US 20160179750A1

a9 United States

a2y Patent Application Publication o) Pub. No.: US 2016/0179750 A1

Zhou 43) Pub. Date: Jun. 23, 2016
(54) COMPUTER-IMPLEMENTED SYSTEM AND (52) US.CL
METHOD FOR EFFICIENT SPARSE MATRIX CPC .ot GO6F 17/16 (2013.01)
REPRESENTATION AND PROCESSING
57 ABSTRACT
(71) Applicant: Palo Alto Research Center Speed with which sparse matrices are processed can be
Incorporated, Palo Alto, CA (US) increased by using improved compressed representations of
the matrices. Structured compressed representations reduce
(72) Inventor: Rong Zhou, San Jose, CA (US) the number of cache misses experienced during matrix pro-
cessing by decreasing the number of times the cache has to be
(21) Appl. No.: 14/580,110 accessed randomly. Further, representations of the matrix that
divide and regroup rows and columns of the matrix based on
(22) Filed: Dec. 22, 2014 their number of non-zero entries allows to assign the most
appropriate kernel function for processing of these portions
Publication Classification of a matrix, overcoming the limitations of the GPU-based
hardware. As a result, the speed of processing can be
(51) Int.ClL increased without disturbing the original structure of the
GO6F 17/16 (2006.01) matrix.

44
NO

a.5

0.5 4 ,i

Patent Application Publication Jun. 23,2016 Sheet 1 of 26 US 2016/0179750 A1

M&a‘t }

1{} . :
2y / Pl for rows =010 \/11
/ -1 y

¥

entify index] of fiest non-zere | _qn
ety inrow |

ki

ldentify next indexin A and | g9
sl 88 fay

kil

inthalize summation caladator =74

"
o

¥

%
Mo ,,—//j\\\ f"f‘iﬁ

s Store Results Y A P
. -

\ﬁ%
k2
kY

~ Next row / Perform multiplication of value ofj_4z

187 3 in A, and add to sum
..___T:Eh ki
. Setj+1 0/ 17

FiG. 1
{Prior Ari}

Patent Application Publication Jun. 23,2016 Sheet 2 of 26 US 2016/0179750 A1

{ Start

4

2
Wy / Do for columns =01 \-21
iy

-1

¥

identify index/ of first non-zere | _as
endry in column |

¥

identify nextindexin A and | _ag
S8 85 fpay

¥

inttglize summation calculator 24

o

hd

e,

- %5
28] Store Results ‘ﬂ.—————ﬁ&i\\ i< ’me;:;\(

S,
\ﬁes
k4
kY

,:\ et column / Parform mullipication of value of |_op
fin &, and add to sum

¥

(" td) ,v

Beti+iini .

FIG. 2
(Prior Art}

Patent Application Publication Jun. 23,2016 Sheet 3 of 26 US 2016/0179750 A1

Sarver /
e

Malriv encoder H-34

Computation 36

module J o
ey

Encodings
of matrix

]
&
£

R o

FIG. 3

Patent Application Publication

Jun. 23,2016 Sheet 4 of 26

US 2016/0179750 A1

B more GPU-ke

40
7 \ 05 (D
Nt
5 s
& /
/f
4.5 465
%/ ",
Y \/E’"\
(2 e TF ";\ ;’5)
50 value + position
S A
SCSR PSCER
& &
G806 PSCSC
more CPU-like -
L8R POSR
& &
CEC RPCSC
v

value® position

FIG. 5

Patent Application Publication Jun. 23,2016 Sheet S of 26 US 2016/0179750 A1

L Start

¥
Access a sparse malix and | gy

obtain informetion about non-2em
antries in malrix

¥

Create structured comprassed | gy
reprasentation of matrix

¥

Process struclured 83
comprassed representation

¥

Use results of processing | 84

ki

Ened }

FIG. 6

Patent Application Publication

Jun. 23, 2016 Sheet 6 of 26 US 2016/0179750 A1

(spuv_

¥

/ Doforrows =0t X«—?‘i

; ﬁ’?“'f

¥

identily index § of first non-zero
ardey inrow |

72

\:4

fdentfy next indsx in A, and
5681 88 fnay

—F3

ki

initiglize summation calculator 74

B

i

T 75
T Store Resulls *—M§<"j {fmax?\:«(f
o, o
Yas
¥
f,i\ Mgxt row / Perform mulfiplication of value |
FC MY of fin A, and add 1o sum

{m%j;:d)

ki

Setj+iing e TF

FIG. 7

Patent Application Publication Jun. 23,2016 Sheet 7 of 26 US 2016/0179750 A1

{ SpMTV

¥

8-, / Do for columns =0 o \WS'i

/ s

kil

dentify Index i of first non-zero | g
aniry in column j andd set as |

k2

identify next indexin& and | _gq
58 88 oy

k:d

inttiglize summation calculatyr -84

Store Resulls AL T e
e

o,
\ﬁs
L

5 e
e Maxt colummn Perform multiplication of vahus of |
85 \\ / fin&, and add o sum 46

¥

{ Eng } *

Seti+fini 87

FIG. 8

Patent Application Publication Jun. 23,2016 Sheet 8 of 26 US 2016/0179750 A1

90, (. Ser

¥

{iblsin g compressed g3
rapresentation of 3

sparse matrix

kil
Define partilions e G2
¥
Conduct order-presening | | g3
partitioning
y
arge partitions - 34

¥

Use partitionad compressed | | ps
representation of matrix

Y

End

F1G. 9

Patent Application Publication Jun. 23,2016 Sheet 9 of 26

{ Partiioning }

k

mef

US 2016/0179750 A1

100
T / Do for rows =0 o \/‘!Q?
y

¥

identify index of first non-2ero
sntry in Hh row

102

¥

identify nextindex in 4,

103

¥

identify number of non-zero
antries in M row

104

105
N Number

>0} -
Yog

Assign row info one of partitions
and add to and of partition

- 106

B
i
%

A

\\\ Rext row /Z 107

e }

FiG. 10

Patent Application Publication Jun. 23,2016 Sheet 10 of 26

{ Partiioning }

k

US 2016/0179750 A1

1ig
T / Do for columns =0 to \/11‘?
y

et

¥

sntry in b column

¥

¥

gntries in jfh column

/‘L*\ 115

o He T Number “

»{?
Yog

dentify index of firstnon-zero |42

[dentify nextindexin&, |~ 173

identily number of non-zers | y4g

Assign colam into one of parlitions
and add to end of partition

116

o
e

¥

\‘\ Maxt column /Z 147

e }

FIG. 11

Patent Application Publication Jun. 23,2016 Sheet 11 of 26 US 2016/0179750 A1

(Marga
Partilions

k

initialize mapping aray 121

¥

/ Do for partitions \<122

/ k=t pet

ki
Determine cumulative size of all | 494

pariitions previous 1o parfition k
Iy apping aray

%

insert partifion & to end of array |-~ 124

S

! Free memory used by partition & %«125

\ Mext partiion /«' 126

ki

Store tolal size of aff partitions (147

¥
End

FiG. 12

Patent Application Publication

140~

Jun. 23,2016 Sheet 12 of 26

{ SpMv

¥

Ap-t

US 2016/0179750 A1

/Do for partitions k=g o \<f!3'?

;

[

¥

/ Doformws o

Y
f k-th pariition \,-;32

¥

fdentify id { of ~if ranked row

134

¥

identify index of frst non-zero
enfry in ot row and sefas |

134

A4

identily nexd indextin A, and
561 88 fmay

435

¥

Inilialize summation calculaior

136

&k

¥

" P 137
Store Resulls PR e i "‘fﬂﬁ

Next row /

¥

7
Next partition /

¥
End

Iy

l Yog

Ferform multiplication of value
of and add to sum

138

¥

Setjrile]

138

FIG. 13

Patent Application Publication Jun. 23,2016 Sheet 13 of 26 US 2016/0179750 A1

{ SpMTV)

¥

1B, / B for partiions k=0 o \(‘55?
{ [

;4

jfi/ Do for columns of k-4h par’titien\(152

k:d

ideniify id] of ~df ranked column 153

kid

Ientify index of first non-zero | ey
enfry Infthrow and sef as

¥
identify nexd index in Agand 455
581 88 imay

¥

Initialize summation calculalor H 156

ki
o AET
, L, S
1 Stors resulis «&————<//i Lhmay?
150 e P "
l ¥os
\ : / '
agt Mextoolimn Perform multiplication ofvalue {158
1817 % / of { and add to sum
¥)
1 SEA\ Nest partilion / Set it i 159

&
End

FIG. 14

Patent Application Publication Jun. 23,2016 Sheet 14 of 26 US 2016/0179750 A1

(Using & kernal ‘}
' funclion J

ki

Creats array of 173
keme! funciions

k:d

/’i Do for all partiions & \Y/ 17

4
Select keme! furction based | 479
on k and position in array

4

Set launch arguments e 174
ki

Launch kernsl funclion 175
k4

\ Maxi Partition /L 178
k4
B

FIG. 15

Patent Application Publication

80

182.
N

Jun. 23,2016 Sheet 15 of 26

Set n = minimugm number
of threads 1o be launched
consiraint

185 -,

&

183~

US 2016/0179750 A1

Set
Argumanis

181
Selected
funclion <

friw?

Set block size lo equal warp 184
size and 7 a5 minimum pumber Yosu %iféi%tgf
of blocks to be launched friracs?
consiraints Twir:
{87
\\
Set block size as number of 188
threads in block and n as Yas ?L?:!?:{é?{?f
miniraum number of Blocks Foen?
be launched constrainis IBIRT
¢! o
Set arguments based on o
consiraints -
¥
{ Erd }

FIG. 16

Patent Application Publication Jun. 23,2016 Sheet 16 of 26

{ FTiR)
. SpMy

¥

/ Do for i launched thweads \<?§1

¥

Compute rank of row assigned 10|40
this thread and selas 7 :

295\5

Store resuils

2
T

¥

End Do’}
202/\

¥

B

B Y 183
Ha f'::,_f‘:fmax?f :::: -
M;:{es
ldeniify W of rth ranked 10w |y
andsetasi

kil
identity index of first non-2ere | _sps
entry in Ath row and set as f

k:d

ientify nextindexin A, and | 4gg
581 85 fmay

¥

Initislize summation caloulator 7197

US 2016/0179750 A1

o
L

T 198

-
‘*“——*;@‘:i\f < fma? L

Yes

Perform multiplication of value {199
of j and add to sum

¥

Set 4710 ogualj 200

FIG. 17

Patent Application Publication

Jun. 23,2016 Sheet 17 of 26

{ F1Tim :,
. SpMTY

¥

{

US 2016/0179750 A1

/ Do for alf launched freads \(2?1

¥

Compule rank of column assigned
fo this thread and setas s

212

ot T e
e
-

22?\‘5

Store resuits

£

e

identify id of 7~#h ranked column
and setas]

214

k4

identify index of firs! non-2ero
antry in b column and set as |

215

¥

identify nexd index in A, and
581 85 fpay

218

A

intlialize summation calcuiator

217

o
Ry

{\‘\\/218

B
Foa

F

222)\

End Do’

/’

Mo - P
P lpa? >

I

I‘a’es

Perform multiplication of value
of § and add to sum

218

¥

Set i+1 o equali

20

FIG. 18

Patent Application Publication

S,

Jun. 23,2016 Sheet 18 of 26

FIiG. 19A

7 Fer
(\ SpidY

¥

US 2016/0179750 A1

/ Do for all launched warps \\/23?

-4

inttiate focal sharing

.

-4

Compite rank of row assigned
fowarpantdsetasr

233

-

identify id of ~fh ranked row
andsetasi

e 235

¥

Obtain local thread id of thread
mwarp and setas{

236

-4

identify index of first non-zere
entry i row assigned o thread
andsetas)

23]

¥

ientify next index In 4,
and 58t 88 joy

238

¥

initialize local summation
calculstor

238

|

Patent Application Publication Jun. 23,2016 Sheet 19 of 26 US 2016/0179750 A1

® ® om

&M{im’ax e

243\ L Yes
E Synchronize afl threads |
: i warp E Ferform multiplication of value |
“““““““““““““““““““““ of { and add to sum
244

Divide warpslre by 2 ¥

Bt 561 85 o Setf+warpsize to] 342
. |
\{i < b No &
Yas 242‘/ o Yo
i 2
246+, st thread? >
Mo
Reduce sums 251 4
wl Store

247 | Resulls

Divide £y by 2 and »

$8t 85 Sy b

248 | L
3 Synchronize ol thrsads |
E in warp §

¥

¥

957 _A\ End Mo /

{

A2
End

FIG. 19B

Patent Application Publication

Jun. 23,2016 Sheet 20 of 26

FiIG. 20A

¥

US 2016/0179750 A1

/ Do for all launched warps \\/25?

-4

inttiate focal sharing

- 262

-4

Compute rank of column
assigned fo warp and sstas 7

263

ﬁﬁﬁﬁﬁﬁ
o~

ientify id of r-th ranked column
and setas/

265

¥

Obtain local thread id of thread
mwarp and setas{

266

-4

identify index of first non-zere
entry i column assigned o
ihread and set as i

267

¥

identify next index in &%
and 58t 88 Joy

288

¥

initialize local summation
calculstor

268

|

Patent Application Publication Jun. 23,2016 Sheet 21 of 26 US 2016/0179750 A1

) N
B) (A) o 2

£ in warp f Peform mulfiplication of value | _ywy
""""""""""""""""""""" of { and add fo sum

274,

Divide warpsize by 2 ¥
A 581 88 b Seti+wapsizeloi 272
BTG o "
< i < tmaﬁa"f
Yos 278 \/é\ Vs
' 3
o | <t pread >
Heducs sums No 4
2353“ Slore
277 | Rasults
Divids fyp by 2 and »
st 88 Loy b

|

i Synchronize all theeads E

f N warn g

¥

4
284 —)\ End MO0 /

ki
Erd

FIG. 208

Patent Application Publication Jun. 23,2016 Sheet 22 of 26

FIG. 21A

280~ /

TN
(\ SpMy

¥

US 2016/0179750 A1

Do for aif launched blocks \ 291
/ \
7
initiate local sharing 252
Compute rank of row 709
assigned fo blotk and setas ¢
,,,,, é‘un 284
No L T gyt ::/:
Tes
dentify i of rthranked row |_ops
andsetasi
k-
Obtain local thread id of thread | _ope
nblock and selast
identify index of first non-zere
entry in row assigned fo 007
hread and setas |
¥
Wentiy next indextin &, |_o0g
and 58t 88 joy
7
initialize local summalion | _ogg
calculator

|

Patent Application Publication Jun. 23,2016 Sheet 23 of 26 US 2016/0179750 A1

@ @ o 28

] o
- & i
\\N{\f’max §
3@3\ i Yas
Synchronize all threads
in block Parform multipication of value |4
of j and add fo sum
304 ¥
Divide blocksize by 2 ¥
811 56t 85 by Setj+ blocksize o] 302
305~ o "
<{ frnax? .
' %
306+ <t fead?
No
Reduce sums 210 y
ol Siore
207+, | Rasults
Divide fhy by 2 and >
st 88 gy b
308-, v
Synchronize all threads
int block

e
i

ki

7
394 ‘% End Do /

¥
End

FIG. 21B

Patent Application Publication

Jun. 23,2016 Sheet 24 of 26

FIG. 22A
(sl)

¥

US 2016/0179750 A1

/ Do for all launched blocks \\/32?

-4

inttiate focal sharing

348

-4

Compute rank of column
assigned fo blotk and setas ¢

323

ﬁﬁﬁﬁﬁﬁ
o~

ientify id of r-th ranked column
and setas/

325

¥

Cbiain Incal thread id of thread
inblock and setas t

320

-4

identify index of first non-zere
entry i column assigned o
ihread and set as i

327

¥

identify next index in &%
and 58t 88 Joy

328

¥

initialize local summation
calculstor

328

|

Patent Application Publication Jun. 23,2016 Sheet 25 of 26 US 2016/0179750 A1

: ®

\\\if ;m‘ﬁ’i? .»—:::’
333\ i) Yas
Synchronize ail threads
in block Perform multiplication of value |y
of 7 and add 1o sum
J34- ¥
Divide blocksize iy 2 4
¢
and et 35 bpax Seli+blocksizeto! 332
335 x
{f \\“"'-«. No
) Yas 338 Yag
i 3
336~ st thread?
M
Reduce sums 0 240 4
) Store
397+, | Results
Divide g by € and »
$61 88 bngy)
338 ¥
Synchronize all threads
in block

ko
=

w 4
343 A End Do /
\ /

¥
End

FIG. 22B

Patent Application Publication

Jun. 23,2016 Sheet 26 of26 US 2016/0179750 Al

(Power Method) # 0

¥

Sel intial distribution 351

¥

/ Doutit g < g %352
Al
Sety 353
¥
Sat g 354
¥
Sel x 388
¥
\ Mead #eration /LSES
¥
Frd

FIG. 23

US 2016/0179750 Al

COMPUTER-IMPLEMENTED SYSTEM AND
METHOD FOR EFFICIENT SPARSE MATRIX
REPRESENTATION AND PROCESSING

FIELD

[0001] This application relates in general to processing
matrix data, and in particular, to a computer-implemented
system and method for efficient sparse matrix representation
and processing.

BACKGROUND

[0002] Sparse matrixes are matrices in which a majority of
elements are zero. Operations using such matrices have a
variety of applications and are usually the most computation-
ally-intensive part of such an application. For example, sparse
matrix-vector multiplication (SpMV) and sparse matrix
transpose vector multiplication (SpMTV), basic operations in
sparse linear algebra (SLA), are used for performing ranking
algorithms, such as the PageRank® algorithm used by
Google®, Inc. to rank webpages when providing search
results. SpMV and SpMTV are the most computationally
intensive part of such applications and the speed with which
the matrixes can be used is limited by SpMV and SpMTV.
[0003] While attempts have been made to improve the
speed of sparse matrix processing, such efforts still leave
significant room for improvement. For example, to increase
speed, matrixes have been encoded in a compressed format,
which includes multiple arrays of information about values
and position in the matrix of the non-zero entries and omit
information about the zero entries. For instance, a com-
pressed sparse matrix row format includes an array with
values of the non-zero entries, columns in which the non-zero
entries are located, and an array holding the index in the first
array of a first non-zero entry in each row. Compressed sparse
column format includes similar arrays. Such arrays are best
stored in a cache of a processor performing the computations
to allow fast access to the array data. However, in case of
larger matrices, even the compressed format arrays may not
fit into the cache, requiring a processor to access different
arrays representing the matrix in main memory to perform a
single step of the computation. In such an arrangement, mod-
ern computer processors, including central processing units
(CPUs) and graphics processing units (GPUs), are likely to
experience cache misses during the computation, a failure by
the processor to retrieve required data from the cache. To
finish the computation after a cache miss requires the proces-
sor to retrieve the missing data from the main memory, which
can be much slower.

