
US 20190199828A1

(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2019 / 0199828 A1

Cannon et al . (43) Pub . Date : Jun . 27 , 2019

(54) IMAGE DISTRIBUTION IN AN EDGE
COMPUTING SYSTEM

(52) U . S . CI .
CPC H04L 67 / 34 (2013 . 01) ; G06F 9 / 54

(2013 . 01) ; G06F 9 / 44505 (2013 . 01) ; G06F
8 / 60 (2013 . 01) (71) Applicant : Virtuosys Limited , Bath (GB)

(72) Inventors : Mark Joseph Cannon , Gloucestershire
(GB) ; Neil Edgar , Wiltshire (GB)

(21) Appl . No . : 16 / 223 , 384
(22) Filed : Dec . 18 , 2018
(30) Foreign Application Priority Data
Dec . 22 , 2017
May 25 , 2018

(GB)
(GB)

. 1721776 . 1
. 1808660 . 3

(57) ABSTRACT

A method (1000 , 1100) in a mesh computing system (400)
of pre - emptively positioning images at hosts , for retrieval
from the hosts and for the creation of containers from the
images , is described . The hosts are located in edge nodes of
the mesh computing system (400) . The mesh computing
system (400) also comprises a central registry (490) , located
outside the mesh computing system (400) , the central reg
istry (490) holding the images . A swarm leader (424) located
in the mesh computing system (400) identifies a need in a
first host at a first edge node to run an image , the image
being held in the central registry . The swarm leader (424)
identifies a second host at a second edge node , and com
mands download of the image from the central registry (490)
to the second host , via at least one wireless link of the mesh
computing system (400) . A mesh computing system (400) is
provided .

Publication Classification

(51) Int . Ci .
H04L 29 / 08 (2006 . 01)
GO6F 8 / 60 (2006 . 01)
G06F 9 / 445 (2006 . 01)
GO6F 9 / 54 (2006 . 01)

300 313 330

316 320
Edge Node 3

310 Edge Node 6
338 Edge Node 1

(Host) Edge Node 4 1A 336
314 St 334

340 315 Image Edge Node 5 T332 Central
Registry

327 Edge Node 2 Client 360
Edge Node 7

(Host) 312 325 Cloud Edge 317

100

Docker Registry

Patent Application Publication

120

21

Image

110

112

Docker Host

130

Docker daemon

Jun . 27 , 2019 Sheet 1 of 16

Docker Client

118

114

Image

FIG . 1

- 116

Docker Repository

US 2019 / 0199828 A1

Patent Application Publication Jun . 27 , 2019 Sheet 2 of 16 US 2019 / 0199828 A1

FIG . 2

230 220 Client Registry 235

- 205

Host Host Host Host

210

200

300

313

330

Patent Application Publication

316

320

350

Edge Node 3

Edge Node 6

310

338

Edge Node 1 (Host)

Edge Node 4

?

7336 334

314

K

340

315 ,

Image

Edge Node 5

Central Registry

Jun . 27 , 2019 Sheet 3 of 16

327

Edge Node 2

360

Client

Edge Node 7 (Host)

312

325

Cloud

Edge

317

FIG . 3

US 2019 / 0199828 A1

Registry (in cloud)

Patent Application Publication

360

1

360

310

390 V

370

385

Edge Node

Client

Jun . 27 , 2019 Sheet 4 of 16

Repository

380

395

FIG . 4

US 2019 / 0199828 A1

400

- 455

457

460

Patent Application Publication

436

480

438

420

442

422

444

45

Jun . 27 , 2019 Sheet 5 of 16

490

.

446 448 I

434

S

448

432

Cloud

450

Edge

FIG . 5

US 2019 / 0199828 A1

Central Registry

440

Patent Application Publication

L7 - L21

600

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

610

API

Jun . 27 , 2019 Sheet 6 of 16

608

455

606

657

Repository
604

Client

602

FIG . 6

US 2019 / 0199828 A1

490 -

Central Registry

Patent Application Publication

17

755

442 442

Client

L5

738

757

Registry Agent

Jun . 27 , 2019 Sheet 7 of 16

700

784 v
Repository

FIG . 7

770

785

US 2019 / 0199828 A1

Patent Application Publication Jun . 27 , 2019 Sheet 8 of 16 US 2019 / 0199828 A1

800

Start

Idle / waiting for an event

Download " pull "
ALEN

Yes
Is image available locally , within node ?

No

Download from central registry

860
Create container

FIG . 8

Patent Application Publication Jun . 27 , 2019 Sheet 9 of 16 US 2019 / 0199828 A1

900

910
Start

1 920 Receive a request at first host from client for
an image

930 Send request for image to at least one
other host

Yes Has first host received notification that a
second host has the image ?

No

Download image from Central Registry

960

Download the image from the second host to
the first host

wwwwwwwwww

970
Create container

FIG . 9

Patent Application Publication Jun . 27 , 2019 Sheet 10 of 16 US 2019 / 0199828 A1

1000

1010

Start

.
1020 Identify / predict need in first host at first

edge node to run an image

1030 Identify second host at second edge node as
not needing to run image

1040 Command download of image from central
registry to second host , via wireless link

1050 First host receives request from client

1060
First host performs discovery to locate image

1070
First host downloads image from second host

1080
First host creates container from image and

supplies container to client

FIG . 10

Patent Application Publication Jun . 27 , 2019 Sheet 11 of 16 US 2019 / 0199828 A1

1100

1110

c Start Start >

1120 Swarm leader identifies an image as likely to be
used by other hosts than first and second hosts

. .

1130 First host downloads image from central
registry to first repository of first host

1140 Second host downloads image from central
registry to second repository of second host

combo 1150 Third host receives request from clienti
-

- - - - - - - - - - -
1160

Third host performs discovery to locate image

1170
Third host downloads image from first host or

second host

1180
Third host creates container from image and

supplies container to client
- - - - - - - - - - - - - - - - - - -

FIG . 11

Patent Application Publication Jun . 27 , 2019 Sheet 12 of 16 US 2019 / 0199828 A1

1200

Receive notification that at least a second host
holds image

11210

1220
Calculate first value of cost metric , for first route

1230 Calculate second value of cost metric , for
second route

1240 Compare first and second values of metrics ,
identify lower value

1250 When first value is lower , select the first
route ; when second value is lower , select the
second route

1260 Download image over wireless links of
selected route to first host .

FIG . 12

Patent Application Publication Jun . 27 , 2019 Sheet 13 of 16 US 2019 / 0199828 A1

1300

1310

Calculate cost metric with at least one of :
(i) number of links over which image must be transmitted ;
(ii) communication link quality of each link ;
(iii) loading on any intermediate edge nodes on the route that
would result from downloading the image ;
(iv) loading of each link ; and / or
(v) financial cost of transmitting on each link .

1320

When route comprises two or more links for (i) , (iii) , (iv) or (v) :
Evaluate the parameter for each link in the route ; and
Combine the evaluated parameters for each link .

FIG . 13

Patent Application Publication Jun . 27 , 2019 Sheet 14 of 16 US 2019 / 0199828 A1

1400

First host generates request for image from
central registry

1 1410

1420 API intercepts and overrides request for image
from central registry

1430 API generates and sends request for image to
at least one other host

No 1440 Does first host receive notification
that a second host holds image ?

Yes

1450
API generates command to
download image from second host

1460
API requests image from central registry ,
and downloads image from central registry

FIG . 14

Patent Application Publication Jun . 27 , 2019 Sheet 15 of 16 US 2019 / 0199828 A1

1500

1526

1502

1528
1504 1506

1518

1514 1516 1517

1524 1522

FIG . 15

Patent Application Publication Jun . 27 , 2019 Sheet 16 of 16 US 2019 / 0199828 A1

1600 1610 1610

Start

.

1 1620
Idle / waiting for an event 1620

7 1630 1630
Download " pull "

Yes 1640
Is image available locally ?

No

1650
Send service request

1660
DAN

Yes 1680
At least one image available ?

No 1670 Calculate cost metrics
and download from
neighbour

Download from central registry

Create container

1690

FIG . 16

US 2019 / 0199828 A1 Jun . 27 , 2019

IMAGE DISTRIBUTION IN AN EDGE
COMPUTING SYSTEM

RELATED APPLICATIONS
[0001] This application claims the benefit of Great Britain
Application No . 1721776 . 1 , filed on Dec . 22 , 2017 and
Great Britain Application No . 1808660 . 3 , filed on May 25 ,
2018 . The content of these applications are fully incorpo
rated herein in their entirety .

