a2 United States Patent

US011829398B2

ao) Patent No.: US 11,829,398 B2

Park et al. 45) Date of Patent: Nov. 28,2023
(54) THREE-DIMENSIONAL PROBABILISTIC (56) References Cited
DATA STRUCTURE
U.S. PATENT DOCUMENTS
(71) Applicant: salesforce.com, inc., San Francisco, CA 520208 A * 4/1993 Nickel oo GOGF 16/9027
(Us) 8,290,972 B1* 10/2012 Deshmukh GOGF 16/24556
707/758
(72) Inventors: Jacob Jonghan Park, St. Catharines 9,367,574 B2 6/2016 Gupta
(CA); Rohit Agrawal, San Francisco, 2003/0130981 Al 7/2003 Nehru et al.
CA (US); Thomas Fanghaenel, (Continued)
Oakland, CA (US)
OTHER PUBLICATIONS
(73) Assignee: Salesforce, Inc., San Francisco, CA
(us) Guo et al. Theory and Network Applications of Dynamic Bloom
Filters. IEEE INFOCOM 2006, pp. 1-12. (Year: 2006).*
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent is extended or adjusted under 35
U.S.C. 154(b) by 105 days. Primary Examiner — Alex Gofman
Assistant Examiner — Shelly X Qian
(21) Appl. No.: 16/845,921 (74) Attorney, Agent, or Firm — Kowert, Hood, Munyon,
. Rankin & Goetzel, P.C.; Mark D. Seegers; Dean M.
(22) Filed: Apr. 10, 2020 Munyon
(65) Prior Publication Data (57) ABSTRACT
US 2021/0319052 Al Oct. 14, 2021 Techniques are disclosed relating to probabilistic data struc-
tures. A database node may maintaining a probabilistic data
(1) Int. Cl. structure capable of encoding database keys. The probabi-
GO6F 15/16 (2006.01) listic data structure may include a plurality of levels that are
Go6l" 16/33 (2019.01) each capable of storing an indication of a transition between
GO6F 16/182 (2019.01) successive characters in a database key. The database node
GOG6F 16/338 (2019.01) may insert a particular database key into the probabilistic
Gool’ 16/17 (2019.01) data structure and the particular database key may comprise
GO6F 21/62 (2013.01) a series of characters. The inserting may include setting, for
(52) US.CL each transition between successive characters of the series of
cre ... GO6F 16/3346 (2019.01); GO6F 16/1734 characters, an indication in a corresponding level of the
(2019.01); GOGF 16/182 (2019.01); GO6F plurality of levels that is indicative of that transition. The
16/338 (2019.01); GOG6F 21/6218 (2013.01); database node may further maintain lineage information
GO6F 2221/0751 (2013.01) specifying one or more lineages that correspond to the
(58) Field of Classification Search transition.

None
See application file for complete search history.

13 Claims, 9 Drawing Sheets

Database Node
110A

Probabilistic
—| Data Structure

Database
Record Record
140~ Request Response
520 1~530

Database

Database Node
1108

Transaction Engine
120

Lineage Engine
510

Database
Key Check
[~ Probabiistic 1
| Data Structure :

US 11,829,398 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2013/0132408 Al 5/2013 Little
2016/0335299 Al 11/2016 Vemulapati et al.

OTHER PUBLICATIONS

Hua et al. A Multi-attribute Data Structure with Parallel Bloom
Filters for Network Services. HiPC 2006, pp. 277-288. (Year:
2006).*

Class HashMap<K,V>, https://docs.oracle.com/javase/10/docs/api/
java/util/HashMap.html, Java SE 10 & JDK 10, 2018, pp. 1-14.
(Year: 2018).*

Kapse. What is a null-terminated string in C/C++? https://www.
tutorialspoint.com/what-is-a-null-terminated-string-in-c-cplusplus, May
2019, pp. 1-2. (Year: 2019).*

Binary Relations. https://web.archive.org/web/20170829194919/
https://www.cs.clemson.edu/course/cpsc827/material/Language%o
20Theory/Binary%20Relations.pdf, 2017, pp. 1-8. (Year: 2017).*
Tarkoma et al. Theory and Practice of Bloom Filters for Distributed
Systems. IEEE Communications Survey & Tutorials. 14:1 2012, pp.
131-155. (Year: 2012).*

International Search Report and Written Opinion in PCT Appl. No.
PCT/US2021/013630 dated Mar. 29, 2021, 11 pages.