[0004] Further, additional concerns are present when GPUs
are used to perform matrix computations such as SpMV and
SpMTV. GPUs are better designed and optimized for dense
computations, such as the processing of dense matrices,
matrices in which most elements are non-zero entries. Such
hardware commonly runs a single kernel function for pro-
cessing matrix data. As a result, the hardware cannot respond
to the huge variation in the number of non-zero entries in
different portions of the matrix, such as in different rows or
columns. For example, kernels that assign a single thread to
process a single row or column of the matrix can suffer from
load imbalance, with the total processing time depending on
the thread assigned to process the densest row or column. On
the other hand, kernels that assign multiple threads to process
a single row or column suffer from a waste of hardware

Jun. 23,2016

resources when the number of assigned threads is less than the
number of non-zero entries in the row or column, with some
of the assigned threads not being involved in the processing.
[0005] Therefore, there is a need to represent a sparse
matrix in a way that decreases a likelihood of cache misses
and allows for responding to the variation in the number of
non-zero entries in different parts of the matrix.

SUMMARY

[0006] Speed with which sparse matrices are processed can
be increased by using improved compressed representations
of the matrices. Structured compressed representations
reduce the number of cache misses experienced during matrix
processing by decreasing the number of times the cache has to
be accessed randomly. Further, representations of the matrix
that divide and regroup rows and columns of the matrix based
on their number of non-zero entries allows to assign the most
appropriate kernel function for processing of these portions
of a matrix, overcoming the limitations of the GPU-based
hardware. As a result, the speed of processing can be
increased without disturbing the original structure of the
matrix.

[0007] One embodiment provides a computer-imple-
mented system and method for structured sparse matrix rep-
resentation acquisition. A structured compressed representa-
tion of a matrix that includes one or more non-zero entries
arranged in one or more orders in portions of the matrix, each
portion including one of a row and a column, is obtained,
including obtaining a composite array that includes one or
more elements, each element including one of the non-zero
entries and an index of one of the portions including that
non-zero entry; and obtaining an index array that includes an
index in the composite array of each of the elements that
includes the non-zero entries that are first in one or more of
the orders, the index array further including a number of the
non-zero entries in the matrix.

[0008] A further embodiment provides a computer-imple-
mented system and method for efficient sparse matrix repre-
sentations and processing. A compressed representation of a
sparse matrix including one or more non-zero entries is
obtained, portions of the matrix indexed based on their posi-
tion in the matrix, the portions including one of rows and
columns of the matrix. A plurality of partitions for the por-
tions of the matrix are defined. A number of the non-zero
entries in each of the portions is obtained using the com-
pressed representation. Each ofthe portions is associated with
one of the partitions based on a number of the non-zero entries
in that portion. Listings of all the portions associated with
each of the partitions are created, the portions listed in order
of their indexes. A partitioned compressed representation of
the matrix that includes a mapping array that includes the
listings is created.

[0009] For GPU-based hardware, partitioned (structured)
CSR/CSC encoding is preferred over the non-partitioned
ones, because the GPU typically assumes a single-instruc-
tion-multiple-threads execution model that is much less flex-
ible than the CPU. This model makes GPUs more vulnerable
to load imbalance issues than CPUs. Partitioned sparse matrix
encodings such as PSCSR and PSCSC can effectively reduce
load imbalance on the GPU by grouping together rows or
columns with similar computational characteristics based on
their number of non-zeros.

[0010] Still other embodiments of the present invention
will become readily apparent to those skilled in the art from

US 2016/0179750 Al

the following detailed description, wherein is described
embodiments of the invention by way of illustrating the best
mode contemplated for carrying out the invention. As will be
realized, the invention is capable of other and different
embodiments and its several details are capable of modifica-
tions in various obvious respects, all without departing from
the spirit and the scope of the present invention. Accordingly,
the drawings and detailed description are to be regarded as
illustrative in nature and not as restrictive.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] FIG. 1 is a flow diagram showing a method for
performing SpMV on a matrix encoded in compressed sparse
row format encoding, in accordance with one embodiment
(prior art).

[0012] FIG. 2 is a flow diagram showing a method for
performing SpMTV on a matrix encoded in compressed
sparse column format encoding, in accordance with one
embodiment (prior art).

[0013] FIG. 3 is a block diagram showing a computer-
implemented system for efficient representation and process-
ing of sparse matrices, in accordance with one embodiment.
[0014] FIG. 4 is a graph showing, by way of example, an
adjacency matrix.

[0015] FIG. 5is a graph summarizing the strengths of vari-
ous encodings for various hardware set-ups of the system of
FIG. 3.

[0016] FIG. 6is aflow diagram showing a computer-imple-
mented method for structured sparse matrix representation
acquisition, in accordance with one embodiment.

[0017] FIG.7is aroutine for performing SpMV on a matrix
encoded using structured CSR encoding foruse in the method
of FIG. 6, in accordance with one embodiment.

[0018] FIG. 8 is a routine for performing SpMTV on a
matrix encoded using structured CSC encoding for use in the
method of FIG. 6, in accordance with one embodiment.
[0019] FIG.9is aflow diagram showing a computer-imple-
mented method for efficient sparse matrix partitioning and
processing, in accordance with one embodiment.

[0020] FIG. 10 is a flow diagram showing a routine for
performing order-preserving partitioning of rows of a matrix
represented in a compressed representation for use in the
method of FIG. 9, in accordance with one embodiment.
[0021] FIG. 11 is a flow diagram showing a routine for
performing order-preserving partitioning of columns of a
matrix represented in a compressed representation for use in
the method of FIG. 9, in accordance to one embodiment.
[0022] FIG. 12 is a flow diagram showing a routine for
merging partitions into a mapping array for use in the method
of FIG. 9, in accordance with one embodiment.

[0023] FIG. 13 is a flow diagram showing a routine for
performing SpMV on a matrix encoded in a partitioned com-
pressed representation for use in the method of FIG. 9, in
accordance with one embodiment.

[0024] FIG. 14 is a flow diagram showing a routine for
performing SpMTV on a matrix encoded in a partitioned
compressed representation for use in the method of FIG. 9, in
accordance with one embodiment.

[0025] FIG. 15 s a routine for starting a kernel function for
partitioned compressed representation processing for use in
the method of FIG. 9, in accordance with one embodiment.
[0026] FIG.16 is a routine for setting launch arguments for
a selected kernel function for use in the routine of FIG. 15, in
accordance with one embodiment.

Jun. 23,2016

[0027] FIG. 17 is a flow diagram showing a routine for
performing SpMV by an f] ;, z kernel function for use in the
routine of FIG. 15, in accordance with one embodiment.
[0028] FIG. 18 is a flow diagram showing a routine for
performing SpMTV by an f, ;, z kernel function for use in the
routine of FIG. 15, in accordance with one embodiment.
[0029] FIGS. 19A-19B are flow diagrams showing a rou-
tine for performing SpMV by anfiwiR kernel function for use
in the routine of FIG. 15, in accordance with one embodi-
ment. FIGS. 20A-20B are flow diagrams showing a routine
for performing

[0030] SpMTYV by an f) ;5 kernel for use in the routine of
FIG. 15, in accordance with one embodiment.

[0031] FIGS. 21A-21B are flow diagrams showing a rou-
tine for performing SpMV by an f| z, kernel function for use
in the routine of FIG. 15, in accordance with one embodi-
ment.

[0032] FIGS. 22A-22B are flow diagrams showing a rou-
tine for performing SpMTV by an f) -, » kernel function for
use in the routine of FIG. 15, in accordance with one embodi-
ment.

[0033] FIG. 23 is a flow diagram showing a routine for
performing the power method for use in the methods and of
FIGS. 6 and 9, in accordance with one embodiment.

DETAILED DESCRIPTION

[0034] As mentioned above, sparse matrices can be
encoded in the compressed sparse row (CSR) format. Let A be
an mxn sparse matrix with e non-zero entries. Let A, A_and
A, be three one-dimensional arrays of length e, e, and (m+1),
respectively. In CSR format, A is encoded as (A, A_, A)), in
which:
[0035] Valuearray A, holds the values of all the non-zero
entries in A in row-major order
[0036] Column array A, holds the columns of all the
non-zero entries in A in row-major order,
[0037] Row-index array A, holds the index in A, of the
first non-zero entry of each row in A, with the last entry
inthe A, array being the total number of entries in the A |

array.
[0038] For example, the following 4x4 matrix
0 0 0 1
05 0 0 05
“losos o o
0 0 1 0

[0039] canbeencoded in CSR as (A, =[1, 0.5, 0.5,0.5,0.5,
11,A.=[3,0,3,0,1,2],A,=[0, 1, 3, 5, 6]).

[0040] Inthisand other examples described below, the rows
and the columns are indexed, with the indexes serving as their
ids. The indices start at zero, increasing for columns going
from left to right, and for rows going from top to bottom ofthe
matrix. Thus, the matrix A above has ids of rows and columns
going from 0 to 3.

[0041] Letx and y be two dense vectors of size n and m,
respectively. The task of SpMV is to compute y=Ax, where A
is a sparse matrix. FIG. 1 is a flow diagram showing a method
10 for performing SpMV on a matrix encoded in compressed
sparse row format encoding, in accordance with one embodi-
ment (prior art). An iterative processing loop (steps 11-19) of
processing rows with id i=0 to m-1, all rows of the matrix, is

US 2016/0179750 Al

started (step 11). An entry for the i-th row in the A, array is
located, identifying the index in the A, array of the first
non-zero entry for that row in the matrix; the identified index
is set as a variable j (step 12). The next (i+1) entry in the A,
array is located and set as a variable j,,,,,.. (step 13). Unless the
i-th row is the last row in the matrix, the next entry in the A,
array is the index in the A, array of the first non-zero entry in
(i+1)th row; if the i-th row is the last row in the matrix, the
next entry in the A, array is the total number of entries in the
A array. A summation calculator (also referred to as summa-
tion accumulator in the pseudocode below), a function for
summing together results of multiplication of the values of
the non-zero arrays described in step 16 below, is initialized
by setting the value of the sum at zero (step 14). If j is less than
Imax (step 15), a computation according to the formula:
sum—+sum+A, [j]xx[A,[j]]
is performed (step 16). In the computation, the valueinthe A |
array with the index j is multiplied by the element of x whose
index is the number in the A _ array with the j-th index. The
result of multiplication is added to the sum of results of
multiplication performed during previous iterations of the
step 16; during the first iteration of step 16 in the method, the
sum is zero, as set in step 14 above. Upon the completion of
the calculation, 1 is added to the value of j and the result of the
addition is set as j (step 17), moving the processing to the
entry in the next column in that row. The method returns to
step 15 described above, repeating steps 15-17 until of the
non-zero values in the i-th row are processed. Ifj is not less
thanj,,,. (step 15), the sum resulting from addition of results
multiplication during the iterations in the loop 15-17 is stored
in the dense vector y (step 18). The iterative processing loop
moves to the next row (step 19), with the processing continu-
ing through the loop (steps 11-19) until all of the rows are
processed , upon which the method 10 ends.
[0042] Themethod10of FIG.1 canalso be expressed using
the following pseudocode:

fori=0tom-1 /* loop over m rows of sparse matrix A */

J< Al /* j:index in A, of first non-zero entry in i-th
row */
Jmax < AJJIH1] /¥ 0 index in A, of first non-zero entry in
(i+1)-th
row */
sum < 0 /* initialize the summation accumulator */
while (j <j,.a) /* test if end of row has been reached */
sum <= sum + A, [j] x x[A.[j]] /* compute y; =X ; A;; x
X, */
j<j+1 /* move on to next njon—zero column in i-th
row */
end while
y[i] < sum /* store result in y */
end for
[0043] The most computationally intensive part of SpMV

is due to the summation line, described in step 16 above:
sum—>sum+A, [jIxx[A.[]]

[0044] inwhich the following three arrays are accessed: A,
A_, and x, with indices j, j, and A_[j], respectively. Note that
both A, and A_ have e elements, which are typically much
larger than the sizes of A, and x in SpMV. The implication of
this size difference on modern processors, including both
CPUs and GPUs, is that the above summation line is most
likely to cause 2 or 3 cache misses, depending on the size of
these arrays. Of the three arrays, x (the array that stores the

Jun. 23,2016

input dense vector) is usually the smallest, and thus it has the
best chance of fitting in the .2 cache of the processors. Of
course, if matrix A is small enough, then everything fits,
which is the trivial case. For non-trivial SpMV problems,
however, one should not assume that either A, or A_fits in L.2.
In other words, accessing both A, and A_ may trigger two
separate cache misses, which can have a negative impact on
the performance of SpMV. Cache misses can significantly
reduce the speed of SpMV, which often exhibits little memory
reference locality.

[0045] Sparse matrices can also be encoded in the com-
pressed sparse column (CSC) format, which is often seen as
CSR “transposed”. Let A be an mxn sparse matrix with e
non-zero entries. LetA',, A" and A', be three one-dimensional
arrays of length e, e, and (n+1), respectively. In CSC format,
A is encoded as (A", A',, A"), in which:

[0046] Value array A', holds the values of all the non-
zero entries in A in column-major order

[0047] Row array A', holds the rows of all the non-zero
entries in A in column-major order.

[0048] Column-index array A'_ holds the index in A’ of
the first non-zero entry of each column in A, with the last
entry in the A',_ array being the total number of entries in
the A', array.

[0049] The same 4x4 matrix

05 0
7105 05

shown earlier can be encoded in CSC as:

(A,=[0.5,0.5,0.5,1,1,0.5],A,=[1, 2, 2, 3,0, 1],
A ~[0,2,3,4, 6]).

[0050] Letx'and y' be two dense vectors of size m and n,
respectively. The task of SpMTV is to compute y'=A’x',
where A is the original, untransposed sparse matrix. FIG. 2 is
a flow diagram showing a method 20 for performing SpMTV
on a matrix encoded in compressed sparse column format
encoding in accordance with one embodiment (prior art). An
iterative processing loop (steps 21-29) of processing columns
with id j=0 to n-1, all columns of the matrix, is started (step
21). An entry for the j-th column in the A', array is located,
identifying the index in the A', array of the first non-zero entry
for that column in the matrix; the identified index is set as a
variable i (step 22). The next (j+1) entry in the A'_ array is
located and set as a variable i,,,, (step 23). Unless the j-th
column is the last column in the matrix, the next entry in the
A'_array is the index in the A', array of the first non-zero entry
in the (j+1)-th column; if the j-th column is the last column in
the matrix, the next entry inthe A’ array is the total number of
entries in the A'| array. A summation calculator, a function for
summing together results of multiplication of the values of
the non-zero arrays described in step 26 below, is initialized
by setting the value of the sum at zero (step 24). If iis less than
1,.. (step 25), a computation according to the formula:

sum—>sum+A',[i]xx'[A"[i]]

is performed (step 26). In the computation, the value in the A,
array with the index i is multiplied by the element of X' whose
index is the number in the A'r array with the i-th index. The
result of multiplication is added to the sum of results of

US 2016/0179750 Al

multiplication performed during previous iterations of step
26; during the first iteration of step 26 in the method, the sum
is zero, as set in step 24 above. Upon the completion of the
calculation, 1 is added to the value of 1 and the result of the
addition is set as i (step 27), moving the processing to the
entry in the next row in that column. The method 20 returns to
step 25 described above, repeating steps 25-27 until of the
non-zero values in the j-th column are processed. If i is not
less than i, (step 25), the sum resulting from addition of
results multiplication during the iterations in the loop 25-27 is
stored in the dense vector y' (step 28). The iterative processing
loop moves to the next column (step 29), continuing until all
of'the columns are processed through the loop (21-29), after
which the method 20 ends. The method 20 of FIG. 2 can also
be expressed using the following pseudocode:

Jun. 23,2016

in the sparse matrix. As a result, they must have the same
number of elements, in any CSR encoding.

[0054] Instead of storing the values and columns of the
same non-zero entries in two separate arrays, the structured
CSR encoding scheme puts the values and the columns in a
single, unified array, which includes (value, column) pairs
such that the i-th element stores not only the value but also the
column ofthe i-th non-zero entry in the sparse matrix. Inother
words, arrays A, and A_ in the CSR encoding are joined with
one another to form a composite array A, which we hereafter
refer to as the value-column array. The row-index array A,
stores the index in A, of the first non-zero entry of each row
in A, with the last entry in the A array being the total number
of composite entries in the A, array. Thus, the structured
CSR encoding includes two arrays: A=(A,, A,). The name of

ves

forj=0ton-1 /*loop over n columns of sparse matrix A */

i< A'[j] /* i: index in A, of first non-zero entry in j-th column
*/
Lax < AL[+1] /* L index in A', of first non-zero entry in (j+1)-th
column */
sum < 0 /* initialize the summation accumulator */
while (i <i,,,,) /*testifend of column has been reached */
sum <= sum + A’ [i] x X'[A%[i]] /* computey’; =32 ; A;; x X; */
i<=i+1 /* move on to next non-zero row in j-th column */
end while
¥'[j] < sum /* store result in y"™*/
end for
[0051] The summation line sum—=sum+A' [i]xx'[i]] above

accesses three arrays A',, A',, and x' with indices 1, i, and
A'[1], respectively. Similar to the CSR case, the accessing of
the three arrays could trigger three cache misses in a single
iteration of the steps 25-27 of the method 20 of FIG. 2.

[0052] The amount of cache misses and the speed of pro-
cessing of sparse matrices in general can be reduced by using
improved encodings of sparse matrices. FIG. 3 is a block
diagram showing a computer-implemented system 30 for
efficient representation and processing of sparse matrices, in
accordance with one embodiment. The system 30 includes a
computer storage 31, such as a database, that stores one or
more sparse matrices 32. The storage is connected to one or
more servers 33 that execute a matrix encoder 34 that that
prepares compressed representations 35 of the matrices 32.
Each of the representations includes one or more arrays stor-
ing information about non-zero entries in the matrix. In the
description below, the terms “representation” and “encoding”
are used interchangeably. The representations 35 can be
stored in the storage 31. Each of the compressed representa-
tions 35 is an encoding of a matrix 32 in a compressed format,
which does not explicitly include zero entries in the matrix
32. For example, such representations 35 can include encod-
ings in the CSR and in CSC formats described above. The
matrix encoder 34 can also encode more efficient representa-
tions 35 of the matrix that reduce the number of cache misses
during processing and thus are more cache friendly.

