w0 2021/041064 A1 |0 00000 KA Y00 0 0 0 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

World Intellectual Propert 3
(e Organization > 00 00 T 0 0
International Bureau / (10) International Publication Number
(43) International Publication Date = WO 2021/041064 A1

04 March 2021 (04.03.2021) WIPOIPCT

(51) International Patent Classification: (74) Agent: CRANDALL, Sean C.; Patent Capital Group, 30
GO6F 21/53 (2013.01) GO6F 21/62 (2013.01) Flower Lane, Levittown, PA 19055 (US).

GO6F 21755 (2013.01) (81) Designated States (unless otherwise indicated, for every

(21) International Application Number: kind of national protection available). AE, AG, AL, AM,
PCT/US2020/046567 AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,

CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, 1IN,
15 August 2020 (15.08.2020) HR, HU, ID, IL, IN, IR, IS, IT, JO, JP, KE, KG, KH, KN,

(25) Filing Language: English KP, KR, KW, KZ LA, LC,LK, LR, LS, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO,

(22) International Filing Date:

(26) Publication Language: English NZ. OM, PA, PE, PG, PH, PL. PT, QA. RO, RS, RU, RW,
(30) Priority Data: SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN,
16/549,115 23 August 2019 (23.08.2019) US TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM, ZW.

(71) Applicant: MCAFEE, LLC [US/US]; 6220 America Cen- (84) Designated States (unless otherwise indicated, for every

ter Drive, San Jose, CA 95002 (US). kind of regional protection available). ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ,NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,

(72) Inventor: RUDNIK, Lior; 1230 San Tomas Aquino Rd.,
Apt. 115, San Jose, California 95117 (US).

(54) Title: AGENTLESS SECURITY

LOCAL HARDWARE PLATFORM 602

SANDBOXED APPLICATION 604

AGENTLESS SDK
608

<

~
CLOUD SECURITY SERVICE 600

NETWORK
VERIFICATION
SERVICE 624

NOTIFICATION
SERVICE 628

Pl DETECTION
SERVICE

HISTORY SERVICE
632

Fig. 6

(57) Abstract: There is disclosed in one example a computing apparatus, including: a hardware platform including a processor and
a memoty; a closed operating system including instructions within the memory to sandbox userspace applications; and a sandboxed
userspace application, including: instructions to provide a user interface and user application code; and an agentless security library
within the sandboxed userspace application, the agentless security library including instructions to provide security or privacy services
to the sandboxed userspace application with minimal direct interaction from the user interface and user application code.

[Continued on next page]

WO 20217041064 A | /1100000000000 00 O

TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

— as to applicant's entitlement to apply for and be granted a
patent (Rule 4.17(ii))

— as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:
— with international search report (Art. 21(3))

WO 2021/041064 PCT/US2020/046567

AGENTLESS SECURITY

Cross-Reference to Related Application(s)

[0001] This application is derived from, and incorporates by reference, U.S.
nonprovisional application serial no. 16/549,115, filed August 23, 2019, entitled
“AGENTLESS SECURITY”, and claims priority to this date for all applicable subject

matter.

Field of the Specification

[0002] This application relates in general to computer security, and more
particularly, though not exclusively, to a system and method for providing agentless
security.

Background

[0003] Modern computing ecosystems often include “always on” broadband
internet connections. These connections leave computing devices exposed to the
internet, and the devices may be vulnerable to attack.

Brief Description of the Drawings

[0004] The present disclosure is best understood from the following detailed
description when read with the accompanying FIGURES. It is emphasized that, in
accordance with the standard practice in the industry, various features are not
necessarily drawn to scale, and are used for illustration purposes only. Where a scale
is shown, explicitly or implicitly, it provides only one illustrative example. In other
embodiments, the dimensions of the various features may be arbitrarily increased or
reduced for clarity of discussion. Furthermore, the various block diagrams illustrated
herein disclose only one illustrative arrangement of logical elements. Those elements
may be rearranged in different configurations, and elements shown in one block may,
in appropriate circumstances, be moved to a different block or configuration.

[0005] FIGURE 1 is a block diagram illustrating selected elements of a security
ecosystem.

[0006] FIGURE 2 is a block diagram of a hardware platform.

WO 2021/041064 PCT/US2020/046567

[0007] FIGURE 3 is a block diagram of an alternate embodiment of a hardware
platform.

[0008] FIGURE 4 is a block diagram of a sandboxed application.

[0009] FIGURE 5 is a block diagram of selected elements of agentless security
software development kit (SDK).

[0010] FIGURE 6 is a block diagram of a cloud ecosystem.

[0011] FIGURE 7 is a block diagram illustrating a further embodiment of a
sandboxed application.

[0012] FIGURE 8 is a flowchart of a method for providing an agentless security
SDK.

[0013] FIGURE 9 is a block diagram of selected elements of a hardware
platform.

[0014] FIGURE 10 is a block diagram of selected elements of a system-on-a-
chip (SoQ).

[0015] FIGURE 11 is a block diagram of selected elements of a processor.

[0016] FIGURE 12 is a block diagram of selected elements of a trusted
execution environment (TEE).

[0017] FIGURE 13 is a block diagram of selected elements of a network

function virtualization (NFV) infrastructure.

Summary

[0018] In an example, there is disclosed a computing apparatus, comprising:
a hardware platform comprising a processor and a memory; a closed operating
system comprising instructions within the memory to sandbox userspace
applications; and a sandboxed userspace application, comprising: instructions to
provide a user interface and user application code; and an agentless security library
within the sandboxed userspace application, the agentless security library comprising
instructions to provide security or privacy services to the sandboxed userspace
application with minimal direct interaction from the user interface and user

application code.

Embodiments of the Disclosure

[0019] The following disclosure provides many different embodiments, or
examples, for implementing different features of the present disclosure. Specific

2

WO 2021/041064 PCT/US2020/046567

examples of components and arrangements are described below to simplify the
present disclosure. These are, of course, merely examples and are not intended to
be limiting. Further, the present disclosure may repeat reference numerals and/or
letters in the various examples. This repetition is for the purpose of simplicity and
clarity and does not in itself dictate a relationship between the various embodiments
and/or configurations discussed. Different embodiments may have different
advantages, and no particular advantage is necessarily required of any embodiment.

[0020] Traditional security services from a vendor like MCAFEE, LLC may
include a security agent running on a device. The security agent is generally designed
to have privileged access to system processes, file systems, devices, and other
components. With this privileged access, the security agent can monitor activity on
the system, intercept malicious activity, and provide other services including
antivirus, anti-malware, anti-adware, parental controls, or other services that
increase the security or utility of the system.

[0021] A recent move toward tightly locked down or “closed” operating
systems, particularly for mobile devices, has complicated the design of security
agents for these types of devices. In a closed operating system, each individual
application is sandboxed from the system as a whole and from every other
application. In this type of operating system, the sandboxed application has its own
dedicated memory space, its own dedicated disk space, and restricted access to
devices and system services. This type of approach has both benefits and downsides.
One benefit is that the application carries with it its own binary image, and its own
support utilities and libraries. Because the application image has its own libraries,
there is less danger of conflicts, as may occur in more open operating systems. Open
operating systems may provide shared object libraries or dynamic link libraries
(DLLs) in different versions, where some applications require a certain version of a
library and another application may require a different version, and one version may
break one application or the other. Sandboxing of applications can also help to
increase security. Because applications are limited to their sandboxed environments,
an application has limited ability to cause havoc on the system as a whole. Any
mischief may be limited to the sandboxed environment.

[0022] However, sandboxed applications also carry more overhead. Because
each application must carry its own libraries, these libraries may be duplicated, thus
eliminating one of the benefits of DLLs or shared object libraries. Furthermore, while

the sandboxed environment limits the ability of the sandboxed application to cause

3

WO 2021/041064 PCT/US2020/046567

havoc on the overall system, it does not in itself provide a completely secure solution.
For example, even a sandboxed application may link a great deal of personally-
identifying information (PII) from a user, particularly if the user grants the
application access to resources such as the user’s contacts, or provides personal or
sensitive information such as a Social Security number, banking information, or other
PII that may be used to compromise the user’s identity, finances, or privacy.

[0023] Thus, even in a closed operating system, there may be great need for
a useful security agent such as the security agents provided by MCAFEE, LLC.
However, because the security agent itself is an application, if it is run in a sandboxed
environment, then it has limited ability to perform traditional security services, such
as inspecting processes, intercepting or hooking operating system calls, or otherwise
performing privileged tasks that may be necessary to provide heightened security.
This security agent may be able to provide some limited security functionality. For
example, it could provide a localized client side only virtual private network (VPN),
which may be provided as part of the traditional network stack, and thus may be
able to inspect network traffic and provide some security services. However,
operating system hooks, process inspection, and other deep security features may
be unavailable in this case.

[0024] In an embodiment of an agentless security system, security services
may be provided on a device with a closed operating system. Rather than providing
a security agent that runs as a privileged background process on the system, security
services are provided via an agentless software development kit (SDK). The
agentless SDK may be statically or dynamically linked to a sandboxed application at
development time or at compile-time, which ensures that the security services
provided by the agentless security SDK are included within the sandboxed
application. In an embodiment, each sandboxed application would carry its own
version or copy of the agentless security SDK, and the agentless security SDK may
launch when the application launches.

[0025] This agentless security SDK may be able to provide many of the same
types of services that are provided by a traditional security agent. However, the
agentless SDK may provide those services only for and within the context of the
single sandboxed application. Thus, that single sandboxed application may be
secured by the agentless SDK. If other applications on the same platform also need
to be secured, then the developers of those applications may build them by including

WO 2021/041064 PCT/US2020/046567

the agentless security SDK, and may thus provide security for those applications as
well.

[0026] One feature of an agentless SDK described herein is that the application
developer need not be a security expert, or have deep knowledge of how to use the
agentless SDK. Rather, the agentless SDK may be included in a build project via
straightforward and traditional means, such as by adding the agentless SDK library
to the build project, or by using an include directive to include it in a project. Once
the agentless SDK library is included in the project, a single point of entry may be
provided to initiate agentless security services. For example, in one embodiment the
include directive may point to a macro that automatically causes agentless security
services to be launched when the application is launched. These agentless SDK
services may then run in the background and provide security or privacy services
similar to those provided by a traditional security agent. In other embodiments, the
application programmer may need invoke only a single procedure call (e.g.,
StartSecurityServices()) to initiate the security services. Once the security services
are invoked, the application programmer need not give further thought to the
agentless security SDK. The security services run in the background (e.g., in a
separate thread) without further direct action by the application programmer.

[0027] The use of the agentless security SDK provides benefits both to the
application programmer and the end user. For example, a security services provider
may provide a certification program, wherein an application that is shown to properly
invoke the agentless SDK is issued a certificate certifying that the application
complies with the usage requirements for the agentless security SDK. This gives the
application programmer a selling point for the application, namely that the end user
can trust that the application is secure. This also gives benefits to the end user, in
that the end user can trust that the application programmer has not deliberately or
inadvertently included code that will compromise the user’s security or privacy. This
is a concern, because application programmers generally reuse many different
libraries to perform useful functions. There may be little or no trust verification
between the application programmer and the provider of the library. Rather, the
application programmer may simply determine that the library provides a useful
function and invoke the library in his application. However, the application
programmer may not have good visibility into the library, itself. For example, the
library could collect PII or other sensitive information from the user, install malware,

install adware, or otherwise compromise the security or privacy of the end user of

5

WO 2021/041064 PCT/US2020/046567

the device. Thus, the application programmer need not even be malicious to take
malicious action on the user’s device. However, if the application programmer also
invokes the agentless security SDK, then the agentless security SDK library can
intercept procedures, monitor activity, and otherwise determine whether malicious
or suspicious activity is taking place. Thus, each application programmer need not
be a security expert to provide a secure application. Rather, by including the
agentless security SDK and invoking the single point of entry, the application
programmer provides adequate security to the application without having to worry
about the details of how security is provided.

[0028] Recent news stories and headlines have shown the importance of user
security and privacy. Recently, there have been a number of high profile user data
leaks from even large and sophisticated enterprises. Thus, privacy considerations
are becoming a greater concern to end users. A driver for user data leaks is the
user’s lack of control over PII information collected by various applications, which
may be transferred outside of the application. Once the data are transferred outside
of the application, users lose control over their PII. Furthermore, the European Union
(EU) has recently passed and instituted the General Data Protection Regulation
(GDPR), and other jurisdictions are considering similar laws and regulations. Thus, it
is becoming harder for a developer to follow the GDPR guidelines and ensure
compliance. As stated above, an application developer may be out of compliance
with the GDPR simply by including a library that leaks personal or security data, with
no malicious intent on the developer’s part. Furthermore, application developers
want to focus on developing applications, not on becoming legal experts in
international law.

[0029] Such application developers have limited solutions available to them for
privacy, regulatory compliance, PII management, and security. This is particularly
true in the case of a closed operating system, wherein the application programmer
cannot rely on a third-party security agent to provide security and privacy services.
Even using a VPN to protect communication may not be sufficient to prevent
applications from leaking end user PII. Thus, many developers are being exposed to
increasing legal risk due to the changing and evolving regulatory and policy
landscape.

[0030] Unfortunately, many application developers, and particularly mobile
application developers, lack sophisticated knowledge of how to implement security

correctly inside of applications. As described above, when they use third-party

6

WO 2021/041064 PCT/US2020/046567

libraries or SDKs for which they have no knowledge of the internal implementation,
they are essentially giving up control over what their application does. These third-
party libraries or SDKs may perform restricted or illegal activities without the
application developer even knowing. Furthermore, high-grossing application
developers also have a growing problem of hackers breaking into their applications’
networking protocols to get services for free, or to share free versions of the
applications on special “hacked app store” websites.

[0031] Another concern is for mature markets, where many of the applications
provide similar functionality and developers are looking for a feature to differentiate
their application. To a discriminating user, a security certification may be a major
differentiator to the advantage of the application developer.