TECHNICAL FIELD
[0002] The field of the invention is edge computing sys
tems . In particular , the invention concerns image distribu
tion in an edge computing system that implements virtuali
sation .

BACKGROUND
[0003] In some computing systems , Virtual Machines
have been used to allow computing functions to be carried
out at a desired location , which may be distant from a
location where elements of a computing system were origi
nally installed . Virtualisation at the level of the operating
system in an edge computing system enables location
independent computing .
[0004] One approach to virtualisation is the use of ' con
tainers ' . The aim of employing a container is to try to isolate
an application and its dependencies into a self - contained unit
that can be run anywhere . The container wraps up a piece of
software in a complete file system . The file system then
contains everything that it needs to run , such as code ,
runtime , system tools and system libraries . Containers have
thus been used to provide operating - system - level virtualiza
tion . It is the very fact that the containerized application
includes all the dependencies that enables it to run on any
node into which it has been loaded . In turn , therefore ,
containers can be spread to new nodes relatively easily , and
may be easier to update once deployed to multiple nodes .
[0005] One aspect of containerization is the use of
‘ images ' . An image is a package that can be executed to run
of a piece of software . Thus , the image has the code for the
software and information about configuration files . The
image will also house libraries that are needed for the
software , plus information on required variables . The advan -
tage of images is that they can be moved around as a single
entity . In terms of size and the requirements for transfer
through a network , they are lightweight in comparison to
more traditional Virtual Machines .
[0006] Open source projects have facilitated the deploy
ment of various applications inside containers . A typical , but
non - limiting , example of an open source approach is shown
by ' DockerTM ’ ‘ KubernetesTM ’ and ' CoreosTM rkt provide
ALTETMrnative approaches .
[0007] (i) Details of the DockerTM system are available on
the website : https : / / docs . DockerTM com /
[0008] (ii) Details of the KubernetesTM system are avail
able on the website : https : / / KubernetesTM io /
[0009] (iii) Details of the CoreosTM system are available
on the website : https : / / CoreosTM com / rkt
[0010] For example , the DockerTM architecture has three
main components . These components are the Host , Client
and Registry . In addition , a ‘ daemon ' is provided within the
‘ Host ' . In operation , the daemon selects an image , and
creates a runnable instance of that image in a container .

Some images are locally available from within the Host
itself . Any images that are not available in the Host will be
downloaded from the Registry when needed , and then used
to create a runnable instance of that image in a container .
[0011] FIG . 1 illustrates a possible arrangement of the
Host , Client and Registry in a known DockerTM architecture .
Computing system 100 in FIG . 1 comprises DockerTM Host
110 , DockerTM Registry 120 and DockerTM Client 130 .
[0012] DockerTM Host 110 comprises DockerTM daemon
112 , multiple containers 114 and a DockerTM Repository
116 . Within DockerTM Repository 116 are multiple Images
118 .
[0013] DockerTM Registry 120 holds images 122 .
Although some images 118 are shown in DockerTM Reposi
tory 116 , these may for example be images that have been
used previously by DockerTM Host 110 . In operation ,
DockerTM Host 110 may require further images at some
point in the future . Such an image may be selected from
images 122 in DockerTM Registry 120 and delivered from
DockerTM Registry 120 to DockerTM daemon 112 . The image
may then be added to those stored in DockerTM Repository
116 of DockerTM Host 110 for use by DockerTM Host 110 .
[0014] DockerTM Host 110 , DockerTM Registry 120 and
DockerTM Client 130 can all be on the same server .
ALTETMrnatively , DockerTM Host 110 , DockerTM Registry
120 and DockerTM Client 130 can be located on separate
servers . A DockerTM client 130 can exist locally on the
DockerTM Host 110 or in the ' cloud ' , i . e . at a remote location
on the internet .
[0015] . Clients are used in a wide variety of systems ,
including other systems than the DockerTM system 100 of
FIG . 1 . In such systems , in general , a client could be a
command line interface running in any terminal locally . In
all cases , clients communicate to a host through an API
(Application Programming Interface) .
[0016] FIG . 2 illustrates a LAN system 200 that uses
containers . LAN system 200 illustrates a simple and typical
implementation of containers . In the system of FIG . 2 , there
are multiple Hosts 210 . Each of the Hosts 210 is located on
a separate server . Registry 220 is also on another , separate
server .
[0017 Hosts 210 and Registry 220 of the LAN system 200
of FIG . 2 are connected by an Ethernet LAN 205 . A
DockerTM Client 230 accesses a Host 210 through an Appli
cation Programming Interface (API) 235 . Thus the
DockerTM Client 230 may be local to the LAN system 200 ,
as illustrated in FIG . 2 . However , aLTETMrnatively , the
DockerTM Client 230 may be remote from the Host 210 that
it is accessing . Thus the location of the DockerTM Client 230
does not play a significant role in the operation of the system
of FIG . 2 .
[0018] Returning to the definitions of the ‘ image ' and
" container ' , their relationship in known systems can be
understood with reference to FIGS . 1 and 2 . A container 114
is a runnable instance of an image 118 . The image 122 from
Registry 220 in FIG . 2 is passed around a network such as
LAN 205 in downloads . The image 118 is stored in the
DockerTM repository 116 . The DockerTM daemon 112 run
ning on the DockerTM Host 110 takes the image 118 and
creates a container 114 in the DockerTM Host 110 . When the
software runs on the DockerTM Host 110 , it is the container
114 that is used .
[0019] In the DockerTM system 200 of FIG . 2 , a group of
computing devices that are running containers can be joined

US 2019 / 0199828 A1 Jun . 27 , 2019

together to form a cluster . That cluster may be termed a
“ swarm ’ . The execution of the commands to control the
operation of the swarm may be carried out by a swarm
leader . There are several types of nodes in a DockerTM
swarm . Worker nodes do not participate in swarm manage
ment . There can be one or more manager nodes in the
swarm . There is only one swarm leader , which is the primary
manager node that makes all swarm management and
orchestration decisions for the swarm . The ' orchestrator ' is
another term used in known systems for the swarm leader .
10020] The DockerTM service allows a swarm of selected
DockerTM nodes , such as hosts 210 , to work together . Those
nodes run a defined number of instances of a replica task ,
which is itself a DockerTM image . The instances of the
replica task are identical , but they may carry out different
processes on different Hosts . With this arrangement , the
swarm leader is responsible for orchestrating or controlling
the swarm . The swarm leader is in effect a controlling entity
that decides which hosts will run the container . The swarm
leader can run on any node .
10021] Whilst the swarm takes care of managing the
services , the end result is a “ DockerTM pull ” . The DockerTM
pull causes the Host 210 to get an image 122 from the
Registry 220 , if that image 122 is needed and is not already
in the DockerTM Repository 116 of that Registry 220 .
[0022] In the LAN system 200 of FIG . 2 , each Host 210
will operate by requesting an image separately when that
image is not held by that Host 210 . The request passes from
the particular host 210 over LAN 205 to Registry 220 . Each
Host 210 may be equipped with its own repository 116 ,
where the image is stored after download . The download of
an image from Registry 220 will occur separately to each
Host 210 that has requested that image . Potentially those
downloads may occur in parallel .
10023] An edge computing system may be implemented as
a mesh network . A mesh network typically does not have a
high bandwidth link such as LAN 205 of FIG . 2 available .
Instead , some nodes of the mesh network will have direct
wireless links between each other . The approaches that are
used in LAN system 200 of FIG . 2 may not work optimally
in such a mesh network . Hence a need exists to provide an
edge computing system as a mesh network that can imple
ment virtualization .

[0027] FIG . 2 shows an example of a known LAN archi
tecture using containers , in schematic form .
[0028] FIG . 3 illustrates the architecture of a known mesh
computing system .
[0029] FIG . 4 illustrates the architecture of a known edge
node and a host .
[0030] FIG . 5 illustrates the architecture of a mesh com
puting system in accordance with an embodiment .
0031] FIG . 6 illustrates an embodiment of an architecture
of an edge node , and a host of the embodiment of FIG . 5 .
10032] FIG . 7 illustrates an architecture of other edge
nodes of FIG . 5
0033] FIG . 8 is a flow diagram of a method of operation
of the known mesh computing system of FIG . 3 .
[00341 . FIG . 9 provides an illustration of a method of
operation of a mesh computing system in accordance with
an embodiment of the invention .
[0035] FIG . 10 provides an illustration of a method of
operation a registry agent in accordance with an embodi
ment of the invention .
[0036] FIG . 11 provides an illustration of a method of
operation of a registry agent in accordance with another
embodiment of the invention .
[0037] FIG . 12 is a flow diagram of a method of down
loading an image in accordance with an embodiment of the
invention .
[0038] FIG . 13 provides an illustration of another method
of operation in accordance with an embodiment of the
invention .
10039) FIG . 14 illustrates a method in accordance with an
embodiment .
10040] FIG . 15 illustrates an embodiment of a server of the
edge node of the invention .
(0041] FIG . 16 illustrates a high level overview of a
method of operation of an embodiment of the invention .

