 4:2:0, 4:2:2, or 4:1:1. The
determined format may indicate a color component as Y, Cb,
or Cr. The determined format may indicate a color space as
YCbCr or RGB. The determined format may indicate a
picture resolution as 4K, FHD, CIF, QCIF.

[0896] In step S4012, if it is determined that the parameter
indicates the determined format (YES in step S4011), a first
filter from a plurality of filters is selected.

[0897] In step S4013, if it is determined that the parameter
does not indicate the determined format (No in step S4011),
a filter different from the first filter is selected from a
plurality of filters. The shape, size, or values of the filter
coeflicients may be different between S4012 and S4013.
[0898] FIG. 116 and FIG. 117 illustrate some examples of
filters. In FIG. 116 showing filters (1a)-(11), the total number
of rows having the maximum number of coefficients is even
(e.g. 2, 4, or 6). In FIG. 117 showing filters (2a)-(2i), the
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total number of rows having the maximum number of
coefficients is odd (e.g. 1, 3, or 5).

[0899] Forexample, a filter from FIG. 116 may be selected
if the parameter indicates that 4:2:0 chroma sub-sampling
format is applied, while a filter from FIG. 117 may be
selected if the parameter indicates that 4:2:2, 4:4:4, or 4:1:1
chroma sub-sampling format is applied. The selection of the
filters from FIG. 116 and FIG. 117 may be reversed.
[0900] Forexample, a filter from FIG. 116 may be selected
if the parameter indicates that Y is used to modify Cb or Cr,
while a filter from FIG. 117 may be selected if the parameter
indicates that Cb is used to modify Cr, or Cr is used to
modify Cb. The selection of the filters from FIG. 116 and
FIG. 117 may be reversed.

[0901] Forexample, a filter from FIG. 116 may be selected
if the parameter indicates that color space YCbCr is applied,
while a filter from FIG. 117 may be selected if the parameter
indicates that color space RGB is applied. The selection of
the filters from FIG. 116 and FIG. 117 can be reversed.
[0902] For example, a first filter from FIG. 116 may be
selected if the parameter indicates that image resolution is
large (e.g. 4K or 8K), while a filter different from the first
filter from FIG. 116 may be selected if the parameter
indicates that image resolution is small (e.g. QCIF or CIF).
The size of these two selected filters may be different. For
example, filter (1a) may be selected for image resolution
QCIF, filter (1¢) may be selected for image resolution FHD,
and filter (1e) may be selected for image resolution 8K.
[0903] For example, a first filter from FIG. 117 may be
selected if the parameter indicates that image resolution is
large (e.g. 4K or 8K), while a filter different from the first
filter from FIG. 117 may be selected if the parameter
indicates that image resolution is small (e.g. QCIF or CIF).
The size of these two selected filters may be different. For
example, filter (2a) may be selected for image resolution
QCIF, filter (2¢) may be selected for image resolution FHD,
and filter (2e) may be selected for image resolution 8K.
[0904] In step S4003, reconstructed image samples of a
first component are filtered using the selected filter. The first
component may be a luma component. The filtering process
contains at least an operation of multiplication, division,
addition or subtraction on at least two reconstructed image
samples of the first component. For example, the two
reconstructed image samples may come from current and
neighboring image samples, or may come from two neigh-
boring image samples. The locations of the current and
neighboring image samples may be predetermined.

[0905] In step S4004, a reconstructed image sample of a
second component different from the first component is
modified using the output of the filtering. The second
component may be a chroma component. The modification
includes an operation to multiply, divide, add or subtract the
output of the filtering with the reconstructed image sample.
[0906] At step S4005, an image is decoded using the
modified reconstructed image sample.

[0907] The present disclosure relates to adaptively select-
ing one filter from a plurality of filters for cross component
filtering. Different filters may have different shapes or sizes.
The adaptive selection of a filter makes cross component
filtering more flexible for coding efficiency improvement.
[0908] More than one set of filters can be signaled. Dif-
ferent sets of filters may have different shapes and sizes.
Which filter to be used may be parsed or determined
thereafter (e.g. from filter_id).
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[0909] (Fifth Aspect)

[0910] FIG. 118 is a flow chart of an example of a process
flow 5000 of decoding an image applying a CCALF process
using a parameter according to a fifth aspect. The process
flow 5000 may be performed, for example, by the decoder
200 of FIG. 67, etc.

[0911] In step S5001, a first parameter is parsed from a
bitstream. The first parameter can be parsed from a VPS,
APS, SPS, PPS, slice header, or at a CTU or TU level (FIG.
103, wherein the “parameter” corresponds to the “first
parameter”). The first parameter may indicate a chroma
sub-sampling format as 4:4:4, 4:2:0, 4:2:2, or 4:1:1. The first
parameter may indicate a color space as YCbCr or RGB. The
first parameter may indicate a picture resolution as 4K,
FHD, CIF, QCIF. The first parameter may indicate a color
component as Y, Cb, or Cr.

[0912] In step S5002, it is determined if the first parameter
is equal to a determined value. The determined value may be
predetermined.

[0913] In step S5003, if it is determined that the first
parameter is equal to a determined value (YES in step
S5002), a first number of coefficients is parsed from the
bitstream. The first number of coefficients can be parsed
from a VPS, APS, SPS, PPS, slice header, or at a CTU or TU
level (FIG. 103, wherein the “parameter” corresponds to the
“first number of coefficients”).

[0914] In step S5004, if it is determined that the first
parameter is not equal to a determined value (NO in step
S5003), a second number of coefficients not equal to the first
number of coefficients is parsed from the bitstream. The
second number of coefficients can be parsed from a VPS,
APS, SPS, PPS, slice header, or at a CTU or TU level (FIG.
103, wherein the “parameter” corresponds to the “second
number of coeflicients”). The first number and the second
number from step S5002 and step S5003 can be different.
[0915] For example, as shown in (i) of FIG. 119, the
number of coefficients when the first parameter indicates
that 4:2:0 chroma sub-sampling format is applied is different
from the number of coefficients when the first parameter
indicates that 4:2:2; 4:4:4, or 4:1:1 chroma sub-sampling
format is applied.

[0916] For example, as shown in (ii) of FIG. 119, the
number of coefficients when the first parameter indicates
that color space YCbCr is applied is different from the
number of coefficients when the first parameter indicates
that color space RGB is applied.

[0917] For example, as shown in (iii) of FIG. 119, the
number of coefficients when the first parameter indicates
that Y is used to modify Cb or Cr is different from the
number of coefficients when the first parameter indicates
that Cb is used to modify Cr, or Cr is used to modify Cb.
[0918] For example, as shown in (iv) of FIG. 119, the
number of coefficients when the first parameter indicates
that image resolution is large (e.g. 4K or 8K) is different
from the number of coefficients when the first parameter
indicates that image resolution is small (e.g. QCIF or CIF).
[0919] In FIG. 119, information like the chroma sub-
sampling format and the image resolution can be obtained if
SPS_id is coded in an APS.

[0920] In step S5005, reconstructed image samples of a
first component are filtered using parsed coefficients. The
filtering process contains at least an operation of multipli-
cation, division, addition or subtraction on at least two
reconstructed image samples of the first component. The two
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reconstructed image samples may come from current and
neighboring image samples, or may come from two neigh-
boring image samples, for example. The locations of the
current and neighboring image samples may be predeter-
mined.

[0921] In step S5006, a reconstructed image sample of a
component different from the first component is modified
using the output of the filtering. The modification includes
an operation to multiply, divide, add or subtract the output
of the filtering with the reconstructed image sample.
[0922] In step S5007, an image is decoded using the
modified reconstructed image sample.

