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€n) ABSTRACT

Systems, devices, and methods including selecting one or
more sequences of machining types for a feature of one or
more features, where the selection of the one or more
sequences of machining types is based on the feature and a
database of prior selections of machining types; selecting
one or more tools for the selected one or more sequences
of machining types, where the selection of the one or more
tools is based on the feature, the selected one or more
sequences of machining types, and a database of prior selec-
tions of one or more tools; and selecting one or more
machining parameters for the selected one or more tools,
where the selected machining parameters are based on the
feature, the selected one or more sequences of machining
types, the selected one or more tools, and a database of
prior selections of one or more machining parameters.
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SYSTEMS AND METHODS FOR
AUTOMATED PREDICTION OF
MACHINING WORKFLOW IN COMPUTER
AIDED MANUFACTURING

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation of U.S. Non-Pro-
visional Pat. Application No. 17/191,386, filed Mar. 3, 2021,
which claims priority to and the benefit of U.S. Provisional
Pat. Application No. 62/984,755, filed Mar. 3, 2020, the
contents of all of which are hereby incorporated by refer-
ence herein for all purposes.

TECHNICAL FIELD

[0002] Embodiments relate generally to machining pro-
cesses in manufacturing, and more particularly to automated
prediction of a customized programming workflow for man-
ufacturing machinery in a computer aided manufacturing
(CAM) environment based on a user’s habits, environment,
and skill set.

BACKGROUND

[0003] Computer aided manufacturing (CAM) software
systems are used to program computer numerical control
(CNC) machine tools that are used in machine shops for
the production of discrete parts, such as molds, dies, tools,
prototypes, aerospace components and more.

[0004] CNC machine tools run a machining program that
executes a series of instructions that are steps for the manu-
facturing of a part. These CNC machine tools execute a
machining program with no knowledge of the context.
Execution of the program is user dependent and may have
at each point of the process one of several possible varia-
tions or options. Accordingly, multiple permutations and/or
combinations may be formed at teach step based on pre-
viously selected options and features of the machine.

SUMMARY

[0005] A method embodiment may include: selecting one
or more sequences of machining types for a feature of one or
more features, where the selection of the one or more
sequences of machining types may be based on the feature
and a database of prior selections of machining types; select-
ing one or more tools associated with the selected one or
more sequences of machining types, where the selection of
the one or more tools may be based on the feature, the
selected one or more sequences of machining types, and a
database of prior selections of one or more tools; determin-
ing one or more machining parameters for the selected one
or more tools, where the determined machining parameters
are based on the feature, the selected one or more sequences
of machining types, the selected one or more tools, and a
database of prior determinations of one or more machining
parameters; and determining a machining workflow predic-
tion in a computer aided manufacturing (CAM) environ-
ment based on the selected one or more sequences of
machining types, the selected one or more tools, and deter-
mined one or more machining parameters.

[0006] In additional method embodiments, the determined
one or more machining parameters comprise at least one of:
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speed, feed rate, and motion pattern. Additional method
embodiments may include: determining more accurate
machining workflow prediction in comparison to a set of
previous predictions based on the execution of more models.
Additional method embodiments may include: assigning a
weight to a previous prediction of the set of previous
predictions.

[0007] Additional method embodiments may include:
determining a set of user preferences; and associating the
determined set of user preferences with machining tools.
In additional method embodiments, determining a machin-
ing workflow prediction may be based on determining
energy-efficient toolpath having least number of move-
ments, cutting operations, and cutting time, thereby redu-
cing unneeded movements and cycle time combined with
shortened tool lengths. In additional method embodiments,
the database comprises historical data collected over a per-
iod of time.

[0008] In additional method embodiments, selecting one
or more sequences of machining types may be further
based on a user’s history of machining a pocket for the
machine tool. In additional method embodiments, the deter-
mined machining workflow prediction comprises predicted
parameters for a tool; where the predicted parameters for a
tool include at least one of: a tool style, a tool diameter, a
cutting length, a shank diameter, and a tool radius. In addi-
tional method embodiments, the determined machining
workflow prediction may be transmitted to a user interface
at the Computer aided manufacturing (CAM) used to pro-
gram computer numerical control (CNC) machine for
implementation by a user.

[0009] A system embodiment may include: an Operation
Sequence Classifier Component having a processor and
addressable memory, where the Operation Sequence Classi-
fier Component may be configured to select one or more
sequences of operations for each feature of one or more fea-
tures; a Tool Parameters Predictor Component having a pro-
cessor and addressable memory, where the Tool Parameters
Predictor Component may be configured to: receive the
selected one or more sequences of operations, each feature
of the one or more features, and one or more prior tool para-
meters; and select one or more tool parameters based on the
received selected one or more sequences of operations, each
feature of the one or more features, and the one or more
prior tool parameters;, an Operation Parameter Predictor
Component having a processor and addressable memory,
where the Operation Parameter Predictor Component may
be configured to: receive the selected one or more sequences
of operations, the one or more prior tool parameters, each
feature of the one or more features, the one or more prior
tool parameters, and the selected one or more tool para-
meters; and determine one or more operation parameters
based on the received selected one or more sequences of
operations, the one or more prior tool parameters, each fea-
ture of the one or more features, the one or more prior tool
parameters, and the selected one or more tool parameters.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] The components in the figures are not necessarily
to scale, emphasis instead being placed upon illustrating the
principals of the invention. Like reference numerals desig-
nate corresponding parts throughout the different views.
Embodiments are illustrated by way of example and not lim-
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itation in the figures of the accompanying drawings, in
which:

[0011] FIG. 1 depicts a top-level functional block diagram
of a computing device system in a computer aided manufac-
turing (CAM) environment;

[0012] FIG. 2 depicts an example workflow for learning of
a user decision making process for machining a feature in
the CAM environment of FIG. 1;

[0013] FIG. 3 depicts an example of a combination of
choices presented to a user for selection associated with
the user workflow of FIG. 2;

[0014] FIG. 4 depicts a flow diagram for predicting tool
parameters and operation parameters based on a given
input geometry feature;

[0015] FIG. 5 depicts a flow diagram of models to predict
and output a tool parameter;

[0016] FIG. 6 depicts a workflow of the system for provid-
ing automatic recommendation to a user in a CAM
environment;

[0017] FIG. 7 depicts a workflow of the system for provid-
ing automatic recommendation to a user in a CAM environ-
ment based on a given feature;

[0018] FIG. 8 depicts results of the accuracy of the system
for distinct users;

[0019] FIG. 9 shows a high-level block diagram and pro-
cess of a computing system for implementing an embodi-
ment of the system and process;

[0020] FIG. 10 shows a block diagram and process of an
exemplary system in which an embodiment may be imple-
mented; and

[0021] FIG. 11 depicts a cloud computing environment for
implementing an embodiment of the system and process dis-
closed herein.