DETAILED DESCRIPTION

SUMMARY OF THE INVENTION
[0024] In accordance with a first aspect of the present
invention , there is provided a method in accordance with
appended claim 1 . In accordance with a second aspect of the
present invention , there is provided a method in accordance
with appended claim 11 . In accordance with a third aspect of
the present invention , there is provided a mesh computing
system in accordance with appended claim 18 . In accor
dance with a fourth aspect of the present invention , there is
provided a mesh computing system in accordance with
appended claim 20 . The dependent claims provide further
steps and features of embodiments .

10042] The parallel downloading of images 122 in the
LAN system 200 of FIG . 2 may not provide a particular
drain on resources when the system is implemented with a
high capacity LAN 205 . However , a mesh network may not
be able to deliver comparable performance to that achiev
able with a LAN , when attempts are made to implement
known virtualization systems on mesh computing systems .
In particular , problems may arise when trying to move
images through the mesh network .
10043] The present invention addresses systems of hosts
where there are constraints on the bandwidth of connections
between the nodes in the system . When the hosts are not
interconnected with a LAN , they may instead be connected
by a variety of links that have significantly constrained
bandwidths . In particular , a mesh network is an edge com
puting system that has wireless links between its nodes . The
mesh network may therefore have links between nodes
provided by interconnections that show significantly limited
bandwidth . The bandwidth limitations may affect transmis
sions over the interconnections at all times , or just at
particular times .
[0044] Communication devices in a mesh network com
municate using mesh transport technology . That technology
is typically either WiFiTM or a cellular link . Both technolo
gies may be employed within one mesh network , for dif
ferent interconnections between nodes .

BRIEF DESCRIPTION OF THE DRAWINGS
[0025] Exemplary embodiments of the present invention
will now be described , by way of example only , with
reference to the accompanying drawings , in which :
[0026] FIG . 1 shows an example of a known DockerTM
architecture , in schematic form .

US 2019 / 0199828 A1 Jun . 27 , 2019

[0045] Mesh routers may be provided to support routing
within the mesh network . Mesh router devices provide
routing functionality for data that originates from other
devices , which may either be an end node or another mesh
router . Such mesh routers can relay traffic from an end node
or another mesh router towards an edge router . Mesh router
devices also , typically , obtain an IPv6 prefix (address) from
router advertisements sent from the edge router .
[0046] An attempt to implement a mesh computing system
using containerisation may result in appreciable bandwidth
demand over some of the links in the mesh . The bandwidth
demand may also be variable , i . e . different at different times ,
which makes the demand unpredictable . Although the use of
containers is lightweight in terms of resources compared to
Virtual Machines (VM) , nevertheless the size of such images
can be large . The size of the images will lead to appreciable
bandwidth demand in any links in the mesh network that
have significant bandwidth limits .
[0047] FIG . 3 illustrates the architecture of a known mesh
computing system 300 , in which some links have significant
bandwidth constraints . Mesh computing system 300 is illus
trated as comprising seven edge nodes , each of which acts
as a host . The first edge node has reference 310 . Mesh
computing system 300 also comprises a second edge node
312 , a third edge node 313 , a fourth edge node 314 , a fifth
edge node 315 , a sixth edge node 316 , and finally a seventh
edge node 317 .
[0048] First edge link 320 connects first edge node 310
and third edge node 313 . The edge nodes are located in a
portion of FIG . 3 that is generally labelled as the “ Edge ' , and
which lies to the left of dividing line 330 . Some or all of the
edge nodes may correspond to DockerTM Host 110 in FIG .
1 .

requests an image 332 , the request will pass through one or
more links such as first link 320 , before reaching first edge
node 310 . Then the request will pass across second link 340
to global internet 350 . Second link 340 will then return the
sought image 332 from central registry 360 to first node 310 ,
and the image 332 will pass to the requesting node through
one or more links such as first link 320 .
[0053] The size of any image 332 requested from Central
registry 360 will vary , based on the container . For example ,
image sizes might be in the range of 100 - 400 MB for
' UbuntuTM ' based containers . UbuntuTM is an open source
LinuxTM language . The image size may , however , drop to
about 50 - 60 MB for ‘ Alpine ' containers . Alpine is another
example of an open source LinuxTM language .
[0054] Image sizes in the range 50 - 400 MB would not
cause appreciable bandwidth demand in the known LAN
system 200 of FIG . 2 . Similarly , there may not be significant
bandwidth demand over some high bandwidth links within
mesh computing system 300 , and hence no significant
problems with transferring such images . However , when any
links between nodes , such as first edge link 320 in FIG . 3 ,
are constrained communication links , there will be band
width demand that may require a significant proportion of all
the available bandwidth . There may well also be significant
additional bandwidth demand over second link 340 . For
example , second link 340 may simultaneously need to
download image 332 to several edge nodes , and image 334
to other nodes , and image 336 to other nodes , with each
individual download requiring the image 332 , 334 or 336 to
pass in its entirety over second link 340 .
[0055] Seventh edge node 317 can only receive an image
332 from central registry 360 if that image 332 passes over
several links within the mesh . If any one of those links
suffers demand for a significant proportion of its bandwidth ,
then the operation of seventh edge node 317 will be corre
spondingly affected .
100561 . FIG . 4 illustrates the architecture of a known edge
node and a host . First edge node 310 and central registry 360
correspond to first edge node 310 and central registry 360 of
FIG . 3 .
[0057] A client 385 is shown connected to first edge node
310 via client link 395 . Host 370 is located on first edge node
310 . Within host 370 , repository 380 acts to store received
images . Link 390 provides for communication to and from
central registry 360 . Host 370 can request images from
central registry 360 via link 390 , and receive images directly
into host 370 from central registry 360 via link 390 . Client
link 395 provides for communication between client 385 and
host 370 .
[0058] In known systems , host 370 will request an image
from central registry 360 when that host 370 needs the
image . That need arises when client 385 makes a first
request , i . e . for that image . When the image arrives from
central registry 360 , host 370 places the image in its reposi
tory 380 . Subsequently , client 385 may make a second
request for an image . If host 370 finds that it can meet the
second request by supplying one of the images that is
already stored in repository 380 , then the host 370 supplies
the image immediately to client 385 . However , if host 370
finds that it cannot meet the second request by supplying one
of the images that is already stored in repository 380 , then
host 370 will request , from central registry 360 , the image
that is needed to meet the second request of client 385 .

[0049] First edge node 310 is also connected via second
link 340 to the internet , which is generally illustrated by
global internet 350 . Global internet 350 is located in a
portion of FIG . 3 that is generally labelled as the ' Cloud ' ,
and which lies to the right of dividing line 330 . Located
within global internet 350 is central registry 360 . Central
registry 360 may correspond to DockerTM Registry 120 in
FIG . 1 . Second link 340 may take the form of a standard
backhaul link . Central registry 360 is on a server in global
internet 350 . Central registry 360 holds images 332 , 334 ,
336 and 338 . Central registry 360 may in fact hold thousands
of images .
[0050] Client 325 is shown directly linked to fifth edge
node 315 by third link 327 . In this example , therefore , client
325 is located on a separate server , i . e . not on fifth edge node
315 . However , client 325 could be on the same server as fifth
edge node 315 . ALTETMrnatively , client 325 could be
located on the same server as any of the other nodes . As a
further aLTETMrnative , client 325 could be located on a
server in global internet 350 .
[0051] In operation of an edge computing system such as
that in FIG . 3 , any of the seven edge nodes may require an
image 332 that it does not already hold . Each edge node
needs to download the required image 332 separately , i . e .
independently of the activities of other nodes . The edge node
that requires the image 332 will request the required image
332 from central registry 360 .
[0052] A request by first edge node 310 for an image 332
will pass across second link 340 . Second link 340 will then
also return the sought image 332 from central registry 360
to first edge node 310 . When any of the other six edge nodes