Gupta et al., “A short survey on bloom filter and its variants,” 2017
International Conference on Computing, Communication and Auto-
mation (ICCCA), IEEE, May 5, 2017, pp. 1086-1092.

* cited by examiner

US 11,829,398 B2

U.S. Patent Nov. 28, 2023 Sheet 1 of 9
System
’LOO
Database
Transaction . Database
Transaction In-Memory
Reguest Engine Record Cache
105 120 135 130
Database
145 Key
Probabilistic Data
Structure
140
(Encoded) Database
Database Keys Node
145 110

FIG. 1

U.S. Patent Nov. 28, 2023 Sheet 2 of 9

Root

Character
202

US 11,829,398 B2

Database
Key

\ 145

(&, ()
Character
Transition
210A
Character
HONNO
Character
Transition
2108 210C 210D
weD) (D (D
OWONO»

204
Terminal

Character

FIG. 2

U.S. Patent Nov. 28, 2023 Sheet 3 of 9 US 11,829,398 B2

Bitmap

Characters
30\()‘ 2(30
- - > Terminal Character
Al...| z | o-1204
. Indication
aAlololol| -7
Characters 1~310B .
204} ... 1 O 0 0 o | Intersection
Z / 0 0] 0
FIG. 3A -~)
310A
Probabilistic
Data Structure
’1/40
Characters
200 Bitmap
Chazrggters { 300
320
Levels
FIG. 3B
(Top Level)
Bitmap
i
Root Character
{} 4202
Intersections
AT a0
0 4
V4 O

FIG. 3C

U.S. Patent

US 11,829,398 B2

Nov. 28, 2023 Sheet 4 of 9
Bitmap
300 Lineage
N Information
410A
g
A Z @ Lineage
[PIZ] 4154
A 0] 0] o) 0] Rl [TTT]~ 4158
|
0 0 0 0 :
| [QCA] ~415C
VA /? 0] 0] /o— 4-- JI e
— — [ZIL]~ 415D
420A 310A 4208 310B I
Pointer | Intersection | [UDL] ~ 415
Information ~— — — — — — — — — — _ —~ /

410B
L

U.S. Patent Nov. 28, 2023 Sheet 5 of 9 US 11,829,398 B2

Database Node
110A

Probabilistic
;- Data Structure
. 140

Database Database
Record Record
140~ Request Response

520 530

Database Node
110B

Transaction Engine
120

—————— e

Lineage Engine
510

Database
Key Check

|~ Probabilistic |
| Data Structure |
| 140 !

U.S. Patent Nov. 28, 2023 Sheet 6 of 9 US 11,829,398 B2

600

/

Maintaining Probabilistic Data Structure Capable
of Encoding Database Keys
610

Inserting Database Key into Probabilistic Data
Structure
620

FIG. 6

U.S. Patent Nov. 28, 2023 Sheet 7 of 9 US 11,829,398 B2

700

/

Writing Database Record to Particular Location
/10

Inserting Database Key Associated With
Database Record into Data Structure That
Includes Hierarchy of Bitmaps
120

Sending, to Another Computer System, Data
Structure to Enable Other Computer System to
Determine Whether to Request Database
Record From P%réicu/ar Location

/

FIG. 7

U.S. Patent Nov. 28, 2023 Sheet 8 of 9 US 11,829,398 B2

800

/

Receiving Probabilistic Data Structure That
Includes Set of Levels, Each of Which is
Capable of Storing Indications of Transitions
Between Successive Characters in Database
Keys
810

Determining Whether to Request Database
Record for Particular Database Key From
Another Database Node
820

FIG. 8

U.S. Patent Nov. 28, 2023 Sheet 9 of 9

Memory
920

US 11,829,398 B2

900

/

| Interconnect 960

/0
Interface
940

/0
Devices
950

Processor
Subsystem
980

FIG. 9

US 11,829,398 B2

1
THREE-DIMENSIONAL PROBABILISTIC
DATA STRUCTURE

BACKGROUND
Technical Field

This disclosure relates generally to database systems and,
more specifically, techniques for implementing probabilistic
data structures.