[0923] The present disclosure relates to adaptively deriv-
ing the number of filter coefficients for cross component
filtering. The adaptive derivation of the number of filter
coeflicients makes cross component filtering more flexible
for coding efficiency improvement.

[0924] More than one set of coeflicients may be signaled.
Different sets of coefficients may have different numbers of
coeflicients. Different sets of coefficients may have the same
number of coefficients. The number of coefficients of those
sets of coeflicients may be fixed. Which set of coefficients to
be used is parsed or determined thereafter (e.g. from coeff
set_id, or filter_id).

[0925] (Sixth Aspect)

[0926] FIG. 120 is a flow chart of an example of a process
flow 6000 of decoding an image applying a CCALF process
using a parameter according to a sixth aspect. The process
flow 6000 may be performed, for example, by the decoder
200 of FIG. 67, etc.

[0927] In S6001, the process selects at least a set of
reconstructed samples from a first component;

[0928] In S6002, the process derives a value based on the
selected set of reconstructed samples;

[0929] In S6003, the process filters the reconstructed
samples based on the derived value;

[0930] In S6004, the process modifies a reconstructed
image sample of a second component using the output of the
filtering;

[0931] In S6005, the process decodes an image using the
filtered reconstructed image sample.

[0932] FIGS. 121, 122, and 123 are conceptual diagrams
illustrating examples of generating a CCALF value of a
luma component (see step S6002) for a current chroma
sample by calculating a weighted average value of neigh-
boring samples. In other words, in this example, a CCALF
value of luma samples for a chroma sample is generated by
calculating a weighted sum of luma samples located in a
neighboring region of the chroma sample. The luma samples
include a sample located adjacent to the chroma sample.
[0933] In FIG. 121, a location indicated by a diamond
shape is a location of a current chroma sample. For example,
the value corresponding to the location (curr) for a CCALF
may be derived by calculating an averaged value of neigh-
boring luma samples that are marked with grid patterns.
White colored luma samples need not be used for the
averaging process. In other words, a value fora CCALF may
be derived by referring to a sample value of a luma sample
located adjacent to the current chroma sample. There are two
such luma samples in the example of FIG. 121.

[0934] FIG. 122 describes sample equations for calculat-
ing a CCALF value. The CCALF value may be derived by
using filter coefficient values and luma sample values. A
filter coefficient value is multiplied to a subconstruct of two
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neighboring luma sample values. A luma sample used in
each of' the subconstruct calculation may be located adjacent
to the current chroma sample. The form of equations may be
the same as the form used in an ALF filtering process. In
some embodiments, if the filter coefficient value is less than
64, the coefficient value may be set to zero.

[0935] As described in FIG. 123, different numbers of
luma samples can be averaged, and the number of averaged
neighboring luma samples may be predefined, or signaled
in/at a picture, slice, or block level. The positions of aver-
aged neighboring luma samples may be predefined, or
signaled in/at a picture, slice, or block level. The weights of
averaged neighboring luma samples may be predefined, or
signaled in/at a picture, slice, or block level.

[0936] FIGS. 124 and 125 are conceptual diagrams illus-
trating examples of generating a CCALF value of a luma
component for a current sample by calculating a weighted
average value of neighboring samples, wherein locations of
neighboring samples are determined adaptively to (accord-
ing to) chroma type. In other words, the locations of luma
samples to be used in the weighting calculation are deter-
mined based on a location of a current chroma sample.
[0937] Samples marked with different patterns may rep-
resent different weights. The number of averaged samples
may be adaptive to (may correspond to) the chroma type.
The weights of averaged samples may be adaptive to (may
correspond to) the chroma type

[0938] FIGS. 126 and 127 are conceptual diagrams illus-
trating examples of generating a CCALF value of a luma
component by applying a bit shift to an output value of the
weighting calculation. In other words, a scale-down shift
process is applied to a filtered value of a luma samples in the
same manner as in an ALF process. In some embodiments,
if the coeflicient value is less than 64, the coeflicient value
may be set to zero.

[0939] The number of shift bits for a CCALF is repre-
sented as x. The value x may be determined as the same
value as in an ALF process. In some examples the value x
may be fixed to 10. In some examples the value x may be
fixed to 7.

[0940] (Seventh Aspect)

[0941] FIG. 128 is a flow chart of an example of a process
flow 7000 of decoding an image applying a CCALF process
using a parameter according to a seventh aspect. The process
flow 7000 may be performed, for example, by the decoder
200 of FIG. 67, etc. Methods of determining reconstructed
samples to be filtered using one or more parameters are
described.

[0942] In step S7001, one or more parameters are parsed
from a bitstream. The one or more parameters may be coded
in at least one of an APS, SPS, PPS, slice header or ata CTU
level, as shown in FIG. 129. FIG. 130 shows sample
processes of retrieving the one or more parameters.

[0943] The one or more parameters may be in a SPS. A
slice firstly locates a PPS according to PPS_id which is
coded in the slice. The PPS then locates the SPS according
to SPS_id which is coded in the PPS. Through this connec-
tion, the slice can retrieve the one or more parameters in the
SPS as shown in (a) of FIG. 130.

[0944] The one or more parameters may be in a parameter
set at a picture level, for example, in a PPS. A slice firstly
locates a PPS according to PPS_id which is coded in the
slice. Through this connection, the slice can retrieve the one
or more parameters in the PPS as shown in (b) of FIG. 130.
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[0945] The one or more parameters may be in an APS. A
slice firstly locates an APS according to APS id which is
coded in the slice. Through this connection, the slice can
retrieve the one or more parameters in the APS as shown in
(c) of FIG. 130.

[0946] The one or more parameters may be in a slice ((d)
of FIG. 130). The slice can obtain the one or more param-
eters from its internal header or data.

[0947] The one or more parameters may include a first
parameter that selects the size of samples to be modified.
The one or more parameters may indicate whether a CCALF
process is enabled. The one or more parameters may include
parameters indicating whether a CCALF process is enabled
or not and parameters indicating coefficient values of the
filter to be used.

[0948] The samples can be grouped in a square shape
having a specific size such as 4x4, 8x8, 16x16, 16x16,
32x32, 64x64, or 128x128 samples.

[0949] The first parameter can be parsed prior to the
parsing of a slice header or a slice data. For example, the first
parameter may be parsed from an APS, SPS, or PPS.

[0950] The first parameter can be parsed from a slice
header.
[0951] The first parameter can be parsed from a coding

tree unit (CTU) data.

[0952] The first parameter can depend on a chroma sub-
sampling type or a CTU size or both. If the chroma sub-
sampling type is 4:4:4, the block size selected by the first
parameter can be 4x4, 8x8, 16x16, 32x32, 64x64, or 128x
128. If the chroma sub-sampling type is 4:2:2 or 4:2:0, the
block size selected by the first parameter can be 4x4, 8x8,
16x16, 32x32, or 64x64.

[0953] The first parameter can depend on a CTU size
where the selected block size cannot exceed its CTU size.
[0954] The one or more parameters may include a second
parameter that indicates whether a block of samples is to be
filtered.

[0955] The second parameter can be a flag with value of
1 or 0, wherein 1 indicates to modify the reconstructed
samples and 0 indicates not to modify the reconstructed
samples.

[0956] The second parameter may be parsed prior to the
parsing of the first coding tree unit (CTU) data. For example,
the second parameter can be parsed from an APS, SPS, PPS,
slice header, or slice data.

[0957] The second parameter may be parsed from a coding
tree unit (CTU) data. FIG. 131 shows sample values of the
second parameter. A plurality of second parameters can
indicate whether a plurality of blocks in a coding tree unit
(CTU) having the specific sizes are to be modified.