US 2019 / 0199828 A1 Jun . 27 , 2019

The

[0059] Considering the mesh computing system 300 of
FIG . 3 in more detail , a further issue arises . When a
particular image is to be downloaded from central registry
360 to seventh edge node 317 , then that image will have to
be ' daisy chained through first edge node 310 , second edge
node 312 , fourth edge node 314 and fifth edge node 315 . The
download of that image will be in a transmission that is not
open to inspection by the intervening first edge node 310 ,
second edge node 312 , fourth edge node 314 and fifth edge
node 315 . Thus bandwidth will be consumed by the down
load of the image in each of the links between first edge node
310 , second edge node 312 , fourth edge node 324 and fifth
edge node 315 , without that consumption of bandwidth
providing any advantage to those intervening nodes . The
same image may at the same time , for example , have been
requested separately by the fifth edge node 315 , for its own
use . In order to download the image from central registry
360 to the fifth edge node 315 , the image will also have to
be transmitted again from central registry 360 via first edge
node 310 , second edge node 312 , and fourth edge node 314 .
The result in this situation is that the same image is trans
ferred multiple times through the same links of the mesh
computing system 300 , possibly simultaneously . This results
in high traffic on some links and through some nodes . The
worst affected nodes are likely to be those closest to first
node 310 and second link 340 , the backhaul link . Second
link 340 is likely to have the very highest load .
[0060] Further differences between a mesh computing
system and a LAN system can be recognized . If a service is
distributed to multiple nodes in the mesh computing system
300 , all nodes will use the central registry 360 to obtain an
image . When making a request for an image from central
registry 360 , any edge node in the mesh computing system
300 will then suffer bandwidth demand that may take a
significant proportion of its available bandwidth . That
demand may vary with time . The mesh will be bandwidth
restricted to an extent that depends on the technology and the
topology , and potentially on interference in the case of
wireless links .
10061] A comparison of the mesh computing system 300
of FIG . 3 and the LAN system 200 of FIG . 2 reveals the
differences shown in summary in table 1 below :

[0062] In mesh computing system 300 there are a wide
variety of different usage scenarios . These different usage
scenarios complicate the design of a mesh system that is to
demonstrate acceptable bandwidth performance . In particu
lar , in some usage scenarios , not all the edge nodes may
require a particular image . There are three different sce
narios .
[0063] In the first scenario , the image does need to be
downloaded to all hosts . This places large bandwidth
demands across many or all of the links in mesh computing
system 300 , simultaneously . In the second scenario , the
image needs to be downloaded only to specific hosts , i . e . one
or more edge nodes . In the third scenario , the image needs
to be downloaded to one or more ‘ non - specific ' hosts . This
third scenario may arise when a service is required to run ,
but it does not matter which particular host in mesh com
puting system 300 runs the service .
10064) The present invention provides a mesh computing
system in which hosts , i . e . edge nodes , can download an
image from another host , e . g . a neighbouring host . With this
approach , some of the disadvantages of the mesh computing
system 300 can be overcome . A reduction in the need to
download images from the central registry can thereby be
achieved . Various embodiments of the invention , including
various methods for achieving the invention , are outlined
below .
100651 . FIG . 5 provides a schematic illustration of the
architecture of a modified mesh computing system 400 of an
embodiment of the invention . In the modified mesh com
puting system 400 , some functions that were previously
carried out by the central registry 360 of mesh computing
system 300 have been distributed among the hosts in mesh
computing system 400 . In addition , in accordance with
various embodiments of the invention , further functions may
now be carried out by the various distributed registries of
mesh computing system 400 .
[0066] The various registry elements described in connec
tion with FIG . 5 are not necessarily identical to central
registry 360 of FIG . 3 . Each registry element that is co
located with a host may only contain some images , which
the host is storing locally . FIGS . 6 and 7 provide illustrative
embodiments of two different versions of the registry ele

TABLE 1

Differences between mesh computing and LAN systems

Difference exhibited by mesh computing system 300 over LAN
system 200 Issue

Architecture -
Multiple links

Any image downloaded in mesh computing system 300 will potentially
be passed over multiple ‘ hops ' (links) on its way to its destination node ,
i . e . the host that requests it . The further the host is from the first node 310
and the second link 340 , then the larger the number of links that the image
must cross .
Each of the links in the mesh computing system 300 may be a constrained
communication link , for example a cellular link or a Wi - Fi link .

Technology .
bandwidth per
link
Technology
interference
Process
simultaneous
parallel
downloads
Backhaul

Cellular or Wi - fi TM links in mesh computing system 300 may suffer
interference .
When more than one node in the same part of mesh computing system 300
requests the same image at the same time , that image may be downloaded
multiple times over the same link , or nearby links , simultaneously . This is
not a significant issue within LAN 205 of FIG . 2 .
The backhaul over second link 340 to the global internet 350 may also be
a constrained communication link , for example a cellular link or a Wi - Fi
link . This causes a significant bottleneck when an image is downloaded to
each host from central registry 360 over this single link .

US 2019 / 0199828 A1 Jun . 27 , 2019

ments that are co - located with various ones of the hosts of
FIG . 5 . FIG . 6 shows a registry that has full functionality .
The registry of FIG . 6 may have capabilities that are
comparable to those of central registry 490 . FIG . 7 shows a
registry located at other nodes of mesh computing system
400 , which has more limited functionality than the registry
illustrated in FIG . 6 . Thus an embodiment of FIG . 5 may
have a mix of different designs of registry at different nodes ,
with some of the registries having the capability of the
registry of FIG . 6 and other registries at other nodes having
only the capability of the registry of FIG . 7 .
[0067] After the description below of the structure of mesh
computing system 400 in connection with FIGS . 5 - 7 , vari
ous ways of operating mesh computing system 400 are then
described with reference to FIGS . 9 - 14 and 16 .
[0068] In mesh computing system 400 , some links have
significant bandwidth constraints . Mesh computing system
400 is illustrated as comprising six edge nodes , each of
which is home to a host . Each edge node may , in a practical
embodiment , be located on a server that is connected by
wireless links to other nodes .
[0069] Mesh computing system 400 comprises first edge
node 420 . First registry element 422 is provided within first
edge node 420 . Swarm leader 424 is also provided within
first edge node 420 . In an aLTETMrnative arrangement that
is not shown in FIG . 4 , first registry element 422 could be
outside first edge node 420 , but connected to first edge node
420 by a link . That link would be a high bandwidth link . The
swarm leader 424 of first registry element 422 carries out
functions that are outlined in greater detail in the discussion
of the method of operation of mesh computing system 400
below , and in connection with FIG . 6 .
[0070] Second edge node 432 comprises second registry
element 434 . Third edge node 436 comprises third registry
element 438 . Fourth edge node 440 comprises fourth reg
istry element 442 . Fifth edge node 444 comprises fifth
registry element 446 . Sixth edge node 448 comprises sixth
registry element 450 . The edge nodes are located in a portion
of FIG . 5 that is generally labelled as the “ Edge ' , and which
lies to the left of dividing line 460 . The registry elements
shown in FIG . 5 may not be identical . In some embodiments ,
any individual registry may only hold a subset of the set of
images that are held in central registry 490 . Each of the first
to sixth registry elements shown in FIG . 5 contains those
images that are being stored by the host with which the
registry element is associated .
[0071] In aLTETMrnative arrangements that are not shown
in FIG . 5 , any of second registry element 434 , third registry
element 438 , fourth registry element 442 , fifth registry
element 446 or sixth registry element 450 could be outside
of the edge nodes of which they currently form part , and
could be connected to their edge node by a high bandwidth
link .