Description of the Related Art

Modern database systems routinely implement manage-
ment systems that enable users to store a collection of
information in an organized manner that can be efficiently
accessed and manipulated. In some cases, these management
systems maintain a log-structured merge-tree (LSM tree)
having multiple levels that each store information as key-
value pairs. An LSM tree usually includes two high-level
components: an in-memory cache and a persistent storage.
In operation, a database system includes a database node that
initially writes database records into its in-memory cache
before later flushing them to a persistent storage. That
database node may receive a request for a database record
associated with a particular database key. In many cases,
there is no database record stored in its in-memory cache
that is associated with the particular database key.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating example elements of
a system having a database node that includes a probabilistic
data structure, according to some embodiments.

FIG. 2 is a block diagram illustrating example elements of
database keys, according to some embodiments.

FIG. 3A-3C are block diagrams illustrating example
elements of a probabilistic data structure having levels that
include bitmaps, according to some embodiments.

FIG. 4 is a block diagram illustrating example elements of
lineage information having lineages, according to some
embodiments.

FIG. 5 is a block diagram illustrating example elements of
interactions between database nodes having probabilistic
data structures, according to some embodiments.

FIGS. 6 and 7 are flow diagrams illustrating example
methods relating to maintaining a probabilistic data struc-
ture, according to some embodiments.

FIG. 8 is a flow diagram illustrating example methods
relating to performing a lookup of a database key in a
probabilistic data structure, according to some embodi-
ments.

FIG. 9 is a block diagram illustrating an example com-
puter system, according to some embodiments.

This disclosure includes references to “one embodiment™
or “an embodiment.” The appearances of the phrases “in one
embodiment” or “in an embodiment” do not necessarily
refer to the same embodiment. Particular features, struc-
tures, or characteristics may be combined in any suitable
manner consistent with this disclosure.

Within this disclosure, different entities (which may vari-
ously be referred to as “units,” “circuits,” other components,
etc.) may be described or claimed as “configured” to per-
form one or more tasks or operations. This formulation—
[entity] configured to [perform one or more tasks]—is used
herein to refer to structure (i.e., something physical, such as
an electronic circuit). More specifically, this formulation is

10

20

25

30

35

40

45

50

55

60

65

2

used to indicate that this structure is arranged to perform the
one or more tasks during operation. A structure can be said
to be “configured to” perform some task even if the structure
is not currently being operated. A “network interface con-
figured to communicate over a network™ is intended to
cover, for example, an integrated circuit that has circuitry
that performs this function during operation, even if the
integrated circuit in question is not currently being used
(e.g., a power supply is not connected to it). Thus, an entity
described or recited as “configured to” perform some task
refers to something physical, such as a device, circuit,
memory storing program instructions executable to imple-
ment the task, etc. This phrase is not used herein to refer to
something intangible. Thus, the “configured to” construct is
not used herein to refer to a software entity such as an
application programming interface (API).

The term “configured to” is not intended to mean “con-
figurable to.” An unprogrammed FPGA, for example, would
not be considered to be “configured to” perform some
specific function, although it may be “configurable to”
perform that function and may be “configured to” perform
the function after programming.

Reciting in the appended claims that a structure is “con-
figured to” perform one or more tasks is expressly intended
not to invoke 35 U.S.C. § 112(f) for that claim element.
Accordingly, none of the claims in this application as filed
are intended to be interpreted as having means-plus-function
elements. Should Applicant wish to invoke Section 112(f)
during prosecution, it will recite claim elements using the
“means for” [performing a function]| construct.

As used herein, the terms “first,” “second,” etc. are used
as labels for nouns that they precede, and do not imply any
type of ordering (e.g., spatial, temporal, logical, etc.) unless
specifically stated. For example, in a processor having eight
processing cores, the terms “first” and “second” processing
cores can be used to refer to any two of the eight processing
cores. In other words, the first and second processing cores
are not limited to processing cores 0 and 1, for example.