DETAILED DESCRIPTION

[0022] The described technology concerns one or more
methods, systems, apparatuses, and mediums storing pro-
cessor-executable process steps of automatic recommenda-
tion of an efficient programming workflow of machining for
a user for manufacturing machinery in a computer aided
manufacturing (CAM) environment. CAM software sys-
tems may be used to program computer numerical control
(CNC) machine tools. The CNC machine tools may be used
in machine shops for the production of discrete parts such as
molds, dies, tools, prototypes, aerospace components and
more. The techniques introduced below may be implemen-
ted by programmable circuitry programmed or configured
by software and/or firmware, or entirely by special-purpose
circuitry, or in a combination of such forms. Such special-
purpose circuitry (if any) can be in the form of, for example,
one or more application-specific integrated circuits (ASICs),
programmable logic devices (PLDs), field-programmable
gate arrays (FPGAs), etc.

[0023] FIGS. 1-11 and the following discussion provide a
brief, general description of a suitable computing environ-
ment in which aspects of the described technology may be
implemented. Although not required, aspects of the technol-
ogy may be described herein in the general context of com-
puter-executable instructions, such as routines executed by a
general- or special-purpose data processing device (e.g., a
server or client computer). Aspects of the technology
described herein may be stored or distributed on tangible
computer-readable media, including magnetically or opti-
cally readable computer discs, hard-wired or prepro-
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grammed chips (e.g., EEPROM semiconductor chips),
nanotechnology memory, biological memory, or other data
storage media. Alternatively, computer-implemented
instructions, data structures, screen displays, and other data
related to the technology may be distributed over the Inter-
net or over other networks (including wireless networks) on
a propagated signal on a propagation medium (e.g., an elec-
tromagnetic wave, a sound wave, etc.) over a period of time.
In some implementations, the data may be provided on any
analog or digital network (e.g., packet-switched, circuit-
switched, or other scheme).

[0024] The described technology may also be practiced in
distributed computing environments where tasks or modules
are performed by remote processing devices, which are
linked through a communications network, such as a Local
Area Network (“LAN”), Wide Area Network (“WAN”), or
the Internet. In a distributed computing environment, pro-
gram modules or subroutines may be located in both local
and remote memory storage devices. Those skilled in the
relevant art will recognize that portions of the described
technology may reside on a server computer, while corre-
sponding portions may reside on a client computer (e.g.,
PC, mobile computer, tablet, or smart phone). Data struc-
tures and transmission of data particular to aspects of the
technology are also encompassed within the scope of the
described technology.

[0025] With respect to FIG. 1, an example of a top-level
functional block diagram of a computing device system 100
is illustrated. The system 100 is shown as a computing
device 120 comprising a processor 124, such as a central
processing unit (CPU), addressable memory 127, an exter-
nal device interface 126, e.g., an optional universal serial
bus port and related processing, and/or an Ethernet port
and related processing, and an optional user interface 129,
e.g., an array of status lights and one or more toggle
switches, and/or a display, and/or a keyboard and/or a poin-
ter-mouse system and/or a touch screen. Optionally, the
addressable memory may include any type of computer-
readable media that can store data accessible by the comput-
ing device 120, such as magnetic hard and floppy disk
drives, optical disk drives, magnetic cassettes, tape drives,
flash memory cards, digital video disks (DVDs), Bernoulli
cartridges, RAMs, ROMs, smart cards, etc. Indeed, any
medium for storing or transmitting computer-readable
instructions and data may be employed, including a connec-
tion port to or node on a network, such as a LAN, WAN, or
the Internet. These elements may be in communication with
one another via a data bus 128.

[0026] In some embodiments, via an operating system 125
such as one supporting a web browser 123 and applications
122, the processor 124 may be configured to execute steps
of a process for of automatic recommendation of the most
efficient programming workflow of machining for a user for
manufacturing machinery in a CAM environment. That is,
efficiently programing of machine operations and produc-
tion of discrete parts need to be cost efficient, time efficient,
and/or energy efficient to increase throughput with consis-
tent quality. This may be achieved by, for example, deter-
mining energy-efficient toolpath having least number of
movements, cutting operations, and cutting time, while
reducing unneeded movements and cycle time combined
with shortened tool lengths. Another example of efficiently
programming of machine operations may be to run opera-
tions continuously with maximum feed and rapid rates.
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Other examples, include utilizing fast speed which reduces
cycle times in tasks, such as moving the spindle home for
changing tools and then positioning the cutting tool pre-
cisely where it needs be prior to cutting. In yet another
example, cutting feed and efficiency may depend on several
factors, such as part material, tool, path, and depth of cut as
determined from prior operations using the same machine
and honed, refined, or enhanced to become more efficient
over a period of time and running such operations based
on the user’s experience level.

[0027] The system 100 provides for intelligently automat-
ing machine operations and production of discrete parts,
such as molds, dies, tools, prototypes, aerospace compo-
nents and more. More specifically, the system 100 may
incorporate machine learning, where artificial intelligence
(AD) allows the system 100 the ability to automatically
learn and improve from experience without requiring expli-
cit programming. In embodiments implementing machine
learning, the system may access data, e.g., historical data,
that may have been collected over a period of time and use
said collected data to learn without further input from users.
As such, the system 100 may be continually learning and
improving based on the ongoing collection of data. In one
embodiment, the system 100 may ‘learn’ how a user is using
a product, such as how the user is determining to manufac-
ture a geometrical feature of a machine part. The system 100
may learn how to automatically propose the same choices
that the user would make on a particular geometry feature,
based on a specific user workflow, skill set, and set of
experiences. A feature, in computer-aided design (CAD),
may refer to a region of a part with some important geo-
metric or topological properties, and may sometimes be
referred to as form features. Form features may include
both shape information and parametric information of a
region of interest. The system 100 may be based on machine
learning algorithms, including an artificial neural network
(ANN), X-GBoost, decision trees, genetic algorithms, and
the like, in order to learn how to automatically recommend
the most efficient programming workflow of machining for
the user.