[0072] First edge link L1 connects first edge node 420 and
second edge node 432 . Second edge link L2 connects first
edge node 420 and third edge node 436 . Third edge link L3
connects second edge node 432 and fourth edge node 442 .
Fourth edge link L4 connects third edge node 436 and fourth
edge node 440 . Fifth edge link L5 connects fourth edge node
440 and fifth edge node 444 . Sixth edge link L6 connects
fourth edge node 440 and sixth edge node 448 .
[0073] First edge node 420 is also connected via seventh
edge link L7 to global internet 480 . Global internet 480 is

located in a portion of FIG . 5 that is generally labelled as the
" Cloud ' , and which lies to the right of dividing line 460 .
0074] Located within global internet 480 is central reg
istry element 490 . Central registry element 490 is on a server
in global internet 480 . Central registry element 490 may
correspond to DockerTM Registry element 120 in FIG . 1 .
Seventh link L7 may take the form of a backhaul link .
[0075] Client 455 is shown directly linked to third edge
node 436 by client link 457 . Client 455 is located on a
separate server . However , client 455 could be on the same
server as third edge node 436 . ALTETMrnatively , client 455
could be located on the same server as any of the other
nodes , or could be located on a server in global internet 480 .
[0076] The downloading of images from central registry
490 to individual registries in accordance with the method of
the invention is orchestrated by swarm leader 424 . Although
swarm leader 424 is located at first edge node 420 in FIG .
5 , it may instead be located at another node in mesh
computing system 400 . Swarm leader 424 is the originator
of various commands , which tell various hosts which images
they should download to their registries from central registry
490 . The images do not need to pass through swarm leader
424 en route to the registry to which they should pass .
Swarm leader 424 thus carries out ' command and control
functions .
10077] FIG . 6 illustrates an architecture of an edge node
and a host of the mesh computing system 400 of FIG . 5 , in
accordance with an embodiment . Client 455 , central registry
490 , first edge node 420 and fourth edge node 440 corre
spond to those elements in FIG . 5 .
10078] Third edge node 436 of FIG . 5 is represented in
detail as third edge node 600 in FIG . 6 . Host 602 is located
on third edge node 600 . In FIG . 6 , the registry element 438
of FIG . 5 now takes the form of a Local Registry 610 located
on third edge node 600 . Local Registry 610 comprises an
Application Programming Interface (API) 606 . Local Reg
istry 610 also comprises a repository 604 , located on host
602 . The dotted line in FIG . 6 that encompasses both API
606 and repository 604 shows them as part of Local Registry
610 .
[0079] Client link 657 provides for communication
between client 455 and host 602 . Within host 602 , repository
604 acts to store received images , i . e . images that have been
received at host 602 .
[0080] In the embodiment of FIG . 6 , host 602 communi
cates with API 606 via internal link 608 within third edge
node 600 . API 606 communicates with : (i) First edge node
420 , via external link L2 ; (ii) Central registry 490 , via
external links L2 and L7 ; and (iii) Fourth edge node 440 , via
external link L4 . Local Registry 610 enables the host 602 to
receive images into repository 604 via API 606 , and to
supply images from repository 604 . The presence of local
registry 610 enables functionality described below with
reference to FIGS . 9 - 12 .
[0081] Local Registry 610 may have equivalent function
ality to central registry 490 of FIG . 4 . In this case , repository
604 may hold a comprehensive database of images , which is
as extensive as that held in central registry 490 . However ,
repository 604 may hold a subset of a set of images that is
held in central registry 490
10082] In one exemplary embodiment , all the registry
elements in mesh computing system 400 may take the form
of local registry 610 of FIG . 6 . In a further exemplary
embodiment , only some of the registry elements in mesh

US 2019 / 0199828 A1 Jun . 27 , 2019

computing system 400 take the form of Local Registry 610
of FIG . 6 . In such an embodiment , other registry elements in
mesh computing system 400 comprise a more basic design
of registry agent , which is adapted to retrieve images from
a repository located at the host . The more basic design of
registry agent is illustrated in FIG . 7 , and discussed below .
[0083] In a typical configuration of the invention , only a
few nodes in mesh computing system 400 will be configured
as shown for host 600 and local registry 610 of FIG . 6 . A
larger number of nodes will be configured with the more
basic registry agent of FIG . 7 .
[0084] In operation , mesh computing system 400 of FIG .
5 is able to pre - emptively position images from central
repository 490 in local registry 610 of host 600 . Swarm
leader 424 makes the decisions about which images to
pre - position in which local registries located in local regis
tries of the form of local registry 610 , and then sends out
appropriate commands to the nodes on which those local
registries are located . Those images are then available for
supply from local registry 610 to other hosts of mesh
computing system 400 . The supply of the images from local
registry 610 to other hosts of mesh computing system 400 is
effected through API 606 . However , swarm leader 424 does
not pre - position images in the more basic local registries of
the form illustrated in FIG . 7 . The more basic registries do
not have an API of the form of API 606 in FIG . 6 , so are able
to fetch an image from another node but not supply images
to other nodes
[0085) FIG . 7 illustrates the structure of the more basic
registry agent . In the embodiment where only some of the
registry elements in mesh computing system 400 take the
form of Local Registry 610 of FIG . 6 , the other registry
elements in mesh computing system 400 comprise the more
basic registry agent . In mesh computing system 400 , fifth
edge node 444 , for example , may comprise the more basic
registry agent illustrated in FIG . 7 .
[0086] Edge node 700 of FIG . 7 comprises registry agent
738 and host 770 . Repository 785 is provided on host 770 .
Link 784 connects registry agent 738 and host 770 . Link L7
and central registry 490 correspond to link L7 and central
registry 490 of FIG . 5 . Fourth edge node 442 corresponds to
fourth edge node 442 of FIG . 5 .
10087) In the illustration of FIG . 7 , a client 755 is linked
by link 757 to registry agent 738 . Registry agent 738 is
linked by link L5 to fourth edge node 442 . L5 corresponds
to link L5 on FIG . 5 , and Fourth edge node 440 is shown
linked by link L7 to central registry 490 , although there are
intermediate links between fourth edge node 440 and link L7
that have been omitted from FIG . 7 for ease of illustration .
[0088] Repository 785 is configured to hold images for the
use of edge node 700 . Registry agent 738 is configured to
allow edge node 700 to request images directly from fourth
edge node 440 , central registry 490 , or from other edge
nodes of mesh computing system 400 .
[0089] When host 770 receives a request from client 755
for a particular container , the registry agent 738 will first
check whether the particular image is already in repository
785 . When the particular image is not in repository 785 , then
registry agent 738 carries out a discovery process to decide
from where host 770 can obtain the particular image . Host
770 may find that the particular image has been preposi
tioned in the registry element 610 of first edge node 422 or
another node with a registry corresponding to that illustrated
in FIG . 6 . In that case , registry agent 738 can request the

particular image from the relevant API , such as API 606 .
Each host , such as host 770 , is able to discover which of the
hosts with a registry corresponding to that illustrated in FIG .
6 already has the particular image .
[0090] This method can be accomplished by using a
service discovery method to find a repository at any host that
already has the particular image . The selected host that has
and can supply the sought image will , preferably , be close to
host 770 that is requesting the image . This can be viewed as
a “ repository as a service ” function provided by the hosts
that have an API such as API 606 . As part of the service , a
cost metric can be calculated . The cost metric indicates the
resources that would be required to download a sought
image to requesting host 770 , from any particular neigh
bouring host .
10091] Before further discussion of the method of opera
tion of the mesh computing system of FIG . 5 and the edge
nodes and hosts of FIGS . 6 and 7 , FIG . 8 provides an
explanation of how the known system of FIG . 3 operates .
10092] FIG . 8 is a flow diagram of a method of operation
of the mesh computing system 300 of FIG . 3 . FIG . 8 will
allow a clear comparison with the embodiments of the
method of the invention that are described subsequently with
reference to FIGS . 9 - 13 .
[0093] FIG . 8 illustrates a flow diagram for a method of
image download as would occur on mesh computing system
300 in FIG . 3 . Method 800 is a method that would be used
if containerization were implemented on mesh computing
system 300 without using the invention . The references used
in the discussion of method 800 , below , are from FIG . 4 .
[0094] Method 800 starts at step 810 . At 820 , the host 370
at edge node 310 is idling , i . e . waiting for an event . At step
830 , client 385 has requested an image , which results in the
generation of a command to ' pull ' the image .
10095] In step 840 , host 370 ascertains whether the image
is already held locally in the repository 380 of the host 370
itself . If the answer is ' No ' , then host 370 has to download
the image from Central Registry 360 of FIG . 3 . Then method
800 moves to step 860 . If the answer is ' Yes ' in response to
the question in step 840 , then the method bypasses step 850
and moves directly to step 860 . At step 860 , host 370 uses
the image to create a container , in order to address the
request from client 385 . After step 860 , method 800 returns
to idle at step 820 until a new request is received from a
client .
[0096] FIG . 9 is a flow diagram of a method of operation
of the mesh computing system of FIG . 5 , with reference to
host 602 and local repository 610 of FIG . 6
[0097] Method 900 begins at step 910 . At step 920 , the
host 602 receives a request from client 455 for an image . At
step 930 , the host 602 sends a request for the image to at
least one other host of the mesh computing system 400 .
[0098] When the host 602 receives 940 notification that at
least a second host holds the image , method 900 moves to
step 960 . At step 960 , the host 602 downloads the image
from the second host to the host 602 . However , when the
host 602 does not receive 940 notification that at least a
second host holds the image , method 900 moves to step 950 .
At step 950 , the host 602 downloads the image from the
central registry 490 to the host 602 . After either step 950 or
960 , host 470 creates 970 a container from the downloaded
image .
[0099] With the method of FIG . 9 and the local registry
610 in FIG . 6 , the first host 470 may be able to reduce