[0053] One of these more efficient encodings can be called
structured CSR (SCSR) encoding. In the CSR encoding
described above, A, and Ac have the same number of elements
in them, although their space requirements may differ if ele-
ments in A, do not have the same byte size as elements in A_..
The value (A,) and the column (A,) arrays having exactly the
same number of elements is not a coincidence because they
describe different aspects of the same set of non-zero entries

the SCSR encoding reflects that each element in the value-
column array A,,. is a structure (i.e., a composite data type)
instead of being a rudimentary type such as a float or an

integer.
[0055] The example matrix
0 0 0 1
05 0 0 05
“los 050 0
0 0 1 0

shown above can be encoded in structured CSR as: A=(A,,
A)), where A, =[<1, 3>, <0.5, 0>, <0.5, 3>, <0.5, 0>, <0.5,
1>, <1, 2>]and A =[0, 1, 3, 5, 6].

[0056] Similarly, the encoder 34 can create a structured
CSC (SCSC) encoding that reduces the number the number of
cache misses during processing, such as SpMTV, as com-
pared to CSC. In structured CSC, the value array A’ and row
array A', of CSC are merged into a single composite array A, .
that can be called the value-row array. Each element of the
value-row array A', . is a (value, row) pair that stores both the
value and the row of a non-zero matrix entry, based on a
column-major ordering starting from the left-most column of
the matrix. The column-index array A'_ holds the index in A'
of the first non-zero entry of each column in A, with the last
entry in the A'_ array being the total number of composite
entries in the A',, array.

[0057] For example, the same matrix

05 0
0.5 0.5

0.5

-0 O O

US 2016/0179750 Al

shown earlier can be encoded in structured CSC as: A=<A"| ,
A' >, where A', =[<0.5,1>,<0.5,2>,<0.5,2>,<1,3>,<1,0>,
<0.5, 1>] and A" =[0, 2, 3, 4, 6].

[0058] The server 33 further includes a computing module
36, which processes the matrix 32 by performing computa-
tions on the compressed representations 35 of the matrix 32.
Thus, the computing module 36 can perform SpMV and
SpMTYV on the structured CSC and structured CSR encoding
of the matrix 32, as further described below with reference to
FIGS. 7 and 8. Also, the computing module 36 can apply the
results of SpMV and SpMTV towards many applications. For
example, one application of the results of SpMV and SpMTV
can be in performing a ranking algorithm, such as the Pag-
eRank® algorithm, as further described with reference to
FIG. 23. The connection between graphs for the PageRank
algorithm and sparse matrices is briefly reviewed below. That
a graph can be represented as an adjacency matrix, which is
typically sparse and thus often encoded in CSR/CSC format,
is well-known. FIG. 4 is a graph 40 showing, by way of
example, an adjacency matrix. For example, matrix

0 00 1
05 0 0 05
“los 050 0
0 010

can be seen as a matrix representation of the graph 40 in FIG.
4. The graph above has 4 vertices and 6 weighted edges: <0,
3,1.0>,<1,0,0.5> <1, 3,0.5><2,0,0.5> <2, 1, 0.5>, <3,
2, 1.0>, where an edge of the form (u, v, w) indicates a link
from vertex u to v with weight w, such that u is the source
vertex of the edge and v the destination vertex of the edge. If
these six edges are viewed as the non-zero entries of a sparse
matrix in the form of (row, column, value) triples, then that
they are exactly the non-zero entries in A can be verified.
Thus, there is a one-to-one correspondence between
weighted graphs and sparse matrices. The graph 40 has an
interesting property: the weight of an edge is the reciprocal of
the number of out-going links of its source vertex. Such a
graph models the transition probabilities between vertices,
which can be used to compute PageRank® algorithm as
described further below with reference to FIG. 23. Other
algorithms can also be run by the computing module 36, as
further described below.

[0059] The structured CSC and structured CSR allow to
increase the speed of processing of a matrix 32 using any type
of hardware. Returning to FIG. 3, the encoder 34 is also
capable of creating other types of compressed representations
35 that are particularly suited for increasing the speed of
matrix processing in a server 33 that uses a GPU for the
processing. For GPU-based sparse matrix processing, such as
SpMV or SpMTYV, the server 33 needs a SpMV processing
kernel, a function implemented by processing threads run-
ning on one or more GPUs in the server, that implements the
processing algorithms on the GPU such as those described
below. However, as mentioned above, experiments show that
a single kernel is far from being optimal, because the single
kernel often fails to respond to the huge variations in the
number of non-zero entries a sparse matrix row can have.

[0060] The server 33 is capable of running in parallel
groupings of threads. For example, the server 33 can include
multiple GPU threads grouped into units called warps. For

Jun. 23,2016

example, the parallel threads of GPUs manufactured by
Nvidia® Corporation of Santa Clara, Calif., are grouped into
units of 32 called warps such that all threads in the same warp
share a single streaming multiprocessor (SM) and assume the
single instruction multiple threads (SIMT) execution model.
If the threads run on the GPUs manufactured by Advanced
Micro Devices®, Inc. of Sunnyvale Calif., the equivalent
concept to warps is a called wavefront, which currently
includes 64 threads executed on a group of 64 GPU cores. As
a result, different threads in the same warp (or wavefront)
cannot execute different instructions concurrently, although
they are always allowed to process different data in parallel.
For the purposes of this application, the term “warp” and
“wavefront” are used interchangeably below to refer to a
collection of GPU cores that share a single streaming multi-
processor and that run in parallel 32 or 64 multiple processing
threads executing the same instructions. In a further embodi-
ment, other thread numbers are possible in a warp. Further,
larger groupings of threads are possible through groupings of
the warps. Each such grouping is called a thread block and
each block of threads includes more threads than a warp
(more than 32 or 64 depending on the embodiment). The
number of threads in each block is referred to as block size (or
BLOCKSIZE in the description below) while the number of
threads in a warp is referred to as warp size (or WARPSIZE in
the description below). The encoder 34 allows to overcome
the limitations of the hardware of the server 33 by creating
encodings of the matrices 32 that allow the server 33 to run
different kernels for portions of a matrix 32 with different
numbers of non-zero entries. The encoder 34 creates a parti-
tioned compressed representation of the matrix 32, with the
partitioned compressed representation including multiple
partitions. Each of the partitions is a listing of a group of
portions of the matrix 32, such as rows or columns, that have
a number of non-zero entries within a certain range. For
example, one partition can have portions of the matrix 32 that
have between 1 and 31 non-zero entries, the second partition
can have portions of the matrix 32 that have between 32 and
1024 non-zero entries, while the third partition can have
entries portions of the matrix that have more than 1024 non-
zero entries. Other ranges of non-zero entries and other num-
bers of partitions are possible. The encoder 34 defines the
partitioned compressed representation as follows. While the
description below refers to portions of the matrix 32 being
partitioned as being rows, columns of the matrix can be par-
titioned into same way mutatis mutandis.

[0061] Letk be an index of the partitions, starting at zero,
with partitions with rows with fewer non-zero entries having
a lower index than partitions with more non-zero entries.
Thus, the partitions with rows having between 32 and 1024
non-zero entries would have a lower index k than the partition
having more than 1024 non-zero entries. Let p be the total
number of partitions, and let A, be an integer array of (p+1)
elements, called the row partition separator array, specifying
the minimum and maximum number of non-zero entries of a
row allowed in each partition, as follows:

[0062] A,[0]=1
[0063] A, k]<AJk+1], fork=0,1,2,...,p-1.
[0064] A,[p]=28
[0065] Inoneembodiment,the valuesofS [0]and A [p]are

not stored in the storage, as they are the maximum and mini-
mum numbers of non-zero entries that a row of the matrix 32
could have; in a further embodiment, the values are stored in
the storage 31.

US 2016/0179750 Al

[0066] The partitions are order-preserving. Let e,~ be the
number of non-zero entries in row 1 of the sparse matrix. The
set of rows in the k-th row-based partition, denoted as R, can
be written as R,={ilA [k]=e, <A [k+1]}. Since not changing
the content of the original matrix 32 is often desirable, a
one-dimensional order-preserving permutation array, also
called a mapping array below (A, or A',), is added to store
the mapping from the partition-based row id, called the rank
of the row, or rank of the column, back to the original row or
column id respectively. Each of the ranks is an index in the
mapping array of a portion of the matrix. For example, if a
row has anid of 3 and a rank of 0, the value 3 would be the first
value listed in the mapping array. Unlike ordinary permuta-
tion arrays, the order-preserving permutation array is
required to keep the relative ordering of the rows assigned to
the same partition as follows. Let r, and r; be the ranks of rows
iand j in the permutation array. Let p; and p; be the partitions
to which these two rows iand j belong. The ranks r, and r, are
order preserving, if and only if the following constraints are
satisfied:
[0067] Vp,<p,, 1,<t,—ifthe index of partition j is greater
than index of partition i, rank of a row in partition j must
be greater than rank of row in partition i
[0068] Vp>p,, r>r,—ifthe index of partition i is greater
than index of partition j, rank of a row in partition i must
be greater than rank of row in partition j.

[0069] Vp=p,i=j, r<r<>i> (or equivalently, r>r,
& i)
[0070] The last constraint above is designed to respect the

relative ordering of same-partition rows in the original matrix
32, such that rows with smaller ids will be accessed before
rows with larger ids in the same partition. The constraint
improves the cache performance of SLA algorithms such as
SpMYV, because the constraint reduces the randomness in
accessing A, in both structured and unstructured CSR encod-
ings. As a beneficial side effect, enforcing the order-preserv-
ing constraint also reduces the time complexity of the parti-
tioning algorithm, because one only needs a single, cache-
friendly, linear scan of the row-index array A, to fully
partition a CSR matrix; whereas an algorithm based on sort-
ing would incur on average O(mlogm) comparisons that may
result in quite a few cache misses, where m is the number of
rows. Experiments show that not only order-preserving par-
titions can be computed much faster, they also lead to signifi-
cantly faster SpMV than sorting-based partitions, which are
usually not order-preserving.

[0071] The order-preserving partitioned compressed repre-
sentation of the matrix 32 can be created by the encoder 34 as
described below beginning with a reference to FIG. 9 based
on various preexisting compressed representations of the
matrix 32, such as CSC, CSR, structured CSC and structured
CSR. The partitioned compressed representations based on
different compressed representations will differ from each
other. For example, a sparse matrix A can be represented as
A=<A,, AL A, A A, A for structured CSR, where a,,.
and A, arethe same as before, A, is the row-partition mapping
array, A, is the row -partition offset array, which includes the
ranks of the first portions of each of the partitions and the total
number of entries in the mapping array, A, is the number of
row-based partitions, and A is the row partition separator
array (optional if partitioning is completed). Structured CSR
with row-based partitions are referred to as partitioned struc-
tured CSR (PSCSR) from this point on. Since unstructured
CSR matrices can be partitioned using the routine described

Jun. 23,2016

below with reference to FIG. 9 as well, the resulting encoding
is called partitioned CSR (PCSR) in which the sparse matrix
Aisencodedas <A, A, A A A A, A>

[0072] Similarly, a sparse matrix A can be represented as
A=<A' A AT LAY AN, A > for structured CSC, where A
yrand A' ¢ are the same as before, A',, is the column-partition
mapping array, A', is the column-partition gifs’et array, A", is
the number of column-based partitions, and A' is the column
partition separator array (optional if partitioning is com-
pleted). Structured CSC with column based partitions is
referred to as partitioned structured CSC (PSCSC) from this
point on. Since unstructured CSC matrices can be partitioned
using the same algorithm as well, the resulting encoding is
called partitioned CSC (PCSC) in which the sparse matrix A
is encoded as <A', A", A" A", AT A Al

[0073] For example, consider the same example matrix

0
05 0 0 05
“los5 050

1

shown earlier. If one wants to create two partitions for A such
that:

[0074] 1. the first partition contains only rows with a
single non-zero entry

[0075] 2. the second partition contains rows with mul-
tiple non-zero entries

[0076] then A,=A'=2 and A=A'~[1, 2, «]. Other
arrays are as follows:

[0077] A, =[0, 3, 1, 2] and A,=[0, 2, 4], for PCSR and
PSCSR

[0078] A',=[1,2,0,3]and A' =0, 2, 4], for PCSC and
PSCSC

[0079] Whether creating the partitioned compressed repre-
sentations is practicable given the hardware resources of the
system 30 can be determined using the formula discussed
below in relation to Table 1. The partitioned compressed
encoding representation can be processed by the computing
module 36, such as described below beginning with reference
to FIG. 9, regardless of whether the server 33 includes one or
more GPUs or only one or more CPUs. However, the creation
of partitions that list portions of the matrix 32 with certain
numbers of non-zero entries allows the computing module 36
to apply the most appropriate processing kernel when pro-
cessing those portions when the server 33 includes GPUs.
While many processing kernels are possible, the computing
module can apply at least the following three kernels:

[0080] 1. One-thread-one-row (1T1R) kernel, which
assigns a single processing thread to process a row or a
column.

[0081] 2. One-warp-one-row (I1WI1R) kernel, which
assigns all threads in a unit called a warp to process a row
or a column.

[0082] By themselves, none of the kernels are ideal for all
portions of a matrix 32. As mentioned above, the 1T1R ker-
nels (which can also be referred to as f, -,z kernels below)
suffer from load imbalance, since the total runtime depends
on the slowest thread, which corresponds to the row (or col-
umn) with the most number of non-zero entries. The IW1R
kernels (which can also be referred to as f; ;;, kernels below)
suffer from a waste of hardware resource when the number of

US 2016/0179750 Al

non-zero entries in a row (or column) is less than 32 (or 64),
the warp (or wavefront) size. Note that a single sparse matrix
may have both rows with few and rows with many non-zero
entries. Thus, committing to either type of kernels rarely
solves the problem. Furthermore, the experiments show that
there is benefit in having more threads than those in a single
warp to work on the same row. This prompts a need to add a
third type:

[0083] 3. One-block-one-row (1BIR) kernel, which
assigns a block of threads (>32 or 64) to process a row or
a column.

Like the 1W1R kernel, the 1B1R kernel (which can also be
referred to as f, 5, ; kernel below) can also suffer from a waste
of hardware resource when the number of threads is greater
than the number of non-zero entries in that portion of the
matrix. However, by correlating each kernel with a particular
partition of the matrix, the computing module can use the best
kernel for processing a particular row or column, as further
described below with reference to FIG. 15.

[0084]

[0085] To mix the f, ;, z, ff] 531 &> and {5, z, or other kernels
efficiently, the SpMV algorithm needs to quickly distinguish
among the rows that each kernel is good at. For fast row
classification, a sparse matrix partitioning algorithm is
described below beginning with reference to FIG. 9, which
groups together the matrix rows that are best processed by the
same kernel. More precisely, the partitioning algorithm takes
as input the minimum and maximum number of non-zero
entries for the rows in each partition and produces a mapping
that can be used to determine the partition each row or column
belongs to, as further described below beginning with refer-
ence to FIG. 9. In a further embodiment, the kernel functions
can be assigned to the partitions based on factors other than
the number of non-zero entries in the partitions.

[0086] The one or more servers 33 are connected to a net-
work 37, which can be a local network or an internetwork
such as the Internet or a cellular network, and through the
network can communicate with at least one user device 38.
While the user device 38 is shown as desktop computer, the
user device 38 can also include laptop computers, smart-
phones, media players, and tablets. Still other kinds of user
devices 38 are possible. The user device 38 can communicate
with the server 33 through the network 15, receive commands
from performing computations, and output the results of the
computations back to the user device.

[0087] SpMYV and SpMTV are just two of the many SLA
operations that can be built on top of (PS)CSR and (PS)CSC
encodings. In general, any algorithm that deals with sparse
matrices may benefit from partitioned (P) and/or structured
(S) CSR/CSC encodings, especially if the algorithm must
access at the same time both the value and the position of a
non-zero entry in the matrix. Other SLA operations, such as
sparse matrix-matrix multiplication (SpMM) have a similar
access pattern, and thus can benefit from the same encodings
introduced here.

[0088] There are, however, tasks for which the conven-
tional CSR/CSC encoding can work well even without struc-
turing and for which the system 30 can use the conventional
CSR/CSC encodings. For example, computing the Frobenius
norm of a sparse matrix A, which is defined as

Still other types of kernel functions are possible.

Jun. 23,2016

Al = |55 lagl?
i

doesn’t require the algorithm to access the positions of non-
zero entries, and thus mixing their values and positions in the
same array may not always help. Another example is to test
whether or not a sparse matrix is diagonal, which only
requires accessing the positions of non-zero entries, but not
their values. In general, any algorithm that only needs to
access either the values or the positions (but not both) of
non-zero matrix entries may not benefit from structured CSR/
CSC. Note that both examples above already have excellent
memory reference locality, which typically results in few
cache misses or none, if data pre-fetching is enabled. In other
words, there is not much for structured CSR/CSC to lose over
their unstructured counterparts, even in the worst case, and
generally structured CSR/CSC encodings perform as well
unstructured CSR/CSC encodings in these scenarios. Never-
theless, as structured CSR/CSC are generally likely the most
efficient and robust data structure for encoding sparse matri-
ces on the CPU and are of most use in the majority of situa-
tions, there is little reason (except for legacy code) to use
conventional CSR/CSC. FIG. 5 is a graph 50 summarizing the
strengths of various encodings for various hardware set-ups
of'the system 30 of FIG. 3. The graph 50 illustrates that in the
majority of scenarios, the encodings described above are
superior to conventional, unstructured, CSR/CSC encodings.
The graph 50 includes two orthogonal dimensions: (1) hard-
ware flexibility as the x-axis and (2) memory access pattern as
the y-axis. For the y-axis, the graph 50 distinguishes between
memory-access patterns that require simultaneous access to
both the value and the position of a non-zero matrix entry
(labeled as “value+position” on the top) versus patterns that
only require access to either the value or the position (but not
both) of a non-zero entry (labeled as “valuebposition” on the
bottom, where the symbol ‘e’ denotes the exclusive or rela-
tionship).