[0028] With respect to FIG. 2, workflow 200 for learning
of a user decision making process for machining a part in a
CAM environment is illustrated. At an initial step, step 201,
a user may be given a target part 203, which may have a
pocket 205 with a specified geometry. Given the pocket
205 (also referred to as a feature), a user may manually
select a sequence of machining types, at step 202. More
specifically, the user may decide to first select a pocketing
machining type, then a contour machining type, and finally
another contour machining type, and so on. Other machin-
ing types and different sequences of the same machining
types are possible and contemplated. For example, another
machining type, in addition to the above, may include a hole
machining type. In one embodiment, machining types and
sequences depend on the user skill set and experiential
habits. The user may then select a tool for cutting the pocket
205. The user may then select a tool for each machining type
(selected at step 202) at a subsequent step, step 204. The tool
may have a plurality of parameters that the user manually
chooses from, such as the style of tool, the diameter of the
tool, and the cutting length of the tool. For example, the user
may first select an end mill tool, and then select the diameter
of the end mill, as well as the cutting length of the end mill.
In one example, the user may first decide to use a large tool
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(e.g., a large end mill diameter) and then fine-tune the fea-
ture with a smaller tool as compared to the previously used
tool (e.g., a smaller end mill). In another example, the user
may prefer to begin with a smaller tool (e.g., a smaller end
mill). The selected tool parameters 204 may be different
based on the choice of a large initial tool or a small initial
tool. In another example, for machining a pocket feature
(e.g., pocket 205), a user may first select a pocket cycle
with a “chamfer” tool. The user may then select the diameter
of the chamfer tool, as well as the cutting length, style, and
shank parameters of the chamfer tool. In one embodiment,
the system may determine a set of user preferences and
associate the preferences with machining tools and/or com-
fort levels exhibited by the user.

[0029] Continuing on at step 206, the user may choose the
machining parameters for machining the feature (e.g., the
pocket 205) with the machining tool selected at step 204.
The machining parameters may include speed, feed rate,
motion pattern, and the like. The machining parameters pre-
sented for selection by the user are related to the selections
made by the user at steps 202 and 204. For example, for the
same pocket 205, with the same exact geometry, there may
be a different set of associated machining parameters, with
the machining parameters presented being based on the
decisions taken by the user during the previous steps, such
as steps 202 and 204.

[0030] In another embodiment, the machining parameters
may be dynamically updated, and the outputs to the user
may change based upon the data history. For example, and
in one embodiment, the system may learn based on a user’s
initial data set, e.g., a user’s training set; however, in order
to continue learning, the system may require new data, such
as new machining test files. Additionally, the system may
continue learning until the user prompts the system to use
the new data. In another embodiment, the system may auto-
matically incorporate the new data from the user and con-
tinue to learn based on the newly added data. In one exam-
ple, if the accuracy calculated by the system is not matching
the user’s expectancy, then the user may add new data and
thereafter, the system may retrain itself. As such, the system
would be more “continuous” in dynamically retraining itself
and not require a user to prompt the system to begin retrain-
ing itself. Therefore, if there is a change to the training set,
the system may automatically incorporate that change and
retrain the system based on the user’s data history and the
new change to the data set.

[0031] In another embodiment, the feature may be a hole
as opposed to a pocket. As described above, the machining
parameters may include speed, feed rate, motion pattern,
and the like. Again, the machining parameters presented
for selection by the user are related to the selections made
by the user at steps 202 and 204. For example, for the same
hole, with the same exact geometry there may be a different
set of associated machining parameters, with the machining
parameters presented being based on the decisions taken by
the user during the previous steps, such as steps 202 and
204.

[0032] With respect to FIG. 3, an example of the workflow
250 of FIG. 2 may include many operations with a variety of
tools and parameters selected showing the different combi-
nations and possible permutations. Starting with the same
steps and given a single feature, step 201, a sequence of
machining types may be possible, step 202, where a user
may select a number of machining types, e.g., up to four
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(4) machining types, in this example of the user’s preferred
sequence. In another embodiment, the user may select any
number of machining types based on the given feature, as
well as the user’s data files and prior training. These
machining types may be used to machine and make the
given feature, such as the pocket 205 or a hole. Additionally,
at step 204 a multitude of tools may be selected to create the
pocket 205, such as an average of twelve (12) tools for the
single specific goal of creating the pocket 205. At step 206,
at least sixteen (16) parameters may be chosen from for each
tool selected. In one embodiment, the user may decide to
adjust the machining parameters presented. In another
embodiment, the user may decide to leave the machining
parameter values as they are (e.g., leave them as the default
values). In this case, the user may select four (4) machining
types with an average of twelve (12) tools, and sixteen (16)
total parameters. In this example, the user must choose the
values from among seven hundred sixty eight (768) possible
configurations just to machine the one specific pocket fea-
ture 205. As such, more than seven hundred sixty eight
(768) combinations are possible. Additionally, a target part
may have more than one feature, and, hence, many more
possible combinations for machining the feature.

[0033] Asillustrated, these possible options give the user a
cumbersome amount of combinations to choose from for the
production of discrete parts such as molds, dies, tools, pro-
totypes, aerospace components and more, which may result
in a loss of time, increased user error, and loss of resources.
Furthermore, it requires that users have a very deep level of
knowledge of machining machine part model and/or geome-
try, when in reality users may have a wide range of machin-
ing experience and abilities.

[0034] With respect to FIG. 4, a flow diagram 300 for clas-
sifying operation sequences, predicting tool parameters, and
predicting operation parameters within system 100 is illu-
strated. As depicted, the different components may each
include a processor and addressable memory for executing
instructions as separate components or may be running on
the same computing device having one or more sets of pro-
cessors and addressable memories. A geometry feature 301,
such as pocket feature 205 (see FIG. 2) may be received at
an Operation Sequence Classifier Component 302. In one
embodiment, the Operation Sequence Classifier Component
302 may determine the order of operations for the feature
based on a user’s habits, environment, and skill set. For
example, the Operation Sequence Classifier Component
302 may predict the sequence of machining types for the
user, such as machining sequence of pocketing, then pock-
eting again (potentially performed with different tools and
machine parameters), and finally contouring of the machine
tool. Other sequences are possible and contemplated.
[0035] In one embodiment, the Operation Sequence Clas-
sifier Component 302 may be composed of one or more
technologies 314, (e.g., a “TechType”), which specifies the
type of operation applied to a feature, such as the pocket
205(see FIG. 2) or a hole feature. In one embodiment, the
same technology may be repeated multiple times by the
Operation Sequence Classifier Component 302 and the
order in which such operations are applied to a feature is
paramount. The system 100 may receive as an input all of
the feature’s attributes and output the predicted sequence of
operations. In one embodiment, a sequence of instructions
such as a “DecisionTreeClassifier” may be initiated by the
Operation Sequence Classifier Component 302 at this step;

Oct. 26, 2023

therefore, shaping the problem as a classification one. Each
unique operation sequence found in the user’s previous
examples (which may consist of operations applied to a
given feature) may be treated as one of the possible classes
to be assigned to a new inputted feature. A sequence of
operations 304 may then be outputted to the user for
implementation.