As used herein, the term “based on” is used to describe
one or more factors that affect a determination. This term
does not foreclose the possibility that additional factors may
affect a determination. That is, a determination may be
solely based on specified factors or based on the specified
factors as well as other, unspecified factors. Consider the
phrase “determine A based on B.” This phrase specifies that
B is a factor is used to determine A or that affects the
determination of A. This phrase does not foreclose that the
determination of A may also be based on some other factor,
such as C. This phrase is also intended to cover an embodi-
ment in which A is determined based solely on B. As used
herein, the phrase “based on” is thus synonymous with the
phrase “based at least in part on.”

DETAILED DESCRIPTION

In some implementations of a database system, the data-
base system includes multiple database nodes that are
capable of processing transactions in which they write
database records to their own local in-memory cache before
flushing them to a persistent storage that is shared among the
database nodes. In many cases, one database node needs to
obtain the latest version of a database record and thus issues
requests to another database node to determine if the latest
version of the record is located in that other database node’s
cache. It is often the case that the record is not in that other
node’s cache and thus the requesting node wastes network
bandwidth sending the request to the other node.

US 11,829,398 B2

3

In some cases, probabilistic data structures, such as
Bloom filters, can be used to reduce the number of requests
between database nodes as they may provide information on
whether a record for a particular database key exists at a
database node’s cache. As used herein, the term “probabi-
listic data structure” refers to a data structure that stores
information indicating that a particular item either does not
exist or might exist at a particular location within a system.
For example, a probabilistic data structure can store infor-
mation that indicates that a record, for a particular database
key, does not exist or might exist at an in-memory cache of
a database node. The present inventors have recognized that
current approaches for implementing probabilistic data
structures are deficient for various reasons. First, known
probabilistic data structures cannot be checked for database
keys in a parallel manner, but instead must be checked in a
serial manner. For example, a probabilistic data structure
may store database keys in a tree structure. In order to check
for the existence of a particular database key, branches (e.g.,
linked lists) of the tree structure have to be traversed serially
(e.g., by traversing through a linked list). Second, known
probabilistic data structures are designed for exact key
lookups but are not efficient for either open-range or closed-
range key lookups. Third, known probabilistic data structure
are not memory efficient relative to the false positive rate
that they provide when performing key lookups.

The present disclosure describes various techniques for
implementing a probabilistic data structure in a manner that
overcomes some or all of the downsides of prior approaches.
In various embodiments that are described below, a database
node maintains a set of probabilistic data structures, each of
which includes a three-dimensional data structure compris-
ing multiple bitmaps that are stacked to form a hierarchy of
levels capable of encoding database keys—in some cases,
the bitmaps may not be stacked to create the three-dimen-
sional data structure. The bitmap within a “level” of the
three-dimensional data structure may correspond to a radix-
by-radix matrix whose intersections can be used to store
information about a transition between successive characters
of a database key. Accordingly, in various embodiments, a
database key is encoded in a probabilistic data structure by
storing information about the transitions between the series
of characters that make up that database key. (Throughout
the present disclosure, the terms “insert” and “encode” are
used interchangeably when describing the notion of storing
information about a database key in a probabilistic data
structure). Consider an example in which the database key
“SLOT” is to be inserted into a probabilistic data structure.
When inserting that database key, the database node may use
at least three levels of the hierarchy: one level to store
information about the transition S—L; another level to store
information about the transition L.—0; and yet another level
to store information about the transition O—T. In some
cases, additional levels may be used to store information
about a transition from a root character to the first character
of a database key and about a transition to a terminal
character from the last character of the database key.

To determine whether a database key has been encoded in
a probabilistic data structure, the database node may check
the different levels of the three-dimensional data structure
for information that corresponds to the transitions between
the series of characters that make up that database key.
Continuing the previous example, if a database node wanted
to determine whether the database key “SLOT” had been
encoded in a probabilistic data structure that that node had
received, the database node may check, for example, the
third level (or another level depending on the implementa-

10

15

20

25

30

35

40

45

50

55

60

65

4

tion) for information about the transition O—T. If the third
level did not store information about that transition, then the
database node may determine that the database key was not
encoded. In various embodiments, this check for whether a
database key was encoded can be performed in a parallel
manner in which a database node checks each level of the
probabilistic data structure at relatively the same time.