[0089] The graph 50 shows that three out of the four quad-
rants prefer the sparser matrix encodings introduced in this
application and that the only scenario to prefer the conven-
tional unstructured CSR/CSC format is when the memory-
access pattern is either value-only or position-only for the
non-zero entries and the hardware is more CPU-like. As
explained earlier, the performance gain achievable by the
conventional CSR/CSC format is quite limited, if at all. On
the other hand, its performance loss in the other three quad-
rants, especially in the top-right corner, can be substantial,
justitying the use of the encodings discussed above for all
situations.

[0090] Returning to FIG. 3, one or more servers 33 can
include components conventionally found in programmable
computing devices, such as one or more CPUs and GPU and
SM, memory, input/output ports, network interfaces, and
non-volatile storage, although other components are possible.
The servers 33 can each include one or more modules for
carrying out the embodiments disclosed herein. The modules
can be implemented as a computer program or procedure
written as source code in a conventional programming lan-
guage and that is presented for execution by the central pro-
cessing unit as object or byte code. Alternatively, the modules
could also be implemented in hardware, either as integrated
circuitry or burned into read-only memory components, and

US 2016/0179750 Al

each of the servers 33 can act as a specialized computer. For
instance, when the modules are implemented as hardware,
that particular hardware is specialized to perform the parti-
tioning and other computers without the hardware cannot be
used for that purpose. The various implementations of the
source code and object and byte codes can be held on a
computer-readable storage medium, such as a floppy disk,
hard drive, digital video disk (DVD), random access memory
(RAM), read-only memory (ROM) and similar storage medi-
ums. Other types of modules and module functions are pos-
sible, as well as other physical hardware components.

[0091] As mentioned above, structured CSR and structured
CSC allow to reduce the number of cache misses during
matrix processing, such as SpMV. FIG. 6 is a flow diagram
showing a computer-implemented method 60 for structured
matrix representation acquisition, in accordance with one
embodiment. The method 60 can be implemented on the
system 30 of FIG. 3, though other implementations are pos-
sible. Initially, a sparse matrix is accessed and information
about the non-zero entries in portions of the matrix, the rows
and columns, is obtained (step 61). A structured compressed
representation of the matrix, either structured CSC or struc-
tured CSR, of the matrix is created by encoding information
about the non-zero entries into a composite array (A, orA',,)
and an index array (Ar or A',) as described above (step 62).
The structured compressed representation is processed (step
63), such as by performing SpMYV, as described below with
reference to FIG. 7, or SpMTV, as described below with
reference to FIG. 8, though other kinds of processing are also
possible. The results of the processing are applied (step 64),
such as by performing the PageRank® or another ranking
algorithm, although other kinds of applications of the pro-
cessing the results are also possible. The method 60 is con-
cluded.

[0092] SpMYV performed on structured compressed repre-
sentation of the matrix reduces the probability of cache
misses. FIG. 7 is a routine 70 for performing SpMV on a
matrix encoded using structured CSR encoding for use in the
method 60 of FIG. 6. Leta, EA,,. be an element of the value-
column array. Since a,,. is a structure, the dot operator can be
used, as in popular programming languages such as C++ and
Java, to access the array members: a,,..v returns the ‘value’
fieldand a,_.c returns the ‘column’ field of a,_, which are used
in the computation in step 76 described below. Other ways to
access the value and the column fields are possible. To illus-
trate the routine 70 and subsequent SpMV routines described
below, the same mxn matrix used in the examples above, and
two dense vectors x and y of size n and m, respectively, are
used.

[0093] An iterative processing loop (steps 71-79) of pro-
cessing rows with id i=0 to m~-1, all rows of the matrix, is
started (step 71). An entry for the i-th row in the A array is
located, identifying the index in the A, array of the first
non-zero entry for that row in the matrix; the identified index
is set as a variable j (step 72). The next (i+1) entry in the A,
array is located and set as a variable j,,,,,.. (step 73). Unless the
i-th row is the last row in the matrix, the next entry in the A,
array is the index in the A, array of'the first non-zero entry in
(i+1)-th row; if the i-th row is the last row in the matrix, the
next entry in the A, array is the total number of entries in the
A, array. A summation calculator, a function for summing
together results of multiplication of the values of the non-zero
arrays described in step 76 below, is initialized by setting the

Jun. 23,2016

value of the sum at zero (step 74). Ifj is less thanj,,, ., (step 75),
a computation according to the formula:

sum—>sum+A, [j].vxx[A, [j].c]

is performed (step 76). In the computation, the value stored in
the element of the A array with the index j is multiplied by
the element of x whose index is the index of the column stored
in the A element with the j-th index. The result of multipli-
cation is added to the sum of results of multiplication per-
formed during previous iterations of the step 76; during the
first iteration of step 76 in the routine, the sum is zero, as set
in step 74 above. Upon the completion of the calculation, 1 is
added to the value of j and the result of the addition is set as j
(step 77), moving the processing to the entry in the next
column in that row. The method returns to step 75 described
above, repeating steps 75-77 until of the non-zero values in
the i-th row are processed. Ifj is not less than j,,, . (step 75),
the sum resulting from addition of results multiplication dur-
ing the iterations in the loop 75-77 is stored in the dense vector
y (step 78). The iterative processing loop moves to the next
row (step 79), with the processing of the rows through the
loop (steps 71-79) continuing until all of the rows have been
processed through the loop (steps 71-79), after which the
routine 70 ends. The routine 70 can also be expressed using
the following pseudocode, with the text box showing the
difference from pseudocode shown above with reference to
FIG. 1:

fori=0tom-1 /* loop over m rows of sparse matrix A */

J< Al /* j:index in A, of first non-zero entry in i-th row */

Jmee < A[1+1] /* jmax: index in A of first non-zero entry in (i+1)-th
row */

sum < 0 /* initialize the summation accumulator */

while (j < j,uax) /* test if end of row has been reached */

|sum < sum + A [j].v X x[A,c[jl.c] /*compute y; =Z; A;; < x; ¥/

j<=j+1 /* move on to next non-zero column in i-th row */
end while
y[i] < sum /* store result iny */
end for
[0094] Similarly to SpMV performed on the structured

CSR, performing SpMTV on the structured CSC reduces the
likelihood of encountering cache misses than when the pro-
cessing is performed on unstructured CSC. FIG. 8 is a routine
80 for performing SpMTV on a matrix encoded using struc-
tured CSC encoding for use in the method 60 of FIG. 6. Let
a',, AA' bean element of the value-row array. Since a',,.is a
structure, the dot operator can be used, as in popular program-
ming languages such as C++ and Java, to access the array
members: a',,.v returns the ‘value’ field and a',,.r returns the
‘row’ field of a',,, which are used in the computation in step 86
described below. Other ways to access the value and the row
fields are possible. To illustrate the routine 80 and other
SpMTV routines below, the same mxn matrix as in the
examples above and two dense vectors x' and y' of size m and
n, respectively, are used.

[0095] An iterative processing loop (steps 81-89) of pro-
cessing columns with id j=0 to n—1, all columns of the matrix,
is started (step 81). An entry for a j-th column in the A'_ array
is located, identifying the index in the A',, array of the first
non-zero entry for that column in the matrix; the identified
index is set as a variable i (step 82). The next (j+1) entry in the
A'_array is located and set as a variable i,,,,, (step 83). Unless

US 2016/0179750 Al

the j-th column is the last column in the matrix, the next entry
in the A', array is the index in the A', array of the first
non-zero entry in the (j+1)-th column; if the j-th column is the
last column in the matrix, the next entry in the A'_ array is the
total number of entries in the A',,, array. A summation calcu-
lator, a function for summing together results of multiplica-
tion of the values of the non-zero arrays described in step 86
below, is initialized by setting the value of the sum at zero
(step 84). Ifiislessthani _(step 85), a computation accord-
ing to the formula:

max

sum—=sum+A',, [i].vxx'[A',,[i].r]

is performed (step 86). In the computation, the value stored in
the element of the A',, array with the index i is multiplied by
the element of x' whose index is the index of the row stored in
the A',, element with the i-th index. The result of multiplica-
tion is added to the sum of results of multiplication performed
during previous iterations of step 86; during the first iteration
of step 86 in the method, the sum is zero, as set in step 84
above. Upon the completion of the calculation, 1 is added to
the value of i and the result of the addition is set as i (step 87),
moving the processing to the entry in the next row in that
column. The routine 80 returns to step 85 described above,
repeating steps 85-87 until of the non-zero values in the j-th
column are processed. If i is not less than i, (step 85), the
sum resulting from addition of results multiplication during
the iterations of the loop 85-87 is stored in the dense vector y'
(step 88). The iterative processing loop moves to the next
column (step 89), with the processing of the columns through
the loop (steps 81-89) continuing until all of the columns have
been processed through the loop (steps 81-89), after which
the routine 80 terminates. The routine 80 of FIG. 8 can also be
expressed using the following pseudocode, with the text box
showing the difference from the pseudocode shown above
with reference to FIG. 2:

forj=0ton-1 /* loop over n columns of sparse matrix A */

i< A'[j] /* i: index in A',,. of first non-zero entry in j-th
column */

©yae < A'[j+1] /¥ 1yt index in A’ of first non-zero entry in (j+1)-th
column */

sum < 0 /* initialize the summation accumulator */

while (i <1i,,,,) /* test if end of column has been reached */

|sum < sum+ A’ [i].v < x'[A', [i].r] /*compute y'; = Z; A;; % x; */l

i<—i+1 /* move on to next non-zero row in j-th column */
end while
y'[j] < sum /* store result in y™*/
end for
[0096] While structured encodings are useful for both GPU

and exclusively-CPU based hardware, further gains in pro-
cessing speed can be gained by performing order-preserving
partitioning of compressed encodings for GPU-based hard-
ware. Whether creating the partitioned compressed represen-
tations is practicable given the hardware resources of a hard-
ware system can be determined using the formula. discussed
below inrelation to Table 1. FIG. 9 is a flow diagram showing
a computer-implemented method 90 for efficient sparse
matrix partitioning and processing, in accordance with one
embodiment. The method 90 can be implemented using the
system described above with reference to FIG. 3, though
other implementations are possible. A compressed represen-
tation of a sparse matrix is obtained (step 91). Such com-

Jun. 23,2016

pressed representation can be a CSC encoding, a CSR encod-
ing, a structured CSC encoding, or structured CSR encoding.
The representation can be accessed from the storage 32 by the
server 33 or obtained from another source. The server 33
defines partitions for portions of the matrix represented in the
compressed representation (step 92). In particular, the server
33 defines the numbers of partitions to be created (A, and A',)
and the values in the A array described above with reference
to FIG. 3, specifying the ranges of non-zero entries that por-
tions of the matrix in the partition can have. Once the parti-
tions are defined, the order-preserving partitioning of the
compressed representation is performed, as further described
below with reference to FIG. 10 (step 93). The created parti-
tions are merged together, forming the mapping array (A,, or
A',) described above, as further described with reference to
FIG. 10, and defining the offset array (A, and A') based on
the mapping array, thus completing the order-preserving par-
tition compressed representation of the matrix (step 94). The
partitioned compressed representation of the matrix can then
be used for processing, such as SpMV and SpMTV, with the
results of such processing being in turn applied, such as in the
PageRank® Algorithm, as described below with reference to
FIGS. 17-23 (step 95), ending the method 90.

[0097] Partitioning allows to group together portions of the
matrix that have similar numbers of non-zero entries while
preserving their order. FIG. 10 is a flow diagram showing a
routine 100 for performing order-preserving partitioning of
rows of a matrix represented in a compressed representation
for use in the method 90 of FIG. 9, in accordance with one
embodiment. The compressed representation can be both
CSR and structured CSR. An iterative processing loop (steps
101-107) of processing rows with id i=0 to m-1, all rows of
the matrix, is started (step 101). An entry for the i-th row in the
A, array is located, identifying the index inthe A jor A array,
depending on whether the initial compressed representation
was CSR or structured CSR, of the first non-zero entry for that
row in the matrix; the identified index is set as a variable j
(step 102). The next (i+1) entry in the A, array is located and
set as a variable j,,,. (step 103). Unless the i-th row is the last
row in the matrix, the next entry in the A, array is the index in
the A, (or A,) array of the first non-zero entry in (i+1)-th row;
if the i-th row is the last row in the matrix, the next entry in the
A, array is the total number of entries inthe A, (or A,) array.
The number of non-zero entries in the i-th a row is determined
by subtracting j from j,, .. (step 104); the number of the
non-zero entries can be denoted as e,_. If e,_ is greater than
zero (step 105), the row 1 is assigned into one of the defined
partitions based on the value of e, _and based on the maximum
and minimum numbers of non-zero entries permissible in the
partitions and the row id of row 1 is added to the end of the list
of rows in the partition k (step 106). Thus, the partition with
index k to which the row i belongs is found such that A [k]
=e, <A [k+1]. In one embodiment, the partition k can be
found using a function denoted as lower bound(A, b), which
returns the index of the first element of an ascending array A,
thatis no less than b, withe,_ being set as b. Other ways to find
the partition are possible. The iterative processing loop moves
to the next row (step 107), with the processing of the rows
through the loop (steps 101-107) continuing until all of the
rows have been processed. If e, _ is not greater than zero (step
105), the routine 100 moves directly to step 107. After all of
the rows of the matrix have been processed through the loop

US 2016/0179750 Al Jun. 23,2016

10

(steps 101-107), the routine 100 ends. The routine 100 shown
with reference to FIG. 9 can also be expressed using the
following pseudocode:

numbers of non-zero entries permissible in the partitions, and
the the column id of column j is added to the end of the list of
columns in the partition k (116). Thus, the partition with

fori=0tom-1 /* loop over m rows of sparse matrix A */
J< Al /* j: index of first non-zero entry in i-th row */
Jmax < AJJi+1] /¥ 0 index of first non-zero entry in (i+1)-th row */
e~ “Jmax—J /*e;_:the number of non-zero entries in i-th row */
if (e;_ > 0) then
k < lower__bound(A,, e;)
partition[k].push__back(i)

/* find partition k s.t. A [k] = e, <A [k+1]*/
/* add row id i to end of partition k (i.e.,

Ry */
end if
end for
[0098] Similarly, an order-preserving matrix partitioning index k to which the column j belongs is found such that

algorithm for CSC or structured CSC can be designed. Lete_;
be the number of non-zero entries in column j of the sparse
matrix. The set of columns in the k-th column-based partition,
denoted as C,, can be written as C,={jlA [k]=e_<A [k+11}.
The partitioning algorithm respects the relative ordering of
same-partition columns in the original CSC matrix, which
improves the cache performance of both structured and
unstructured CSC encodings, because respecting the relative
ordering reduces the randomness in accessing the column-
index array A'_. FIG. 11 is a flow diagram showing a routine
110 for performing order-preserving partitioning of columns
of'a matrix represented in a compressed representation for use

Al [k]=e_;<A'[k+1]. In one embodiment, the partition k can
be found using a function denoted as lower_bound(A',, b),
which returns the index of the first element of an ascending
array A', that is no less than b, with e_; being set as b. Other
ways to find the partition are possible. The iterative process-
ing loop moves to the next column (step 117), with the pro-
cessing of the columns through the loop (steps 111-117)
continuing until all of the columns have been processed. Ife_;
is not greater than zero (step 115), the routine 110 moves
directly to step 117. After all of the columns of the matrix
have been processed, the routine 110 ends. The routine 110
shown with reference to FIG. 11 can also be expressed using
the following pseudocode:

forj=0ton-1

/* loop over n columns of sparse matrix A */

i< A'J[j] /* i: index of first non-zero entry in j-th column */

Lax < A'[J+1] /* 1 et index of first non-zero entry in (j+1)-th column
*/

€ < hpax = i/* e_;: the number of non-zero entries in j-th column

*/
if (e_; > 0) then
k < lower_bound(A';,e ;) /*find partition k s.t. A';[k] =e_; <A’ [k+1]
*/
partition[k].push__back(j)
(ie., Cp) ¥/
end if
end for

/* add column id j to end of partition k

in the method 90 of FIG. 9, in accordance to one embodiment.
The compressed representation can be both CSC and struc-
tured CSC.

[0099] An iterative processing loop (steps 111-117) of pro-
cessing columns with id j=0 to n—1, all columns of the matrix,
is started (step 111). An entry for aj-th column in the A’ array
is located, identifying the index in the A',, or A', array,
depending on whether the original compressed encoding is
structured CSC or CSC, for the first non-zero entry for that
column in the matrix; the identified index is set as a variable
i(step 112). The next (j+1) entry in the A" array is located and
set as a variable i, (step 113). Unless the j-th column is the
last column in the matrix, the next entry in the A'_ array is the
indexinthe A',, (or A')) array of the first non-zero entry in the
(j+1)-th column; if the j-th column is the last column in the
matrix, the next entry in the A'_ array is the total number of
entries in the A’ (or A') array. The number of non-zero
entries in the j-th column, e_, is determined by subtracting i
from i,,,, (step 114). If e_, greater than zero (step 115), the
column j is assigned into one of the defined partitions based
on the value of e and based on the maximum and minimum

[0100] Once the partitions are created, the partitions can be
merged into the mapping array. FIG. 12 is a flow diagram
showing a routine 120 for merging partitions into a mapping
array for use in the method 90 of FIG. 9, in accordance with
one embodiment. Initially, the mapping array (A,, or A',),
depending on the original compressed representation) is ini-
tialized by setting the size of the array, the number of portions
of the matrix in the array, to zero (step 121). An iterative
processing loop (steps 122-126) of processing partitions with
index k=0 to p-1, all created partitions, is started (step 122).
For a partition k, the cumulative size of all partitions with an
index that is less than k is calculated; if k is 0, the cumulative
size is also O (step 123). As the partitions with the index less
than k precede the partition k in the array, the cumulative size
of the preceding partitions show where the end of the map-
ping array is; upon determining the cumulative size, the par-
tition k is inserted to the end of the mapping array (step 124).
Optionally, any memory in the storage 31 occupied by the
partitionk is freed up (125). The routine 120 moves to the next
partition (step 126), the processing of the partitions through
the loop (steps 122-126) continuing until all of the partitions

US 2016/0179750 Al

Jun. 23,2016

11

have been processed. Upon processing of all the created par-
titions, the cumulative size of all the partitions is calculated
and set as A, ending the routine 120. The routine 120 of
FIG. 12 can also be shown using the following pseudocode:

of the sum at zero (step 136). If j is less than j,,,,,. (step 137),
multiplication and addition computations are performed on
the value of j, with the operation depending on whether the
encoding on which SpMV is performed is PSCSR or PCSR

A,,.size < 0
array */
fork=0top-1
A k] < A,,.size()

/* loop over p partitions */

/* A,,: (order-preserving permutation) mapping

/* A [k]: cumulative size of all previous partitions

<k
A,,.insert(partition[k]) /* insert partition k to end of A,, */
delete partition[k] /* free memory used by partition k (optional) */
end for
A p] < A,,.size() /* A, [p]: total size of all partitions */
[0101] Uponreturn of the routine 120 shown with reference

to FIG. 12, A [k] stores the rank of the first row (or column)
of partition k, and the rank of the last row (or column) of
partition k is given by A [k+1]-1, fork=0, 1, ..., p-1. The
last element of the array offset, A [p], always equals to the
number of elements in the permutation array, which is the
number of rows (or columns) for CSR (or CSC).