[0036] The sequence of operations 304 may be received at
a Tool Parameters Predictor Component 306 along with the
given feature 301, as well as prior tool parameters 308 that
have been selected in previous iterations. For each entry of
the predicted sequence of operations 304, the TechType 314
and an ordering (incremental number starting from one) is
presented as input to the Tool Parameters Predictor Compo-
nent 306. Given an entry of the list of the sequence of opera-
tions 304 and the order at which the entry is applied for a
feature, such as pocket 205 or a hole, a tool must be linked to
such an operation. With the given feature 301, the selected
operations 304, and the prior tool parameters 308 provided
as inputs, the Tool Parameters Predictor Component 306 of
system 100 intelligently predicts and presents tool para-
meters 310 to the user for selection. In one embodiment,
the Tool Parameters Predictor Component 306 may be
used for predicting the most representative tool parameters
310. In one embodiment, the Tool Parameters Predictor
Component 306 may be used for predicting a specified num-
ber, for example, five most representative tool parameters
310. The five most representative tool parameters 310 may
provide for reducing complexity and focusing on geometric
patterns. In another embodiment, the Tool Parameters Pre-
dictor Component 306 may be used for predicting more than
the five most representative tool parameters 310. Given
those tool parameters 310, a search may be conducted over
a pool of pre-loaded tools, thus selecting the tools which are
most applicable for that operation in creating efficiency and
accuracy. In one embodiment, if the user is presented with a
suggested tool that the user does not have, the user may
manually select which tool to use. For example, the system
100 may suggest to the user to use a tool to cut a diameter of
13 inches. The user may only have a tool to cut diameters of
12 or 14 inches; thus, the user may manually select either the
tool to cut the 12 inch diameter or the 14 inch diameter as
the user sees fit. In one embodiment, the Tool Parameters
Predictor Component 306 receives the selected operations
304 and the prior tool parameters 308 provided as inputs,
and runs one of a number of models, such as m number of
models to predict and output a tool parameter 310 for each
model m. In another embodiment, the Tool Parameters Pre-
dictor Component 306 may receive a sequence of operations
304 and the prior tool parameters 308 as well as all of the
sequence of operations and the prior tool parameters inputs
from all of the previous models run to predict and output one
of the tool parameters (see FIG. § for additional details).
[0037] In one embodiment, the predicted parameters for a
tool are a tool style, a tool diameter, a cutting length, a shank
diameter, and/or a tool radius. In one embodiment, the Tool
Parameters Predictor Component 306 may employ, for
example, a DecisionTreeRegressor and a KNearest-Neigh-
bour model. In another embodiment, more than the five (5)
listed predicted parameter settings may be employed for the
analysis. In another embodiment, some of the five (5) para-
meters listed (or all of the 5 parameters listed) may be dif-
ferent parameters based on the user’s dataset.



US 2023/0341842 Al

[0038] Finally, the operations 304 may be received at an
Operation Parameter Predictor Component 312 along with
the given feature 301, as well as the tool parameters 310 that
have predicted by the Tool Parameters Predictor Component
306. With the given feature 301, the sequence of operations
304, and the prior tool parameters 308 as inputs, the Opera-
tion Parameter Predictor Component 312 of system 100
intelligently predicts and presents operation parameters
316 to the user for selection, such as the speed, feed rate,
and motion pattern of the tool or tools. In one embodiment,
the Operation Parameter Predictor Component 312 may
execute and run a number of models, such as n number of
models to predict the operation parameters 316. In one
embodiment, the Operation Parameter Predictor Component
312 receives the given feature 301, the sequence of opera-
tions 304, and the prior tool parameters 308 as inputs and
runs one of a number of models, such as n number of models
to predict and output an operation parameter 316 for each
model n. In another embodiment, the Operation Parameter
Predictor Component 312 may receive a given feature,
sequence of operations, and prior tool parameters as inputs
as well as the given features, sequence of operations, and
prior tool parameters from all of the previous models that
have been run to predict and output one of the operation
parameters.

[0039] Each technology or TechType 314 has its own set
of parameters which may be predicted by the Operation
Parameter Predictor Component 312. For example, the
TechType 314 may include operations, such as chamfering,
contouring, pocketing cycles, and the like. In one embodi-
ment, the TechType may be a numeric code that identifies a
type of operation, such as chamfering, contouring, pocket-
ing cycles, and the like. For each TechType 314, there are
the operation parameters predicted by the Operation Para-
meter Predictor Component 312, such as the speed, feed
rate, and motion pattern of the tool. This prediction by the
Operation Parameter Predictor Component 312 may depend
on a user’s habits on selecting and setting value to some
parameters with respect to all available parameters. To
account for each user’s particular habits, during a pre-pro-
cessing phase, a set of working parameters is selected for
each possible TechType 314 and the set may be used to
decide which parameter (or parameters) the Operation Para-
meter Predictor Component 312 has to predict.

[0040] In one embodiment, the set of operation parameters
316 may be chosen based on the computed “entropy” value
for each operation parameter found in the user’s examples.
More specifically, a registry containing a census for all
operation parameters 316 may be provided to the Operation
Parameter Predictor Component 312. For each parameter,
the registry is used in order to identify the type of the para-
meter (e.g., if it is a string, a boolean, an int, a double, or an
enum), the desired predicted output (either categorical or
free), and the precision at which it is possible to round the
prediction. In one embodiment, in order to select the most
applicable/suitable set of parameters to be predicted for each
TechType 314, all operation parameters found in all past
examples are taken into account (along with their set
values), if the following conditions are met: (1) the para-
meter has been included in the registry, (2) the parameter
has been set by the user and it is not a system default or a
precomputed parameter, and (3) in the registry the para-
meter is not excluded explicitly. In an alternative embodi-
ment, one or more of the above-mentioned conditions need
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to be met in order for the operation parameters, found in the
previous examples, to be taking into account. By focusing
only on those parameters changed by the user, the resulting
subset is coherent with the user’s habits over time. From
such a subset, the entropy may be computed for each para-
meter based on its value distribution, resulting in a number
between 0 and 1. Entropy close to 1 represents a parameter
which assumes two or more values with similar probabil-
ities. That is, if a parameter assumes only a single value
across all examples, the entropy is 0. If there is a value in
the distribution which presents a higher probability with the
respect to the others, the entropy goes to 0. The entropy is
then used for estimating how important it is to include a
parameter on the list of those to be predicted by the Opera-
tion Parameter Predictor Component 312. A high entropy
for a parameter means the parameter has been set many
times with different values, and values assumed by the para-
meter are equally distributed. Setting a threshold for the
entropy allows for selecting parameters which the user is
most likely to change frequently and for which a suggestion
is needed. In one embodiment, the default threshold value
for the entropy is set to 0.2 by default.