[0032] An agentless security SDK could also provide other useful features such
as parental controls. Many operating systems are currently adopting some level of
parental controls. However, if parental controls are adopted at the application level,
then parents may be given more fine-tuned or fine-grained access overseeing what
their children use and do. For example, on a more open operating system such as
Android, a parental control app allows parents to restrict individual applications,
provide a “bedtime,” and even see individual text messages that their children and
teens are sending and receiving. However, on a closed operating system such as
i0S, the very same parental control application may provide extremely limited
visibility to the parent. The parental control app MMGuardian is an illustrative
example. If a parent installs MMGuardian on a teenager’s Android phone, then the
user has fine-grained control over restricting applications, including restricting
individual applications at certain times of day, shutting the phone off at a certain
time, sending the child’s location, and getting a copy of every single text message
that the child sends or receives on the phone. On the other hand, the MMGuardian
parental control app on an iPhone gives the parent very limited capabilities, and
notably lacks the ability to provide the parent with a copy of sent and received text
messages, or other fine-grained application control. However, if applications are built
using an agentless security SDK with a parental control mechanism built-in, then
those parental control mechanisms can be propagated to the parents, and the
parents can provide greater safety for their children in a dangerous online world.

[0033] Many parents would like to have a means to control and manage their
children’s usage of various apps. While operating systems themselves may have

“vanilla” rules for application control, it is beneficial to take into consideration the

7

WO 2021/041064 PCT/US2020/046567

network environment, security and privacy risks, and other data or personal security
risks that the child or the device may be exposed to. An agentless security SDK can
provide advanced parental controls with more rules and policies than are generally
available with the plain vanilla operating system, currently.

[0034] Furthermore, the issues above are not unique to i0OS. For example,
Android Q is moving toward a more closed operating system structure, as are even
some desktop operating systems, such as Mac OS X and certain versions of Windows
that are moving more toward an app store-centric structure with fewer open options
for the end user. Under a closed operating system, it may not be possible to
implement traditional security agents as an external process that monitors other
applications, processes, or files on the device. Each application is limited to its own
sandbox, and so would be the security agent.

[0035] Under a closed operating system, device-level security and/or privacy
implementations are essentially limited to the use of a VPN, which allows firewall-
like functionality. However, this has limited ability to prevent PII leakage. For
security, this requires a complex server-side system that is limited in its knowledge
of the actual contexts on the data flows. This server-side system is therefore limited
in its ability to provide value.

[0036] The present specification provides an agentless security SDK that
provides a solution for both privacy and security, as well as additional functionality
such as parental controls. This functionality is provided from within the application
itself. In some embodiments, the agentless security SDK of the present specification
provides protection for the end user by enforcing best practices as well as by taking
action (without end user or even application programmer interaction) based on one
or more security statuses. For example, if a problem is detected, the agentless
security SDK can take autonomous action to remedy the problem. A problem in this
context could be a security threat, a breach of best security practices, a breach of
privacy, an error or mistake in programming, or any other issue that affects user
privacy or security. Thus, even a poorly-developed application (such as one
developed by an amateur looking to cash in on the latest craze) can be shipped with
reliable, enterprise-grade security and privacy protections simply by including the
agentless security SDK.

[0037] This provides functionality that may not otherwise be available to a

traditional security agent via a closed operating system.

WO 2021/041064 PCT/US2020/046567

[0038] The agentless SDK of the present specification incorporates
technologies for network protection and detection. For example, the agentless SDK
could detect whether a user’s Wi-Fi connection is under attack. The agentless SDK
may also enforce correct security implementation (certificate pinning, for example),
which may be significantly superior to what the application programmer may do on
his own. Effectively, the antivirus or security agent is placed inside the application
and becomes part of the application process. This allows the agentless SDK to do
more than a security agent could do on a closed operating system.

[0039] The agentless SDK may take action automatically and may potentially
alter the application’s behavior according to the environment’s security status. As
described above, a similar mechanism can be used to implement parental control
over the application.

[0040] The agentless SDK may also provide better ability to alert the user
within the application context instead of an external notification, which might be
unavailable (e.g., if the user has turned off notifications), or which the user may
simply brush aside. In some embodiments, application developers may be provided
anonymized or limited reporting data of detected events and actions. This can help
the application developer to develop more secure applications, and may notify the
application developer if he is using third-party libraries that are compromising
security. In some embodiments, end users may be offered a dashboard view of the
security state, which educates the user and shows the value of using applications
that include the agentless security SDK. Furthermore, with user consent, the
agentless security SDK could monitor application behavior over time and provide
additional analysis and services. For example, the system could track historical URLs
or domains that applications access, use machine learning analysis to better detect
anomalies, or offer upsell services to protect the user against detected
vulnerabilities.

[0041] In at least some embodiments, the application user interface (UI) can
be altered or reconfigured to make security notifications non-dismissible. A common
notification can wusually be dismissed, or even disabled according to user
configuration options. But the agentless security SDK can provide notifications (for
example, for critical security or privacy issues) that cannot be disabled, and that
cannot be immediately dismissed. For example, the notification may require some
user action before it is dismissed. This can help to ensure that the user does not

WO 2021/041064 PCT/US2020/046567

simply ignore the notification, as often occurs with system notifications on
computers.

[0042] The teachings of the present specification can provide both security and
privacy protection in a closed operating system where an external agent may not be
feasible. This may be done by creating an SDK for developers to integrate with their
application in a non-intrusive and non-obstructive way. The security agent can then
monitor and protect the application and the end user for both security and privacy.
This approach allows an implementation of policies and enforcements that can also
supplement parental controls. This also allows a security vendor to integrate
functionality into the application, including authentication services, advertising,
social networking, or other services if desired by the end user.

[0043] A system and method for providing agentless security will now be
described with more particular reference to the attached FIGURES. It should be noted
that throughout the FIGURES, certain reference numerals may be repeated to
indicate that a particular device or block is referenced multiple times across several
FIGURES. In other cases, similar elements may be given new numbers in different
FIGURES. Neither of these practices is intended to require a particular relationship
between the various embodiments disclosed. In certain examples, a genus or class
of elements may be referred to by a reference numeral (*widget 10”), while individual
species or examples of the element may be referred to by a hyphenated numeral
(“first specific widget 10-1" and “second specific widget 10-2").

[0044] FIGURE 1 is a block diagram of a security ecosystem 100. Security
ecosystem 100 illustrates an ecosystem in which security may be advantageous.
Security could be provided by any number of means, including via a security agent,
or an agentless security SDK, according to the teachings of the present specification.

[0045] In the example of FIGURE 1, security ecosystem 100 may be an
enterprise, a government entity, a data center, a telecommunications provider, a
“smart home” with computers, smart phones, and various internet of things (IoT)
devices, or any other suitable ecosystem. Security ecosystem 100 is provided herein
as an illustrative and nonlimiting example of a system that may employ, and benefit
from, the teachings of the present specification.

[0046] Within security ecosystem 100, one or more users 120 operate one or
more client devices 110. A single user 120 and single client device 110 are illustrated
here for simplicity, but a home or enterprise may have multiple users, each of which

10

WO 2021/041064 PCT/US2020/046567

may have multiple devices, such as desktop computers, laptop computers, smart
phones, tablets, hybrids, or similar.

[0047] Client devices 110 may be communicatively coupled to one another and
to other network resources via local network 170. Local network 170 may be any
suitable network or combination of one or more networks operating on one or more
suitable networking protocols, including a local area network, a home network, an
intranet, a virtual network, a wide area network, a wireless network, a cellular
network, or the internet (optionally accessed via a proxy, virtual machine, or other
similar security mechanism) by way of nonlimiting example. Local network 170 may
also include one or more servers, firewalls, routers, switches, security appliances,
antivirus servers, or other network devices, which may be single-purpose appliances,
virtual machines, containers, or functions. Some functions may be provided on client
devices 110.

[0048] In this illustration, local network 170 is shown as a single network for
simplicity, but in some embodiments, local network 170 may include any number of
networks, such as one or more intranets connected to the internet. Local network
170 may also provide access to an external network, such as the internet, via
external network 172. External network 172 may similarly be any suitable type of
network.

[0049] Local network 170 may connect to the internet via gateway 108, which
may be responsible, among other things, for providing a logical boundary between
home network 172 and external network 170. Local network 170 may also provide
services such as dynamic host configuration protocol (DHCP), gateway services,
router services, and switching services, and may act as a security portal across local
boundary 104.

[0050] Local network 170 may also include a number of discrete 10T devices.
For example, local network 170 may include IoT functionality to control lighting 132,
thermostats or other environmental controls 134, a security system 136, and any
number of other devices 140. Other devices 140 may include, as illustrative and
nonlimiting examples, network attached storage (NAS), computers, printers, smart
televisions, smart refrigerators, smart vacuum cleaners and other appliances, and
network connected vehicles.

[0051] Local network 170 may communicate across local boundary 104 with
external network 172. Local boundary 104 may represent a physical, logical, or other

boundary. External network 172 may include, for example, websites, servers,

11

WO 2021/041064 PCT/US2020/046567

network protocols, and other network-based services. In one example, an attacker
180 (or other similar malicious or negligent actor) also connects to external network
172. A security services provider 190 may provide services to local network 170,
such as security software, security updates, network appliances, or similar. For
example, MCAFEE, LLC provides a comprehensive suite of security services that may
be used to protect local network 170 and the various devices connected to it.

[0052] It may be a goal of users 120 to successfully operate devices on local
network 170 without interference from attacker 180. In one example, attacker 180
is @ malware author whose goal or purpose is to cause malicious harm or mischief,
for example, by injecting malicious object 182 into client device 110. Once malicious
object 182 gains access to client device 110, it may try to perform work such as
social engineering of user 120, a hardware-based attack on client device 110,
modifying storage 150 (or volatile memory), modifying client application 112 (which
may be running in memory), or gaining access to local resources. Furthermore,
attacks may be directed at IoT objects. IoT objects can introduce new security
challenges, as they may be highly heterogeneous, and in some cases may be
designed with minimal or no security considerations. To the extent that these devices
have security, it may be added on as an afterthought. Thus, IoT devices may in some
cases represent new attack vectors for attacker 180 to leverage against local network
170.

[0053] Malicious harm or mischief may take the form of installing root kits or
other malware on client devices 110 to tamper with the system, installing spyware
or adware to collect personal and commercial data, defacing websites, operating a
botnet such as a spam server, or simply to annoy and harass users 120. Thus, one
aim of attacker 180 may be to install his malware on one or more client devices 110
or any of the IoT devices described. As used throughout this specification, malicious
software (“malware”) includes any object configured to provide unwanted results or
do unwanted work. In many cases, malware objects will be executable objects,
including, by way of nonlimiting examples, viruses, Trojans, zombies, rootkits,
backdoors, worms, spyware, adware, ransomware, dialers, payloads, malicious
browser helper objects, tracking cookies, loggers, or similar objects designed to take
a potentially-unwanted action, including, by way of nonlimiting example, data
destruction, data denial, covert data collection, browser hijacking, network proxy or
redirection, covert tracking, data logging, keylogging, excessive or deliberate

barriers to removal, contact harvesting, and unauthorized self-propagation. In some

12

WO 2021/041064 PCT/US2020/046567

cases, malware could also include negligently-developed software that causes such
results even without specific intent.

[0054] In enterprise contexts, attacker 180 may also want to commit industrial
or other espionage, such as stealing classified or proprietary data, stealing identities,
or gaining unauthorized access to enterprise resources. Thus, attacker 180’s strategy
may also include trying to gain physical access to one or more client devices 110 and
operating them without authorization, so that an effective security policy may also
include provisions for preventing such access.

[0055] In another example, a software developer may not explicitly have
malicious intent, but may develop software that poses a security risk. For example,
a well-known and often-exploited security flaw is the so-called buffer overrun, in
which a malicious user is able to enter an overlong string into an input form and thus
gain the ability to execute arbitrary instructions or operate with elevated privileges
on a computing device. Buffer overruns may be the result, for example, of poor input
validation or use of insecure libraries, and in many cases arise in nonobvious
contexts. Thus, although not malicious, a developer contributing software to an
application repository or programming an IoT device may inadvertently provide
attack vectors for attacker 180. Poorly-written applications may also cause inherent
problems, such as crashes, data loss, or other undesirable behavior. Because such
software may be desirable itself, it may be beneficial for developers to occasionally
provide updates or patches that repair vulnerabilities as they become known.
However, from a security perspective, these updates and patches are essentially new
objects that must themselves be validated.

[0056] Local network 170 may contract with or subscribe to a security services
provider 190, which may provide security services, updates, antivirus definitions,
patches, products, and services. MCAFEE, LLC is a nonlimiting example of such a
security services provider that offers comprehensive security and antivirus solutions.
In some cases, security services provider 190 may include a threat intelligence
capability such as the global threat intelligence (GTI™) database provided by
MCAFEE, LLC, or similar competing products. Security services provider 190 may
update its threat intelligence database by analyzing new candidate malicious objects
as they appear on client networks and characterizing them as malicious or benign.

[0057] Other security considerations within security ecosystem 100 may
include parents’ or employers’ desire to protect children or employees from

undesirable content, such as pornography, adware, spyware, age-inappropriate

13

WO 2021/041064 PCT/US2020/046567

content, advocacy for certain political, religious, or social movements, or forums for
discussing illegal or dangerous activities, by way of nonlimiting example.

[0058] FIGURE 2 is a block diagram of a hardware platform 200. In this
illustration, hardware platform 200 includes a processor 210, which may be
configured to execute arbitrary instructions according to an instruction architecture.
Stored within memory 220 is a set of instructions for providing various programs and
functions. Specifically in this context, memory 220 hosts a software ecosystem 202.
Software ecosystem 202 provides a software platform for executing a number of
applications useful to the user, such as applications 208-1, 208-2, 208-3, 208-4.
Software ecosystem 202 also provides an open operating system 204.