[0102] The partitioned compressed representation of the
matrix can be used for processing by the servers 33 that
include both CPUs and GPUs as well as those that include
only CPUs. FIG. 13 is a flow diagram showing a routine 130
for performing SpMV on a matrix encoded using partitioned
compressed representation for use in the method 90 of FIG. 9,
in accordance with one embodiment. The routine can be
applied to both PSCSR and PCSR representations. The rou-
tine 130 can be used by servers that include both CPUs and
GPUs as well as those that include only CPUs. An outer
iterative processing loop (steps 131-142) of processing par-
titions with indexk=0to A -1, all created partitions, is started
(step 131). An inner iterative processing loop (steps 132-141)
of'processing all of the rows in the k-th partition is began, with
ranks of the rows in the mapping array being r=A_[k] to
A [k+1]-1 (step 132). The id of the r-th ranked row is iden-
tified and set as i (step 133). An entry for the i-throw inthe A,
array is located, identifying the index in the A or A array,
depending on whether the initial compressed representation
is CSR or structured CSR, of the first non-zero entry for that
row in the matrix; the identified index is set as a variable j
(step 134). The next (i+1) entry in the A, array is located and
set as a variable j,,, ., (step 135). Unless the i-th row is the last
row in the matrix, the next entry in the A, array is the index in
the A, (orA)) array of the first non-zero entry in (i+1)-th row;
if the i-th row is the last row in the matrix, the next entry in the
A, array is the total number of entries inthe A _ (or A)) array.
A summation calculator, a function for summing together
results of multiplication of the values of the non-zero arrays
described in step 138 below, is initialized by setting the value

(step 138). If the encoding is PSCSR, the computation is
performed according to the equation:

sum—ssum+A,,[j].vxx[A,.[j].c]

[0103] In the computation, the value stored in the element
of'the A, array with the index j is multiplied by the element
of' x whose index is the index of the column stored in the A
element with the j-th index and the result of multiplication is
added to the sum of results of multiplication performed dur-
ing previous iterations of the step 138. Alternatively, if the
encoding is PCSR, the computation is performed according to
the formula:

sum—=sum+A, [jIxx[A[j1],

where the value in the A, array with the index j is multiplied
by the element of x whose index is the number in the A _ array
with the j-th index and the result of the result of multiplication
is added to the sum of results of multiplication performed
during previous iterations of the step 138. Upon the comple-
tion of the calculation based on either formula, 1 is added to
the value of j and the result of the addition is set as j (step 139),
moving the processing to the entry in the next column in that
row. The routine 130 returns to step 137 described above,
repeating steps 137-139 until of the non-zero values in the i-th
row are processed. Ifj is not less than j,,, .. (step 137), the sum
resulting from addition of results multiplication during the
iterations in the loop 137-139 is stored in the dense vector y
(step 140). The iterative processing loop moves to the next
row (step 141), with the processing of the rows through the
inner loop (steps 132-141) continuing until all of the rows of
the partition have been processed through the steps 132-141.
Once all of the rows of the k-th partition are processed, the
routine 130 moves to the next partition (step 142), with the
processing of the partitions through the outer processing loop
(steps 131-142) continuing until all of the partitions have
been processed. Once all of the partitions have been pro-
cessed in steps 131-142, the routine 130 ends. The routine 130
can also be expressed using the following pseudocode, which
covers performing SpMV on PSCSR encoding:

fork=0toA,-1
forr=A_[k]to A [k+1] -1

row */

(i+1)-th row*/

/* loop over A, row-based partitions */
/* loop over rows in k-th partition */
/* i id of r-th ranked row */
/* j:index in A, of first non-zero entry in i-th

i ALl
i< Al

Jomax < AJJI+1] /* Jrnax: index in A of first non-zero entry in

sum < 0 /* initialize the summation accumulator */
while (j <j,ua)

sum < sum + A, [j].v x X[A,[j]-c]

/* test if end of row has been reached */
/* compute y; =X ; Ay x X; %/

US 2016/0179750 Al

12

Jun. 23,2016

-continued
jej+1
*/
end while
yli] = sum /* store result in y */
end for
end for

/* move on to next non-zero column in i-th row

The routine 130 can also be expressed using the pseudocode
for performing SpMV on the PCSR encoding mutatis mutan-
dis.

[0104] SpMTV can be performed on partitioned com-
pressed representations using servers that include both that
include both CPUs and GPUs as well as those that include
only CPUs. FIG. 14 is a flow diagram showing a routine 150
for performing SpMTV on a partitioned compressed repre-
sentation of the matrix for use in the method 90 of FIG. 9. The
routine can be applied to both PSCSC and PCSC representa-
tions. The routine 150 can be used servers that include both
CPUs and GPUs as well as those that include only CPUs. An
outer iterative processing loop (steps 151-162) of processing
partitions with index k=0 to A',~1, all created partitions, is
started (step 151). An inner iterative processing loop (steps
152-161) of processing all of the columns in the k-th partition
is began, with ranks of the columns in the mapping array
processed being r=A'_[k] to A' [k+1]-1 (step 152). The id of
the r-th ranked column is identified and set as j(step 153). An
entry for thej-th column in the A'_ array is located, identifying
the index in the A', or A',, array, depending on whether the
compressed representation was CSC or structured CSC, of
the first non-zero entry for that column in the matrix; the
identified index is set as a variable 1 (step 154). The next (j+1)
entry in the A'_ array is located and set as a variable i,,,, (step
155). Unless the j-th column is the last column in the matrix,
the next entry in the A'_ array is the index in the A',, (or A"))
array of the first non-zero entry in (j+1)-th column; if the j-th
column is the last column in the matrix, the next entry in the
A'_array is the total number of entries in the A',,, (or A')) array.
A summation calculator, a function for summing together
results of multiplication of the values of the non-zero arrays
described in step 158 below, is initialized by setting the value
of the sum at zero (step 156). If i is less than i, (step 157),
multiplication and addition computations are performed on
the value of i, with the operation depending on whether the
encoding on which SpMTV is performed is PSCSC or PCSC

(step 158). If the encoding is PSCSC, the computation is
performed according to the equation:

sum—ssum+A',, [i].vxx'[i].r],

where the value stored in the element of the A", array with the
index i is multiplied by the element of X' whose index is the
index of the row stored in the A',, element with the i-th index
and the result of multiplication is added to the sum of results
of multiplication performed during previous iterations of the
step 158. Alternatively, if the encoding is PCSR, the compu-
tation is performed according to the formula:

sum—ssum+A', [i]xx'TA"[i]],

where the value in the A', array with the index i is multiplied
by the element of X' whose index is the number in the A', array
with the i-th index and the result of multiplication is added to
the sum of results of multiplication performed during previ-
ous iterations of the step 158. Upon the completion of the
calculation based on either formula, 1 is added to the value of
iand the result of the addition is set as i (step 159), moving the
processing to the entry in the next row in that column. The
routine 150 returns to step 157 described above, repeating
steps 158-159 until of the non-zero values in the j-th column
are processed. If i is not less than i,,,. (step 157), the sum
resulting from addition of results multiplication during the
iterations in the loop 157-159 is stored in the dense vector y'
(step 160). The iterative processing loop moves to the next
column (step 161), the processing of the columns through the
inner processing loop (steps 152-161) continuing until all of
the columns have been processed through the steps 152-161.
Once all of the columns of'the k-th partition are processed, the
routine 150 moves to the next partition (step 162), with the
processing of the partitions through the outer processing loop
(steps 151-162) continuing until all of the partitions have
been processed. Once all of the partitions have been pro-
cessed in steps 151-162, the routine 150 ends. The routine 150
can also be expressed using the following pseudocode, which
covers performing SPTMV on the PSCSR encoding:

fork=0toA', -1
forr=A'[k]to A’ [k+1]-1

column */

(j+1)-th column */

/* loop over A', column-based partitions */
/* loop over columns in k-th partition */

j<= A1 /* j:id of r-th ranked column */
i<—A'J[j] /* irindex in A',,. of first non-zero entry in j-th
Lax < A'[J+1] /* 1ax: index in A’ of first non-zero entry in

sum < 0 /* initialize the summation accumulator */

while (i <1i,,4,) /* test if end of column has been reached */
sum <= sum + A’ [i].v x X'[A",,[i].1] /* compute y'’; =% ; Ay x x'; %/

i<=i+1 /* move on to next non-zero row in j-th column
*/
end while
¥'[j] < sum /* store result in y™*/
end for

end for

US 2016/0179750 Al

[0105] While the routines described above with reference
to FIGS. 13 and 14 above were not specific to a particular
hardware set-up for carrying them out, hardware that includes
GPUs can become faster by assigning particular kernels to
perform SpMV and SpMTV on particular partitions. FIG. 15
is a routine for starting a kernel function for performing
partitioned compressed representation processing for use in
the method 90 of FIG. 9, in accordance with one embodiment.
An array of kernel functions F is created such that F=[f, ,, »,
fi 1z f151]s including a list of the kernels described above
with reference to FIG. 3, with the kernels being indexed from
0to 2, with the f| ;, having index 0 and f; 5, having index 2
(step 171). In a further embodiment, other kernels can be a
part of the array. An iterative processing loop (steps 172-176)
for partitions with index k=0 to A_-1 (or A’,-1 for column-
based partitions), all created partitions, is started (step 172).
One of the kernel functions is selected for the partition k
based on the value of k and the index of the kernel in the F
array (step 173). For example, if k=0, the kernel with the 0-th
index, f, -, z, is selected; if k=1, the kernel with the index of
1,f, 37 5, 15 selected; if k=2, the kernel with the index of 2,
£, 51, 18 selected. If there are more than 3 partitions, the f, , »
can be selected for all of the partitions with the index k greater
than 2. Other indexes for the partitions and the kernels can
also be used and other ways to match the kernels and parti-
tions are possible. Launch arguments are set for each of the
selected kernels, as further described with reference to FIG.
16 (step 174). The selected functions are launched for each of
the arguments and are used for processing of the partitioned
compressed encoding, as further described below with refer-
ence to FIGS. 17-22B (step 175). The iterative processing
loop moves to the next partition (step 176), with the process-
ing of the partitions through the loop (steps 172-176) con-
tinuing until all of the partitions have been processed. Once
all of the partitions have been processed, the routine 170 ends.
The routine 170 can also be represented using the following
pseudocode while the pseudocode is written for row-based
partitions, the pseudocode for column-based partitions can be
written mutatis mutandis:

Jun. 23,2016

can be expressed mutatis mutandis. Ways to select a particular
kernel function for processing a particular partition other than
the one described above with reference to FIG. 15 are also
possible.

[0106] The launch arguments set after the kernel is selected
provide constraints that are entered into a runtime of the
system, such as the server 33, that perform the partitioned
compressed representation processing. To launch a kernel on
the GPU, one must specity the launch arguments such as the
dimensions of a thread block and possibly the dimensions of
a grid of such thread blocks. Different GPUs from the same
vendor may impose different constraints on the maximum
size of a block or a grid along each dimension, and different
GPU vendors may support different number of thread-block
and/or grid dimensions. FIG. 16 is a routine 180 for setting
launch arguments for a selected kernel function for use in the
routine 170 of FIG. 15, in accordance with one embodiment.
Let n be the number of portions of the matrix, rows or col-
umns, assigned to the selected matrix. If the selected kernel
function is f, -z (step 181), a constraint is set that n is the
minimum number of threads to be launched. The rest of the
arguments are set and returned based on the constraint (step
183), ending the routine 180. If the selected function is not
f, 71z (step 181), whether the selected function is f, ;5 is
determined (step 184). If the selected function is 1) ;5 z (step
184), constraints are set that block size is set to equal warp
size and n is set as the minimum number of blocks to be
launched (185). The routine 180 moves to step 183 described
below. If the selected function is not f, ;;, z (step 181), whether
the selected function is f, z, is determined (step 186). If the
selected function is f, ;, (step 187), block size is set as a
number of threads in the block and n is set as a minimum
number of blocks to be launched. The routine 180 moves to
step 183 described below. If the selected function is not f, 5, »
(step 186), the kernel function is unknown and the routine 180
ends. The routine 180 can also be expressed using the follow-
ing pseudocode—while the pseudocode describes launching
kernels for performing SpMV, the pseudocode for launching

fork=0toA,-1
args < kernel_launch_ args(F[k], A [k+1] - A_[k])
function */

Fk] {{{args))) (v, %, Ay, A A, A KDL ATk 1])

k-th partition */
end for

/* loop over A, row-based partitions */
/* F[k]: k-th kernel

/* launch k-th kernel for

While the pseudocode is written with reference to PSCSR, the
pseudocode for other partitioned compressed representation

kernels for performing SpMTV can be written mutatis mutan-
dis:

function kernel launch_ args(f, n)

assigned to £*/

if (F=f,115) then

/* f: SpMV kernel; n: number of rows

/* £, 715+ one-thread-one-row kernel */
/* n = minimum # of threads to be

args.set__min_ threads(n)
launched */
else if (f=f,5z) then
args.set__block__size(WARPSIZE)
args.set__min_ blocks(n)
launched */
else if (f=1,3,5) then
args.set__block_ size(BLOCKSIZE)

/* 1351 gt One-warp-one-row kernel */
/* set BLOCKSIZE = WARPSIZE */
/* n = minimum # of blocks to be

/* f131z: one-block-one-row kernel */
/* BLOCKSIZE: # of threads in a block
/*

args.set_min_ blocks(n) /* n = minimum # of blocks to be
launched */

else

US 2016/0179750 Al

-continued

14

Jun. 23,2016

error “Abort: Unknown kernel function.”
end if
args.compute_ satisfy__args()
constraints above */
return args

/* set rest of args based on

[0107] Instead of using fixed thread-block and grid dimen-
sions, the pseudocode above approaches the launch argument
setting problem as constraint satisfaction by making explicit
the constraints imposed by each of the three SpMV kernels.
For example, the {, -, kernel only requires the satisfaction of
a single constraint that the total number of threads must at
least equal the number of rows assigned to the kernel;
whereas the | ;;, kernel demands the simultaneous satisfac-
tion of two constraints: (1) the number of threads in the block
must be the same as WARPSIZE, and (2) there mustbe at least
as many thread blocks as there are rows assigned to the kernel.
How to satisfy those kernel launch constraints, while respect-
ing the constraints imposed by the hardware, can be GPU or
vendor-dependent, and no specific description is provided.
Typically, the best launch arguments assume values that are
integer powers of 2, and thus the search space of such a
constraint satisfaction problem is usually quite small and
manageable. For example, the implementation on Nvidia’s®
Fermi GPUs uses a thread block size of 8x8 for the f, -
kernel, a block size of 32x1 for the f; ;;, z kernel, and a block
size of 512x1 for the f, 5, » kernel.
[0108] Once selected, the kernel functions can process the
assigned portions of the matrix. Recall the purpose of matrix
partitioning is to create one partition for a single GPU kernel
function such that rows in the same partition share some
common characteristics, such as the number of non-zero
entries, for which the kernel is optimized. While the GPU-
based SpMYV algorithm described above can handle an arbi-
trary number of partitions and kernels, experiments show that
having three different kernels (f; 7z, f; 31z, and 5, z) pro-
duces the best SpMV results on Nvidia’s® Fermi-class GPUs
including GTX 480 and 580.
[0109] Let WARPSIZE (also referred to as “warp size” in
this application) and BLOCKSIZE (also referred to as “block
size” in this application) be the number of threads in a warp
and in a thread block, respectively. To facilitate the distribu-
tion of matrix rows (or columns) to GPU cores, the following
helper functions can be used in the routines described below
with reference to FIGS. 17-22B:
[0110] thread_id()returns a globally unique thread id for
the current thread
[0111] warp_id() returns a globally unique warp id for
the current thread
[0112] warp_thread_id() returns a local thread id
(unique only within a warp) for the current thread
[0113] block_thread_id() returns a local thread id
(unique only within a block) for the current thread
[0114] sync_warp_threads() synchronizes across all
threads in a warp
[0115] sync_block_threads() synchronizes across all
threads in a block
[0116] All global (or local) thread (or warp) ids are zero-
based, with the index of the threads starting at zero. WARP-
SIZE is hardware-dependent: either 32 for Nvidia®’ or 64 for
Advanced Micro Devices® GPUs; whereas BLOCKSIZE
can be a programmable parameter that is typically an integer

multiple of WARPSIZE. The shared keyword declares thread
variables that are shared across all threads in the same block
(or warp, if BLOCKSIZE=WARPSIZE).