[0041] With respect to FIG. 5, a flow diagram 350 of mod-
els for predicting and outputting a tool parameter is shown.
In one embodiment, m models (m=1, 2, 3,...,m=m), such as
the m models described above with respect to FIG. 4, may
be executed to predict and output a tool parameter for each
model m that is run. More specifically, for a first model 320«
(e.g., m=1), a first Tool Parameters Predictor Component
306a receives a first sequence of operations 304a and a
first prior tool parameters 308a provided as inputs. The
first model 320a may predict and output a first tool para-
meter 310a. For a second model 3205 (e.g., m=2), a second
Tool Parameters Predictor Component 3065 may receive a
second sequence of operations 3045 and a second prior tool
parameters 3085 provided as inputs. In one embodiment, the
Tool Parameters Predictor Component 3065 may also
receive the first sequence of operations 304a and the first
prior tool parameters 308a from model 320a as additional
inputs. The second model 3205 (e.g., m=2) may then predict
and output a second tool parameter 3105 based on the first
sequence of operations 304a and the first prior tool para-
meters 308¢ from model 3200 as well as the second
sequence of operations 3045 and the second prior tool para-
meters 3085. For a third model 320c¢ (e.g., m=3), a third Tool
Parameters Predictor component 306¢ may receive a third
sequence of operations 304¢ and a third prior tool para-
meters 308¢ provided as inputs. In one embodiment, the
Tool Parameters Predictor 306¢ may also receive the first
sequence of operations 304a and the first prior tool para-
meters 308a from model 320q as inputs. In another embodi-
ment, the Tool Parameters Predictor component 306¢ may
also receive the second sequence of operations 3045 and the
second prior tool parameters 3085 from model 3205 as
inputs. The third model 320¢ may then predict and output
a third tool parameter 310¢ based on the first sequence of
operations 304a and the first prior tool parameters 308a
from model 320qa, the second sequence of operations 3045
and the second prior tool parameters 3085 from model 3205,
as well as the third sequence of operations 304¢ and the third
prior tool parameters 308¢. As such, each new model itera-
tion that is ran, may incorporate inputs from previously
models; therefore, the tool parameter prediction may
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become more and more accurate compared to the previous
prediction with the execution of more models.

[0042] With respect to FIG. 6, the system 100 may execute
a workflow 400 for providing automatic recommendation of
the customized programming workflow for a user for man-
ufacturing machinery in a CAM environment, such as CNC
toolpath creation, or for the production of discrete parts such
as molds, dies, tools, prototypes, acrospace components and
more. In one embodiment, the workflow 400 may be a series
of instructions from the system 1040 that are steps for provid-
ing the automatic recommendation. More specifically, at
step 402, the system 100 may leverage user history (e.g.,
historical data of user’s choices) to make the informed
recommendation via the disclosed system and method of
applying Al to automatically guide the user through the
optimal choices. In one embodiment, the user history
includes all of the data associated with the user’s manual
decision making steps needed for machining a machine
part geometry, such as pocket 205, a hole, or other feature
described above. With respect to the example of FIG. 3, the
system 100 may analyze the choices the user made at steps
202, 204, and 206 to machine the pocket 205. More specifi-
cally, the system 100 may analyze the machining types
selected, which tools were used, and the parameter values
selected for each applied machining. That is, the tool has
parameters describing the tool’s shape and cutting capabil-
ities. Once the tool is chosen, the parameters of the machin-
ing may be set. In one example, the diameter of the tool may
impact the distance between two passes; therefore, in order
to avoid excess material being left over in between passes,
each pass should be approximately one forth (V4) of the tool
radius. However, as it may be deduced, if the user’s dataset
includes data which is not the optimal manner in which the
machining should be performed, then the system’s predic-
tion may reflect such inefficient or incorrect parameters and
learned from. For example, if a user consistently selects that
each pass is one eighth (%) of the tool radius, then the sys-
tem may learn to use that value. This may occur, for exam-
ple, if the user is inexperienced, and the user consistently
enters an incorrect value. The system accepts that value,
because the system is learning from the user and the value
may be within acceptable thresholds by the machine. In one
embodiment, the system may determine that the user is
using inefficient or incorrect parameters by comparing the
user’s dataset with another dataset, where the other dataset
may be either from another user, historical data of the same
user, or default parameters recommended by the manufac-
turer of the machining tool. According to this embodiment,
the system may then, based on a threshold, tag the user data-
set in a way so as to not be used for the machine learning
process or given less weight for purposes of determining
predictions. That is, the system may be configured to detect
or determine that the parameters being used, for example, by
an inexperienced user, are outside a range or variance (sta-
tistical measure of the amount of variation in the given para-
meter or variable) and thereby prevent the system from
including such datasets as part of the learning process,
e.g., used as input. Additionally, in some embodiments, the
system may also be configured to determine a variance
threshold, where a feature/parameter does not vary much
within itself, and tag such parameters as being such datasets
generally having very little predictive power-thereby either
including or excluding such data.
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[0043] In another embodiment, users may cross-share
knowledge with other users via, for example, accessing
other databases storing such datasets, so the system may
learn based on data from a plurality of users. In one embodi-
ment, if the user or users accumulate examples that lead to
higher accuracy then the system may learn from the exam-
ples and offer the associated parameter values to the user or
users. In yet another embodiment, a user may update their
dataset with a new tool that becomes available, for example,
if this tool did not exist when the user made their first train-
ing set. The system may then retrain itself based on the addi-
tion of this new tool to the training set.

[0044] In one embodiment, said data associated with the
user’s manual decision making steps (e.g., the machining
types selected, which tools were used, and the parameter
values selected for each applied machining) may be in the
form of text files, for example, eXtensible Mark-up Lan-
guage (XML) files, Rich Text Format (.rtf) files, plain text
data (.dat), and the like. The processor 124 of the system 100
may execute steps to apply a machine learning algorithm
(e.g., artificial intelligence (Al)) to the user data. The Al
algorithm may therefore be constantly learning from the
specific set of files from each specific user. Each user may
work on the same geometry (e.g., the geometry of the pocket
205) in dissimilar ways; therefore, the system 100 may
leverage each specific user’s history to efficiently predict
how the specific user prefers to machine the part. Further-
more, the system 100 is configured to analyze user decision
making changes over time. For example, the system 100
analyzes the way the user may refine how they machine a
given feature, such as a pocket 205 or another given feature,
such as a hole over time as a result of numerous potential
factors, such as an improved skill set over time. In one
example, a user that has been machining machine tools in
a CAM environment for 20 years is likely more skilled than
a user that has been doing the same machining for 2 years.
Therefore, the system 100 embodiment may provide differ-
ent suggestions to each user based on the user’s skill set.
Additionally, technology changes with time, and the system
100 may learn how the user adapts to newly-introduced
technologies and provide recommendations accordingly.
[0045] At step 404, the system 100 automatically guides
the user through the optimal choices for machining the
machine part geometry based upon the system leveraging
the user’s machining past. Therefore, each user automati-
cally receives a specific recommendation based on the
user’s history and skill set. In addition, the system 100
may continue to learn, understand, and improve the predic-
tion precision by way of performing data analysis which
automates analytical model building where the system
learns from data, identifies patterns and makes predictions
through experience, and automatically improves the
machining of a part for higher accuracy and efficiency. In
one embodiment, each time the user programs a new part,
the system 100 may store or ‘add’ this data into the system
100, and use the data to continually become more intelligent
by building a historical database of user data which inher-
ently is based on their tools and skills. In one embodiment,
the system 100 may leverage historical data from other users
using similar machines or machining similar features (e.g.,
pocket or hole) or both, to aggregate historical data across
different platforms of cutting tools and cutting machines for
improving accuracy of predictions by the system.
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[0046] With respect to FIG. 7, a workflow 500 for system
100 is shown in detail. At step 501, the system is given a
feature to manufacture, such as a pocket. The pocket may be
described by a planar contour, a composition or arcs and
segments, as well as a set of attributes, such as area and
depth. Other attributes may be included, or used in place
of existing attributes, for example, from data collected and
stored in a local or remote database. At step 502 the system
100 predicts a sequence of machining types based on the
user’s history of machining a pocket for the machine tool.
For example, the system 100 predicts that to manufacture
the pocket, the user selects a machining sequence of pock-
eting, then pocketing again (potentially performed with dif-
ferent tools and machine parameters), and finally contouring
of the machine tool. At step 504, the system 100 uses the
prediction at step 502 for machining the pocket geometry of
step 501 as an input for algorithm to predict the tool para-
meters to select, such as style, diameter, and cutting length.
At step 506, the system receives as inputs the pocket feature
of step 501, the predicted machining type sequence of step
502, and the predicted tools of step 504. From these inputs,
the algorithm may predict the machining parameters for the
operations, such as the speed, feed rate, and motion pattern.
The system 100 becomes more accurate and/or efficient
over time, after each iteration, and as the data set gets larger.
Therefore, with each automatic recommendation by the sys-
tem 100, based on the user’s history, and eventually modi-
fied by the user to better machine the geometry, the system
100 will learn how the user decided to work the part. The
system 100 is able to predict with more certainty as a result
of the user’s history and behavior patterns, rather than logic
input directly into the system 100.