[0059] In this case, because open operating system 204 is able to host a
variety of different types of applications, a security agent 206 can be provided within
software ecosystem 202. Security agent 206 may operate with elevated system
privileges, such as a lower-level “ring” in a ring protection architecture. Because
security agent 206 operates with elevated privileges, security agent 206 can
intercept interprocess communications (IPCs) between applications 208 (e.g., an IPC
between application 208-1 and application 208-2). Security agent 206 can also scan
a hard disk, provide or modify a network stack, inspect the binary code of
applications 208, and provide operating system hooks that allow security agent 206
to closely monitor applications 208 within software ecosystem 202.

[0060] FIGURE 3 is a block diagram of a hardware platform 300. Hardware
platform 300 is similar to hardware platform 200 of FIGURE 2. For example,
hardware platform 300 provides a processor 310, a memory 320, and a security
agent 330. Processor 310 may execute arbitrary instructions according to an
instruction set architecture. Memory 320 hosts a software ecosystem 303. Software
ecosystem 303 includes a closed operating system 304. Closed operating system
304 does not provide standard applications. Rather, at least some applications within
closed operating system 304 are sandboxed applications 308. In this example, all of
the illustrated applications are sandboxed applications, namely sandboxed
applications 308-1, 308-2, 308-3, and 308-4. Because applications 308 are
sandboxed from one another, it is more difficult to provide a security agent similar
to security agent 206 of FIGURE 2. While it is possible to provide a security agent
330 within software ecosystem 303, the nature of closed operating system 304
means that the security agent 330 would have more limited functionality. For

example, a security agent 330 would operate itself as a sandboxed application 308

14

WO 2021/041064 PCT/US2020/046567

(in this case, sandboxed application 308-4). Therefore, it would not have privileges
to inspect IPCs (e.g., an IPC between sandboxed application 308-1 and sandboxed
application 308-2). A security agent 330 could provide a VPN within the network
stack, which may provide some security functions, but it would have limited ability
to inspect private data. In particular, data sent outside of sandboxed applications
308 may be encrypted within the sandboxed application. The security agent 330
would therefore not be able to inspect the traffic as a normal security agent would
do.

[0061] As described above, a security agent 330 could be provided within
software ecosystem 303, and indeed may be provided within software ecosystem
303. However, because security agent 330 has more limited functionality than
security agent 206 of FIGURE 2, the functionality of security agent 330 may be
supplemented or replaced. For example, instead of (or in addition to) security agent
330, at least some sandboxed applications 308 may be built using an agentless
security SDK. In that case, each sandboxed application 308 may provide its own
security. Specifically, one or more sandboxed applications 308 may have been built
with an agentless security SDK, which may provide a single point of entry for security
services. Once the single point of entry is invoked, the agentless security SDK
provides security services to the sandboxed application 308 hosting the agentless
security SDK.

[0062] FIGURE 4 is a block diagram of a sandboxed application 400.
Sandboxed application 400 may be built using a userspace SDK 404. Userspace SDK
404 is a traditional SDK that provides the functions that enable the application
programmer to provide an application that is useful to the end user. Userspace SDK
404 may provide such facilities as a network stack, file and disk access, memory
management, user interface elements, and other libraries that may provide
userspace functions. The system programmer writes userspace code 408 to take
advantage of elements of userspace SDK 404. In most cases, it takes some level of
skill for the application programmer to write userspace code 408 so as to provide a
useful application via userspace SDK 404.

[0063] In creating sandboxed application 400, the application programmer
may also invoke agentless security SDK 416. Agentless security SDK 416 provides
objects, routines, methods, and other code that handles security for sandboxed
application 400.

15

WO 2021/041064 PCT/US2020/046567

[0064] In at least some embodiments, a single point of entry 412 is provided
for invoking agentless security SDK 416. In other words, it may not be necessary for
the application programmer to write userspace code 408 to take advantage of the
features of agentless security SDK 416. Rather, by invoking single point of entry 412,
the system programmer may gain the full benefit of agentless security SDK. Single
point of entry 412 could be a header file or other included file with macros or
directives to invoke the single point of entry. In other embodiments, single point of
entry 412 could be a single macro or procedure that the application programmer
calls, for example, early in the main program procedure to invoke the security
services. Once the security services of agentless security SDK 416 are invoked, they
may run in the background without further interaction from userspace code 408 or
userspace SDK 404. In some examples, the procedures of agentless security SDK
416 may run in one or more separate application threads from the main procedure.

[0065] Advantageously, by invoking agentless security SDK 416, the
application programmer gains the full benefit of the agentless security SDK, without
having to have a deep knowledge of security procedures. For example, agentless
security SDK may enforce authentication protocols, may observe processes for
collection of PII, may inspect the network stack, may watch for Wi-Fi hijacking, may
provide a localized VPN which may or may not be encrypted, may provide a localized
client-only VPN which may or may not be encrypted, and may provide other services.

[0066] In some embodiments, a vendor providing agentless security SDK 416
may provide a certification program, wherein sandboxed applications 400 that
properly invoke agentless security SDK 416 are certified. Once an application is
certified, the application vendor may be entitled to provide a notice, such as a shield,
certificate, or other trademark symbol issued by the security services vendor. In
some cases, the sandboxed application 400 may also be issued a digital certificate
that can be verified by the security vendor so that end users can confidently install
the application and know that it complies with security requirements.

[0067] In one embodiment, sandboxed application 400, via agentless security
SDK 416, can be certified when agentless security SDK 416 communicates with a
cloud service and reports that the application has invoked single point of entry 412.
In cases where a single point of entry 412 is used, this may be sufficient to indicate
that agentless security SDK 416 has been launched along with sandboxed application
400, and is providing security services. Where more details are required, sandboxed

application 400 may write out an output file or log, such as in JavaScript Object

16

WO 2021/041064 PCT/US2020/046567

Notation (JSON) or other format, and provide the logging data to the security vendor.
The security vendor can then use the logging data to certify that sufficient security
services are being provided. This additional verification may be used either with or
without a single point of entry 412.

[0068] In the case of legal compliance, such as GDPR or other compliance, a
log file can also be used to certify that user data such as PII are not being collected.
Advantageously, the security vendor may then provide the application developer with
a certificate indicating and certifying that the application is compliant with the GDPR
or with other regulations. This can help to ease legal compliance obligations on the
part of application developers, and can provide on behalf of the application developer
proof of due diligence. Specifically, on the assumption that agentless security SDK
416 provides the minimum legally necessary data protections, then by certifying that
sandboxed application 400 invokes agentless security SDK 416 (e.g., via single point
of entry 412), the application developer may be able to prove that he has taken
sufficient minimum care with the end user’s data.

[0069] In some cases, a log file can be generated or stored in the cloud.
Furthermore, the log file can be used not only to certify the vendor’s compliance, but
can also be used to help the vendor with internal security practices. The log file may
certify not only that the app developer has properly invoked the agentless security
SDK, but may also provide tracking of actions taken by the SDK in response to the
application. This means that an app developer who is sincerely interested in
improving her application can receive feedback that will indicate what privacy or
security breaches arise. For example, the agentless security SDK may detect failure
to follow best practices, malicious or negligent action by another SDK, data leaks,
compromise by malware, or other errors. The security vendor may communicate this
information to the developer, such as by providing her with access to the log file,
and the developer can then improve the application.

[0070] In some embodiments, the application developer may also register an
account with the security services provider, and may have access to a dashboard,
such as an online or local dashboard. Thus, she can observer her log files, observe
blocked behavior of her application, and otherwise improve her programming.

[0071] FIGURE 5 is a block diagram of selected elements of agentless security
SDK 500. Agentless security SDK 500 may be any of the agentless security SDKs

discussed throughout this specification.

17

WO 2021/041064 PCT/US2020/046567

[0072] In this example, agentless security SDK 500 includes a number of
components. The components illustrated here are not intended to be exhaustive or
limiting, but rather are provided by way of illustration as nonlimiting examples.
Various embodiments of agentless security SDKs 500 may include some or all of the
components illustrated herein, and may also optionally include other components as
desired for the specific embodiment. It should be noted that not all of the illustrated
elements need be present to constitute an agentless security SDK 500.

[0073] In this embodiment, agentless security SDK 500 includes
instrumentation 504, privacy engine 508, network environment engine 512,
detection engine 516, best practices engine 520, enforcement engine 524,
notification engine 528, and history engine 532.

[0074] Instrumentation 504 is a part of the SDK that directs the execution flow
around inputs and outputs. These inputs and outputs are to go through agentless
security SDK 500, creating a “pass-through” thin layer that both examines and
potentially modifies (or completely prevents) information from exiting the
application. Instrumentation may also apply to security-related operating system
services, such as encryption and related services. Instrumentation layer 504 helps
to make the other layers functional and effective inside the hosting application, such
as a sandboxed application 400 of FIGURE 4.

[0075] Some platforms such as iOS provide technology (e.g., Swizzle) to
seamlessly provide instrumentation without any additional effort from the developer
integrating the SDK. For example, this technology has been demonstrated on iOS.

[0076] Other platforms may require a greater cooperative effort from the
developer. For example, if supporting technology is not available from the OS, the
developer might need to install a plug-in to their development environment that will
automate the process of altering source code to direct input and output API calls
through instrumentation layer 504, to achieve the desired result. The degree to
which such external facilities may be required may depend on how openly
communication threads are exposed outside of the application thread. If an external
thread is able to examine and identify communication within another thread, then it
may be sufficient to invoke a single point of entry without the need for an automatic
code modifying tool.

[0077] Privacy engine 508 is a scanning service that determines whether a
piece of data contains PII. In some embodiments, privacy engine 508 uses a cloud

API or service to provide more detailed analysis, or to retrieve or cache data. The

18

WO 2021/041064 PCT/US2020/046567

cloud API or service may be self-contained, and in one embodiment is provided via
representational state transfer (REST) APIs.

[0078] Because instrumentation 504 is configured to observe data flows within
the sandboxed application, all data can be captured unencrypted. The cloud service
can therefore be implemented using regular expressions describing the structure of
PII. When PII data are identified, a determination may be made whether it is
contextually appropriate to export the PII outside of the application. If is not
contextually appropriate to export the PII outside of the application, then the
attempted export of PII may be intercepted and contained, or other remedial action
may be taken.

[0079] Network environment engine 512 examines the current network
environment for any active attacks. For example, network environment engine 512
may be able to identify secure sockets layer (SSL) strip or split attacks, or similar.
This provides network environment verification services for the end user. To verify
the network environment, it may use a server-side service that contains
predetermined responses and certificates. If any response is not as expected, then
an attack may be suspected. This is similar to what is already done in some existing
agentful security services.

[0080] Once an attack is detected, an action may be activated to enforce some
code execution. This may be done, for example, via network environment engine
512, or some other component.

[0081] Detection engine 516 provides security flaw detection. Detection engine
516 examines the outgoing and incoming communications to detect any known
security flaws in them. It may examine and verify security certificates, and other
security related flaws. Detection engine 516 may also look at the URLs the application
is attempting to use, and may detect any malicious URLs. In some embodiments,
detection of malicious URLs may be via a cloud service, such as McAfee Global Threat
Intelligence, or some other cloud service provided by a security services provider.
(See, e.g., security services provider 190 of FIGURE 1.) Detection engine 516 may
be tightly integrated with best practices engine 520, which enforces correct
implementations.

[0082] Best practices engine 520 is a security prevention and best practices
layer. Best practices engine 520 may, via instrumentation 504, gain access to all
networking functionality. This allows best practices engine 520 to implement correct

security practices, such as certificate pinning, enforcement of Hypertext Transfer

19

WO 2021/041064 PCT/US2020/046567

Protocol Secure (HTTPS), and other best practices. Enforcing best networking
practices implementations can help to prevent security vulnerabilities.

[0083] Enforcement engine 524 provides action and enforcement. Enforcement
engine 524 listens to events produced by the other layers within agentless security
SDK 500, and maps each event to one or more actions that need to be taken. The
mapping itself may be highly configurable, and in some embodiments is downloaded
and synchronized from the cloud to give extra flexibility in determining what to do
with each event per application or developer, or is implemented according to the
directives of an enterprise security administrator.

[0084] Action and enforcement can include any action or enforcement response
to a security event. This could include, for example, notifying the user, means for
notifying the user, modifying data, modifying networking protocols, blocking network
operations, blocking the application, terminating the application, notifying an
enterprise security actor, notifying a security services vendor or provider,
quarantining the application, uninstalling the application, checking for other damage,
or taking any other action.

[0085] Policies may be defined on the cloud and synchronized to agentless
security SDK 500. In embodiments where parental controls are provided, advanced
parental controls may also be provided via enforcement engine 524. Note that
parental controls are illustrated herein as an example of an application, but
enterprise controls may be just as useful. For example, while parental controls may
be concerned with when the child or teenager uses the device, which applications
are accessed, and placing limits on certain data, similar restrictions may be provided
by an enterprise. For example, the enterprise may restrict access to games or other
non-enterprise apps during business hours, may restrict access to certain data
sources during business or nonbusiness hours, or may take other actions to prevent
loss of enterprise data. Indeed, the PII protections provided herein can be adapted
for data loss prevention (DLP), to prevent loss of proprietary or classified enterprise
data.

[0086] Notification engine 528 may provide user notifications and history.
Notification engine 528 may be responsible for displaying different types of
notifications to the user, and may include manipulating the application user interface.

[0087] Notification layer 528 may also collect notifications received, as well as
events provided within the SDK. These can be provided as a list of historical events

20

WO 2021/041064 PCT/US2020/046567

to history engine 532. History engine 532 may provide historical data that can be
used heuristically, or for logging purposes.