[0958] The second parameters may indicate if the modi-
fication of reconstructed samples is disabled within a picture
or a sequence. If the second parameters indicates that the
modification of reconstructed samples is disabled, step
S7002 of FIG. 128 will lead to step S7005 directly, which
corresponds to “NO” branch in FIG. 128.

[0959] The one or more parameters may include a param-
eter that can be parsed using non-arithmetic coding such as
fixed length coding, Exponential-Golomb coding, or VL.C.
[0960] The one or more parameters may include a param-
eter that can be parsed using arithmetic coding such as
CAVLC or CABAC.

[0961] For an example, as shown in FIG. 132, the second
parameter can be parsed using arithmetic coding prior to the
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parsing of first coding tree unit data in a slice, followed by
byte-alignment or bit-alignment data. In this example, the
initialization of arithmetic coding for parsing parameters
after the second parameter in the same slice may be applied.
[0962] In step S7002, it is determined if a filter is to be
used based on the parsed parameters.

[0963] If a filter is to be used, in step S7003, at least a
reconstructed sample from a first component is filtered. The
first component can be luminance samples.

[0964] In step S7004, the reconstructed samples are modi-
fied using at least one filtered reconstructed sample from a
component different from the first component. The compo-
nent different from the first component can be chrominance
samples.

[0965] Instep S7005, a block of image samples is decoded
using the modified reconstructed samples.

[0966] The present disclosure illustrates the characteristics
of one or more parameters at multiple levels for filtering,
including generation methods, functions and coding meth-
ods. Using these control parameters, the design of filtering
may be optimized to save coding bits, enhance high-fre-
quency components using modified samples, and reduce
redundancy between different channels, to thereby improve
image quality.

[0967] FIG. 133 is a conceptual diagram of a variation of
this embodiment.

[0968] The one or more parameters can depend on the
partition of a coding tree unit. When a partition has a
different size from the size indicated by the first parameter,
the second parameter indicating if the partition is filtered is
not coded and the filtering of the partition is disabled. In this
example, the coded bits of the second parameters are
reduced.

[0969] The shape or the samples described in the seventh
aspect may be replaced with a rectangular or a non-rectan-
gular shape partition. Examples of the non-rectangular shape
partition may be at least one of a triangular shape partition,
a L-shape partition, a pentagon shape partition, a hexagon
shape partition and a polygon shape partition as shown in
FIG. 133.

[0970] (Eighth Aspect)

[0971] FIG. 134 is a flow chart of an example of a process
flow 8000 of decoding an image applying a CCALF process
using a parameter according to an eighth aspect. The process
flow 8000 may be performed, for example, by the decoder
200 of FIG. 67, etc.

[0972] In step S8001, it is determined whether a first
sample of a first component is outside a virtual boundary.
[0973] In step S8002, if it is determined that the first
sample of a first component is outside a virtual boundary, a
second sample of the first component is copied to the first
sample, wherein the second sample is located inside the
virtual boundary.

[0974] In step S8003, the reconstructed sample of the first
component which includes the first and second samples is
filtered.

[0975] In step S8004, a reconstructed sample of a com-
ponent different from the first component is modified using
the output of the filtering.

[0976] Instep S8005, the modified reconstructed sample is
used to decode an image.

[0977] A padding method in S8002 may be the same
regardless of a chroma sampling format. For example,
symmetric padding may be used. A padding method can be
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changed depending on the chroma sampling format,
between symmetric padding and non-symmetric padding for
example.

[0978] The first component may be luma samples and the
different component whose sample values are modified may
be chroma samples. Chroma can be Cb, Cr, or both.
[0979] FIG. 135 is a flow chart of an example of a process
flow 8100 of decoding an image applying a CCALF process
using a parameter according to the eighth aspect. The
process flow 8100 may be performed, for example, by the
decoder 200 of FIG. 67, etc.

[0980] In S8101, it is determined whether the chroma
sample type is of a first type. FIG. 136 shows the example
locations of chroma sample types O to 5.

[0981] InS8102,ifitis determined that the chroma sample
type is of a first type, a first sample and a second sample are
used in filtering the reconstructed samples of a first compo-
nent, wherein the first sample is duplicated from the second
reconstructed sample.

[0982] InS8103,ifitis determined that the chroma sample
type is not of a first type, the second sample and a third
sample are used in filtering the reconstructed samples of the
first component, and the first sample is excluded, wherein
the third sample is different from the first or second sample.
[0983] In S8104, a reconstructed sample from a compo-
nent different from the first component is modified using the
output of the filtering. For example, the first component is
indicating luminance and the output of the filtering is added
to the reconstructed sample from a chrominance component.
In another example, the first component is indicating
chrominance Cr and the output of the filtering is added to the
reconstructed sample from chrominance Cb. In another
example, the output of the filtering and the reconstructed
sample can be added, subtracted, multiplied, divided, or
subjected to any combination of the mathematical processes
to obtain the modified reconstructed sample.

[0984] In S8105, the modified reconstructed sample is
used to decode an image. For example, the modified recon-
structed sample is stored in a reference picture buffer.
[0985] FIGS. 137, 138, and 139 are conceptual diagrams
of examples of symmetric padding.

[0986] For example, in S8002 of FIG. 134, if the chroma
sample type is equal to O or 1 and the virtual boundary is
between CO and C2 as shown in (a) of FIG. 137, the
reconstructed sample value of a second sample (C15) is
duplicated to the first sample (C17). Similarly, the recon-
structed sample value of a second sample (C2) is duplicated
to the first sample (CO).

[0987] As another example, in S8002, if the chroma
sample type is equal to O or 1 and the virtual boundary is
between C15 and C17 as shown in (b) of FIG. 137, the
reconstructed sample value of a second sample (C2) is
duplicated to the first sample (CO). Similarly, the recon-
structed sample value of a second sample (C15) is dupli-
cated to the first sample (C17).

[0988] As another example, in S8002, if the chroma
sample type is equal to O or 1 and the virtual boundary is
between C2 and C6 as shown in (¢) of FIG. 137, the
reconstructed sample values of second samples (C10, C11
and C12) are duplicated to the first samples (C14, C15, C16
and C17). Similarly, the reconstructed sample values of
second samples (C5, C6 and C7) are duplicated to the first
samples (CO, C1, C2 and C3).
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[0989] As another example, in S8002, if the chroma
sample type is equal to O or 1 and the virtual boundary is
between C11 and C15 as shown in (d) of FIG. 137, the
reconstructed sample values of second samples (C5, C6 and
C7) are duplicated to the first samples (CO, C1, C2 and C3).
Similarly, the reconstructed sample values of second
samples (C10, C11 and C12) are duplicated to the first
samples (C14, C15, C16 and C17).

[0990] FIGS. 138 and 139 show examples of samples
which are duplicated in FIG. (a) of 137 and (c¢) of FIG. 137,
respectively.

[0991] After duplicating, the duplicated samples are used
in the filtering of the reconstructed samples of a first
component.

[0992] FIGS. 140, 141, 142, and 143 are conceptual
diagrams of examples of non-symmetric padding.

[0993] For example, in S8002, if the chroma sample type
is equal to 2 or 3 and the virtual boundary is between CO and
C2 as shown in (a) of FIG. 140, the reconstructed sample
values of second samples (C10, C11 and C12) are duplicated
to the first samples (C14, C15, C16 or C17). Similarly, the
reconstructed sample value of a second sample (C2) is
duplicated to the first sample (CO).

[0994] In another example of S8002, if the chroma sample
type is equal to 2 or 3 and the virtual boundary is between
C15 and C17 as shown in (b) of FIG. 140, the reconstructed
sample value of a second sample (C15) is duplicated to the
first sample (C17).