US 2019 / 0199828 A1 Jun . 27 , 2019

substantially the number of requests that it makes for images
from central registry 490 . Many requests from clients for
images will be met by implementing step 960 , i . e . down
loading the image from another host in the mesh computing
system 400 . Downloading the image from another host in
the mesh computing system 400 reduces traffic in the mesh
computing system 400 . When the image is downloaded from
another host to host 602 , there will be no request to central
registry 490 and hence there is a reduction in traffic on
seventh link L7 , which is the backhaul link .
10100] FIG . 10 provides an illustration of a method of
operation 1000 of the swarm leader 424 of FIG . 5 in
accordance with an embodiment of the invention .
[0101] At step 1010 , the method 1000 starts . At step 1020 ,
swarm leader 424 identifies a need in a first host at a first
edge node of the mesh computing system to run an image ,
the image being held in the central registry 490 . At step
1030 , swarm leader 424 identifies a second host at a second
edge node of the mesh computing system . The first and
second hosts in method 1000 of FIG . 10 might be any of the
hosts in mesh computing system 400 of FIG . 5 . The second
host would be constructed as third edge node 600 of FIG . 6 .
Swarm leader 424 may identify the second host as being a
host that does not need to run the image . The need to run the
image in the first host is a predicted need . Swarm leader 424
may identify the predicted need , when swarm leader 424
considers the first host as being likely to need to use the first
image at some future timepoint .
10102 At step 1040 , swarm leader 424 commands down
load of the image from central registry 490 to the second
host . The download occurs via at least one wireless link of
the mesh computing system 400 .
[0103] At step 1050 , the first host receives a request from
a client for the image . This request demonstrates that the
prediction by swarm leader 424 of the need for the image
was correct . At step 1060 , the first host performs discovery
to locate the image . The first host will discover that the first
image is available on the second host .
[0104] At step 1070 , the first host downloads the image
from the second host . Such a download may involve down
load over few wireless links of the mesh network of the
mesh computing system 400 . The download step 1070
would therefore entail less bandwidth demand , in compari
son with typical downloads performed in step 850 of method
800 in known mesh computing system 300 .
[0105] FIG . 11 provides an illustration of another method
of operation 1100 in accordance with another embodiment
of the invention . Method 1100 operates with first and second
hosts , each of which has an image storage repository and an
API . The first and second hosts in method 1100 of FIG . 11
might be any of the hosts in mesh computing system 400 of
FIG . 5 , provided that they are constructed as third edge node
600 of FIG . 6 .
10106] . At step 1110 , method 1100 starts . At step 1120 , the
swarm leader identifies an image from the multiple images
in the central registry 490 as being an image that is likely to
be used by other hosts in the mesh computing system , than
the first and second hosts .
10107] At step 1130 , under control of swarm leader 424 ,
the first host downloads the image from central registry 490
to the first repository of the first host . At step 1140 , also
under control of swarm leader 424 , the second host down
loads the image from central registry 490 to the second
repository of the second host .

[0108] At step 1150 , a third host of the plurality of hosts
receives a request from a client for the image . Step 1150 is
shown dotted , as it is possible that step 1150 may occur
much later than steps 1110 - 1140 .
[0109] At step 1160 , the third host performs discovery to
locate the image . The image is now available from , each of
the first and second hosts . At step 1170 , the third host
downloads the image from the first host or the second host .
The decision about which of the first or the second hosts
should provide the image may be based on a cost function ,
which is discussed further below . At step 1180 , the third host
creates a container from the image , and supplies the con
tainer to the requesting client .
[0110] FIG . 12 is a flow diagram of a method 1200 of
downloading an image that may be comprised in step 960 of
method 900 , or step 1070 of method 1000 .
[0111] At step 1210 , the first host receives notification that
at least a second host holds the image . At step 1220 , the first
host calculates a first value of a cost metric , for a first route
over which the image could be downloaded to the first host .
At step 1230 , the first host calculates a second value of the
cost metric , for a second route over which the image could
be downloaded to the first host . Each route may comprise
one or more of the links and corresponding edge nodes in
FIG . 5 .
(0112] . At step 1240 , the first host compares the first value
of the cost metric and the second value of the cost metric , to
identify the lower of the first value of the cost metric and the
second value of the cost metric . At step 1250 , when the first
value of the cost metric is lower , the first host selects the first
route . However , when the second value of the cost metric is
lower , the first host selects the second route . At step 1260 ,
the first host downloads the image over wireless links of the
selected route , to the first host .
[0113] FIG . 13 is a flow diagram of a method 1300 of
making the calculation in step 1220 or step 1230 of method
1200 .
[0114] Method 1300 evaluates a situation where each of
the first route and the second route comprises one or more
wireless links . At step 1310 , for each route , the cost metric
calculation uses at least one of the following parameters : (i)
a number of links over which the image must be transmitted ;
(ii) a communication link quality of each of the links ; (iii) a
loading on any intermediate edge nodes on the route that
would result from downloading the image ; (iv) a loading of
each link ; and / or (v) a financial cost of transmitting on each
link .
[0115] At step 1320 , when a route comprises two or more
links , the cost metric is calculated in accordance with any of
(ii) - (v) by evaluating the parameter for each link in the route ;
and combining the evaluated parameters for each link in the
route to calculate a total cost metric for the route .
[0116] Method 1300 is illustrated for a situation where two
routes , for example , start at the same second node . For the
sake of completeness , the method 1300 can also be applied
when the same desired image is available at both a second
host and a third host . In this case , when at least a second host
and a third host holds the image , method 1300 calculates : (i)
the first value of the cost metric , for a first route over which
the image could be downloaded to the first host from the
second host ; and (ii) the second value of the cost metric , for
a second route over which the image could be downloaded
to the first host from the third host . When the first value of
the cost metric is lower , method 1300 selects the second host

US 2019 / 0199828 A1 Jun . 27 , 2019

to provide the image over the first route . When the second
value of the cost metric is lower , method 1300 selects the
third host to provide the image over the second route .
[0117] Method 1300 may , therefore provide selection of
the route for downloading an image from a host , and / or may
provide selection of the host from which to download the
image .
[0118] . FIG . 14 illustrates a method in accordance with an
embodiment . Method 1400 should be read in conjunction
with FIG . 6 . At step 1410 , in response to receiving the
request to run the image , host 602 generates a request for the
image from central registry 490 .
[0119] At step 1420 , API 606 intercepts and overrides the
request for the image from central registry 490 , before
transmission of the request for the image . At step 1430 , API
606 generates and sends the request for the image to at least
one other host of the mesh computing system .
[0120] Two results are possible , as shown at step 1440 .
Host 602 may receive notification that a second host holds
image , in which case the method proceeds to step 1450 .
ALTETMrnatively , host 602 does not receive notification that
any second host holds the image , in which case the method
proceeds to step 1460 .
[0121] At step 1450 , when the first host receives notifi
cation that the second host holds the image , API 606
generates a command to download the image from the
second host .
[0122] At step 1460 , when the first host does not receive
notification that the second host holds the image , the API
sends a request for the image to the central registry 490 , and
downloads the image from the central registry 490 . Step
1460 is the aLTETMrnative to that shown in step 1450 .
10123] Steps 1420 , 1430 and 1440 of method 1400 may be
implemented by a plug - in software module of host 602 .
Such a plug - in software module would provide program
ming steps for a logic module of API 606 to perform the
steps of : (i) intercepting and overriding the request for the
image from host 602 to central registry 490 ; (ii) generating
the request for the image , from the at least one other host ;
and (iii) generating the command to download the image
from the second host .
[0124] In step 1440 of method 1400 , and in other embodi
ments of the invention , the host 602 may receive the image
from the second host using tar or ftp . Following step 1440
of method 1400 , the host 602 may store the image in the
repository 604 of host 602 .
[0125] Subsequently to performing method 1400 , host 602
may receive a request via API 706 from another host in the
mesh network , for the image that is now stored in the
repository 704 of host 702 . API 706 can respond to a pull
command from another host in the mesh network by sub
sequently accessing the image from repository 704 via an
API pull command , and supplying the image to the request
ing host .
[0126] FIG . 15 illustrates an embodiment of a server 1500
of the edge node of the mesh computing system of FIG . 4 .
[0127] An antenna 1502 , for receiving / transmitting cellu
lar transmissions 1522 , is provided . Transmission 1526 may ,
for example , be a WiFiTM or an LTETM transmission to
another edge node . The antenna 1502 is coupled to an
antenna switch or duplexer 1504 , which provides isolation
between receive and transmit chains . One or more receiver
chains , as known in the art , include receiver front - end
circuitry 1506 . Receiver front - end circuitry 1506 provides