[0088] The hosting application may, in some embodiments, implement a user
interface (UI) to present data from history engine 532 to the user as a list or a log
file. In other examples, the SDK may provide a generic screen to provide history
engine 532, and in some cases the screen may be dressed with Ul elements to make
it appear consistent with the overall application presentation. The generic screen
may have a few simple customization points for background, fonts, and colors, which
can be modified by the user or the application programmer to customize the display
of the generic screen. Optionally, in parallel, the history may also be sent to the
cloud on the server side, to provide a feed of historical events and actions. This can
be used to strengthen the cloud services, to provide analysis, to provide enterprise-
wide or global event recording, and to provide global or enterprise analytics. In some
embodiments, logs sent to the cloud may themselves be stripped of PII to ensure
that agentless security SDK 500 does not compromise the security of the end user.

[0089] FIGURE 6 is a block diagram of a cloud ecosystem. In this example,
the cloud ecosystem includes a local hardware platform 602 and a cloud security
service 600. This illustrates interaction between various elements of the cloud
security service 600 and local hardware platform 602.

[0090] In this illustrative embodiment, local hardware platform 602 includes a
sandboxed application 604 which provides an agentless SDK 608. Agentless SDK 608
communicates with cloud security service 600.

[0091] Cloud security service 600 may provide a number of services that
correspond to some of the components provided in agentless SDK 608. For example,
examining agentless security SDK 500 of FIGURE 5, a privacy engine 508 may be
provided. Privacy engine 508 of FIGURE 5 may interact with PII detection service
620 of cloud security service 600.

[0092] Similarly, networking environment engine 512 of FIGURE 5 may interact
with network verification service 624. Network verification service 624 may provide
more detailed analytics or cloud-based security than is provided locally within
agentless security SDK 508.

[0093] Notification engine 528 of FIGURE 5 may interact with notification
service 628 of cloud security service 600. Notification service 628 may receive
notifications from notification engine 528 of FIGURE 5, and may aggregate data to

provide more useful global or enterprise analytics.

21

WO 2021/041064 PCT/US2020/046567

[0094] Enforcement engine 524 of FIGURE 5 may interoperate with
enforcement policy service 636. Enforcement policy service 636 provides cloud-
based analytics and data for policy enforcement. Specifically, enforcement policy
service 636 may provide a global, enterprise, and/or family policy for enforcement
by agentless SDK 608.

[0095] History service 632 may interoperate with history engine 532 of FIGURE
5. History service 632 may receive logging data from history engine 532 of FIGURE
5, and may provide appropriate analytics globally, or on enterprise level.

[0096] FIGURE 7 is a block diagram of a sandboxed application 700.
Sandboxed application 700 includes an agentless security SDK 710.

[0097] As illustrated, sandboxed application 700 interoperates with an
operating system or system APIs 720. These provide, for example, network 724, file
system 728, and encryption and security services 732. Because application 700 is
sandboxed, a traditional agentful security system may not be able to inspect, for
example, interactions between application UI 704 and application logic 708.
Furthermore, encryption and security services 732 may ensure that data sent out of
sandboxed application 700 are encrypted before they are sent to network 724. Thus,
an agentful security agent running on this platform may not be able to inspect those
data for PII loss, or for other security indicators.

[0098] Instead, agentless security SDK 710 runs within sandboxed application
700. Agentless security SDK 710 includes intercepts between application UI 704,
application logic 708, and OS or system API 720. Furthermore, agentless security
SDK 710 may provide other services and operations that can run in parallel to
application Ul 704 and application logic 708.

[0099] By tightly integrating with sandboxed application 700, agentless
security SDK 710 is able to examine or hook communications between the various
elements and inspect data, while providing security services.

[0100] In some embodiments, a single point of entry is invoked by simply
including a header file or a library for agentless security SDK 710. In the case of a
header file, certain macros or definitions may be used to override or redirect at least
some standard system calls, to ensure that they are performed with appropriate
security. In other cases, a single procedure call may be used to invoke agentless
security SDK 710 in the background.

[0101] The hooking or interception of communication between application Ul

704, application logic 708, and operating system 720 may, in some cases, be

22

WO 2021/041064 PCT/US2020/046567

accomplished via an OS-provided utility such as Swizzle on iOS. In cases where such
a utility is not provided, some other means may be used to hook or intercept
communications between processes. For example, an automated tool may be used
to modify standard communication calls for operations such as reading from or
writing to disk, reading from or writing to memory, accessing devices or system
services, and/or reading from or writing to the network stack. In yet another
embodiment, rather than rewriting those standard calls, the SDK may overload or
override the standard system calls, and provide their own duplicate functions with
the same procedure name. This may be permissible, so long as agentless security
SDK 710 has a higher naming priority than the standard operating system calls. In
this case, the application programmer can invoke standard system procedures for
performing these tasks, but those invocations are intercepted by agentless security
SDK 710, and security services, including lightweight security services, may be
performed on those communications before the standard system call is invoked.

[0102] FIGURE 8 is a flowchart of a method 800 for providing an agentless
security SDK.

[0103] Starting in block 804, the application may launch an agentless security
SDK, for example via a single point of entry. As described above, the single point of
entry may be a main procedure call, or it may be invoked simply by including the
agentless security SDK with the project at build time, optionally with the appropriate
priority so that system calls can be overridden or overloaded.

[0104] In block 808, the agentless security SDK begins monitoring the
application. Monitoring continues so long as the application continues to operate.

[0105] In block 816, some signal is sent to terminate the application. The
termination of the application in block 816 also signals termination of the monitoring
services by agentless security SDK.

[0106] In block 820, as necessary, the agentless security SDK may perform
cleanup or garbage collection or other services.

[0107] In block 890, the method is done.

[0108] FIGURE 9 is a block diagram of a hardware platform 900. Embodiments
of hardware platform 900 may be configured or adapted to provide agentless
security, as disclosed in the present specification.

[0109] Although a particular configuration is illustrated here, there are many
different configurations of hardware platforms, and this embodiment is intended to

represent the class of hardware platforms that can provide a computing device.

23

WO 2021/041064 PCT/US2020/046567

Furthermore, the designation of this embodiment as a “hardware platform” is not
intended to require that all embodiments provide all elements in hardware. Some of
the elements disclosed herein may be provided, in various embodiments, as
hardware, software, firmware, microcode, microcode instructions, hardware
instructions, hardware or software accelerators, or similar. Furthermore, in some
embodiments, entire computing devices or platforms may be virtualized, on a single
device, or in a data center where virtualization may span one or a plurality of devices.
For example, in a “rackscale architecture” design, disaggregated computing
resources may be virtualized into a single instance of a virtual device. In that case,
all of the disaggregated resources that are used to build the virtual device may be
considered part of hardware platform 900, even though they may be scattered across
a data center, or even located in different data centers.

[0110] Hardware platform 900 is configured to provide a computing device. In
various embodiments, a “computing device” may be or comprise, by way of
nonlimiting example, a computer, workstation, server, mainframe, virtual machine
(whether emulated or on a “bare metal” hypervisor), network appliance, container,
IoT device, high performance computing (HPC) environment, a data center, a
communications service provider infrastructure (e.g., one or more portions of an
Evolved Packet Core), an in-memory computing environment, a computing system
of a vehicle (e.g., an automobile or airplane), an industrial control system, embedded
computer, embedded controller, embedded sensor, personal digital assistant, laptop
computer, cellular telephone, internet protocol telephone, smart phone, tablet
computer, convertible tablet computer, computing appliance, receiver, wearable
computer, handheld calculator, or any other electronic, microelectronic, or
microelectromechanical device for processing and communicating data. At least
some of the methods and systems disclosed in this specification may be embodied
by or carried out on a computing device.

[0111] In the illustrated example, hardware platform 900 is arranged in a
point-to-point (PtP) configuration. This PtP configuration is popular for personal
computer (PC) and server-type devices, although it is not so limited, and any other
bus type may be used.

[0112] Hardware platform 900 is an example of a platform that may be used
to implement embodiments of the teachings of this specification. For example,
instructions could be stored in storage 950. Instructions could also be transmitted to
the hardware platform in an ethereal form, such as via network interface 948, or

24

WO 2021/041064 PCT/US2020/046567

retrieved from another source via any suitable interconnect. Once received (from
any source), the instructions may be loaded into memory 904, and may then be
executed by one or more processor 902 to provide elements such as an operating
system 906, operational agents 908, or data 912.

[0113] Hardware platform 900 may include several processors 902. For
simplicity and clarity, only processors PROCO 902-1 and PROC1 902-2 are shown.
Additional processors (such as 2, 4, 8, 16, 24, 32, 64, or 128 processors) may be
provided as necessary, while in other embodiments, only one processor may be
provided. Details of processors 902 are not illustrated in this FIGURE, but one
embodiment is illustrated in FIGURE 11. Processors may have any number of cores,
such as 1, 2, 4, 8, 16, 24, 32, 64, or 128 cores.

[0114] Processors 902 may be any type of processor and may communicatively
couple to chipset 916 via, for example, PtP interfaces. Chipset 916 may also
exchange data with other elements, such as a high performance graphics adapter
922. In alternative embodiments, any or all of the PtP links illustrated in FIGURE 9
could be implemented as any type of bus, or other configuration rather than a PtP
link. In various embodiments, chipset 916 may reside on the same die or package
as a central processor unit (CPU) 1312 or on one or more different dies or packages.
Each chipset may support any suitable number of CPUs 902. A chipset 916 (which
may be a chipset, uncore, Northbridge, Southbridge, or other suitable logic and
circuitry) may also include one or more controllers to couple other components to
one or more CPUs.

[0115] Two memories, 904-1 and 904-2 are shown, connected to PROCO 902-
1 and PROC1 902-2, respectively. As an example, each processor is shown connected
to its memory in a direct memory access (DMA) configuration, though other memory
architectures are possible, including ones in which memory 904 communicates with
processor 910 via a bus. For example, some memories may be connected via a
system bus, or in a data center, memory may be accessible in a remote DMA (RDMA)
configuration.

[0116] Memory 904 may include any form of volatile or nonvolatile memory
including, without limitation, magnetic media (e.g., one or more tape drives), optical
media, flash, random access memory (RAM), double data rate RAM (DDR RAM)
nonvolatile RAM (NVRAM), static RAM (SRAM), dynamic RAM (DRAM), persistent RAM
(PRAM), data-centric (DC) persistent memory (e.g., Intel® Optane/3D-crosspoint),
cache, Layer 1 (L1) or Layer 2 (L2) memory, on-chip memory, registers, virtual

25

WO 2021/041064 PCT/US2020/046567

memory region, read-only memory (ROM), flash memory, removable media, tape
drive, cloud storage, or any other suitable local or remote memory component or
components. Memory 904 may be used for short, medium, and/or long-term storage.
Memory 904 may store any suitable data or information utilized by platform logic. In
some embodiments, memory 904 may also comprise storage for instructions that
may be executed by the cores of CPUs 902 or other processing elements (e.g., logic
resident on chipsets 916) to provide functionality.

[0117] In certain embodiments, memory 904 may comprise a relatively low-
latency volatile main memory, while storage 950 may comprise a relatively higher-
latency nonvolatile memory. However, memory 904 and storage 950 need not be
physically separate devices, and in some examples may represent simply a logical
separation of function (if there is any separation at all). It should also be noted that
although DMA is disclosed by way of nonlimiting example, DMA is not the only
protocol consistent with this specification, and that other memory architectures are
available.

[0118] Certain computing devices provide main memory 904 and storage 950,
for example, in a single physical memory device, and in other cases, memory 904
and/or storage 950 are functionally distributed across many physical devices. In the
case of virtual machines or hypervisors, all or part of a function may be provided in
the form of software or firmware running over a virtualization layer to provide the
logical function, and resources such as memory, storage, and accelerators may be
disaggregated (i.e., located in different physical locations across a data center).

[0119] In other examples, a device such as a network interface may provide
only the minimum hardware interfaces necessary to perform its logical operation,
and may rely on a software driver to provide additional necessary logic. Thus, each
logical block disclosed herein is broadly intended to include one or more logic
elements configured and operable for providing the disclosed logical operation of that
block. As used throughout this specification, “logic elements” may include hardware,
external hardware (digital, analog, or mixed-signal), software, reciprocating
software, services, drivers, interfaces, components, modules, algorithms, sensors,
components, firmware, hardware instructions, microcode, programmable logic, or
objects that can coordinate to achieve a logical operation.

[0120] Graphics adapter 922 may be configured to provide a human-readable
visual output, such as a command-line interface (CLI) or graphical desktop such as

Microsoft Windows, Apple OSX desktop, or a Unix/Linux X Window System-based

26

WO 2021/041064 PCT/US2020/046567

desktop. Graphics adapter 922 may provide output in any suitable format, such as a
coaxial output, composite video, component video, video graphics array (VGA), or
digital outputs such as digital visual interface (DVI), FPDLink, DisplayPort, or high
definition multimedia interface (HDMI), by way of nonlimiting example. In some
examples, graphics adapter 922 may include a hardware graphics card, which may
have its own memory and its own graphics processing unit (GPU).

[0121] Chipset 916 may be in communication with a bus 928 via an interface
circuit. Bus 928 may have one or more devices that communicate over it, such as a
bus bridge 932, I/O devices 935, network interface 948, accelerators 946,
communication devices 940, and a keyboard and/or mouse 938, by way of
nonlimiting example. In general terms, the elements of hardware platform 900 may
be coupled together in any suitable manner. For example, a bus may couple any of
the components together. A bus may include any known interconnect, such as a
multi-drop bus, a mesh interconnect, a fabric, a ring interconnect, a round-robin
protocol, a point-to-point interconnect, a serial interconnect, a parallel bus, a
coherent (e.g., cache coherent) bus, a layered protocol architecture, a differential
bus, or a Gunning transceiver logic (GTL) bus, by way of illustrative and nonlimiting
example.

[0122] Communication devices 940 can broadly include any communication not
covered by network interface 948 and the various I/0 devices described herein. This
may include, for example, various universal serial bus (USB), FireWire, Lightning, or
other serial or parallel devices that provide communications.