[0117] FIG. 17 is a flow diagram showing a routine 190 for
performing SpMV by an f] ;, z kernel function for use in the
routine of FIG. 15, in accordance with one embodiment. The
routine 190 can be used for performing SpMV on either
PSCSR or PCSR encodings. An iterative processing loop is
started for all launched threads in the kernel, with the threads
working in parallel, with the threads working in parallel; thus,
while the steps below are described with reference to one
thread, any other launch threads undergo the steps in parallel
(step 191). The unique id of the thread is obtained by using the
thread_id() function and is added to the value of variabler,,,,,,,
which equals to the rank of the first row of partition k (parti-
tion to which the thread is assigned) stored in A _[k]; the result
of the addition is denoted by the variable r, which identifies
the rank of the row assigned to that thread (192). The value of
rcan be comparedtor,,,,, a variable that equals the rank of the
first row of the next partition, partitionk+1, given by A [k+1];
the comparison is optional when the number of threads
launched equals the number of rows in the partition k (r,,, .~
I (193). If ris less thanr, . (step 193), the id 1 of the r-th
ranked row is identified in the mapping array A, (step 194). If
r is not less than r,,,,, the routine 190 moves to step 202
described below. An entry for the i-th row in the A array is
located, identifying theindex inthe A or A, array, depending
on whether the initial compressed representation was CSR or
structured CSR, of the first non-zero entry for that row in the
matrix; the identified index is set as a variable j (step 195). The
next (i+1) entry in the A, array is located and set as a variable
Jmax (step 196). Unless the i-th row is the last row in the
matrix, the next entry in the A array is the index inthe A . (or
A)) array of the first non-zero entry in (i+1)-th row; if the i-th
row is the last row in the matrix, the next entry in the A array
is the total number of entries in the A, (or A,) array. A
summation calculator, a function for summing together
results of multiplication of the values of the non-zero arrays
described in step 199 below, is initialized by setting the value
of the sum at zero (step 197). If j is less than j,, . (step 198),
multiplication and addition computations are performed on
the value of j, with the operation depending on whether the
encoding on which SpMV is performed is PSCSR or PCSR
(step 199). If the encoding is PSCSR, the computation is
performed according to the equation:

sum—>sum+A, [j].vxx[A, [j].c]

[0118] In the computation, the value stored in the element
of'the A, array with the index j is multiplied by the element
of' x whose index is the index of the column stored in the A
element with the j-th index and the result of multiplication is
added to the sum of results of multiplication performed dur-
ing previous iterations of the step 199. Alternatively, if the
encoding is PCSR, the computation is performed according to
the formula:

sum—=sum+A, [jIxx[A[j1],

US 2016/0179750 Al

[0119] where the value in the A, array with the index j is
multiplied by the element of x whose index is the number in
the A, array with the j-th index and the result of the result of
multiplication is added to the sum of results of multiplication
performed during previous iterations of the step 199. Upon
the completion of the calculation based on either formula, 1 is
added to the value of j and the result of the addition is set as j
(step 200), moving the processing to the entry in the next
column in that row. The routine 190 returns to step 198
described above, repeating steps 199-201 until of the non-
zero values in the i-th row are processed. Ifj is not less than
Imax (step 198), the sum resulting from addition of results
multiplication during the iterations in the loop 198-200 is
stored in the dense vector y (step 201). The execution of the
processing thread is stopped (step 202); the routine 190 ends
upon the stop of processing of all launched threads. The
routine 190 can also be expressed using the following
pseudocode while the pseudocode is written in relation to
PSCSR encoding, a pseudocode for PCSR encoding can be
written mutatis mutandis:

Jun. 23,2016

variable 1 (step 215). The next (j+1) entry in the A'_ array is
located and set as a variable i,,,, (step 216). Unless the j-th
column is the last column in the matrix, the next entry in the
A'_ array is the index in the A', (or A'.) array of the first
non-zero entry in (j+1)-th column; if the j-th column is the last
column in the matrix, the next entry in the A'_ array is the total
number of entries in the A',, (or A')) array. A summation
calculator, a function for summing together results of multi-
plication of the values ofthe non-zero arrays described in step
219 below, is initialized by setting the value of the sum at zero
(step 217). Ifiis less than i, (step 218), multiplication and
addition computations are performed on the value of i, with
the operation depending on whether the encoding on which
SpMTYV is performed is PSCSC or PCSC (step 219). If the
encoding is PSCSC, the computation is performed according
to the equation:

sum—»sum+A’,, [i].vxx'TA",, [i].r],

where the value stored in the element of the A", array with the
index i is multiplied by the element of X' whose index is the

kernel fITIR(Y, X, Ays Aps Ay Tyis L)

/* 1T1R: one-thread-one-row SpMV

kernel */
I < I, + thread_id() /* compute rank of the vertex assigned to this
thread */
if (r <r,,,,) then /* optional if exactly (r,,,, — I,.:,) threads were
created */
i< A,,[r] /* i:id of r-th ranked row */
J< Al /* j:index in A, of first non-zero entry in i-th
row */

(i+1)-th row */

/* Jrnax: index in A, of first non-zero entry in

sum < 0 /* initialize the summation accumulator */
while (j <j,0) /* test if end of row has been reached */
sum < sum + A, [j].v x X[A, . [j]-c] /* compute y; =X ; A;; x X; */
je=j+1 /* move on to next non-zero column in i-th row
*/
end while
y[i] < sum /* store result iny */
end if
[0120] FIG. 18 is a flow diagram showing a routine 210 for

performing SpMTV by an f, ;, z kernel function for use in the
routine 170 of FIG. 15, in accordance with one embodiment.
The routine 210 can be used for performing SpMTV on either
PSSCR or PCSR encodings, with all launched threads work-
ing in parallel as described above with reference to FIG. 17.
An iterative processing loop is started for all launched threads
in the kernel, with the threads working in parallel (step 211).
The unique id of the thread is obtained by using the thread_id(
) function and is added to the value of variable r,,,,, which
equals to the rank of the first column of partition k (partition
to which the thread is assigned) stored in A' [k]; the result of
the addition is denoted by the variable r. The value of r can be
compared to r,,,,., a variable that equals the rank of the first
column of the next partition, partitionk+1, givenby A' [k+1];
the comparison is optional when the number of threads
launched equals the number of columns in the partition k
(T Trin)- 1 v 18 less thanr,, . (step 213), the id j of the r-th
ranked column is identified in the mapping array A',, (step
214). If r is not less than r,, ., the routine 210 moves to step
222 described below. An entry for the j-th column in the A',
array is located, identifying the index in the A', or A',, array,
depending on whether the compressed representation was
CSC or structured CSC, of the first non-zero entry for that

column in the matrix; the identified index is denoted as a

index of the row stored in the A',, element with the i-th index
and the result of multiplication is added to the sum of results
of multiplication performed during previous iterations of the
step 219. Alternatively, if the encoding is PCSR, the compu-
tation is performed according to the formula:

sum—ssum+A', [i]xx'TA"[i]],

[0121] where the value in the A',, array with the index i is
multiplied by the element of X' whose index is the number in
the A', array with the i-th index and the result of multiplication
is added to the sum of results of multiplication performed
during previous iterations of the step 219. Upon the comple-
tion of the calculation based on either formula, 1 is added to
the value of i and the result of the addition is set as i (step 220),
moving the processing to the entry in the next row in that
column. The routine 210 returns to step 218 described above,
repeating steps 218-220 until all of the non-zero values in the
j-th column are processed. Once i is not less than i,,,, (step
218), the sum resulting from addition of results multiplication
during the iterations in the loop 218-220 is stored in the dense
vector y' (step 221). The execution of the thread is stopped
(step 222). The routine 210 ends once the execution of all of
the launched processing threads is stopped. The pseudocode
for the routine 210 can be written similarly to the pseudocode
shown above with reference to FIG. 17 mutatis mutandis.

US 2016/0179750 Al

[0122] Portions of the matrix with a larger number of non-
zero entries may benefit from being processed by an £ ;5
kernel, which assigns a warp of threads to process each of the
portions, such as each row. FIGS. 19A-19B are flow diagrams
showing a routine 230 for performing SpMV by an f, ;5
kernel function for use in the routine 170 of FIG. 15, in
accordance with one embodiment. The routine 230 can be
used for performing SpMV on either PSSCR or PCSR encod-
ings. An iterative processing loop is started for all launched
warps in the kernel (step 231). The launched warps and the
threads in the launched warps execute in parallel with each
other. Thus, when the description below references one of the
warps or one of the threads, all other launched warps or
threads execute the same steps of the routine 230 in parallel
with the referenced warp or thread until the execution of one
of'the threads or warps is stopped (such as in step 251 below).

[0123] Local sharing is initiated between all threads in the
same warp, allowing the threads to share results of computa-
tion described below in steps 240-242 (step 232). Rank of a
row assigned to one of the warps is obtained by using the
function warp_id() to obtain the unique global id of one of the
warps, and adding to the unique global id to the value ofr,,,,,,
rank of first row of partition to which the rank is assigned as
described above with reference to FIG. 17; the result of the
addition is the rank of the row assigned to the warp and is
denoted using the variable r (step 233). The value of r can be
compared to 1,,,,, a variable that equals the rank of the first
row of the next partition, partitionk+1, given by A [k+1]; the
comparison is optional when the number of warps launched
equals the number of rows in the partitionk (r,,,,.~1,,,,,)- If ris
less than r,, . (step 234), the id i of the r-th ranked row is
identified in the mapping array A, (step 235). If r is not less
than r,,,, (step 234), the routine 230 moves to step 251
described below. A local id (id within the warp) of one of the
threads in the warp is obtained, such as by using the function
warp_thread_id() and is denoted using the variable t (step
236). An index of first non-zero entry assigned to that thread
is obtained by adding the value of an entry for the i-th row in
the A, array to t; the result of the addition is denoted using the
variable j (step 237). The next (i+1) entry in the A array is
located and set as a variable j,,,. (step 238). A local summa-
tion calculator, a function for summing together results of
multiplication of the values of the non-zero arrays described
in step 241 below, is initialized by setting the value of the sum
at zero (step 239). If j is less than j,,,,. (step 240), multiplica-
tion and addition computations are performed on the value of
j, with the operation depending on whether the encoding on
which SpMV is performed is PSCSR or PCSR (step 241). If
the encoding is PSCSR, the computation is performed
according to the equation:

sum—=sum+A,,[j].vxx[A,.[j].c]

[0124] In the computation, the value stored in the element
of'the A . array with the index j is multiplied by the element
of' x whose index is the index of the column stored in the A
element with the j-th index and the result of multiplication is
added to the sum of results of multiplication performed dur-
ing previous iterations of the step 241. Alternatively, if the

Jun. 23,2016

encoding is PCSR, the computation is performed according to
the formula:

sum=sum+A [j]xx[A_[j]],

where the value in the A array with the index j is multiplied
by the element of x whose index is the number in the A _ array
with the j-th index and the result of the result of multiplication
is added to the sum of results of multiplication performed
during previous iterations of the step 241. Upon the comple-
tion of the calculation based on either formula, the warp size
is added to the value of j and the result of the addition is set as
j (step 242), moving the processing to the next entry in in that
row assigned to that thread. The routine 230 returns to step
240 described above, repeating steps 240-242 until of the
non-zero values in the i-th row that are assigned to that thread
are processed. Once j is not less than j,, . (step 240), all
threads in the warp are optionally synchronized, allowing all
threads in the warp to finish performing the loops of steps
240-242; while synchronization is not necessary in one
embodiment due to the threads in the warp working in parallel
and not getting out of synchronization, in a further embodi-
ment, the synchronization is performed.

[0125] The size of the warp, the number of threads in the
warp, is divided by 2 using integer division and the result of
the division is denoted using the variable t,, . (step 244). Ift,
the id of the thread in the warp, is less than t,,, . (step 245), the
thread performs reduction, combining together, of sums
resulting from computations in steps 240-242 above per-
formed by that thread t and another thread whose thread id is
t+1,,,,. (step 246). The step 246 reduces the number of sums in
half; the combined sum is set as the sum for the thread t (the
thread that performed the combining) and the sum previously
associated with the thread whose thread id in the warp is
t+t,,,, 1s discarded (step 246). For example, if there are 32
threads in a warp and t for a thread is 0, the thread t would
combine the sum obtained from the thread t's own perfor-
mance of steps 240-242 and the sum obtained from the per-
formance of steps 240-242 by the thread whose thread id is
16, with the combined sum being set as the sum of thread t for
subsequent iterations of step 246 and thread with the id of 16
being no longer associated with a sum. Following the com-
bining, the value of t,,,, is cut in half using integer division
and set as t,, . (step 247). Optionally, the threads that per-
formed the combining of the sums are again synchronized
(step 248), and the routine 230 returns to step 245 above.
During each subsequent iteration of the loop of steps 245-
247, the number of threads participating in the loop is reduced
in half due to the reduction of the value of't,,,...

[0126] Iftisnotlessthant,,, (step245), whether the thread
is the first thread in the warp (t=0 and r<r,,,,,) is determined
(step 249). If the thread is not the first thread, the thread’s
execution ends (step 251). If the thread is the first thread, the
grand total sum resulting from the reductions described in
step 245-247 is stored in the dense vector y (step 250), and the
execution of that thread ends (step 251). The routine 230 ends
upon the end of execution of all threads for all launched
warps. The routine 230 can also be expressed using the fol-
lowing pseudocode—while the pseudocode is written in rela-
tion to the PSCSR encoding, the pseudocode in relation to
PCSR can be written mutatis mutandis:

US 2016/0179750 Al

Jun. 23,2016

kernel fIWIR(Y, X, Ay, A Ay i)

/* IW1R: one-warp-one-row SpMV

kernel */
shared sum[WARPSIZE] /* sum: local sums shared by threads in a warp
*/
I < I, + warp_id() /* compute rank of the vertex assigned to this
warp */
if (r <1,,,,) then /* optional if exactly (,ux — Imin) WAIPS Were
created */
i< A,,[r] /* i:id of r-th ranked row */
t < warp_ thread id() /* t: local thread id in a warp */
J< Al +t /* j: index of first non-zero entry assigned to
this thread */
Jomax < AJJI+1] /* Jonax: index of first non-zero entry in (i+1)-th
row */
sum(t] < 0 /* initialize local summation accumulator */
while (j < e /* test if end of row has been reached */
sum(t] <= sum[t] + A, [j].v x X[A,.[j].c] /* compute y=2; A, x X; */
j < j+ WARPSIZE /* move to next non-zero entry for this thread */
end while
end if

sync_ warp__threads()
synchronized */
tax < WARPSIZE / 2

/* optional if threads in a warp are always

max /% t,ax: nUmMber of threads adding up local sums

*/

while (t <t,,.,) /* test if this thread should participate */
sum[t] <= sum[t] + sum[t+t,,,] /* reduce two local sums into one */

/* cut number of sum-adding threads in half */

/* optional if threads in a warp are always

e < L/ 2
sync_ warp__threads()
synchronized */
end while
if t =0 and r <1,,,) then
yli] < sum[0]
end if

/* store grand total sum in y */

/* is this the first thread in the warp? */

[0127] SpMTYV can be similarly performed using an f, ;;, »
kernel, which assigns a warp of threads to process the block.
FIGS. 20A-20B are flow diagrams showing a routine 260 for
performing SpMTV by an £, ., » kernel for use in the routine
170 of FIG. 15 in accordance with one embodiment. The
routine 260 can be used for performing SpMV on either
PSCCR or PCSR encodings. An iterative processing loop is
started for all launched warps in the kernel (step 261). The
launched warps and the threads in the launched warps execute
in parallel with each other, and thus when the description
below references one of the warps or one of the threads, all
other launched warps or threads execute the steps of the
routine 260 in parallel at the same time until the execution of
one of the threads or warps is stopped (such as in step 281
below).

[0128] Local sharing is initiated between all threads in the
same warp, allowing the threads to share results of computa-
tion described below in steps 270-272 (step 262). Rank of a
column assigned to one of the warps is obtained by using the
function warp_id() to obtain the unique global id of one of the
warps, and adding to the unique global id to the value ofr,,,,,,
rank of first column of partition to which the rank is assigned
as described above with reference to FIG. 18; the result of the
addition is the rank of the column assigned to the warp and is
denoted using the variable r (step 263). The value of r can be
compared to 1,,,,, a variable that equals the rank of the first
column of the next partition, partitionk+1, givenby A' [k+1];
the comparison is optional when the number of warps
launched equals the number of columns in the partition k
(T)00 “Tin)- I ris less thanr, (step 264), the id j of the r-th
ranked column is identified in the mapping array A',, (step
265). Ifrisnotlessthanr,,,, (step 264), the routine 260 moves
to step 281 described below. A local id (id within the warp) of

one of the threads in the warp is obtained, such as by using the

function warp_thread_id() and is denoted using the variable
t (step 266). An index of first non-zero entry assigned to that
thread is obtained by adding the value of an entry for the j-th
column in the A', array to t; the result of the addition is
denoted using the variable i (step 267). The next (j+1) entry in
the A', array is located and set as a variable i, (step 268).
Unless the j-th column is the last column in the matrix, the
next entry in the A'_ array is the index in the A", yr (or A'))
array of the first non-zero entry in (j+1)-th column; if the j-th
column is the last column in the matrix, the next entry in the
A'_array is the total number of entriesinthe A’ (or A')) array.
A local summation calculator, a function for summing
together results of multiplication of the values of the non-zero
arrays described in step below, is initialized by setting the
value of the sum at zero (step 269). Ifi is less than i, (step
270), multiplication and addition computations are per-
formed on the value of i, with the operation depending on
whether the encoding on which SpMTV is performed is
PSCSC or PCSC (step 271). If the encoding is PSCSC, the
computation is performed according to the equation:

sum—ssum+A',, [i].vxx'[A',,[i].r],

where the value stored in the element of the A", array with the
index i is multiplied by the element of X' whose index is the
index of the row stored in the A',, element with the i-th index
and the result of multiplication is added to the sum of results
of multiplication performed during previous iterations of the
step 271. Alternatively, if the encoding is PCSC, the compu-
tation is performed according to the formula:

sum—ssum+A', [i]xx'TA"[i]],

where the value in the A', array with the index i is multiplied
by the element of X' whose index is the number in the A', array
with the i-th index and the result of multiplication is added to
the sum of results of multiplication performed during previ-

US 2016/0179750 Al

ous iterations of the step 271. Upon the completion of the
calculation based on either formula, the warp size is added to
the value ofiand the result of the addition is set as i (step 272),
moving the processing to the next entry in the that column
assigned to that thread. The routine 260 returns to step 270
described above, repeating steps 270-272 until all of the non-
zero values in the j-th column are processed. Once i is not less
than i,,,, (step 270), all threads in the warp are optionally
synchronized, allowing all threads in the warp to finish per-
forming the loops of steps 270-272; while synchronization is
not necessary in one embodiment due to the threads in the
warp working in parallel and not getting out of synchroniza-
tion, in a further embodiment, the synchronization is per-
formed.