In some cases, when inserting multiple database keys into
a probabilistic data structure, certain information may be
lost. Consider an example in which the keys “ROOM” and
“SLOT” have already been encoded in a probabilistic data
structure. If a database node checks for the database key
“ROOT,” the database node will incorrectly determine that
the database key was encoded. This results because there are
three transitions in the key “ROOT”: R—0O, O—0, and
O—T. Individually, each transition would be present in the
data structure—the transition R—O would be set because of
“ROOM,” the transition O—O would be set because of
“ROOM,” and the transition O—T would be set because of
“SLOT”—and thus a false positive would result for a lookup
on the database key “ROOT.” Accordingly, the information
that may be lost when the transitions of a particular database
key are encoded is that those transitions are associated with
that particular database key.

To remedy this issue, in various embodiments, lineage
information is maintained for a given transition that identi-
fies one or more lineages that each correspond to a set of
characters from which that transition “descended.” Consider
an example in which database keys “SLOT” and “ROOT”
are inserted in the probabilistic data structure. Lineage
information may be stored for the transition O—T that
identifies two lineages: a lineage [RO] from “ROOT” and a
lineage [SL] from “SLOT.” Continuing the earlier example
that included the false positive, the lineage information
might indicate that the lineage [L] exists for the transition
O—T—the complete lineage of [SLO] may not be stored in
some cases. Thus, when a database node checks for the
existence of the transition O—T for “ROOT,” the database
node will see that the transition O—T was set but it was set
for the lineage [L] from “SLOT” and not [O] from “ROOT.”
As such, maintaining lineage information in this manner
may reduce the number of false positives that occur.

After inserting a threshold number of database keys into
a probabilistic data structure, a database node may provide
the probabilistic data structure to another database node.
Before providing the probabilistic data structure to the other
database node, in various embodiments, the original data-
base node performs a compression operation on the proba-
bilistic data structure to reduce the data structure’s memory
footprint. When a probabilistic data structure is initially
created, the database node may allocate a fixed amount of
memory for the bitmap of each level of the probabilistic data
structure. In some cases, after inserting the database keys,
the database node may determine that the memory for
certain levels was over allocated. Consequently, the database
node may compress those levels. For example, if all the
database keys share a common portion (e.g., an organization
ID) and thus a set of common transitions, then the database
node may replace the bitmaps with information that is in a
different format that specifies that set of common transitions.
After the other database node receives the probabilistic data
structure, the other database node may use the probabilistic
data structure to determine whether to request a record for a
particular database key from the original database node.

These techniques may be advantageous over prior
approaches as these techniques allow for a probabilistic data
structure to be implemented that can be checked for database

US 11,829,398 B2

5

keys in a parallel manner and that can be compressed to
reduce the memory footprint of the probabilistic data struc-
ture. Furthermore, as described in more detail below, these
techniques allow for the implementation of a probabilistic
data structure that provides more efficient range lookups
than previous approaches. As a result of these techniques, a
database node may be able to process database transactions
at a quicker rate than previous approaches. An exemplary
application of these techniques will now be discussed,
starting with reference to FIG. 1.

Turning now to FIG. 1, a block diagram of a system 100
is shown. System 100 includes a set of components that may
be implemented via hardware or a combination of hardware
and software routines. In the illustrated embodiment, system
100 includes a database node 110 that comprises a transac-
tion engine 120, an in-memory cache 130, and a probabi-
listic data structure 140. As shown, probabilistic data struc-
ture 140 includes encoded database keys 145. In some
embodiments, system 100 may be implemented differently
than shown. For example, system 100 may include multiple
database nodes 110 in communication, one or more data-
bases (which may implement a distributed storage), and/or
other components, such as an application server, that interact
with database node 110.

System 100, in various embodiments, implements a plat-
form service that allows users of that service to develop, run,
and manage applications. As an example, system 100 may
be a multi-tenant system that provides various functionality
to a plurality of users/tenants hosted by the multi-tenant
system. Accordingly, system 100 may execute software
routines from various, different users (e.g., providers and
tenants of system 100) as well as provide code, web pages,
and other data to users, databases, and other entities asso-
ciated with system 100. As illustrated, system 100 includes
database node 110 that may store and access data for users
associated with system 100.