[0123] I/O Devices 935 may be configured to interface with any auxiliary
device that connects to hardware platform 900 but that is not necessarily a part of
the core architecture of hardware platform 900. A peripheral may be operable to
provide extended functionality to hardware platform 900, and may or may not be
wholly dependent on hardware platform 900. In some cases, a peripheral may be a
computing device in its own right. Peripherals may include input and output devices
such as displays, terminals, printers, keyboards, mice, modems, data ports (e.g.,
serial, parallel, USB, Firewire, or similar), network controllers, optical media, external
storage, sensors, transducers, actuators, controllers, data acquisition buses,
cameras, microphones, speakers, or external storage, by way of nonlimiting
example.

[0124] In one example, audio I/O 942 may provide an interface for audible

sounds, and may include in some examples a hardware sound card. Sound output

27

WO 2021/041064 PCT/US2020/046567

may be provided in analog (such as a 3.5mm stereo jack), component (“*RCA")
stereo, or in a digital audio format such as S/PDIF, AES3, AES47, HDMI, USB,
Bluetooth, or Wi-Fi audio, by way of nonlimiting example. Audio input may also be
provided via similar interfaces, in an analog or digital form.

[0125] Bus bridge 932 may be in communication with other devices such as a
keyboard/mouse 938 (or other input devices such as a touch screen, trackball, etc.),
communication devices 940 (such as modems, network interface devices, peripheral
interfaces such as PCI or PCle, or other types of communication devices that may
communicate through a network), audio I/O devices 942, a data storage device 944,
and/or accelerators 946. In alternative embodiments, any portions of the bus
architectures could be implemented with one or more PtP links.

[0126] Operating system 906 may be, for example, Microsoft Windows, Linux,
UNIX, Mac OS X, i0S, MS-DOS, or an embedded or real-time operating system
(including embedded or real-time flavors of the foregoing). In some embodiments,
a hardware platform 900 may function as a host platform for one or more guest
systems that invoke application (e.g., operational agents 908).

[0127] Operational agents 908 may include one or more computing engines
that may include one or more non-transitory computer-readable mediums having
stored thereon executable instructions operable to instruct a processor to provide
operational functions. At an appropriate time, such as upon booting hardware
platform 900 or upon a command from operating system 906 or a user or security
administrator, processor 902 may retrieve a copy of the operational agent (or
software portions thereof) from storage 950 and load it into memory 904. Processor
910 may then iteratively execute the instructions of operational agents 908 to
provide the desired methods or functions.

[0128] As used throughout this specification, an "“engine” includes any
combination of one or more logic elements, of similar or dissimilar species, operable
for and configured to perform one or more methods provided by the engine. In some
cases, the engine may be or include a special integrated circuit designed to carry out
a method or a part thereof, a field-programmable gate array (FPGA) programmed to
provide a function, a special hardware or microcode instruction, other programmable
logic, and/or software instructions operable to instruct a processor to perform the
method. In some cases, the engine may run as a “daemon” process, background
process, terminate-and-stay-resident program, a service, system extension, control

panel, bootup procedure, basic in/output system (BIOS) subroutine, or any similar

28

WO 2021/041064 PCT/US2020/046567

program that operates with or without direct user interaction. In certain
embodiments, some engines may run with elevated privileges in a “driver space”
associated with ring 0, 1, or 2 in a protection ring architecture. The engine may also
include other hardware, software, and/or data, including configuration files, registry
entries, application programming interfaces (APIs), and interactive or user-mode
software by way of nonlimiting example.

[0129] Where elements of an engine are embodied in software, computer
program instructions may be implemented in programming languages, such as an
object code, an assembly language, or a high-level language such as OpenCL,
FORTRAN, C, C++, JAVA, or HTML. These may be used with any compatible operating
systems or operating environments. Hardware elements may be designed manually,
or with a hardware description language such as Spice, Verilog, and VHDL. The
source code may define and use various data structures and communication
messages. The source code may be in a computer executable form (e.g., via an
interpreter), or the source code may be converted (e.g., via a translator, assembler,
or compiler) into a computer executable form, or converted to an intermediate form
such as byte code. Where appropriate, any of the foregoing may be used to build or
describe appropriate discrete or integrated circuits, whether sequential,
combinatorial, state machines, or otherwise.

[0130] Network interface 948 may be provided to communicatively couple
hardware platform 900 to a wired or wireless network or fabric. A “network,” as used
throughout this specification, may include any communicative platform operable to
exchange data or information within or between computing devices, including, by
way of nonlimiting example, a local network, a switching fabric, an ad-hoc local
network, Ethernet (e.g., as defined by the IEEE 802.3 standard), Fibre Channel,
InfiniBand, Wi-Fi, or other suitable standard. Intel® Omni-Path™ Architecture (OPA),
TrueScale™, Ultra Path Interconnect (UPI) (formerly called QPI or KTI),
FibreChannel, Ethernet, FibreChannel over Ethernet (FCoE), InfiniBand, PCI, PCle,
fiber optics, millimeter wave guide, an internet architecture, a packet data network
(PDN) offering a communications interface or exchange between any two nodes in a
system, a local area network (LAN), metropolitan area network (MAN), wide area
network (WAN), wireless local area network (WLAN), VPN, intranet, plain old
telephone system (POTS), or any other appropriate architecture or system that
facilitates communications in a network or telephonic environment, either with or

without human interaction or intervention. Network interface 948 may include one

29

WO 2021/041064 PCT/US2020/046567

or more physical ports that may couple to a cable (e.g., an Ethernet cable, other
cable, or waveguide).

[0131] In some cases, some or all of the components of hardware platform 900
may be virtualized, in particular the processor(s) and memory. For example, a
virtualized environment may run on OS 906, or OS 906 could be replaced with a
hypervisor or virtual machine manager. In this configuration, a virtual machine
running on hardware platform 900 may virtualize workloads. A virtual machine in
this configuration may perform essentially all of the functions of a physical hardware
platform.

[0132] In a general sense, any suitably-configured processor can execute any
type of instructions associated with the data to achieve the operations illustrated in
this specification. Any of the processors or cores disclosed herein could transform an
element or an article (for example, data) from one state or thing to another state or
thing. In another example, some activities outlined herein may be implemented with
fixed logic or programmable logic (for example, software and/or computer
instructions executed by a processor).

[0133] Various components of the system depicted in FIGURE 9 may be
combined in a system-on-a-chip (SoC) architecture or in any other suitable
configuration. For example, embodiments disclosed herein can be incorporated into
systems including mobile devices such as smart cellular telephones, tablet
computers, personal digital assistants, portable gaming devices, and similar. These
mobile devices may be provided with SoC architectures in at least some
embodiments. An example of such an embodiment is provided in FIGURE 10. Such
an SoC (and any other hardware platform disclosed herein) may include analog,
digital, and/or mixed-signal, radio frequency (RF), or similar processing elements.
Other embodiments may include a multichip module (MCM), with a plurality of chips
located within a single electronic package and configured to interact closely with each
other through the electronic package. In various other embodiments, the computing
functionalities disclosed herein may be implemented in one or more silicon cores in
application-specific integrated circuits (ASICs), FPGAs, and other semiconductor
chips.

[0134] FIGURE 10 is a block illustrating selected elements of an example SoC
1000. Embodiments of SoC 1000 may be configured or adapted to provide agentless

security, as disclosed in the present specification.

30

WO 2021/041064 PCT/US2020/046567

[0135] At least some of the teachings of the present specification may be
embodied on an SoC 1000, or may be paired with an SoC 1000. SoC 1000 may
include, or may be paired with, an advanced reduced instruction set computer
machine (ARM) component. For example, SoC 1000 may include or be paired with
any ARM core, such as A-9, A-15, or similar. This architecture represents a hardware
platform that may be useful in devices such as tablets and smartphones, by way of
illustrative example, including Android phones or tablets, iPhone (of any version),
iPad, Google Nexus, Microsoft Surface. SoC 1000 could also be integrated into, for
example, a PC, server, video processing components, laptop computer, notebook
computer, netbook, or touch-enabled device.

[0136] As with hardware platform 900 above, SoC 1000 may include multiple
cores 1002a and 1002b. In this illustrative example, SoC 1000 also includes an L2
cache control 1004, a GPU 1006, a video codec 1008, a liquid crystal display (LCD)
I/F 1010 and an interconnect 1012. L2 cache control 1004 can include a bus interface
unit 1014, a L2 cache 1016. Liquid crystal display (LCD) I/F 1010 may be associated
with mobile industry processor interface (MIPI)/HDMI links that couple to an LCD.

[0137] SoC 1000 may also include a subscriber identity module (SIM) I/F 1018,
a boot ROM 1020, a synchronous dynamic random-access memory (SDRAM)
controller 1022, a flash controller 1024, a serial peripheral interface (SPI) master
1028, a suitable power control 1030, a dynamic RAM (DRAM) 1032, and flash 1034.
In addition, one or more embodiments include one or more communication
capabilities, interfaces, and features such as instances of Bluetooth™ 1036, a 3G
modem 1038, a global positioning system (GPS) 1040, and an 802.11 Wi-Fi 1042.

[0138] Designers of integrated circuits such as SoC 1000 (or other integrated
circuits) may use intellectual property (IP) blocks to simplify system design. An IP
block is a modular, self-contained hardware block that can be easily integrated into
the design. Because the IP block is modular and self-contained, the integrated circuit
(IC) designer need only “drop in” the IP block to use the functionality of the IP block.
The system designer can then make the appropriate connections to inputs and
outputs.

[0139] IP blocks are often “black boxes.” In other words, the system integrator
using the IP block may not know, and need not know, the specific implementation
details of the IP block. Indeed, IP blocks may be provided as proprietary third-party
units, with no insight into the design of the IP block by the system integrator.

31

WO 2021/041064 PCT/US2020/046567

[0140] For example, a system integrator designing an SoC for a smart phone
may use IP blocks in addition to the processor core, such as a memory controller, a
nonvolatile memory (NVM) controller, Wi-Fi, Bluetooth, GPS, a fourth or fifth-
generation network (4G or 5G), an audio processor, a video processor, an image
processor, a graphics engine, a GPU engine, a security controller, and many other IP
blocks. In many cases, each of these IP blocks has its own embedded microcontroller.

[0141] FIGURE 11 is a block diagram illustrating selected elements of a
processor 1100. Embodiments of processor 1100 may be configured or adapted to
provide agentless security, as disclosed in the present specification.

[0142] In various examples, and throughout this specification and the
appended claims, a “processor” may include any combination of logic elements
operable to execute instructions, whether loaded from memory, or implemented
directly in hardware, including, by way of nonlimiting example, a microprocessor,
microcontroller, CPU, advanced RISC (reduced instruction set computing) machine
(ARM), digital signal processor (DSP), FPGA, GPU, programmable logic array, ASIC,
or virtual machine processor. In certain architectures, a multi-core processor may
be provided, having for example, 2, 4, 8, 12, 16, 24, 32, 64, or 128 cores. In some
embodiments, one or more co-processors or accelerators (hardware or software)
may also be provided for specialized or support functions. In general, processor 1100
may include any number of processing elements, which may be symmetrical or
asymmetrical.

[0143] Examples of hardware processing elements include: a thread unit, a
thread slot, a thread, a process unit, a context, a context unit, a logical processor, a
hardware thread, a core, and/or any other element, which is capable of holding a
state for a processor, such as an execution state or architectural state. In other
words, a processing element, in one embodiment, refers to any hardware capable of
being independently associated with code, such as a software thread, operating
system, application, or other code. A physical processor (or processor socket)
typically refers to an integrated circuit, which potentially includes any number of
other processing elements, such as cores or hardware threads.

[0144] A core may refer to logic located on an integrated circuit capable of
maintaining an independent architectural state, wherein each independently
maintained architectural state is associated with at least some dedicated execution
resources. A hardware thread may refer to any logic located on an integrated circuit

capable of maintaining an independent architectural state, wherein the

32

WO 2021/041064 PCT/US2020/046567

independently maintained architectural states share access to execution resources.
A physical CPU may include any suitable number of cores. In various embodiments,
cores may include one or more out-of-order processor cores or one or more in-order
processor cores. However, cores may be individually selected from any type of core,
such as a native core, a software managed core, a core adapted to execute a native
instruction set architecture (ISA), a core adapted to execute a translated ISA, a co-
designed core, or other known core. In a heterogeneous core environment (i.e.
asymmetric cores), some form of translation, such as binary translation, may be
utilized to schedule or execute code on one or both cores.

[0145] Processor 1100 includes one or more processor cores 1102, including
core 1102-1 - 1102-N. Cores 1102 may be, as appropriate, single-thread cores or
multi-thread cores. In multithreaded cores, more than one hardware thread may be
provided at a time, and the core may therefore provide more than one logical core
per physical core. The cores may be configured to execute instruction code. Each
processor 1100 may include at least one shared cache 1130, which may be treated
logically as part of memory 1140. Caches 1130 may be filled according to known
caching techniques, and may store instructions and/or data that may be used by one
or more components of processor 1100.

[0146] Processor 1100 may include an integrated memory controller (MC)
1134, to communicate with memory 1140. Memory controller 1134 may include logic
and circuitry to interface with memory 1140, and may also include a cache controller
to handle filling and evicting instructions and data to and from cache 1130.

[0147] By way of example, each core 1102 may include front-end logic 1106,
execution logic 1114, and backend logic 1118.

[0148] In the illustrated embodiment, front-end logic 1106 includes an
instruction decoder or decoders 1108, register renaming logic 1110, and scheduling
logic 1112. Decoder 1108 may decode instructions received. Register renaming logic
1110 may provide register renaming, for example to facilitate pipelining. Scheduling
logic 1112 may schedule instruction execution, and may provide out-of-order (O00)
execution. Front-end logic 1106 may fetch incoming instructions, perform various
processing (e.g., caching, decoding, branch predicting, etc.), and pass instructions
to execution logic 1114.