[0129] The size of the warp, the number of threads in the
warp, is divided by 2 using integer division and the result of
the division is denoted using the variable t,, . (step 274). If't,
the id of the thread in the warp, is less than t,,,,, the thread
performs reduction, combining together, of sums resulting
from computations in steps 270-272 above performed by that
thread t and another thread whose thread id is t+t,,, (step
276). The step 276 reduces the number of sums in half; the
combined sum is set as the sum for the thread t (the thread that
performed the combining) and the sum previously associated
with the thread whose thread id in the warp is t+t,,,, is dis-
carded, similarly to the step 246 described above (step 276).
Following the combining, the value of't,, . is cut in half using
integer division and set as t,, . (step 277). Optionally, the
threads that performed the combining of the sums are again
synchronized (step 278), and the routine 260 returns to step
275 above. During each subsequent iteration of the loop of
steps 275-277, the number of threads participating in the loop
is reduced in half due to the reduction of the value of tmax.
[0130] Iftisnotlessthant,,, , whether the thread is the first
thread in the warp (t=0 and r<r,,,,,) is determined (step 279).
Ifthe thread is not the first thread, the thread’s execution ends
(step 281). If the thread is the first thread, the grand total sum
resulting from the reductions described in step 275-277 is
stored in the dense vector y' (step 280), and the execution of
that thread ends (step 281). The routine 260 ends upon the end
of execution of all threads in all of the launched warps. The
pseudocode for the routine 260 is similar to the pseudocode
shown above with reference to FIGS. 19A-19B mutatis
mutandis.

[0131] Processing of rows and columns with more than 32
or 64 non-zero entries may be processed the fastest using the
f, 51z kernel, which assigns a block of threads to process a
single row or column. FIGS. 21A-21B are flow diagrams
showing a routine 290 for performing SpMV by an f 5,5
kernel for use in the routine 170 of FIG. 15 inaccordance with
one embodiment. The routine 290 can be used for performing
SpMV on either PSCSR or PCSR encodings. An iterative
processing loop is started for all launched blocks in the kernel
(step 291). The launched blocks and the threads in the
launched blocks execute in parallel with each other, and thus
when the description below references one of the blocks or
one of the threads, all other launched blocks or threads
execute the steps of the routine 290 in parallel at the same time
until the execution of one of the threads or blocks is stopped
(such as in step 311 below).

[0132] Local sharing is initiated between all threads in the
same block, allowing the threads to share results of compu-
tation described below in steps 300-302 (step 292). Rank of a
row assigned to one of the blocks is obtained by using the

Jun. 23,2016

function block_id() to obtain the unique global id of one of
the blocks, and adding to the unique global id to the value of
T, Fank of first row of partition to which the rank is assigned
as described above with reference to FIG. 17, the result of the
addition is the rank of the row assigned to the block and is
denoted using the variable r (step 293). The value of r can be
compared to 1,,,,, a variable that equals the rank of the first
row of the next partition partition k+1, given by A_[k+1]; the
comparison is optional when the number of blocks launched
equals the number of rows in the partition is (t,, T p.,)- If T 18
less than r,,, . (step 294), the id i of the r-th ranked row is
identified in the mapping array A, (step 295). If r is not less
than r,,,. (step 294), the routine 290 moves to step 311
described below and processing of the thread stops. A local id
(id within the block) of one of the threads in the block is
obtained, such as by using the function block_thread_id()
and is denoted using the variable t (step 296). An index of first
non-zero entry assigned to that thread is obtained by adding
the value of an entry for the i-th row in the A, array to t; the
result ofthe addition is denoted using the variablej (step 297).
The next (i+1) entry in the A, array is located and set as a
variablej,,, . (step 298). A local summation calculator, a func-
tion for summing together results of multiplication of the
values of the non-zero arrays described in step 301 below, is
initialized by setting the value of the sum at zero (step 299). If
j is less than j,,,. (step 300), multiplication and addition
computations are performed on the value of j, with the opera-
tion depending on whether the encoding on which SpMYV is
performed is PSCSR or PCSR (step 301). If the encoding is
PSCSR, the computation is performed according to the equa-
tion:

sum—ssum+A,,[j].vxx[A,.[j].c]

[0133] In the computation, the value stored in the element
of'the A, array with the index j is multiplied by the element
of x whose index is the index of the column stored in the A,
element with the j-th index and the result of multiplication is
added to the sum of results of multiplication performed dur-
ing previous iterations of the step 301. Alternatively, if the
encoding is PCSR, the computation is performed according to
the formula:

sum—>sum+A [j]xx[A_[j]],

where the value in the A array with the index j is multiplied
by the element of x whose index is the number in the A _ array
with the j-th index and the result of the result of multiplication
is added to the sum of results of multiplication performed
during previous iterations of the step 301. Upon the comple-
tion of the calculation based on either formula, the block size
is added to the value of j and the result of the addition is set as
j (step 302), moving the processing to the next entry in the in
that row assigned to that thread. The routine 290 returns to
step 300 described above, repeating steps 300-302 until of the
non-zero values in the i-th row that are assigned to that thread
are processed. Once j is not less than j,, . (step 300), all
threads in the block are synchronized, allowing all threads in
the block to finish performing the loops of steps 300-302.

[0134] The size of the block, the number of threads in the
block, is divided by 2 using integer division and the result of
the division is denoted using the variable t,, . (step 304). Ift,
the id of the thread in the block, is less than t,,,, the thread
performs reduction, combining together, of sums resulting
from computations in steps 300-302 above performed by that
thread t and another thread whose thread id is t+t,,,. (step
306). The step 306 reduces the number of sums in half; the

US 2016/0179750 Al

combined sum is set as the sum for the thread t (the thread that
performed the combining) and the sum previously associated
with the thread whose thread id in the block is t+t,,,, is
discarded (step 306). Following the combining, the value of
1., 18 cut in half using integer division and set as t,,,,,.. (step
307). The threads that performed the combining of the sums
are again synchronized (step 308), and the routine 290 returns
to step 305 above. During each subsequent iteration of the
loop of steps 305-307, the number of threads participating in
the loop is reduced in half due to the reduction of the value of
t e

[0135] Iftisnotlessthant,,, , whether the thread is the first
thread in the block (t=0 and r<r,,,) is determined (step 309).
Ifthe thread is not the first thread, the thread’s execution ends
(step 311). If the thread is the first thread, the grand total sum
resulting from the reductions described in step 305-307 is
stored in the dense vector y (step 310), and the execution of
that thread ends (step 311). The routine 290 ends upon the end
of execution of all threads. The routine 290 can also be
expressed using the following pseudocode—while the
pseudocode is written in relation to the PSCSR encoding, the
pseudocode in relation to PCSR can be written mutatis
mutandis:

Jun. 23,2016

routine 320 in parallel at the same time until the execution of
one of the threads or blocks is stopped (such as in step 341
below).

[0137] Local sharing is initiated between all threads in the
same block, allowing the threads to share results of compu-
tation described below in steps 330-332 (step 322). Rank of a
column assigned to one of the blocks is obtained by using the
function block_id() to obtain the unique global id of one of
the blocks, and adding to the unique global id to the value of
I, Fank of first column of partition to which the rank is
assigned as described above with reference to FIG. 18; the
result of the addition is the rank of the column assigned to the
block and is denoted using the variable r (step 323). The value
of'rcanbe compared tor,,,,, a variable that equals the rank of
the first column of the next partition, partition k+1, given by
A' [k+1]; the comparison is optional when the number of
blocks launched equals the number of columns in the parti-
tionk (r,,,. -I,..,,)- Ifrislessthanr, , (step 324),theidjofthe
r-th ranked column is identified in the mapping array A',, (step
325). Ifrisnotlessthanr,,,, (step 324), the routine 320 moves
to step 341 described below. A local id (id within the block) of
one of the threads in the block is obtained, such as by using the
function block_thread_id() and is denoted using the variable

kernel fIBIR(Y, X, Ay, Aps Ay L)

/* 1B1R: one-block-one-row SpMV

kernel */
shared sum[BLOCKSIZE] /* sum: local sums shared by threads in a block
*/
I <1, +block_id() /* compute rank of the vertex assigned to this
block */
if (r <1,,,,) then /* optional if exactly (1, — uin) blocks were
created */
i< A,,[r] /* i:id of r-th ranked row */
t < block_ thread_id() /* t: local thread id in a block */
Je A+t /* j: index of first non-zero entry assigned to
this thread */
Jomax < AJJI+1] /* Jonax: index of first non-zero entry in (i+1)-th
row */
sum(t] < 0 /* initialize local summation accumulator */
while (j < e /* test if end of row has been reached */
sum[t] < sum([t] + A, [jl.vx X[A,.[j].c] /* computey=% A, ;xx;*/
j < j+BLOCKSIZE /* move to next non-zero entry for this thread */
end while
end if
sync__block_ threads() /* synchronize all threads in a block */
tyax < BLOCKSIZE / 2 /% t,ax: nUMber of threads adding up local sums
*/
while (t <t,,.,) /* test if this thread should participate */
sum(t] <= sum[t] + sum[t+ t,,,,] /* reduce two local sums into one */
taxe < Cmax / 2 /* cut number of sum-adding threads in half */
sync__block_ threads() /* synchronize all threads in a block */
end while
if t =0 and r <1,,,,) then /* is this the first thread in the block? */
y[i] < sum[0] /* store grand total sum in y */
end if
[0136] Similarly, SpMTV can be computed using the IB1R

kernel. FIGS. 22A-22B are flow diagrams showing a routine
320 for performing SpMTV by an f, 5,z kernel for use in the
routine 170 of FIG. 15 in accordance with one embodiment.
The routine 320 can be used for performing SpMTV on either
PSCSC or PCSC encodings. An iterative processing loop is
started for all launched blocks in the kernel (step 321). The
launched blocks and the threads in the launched blocks
execute in parallel with each other, and thus when the descrip-
tion below references one of the blocks or one of the threads,
all other launched blocks and threads execute the steps of the

t (step 326). An index of first non-zero entry assigned to that
thread is obtained by adding the value of an entry for the j-th
column in the A', array to t; the result of the addition is
denoted using the variable i (step 327). The next (j+1) entry in
the A'_ array is located and set as a variable i, (step 328).
Unless the j-th column is the last column in the matrix, the
next entry in the A'_array is the index inthe A", (or A') array
of the first non-zero entry in (j+1)-th column; if the j-th
column is the last column in the matrix, the next entry in the
A'_array is the total number of entries inthe A',,, (or A')) array.
A local summation calculator, a function for summing

US 2016/0179750 Al

together results of multiplication of the values of the non-zero
arrays described in step 331 below, is initialized by setting the
value of the sum at zero (step 329). Ifi is less than i,,,,, (step
330), multiplication and addition computations are per-
formed on the value of i, with the operation depending on
whether the encoding on which SpMTV is performed is
PSCSC or PCSC (step 331). If the encoding is PSCSC, the
computation is performed according to the equation:

sum—=sum+A', [i].vxx'[A',,[i].1],

where the value stored in the element of the A’ , array with the
index i is multiplied by the element of X' whose index is the
index of the row stored in the A',,, element with the i-th index
and the result of multiplication is added to the sum of results
of multiplication performed during previous iterations of the
step 331. Alternatively, if the encoding is PCSR, the compu-
tation is performed according to the formula:

sum—>sum+A', [1]xx+[A’,[i]],

where the value in the A', array with the index i is multiplied
by the element of x' whose index is the number in the A', array
with the i-th index and the result of multiplication is added to
the sum of results of multiplication performed during previ-
ous iterations of the step 331. Upon the completion of the
calculation based on either formula, the block size is added to
the value ofiand the result of the addition is set as i (step 332),
moving the processing to the entry in the next row in that
column. The routine 320 returns to step 330 described above,
repeating steps 330-332 until all of the non-zero values in the
j-th column are processed. Once i is not less than i,,,, (step
330), all threads in the block are synchronized, allowing all
threads in the block to finish performing the loops of steps
330-332;.

[0138] The size of the block, the number of threads in the
block, is divided by 2 using integer division and the result of
the division is denoted using the variable t,, . (step 334). If't,
the id of the thread in the block, is less than t,, ., the thread
performs reduction, combining together, of sums resulting
from computations in steps 330-332 above performed by that
thread t and another thread whose thread id is t+t,,, (step
336). The step 336 reduces the number of sums in half; the
combined sum is set as the sum for the thread t (the thread that
performed the combining) and the sum previously associated
with the thread whose thread id in the block is t+t,,,, is
discarded, similarly to the step 246 described above (step
336). Following the combining, the value oft,, . is cut in half
using integer division and set as t,,, (step 337). The threads
that performed the combining of the sums are again synchro-
nized (step 338), and the routine 320 returns to step 335
above. During each subsequent iteration of the loop of steps
335-337, the number of threads participating in the loop is
reduced in half due to the reduction of the value of't, ..
[0139] Iftisnotlessthant,,, , whether the thread is the first
thread in the block (t=0 and r<r,,,) is determined (step 339).
If the thread is not the first thread, the thread’s processing
ends (step 341). If the thread is the first thread, the grand total
sum resulting from the reductions described in step 335-337
is stored in the dense vector y' (step 340), and the execution of
that thread ends (step 341). The routine 320 ends upon the end
of execution of all threads. The pseudocode for the routine
320 is similar to the pseudocode shown above with reference
to FIGS. 21A-21B mutatis mutandis .

[0140] As mentioned above with reference to FIGS. 3 and
4, one of the common uses of the results of SpMV and
SpMTYV is ranking algorithms such as the PageRank® algo-

Jun. 23,2016

rithm, which can be performed using the power method. FI1G.
23 is a flow diagram showing a routine 350 for performing the
power method for use in the methods 60 and 90 of FIGS. 6 and
9, in accordance with one embodiment. The routine 350 can
be used to apply to the results of all variations of SpMV and
SpMTYV described above with reference to routines used in
the methods of FIGS. 6 and 9. Let d € (0,1) be a damping
factor, and let n be the number of webpages. Let P be a nxn
square matrix

1
—, if thereis a link from page j to page i
P=41L;

0, otherwise

[0141] whereL, is the number of out-going links from page

j- Let x and y be two dense vectors of size n, and let €* be a
stopping threshold. An initial PageRank probability distribu-
tion is set for the vector x (step 351). An iterative processing
loop (steps 352-356) is performed while the value of € is less
than the value of €* (step 352). The value of'y is set based on
the equation:

1-d
ye«dPx+ —1,
n

where 1 is an (nx1) column vector (step 353). The value of 8
is determined according to the formula:

e—|-xl,

where the value of € equals on the difference between y and x
(step 53). Finally, x is set to equal the value of'y. The routine
350 moves to the next iteration ofthe loop (step 356), with the
processing through the loop (352-356) continuing until € is
less than the value of €*, after which the routine ends 350. The
routine 350 can also be represented using the following
pseudocode:

X < Xq
loop

/* initial PageRank probability distribution */

1-4d
ydPx+ —1
n

e ly—xl
X<y
until € < e*

[0142] The system 30 and methods 60, 90 described above
are superior to conventional technology, utilizing advantages
of six new encodings for sparse matrices, namely SCSR,
SCSC, PCSR, PCSC, PSCSR, and PSCSC. Of'the six, SCSR
and SCSC have exactly the same space complexity as their
unstructured counterparts CSR and CSC; whereas the
remaining four new encodings have a slightly higher space
requirement. For PCSR and PSCSR, the extra space overhead
is linear in the number of non-zero rows (i.e., rows with at
least one non-zero entry); for PCSC and PSCSC, the over-
head is linear in the number of non-zero columns (i.e., col-
umns with at least one non-zero entry). To evaluate the effec-
tiveness of the PSCSR encoding, experiments of running
SpMYV on various sparse matrices found in the University of

US 2016/0179750 Al

Jun. 23,2016

21

Florida sparse matrix collection were conducted. To create
the matrix partitions, A =[1,32, 1024,] for all datasets in the
experiments were used. As a result, the first partition of
PSCSR contained rows with at least one non-zero and less
than 32 non-zero entries; the second partition contained rows
with 32 or more but less than 1024 non-zero entries; and the
third partition contained rows with 1024 or more non-zero
entries.

[0143] Table 1 shows the statistics of the sparse matrices
used in the experiments, including the number of rows (la-
beled as ‘#rows’), the number of non-zero rows (‘#non-zero
rows’), the total number of non-zero entries of the matrix
(“#non-zeros’), the average number of non-zero entries per
row (‘Avg. #non-zeros/row’), the size of the CSR encoding
(which is the same as SCSR), the size of the PSCSR encoding,
and the extra space overhead of PSCSR as a percentage of the
original CSR encoding. As can be observed, the extra space
overhead of PSCSR decreases as the average number of non-
zero entries of arow increases. The overhead is the highest for
matrix wiki-Talk’ (19.06%), which has only 2.1 non-zero
entries per row; whereas the overhead drops to 2.19% for
matrix ‘eu-2005’ with an average of 22.3 non-zero entries per
row. The extra space overhead of PSCSR, averaged over all
matrices in Table 1, is 5.45%.

TABLE 1

For matrix ‘wiki-Talk’, we have y=2,369,181/2,394,385=0.
9895 and b=5,021,410/2,394,385=2.097. Thus, the extra
space overhead d=y(Ab=1)"'=0.9895x(2x2.097+1)'=19.
05%, which is close to the actual overhead Observed in the
experiments. For matrix ‘eu-2005°, y=862,664/862,664=1,
and b=19,235,140/862,664=22,30. Thus, d=y(Ab +1)'=1x
(2x22.30+1)7'=2.19% (same as the empirical number), That
the analytical formula of d=y(Ab +1)~' matches very well
(often without detectable errors) with the actual extra over-
head of PSCSR recorded in Table 1 can be verified. This
formula makes possible to accurately predict the size of a
PSCSR/PCSR (or PSCSC/PCSC) encoding as the size of a
regular CSR (or CSC) encoding multiplied by a factor of
(149). The predicted extra space overhead can be used to
determine whether creating the PSCSRIPCSR. encodings is
useful for a particular hardware set-up, or whether insuffi-
cient hardware resources make the creation or use of such
encodings impracticable.