[0047] With respect to FIG. 8, results of the accuracy of
system 100 for distinct users are illustrated 600. A dataset
602 includes a first Case 603 and a second Case 605. With
respect to the first Case 604, the user machined 86 features
(e.g., 86 different pockets), used 163 machining sequences,
and 217 tools. The user provided the system 100 with these
data as a dataset to train the algorithm. For predictions of
user sequences of machining types 604, the algorithm pre-
dicted and outputted the same sequence the user selected
approximately 82% of the time. For predictions of tools
606 selected by the user, the algorithm predicted and out-
putted the same tools the user selected approximately 72%
of the time. For predictions of machining parameters 608
selected by the user, in this example, the algorithm predicted
and outputted the total depth of the machining tool 77% of
the time, the speed of the machining tool 85% of the time,
the feed rate of the machining tool in the XY plane 75% of
the time, and the feed rate of the machining tool in the Z
plane 75% of the time.

[0048] With respect to the second Case 605, the user
machined 3,746 features (e.g., 3,746 different pockets),
used 5,593 machining sequences, and 652 tools. The user
provided the system 100 with these data as a dataset to
train the algorithm. For predictions of user sequences of
machining types 604, the algorithm predicted and outputted
the same sequence the user selected approximately 97% of
the time. For predictions of tools 606 selected by the user,
the algorithm predicted and outputted the same tools the
user selected approximately 98% of the time. For predic-
tions of machining parameters 608 selected by the user,
the algorithm predicted and outputted the total depth of the
machining tool 91% of the time, the speed of the machining
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tool 95% of the time, the feed rate of the machining tool in
the XY plane 94% of the time, and the feed rate of the
machining tool in the Z plane 95% of the time. These results
clearly demonstrate that algorithm gets substantially more
intelligent (e.g., improves in performance) as the sample
size increases. If the user history is sufficiently large, such
as up to 3,500 features, then the algorithm suggests to the
user the correct choice 95 out of 100 times at each step in the
workflow. However, results may be biased if a user uses the
same technique every time; therefore, it is desired to have
not only more data per user, but more users as well.

[0049] In some embodiments, the system 100 may be
separately trained for each user’s case. Additionally, the
user does not need to share the actual files nor any other
sensitive or proprietary data with the system 100. In one
embodiment, all of the user data may be contained on the
user’s own machine, and the user may run the system 100 on
the user’s files/documents. In one embodiment, separate
user information may be joined to come to provide a more
idealized recommendation that each user could implement.
In yet another embodiment, the user data may be sourced
from external data servers and not only include the user’s
data (saved from the local machine to the external data ser-
vers) but also optionally include data from a set of other
users. Such data may be selected based on a number of cri-
terion, for example, whether the set of other users were
using similar attributes, for example, cutting tool, work-
piece, etc.

[0050] FIG. 9 is a high-level block diagram 900 showing a
computing system comprising a computer system useful for
implementing an embodiment of the system and process,
disclosed herein. Embodiments of the system may be imple-
mented in different computing environments. The computer
system includes one or more processors 902, and can further
include an electronic display device 904 (e.g., for displaying
graphics, text, and other data), a main memory 906 (e.g.,
random access memory (RAM)), storage device 908, a
removable storage device 910 (e.g., removable storage
drive, a removable memory module, a magnetic tape drive,
an optical disk drive, a computer readable medium having
stored therein computer software and/or data), user interface
device 911 (e.g., keyboard, touch screen, keypad, pointing
device), and a communication interface 912 (e.g., modem, a
network interface (such as an Ethernet card), a communica-
tions port, or a PCMCIA slot and card). The communication
interface 912 allows software and data to be transferred
between the computer system and external devices. The sys-
tem further includes a communications infrastructure 914
(e.g., a communications bus, cross-over bar, or network) to
which the aforementioned devices/modules are connected as
shown.

[0051] Information transferred via communications inter-
face 914 may be in the form of signals such as electronic,
electromagnetic, optical, or other signals capable of being
received by communications interface 914, via a communi-
cation link 916 that carries signals and may be implemented
using wire or cable, fiber optics, a phone line, a cellular/
mobile phone link, an radio frequency (RF) link, and/or
other communication channels. Computer program instruc-
tions representing the block diagram and/or flowcharts
herein may be loaded onto a computer, programmable data
processing apparatus, or processing devices to cause a series
of operations performed thereon to produce a computer
implemented process.
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[0052] Embodiments have been described with reference
to flowchart illustrations and/or block diagrams of methods,
apparatus (systems) and computer program products accord-
ing to embodiments. Each block of such illustrations/dia-
grams, or combinations thereof, can be implemented by
computer program instructions. The computer program
instructions when provided to a processor produce a
machine, such that the instructions, which execute via the
processor, create means for implementing the functions/
operations specified in the flowchart and/or block diagram.
Each block in the flowchart/block diagrams may represent a
hardware and/or software module or logic, implementing
embodiments. In alternative implementations, the functions
noted in the blocks may occur out of the order noted in the
figures, concurrently, etc.