[0149] Execution logic 1114 includes one or more execution units 1116-1 -
1116-N. Execution units 1116 may include hardware instructions and microcode to

carry out the provided instructions.

33

WO 2021/041064 PCT/US2020/046567

[0150] Backend logic 1118 includes retirement logic 1120. Core 1102 may
provide for speculative execution of instructions, branch prediction, and similar.
Retirement logic 1120 may be configured to determine which predicted instructions
were actually needed by the program flow.

[0151] Processor 1100 may also include a PtP controller 1132, which enables
connection to an uncore, chipset, Northbridge, Southbridge, or bus, by way of
example.

[0152] FIGURE 12 is a block diagram of a trusted execution environment
(TEE) 1200. Embodiments of TEE 1200 may be configured or adapted to provide
agentless security, as disclosed in the present specification.

[0153] In the example of FIGURE 12, memory 1220 is addressable by n-bits,
ranging in address from 0 to 2™ — 1 (note, however, that in many cases, the size of
the address space may far exceed the actual memory available). Within memory
1220 is an OS 1222, enclave 1240, application stack 1220, and application code
1230.

[0154] In this example, enclave 1240 is a specially-designated portion of
memory 1220 that cannot be entered into or exited from except via special
instructions, such as Intel® Software Guard Extensions (SGX™) or similar. Enclave
1240 is provided as an example of a secure environment which, in conjunction with
a secure processing engine 1210, forms a TEE 1200 on a hardware platform such as
platform 900 of FIGURE 9. A TEE 1200 is a combination of hardware, software,
and/or memory allocation that provides the ability to securely execute instructions
without interference from outside processes, in a verifiable way.

[0155] By way of example, TEE 1200 may include memory enclave 1240 or
some other protected memory area, and a secure processing engine 1210, which
includes hardware, software, and instructions for accessing and operating on enclave
1240. Nonlimiting examples of solutions that either are or that can provide a TEE
include Intel® SGX™, ARM TrustZone, AMD Platform Security Processor, Kinibi,
securiTEE, OP-TEE, TLK, T6, Open TEE, SierraTEE, CSE, VT-x, MemCore, Canary
Island, Docker, and Smack. Thus, it should be noted that in an example, secure
processing engine 1210 may be a user-mode application that operates via trusted
execution framework 924 within enclave 1240. TEE 1200 may also conceptually
include processor instructions that secure processing engine 1210 and trusted
execution framework 924 require to operate within enclave 1240.

34

WO 2021/041064 PCT/US2020/046567

[0156] Secure processing engine 1210 and trusted execution framework 924
may together form a trusted computing base (TCB), which is a set of programs or
computational units that are trusted to be secure. Conceptually, it may be
advantageous to keep TCB relatively small so that there are fewer attack vectors for
malware objects or for negligent software. Thus, for example, operating system 1222
may be excluded from TCB, in addition to the regular application stack 1220 and
application code 1230.

[0157] In certain systems, computing devices equipped with Intel® SGX™ or
equivalent instructions may be capable of providing an enclave 1240. It should be
noted, however, that many other examples of TEEs are available, and TEE 1200 is
provided only as one example thereof. Other secure environments may include, by
way of nonlimiting example, a virtual machine, sandbox, testbed, test machine, or
other similar device or method for providing a TEE 1200.

[0158] In an example, enclave 1240 provides a protected memory area that
cannot be accessed or manipulated by ordinary computer instructions. Enclave 1240
is described with particular reference to an Intel® SGX™ enclave by way of example,
but it is intended that enclave 1240 encompass any secure processing area with
suitable properties, regardless of whether it is called an “enclave.”

[0159] One feature of an enclave is that once an enclave region 1240 of
memory 1220 is defined, as illustrated, a program pointer cannot enter or exit
enclave 1240 without the use of special enclave instructions or directives, such as
those provided by Intel® SGX™ architecture. For example, SGX™ processors provide
the ENCLU[EENTER], ENCLU[ERESUME], and ENCLU[EEXIT]. These are the only
instructions that may legitimately enter into or exit from enclave 1240.

[0160] Thus, once enclave 1240 is defined in memory 904, a program
executing within enclave 1240 may be safely verified to not operate outside of its
bounds. This security feature means that secure processing engine 1210 is verifiably
local to enclave 1240. Thus, when an untrusted packet provides its content to be
rendered with trusted execution framework 924 of enclave 1240, the result of the
rendering is verified as secure.

[0161] Enclave 1240 may also digitally sign its output, which provides a
verifiable means of ensuring that content has not been tampered with or modified
since being rendered by secure processing engine 1210. A digital signature provided
by enclave 1240 is unique to enclave 1240 and is unique to the hardware of the

device hosting enclave 1240.

35

WO 2021/041064 PCT/US2020/046567

[0162] FIGURE 13 is a block diagram of a network function virtualization
(NFV) infrastructure 1300. Embodiments of NFV infrastructure 1300 may be
configured or adapted to provide agentless security, as disclosed in the present
specification.

[0163] NFV is an aspect of network virtualization that is generally considered
distinct from, but that can still interoperate with, SDN. For example, virtual network
functions (VNFs) may operate within the data plane of an SDN deployment. NFV was
originally envisioned as a method for providing reduced capital expenditure (Capex)
and operating expenses (Opex) for telecommunication services. One feature of NFV
is replacing proprietary, special-purpose hardware appliances with virtual appliances
running on commercial off-the-shelf (COTS) hardware within a virtualized
environment. In addition to Capex and Opex savings, NFV provides a more agile and
adaptable network.

[0164] As network loads change, VNFs can be provisioned (“spun up”) or
removed (“spun down”) to meet network demands. For example, in times of high
load, more load balancing VNFs may be spun up to distribute traffic to more workload
servers (which may themselves be virtual machines). In times when more suspicious
traffic is experienced, additional firewalls or deep packet inspection (DPI) appliances
may be needed.

[0165] Because NFV started out as a telecommunications feature, many NFV
instances are focused on telecommunications. However, NFV is not limited to
telecommunication services. In a broad sense, NFV includes one or more VNFs
running within a network function virtualization infrastructure (NFVI), such as NFVI
400. Often, the VNFs are inline service functions that are separate from workload
servers or other nodes. These VNFs can be chained together into a service chain,
which may be defined by a virtual subnetwork, and which may include a serial string
of network services that provide behind-the-scenes work, such as security, logging,
billing, and similar.

[0166] In the example of FIGURE 13, an NFV orchestrator 1301 manages a
number of the VNFs 1312 running on an NFVI 1300. NFV requires nontrivial resource
management, such as allocating a very large pool of compute resources among
appropriate numbers of instances of each VNF, managing connections between VNFs,
determining how many instances of each VNF to allocate, and managing memory,
storage, and network connections. This may require complex software management,

thus making NFV orchestrator 1301 a valuable system resource. Note that NFV

36

WO 2021/041064 PCT/US2020/046567

orchestrator 1301 may provide a browser-based or graphical configuration interface,
and in some embodiments may be integrated with SDN orchestration functions.

[0167] Note that NFV orchestrator 1301 itself may be virtualized (rather than
a special-purpose hardware appliance). NFV orchestrator 1301 may be integrated
within an existing SDN system, wherein an operations support system (OSS)
manages the SDN. This may interact with cloud resource management systems (e.g.,
OpenStack) to provide NFV orchestration.

[0168] An NFVI 1300 may include the hardware, software, and other
infrastructure to enable VNFs to run. This may include a hardware platform 1302 on
which one or more VMs 1304 may run. For example, hardware platform 1302-1 in
this example runs VMs 1304-1 and 1304-2. Hardware platform 1302-2 runs VMs
1304-3 and 1304-4. Each hardware platform may include a hypervisor 1320, virtual
machine manager (VMM), or similar function, which may include and run on a native
(bare metal) operating system, which may be minimal so as to consume very few
resources.

[0169] Hardware platforms 1302 may be or comprise a rack or several racks
of blade or slot servers (including, e.g., processors, memory, and storage), one or
more data centers, other hardware resources distributed across one or more
geographic locations, hardware switches, or network interfaces. An NFVI 1300 may
also include the software architecture that enables hypervisors to run and be
managed by NFV orchestrator 1301.

[0170] Running on NFVI 1300 are a number of VMs 1304, each of which in this
example is a VNF providing a virtual service appliance. Each VM 1304 in this example
includes an instance of the Data Plane Development Kit (DPDK), a virtual operating
system 1308, and an application providing the VNF 1312.

[0171] Virtualized network functions could include, as nonlimiting and
illustrative examples, firewalls, intrusion detection systems, load balancers, routers,
session border controllers, DPI services, network address translation (NAT) modules,
or call security association.

[0172] The illustration of FIGURE 13 shows that a number of VNFs 1304 have
been provisioned and exist within NFVI 1300. This FIGURE does not necessarily
illustrate any relationship between the VNFs and the larger network, or the packet
flows that NFVI 1300 may employ.

[0173] The illustrated DPDK instances 1316 provide a set of highly-optimized

libraries for communicating across a virtual switch (vSwitch) 1322. Like VMs 1304,

37

WO 2021/041064 PCT/US2020/046567

vSwitch 1322 is provisioned and allocated by a hypervisor 1320. The hypervisor uses
a network interface to connect the hardware platform to the data center fabric (e.g.,
an HFI). This HFI may be shared by all VMs 1304 running on a hardware platform
1302. Thus, a vSwitch may be allocated to switch traffic between VMs 1304.

[0174] The vSwitch may be a pure software vSwitch (e.g., a shared memory
vSwitch), which may be optimized so that data are not moved between memory
locations, but rather, the data may stay in one place, and pointers may be passed
between VMs 1304 to simulate data moving between ingress and egress ports of the
vSwitch. The vSwitch may also include a hardware driver (e.g., a hardware network
interface IP block that switches traffic, but that connects to virtual ports rather than
physical ports). In this illustration, a distributed vSwitch 1322 is illustrated, wherein
vSwitch 1322 is shared between two or more physical hardware platforms 1302.

[0175] The foregoing outlines features of several embodiments so that those
skilled in the art may better understand various aspects of the present disclosure.
The embodiments disclosed can readily be used as the basis for designing or
modifying other processes and structures to carry out the teachings of the present
specification. Any equivalent constructions to those disclosed do not depart from the
spirit and scope of the present disclosure. Design considerations may result in
substitute arrangements, design choices, device possibilities, hardware
configurations, software implementations, and equipment options.

[0176] In certain embodiments, some of the components illustrated herein may
be omitted or consolidated. In a general sense, the arrangements depicted in the
FIGURES may be more logical in their representations, whereas a physical
architecture may include various permutations, combinations, and/or hybrids of
these elements. With the numerous examples provided herein, interaction may be
described in terms of two, three, four, or more electrical components. These
descriptions are provided for purposes of clarity and example only. Any of the
illustrated components, modules, and elements of the FIGURES may be combined in
various configurations, all of which fall within the scope of this specification.

[0177] In certain cases, it may be easier to describe one or more functionalities
by disclosing only selected element. Such elements are selected to illustrate specific
information to facilitate the description. The inclusion of an element in the FIGURES
is not intended to imply that the element must appear in the invention, as claimed,
and the exclusion of certain elements from the FIGURES is not intended to imply that

the element is to be excluded from the invention as claimed.

38

WO 2021/041064 PCT/US2020/046567

[0178] Similarly, any methods or flows illustrated herein are provided by way
of illustration only. Inclusion or exclusion of operations in such methods or flows
should be understood the same as inclusion or exclusion of other elements as
described in this paragraph. Where operations are illustrated in a particular order,
the order is a nonlimiting example only. Unless expressly specified, the order of
operations may be altered to suit a particular embodiment. Other changes,
substitutions, variations, alterations, and modifications will be apparent to those
skilled in the art. All such changes, substitutions, variations, alterations, and
modifications fall within the scope of this specification.

[0179] In order to aid the United States Patent and Trademark Office (USPTO)
and, any readers of any patent or publication flowing from this specification, the
Applicant: (a) does not intend any of the appended claims to invoke paragraph (f)
of 35 U.S.C. section 112, or its equivalent, as it exists on the date of the filing hereof
unless the words “means for” or “steps for” are specifically used in the particular
claims; and (b) does not intend, by any statement in the specification, to limit this
disclosure in any way that is not otherwise expressly reflected in the appended
claims, as originally presented or as amended.

Example Implementations

[0180] There is disclosed in one example, a computing apparatus, comprising:
a hardware platform comprising a processor and a memory; a closed operating
system comprising instructions within the memory to sandbox userspace
applications; and a sandboxed userspace application, comprising: instructions to
provide a user interface and user application code; and an agentless security library
within the sandboxed userspace application, the agentless security library comprising
instructions to provide security or privacy services to the sandboxed userspace
application with minimal direct interaction from the user interface and user
application code.

[0181] There is further disclosed an example computing apparatus, wherein
the agentless security library comprises a single point of entry for the sandboxed
userspace application to invoke the agentless security library.

[0182] There is further disclosed an example computing apparatus, wherein
the single point of entry comprises a single procedure invocation of the agentless

security library.

39

WO 2021/041064 PCT/US2020/046567

[0183] There is further disclosed an example computing apparatus, wherein
the single point of entry comprises a compile-time inclusion of a header file that
automatically invokes the agentless security library, such as via macro definitions.
In other case, a particular piece of code or instructions may be provided.

[0184] There is further disclosed an example computing apparatus, wherein
the header file further comprises macro replacements or overloads of common
userspace methods to communicate data.

[0185] There is further disclosed an example computing apparatus, wherein
the sandboxed userspace application carries a certification that the sandboxed
userspace application receives security or privacy services from the agentless
security library.

[0186] There is further disclosed an example computing apparatus, wherein
the agentless security library comprises instructions to write verification data to a
log file.