[0995] In another example of S8002, if the chroma sample
type is equal to 2 or 3 and the virtual boundary is between
C2 and C6 as shown in (c) of FIG. 140, the reconstructed
sample values of second samples (C4, C5, C6, C7 and C8)
are duplicated to the first samples (C9, C10, C11, C12, C13,
Cl14, C15, C16 and C17). Similarly, the reconstructed
sample values of second samples (C5, C6 and C7) are
duplicated to the first samples (CO, C1, C2 and C3).
[0996] In another example of S8002, if the chroma sample
type is equal to 2 or 3 and the virtual boundary is between
C11 and C15 as shown in (d) of FIG. 140, the reconstructed
sample values of second samples (C5, C6 and C7) are
duplicated to the first samples (CO, C1, C2 and C3).
[0997] FIGS. 141, 142, and 143 show examples of
samples which are duplicated in (a) of FIG. 140, (c¢) of FIG.
140, and (d) of FIG. 140, respectively.

[0998] After duplicating, the duplicated samples are used
in the filtering of the reconstructed samples of a first
component.

[0999] FIGS. 144, 145, 146, and 147 are conceptual
diagrams of further examples of non-symmetric padding.
[1000] Inanexample of S8002, if the chroma sample type
is equal to 4 or 5 and the virtual boundary is between CO and
C2 as shown in (a) of FIG. 144, the reconstructed sample
value of a second sample (C2) is duplicated to the first
sample (CO).

[1001] Inanother example of S8002, if the chroma sample
type is equal to 4 or 5 and the virtual boundary is between
C15 and C17 as shown in (b) of FIG. 144, the reconstructed
sample values of second samples (C5, C6 and C7) are
duplicated to the first samples (CO, C1, C2 and C3). Simi-
larly, the reconstructed sample value of a second sample
(C15) is duplicated to the first sample (C17).

[1002] Inanother example of S8002, if the chroma sample
type is equal to 4 or 5 and the virtual boundary is between
C2 and C6 as shown in (c) of FIG. 144, the reconstructed
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sample value of a second sample (C15) is duplicated to the
first sample (C17). Similarly, the reconstructed sample val-
ues of second samples (C5, C6 and C7) are duplicated to the
first samples (CO, C1, C2 and C3).

[1003] Inanother example of S8002, if the chroma sample
type is equal to 4 or 5 and the virtual boundary is between
C11 and C15 as shown in (d) of FIG. 144, the reconstructed
sample values of second samples (C9, C10, C11, C12 and
C13) are duplicated to the first samples (CO, C1, C2, C3, C4,
CS5, C6, C7 and C8).

[1004] FIGS. 145, 146, and 147 show examples of
samples, which are duplicated in (b) of FIG. 144, (c) of FIG.
144, and (d) of FIG. 144, respectively.

[1005] After duplicating, the duplicated samples are used
in the filtering of the reconstructed samples of a first
component.

[1006] FIGS. 148, 149, and 150 are conceptual diagrams
of further examples of symmetric padding.

[1007] Inan example of S8002, if the chroma sample type
is equal to 0, 2 or 4 and the virtual boundary is between C4
and C5 as shown in (a) of FIG. 148, the reconstructed
sample values of second samples (C7 and C12) are dupli-
cated to the first samples (C8 and C13). Similarly, the
reconstructed sample values of second samples (C5 and
C10) are duplicated to the first samples (C4 and C9).
[1008] In another example of S8002, if the chroma sample
type is equal to 0, 2 or 4 and the virtual boundary is between
C7 and C8 as shown in (b) of FIG. 148, the reconstructed
sample values of second samples (C5 and C10) are dupli-
cated to the first samples (C4 and C9). Similarly, the
reconstructed sample values of second samples (C7 and
C12) are duplicated to the first samples (C8 and C13).
[1009] In another example of S8002, if the chroma sample
type is equal to 0, 2 or 4 and the virtual boundary is between
CS5 and C6 as shown in (c) of FIG. 148, the reconstructed
sample values of second samples (C2, C6, C11 and C15) are
duplicated to the first samples (C1, C4, C5, C9, C10 and
C14). Similarly, the reconstructed sample values of second
samples (C2, C6, C11 and C15) are duplicated to the first
samples (C3, C7, C8, C12, C13 and C16).

[1010] Inanother example of S8002, if the chroma sample
type is equal to 0, 2 or 4 and the virtual boundary is between
C6 and C7 as shown in (d) of FIG. 148, the reconstructed
sample values of second samples (C2, C6, C11 and C15) are
duplicated to the first samples (C1, C4, C5, C9, C10 and
C14). Similarly, the reconstructed sample values of second
samples (C2, C6, C11 and C15) are duplicated to the first
samples (C3, C7, C8, C12, C13 and C16).

[1011] FIG. 149 and FIG. 150 show examples of samples
which are duplicated in (a) of FIG. 148 and (c) of FIG. 148,
respectively.

[1012] After duplicating, the duplicated samples are used
in the filtering of the reconstructed samples of a first
component.

[1013] FIGS. 151, 152, 153, 154, and 155 are conceptual
diagrams of further examples of non-symmetric padding.
[1014] Inan example of S8002, if the chroma sample type
is equal to 1, 3 or 5 and the virtual boundary is between C4
and C5 as shown in (a) of FIG. 151(a), the reconstructed
sample values of second samples (C5 and C10) are dupli-
cated to the first samples (C4 and C9).

[1015] Inanother example of S8002, if the chroma sample
type is equal to 1, 3 or 5 and the virtual boundary is between
C7 and C8 as shown in (b) of FIG. 151(4), the reconstructed
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sample values of second samples (C2, C6, C11 and C15) are
duplicated to the first samples (C1, C4, C5, C9, C10 and
C14). Similarly, the reconstructed sample values of second
samples (C7 and C12) are duplicated to the first samples (C8
and C13).

[1016] Inanother example of S8002, if the chroma sample
type is equal to 1, 3 or 5 and the virtual boundary is between
CS5 and C6 as shown in (c) of FIG. 151(c), the reconstructed
sample values of second samples (C7 and C12) are dupli-
cated to the first samples (C8 and C13). Similarly, the
reconstructed sample values of second samples (C2, C6, C11
and C15) are duplicated to the first samples (C1, C4, C5, C9,
C10 and C14).

[1017] FIGS. 152, 153 and 154 show examples of
samples, which are duplicated in (a) of FIG. 151, (b) of FIG.
151, and (c) of FIG. 151, respectively.

[1018] FIG. 155 shows further examples of padding with
a horizontal and vertical virtual boundary.

[1019] After duplicating, the duplicated samples are used
in the filtering of the reconstructed samples of a first
component.

[1020] The present disclosure illustrates padding or dupli-
cating samples used in a filter based on the chroma sample
type and the virtual boundary location in the filter. Such
method of padding or duplicating samples improves picture

quality.
[1021] (Variations)
[1022] The chroma sample type can be replaced with

another information, which indicates the relationship
between the first component and another component differ-
ent from the first component.

[1023] The chroma sample type can be replaced with a
flag, which selects symmetric or non-symmetric padding at
the virtual boundary, where 0 selects symmetric padding and
1 selects non-symmetric padding, or 1 selects symmetric
padding and O selects non-symmetric padding.

[1024] The flag may be signaled from the bitstream or may
be derived.
[1025] A default value of the flag may be symmetric

padding at the virtual boundary.

[1026] A default value of the flag may be non-symmetric
padding at the virtual boundary.

[1027] For example, the flag may be derived based on
other filter’s on/off status. For example, if an ALF filter is on,
the flag may select symmetric padding. If an ALF filter is off,
the flag may select non-symmetric padding.

[1028] As another example, if an ALF filter is on, the flag
may select non-symmetric padding. If an ALF filter is off,
the flag may select symmetric padding.