[0053] Computer programs (i.e., computer control logic)
are stored in main memory and/or secondary memory. Com-
puter programs may also be received via a communications
interface 912. Such computer programs, when executed,
enable the computer system to perform the features of the
embodiments as discussed herein. In particular, the compu-
ter programs, when executed, enable the processor and/or
multi-core processor to perform the features of the computer
system. Such computer programs represent controllers of
the computer system.

[0054] FIG. 10 shows a block diagram of an example sys-
tem 1000 in which an embodiment may be implemented.
The system 1000 includes one or more client devices 1001
such as consumer electronics devices, connected to one or
more server computing systems 1030. A server 1030
includes a bus 1002 or other communication mechanism
for communicating information, and a processor (CPU)
1004 coupled with the bus 1002 for processing information.
The server 1030 also includes a main memory 1006, such as
a random access memory (RAM) or other dynamic storage
device, coupled to the bus 1002 for storing information and
instructions to be executed by the processor 1004. The main
memory 1006 also may be used for storing temporary vari-
ables or other intermediate information during execution or
instructions to be executed by the processor 1004. The ser-
ver computer system 1030 further includes a read only
memory (ROM) 1008 or other static storage device coupled
to the bus 1002 for storing static information and instruc-
tions for the processor 1004. A storage device 1010, such
as a magnetic disk or optical disk, is provided and coupled
to the bus 1002 for storing information and instructions. The
bus 1002 may contain, for example, thirty-two address lines
for addressing video memory or main memory 1006. The
bus 1002 can also include, for example, a 32-bit data bus
for transferring data between and among the components,
such as the CPU 1004, the main memory 1006, video mem-
ory and the storage 1010. Alternatively, multiplex data/
address lines may be used instead of separate data and
address lines.

[0055] The server 1030 may be coupled via the bus 1002
to a display 1012 for displaying information to a computer
user. An input device 1014, including alphanumeric and
other keys, is coupled to the bus 1002 for communicating
information and command selections to the processor 1004.
Another type or user input device comprises cursor control
1016, such as a mouse, a trackball, or cursor direction keys
for communicating direction information and command
selections to the processor 1004 and for controlling cursor
movement on the display 1012.
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[0056] According to one embodiment, the functions are
performed by the processor 1004 executing one or more
sequences of one or more instructions contained in the
main memory 1006. Such instructions may be read into the
main memory 1006 from another computer-readable med-
um, such as the storage device 1010. Execution of the
sequences of instructions contained in the main memory
1006 causes the processor 1004 to perform the process
steps described herein. One or more processors in a multi-
processing arrangement may also be employed to execute
the sequences of instructions contained in the main memory
1006. In alternative embodiments, hard-wired circuitry may
be used in place of or in combination with software instruc-
tions to implement the embodiments. Thus, embodiments
are not limited to any specific combination of hardware cir-
cuitry and software.

[0057] The terms “computer program medium,” “compu-
ter usable medium,” “computer readable medium,” and
“computer program product,” are used to generally refer to
media such as main memory, secondary memory, removable
storage drive, a hard disk installed in hard disk drive, and
signals. These computer program products are means for
providing software to the computer system. The computer
readable medium allows the computer system to read data,
instructions, messages or message packets, and other com-
puter readable information from the computer readable
medium. The computer readable medium, for example,
may include non-volatile memory, such as a floppy disk,
ROM, flash memory, disk drive memory, a CD-ROM, and
other permanent storage. It is useful, for example, for trans-
porting information, such as data and computer instructions,
between computer systems. Furthermore, the computer
readable medium may comprise computer readable informa-
tion in a transitory state medium such as a network link and/
or a network interface, including a wired network or a wire-
less network that allow a computer to read such computer
readable information. Computer programs (also called com-
puter control logic) are stored in main memory and/or sec-
ondary memory. Computer programs may also be received
via a communications interface. Such computer programs,
when executed, enable the computer system to perform the
features of the embodiments as discussed herein. In particu-
lar, the computer programs, when executed, enable the pro-
cessor multi-core processor to perform the features of the
computer system. Accordingly, such computer programs
represent controllers of the computer system.

[0058] Generally, the term “computer-readable medium”
as used herein refers to any medium that participated in pro-
viding instructions to the processor 1004 for execution.
Such a medium may take many forms, including but not
limited to, non-volatile media, volatile media, and transmis-
sion media. Non-volatile media includes, for example, opti-
cal or magnetic disks, such as the storage device 1010. Vola-
tile media includes dynamic memory, such as the main
memory 1006. Transmission media includes coaxial cables,
copper wire and fiber optics, including the wires that com-
prise the bus 1002. Transmission media can also take the
form of acoustic or light waves, such as those generated
during radio wave and infrared data communications.
[0059] Common forms of computer-readable media
include, for example, a floppy disk, a flexible disk, hard
disk, magnetic tape, or any other magnetic medium, a CD-
ROM, any other optical medium, punch cards, paper tape,
any other physical medium with patterns of holes, a RAM, a
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PROM, an EPROM, a FLASH-EPROM, any other memory
chip or cartridge, a carrier wave as described hereinafter, or
any other medium from which a computer can read.

[0060] Various forms of computer readable media may be
involved in carrying one or more sequences of one or more
instructions to the processor 1004 for execution. For exam-
ple, the instructions may initially be carried on a magnetic
disk of a remote computer. The remote computer can load
the instructions into its dynamic memory and send the
instructions over a telephone line using a modem. A
modem local to the server 1030 can receive the data on the
telephone line and use an infrared transmitter to convert the
data to an infrared signal. An infrared detector coupled to
the bus 1002 can receive the data carried in the infrared sig-
nal and place the data on the bus 1002. The bus 1002 carries
the data to the main memory 1006, from which the proces-
sor 1004 retrieves and executes the instructions. The instruc-
tions received from the main memory 1006 may optionally
be stored on the storage device 1010 either before or after
execution by the processor 1004.

[0061] The server 1030 also includes a communication
interface 1018 coupled to the bus 1002. The communication
interface 1018 provides a two-way data communication
coupling to a network link 1020 that is connected to the
world wide packet data communication network now com-
monly referred to as the Internet 1028. The Internet 1028
uses electrical, electromagnetic or optical signals that carry
digital data streams. The signals through the various net-
works and the signals on the network link 1020 and through
the communication interface 1018, which carry the digital
data to and from the server 1030, are exemplary forms or
carrier waves transporting the information.

[0062] In another embodiment of the server 1030, inter-
face 1018 is connected to a network 1022 via a communica-
tion link 1020. For example, the communication interface
1018 may be an integrated services digital network (ISDN)
card or a modem to provide a data communication connec-
tion to a corresponding type of telephone line, which can
comprise part of the network link 1020. As another exam-
ple, the communication interface 1018 may be a local area
network (LAN) card to provide a data communication con-
nection to a compatible LAN. Wireless links may also be
implemented. In any such implementation, the communica-
tion interface 1018 sends and receives electrical electromag-
netic or optical signals that carry digital data streams repre-
senting various types of information.