Database node 110, in various embodiments, is hardware,
software, or a combination thereof capable of providing
database services, such as data storage, data retrieval, and/or
data manipulation. The database services may be provided to
other components within system 100 or to components
external to system 100. As illustrated, database node 110
receives a database transaction request 105—this request
might be received from an application server (not shown)
that is attempting to access a set of database records 135. As
an example, database transaction request 105 may specify an
SQL SELECT command that selects one or more rows from
one or more database tables. The contents of a row may be
specified in a database record 135 and therefore database
node 110 may return one or more database records 135 to the
requestor that correspond to the selected one or more table
rows. In some cases, a database transaction request 105 may
instruct a database node 110 to write one or more database
records 135. Accordingly, in various embodiments, database
node 110 initially writes database records 135 to in-memory
cache 130 before flushing those database records to a
database. In various embodiments, that database is shared
with other database nodes 110 that may access database
records 135 flushed by database node 110.

Transaction engine 120, in various embodiments, is a set
of software routines that are executable to process database
transactions that can involve inserting database records 135
into in-memory cache 130 and corresponding database keys
145 into probabilistic data structures 140. When a database
record 135 is written into in-memory cache 130 as part of
processing a database transaction, in various embodiments,
transaction engine 120 inserts (or encodes) the correspond-

10

15

20

25

30

35

40

45

50

55

60

6

ing database key 145 into probabilistic data structure 140 as
shown. In some cases, instead of inserting the database key
145 when the database record 135 is written to in-memory
cache 130, transaction engine 120 may perform a bulk
insertion of database keys 145 for the database transaction
before initiating a transaction commit—in some cases, the
bulk insertion may be performed as part of a pre-commit
phase in which database node 110 performs a set of actions
before finally committing the database transaction.

In-memory cache 130, in various embodiments, is a buffer
that stores data in memory (e.g., random access memory
(RAM)) of database node 110. HBase™ Memstore may be
an example of an in-memory cache 130. As mentioned,
database node 110 may initially write a database record 135
(e.g., in the form of a key-value pair) in its in-memory cache
130. In some cases, the latest/newest version of a row in a
database table may be found in a database record 135 that is
stored at in-memory cache 130. Database records 135,
however, that are written to database node 110’s in-memory
cache 130 are not visible to other database nodes 110 in
some embodiments. That is, other database nodes 110 do not
know, without asking, what information is stored within
in-memory cache 130 of database node 110. In order to
determine whether an in-memory cache 130 is storing a
database record 135 associated with a particular database
key 145, in various cases, another database node 110 may
issue a database record request (not shown) to database node
110. Such a request may include the particular database key
145 and database node 110 may return a database record 135
if one exists at in-memory cache 130 that corresponds to that
key.

In various cases, database node 110 may return a database
record response to the other database node 110 where that
response does not include a database record 135. This may
be because, in various embodiments, in-memory cache 130
is relatively small in size (e.g., 2 GB) and, as a result, the
chance of a database record 135 corresponding to a particu-
lar key being in in-memory cache 130 may be relatively low.
Accordingly, in various embodiments, database node 110
generates probabilistic data structures 140 and provides
them other database nodes 110—this may reduce the amount
of database record requests that it receives from those other
database nodes 110. An example interaction between two
database nodes 110 is discussed in greater detail with respect
to FIG. 5.

Probabilistic data structure 140, in various embodiments,
is a data structure that stores information that is indicative of
a probability that a database record 135 exists in an in-
memory cache 130 for a corresponding database key 145.
Probabilistic data structure 140 may include a three-dimen-
sional data structure that comprises a hierarchy of bitmaps
that are each capable of storing information about the
transitions between successive characters within database
keys 145. An example representation of the three-dimen-
sional data structure is discussed in greater detail with
respect to FIG. 3B. In some embodiments, the bitmaps
correspond to radix-by-radix matrixes in which a given
intersection between two characters can be used to store
information corresponding to a transition between those two
characters in a database key 145. An example layout of a
bitmap is discussed in greater detail with respect to FIG. 3A.