[0187] There is further disclosed an example computing apparatus, wherein
the agentless security library comprises instructions to communicate with a cloud
server to provide verification.

[0188] There is further disclosed an example computing apparatus, wherein
the agentless security library comprises instructions to certify that the sandboxed
userspace application complies with legal or regulatory requirements for security or
privacy.

[0189] There is further disclosed an example computing apparatus, wherein
the agentless security library comprises instrumentation to intercept communication
within the sandboxed userspace application, and outside of the sandboxed userspace
application.

[0190] There is further disclosed an example computing apparatus, wherein
the agentless security library comprises a detection engine to detect security flaws
within the sandboxed userspace application.

[0191] There is further disclosed an example computing apparatus, wherein
the agentless security library comprises a privacy engine to detect export of
personally-identifying information (PII) outside of the sandboxed userspace
application.

[0192] There is further disclosed an example computing apparatus, wherein
the agentless security library comprises a network environment engine to detect an

attack against a network environment of the sandboxed userspace application.

40

WO 2021/041064 PCT/US2020/046567

[0193] There is further disclosed an example computing apparatus, wherein
the agentless security library comprises a best practices engine to enforce best
security practices within the sandboxed userspace application.

[0194] There is further disclosed an example computing apparatus, wherein
the agentless security library comprises an enforcement engine to enforce a usage
or security policy within the sandboxed userspace application.

[0195] There is further disclosed an example computing apparatus, wherein
the enforcement engine comprises instructions to provide parental controls.

[0196] There is further disclosed an example computing apparatus, wherein
the agentless security library comprises a notification engine to provide notices to an
end user and/or security administrator.

[0197] There is also disclosed an example of one or more tangible, non-
transitory computer-readable media having stored thereon executable instructions
to provide an agentless security software development kit (SDK) for inclusion with a
sandboxed application on a closed operating system, the agentless security SDK
comprising a single point of entry for the sandboxed application to invoke security
or privacy services of the agentless security SDK.

[0198] There is further disclosed an example of one or more tangible, non-
transitory computer-readable storage media, wherein the single point of entry
comprises a single procedure invocation of the agentless security library.

[0199] There is further disclosed an example of one or more tangible, non-
transitory computer-readable storage media, wherein the single point of entry
comprises a compile-time inclusion of a header file that automatically invokes the
agentless security library.

[0200] There is further disclosed an example of one or more tangible, non-
transitory computer-readable storage media, wherein the header file further
comprises macro replacements or overloads of common userspace methods to
communicate data.

[0201] There is further disclosed an example of one or more tangible, non-
transitory computer-readable storage media, wherein the agentless security SDK
further comprises instructions to certify that the userspace application carries a
certification that the userspace application receives security or privacy services from
the agentless security SDK.

41

WO 2021/041064 PCT/US2020/046567

[0202] There is further disclosed an example of one or more tangible, non-
transitory computer-readable storage media, wherein the agentless security SDK
comprises instructions to write verification data to a log file.

[0203] There is further disclosed an example of one or more tangible, non-
transitory computer-readable storage media, wherein the agentless security SDK
comprises instructions to communicate with a cloud server to provide verification.

[0204] There is further disclosed an example of one or more tangible, non-
transitory computer-readable storage media, wherein the agentless security SDK
comprises instructions to certify that the sandboxed application complies with legal
or regulatory requirements for security or privacy.

[0205] There is further disclosed an example of one or more tangible, non-
transitory computer-readable storage media, wherein the agentless security SDK
comprises instrumentation to intercept communication within the sandboxed
application, and outside of the sandboxed application.

[0206] There is further disclosed an example of one or more tangible, non-
transitory computer-readable storage media, wherein the agentless security SDK
comprises a detection engine to detect security flaws within the sandboxed
application.

[0207] There is further disclosed an example of one or more tangible, non-
transitory computer-readable storage media, wherein the agentless security SDK
comprises a privacy engine to detect export of personally-identifying information
(PII) outside of the sandboxed application.

[0208] There is further disclosed an example of one or more tangible, non-
transitory computer-readable storage media, wherein the agentless security SDK
comprises a network environment engine to detect an attack against a network
environment of the sandboxed application.

[0209] There is further disclosed an example of one or more tangible, non-
transitory computer-readable storage media, wherein the agentless security SDK
comprises a best practices engine to enforce best security practices within the
sandboxed application.

[0210] There is further disclosed an example of one or more tangible, non-
transitory computer-readable storage media, wherein the agentless security SDK
comprises an enforcement engine to enforce a usage or security policy within the

sandboxed application.

42

WO 2021/041064 PCT/US2020/046567

[0211] There is further disclosed an example of one or more tangible, non-
transitory computer-readable storage media, wherein the enforcement engine
comprises instructions to provide parental controls.

[0212] There is further disclosed an example of one or more tangible, non-
transitory computer-readable storage media, wherein the agentless security SDK
comprises a notification engine to provide notices to an end user and/or security
administrator.

[0213] There is also disclosed an example method of developing a secured
application for a closed operating system, comprising invoking, at build time, an
agentless security software development kit (SDK) for inclusion with the secured
application, wherein the invocation comprises minimal direct interaction between the
agentless security SDK and the secured application.

[0214] There is further disclosed an example method, wherein invoking the
agentless security SDK comprises invoking a utility that replaces common
communication procedures with communication procedures that are hooked by the
agentless security SDK.

[0215] There is further disclosed an example method, wherein invoking the
agentless security SDK comprises invoking a single point of entry.

[0216] There is further disclosed an example method, wherein the single point
of entry comprises invoking a single procedure that starts the agentless security SDK
as a background process of the secured application only.

[0217] There is further disclosed an example method, wherein the single point
of entry comprises including a header file that automatically invokes the agentless
security library.

[0218] There is further disclosed an example method, wherein the header file
further comprises macro replacements or overloads of common userspace methods
to communicate data.

[0219] There is further disclosed an example method, wherein the agentless
security SDK comprises instructions to certify that the userspace application carries
a certification that the userspace application receives security or privacy services
from the agentless security SDK.

[0220] There is further disclosed an example method, wherein the agentless

security SDK comprises instructions to write verification data to a log file.

43

WO 2021/041064 PCT/US2020/046567

[0221] There is further disclosed an example method, wherein the agentless
security SDK comprises instructions to communicate with a cloud server to provide
verification.

[0222] There is further disclosed an example method, wherein the agentless
security SDK comprises instructions to certify that the secured application complies
with legal or regulatory requirements for security or privacy.

[0223] There is further disclosed an example method, wherein the agentless
security SDK comprises instrumentation to intercept communication within the
secured application, and outside of the secured application.

[0224] There is further disclosed an example method, wherein the agentless
security SDK comprises a detection engine to detect security flaws within the secured
application.

[0225] There is further disclosed an example method, wherein the agentless
security SDK comprises a privacy engine to detect export of personally-identifying
information (PII) outside of the secured application.

[0226] There is further disclosed an example method, wherein the agentless
security SDK comprises a network environment engine to detect an attack against a
network environment of the secured application.

[0227] There is further disclosed an example method, wherein the agentless
security SDK comprises a best practices engine to enforce best security practices
within the secured application.

[0228] There is further disclosed an example method, wherein the agentless
security SDK comprises an enforcement engine to enforce a usage or security policy
within the secured application.

[0229] Thereis further disclosed an example method, wherein the enforcement
engine comprises instructions to provide parental controls.

[0230] There is further disclosed an example method, wherein the agentless
security SDK comprises a notification engine to provide notices to an end user and/or
security administrator.

[0231] There is also disclosed an example apparatus comprising means for
performing the method of a number of the above examples.

[0232] There is further disclosed an example apparatus, wherein the means for

performing the method comprise a processor and a memory.

44

WO 2021/041064 PCT/US2020/046567

[0233] There is further disclosed an example apparatus, wherein the memory
comprises machine-readable instructions, that when executed cause the apparatus
to perform the method of a number of the above examples.

[0234] There is further disclosed an example apparatus, wherein the apparatus
is @ computing system.

[0235] There is further disclosed an example of at least one computer-readable
medium comprising instructions that, when executed, implement a method or realize

an apparatus as illustrated in a number of the above examples.

45

WO 2021/041064 PCT/US2020/046567

Claims

What is claimed is:

1. A computing apparatus, comprising:
a hardware platform comprising a processor and a memory;

a closed operating system comprising instructions within the memory to

sandbox userspace applications; and
a sandboxed userspace application, comprising:

instructions to provide a user interface and user application code;

and

an agentless security library within the sandboxed userspace
application, the agentless security library comprising instructions to provide
security or privacy services to the sandboxed userspace application with

minimal direct interaction from the user interface and user application code.

2. The computing apparatus of claim 1, wherein the agentless security library
comprises a single point of entry for the sandboxed userspace application to invoke

the agentless security library.

3. The computing apparatus of claim 2, wherein the single point of entry

comprises a single procedure invocation of the agentless security library.

4, The computing apparatus of claim 2, wherein the single point of entry
comprises a compile-time inclusion of a header file that automatically invokes the

agentless security library.

5. The computing apparatus of claim 4, wherein the header file further
comprises macro replacements or overloads of common userspace methods to

communicate data.

6. The computing apparatus of claim 1, wherein the sandboxed userspace
application carries a certification that the sandboxed userspace application receives

security or privacy services from the agentless security library.

46

WO 2021/041064 PCT/US2020/046567

7. The computing apparatus of claim 6, wherein the agentless security library

comprises instructions to write verification data to a log file.

8. The computing apparatus of claim 6, wherein the agentless security library

comprises instructions to communicate with a cloud server to provide verification.

9. The computing apparatus of claim 1, wherein the agentless security library
comprises instructions to certify that the sandboxed userspace application complies

with legal or regulatory requirements for security or privacy.

10. The computing apparatus of claim 1, wherein the agentless security library
comprises instrumentation to intercept communication within the sandboxed

userspace application, and outside of the sandboxed userspace application.

11. The computing apparatus of claim 1, wherein the agentless security library
comprises a detection engine to detect security flaws within the sandboxed

userspace application.

12. The computing apparatus of claim 1, wherein the agentless security library
comprises a privacy engine to detect export of personally-identifying information

(PII) outside of the sandboxed userspace application.

13. The computing apparatus of claim 1, wherein the agentless security library
comprises a network environment engine to detect an attack against a network

environment of the sandboxed userspace application.

14, The computing apparatus of claim 1, wherein the agentless security library
comprises a best practices engine to enforce best security practices within the
sandboxed userspace application.

15. The computing apparatus of claim 1, wherein the agentless security library
comprises an enforcement engine to enforce a usage or security policy within the
sandboxed userspace application.

16. The computing apparatus of claim 15, wherein the enforcement engine

comprises instructions to provide parental controls.

47

WO 2021/041064 PCT/US2020/046567

17. The computing apparatus of any of claims 1 - 16, wherein the agentless
security library comprises a notification engine to provide notices to an end user
and/or security administrator.

18. One or more tangible, non-transitory computer-readable media having
stored thereon executable instructions to provide an agentless security software
development kit (SDK) for inclusion with a sandboxed application on a closed
operating system, the agentless security SDK comprising a single point of entry for
the sandboxed application to invoke security or privacy services of the agentless
security SDK.

19. The one or more tangible, non-transitory computer-readable storage media
of claim 18, wherein the single point of entry comprises a single procedure
invocation of the agentless security SDK.

20. The one or more tangible, non-transitory computer-readable storage media
of claim 18, wherein the single point of entry comprises a compile-time inclusion of
a header file that automatically invokes the agentless security SDK.

21. The one or more tangible, non-transitory computer-readable storage media
of claim 20, wherein the header file further comprises macro replacements or

overloads of common userspace methods to communicate data.

22. The one or more tangible, non-transitory computer-readable storage media
of claim 18, wherein the agentless security SDK further comprises instructions to
certify that a userspace application carries a certification that the userspace
application receives security or privacy services from the agentless security SDK.

23. The one or more tangible, non-transitory computer-readable storage media
of claim 22, wherein the agentless security SDK comprises instructions to write
verification data to a log file.

24. The one or more tangible, non-transitory computer-readable storage media
of claim 22, wherein the agentless security SDK comprises instructions to

communicate with a cloud server to provide verification.

25. The one or more tangible, non-transitory computer-readable storage media

of claim 18, wherein the agentless security SDK comprises instructions to certify

48

WO 2021/041064 PCT/US2020/046567

that the sandboxed application complies with legal or regulatory requirements for

security or privacy.

26. The one or more tangible, non-transitory computer-readable storage media
of claim 18, wherein the agentless security SDK comprises instrumentation to
intercept communication within the sandboxed application, and outside of the
sandboxed application.

27. The one or more tangible, non-transitory computer-readable storage media
of claim 18, wherein the agentless security SDK comprises a detection engine to

detect security flaws within the sandboxed application.

28. The one or more tangible, non-transitory computer-readable storage media
of claim 18, wherein the agentless security SDK comprises a privacy engine to
detect export of personally-identifying information (PII) outside of the sandboxed

application.

29. The one or more tangible, non-transitory computer-readable storage media
of claim 18, wherein the agentless security SDK comprises a network environment
engine to detect an attack against a network environment of the sandboxed
application.

30. The one or more tangible, non-transitory computer-readable storage media
of claim 18, wherein the agentless security SDK comprises a best practices engine
to enforce best security practices within the sandboxed application.

31. The one or more tangible, non-transitory computer-readable storage media
of claim 18, wherein the agentless security SDK comprises an enforcement engine

to enforce a usage or security policy within the sandboxed application.

32. The one or more tangible, non-transitory computer-readable storage media
of claim 31, wherein the enforcement engine comprises instructions to provide

parental controls.

33. The one or more tangible, non-transitory computer-readable storage media
of any of claims 18 - 32, wherein the agentless security SDK comprises a
notification engine to provide notices to an end user and/or security administrator.