[0146] The performance of the GPU-based SpMV routines
described starting with reference to FIG. 13 was tested on all
the matrices of Table 1. For comparison, the results of a
CPU-based SpMV implementation are included in Table 3.
The test machine used has two Intel Xeon X5690 processors,
each having 6 cores running at 3.46 GHz. The cache size of a

Statistics of test sparse matrices and their encoding sizes in
megabytes (MB)

Avg.
#non- (S)CSR

#non-zero zeros/ size PSCSR PSCSR
Matrix #rows TOWS #non-zeros = row MB size MB extra %
Stanford 281,903 281,731 2,312,497 820 1872 19.79 5.72%
amazon0601 403,394 403,312 3,387,388 8.40 27.38 2892 5.62%
wiki-Talk 2,394,385 2,369,181 5,021,410 2.10 4744 5648 19.06%
web-Google 916,428 714,545 5,105,039 557 4244 4517 6.43%
amazon-2008 735,323 735,323 5,158,388 7.02 42.16 4497 6.67%
Stanford_ Berkeley 683,446 678,711 7,583,376 11.10 60.46 63.05 4.28%
cit-Patents 3,774,768 3,258,983 16,518,948 4.38 14036 152.80 8.86%
in-200 1,382,908 1,382,822 16,917,053 12.23 13434 139.62 3.93%
eu-2005 862,664 862,664 19,235,140 22.30 150.04 15333 2.19%
wikipedia-20051105 1,634,989 1,170,854 19,753,078 12.08 156.94 16141 2.85%
wikipedia-20060925 2,983,494 2,109,860 37,269,096 1249 29572 30377 2.72%
wikipedia-20061104 3,148,440 2,215,534 39,383,235 12.51 312.48 32093 2.70%
wikipedia-20070206 3,566,907 2,488,225 45,030,389 12.62 357.16 366.65 2.66%
whb-edu 9,845,725 9,128,020 57,156,537 5.81 473.63 50845 7.35%
soc-LiveJournall 4,847,571 4,489,240 68,993,773 14.23 54487 562.00 3.14%
ljournal-2008 5,363,260 4994216 79,023,142 14.73 62336 64241 3.06%

[0144] Let A be the ratio of the size of an element in A, . (or
A',) over the size of an element in A, (or A'.) of PSCSR (or
PSCSC), which is usually an implementation dependent con-
stant. Let b be the ratio of the number of non-zero entries over
the number of rows (or columns) in PSCSR (or PSCSC), and
let y be the ratio of the number of non-zero rows (or columns)
over the total number of rows (or columns) in PSCSR (or
PSCSC). Let 8 be the extra space overhead of PSCSR/PCSR
(or PSCSC/PCSC) overregular CSR (or CSC). That d is given

by

Y

0= %1

[0145] can be shown. In one of the embodiments, an ele-
mentin A, _istwice as large as an element in A, and thus A=2.

single X5690 processor is 12 MB, which is significantly
larger than the L2 cache size of Nvidia’s® GTX 580 GPU in
the same box. To measure the speedup of GPU on SpMV
against a single CPU core, the CPU implementation uses a
single thread.

TABLE 2

Single-iteration performance of CPU-based SpMV systems on
Twitter ® follower network

PageRank System Runtime #rows #non-zeros nodes x cores
Hadoop 198 s — 1.1B 50x%x8
Spark 97.4s 440M 1.5B 50x2
Twister 36s 550M 14B 64 x4

US 2016/0179750 Al

TABLE 2-continued

Single-iteration performance of CPU-based SpMV systems on
Twitter ® follower network

PageRank System Runtime #rows #non-zeros nodes x cores
PowerGraph 3.6s 440M 1.5B 64 x 8
HiperGraph (1 core) 36s 442M 1.5B 1x1

[0147] A word aboutthe CPU-based implementation is that
the implementation is among the state-of-the-art for SpMV
on large-scale graphs. Using a single core of the test machine,
the CPU performs an iteration of SpMV in 36 seconds on a
Twitter® follower network of some 41.7 million users (i.e.,
rows) and 1.47 billion connections (i.e., non-zeros) intro-
duced by Kwak et al., “What is Twitter, a Social Network or
a News Media?,” Proceedings of the 19" international con-
ference on World Wide Web, 2010, pp. 591-600, the disclo-
sure of which is incorporated by reference. The same Twit-
ter® follower network has been used by various SpMV
implementations as a benchmark dataset. Table 2 compares
the runtime performance of some of the best CPU-based
large-scale SpMV systems found in the literature. The num-
bers for the first four systems were reported by Gonzalez et
al., PowerGraph: Distributed Graph-Parallel Computation on
Natural Graphs, OSDI, 2012, Vol. 12, No. 1, p. 2, the disclo-
sure of which is incorporated by reference, whose Power-
Graph system can perform an iteration of SpMV in 3.6 sec-
onds on a 64 node cluster of Amazon EC2 ccl.4xlarge Linux
instances, each having two quad-core Intel Xeon X5570 pro-
cessors with 23 GB of RAM, connected via 10Gig Ethernet.
The single-node system, called HiperGraph, can also finish
an iteration of SpMV in 3.6 seconds if all 12 cores were used.
To measure per-core speedup, HiperGraph was run in single-
threaded mode, which took 36 seconds to finish a full pass on
the same Twitter® follower network. In other words,
PowerC3raph uses 512 cores 2.93 GHz to get a 10x speedup
over HiperUraph with a single core@ 3.46 GHz. The Hiper-
Graph’s single-core performance on SpMV is competitive,
and thus was used as a baseline for the experiments described
below.

[0148] Table 3 shows the performance of CPU (i.e., Hiper-
Graph with 1 core) and CPU-based SpMV on various sparse
matrices. The runtime of the CPU-based SpMV is broken
down into three parts: (a) partition, which produces the par-
titions needed by the PSCSR encoding, (b) load, which trans-
fers the partitioned matrix from the CPU to the GPU, and (c)
SpMV, which performs a single iteration of SpMV on the
CPU. Both parts (a) and (b) are one-time operations whose
cost can be amortized over multiple iterations of SpMV. The
last column of Table 3 shows the speedups of GPU-based
against sequential CPU-based SpMV, accumulated over 100
iterations. Note that if the matrix is already encoded in
PSCSR format, then the partition time should simply be zero
in Table 3. The speedup ranges from 21.5x to 38.3x, with the
average being 31x faster.

22

Jun. 23,2016

TABLE 3
Performance of CPU and GPU-based SpMV in milliseconds (ms)
Speedup
of
CPU GPU 100

Matrix SpMV partition Load SpMV SpMVs
amazon0601 46.19 4.81 10.77 1.38 30.12x
amazon-2008 66.40 6.92 15.86 1.51 38.30x
cit-Patents 47420 29.81 47.95 1242 35.92x
eu-2005 157.20 7.84 52.02 4.05 33.82x
in-2004 14613 11.74 46.13 3.37 36.97x
ljournal-2008 1,07436 4520 209.75 3434 29.12x
soc-LiveJournall 1,267.19 41.86 183.13 3838 31.19x
Stanford_ Berkeley 65.49 6.26 21.28 2.36 24.86x
Stanford 30.16 3.46 7.40 1.17 23.52x%
wh-edu 62756 7834 168.57 16.64 32.84x
web-Google 101.29 8.93 16.05 3.79 25.07x
wikipedia-20051105 372,65 14.85 5431 11.94 29.51x
wikipedia-20060925 760.01 2532 99.77 24.98 28.97x
wikipedia-20061104 807.45 2679 10597 26.64 28.87x
wikipedia-20070206 94876 3231 120.63 30.80 29.35%
wiki-Talk 106.38 20.24 17.63 2.45 37.63x

[0149] The experiment further illustrate additional advan-
tages of the encodings that GPU-based hardware implement-
ing the methods described above can achieve over conven-
tional technology described above. Not only significantly
faster, GPUs are also much cheaper than CPUs: the cost of
GTX 580 GPU is currently less than $400, but a single Xeon
X5690 processor costs around $1800. Assuming a linear
speed up of our sequential CPU SpMV if all 6 cores of X5690
were used, the GPU would be 31/6=5.2x faster than a per-
fectly parallelized CPU implementation on an X5690 proces-
sor. From a performance-per-dollar perspective, the GPU-
based SpMV is about 23x more cost-effective on the test
machine used above.

[0150] A GPU-based solution is also more extensible, since
adding or upgrading GPUs of an existing system is far easier
than adding or upgrading the CPUs in the same box. For
commodity hardware, the maximum number of CPUs is typi-
cally 2 or4; whereas a single commodity GPU server can hold
up to 8 GPUs, each of which can have up to a few thousand
cores (e.g., Nvidia’s® Tesla K40 GPU has 2,880 cores). Thus,
GPUs excel CPUs not only in performance per dollar or
FLOPS per watt, but also in performance per 1U rack space,
which is particularly important for data centers.

[0151] Whilethe invention has been particularly shown and
described as referenced to the embodiments thereof, those
skilled in the art will understand that the foregoing and other
changes in form and detail may be made therein without
departing from the spirit and scope of the invention.

What is claimed is:
1. A computer-implemented method for structured sparse
matrix representation acquisition, comprising:
obtaining a structured compressed representation of a
matrix comprising one or more non-zero entries
arranged in one or more orders in portions of the matrix,
each portion comprising one of a row and a column,
comprising:
obtaining a composite array comprised in the represen-
tation, the composite array comprising one or more
elements, each element comprising one of the non-
zero entries and an index of one of the portions com-
prising that non-zero entry; and

US 2016/0179750 Al

obtaining an index array comprising an index in the
composite array of each of the elements that comprise
the non-zero entries that are first in one or more of the
orders, the index array further comprising a number of
the non-zero entries in the matrix.

2. A method according to claim 1, wherein each composite
array element index comprises the index of the row of that
non-zero entry in a column-major order and the orders com-
prise orders of the non-zero entries in each of the columns.

3. A method according to claim 2, further comprising:

performing a sparse matrix transpose vector multiplication

of'the matrix by a dense vector comprising a plurality of

elements by processing each of the columns, compris-

ing:

identifying indices in the composite array of all the
composite array elements that comprise the non-zero
entries in that column using the index array;

multiplying each of the non-zero entries in that column
by one of the elements of the dense vector using the
index of that entry; and

adding the results of the multiplication for each of the
non-zero entries in that column and storing the result
of the addition in a different dense vector.

4. A method according to claim 1, wherein each composite
array element index comprises the index of the column of that
non-zero entry in a row-major order and the orders comprise
orders of the non-zero entries in each of the rows.

5. A method according to claim 4, further comprising:

performing a sparse matrix vector multiplication of the

matrix by a dense vector comprising a plurality of ele-

ments by processing each of the rows, comprising:

identifying indices in the composite array of all the
composite array elements that comprise the non-zero
entries in that row using the index array;

multiplying each of the non-zero entries in that row by
one of the elements of the dense vector using the index
of that entry;

adding the results of the multiplication for each of the
non-zero entries in that row and storing the result of
the addition in a different dense vector.

6. A method according to claim 1, further comprising:

processing the structured compressed representation; and

using a result of the processing to perform a ranking analy-
sis.

7. A computer-implemented method for efficient sparse
matrix representation, comprising:

obtaining a compressed representation of a sparse matrix

comprising one or more non-zero entries, portions of the
matrix indexed based on their position in the matrix, the
portions comprising one of rows and columns of the
matrix;

defining a plurality of partitions for the portions of the

matrix;

obtaining a number of the non-zero entries in each of the

portions using the compressed representation;
associating each of the portions with one of the partitions
based on a number of the non-zero entries in that portion;
creating listings of all the portions associated with each of
the partitions, the portions listed in order of their
indexes; and
creating a partitioned compressed representation of the
matrix comprising a mapping array comprising the list-
ings.

Jun. 23,2016

8. A method according to claim 7, further comprising:

processing the mapping array; and

performing a ranking analysis based on a result of the

processing.

9. A method according to claim 7, further comprising:

indexing the partitions based on the number of non-zero

entries in the portions of the matrix associated with each
of the partition;

for each of the partitions, identifying a size of all of the

partitions preceding that partition in the array based on
the partition indices, the size comprising a number ofthe
portions associated with the partition, and inserting the
listing for that partition into the array into a position
based on the size.

10. A method according to claim 7, wherein each of the
portions comprises a row of the matrix, further comprising:

performing a sparse matrix vector multiplication of the

matrix by a dense vector comprising a plurality of ele-

ments by sequentially processing each of the rows of

each of the partitions listed in the mapping array, com-

prising:

identifying an index in the compressed representation
associated with each of the non-zero entries in that
row;

multiplying each of the non-zero entries in that row by
one of the elements of the dense vector using the index
of that non-zero entry; and

adding the results of the multiplication for each of the
non-zero entries in that row and storing a result of the
addition in a different dense vector.

11. A method according to claim 9, wherein each of the
portions comprises one of the columns of the matrix, further
comprising:

performing a sparse matrix vector transpose multiplication

of the matrix by a dense vector comprising a plurality of

elements by processing each of the columns of each of

the partitions listed in the mapping array, comprising:

identifying an index in the compressed representation
associated with each of the non-zero entries in that
column;

multiplying each of the non-zero entries in that column
one of the elements of the dense vector using the index
of that non-zero entry; and

adding the results of the multiplication for each of the
non-zero entries in that column and storing a result of
the addition in a different dense vector .

12. A method according to claim 7, further comprising:

selecting one of a plurality of kernel functions for process-

ing the portions associated with each of the partitions.

13. A method according to claim 12, wherein the kernel
functions comprise one or more of a kernel function that
assigns one processing thread to process one of the portions
(“f, 1z kernel function™), a kernel function that assigns a
warp of processing threads to process one of the portions
(“f, 3 & kernel function™), and a kernel function that assigns a
block of processing threads to process one of the portions
(“f, 5,z kernel function™), and wherein each of the portions for
whichthe f, ;, » kernel function is selected comprises more of
the non-zero entries than each of the portions for which the
f, 71z kernel function is selected and each of the portions for
which the 1) z, z kernel function is selected comprises more of
the non-zero entries than each of the portions for which the
f, 71 & kernel function is selected.

US 2016/0179750 Al

14. A method according to claim 13, wherein each of the
portions comprises one of the rows, further comprising:
performing a sparse matrix vector multiplication of one of
the rows of by a dense vector comprising a plurality of
elements by a processing thread assigned by thefiTiR
kernel function and executed by a graphics processing
unit (GPU), comprising:
identifying the row assigned to the thread using the
mapping array;
identifying an index in the compressed representation
associated with each of the non-zero entries in that
row;
multiplying each of the non-zero entries in that row by
one of the elements of the dense vector using the index
of that non-zero entry; and
adding the results of the multiplication for each of the
non-zero entries in that row and storing the result of
the addition in a different dense vector.
15. A method according to claim 13, wherein each of the
portions comprises one of the columns, further comprising:
performing a sparse matrix vector transpose multiplication
of one of the columns by a dense vector comprising a
plurality of elements by a processing thread assigned by
the f, ,z kernel function and executed by a graphics
processing unit (GPU), comprising:
identifying the column assigned to the thread using the
mapping array;
identifying an index in the compressed representation
associated with each of the non-zero entries in that
column;
multiplying each of the non-zero entries in that column
by one of the elements of the dense vector using the
index of that non-zero entry; and
adding the results of the multiplication for each of the
non-zero entries in that column and storing a result of
the addition in a different dense vector.
16. A method according to claim 13, wherein each of the
portions comprises one of the rows, further comprising:
performing a sparse matrix vector multiplication of one of
the rows by a dense vector comprising a plurality of
elements by a warp of processing threads assigned by
thefiwiR kernel function and executed by one or more
graphics processing units (GPUs), comprising:
identifying the row assigned to the warp using the mapping
array;
identifying indices in the compressed representation of the
non-zero entries in that row assigned to each of the
threads in the warp and multiplying each of the non-zero
entries assigned to that thread by one of the elements of
the dense vector using the index of that non-zero entry;
summing the results of the multiplication for each of the
non-zero entries assigned to that thread; and
combining the sums for all of the threads in the warp and
storing the combined sum in a different dense vector.
17. A method according to claim 13, wherein each of the
portions comprises one of the columns, further comprising:
performing a sparse matrix vector multiplication of one of
the columns by a dense vector comprising a plurality of
elements by a warp of processing thread assigned by
thefiwiR kernel function and executed by one or more
graphics processing unit (GPU), comprising:
identifying the column assigned to the warp using the
mapping array;

Jun. 23,2016

identifying indices in the compressed representation of
the non-zero entries in that column assigned to each of
the threads in the warp and multiplying each of the
non-zero entries assigned to that thread by one of the
elements of the dense vector using the index of that
non-zero entry,

summing the results of the multiplication for each of'the
non-zero entries assigned to that thread; and

combining the sums for all of the threads in the warp and
storing the combined sum in a different dense vector.

18. A method according to claim 13, wherein each of the
portions comprises one of the rows, further comprising:

performing a sparse matrix vector multiplication of one of
the rows by a dense vector comprising a plurality of
elements by a block of processing thread assigned by
thefiBiR kernel function and executed by one or more
graphics processing units (GPUs), comprising:

identifying the row assigned to the block using the map-
ping array;

identifying indices in the compressed representation of
the non-zero entries in that row assigned to each of the
threads in the block and multiplying each of the non-
zero entries assigned to that thread by one of the
elements of the dense vector using the index of that
non-zero entry,

summing the results of the multiplication for each of'the
non-zero entries assigned to that thread;

synchronizing the threads in the block upon a comple-
tion of the summing; and

combining the sums for all of the synchronized threads
in the block and storing the combined sum in a differ-
ent dense.

19. A method according to claim 13, wherein each of the
portions comprises one of the columns, further comprising:

performing a sparse matrix vector multiplication of one of
the columns by a dense vector comprising a plurality of
elements by a warp of processing thread assigned by the
f, 51z kernel function and executed by one or more
graphics processing units (GPUs), comprising:

identifying the column assigned to the block using the
mapping array;

identifying indices in the compressed representation of
the non-zero entries assigned to each of the threads in
the block and multiplying each of the non-zero entries
assigned to that thread by one of the elements of the
dense vector using the index of that non-zero entry;

summing the results of the multiplication for each of'the
non-zero entries assigned to that thread;

synchronizing the threads the block upon a completion
of the summing;

combining the sums for all of the synchronized threads
in the block and storing the combined sum in a differ-
ent dense.

20. A method according to claim 7, wherein the com-
pressed encoding comprises one of a compressed sparse row
encoding, compressed sparse column encoding, structured
compressed sparse row encoding, and structured compressed
sparse column encoding, further comprising:

US 2016/0179750 Al

predicting an extra space overhead required by the parti-
tioned compressed representation using the formula:

Y
Eabrra

wherein 0 is the extra overhead space, y is a ratio of a number
of the portions comprising the non-zero entries over the total
number of the portions in the partitioned compressed repre-
sentation, and b is the ratio of the number of non-zero entries
over the number of rows (or columns) in the partitioned
compressed representation.

#* #* #* #* #*

25

Jun. 23,2016