reception , fiLTETMring and intermediate or base - band fre
quency conversion . Receiver front - end circuitry 1506 is
coupled to a signal processor 1528 , which may be realized
by a digital signal processor (DSP) .
10128] A controller 1514 maintains overall operational
control of the server 1500 . Controller 1514 is coupled to
receiver front - end circuitry 1506 and signal processor 1528 .
In some examples , the controller 1514 is also coupled to at
least one memory , such as random access memory 1517
configured to store data content , and to a memory device
1516 . Memory device 1516 selectively stores operating
regimes , such as decoding / encoding functions , synchroni
zation patterns , code sequences , and the like . A timer 1518
is operably coupled to the controller 1514 to control the
timing of operations , such as transmission or reception of
time - dependent signals , within server 1500 .
[0129] As regards the transmit chain , the signal processor
1528 may process and formulate data for transmission to
transmitter / modulation circuitry 1522 and thereafter a power
amplifier 1524 and on to the antenna 1502 for transmitting
the data . The transmitter / modulation circuitry 1522 and the
power amplifier 1524 are operationally responsive to the
controller 1514 .
10130] In accordance with example embodiments , signal
processor 1528 of server 1500 has been configured to
support WiFiTM operation . The various components within
server 1500 can be realized in discrete or integrated com
ponent form , with an ultimate structure therefore being an
application - specific or design selection .
0131] In accordance with some example embodiments ,
the receiver 1506 of the server 1500 may be configured to
receive signals via antenna 1502 and store data content when
connected to other edge nodes , for example , or an Internet
Protocol network . Server 1500 may also be configured to
transmit retrieved data content to one or multiple mobile
wireless communication units of mesh computing system
400 , via antenna 1502 , for example by WiFi . The at least one
memory device 1516 , operably coupled to the at least one
receiver 1506 , may be configured to store the received data
content from other edge nodes and / or the mobile wireless
communication units .
0132] Thus FIGS . 5 - 7 and 15 provide details of a mesh
network in accordance with the invention . As described
above , the mesh network is configured to pre - emptively
position images at hosts , for subsequent retrieval from the
hosts and for the creation of containers from the images . The
mesh network comprises hosts located in edge nodes of the
mesh computing system . The edge computing system also
comprises a central registry holding the images , the central
registry located outside the mesh computing system . A
swarm leader located in the mesh computing system is
configured to identify a need in a first host at a first edge
node of the mesh computing system to run an image , the
image being held in the central registry . The swarm leader is
also configured to identify a second host at a second edge
node of the mesh computing system , and command down
load of the image from the central registry to the second
host , via at least one wireless link of the mesh computing
system
[0133] FIG . 16 illustrates a high level overview of a
method of operation of an embodiment of the invention .
[0134) Method 1600 illustrates an embodiment where a
swarm leader instigates supply of an image to a client , rather
than a node supplying an image directly in response to a

US 2019 / 0199828 A1 Jun . 27 , 2019

request received at the node from a client . Method 1600
starts at step 1610 . At 1620 , a host at a node of the mesh
computing system is in an idle or waiting mode . At step
1630 , the host receives a ' pull ' command . The ' pull ' com -
mand may be issued by a swarm leader within the mesh
computing system . The swarm leader may control a plurality
of nodes in the mesh computing system .
10135) At step 1640 , a check is made whether the image
is already available in the registry of the host . If the image
is available , method 1600 moves to step 1690 . At step 1690 ,
a container is made from the image . The container is then
supplied to a requesting host .
[0136] If , at step 1640 , the image is not available , then
method 1600 moves to step 1650 . At step 1650 , the host send
a service request . At step 1660 , a decision is made whether
the image is available from at least one other host . If the
image is available , the method moves to step 1680 . At step
1680 , cost metrics are calculated for the routes over which
the image could be downloaded . Then method 1600 moves
to step 1690 .
10137] At step 1660 , if the image is not available from at
least one other host , the method moves to step 1670 . At step
1670 , the host downloads the image from the central registry
490 , and moves to step 1680 .
[0138] As is clear from the preceding methods and appa
ratus , the invention provides options for pre - positioning and
retrieving images from particular nodes within a mesh
computing system . In comparison with known approaches ,
the overall traffic within the mesh computing system may be
reduced . In particular , the traffic over links such as backhaul
link L7 to the central registry 490 will be lower when the
invention is employed .
[0139] It will be further appreciated that , for clarity pur
poses , the described embodiments of the invention with
reference to different functional units and processors may be
modified or re - configured with any suitable distribution of
functionality between different functional units or proces
sors , without detracting from the invention . For example ,
functionality illustrated to be performed by separate proces
sors or controllers may be performed by the same processor
or controller . Hence , references to specific functional units
are only to be seen as references to suitable means for
providing the described functionality , rather than indicative
of a strict logical or physical structure or organization .
[0140] Aspects of the invention may be implemented in
any suitable form including hardware , software , firmware or
any combination of these . The invention may optionally be
implemented , at least partly , as computer software running
on one or more data processors and / or digital signal pro
cessors . For example , the software may reside on non
transitory computer program product comprising executable
program code to increase coverage in a wireless communi
cation system .
10141] Thus , the elements and components of an embodi
ment of the invention may be physically , functionally and
logically implemented in any suitable way . Indeed , the
functionality may be implemented in a single unit , in a
plurality of units or as part of other functional units . Those
skilled in the art will recognize that the functional blocks
and / or logic elements herein described may be implemented
in an integrated circuit for incorporation into one or more of
the communication units .
[0142] Furthermore , it is intended that boundaries between
logic blocks are merely illustrative and that aLTETMrnative

embodiments may merge logic blocks or circuit elements or
impose an aLTETMrnate composition of functionality upon
various logic blocks or circuit elements . It is further intended
that the edge computing system and its elements depicted
herein are merely exemplary , and that in fact many other
edge computing systems and elements or architectures can
be implemented that achieve the same functionality .
10143] . Although the present invention has been described
in connection with some example embodiments , it is not
intended to be limited to the specific form set forth herein .
Rather , the scope of the present invention is limited only by
the accompanying claims . Additionally , although a feature
may appear to be described in connection with particular
embodiments , one skilled in the art would recognize that
various features of the described embodiments may be
combined in accordance with the invention . In the claims ,
the term ' comprising ' does not exclude the presence of other
elements or steps .
[0144] Furthermore , although individually listed , a plural
ity of means , elements or method steps may be implemented
by , for example , a single unit or processor . Additionally ,
although individual features may be included in different
claims , these may possibly be advantageously combined ,
and the inclusion in different claims does not imply that a
combination of features is not feasible and / or advantageous .
Also , the inclusion of a feature in one category of claim does
not imply a limitation to this category , but rather indicates
that the feature is equally applicable to other claim catego
ries , as appropriate .
[0145] Furthermore , the order of features in the claims
does not imply any specific order in which the features must
be performed and in particular the order of individual steps
in a method claim does not imply that the steps must be
performed in this order . Rather , the steps may be performed
in any suitable order . In addition , singular references do not
exclude a plurality . Thus , references to ' a ' , ' an ' , ' first ,
“ second ' , etc . do not preclude a plurality .

1 . A method (1000) , in a mesh computing system , for
pre - emptively positioning images at hosts , for subsequent
retrieval from the hosts and for a creation of containers from
the images , the hosts located in edge nodes of the mesh
computing system , the mesh computing system operably
coupled to a central registry holding the images , the method
(1000) comprising , at a swarm leader located in the mesh
computing system :

identifying (1020) a need in a first host at a first edge node
of the mesh computing system to run an image , the
image being held in the central registry ;

identifying (1030) a second host at a second edge node of
the mesh computing system ; and

commanding (1040) a download of the image from the
central registry to the second host , via at least one
wireless link of the mesh computing system .

2 . The method (1000) according to claim 1 , further
comprising at the swarm leader : identifying the second host
as not needing to run the image .