[1029] Other filters which can be used include LMCS,
SAOQO, DBF, and other post-filters.

[1030] Insome embodiments, the flag may be set based on
a profile.
[1031] The virtual boundary can be replaced with a pic-

ture, slice, brick, tile, or subpicture boundary.

[1032] FIG. 156 is a block diagram illustrating a configu-
ration of an encoder and a decoder according to an example
where symmetric padding is used on virtual boundary loca-
tions for an ALF, and either symmetric or non-symmetric
padding is used on virtual boundary locations for a CC-ALF
based on a chroma sample type and a virtual boundary
location.

[1033] FIG. 157 is a block diagram illustrating a configu-
ration of an encoder and a decoder according to another
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example where symmetric padding is used on virtual bound-
ary locations for an ALF and single-side padding is used on
virtual boundary locations for a CC-ALF.

[1034] FIG. 158 is a conceptual diagram illustrating an
example of single-side padding with either a horizontal or
vertical virtual boundary.

[1035] FIG. 159 is a conceptual diagram illustrating an
example of single-side padding with a horizontal and ver-
tical virtual boundary.

[1036] The input to a CCALF (reconstructed samples of a
first component used for filtering) is not restricted to an SAO
output. The input can be from output of luma mapping with
chroma scaling (LMCS), bilateral/hadamard, or deblocking
filter or any post-filter combinations.

[1037] CCALF may be switched on/off at each block. A
block need not overlap between more than one CTU. Since
ALF may be switched on/off at CTU, CCALF can be
switched on for CTU in which ALF is on.

[1038] One or more of the aspects disclosed herein may be
performed in combination with at least part of the other
aspects in the present disclosure. In addition, one or more of
the aspects disclosed herein may be performed by combin-
ing, with other aspects, part of the processes indicated in any
of the flow charts according to the aspects, part of the
configuration of any of the devices, part of syntaxes, etc.
Aspects described with reference to a constituent element of
an encoder may be performed similarly by a corresponding
constituent element of a decoder.

Implementations and Applications

[1039] As described in each of the above embodiments,
each functional or operational block may typically be real-
ized as an MPU (micro processing unit) and memory, for
example. Moreover, processes performed by each of the
functional blocks may be realized as a program execution
unit, such as a processor which reads and executes software
(a program) recorded on a recording medium such as ROM.
The software may be distributed. The software may be
recorded on a variety of recording media such as semicon-
ductor memory. Note that each functional block can also be
realized as hardware (dedicated circuit). Various combina-
tions of hardware and software may be employed.

[1040] The processing described in each of the embodi-
ments may be realized via integrated processing using a
single apparatus (system), and, alternatively, may be real-
ized via decentralized processing using a plurality of appa-
ratuses. Moreover, the processor that executes the above-
described program may be a single processor or a plurality
of processors. In other words, integrated processing may be
performed, and, alternatively, decentralized processing may
be performed.

[1041] Embodiments of the present disclosure are not
limited to the above exemplary embodiments; various modi-
fications may be made to the exemplary embodiments, the
results of which are also included within the scope of the
embodiments of the present disclosure.

[1042] Next, application examples of the moving picture
encoding method (image encoding method) and the moving
picture decoding method (image decoding method)
described in each of the above embodiments will be
described, as well as various systems that implement the
application examples. Such a system may be characterized
as including an image encoder that employs the image
encoding method, an image decoder that employs the image
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decoding method, or an image encoder-decoder that
includes both the image encoder and the image decoder.
Other configurations of such a system may be modified on
a case-by-case basis.

USAGE EXAMPLES

[1043] FIG. 160 illustrates an overall configuration of
content providing system ex100 suitable for implementing a
content distribution service. The area in which the commu-
nication service is provided is divided into cells of desired
sizes, and base stations ex106, ex107, ex108, ex109, and
ex110, which are fixed wireless stations in the illustrated
example, are located in respective cells.

[1044] In content providing system ex100, devices includ-
ing computer ex111, gaming device ex112, camera ex113,
home appliance ex114, and smartphone ex115 are connected
to internet ex101 via internet service provider ex102 or
communications network ex104 and base stations ex106
through ex110. Content providing system ex100 may com-
bine and connect any combination of the above devices. In
various implementations, the devices may be directly or
indirectly connected together via a telephone network or
near field communication, rather than via base stations
ex106 through ex110. Further, streaming server ex103 may
be connected to devices including computer ex111, gaming
device ex112, camera ex113, home appliance ex114, and
smartphone ex115 via, for example, internet ex101. Stream-
ing server ex103 may also be connected to, for example, a
terminal in a hotspot in airplane ex117 via satellite ex116.
[1045] Note that instead of base stations ex106 through
ex110, wireless access points or hotspots may be used.
Streaming server ex103 may be connected to communica-
tions network ex104 directly instead of via internet ex101 or
internet service provider ex102, and may be connected to
airplane ex117 directly instead of via satellite ex116.
[1046] Camera ex113 may be a device capable of captur-
ing still images and video, such as a digital camera. Smart-
phone ex115 may be a smartphone device, cellular phone, or
personal handy-phone system (PHS) phone that can operate
under the mobile communications system standards of the
2G, 3G, 3.9G, and 4G systems, as well as the next-genera-
tion 5G system.

[1047] Home appliance ex114 is, for example, a refrigera-
tor or a device included in a home fuel cell cogeneration
system.

[1048] In content providing system ex100, a terminal
including an image and/or video capturing function is
capable of, for example, live streaming by connecting to
streaming server ex103 via, for example, base station ex106.
When live streaming, a terminal (e.g., computer ex111,
gaming device ex112, camera ex113, home appliance ex114,
smartphone ex115, or a terminal in airplane ex117) may
perform the encoding processing described in the above
embodiments on still-image or video content captured by a
user via the terminal, may multiplex video data obtained via
the encoding and audio data obtained by encoding audio
corresponding to the video, and may transmit the obtained
data to streaming server ex103. In other words, the terminal
functions as the image encoder according to one aspect of
the present disclosure.

[1049] Streaming server ex103 streams transmitted con-
tent data to clients that request the stream. Client examples
include computer ex111, gaming device ex112, camera
ex113, home appliance ex114, smartphone ex115, and ter-
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minals inside airplane ex117, which are capable of decoding
the above-described encoded data. Devices that receive the
streamed data may decode and reproduce the received data.
In other words, the devices may each function as the image
decoder, according to one aspect of the present disclosure.
[1050] (Decentralized Processing)

[1051] Streaming server ex103 may be realized as a plu-
rality of servers or computers between which tasks such as
the processing, recording, and streaming of data are divided.
For example, streaming server ex103 may be realized as a
content delivery network (CDN) that streams content via a
network connecting multiple edge servers located through-
out the world. In a CDN, an edge server physically near the
client may be dynamically assigned to the client. Content is
cached and streamed to the edge server to reduce load times.
In the event of, for example, some type of error or change
in connectivity due, for example, to a spike in traffic, it is
possible to stream data stably at high speeds, since it is
possible to avoid affected parts of the network by, for
example, dividing the processing between a plurality of edge
servers, or switching the streaming duties to a different edge
server and continuing streaming.

[1052] Decentralization is not limited to just the division
of processing for streaming; the encoding of the captured
data may be divided between and performed by the termi-
nals, on the server side, or both. In one example, in typical
encoding, the processing is performed in two loops. The first
loop is for detecting how complicated the image is on a
frame-by-frame or scene-by-scene basis, or detecting the
encoding load. The second loop is for processing that
maintains image quality and improves encoding efficiency.
For example, it is possible to reduce the processing load of
the terminals and improve the quality and encoding effi-
ciency of the content by having the terminals perform the
first loop of the encoding and having the server side that
received the content perform the second loop of the encod-
ing. In such a case, upon receipt of a decoding request, it is
possible for the encoded data resulting from the first loop
performed by one terminal to be received and reproduced on
another terminal in approximately real time. This makes it
possible to realize smooth, real-time streaming.