[0063] The network link 1020 typically provides data
communication through one or more networks to other
data devices. For example, the network link 1020 may pro-
vide a connection through the local network 1022 to a host
computer 1024 or to data equipment operated by an Internet
Service Provider (ISP). The ISP in turn provides data com-
munication services through the Internet 1028. The local
network 1022 and the Internet 1028 both use electrical, elec-
tromagnetic or optical signals that carry digital data streams.
The signals through the various networks and the signals on
the network link 1020 and through the communication inter-
face 1018, which carry the digital data to and from the server
1030, are exemplary forms or carrier waves transporting the
information.

[0064] The server 1030 can send/receive messages and
data, including e-mail, program code, through the network,
the network link 1020 and the communication interface
1018. Further, the communication interface 1018 can com-
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prise a USB/Tuner and the network link 1020 may be an
antenna or cable for connecting the server 1030 to a cable
provider, satellite provider or other terrestrial transmission
system for receiving messages, data and program code from
another source.

[0065] The example versions of the embodiments
described herein may be implemented as logical operations
in a distributed processing system such as the system 1000
including the servers 1030. The logical operations of the
embodiments may be implemented as a sequence of steps
executing in the server 1030, and as interconnected machine
modules within the system 1000. The implementation is a
matter of choice and can depend on performance of the sys-
tem 1000 implementing the embodiments. As such, the logi-
cal operations constituting said example versions of the
embodiments are referred to for e.g., as operations, steps
or modules.

[0066] Similar to a server 1030 described above, a client
device 1001 can include a processor, memory, storage
device, display, input device and communication interface
(e.g., e-mail interface) for connecting the client device to
the Internet 1028, the ISP, or LAN 1022, for communication
with the servers 1030.

[0067] The system 1000 can further include computers
(e.g., personal computers, computing nodes) 1005 operating
in the same manner as client devices 1001, where a user can
utilize one or more computers 1005 to manage data in the
server 1030.

[0068] Referring now to FIG. 11, illustrative cloud com-
puting environment 50 is depicted. As shown, cloud com-
puting environment 50 comprises one or more cloud com-
puting nodes 10 with which local computing devices used
by cloud consumers, such as, for example, personal digital
assistant (PDA), smartphone, smart watch, set-top box,
video game system, tablet, mobile computing device, or cel-
lular telephone 54A, desktop computer S4B, laptop compu-
ter 54C, and/or automobile computer system 54N may com-
municate. Nodes 10 may communicate with one another.
They may be grouped (not shown) physically or virtually,
in one or more networks, such as Private, Community, Pub-
lic, or Hybrid clouds as described hereinabove, or a combi-
nation thereof. This allows cloud computing environment
50 to offer infrastructure, platforms and/or software as ser-
vices for which a cloud consumer does not need to maintain
resources on a local computing device. It is understood that
the types of computing devices S4A-N shown in FIG. 11 are
intended to be illustrative only and that computing nodes 10
and cloud computing environment 50 can communicate
with any type of computerized device over any type of net-
work and/or network addressable connection (e.g., using a
web browser).

[0069] It is contemplated that various combinations and/or
sub-combinations of the specific features and aspects of the
above embodiments may be made and still fall within the
scope of the invention. Accordingly, it should be understood
that various features and aspects of the disclosed embodi-
ments may be combined with or substituted for one another
in order to form varying modes of the disclosed invention.
Further, it is intended that the scope of the present invention
is herein disclosed by way of examples and should not be
limited by the particular disclosed embodiments described
above.
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What is claimed is:
1. A method comprising:
selecting one or more sequences of machining types for a
feature of one or more features, wherein the selection of
the one or more sequences of machining types is based on
the feature and a database of prior selections of machin-
ing types;
selecting one or more tools associated with the selected one
or more sequences of machining types, wherein the
selection of the one or more tools is based on the feature,
the selected one or more sequences of machining types,
and a database of prior selections of one or more tools;

determining one or more machining parameters for the
selected one or more tools, wherein the determined
machining parameters are based on the feature, the
selected one or more sequences of machining types, the
selected one or more tools, and a database of prior deter-
minations of one or more machining parameters; and

determining a machining workflow prediction in a compu-
ter aided manufacturing (CAM) environment based on
the selected one or more sequences of machining types,
the selected one or more tools, and determined one or
more machining parameters.

2. The method of claim 1, wherein the determined one or
more machining parameters comprise at least one of’ speed,
feed rate, and motion pattern.

3. The method of claim 1, wherein determining more accu-
rate machining workflow prediction in comparison to a set of
previous predictions is based on the execution of more
models.

4. The method of claim 3, further comprising:

assigning a weight to a previous prediction of the set of

previous predictions.

5. The method of claim 1, further comprising:

determining a set of user preferences; and

associating the determined set of user preferences with

machining tools.

6. The method of claim 1, wherein determining a machining
workflow prediction is based on determining energy-efficient
toolpath having least number of movements, cutting opera-
tions, and cutting time, thereby reducing unneeded move-
ments and cycle time combined with shortened tool lengths.

7. The method of claim 1, wherein database comprises his-
torical data collected over a period of time.
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8. The method of claim 1, wherein selecting one or more
sequences of machining types is further based on a user’s his-
tory of machining a pocket for the machine tool.
9. The method of claim 1, wherein the determined machin-
ing workflow prediction comprises predicted parameters fora
tool; wherein the predicted parameters for a tool include at
least one of: a tool style, a tool diameter, a cutting length, a
shank diameter, and a tool radius.
10. The method of claim 1, wherein the determined machin-
ing workflow prediction is transmitted to auser interface at the
Computer aided manufacturing (CAM)used to program com-
puter numerical control (CNC) machine for implementation
by auser.
11. A system comprising:
an Operation Sequence Classifier Component having a pro-
cessor and addressable memory, wherein the Operation
Sequence Classifier Component is configured to select
one or more sequences of operations for each feature of
one or more features;
a Tool Parameters Predictor Component having a processor
and addressable memory, wherein the Tool Parameters
Predictor Component is configured to:
receive the selected one or more sequences of operations,
each feature of the one or more features, and one or
more prior tool parameters; and

select one or more tool parameters based on the received
selected one or more sequences of operations, each
feature of the one or more features, and the one or
more prior tool parameters;
an Operation Parameter Predictor Component having a
processor and addressable memory, wherein the Opera-
tion Parameter Predictor Component is configured to:
receive the selected one or more sequences of operations,
the one or more prior tool parameters, each feature of
the one or more features, the one or more prior tool
parameters, and the selected one or more tool para-
meters; and

determine one or more operation parameters based on the
received selected one or more sequences of opera-
tions, the one or more prior tool parameters, each fea-
ture of the one or more features, the one or more prior
tool parameters, and the selected one or more tool
parameters.

* % % % W