3 . The method (1000) according to claim 1 , further
comprising :
commanding a download (1070) of the image to the first

host , from the second host ; or
commanding a download (1170) of the image from the

first host via one or more further wireless links to at
least one of : a third host and a fourth host located at an
edge node of the mesh computing system ,

US 2019 / 0199828 A1 Jun . 27 , 2019
10

whereby the image is cascaded from the central registry to
the at least one of : the third host and the fourth host .

4 . The method (1000) according to claim 1 , wherein the
second edge node of the mesh computing system is operably
coupled via a backhaul link to the central registry , the
backhaul link connecting the second host at the second edge
node to the Internet .

5 . The method (1000) according to claim 1 , further
comprising , at the first host :

using tape archive , tar , or a file transfer protocol , ftp , to
download of the container image from the second host ;
and

storing the downloaded image in a repository , and sub
sequently accessing the image via an application pro
gramming interface , API , pull command .

6 . The method (1000) according to claim 1 , further
comprising , at the second host :

storing the image in a repository of a registry ; and
receiving a request for the image from the first host , and

downloading (960 ; 1070) the image from the repository
to a registry of the first host .

7 . The method (1200) according to claim 1 , further
comprising at the first host :

sending (930) a request for the image to at least one other
host of the mesh computing system ;

receiving (1210) notification that at least the second host
holds the image , and in response thereto calculating :
(i) a first value (1220) of a cost metric , for a first route

over which the image could be downloaded to the
first host ; and

(ii) a second value (1230) of the cost metric , for a
second route over which the image could be down
loaded to the first host ;

comparing (1240) the first value of the cost metric and the
second value of the cost metric , to identify the lower of
the first value of the cost metric and the second value
of the cost metric ; and

selecting the first route when (1250) the first value of the
cost metric is lower ;

selecting the second route when (1250) the second value
of the cost metric is lower ;

downloading (1260) the image over wireless links of the
selected route .

8 . The method (1300) according to claim 7 , wherein each
of the first route and the second route comprises one or more
wireless links ; and wherein for each route , the cost metric
uses (1310) at least one of the following parameters :

(i) a number of links over which the image must be
transmitted ; and

(ii) a communication link quality of each of the links ;
(iii) a loading on any intermediate edge nodes on the route

that would result from downloading the image ;
(iv) a loading of each link ;
(v) a financial cost of transmitting on each link .
9 . The method (1300) according to claim 8 , wherein in

response to identifying that a route comprises two or more
links , the method further comprises calculating (1320) the
cost metric in accordance with any of (ii) - (v) by :

evaluating the parameter for each link in the route ; and
combining the evaluated parameters for each link in the

route to calculate a total cost metric for the route .
10 . The method (1300) according to claim 8 , further

comprising :

when at least a third host also holds the image , calculating
a third value of the cost metric , for a third route over
which the image could be downloaded to the first host
from the third host ; and

selecting the third host to provide the image over the third
route , when the third value of the cost metric is lowest .

11 . A method (1100) of pre - emptively positioning images
at hosts in a mesh computing system , wherein the mesh
computing system is operably coupled to a central registry
that holds multiple images for use by the hosts of the mesh
computing system , wherein the mesh computing system
comprises :

a swarm leader ;
a plurality of hosts located at a respective edge node in the
mesh computing system , the plurality of hosts com
prising :

a first host that has a first registry comprising a first image
storage repository and a first application programming
interface , API ; and

a second host that has a second registry comprising a
second image storage repository and a second API ;

the method (1100) comprising :
at the swarm leader , identifying (1120) an image , from the
multiple images , as being an image that is likely to be
used by hosts in the mesh computing system other than
the first host and second host ;

at the first host , downloading (1130) the image from the
central registry to the first image storage repository ;

at the second host , downloading (1140) the image from
the central registry to the second image storage reposi
tory ; and

at a third host of the plurality of hosts , downloading
(1170) the image from the registry of the first host or
from the registry of the second host ; and

at the third host , creating (1180) a container from the
downloaded image .

12 . The method (1100) according to claim 11 , further
comprising , at the swarm leader :

identifying the first host as being unlikely to need to use
the first image ; and / or

identifying the second host as being unlikely to need to
use the first image ; and

commanding a download of the image to the first host and
the second host .

13 . The method (1100) according to claim 12 , further
comprising the swarm leader identifying :

the first host and / or the second host as being located at a
point in the mesh computing system proximal to a
backhaul link between the mesh computing system and
the central registry ; and

subsequent to the swarm leader downloading the image
from the central registry to the first image storage
repository and to the second image storage repository ,
the method comprises , at the swarm leader :

commanding download of the image , from at least one of
the first image storage repository and the second image
storage repository , to a fourth image storage repository
of a fourth host located at a fourth edge node in the
mesh computing system ; and

cascading the image to the fourth host located further
from the central registry than the first host and the
second host .

14 . The method (1100) according to claim 11 , further
comprising at the swarm leader :

US 2019 / 0199828 A1 Jun . 27 , 2019
11

repeating the method (1100) of claim 11 for a second and
a third image ,

whereby the first image storage repository and the second
image storage repository each hold a respective subset
of a set of images held by the central registry , and each
subset is available for future requests from other hosts
in the mesh computing system that neighbour the first
host and / or the second host .

15 . The method (1200) according to claim 11 , further
comprising , at the third host :

sending (930) a request for the image to the first host of
the mesh computing system ;

receiving (1210) notification that at least the first host
holds the image , and

calculating :
(i) a first value (1220) of a cost metric , for a first route
over which the image could be downloaded to the
third host ; and

(ii) a second value (1230) of the cost metric , for a
second route over which the image could be down
loaded to the third host ;

comparing (1240) the first value of the cost metric and the
second value of the cost metric , to identify the lower of
the first value of the cost metric and the second value
of the cost metric ; and

selecting the first route when (1250) the first value of the
cost metric is lower ;

selecting the second route when (1250) the second value
of the cost metric is lower ;

downloading (1260) the image over at least one wireless
link of the selected route to the first host .

16 . The method (1300) according to claim 15 , wherein
each of the first route and the second route comprises one or
more wireless links and wherein for each route , the cost
metric uses (1310) at least one of the following parameters :

(i) a number of links over which the image must be
transmitted ; and

(ii) a communication link quality of each of the links ;
(iii) a loading on any intermediate edge nodes on the route

that would result from downloading the image ;
(iv) a loading of each link ;
(v) a financial cost of transmitting on each link .
17 . The method (1300) according to claim 16 , wherein

when a route comprises two or more links , the method
further comprises :

calculating (1320) the cost metric in accordance with any
of (ii) - (v) by :

evaluating the parameter for each link in the route ; and
combining the evaluated parameters for each link in the

route to calculate a total cost metric for the route .
18 . The method (1300) according to claim 15 , further

comprising :

when the second host also holds the image , calculating a
third value of the cost metric , for a third route over
which the image could be downloaded to the third host
from the second host ;

selecting the second host to provide the image over the
third route , when the third value of the cost metric is
lowest .

19 . A mesh computing system , configured to pre - emp
tively position images at hosts , for subsequent retrieval from
the hosts and for a creation of containers from the images ,
the mesh computing system comprising hosts located in
edge nodes of the mesh computing system , the mesh com
puting system operably coupled to a central registry that
holds the images , the mesh computing system comprising a
swarm leader configured to :

identify (1020) a need in a first host at a first edge node
to run an image , the image being held in the central
registry ;

identify (1030) a second host at a second edge node of the
mesh computing system ; and

command (1040) a download of the image from the
central registry to the second host , via at least one
wireless link of the mesh computing system .

20 . A mesh computing system , configured to pre - emp
tively position images at hosts located in edge nodes of the
mesh computing system , for subsequent retrieval from the
hosts and for a creation of containers from the images , the
mesh computing system comprising a swarm leader and
operably coupled to a central registry that holds multiple
images for use at the hosts , wherein the mesh computing
system comprises :

a first host , of the plurality of hosts , having a first registry
that comprises a first image storage repository and a
first application programming interface , API ; and

a second host , of the plurality of hosts , having a second
registry that comprises a second image storage reposi
tory and a second API ;

a swarm leader , configured to :
identify (1120) an image , from the multiple images , as
being an image that is likely to be used by hosts in the
mesh computing system other than the first host and
second host ;

command the first host to download (1130) the image
from the central registry to the first image storage
repository ;

command the second host to download (1140) the image
from the central registry to the second image storage
repository ; and

a third host of the plurality of hosts , the third host
configured to :

download (1170) the image from the registry of the first
host or from the registry of the second host ; and

create (1180) a container from the downloaded image .