[1053] In another example, camera ex113 or the like
extracts a feature amount (an amount of features or charac-
teristics) from an image, compresses data related to the
feature amount as metadata, and transmits the compressed
metadata to a server. For example, the server determines the
significance of an object based on the feature amount, and
changes the quantization accuracy accordingly to perform
compression suitable for the meaning (or content signifi-
cance) of the image. Feature amount data is particularly
effective in improving the precision and efficiency of motion
vector prediction during the second compression pass per-
formed by the server. Moreover, encoding that has a rela-
tively low processing load, such as variable length coding
(VLC), may be handled by the terminal, and encoding that
has a relatively high processing load, such as context-
adaptive binary arithmetic coding (CABAC), may be
handled by the server.

[1054] In yet another example, there are instances in
which a plurality of videos of approximately the same scene
are captured by a plurality of terminals in, for example, a
stadium, shopping mall, or factory. In such a case, for
example, the encoding may be decentralized by dividing
processing tasks between the plurality of terminals that
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captured the videos and, if necessary, other terminals that did
not capture the videos, and the server, on a per-unit basis.
The units may be, for example, groups of pictures (GOP),
pictures, or tiles resulting from dividing a picture. This
makes it possible to reduce load times and achieve streaming
that is closer to real time.

[1055] Since the videos are of approximately the same
scene, management and/or instructions may be carried out
by the server so that the videos captured by the terminals can
be cross-referenced. Moreover, the server may receive
encoded data from the terminals, change the reference
relationship between items of data, or correct or replace
pictures themselves, and then perform the encoding. This
makes it possible to generate a stream with increased quality
and efficiency for the individual items of data.

[1056] Furthermore, the server may stream video data
after performing transcoding to convert the encoding format
of the video data. For example, the server may convert the
encoding format from MPEG to VP (e.g., VP9), may convert
H.264 to H.265, etc.

[1057] In this way, encoding can be performed by a
terminal or one or more servers. Accordingly, although the
device that performs the encoding is referred to as a “server”
or “terminal” in the following description, some or all of the
processes performed by the server may be performed by the
terminal, and likewise some or all of the processes per-
formed by the terminal may be performed by the server. This
also applies to decoding processes.

[1058] (3D, Multi-Angle)

[1059] There has been an increase in usage of images or
videos combined from images or videos of different scenes
concurrently captured, or of the same scene captured from
different angles, by a plurality of terminals such as camera
ex113 and/or smartphone ex115. Videos captured by the
terminals may be combined based on, for example, the
separately obtained relative positional relationship between
the terminals, or regions in a video having matching feature
points.

[1060] In addition to the encoding of two-dimensional
moving pictures, the server may encode a still image based
on scene analysis of a moving picture, for example auto-
matically or at a point in time specified by the user, and
transmit the encoded still image to a reception terminal.
Furthermore, when the server can obtain the relative posi-
tional relationship between the video capturing terminals, in
addition to two-dimensional moving pictures, the server can
generate three-dimensional geometry of a scene based on
video of the same scene captured from different angles. The
server may separately encode three-dimensional data gen-
erated from, for example, a point cloud and, based on a result
of recognizing or tracking a person or object using three-
dimensional data, may select or reconstruct and generate a
video to be transmitted to a reception terminal, from videos
captured by a plurality of terminals.

[1061] This allows the user to enjoy a scene by freely
selecting videos corresponding to the video capturing ter-
minals, and allows the user to enjoy the content obtained by
extracting a video at a selected viewpoint from three-
dimensional data reconstructed from a plurality of images or
videos. Furthermore, as with video, sound may be recorded
from relatively different angles, and the server may multi-
plex audio from a specific angle or space with the corre-
sponding video, and transmit the multiplexed video and
audio.
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[1062] In recent years, content that is a composite of the
real world and a virtual world, such as virtual reality (VR)
and augmented reality (AR) content, has also become popu-
lar. In the case of VR images, the server may create images
from the viewpoints of both the left and right eyes, and
perform encoding that tolerates reference between the two
viewpoint images, such as multi-view coding (MVC), and,
alternatively, may encode the images as separate streams
without referencing. When the images are decoded as sepa-
rate streams, the streams may be synchronized when repro-
duced, so as to recreate a virtual three-dimensional space in
accordance with the viewpoint of the user.

[1063] In the case of AR images, the server may super-
impose virtual object information existing in a virtual space
onto camera information representing a real-world space, for
example based on a three-dimensional position or movement
from the perspective of the user. The decoder may obtain or
store virtual object information and three-dimensional data,
generate two-dimensional images based on movement from
the perspective of the user, and then generate superimposed
data by seamlessly connecting the images. Alternatively, the
decoder may transmit, to the server, motion from the per-
spective of the user in addition to a request for virtual object
information. The server may generate superimposed data
based on three-dimensional data stored in the server in
accordance with the received motion, and encode and stream
the generated superimposed data to the decoder. Note that
superimposed data typically includes, in addition to RGB
values, an a value indicating transparency, and the server
sets the a value for sections other than the object generated
from three-dimensional data to, for example, 0, and may
perform the encoding while those sections are transparent.
Alternatively, the server may set the background to a deter-
mined RGB value, such as a chroma key, and generate data
in which areas other than the object are set as the back-
ground. The determined RGB value may be predetermined.

[1064] Decoding of similarly streamed data may be per-
formed by the client (e.g., the terminals), on the server side,
or be divided therebetween. In one example, one terminal
may transmit a reception request to a server, the requested
content may be received and decoded by another terminal,
and a decoded signal may be transmitted to a device having
a display. It is possible to reproduce high image quality data
by decentralizing processing and appropriately selecting
content regardless of the processing ability of the commu-
nications terminal itself. In yet another example, while a TV,
for example, is receiving image data that is large in size, a
region of a picture, such as a tile obtained by dividing the
picture, may be decoded and displayed on a personal ter-
minal or terminals of a viewer or viewers of the TV. This
makes it possible for the viewers to share a big-picture view
as well as for each viewer to check his or her assigned area,
or inspect a region in further detail up close.

[1065] In situations in which a plurality of wireless con-
nections are possible over near, mid, and far distances,
indoors or outdoors, it may be possible to seamlessly receive
content using a streaming system standard such as MPEG
Dynamic Adaptive Streaming over HTTP (MPEG-DASH).
The user may switch between data in real time while freely
selecting a decoder or display apparatus including the user’s
terminal, displays arranged indoors or outdoors, etc. More-
over, using, for example, information on the position of the
user, decoding can be performed while switching which
terminal handles decoding and which terminal handles the
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displaying of content. This makes it possible to map and
display information, while the user is on the move in route
to a destination, on the wall of a nearby building in which
a device capable of displaying content is embedded, or on
part of the ground. Moreover, it is also possible to switch the
bit rate of the received data based on the accessibility to the
encoded data on a network, such as when encoded data is
cached on a server quickly accessible from the reception
terminal, or when encoded data is copied to an edge server
in a content delivery service.

[1066] (Web Page Optimization)

[1067] FIG. 161 illustrates an example of a display screen
of a web page on computer ex111, for example. FIG. 162
illustrates an example of a display screen of a web page on
smartphone ex115, for example. As illustrated in FIG. 161
and FIG. 162, a web page may include a plurality of image
links that are links to image content, and the appearance of
the web page may differ depending on the device used to
view the web page. When a plurality of image links are
viewable on the screen, until the user explicitly selects an
image link, or until the image link is in the approximate
center of the screen or the entire image link fits in the screen,
the display apparatus (decoder) may display, as the image
links, still images included in the content or I pictures; may
display video such as an animated gif using a plurality of
still images or [ pictures; or may receive only the base layer,
and decode and display the video.