49

WO 2021/041064 PCT/US2020/046567

34. A method of developing a secured application for a closed operating system,
comprising invoking, at build time, an agentless security software development kit
(SDK) for inclusion with the secured application, wherein the invocation comprises
minimal direct interaction between the agentless security SDK and the secured

application.

35. The method of claim 34, wherein invoking the agentless security SDK
comprises invoking a utility that replaces common communication procedures with

communication procedures that are hooked by the agentless security SDK.

36. The method of claim 34, wherein invoking the agentless security SDK

comprises invoking a single point of entry.

37. The method of claim 36, wherein the single point of entry comprises
invoking a single procedure that starts the agentless security SDK as a background

process of the secured application only.

38. The method of claim 36, wherein the single point of entry comprises
including a header file that automatically invokes the agentless security SDK.

39. The method of claim 38, wherein the header file further comprises macro

replacements or overloads of common userspace methods to communicate data.

40. The method of claim 34, wherein the agentless security SDK comprises
instructions to certify that a userspace application carries a certification that the
userspace application receives security or privacy services from the agentless

security SDK.

41. The method of claim 40, wherein the agentless security SDK comprises

instructions to write verification data to a log file.

42. The method of claim 40, wherein the agentless security SDK comprises

instructions to communicate with a cloud server to provide verification.

43. The method of claim 34, wherein the agentless security SDK comprises
instructions to certify that the secured application complies with legal or regulatory

requirements for security or privacy.

50

WO 2021/041064 PCT/US2020/046567

44. The method of claim 34, wherein the agentless security SDK comprises
instrumentation to intercept communication within the secured application, and

outside of the secured application.

45. The method of claim 34, wherein the agentless security SDK comprises a

detection engine to detect security flaws within the secured application.

46. The method of claim 34, wherein the agentless security SDK comprises a
privacy engine to detect export of personally-identifying information (PII) outside
of the secured application.

47. The method of claim 34, wherein the agentless security SDK comprises a
network environment engine to detect an attack against a network environment of

the secured application.

48. The method of claim 34, wherein the agentless security SDK comprises a
best practices engine to enforce best security practices within the secured

application.

49. The method of claim 34, wherein the agentless security SDK comprises an
enforcement engine to enforce a usage or security policy within the secured
application.

50. The method of claim 49, wherein the enforcement engine comprises
instructions to provide parental controls.

51. The method of claim 34, wherein the agentless security SDK comprises a

notification engine to provide notices to an end user and/or security administrator.

52. An apparatus comprising means for performing the method of any of claims
34 - 51.

53. The apparatus of claim 52, wherein the means for performing the method

comprise a processor and a memory.

54. The apparatus of claim 53, wherein the memory comprises machine-
readable instructions, that when executed cause the apparatus to perform the
method of any of claims 34 - 51.

55. The apparatus of claim 54, wherein the apparatus is a computing system.
51

WO 2021/041064 PCT/US2020/046567

56. At least one computer readable medium comprising instructions that, when

executed, implement a method as claimed in any of claims 34 - 51.

52

PCT/US2020/046567

WO 2021/041064

1/13

I ‘bi4

ovT
S3JIA3Q
¥3HLO

9¢€1
ALIYND3S

o1

\\

¢LT
NHOMILIN
TVNY3LX3

EBEBV—

ET
LVLSOWY3IHL x@
/ ../,

/ \

ONILHON

0LT
NHOMILIN
1vI01

061
¥30INOYd
SIJIAY3IS
ALIYND3S

174)
¥3asn

80T
AVMILYD
ddv .M 4
INIID 0ST
\?ﬁ#t \\\\\
7 -2
A
f
v
Va ,ﬂ
281 /
123rgo0 001
SNONIYN

N

0Tt
S3IDIA3A
IN3ID

PCT/US2020/046567

WO 2021/041064

2/13

Z ‘b4

v-80¢
NOILVOI1ddV

€-80¢
NOILVOI1ddV

-80¢
NOILVOI1ddV

1-80¢
NOILVOI1ddV

ONIYOLINOW

90C
IN3IOV ALIYND3S

voc
INJLSAS
ONILVY3dO L
N3do oce
AYOW3IN
0TZ ¥0S53004d

€0C INI1SASOD3 IUVML40S

00 WHO11V1d WYMAYVH

PCT/US2020/046567

WO 2021/041064

3/13

(v-80€
NOILYDI1ddV 3IX09anNvVs)
0S€ LNIOV ALIYND3S

€-80¢
NOILVII1ddV A3XO9AaNVs

¢-80¢
NOILVII1ddV A3XO9AaNVs

voe
INJLSAS
ONILVY3dO
a3ison

1-80¢€
NOILVII1ddV A3XO9AaNVs

€0€ WILSASODI IWVYMILIO0S

(1743

AYOW3IN

T€ ¥0SS300dd

00€ WHO41V1d IHVMAYVH

£ *bi4

PCT/US2020/046567

WO 2021/041064

4/13

9Ty
AAS ALIINI3S
SSITLNIOV

sov
300D 3dvdsy3Isn

C1t AYLN3 40 LNIOd JFT1ONIS

YOv)As I0vdsyasn

00¥ NOILVOITddV AIXO8ANYsS

i b4

PCT/US2020/046567

WO 2021/041064

5/13

€5 INI9N3 AYOLSIH

ANION3 NOILVIIJILON

8¢S

¥ZS INIDN3 LNIW3DYOIN]

ANION3 S3D110VYd 1539

0zs

9TS ANI9N3I TS ANION3 805
NOILO313a AN3 YYOMLIN | 3INION3 ADVAIYd
¥0S NOILVLININYLSNI

00S XAs ALIIND3S SSATLNIDV

G *bi4

PCT/US2020/046567

WO 2021/041064

6/13

€9

829 DINY3IS
NOILVDIJILON

JDINYU3S AYOLSIH

9€9 IDIAY3S ADINOd
IN3IINIFDYOIN3I

079
FDINY3S
NOILO3130 Iid

¥29 DINY3IS
NOILVIIJIY3A
AYOMILIN

009 IDIAH3S ALIYNI3AS ANOTD

<

~N

809
AAS SSITLNIOV

09 NOILVOI1ddV daXOddNVsS

€09 WHO11V1d IVMAYUVH 1V201

9 “bi4

PCT/US2020/046567

WO 2021/041064

/7/13

ZL 1dV W3ILSAS/SO

eL
S3IJIAY3IS ALIYND3S
3 NOILJAYON3

8tL

INJLSAS 3114 AYOMILIN

veL

AN

®

0TL
Aas
ALIYND3S
SSITLNIOV

N

N \

80L
1901 NOLLVDIlddV

voL
IN NOILVDINddV

00Z NOILVOI1ddV AIXOHANYS

Z ‘b4

WO 2021/041064 PCT/US2020/046567

8/13

800

START /

804
LAUNCH AGENTLESS SECURITY SDK VIA SINGLE POINT OF |/
ENTRY
808
—P BEGIN MONITORING A ———-
816
TERMINATE APPLICATION ~ eeeceeemmemeeenes ;
820
CLEANUP/GARBAGE COLLECTION WV

890

Fig. 8

PCT/US2020/046567

WO 2021/041064

9/13

[
- o - 6 "bi4
976 0v6 €6 .
SYOLVY313D0V $31A3a NOILYIINNIWINOD ISNON/aM
-
ere 056 5% 7%
o/l olanv IOVYOLS $3DIA3Q O/ 35a149 sng
V4 >
826
716
V1iva
9T6 ZZ6
13SdIHD 1 $5lHdvyo
806
SINIOV
1VNOILVY¥3dO
006
906
_ _ - INILSAS
7706 7-206 1-206
xowan [™ 10ud N ™ oosd [»>| | oNILv¥Ido

16

T-¥06 AHOW3IN

PCT/US2020/046567

WO 2021/041064

10/13

— - 0€0T
reoT ¢e0T
43TT0H1INOD
HSV1d INVYHA ¥IMOd
8¢0T vcoT ¢C¢0T LNOD 0coT 8T0T
YILSVIN IdS LINOD HSV1d INVYAS INOY 1004 /1 NIS
CTOT LDINNODYHILNI
016 306 L 16
9 LINN IDVIHILNISNG
03daIA 23405 Nndo
adn 03daIA
706 H3ITTOHLNOD FHIOVD 1
¢-¢06 T-¢06
T 3400 03400
INGH IdIN
* * 000T J0S

or "bi4

WO 2021/041064 PCT/US2020/046567
11/13
MEMORY 1140
__________________ EXECUTABLE INSTRUCTIONS
3 1142
PROCESSOR 1100
MEMORY CONTROLLER 1134
PROCESSOR CORE 1102-1
(o)
FRONT END LOGIC 1106 g
(753
REG &
DECODER(S) SCHEDULING =
1108 RENAMING LOGIC 1112 o
E— LOGIC 1110 ==== e
p-d
o
(@]
Q.
o~
Q.
<
EXECUTION LOGIC 1114)
L |
L |
EXECUTION EXECUTION <o
UNIT . UNIT &
1116-1 1116-N <
<
2
o
E
(a]
(a]
<

RETIREMENT LOGIC

"""" T 1120

BACK END LOGIC 1118

CACHE(S) 1130

WO 2021/041064 PCT/US2020/046567

12/13

MEMORY 4
1220

TEE
\ 1200

oS
1222

€3

ENCLAVE
1240
SECURE
PROCESSING
ENGINE
1210

OPERATIONAL

63 AGENT

1226

APP STACK
1220

APP CODE
1230

Fig. 12

PCT/US2020/046567

WO 2021/041064

13/13

€T 'b14

T-0CET YOSINYIdAH

T-0CET YOSINYIdAH

CCET HOLIMSA a3Llngidlsia

v-91€T)Ada

v-80¢T
SO TVNLYIA

v-ciet
v dNA

v-vOET NA

€-9TET X1AdA C-9TET N1AdA
€-80¢1 ¢-80¢1
SO TVNLYIA SO TVNLYIA
€-¢1el ¢-CTel
€ INA ¢ INA
€-V0ET NA C-YOET NA

C-C0ET NYO41Vid VVMAUVH

T-9TET XAdA

T-80¢€1
SO TVNLYIA

T-¢TET
T INA

T-YOET NA

T-COET INHO4LV1d VVYMAUVH

TOET
YOL1VY1SIHOYUO
AdN

00ET AUNLONULSVHANI NHOMLIN AIZNVNLIIA

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US2020/046567

A. CLASSIFICATION OF SUBJECT MATTER

GOGF 21/53(2013.01)i, GOGF 21/55(2013.01)i, GOGF 21/62(2013.01)i

According to International Patent Classification (IPC) or to both national classification and [PC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by

classification symbols)

GO6F 21/53; GOGF 12/14; GO6F 21/12; GO6F 21/62; GO6F 9/44; GO6F 9/445; GO6F 9/54, GO6N 20/00; GO6F 21/55

Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name o
eKOMPASS(KIPO internal) & keywords: closed operating

library, agentless security software development kit (SDK),

f data base and, where practicable, search terms used)
system, sandboxed userspace application, agentless security

single point of entry, invoke, privacy, certification

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 2014-0181896 A1 (KASPERSKY LAB ZAO) 26 June 2014 1,10-17
paragraphs [0025]-[0036], [0043], [0046], [0059]; claims 1, 8;
and figures 3, 5

A 2-9,18-56

A US 9910655 B1 (ACCELLION, INC.) 06 March 2018 1-56
column 12, line 8 — column 13, line 14; and figure 2B

A US 2016-0378578 A1 (CA, INC.) 29 December 2016 1-56
paragraphs [0019]-[0043]; and figures 1-4

A US 2019-0108359 A1 (INTERNATIONAL BUSINESS MACHINES CORPORATION) 1-56
11 April 2019
paragraphs [0023], [0026], [0035], [0056]-10062]; and figures 1, 5

A US 2019-0138712 A1 (ADNOMUS, INC.) 09 May 2019 1-56
paragraphs [0033]-[0044]; and figure 3

A US 2019-0180006 A1 (INTERNATIONAL BUSINESS MACHINES CORPORATION) 1-56
13 June 2019
paragraphs [0029]-[0036]; and figures 2-3

|:| Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered
to be of particular relevance

"D" document cited by the applicant in the international application

"E" eatlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later

than the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents,such combination
being obvious to a person skilled in the art

document member of the same patent family

'

myn

ngn

Date of the actual completion of the international search
19 November 2020 (19.11.2020)

Date of mailing of the international search report

20 November 2020 (20.11.2020)

Name and mailing address of the [SA/KR

International Application Division

Korean Intellectual Property Office

189 Cheongsa-ro, Seo-gu, Dagjeon, 35208, Republic of Korea

Facsimile No, 182-42-481-8578

Authorized officer
YANG JEONG ROK
THES
Telephone No. +82-42-481-3709 \\\\\

Form PCT/ISA/210 (second sheet) (July 2019)

INTERNATIONAL SEARCH REPORT

International application No.

Information on patent family members PCT/US2020/046567

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 2014-0181896 Al 26/06/2014 EP 2750068 Al 02/07/2014
EP 2750068 Bl 22/11/2017
RU 2012156432 A 27/06/2014
US 9147069 B2 29/09/2015

US 9910655 Bl 06/03/2018 None

US 2016-0378578 Al 29/12/2016 US 9645868 B2 09/05/2017

US 2019-0108359 Al 11/04/2019 US 10181048 B2 15/01/2019
US 10579816 B2 03/03/2020
US 2016-0026819 Al 28/01/2016

US 2019-0138712 Al 09/05/2019 None

US 2019-0180006 Al 13/06/2019 US 10776459 B2 15/09/2020

Form PCT/ISA/210 (patent family annex) (July 2019)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - claims
	Page 49 - claims
	Page 50 - claims
	Page 51 - claims
	Page 52 - claims
	Page 53 - claims
	Page 54 - claims
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - wo-search-report
	Page 69 - wo-search-report