[1068] When an image link is selected by the user, the
display apparatus performs decoding while, for example,
giving the highest priority to the base layer. Note that if there
is information in the Hyper Text Markup Language (HTML)
code of the web page indicating that the content is scalable,
the display apparatus may decode up to the enhancement
layer. Further, in order to facilitate real-time reproduction,
before a selection is made or when the bandwidth is severely
limited, the display apparatus can reduce delay between the
point in time at which the leading picture is decoded and the
point in time at which the decoded picture is displayed (that
is, the delay between the start of the decoding of the content
to the displaying of the content) by decoding and displaying
only forward reference pictures (I picture, P picture, forward
reference B picture). Still further, the display apparatus may
purposely ignore the reference relationship between pic-
tures, and coarsely decode all B and P pictures as forward
reference pictures, and then perform normal decoding as the
number of pictures received over time increases.

[1069] (Autonomous Driving)

[1070] When transmitting and receiving still image or
video data such as two- or three-dimensional map informa-
tion for autonomous driving or assisted driving of an auto-
mobile, the reception terminal may receive, in addition to
image data belonging to one or more layers, information on,
for example, the weather or road construction as metadata,
and associate the metadata with the image data upon decod-
ing. Note that metadata may be assigned per layer and,
alternatively, may simply be multiplexed with the image
data.

[1071] In such a case, since the automobile, drone, air-
plane, etc., containing the reception terminal is mobile, the
reception terminal may seamlessly receive and perform
decoding while switching between base stations among base
stations ex106 through ex110 by transmitting information
indicating the position of the reception terminal. Moreover,
in accordance with the selection made by the user, the
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situation of the user, and/or the bandwidth of the connection,
the reception terminal may dynamically select to what extent
the metadata is received, or to what extent the map infor-
mation, for example, is updated.

[1072] In content providing system ex100, the client may
receive, decode, and reproduce, in real time, encoded infor-
mation transmitted by the user.

[1073] (Streaming of Individual Content)

[1074] In content providing system ex100, in addition to
high image quality, long content distributed by a video
distribution entity, unicast or multicast streaming of low
image quality, and short content from an individual are also
possible. Such content from individuals is likely to further
increase in popularity. The server may first perform editing
processing on the content before the encoding processing, in
order to refine the individual content. This may be achieved
using the following configuration, for example.

[1075] In real time while capturing video or image con-
tent, or after the content has been captured and accumulated,
the server performs recognition processing based on the raw
data or encoded data, such as capture error processing, scene
search processing, meaning analysis, and/or object detection
processing. Then, based on the result of the recognition
processing, the server—for example when prompted or
automatically—edits the content, examples of which
include: correction such as focus and/or motion blur correc-
tion; removing low-priority scenes such as scenes that are
low in brightness compared to other pictures, or out of focus;
object edge adjustment; and color tone adjustment. The
server encodes the edited data based on the result of the
editing. It is known that excessively long videos tend to
receive fewer views. Accordingly, in order to keep the
content within a specific length that scales with the length of
the original video, the server may, in addition to the low-
priority scenes described above, automatically clip out
scenes with low movement, based on an image processing
result. Alternatively, the server may generate and encode a
video digest based on a result of an analysis of the meaning
of a scene.

[1076] There may be instances in which individual content
may include content that infringes a copyright, moral right,
portrait rights, etc. Such instance may lead to an unfavorable
situation for the creator, such as when content is shared
beyond the scope intended by the creator. Accordingly,
before encoding, the server may, for example, edit images so
as to blur faces of people in the periphery of the screen or
blur the inside of a house, for example. Further, the server
may be configured to recognize the faces of people other
than a registered person in images to be encoded, and when
such faces appear in an image, may apply a mosaic filter, for
example, to the face of the person. Alternatively, as pre- or
post-processing for encoding, the user may specify, for
copyright reasons, a region of an image including a person
or a region of the background to be processed. The server
may process the specified region by, for example, replacing
the region with a different image, or blurring the region. If
the region includes a person, the person may be tracked in
the moving picture, and the person’s head region may be
replaced with another image as the person moves.

[1077] Since there is a demand for real-time viewing of
content produced by individuals, which tends to be small in
data size, the decoder may first receive the base layer as the
highest priority, and perform decoding and reproduction,
although this may differ depending on bandwidth. When the
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content is reproduced two or more times, such as when the
decoder receives the enhancement layer during decoding
and reproduction of the base layer, and loops the reproduc-
tion, the decoder may reproduce a high image quality video
including the enhancement layer. If the stream is encoded
using such scalable encoding, the video may be low quality
when in an unselected state or at the start of the video, but
it can offer an experience in which the image quality of the
stream progressively increases in an intelligent manner. This
is not limited to just scalable encoding; the same experience
can be offered by configuring a single stream from a low
quality stream reproduced for the first time and a second
stream encoded using the first stream as a reference.

OTHER IMPLEMENTATION AND
APPLICATION EXAMPLES

[1078] The encoding and decoding may be performed by
LSI (large scale integration circuitry) ex500 (see FIG. 160),
which is typically included in each terminal. LSI ex500 may
be configured from a single chip or a plurality of chips.
Software for encoding and decoding moving pictures may
be integrated into some type of a recording medium (such as
a CD-ROM, a flexible disk, or a hard disk) that is readable
by, for example, computer ex111, and the encoding and
decoding may be performed using the software. Further-
more, when smartphone ex115 is equipped with a camera,
the video data obtained by the camera may be transmitted.
In this case, the video data may be coded by LSI ex500
included in smartphone ex115.

[1079] Note that LSI ex500 may be configured to down-
load and activate an application. In such a case, the terminal
first determines whether it is compatible with the scheme
used to encode the content, or whether it is capable of
executing a specific service. When the terminal is not
compatible with the encoding scheme of the content, or
when the terminal is not capable of executing a specific
service, the terminal may first download a codec or appli-
cation software and then obtain and reproduce the content.
[1080] Aside from the example of content providing sys-
tem ex100 that uses internet ex101, at least the moving
picture encoder (image encoder) or the moving picture
decoder (image decoder) described in the above embodi-
ments may be implemented in a digital broadcasting system.
The same encoding processing and decoding processing
may be applied to transmit and receive broadcast radio
waves superimposed with multiplexed audio and video data
using, for example, a satellite, even though this is geared
toward multicast, whereas unicast is easier with content
providing system ex100.

[1081] (Hardware Configuration)

[1082] FIG. 163 illustrates further details of an example
smartphone ex115 shown in FIG. 160. FIG. 164 illustrates a
configuration example of a smartphone ex115. Smartphone
ex115 includes antenna ex450 for transmitting and receiving
radio waves to and from base station ex110, camera ex465
capable of capturing video and still images, and display
ex458 that displays decoded data, such as video captured by
camera ex465 and video received by antenna ex450. Smart-
phone ex115 further includes user interface ex466 such as a
touch panel; audio output unit ex457 such as a speaker for
outputting speech or other audio; audio input unit ex456
such as a microphone for audio input; memory ex467
capable of storing decoded data such as captured video or
still images, recorded audio, received video or still images,
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and mail, as well as decoded data; and slot ex464 which is
an interface for Subscriber Identity Module (SIM) ex468 for
authorizing access to a network and various data. Note that
external memory may be used instead of or in addition to
memory ex467.

[1083] Main controller ex460, which may comprehen-
sively control display ex458 and user interface ex466, power
supply circuit ex461, user interface input controller ex462,
video signal processor ex455, camera interface ex463, dis-
play controller ex459, modulator/demodulator ex452, mul-
tiplexer/demultiplexer ex453, audio signal processor ex454,
slot ex464, and memory ex467 are connected via bus ex470.
[1084] When the user turns on the power button of power
supply circuit ex461, smartphone ex115 is powered on into
an operable state, and each component is supplied with
power, for example, from a battery pack.

[1085] Smartphone ex115 performs processing for, for
example, calling and data transmission, based on control
performed by main controller ex460, which includes a CPU,
ROM, and RAM. When making calls, an audio signal
recorded by audio input unit ex456 is converted into a digital
audio signal by audio signal processor ex454, to which
spread spectrum processing is applied by modulator/de-
modulator ex452 and digital-analog conversion, and fre-
quency conversion processing is applied by transmitter/
receiver ex451, and the resulting signal is transmitted via
antenna ex450. The received data is amplified, frequency
converted, and analog-digital converted, inverse spread
spectrum processed by modulator/demodulator ex452, con-
verted into an analog audio signal by audio signal processor
ex454, and then output from audio output unit ex457.
[1086] In data transmission mode, text, still-image, or
video data may be transmitted under control of main con-
troller ex460 via user interface input controller ex462 based
on operation of user interface ex466 of the main body, for
example. Similar transmission and reception processing is
performed. In data transmission mode, when sending a
video, still image, or video and audio, video signal processor
ex455 compression encodes, via the moving picture encod-
ing method described in the above embodiments, a video
signal stored in memory ex467 or a video signal input from
camera ex465, and transmits the encoded video data to
multiplexer/demultiplexer ex453. Audio signal processor
ex454 encodes an audio signal recorded by audio input unit
ex456 while camera ex465 is capturing a video or still
image, and transmits the encoded audio data to multiplexer/
demultiplexer ex453. Multiplexer/demultiplexer ex453 mul-
tiplexes the encoded video data and encoded audio data
using a determined scheme, modulates and converts the data
using modulator/demodulator (modulator/demodulator cir-
cuit) ex452 and transmitter/receiver ex451, and transmits the
result via antenna ex450. The determined scheme may be
predetermined.

[1087] When video appended in an email or a chat, or a
video linked from a web page, is received, for example, in
order to decode the multiplexed data received via antenna
ex450, multiplexer/demultiplexer ex453 demultiplexes the
multiplexed data to divide the multiplexed data into a
bitstream of video data and a bitstream of audio data,
supplies the encoded video data to video signal processor
ex455 via synchronous bus ex470, and supplies the encoded
audio data to audio signal processor ex454 via synchronous
bus ex470. Video signal processor ex455 decodes the video
signal using a moving picture decoding method correspond-
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ing to the moving picture encoding method described in the
above embodiments, and video or a still image included in
the linked moving picture file is displayed on display ex458
via display controller ex459. Audio signal processor ex454
decodes the audio signal and outputs audio from audio
output unit ex457. Since real-time streaming is becoming
increasingly popular, there may be instances in which repro-
duction of the audio may be socially inappropriate, depend-
ing on the user’s environment. Accordingly, as an initial
value, a configuration in which only video data is repro-
duced, e.g., the audio signal is not reproduced, may be
preferable; audio may be synchronized and reproduced only
when an input, such as when the user clicks video data, is
received.
[1088] Although smartphone ex115 was used in the above
example, other implementations are conceivable: a trans-
ceiver terminal including both an encoder and a decoder; a
transmitter terminal including only an encoder; and a
receiver terminal including only a decoder. In the descrip-
tion of the digital broadcasting system, an example is given
in which multiplexed data obtained as a result of video data
being multiplexed with audio data is received or transmitted.
The multiplexed data, however, may be video data multi-
plexed with data other than audio data, such as text data
related to the video. Further, the video data itself rather than
multiplexed data may be received or transmitted.
[1089] Although main controller ex460 including a CPU
is described as controlling the encoding or decoding pro-
cesses, various terminals often include graphics processing
units (GPUs). Accordingly, a configuration is acceptable in
which a large area is processed at once by making use of the
performance ability of the GPU via memory shared by the
CPU and GPU, or memory including an address that is
managed so as to allow common usage by the CPU and
GPU, or via separate memories. This makes it possible to
shorten encoding time, maintain the real-time nature of the
stream, and reduce delay. In particular, processing relating to
motion estimation, deblocking filtering, sample adaptive
offset (SAO), and transformation/quantization can be effec-
tively carried out by the GPU instead of the CPU in units of
pictures, for example, all at once.
1. An encoder, comprising:
circuitry; and
memory coupled to the circuitry;
wherein the circuitry, in operation:
in response to a first reconstructed image sample being
located outside a virtual boundary, duplicates a
reconstructed sample located inside and adjacent to
the virtual boundary to generate the first recon-
structed image sample;
generates a first coefficient value by applying a CCALF
(cross component adaptive loop filtering) process to
the first reconstructed image sample of a luma com-
ponent;
generates a second coefficient value by applying an
ALF (adaptive loop filtering) process to a second
reconstructed image sample of a chroma component;
generates a third coefficient value by adding the first
coeflicient value to the second coefficient value; and
encodes a third reconstructed image sample of the
chroma component using the third coeficient value.
2. The encoder of claim 1, wherein, the first reconstructed
image sample is located adjacent to the second reconstructed
image sample.
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3. The encoder of claim 1, wherein the circuitry, in
operation, sets the first coefficient value to zero in response
to the first coefficient value being less than 64.

4. A decoder, comprising:

circuitry; and

memory coupled to the circuitry;

wherein the circuitry, in operation:

in response to a first reconstructed image sample being

located outside a virtual boundary, duplicates a recon-
structed sample located inside and adjacent to the
virtual boundary to generate the first reconstructed
image sample;

generates a first coefficient value by applying a CCALF

(cross component adaptive loop filtering) process to the
first reconstructed image sample of a luma component;
generates a second coefficient value by applying an ALF
(adaptive loop filtering) process to a second recon-
structed image sample of a chroma component;
generates a third coefficient value by adding the first
coeflicient value to the second coefficient value; and
decodes a third reconstructed image sample of the chroma
component using the third coefficient value.

5. The decoder of claim 4, wherein, the first reconstructed
image sample is located adjacent to the second reconstructed
image sample.

6. The decoder of claim 4, wherein the circuitry, in
operation, sets the first coefficient value to zero in response
to the first coefficient value being less than 64.

7. An encoding method, comprising:

in response to a first reconstructed image sample being

located outside a virtual boundary, duplicating a recon-
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structed sample located inside and adjacent to the
virtual boundary to generate the first reconstructed
image sample;
generating a first coefficient value by applying a CCALF
(cross component adaptive loop filtering) process to the
first reconstructed image sample of a luma component;
generating a second coefficient value by applying an ALF
(adaptive loop filtering) process to a second recon-
structed image sample of a chroma component;
generating a third coefficient value by adding the first
coeflicient value to the second coefficient value; and
encoding a third reconstructed image sample of the
chroma component using the third coefficient value.
8. A decoding method, comprising:
in response to a first reconstructed image sample being
located outside a virtual boundary, duplicating a recon-
structed sample located inside and adjacent to the
virtual boundary to generate the first reconstructed
image sample;
generating a first coefficient value by applying a CCALF
(cross component adaptive loop filtering) process to the
first reconstructed image sample of a luma component;
generating a second coefficient value by applying an ALF
(adaptive loop filtering) process to a second recon-
structed image sample of a chroma component;
generating a third coefficient value by adding the first
coeflicient value to the second coefficient value; and
decoding a third reconstructed image sample of the
chroma component using the third coefficient value.
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