As mentioned, database node 110 may receive a database
transaction request 105 that specifies a transaction that
involves writing one or more database records 135 to its
in-memory cache 130. In various cases, a database record
135 may be associated with a database key 145 that com-
prises a series of characters—examples of database keys 145

US 11,829,398 B2

7

are discussed in greater detail with respect to FIG. 2.
Subsequent to writing a database record 135 to in-memory
cache 130, in various embodiments, database node 110
inserts a corresponding database key 145 into probabilistic
data structure 140. To insert that database key 145 into
probabilistic data structure 140, database node 110 may
store information in different levels of the three-dimensional
data structure that pertains to the transitions between suc-
cessive characters of that database key 145. In some embodi-
ments, database node 110 starts at the top level and stores an
indication of a transition from a root character to the first
character of database key 145. Database node 110 may
proceed down through the levels, storing, in each subsequent
level, an indication of the next transition between successive
characters of database key 145. As a result, each transition
of database key 145 may be stored in a separate level of the
three-dimensional data structure.

As discussed in greater detail with respect to FIG. 4, in
some embodiments, information about which database keys
145 correspond to a transition is maintained in association
with the corresponding indication for that transition. The
information may identify one or more lineages associated
with a transition between successive characters—a lineage
may specify a series of characters of a corresponding data-
base key that precede the transition. Accordingly, in various
cases, if two database keys 145 share a common transition
at the same point in their series of characters, then two
lineages may be stored that each specify, for a respective one
of'the two database keys 145, the characters of that database
key that preceded that transition. This lineage information
may be stored in probabilistic data structure, but separate
from the three-dimensional data structure.

In various embodiments, database node 110 provides
probabilistic data structure 140 to another database node 110
to enable that other database node 110 to determine whether
to request a database record 135 from in-memory cache 130.
The other database node 110 may check probabilistic data
structure 140 to determine the corresponding database key
145 for that database record has been encoded in probabi-
listic data structure 140. If the database key 145 appears to
have been encoded, then the other database node 110 may
request a database record 135 for that database key. An
example of this process is discussed in greater detail with
respect to FIG. 5.

Turning now to FIG. 2, a block diagram of example
database keys 145 is shown. In the illustrated, database keys
145 “ROCK.,” “ROOM,” and “SLOT” are linked to a root
character 202 and a terminal character 204 to form a “trie”
of database keys 145. In some embodiments, database keys
145 may not be linked to root character 202 or terminal
character 204. In some embodiments, the trie of database
keys 145 may be implemented differently than shown. For
example, the trie of database keys 145 might include dif-
ferent database keys 145, more or less database keys 145,
database keys 145 of different length, etc.

As depicted, database keys 145 each comprise a respec-
tive series of characters 200. As a result, there are character
transitions 210 between successive characters 200 in the
series of characters 200 that form those database keys 145.
In some cases, database keys 145 may share a common
character transition 210 that occurs at the same position in
their series of characters 200. For example, as shown,
database keys “ROCK” and “ROOM” share a common
character transition 210A (R—O). As discussed in greater
detail below, the same information (e.g., a bit set in a bitmap
of probabilistic data structure 140) may be used to represent
transition 210A in both database keys “ROCK” and

10

20

25

30

40

45

50

55

60

65

8

“ROOM.” The same transition 210 may occur in two or
more database keys 145, however, that transition may occur
at different positions within their series of characters 200. As
an example, the transition T—A may occur towards the start
of database key “001TA1IAE34” but towards the end of
database key “001LK3IETA3.” As discussed in greater
detail below, information may be stored in one level of
probabilistic data structure 140 that is representative of the
transition T—A in database key “001TA1IAE34” and infor-
mation may be stored in another level that is representative
of the transition T—A that also occurs in database key
“001LK3IETA3”

Turning now to FIG. 3A, a block diagram of an example
bitmap 300 is depicted. In the illustrated embodiment,
bitmap 300 corresponds to a character-by-character matrix
comprising multiple intersections 310 that are each defined
by the intersection of two respective characters 200. As
further illustrated, the characters 200 of one dimension of
the matrix include terminal character 204. In some embodi-
ments, bitmap 300 may be implemented differently than
shown. For example, one dimension of the matrix may
correspond to root character 202 as depicted in FIG. 3C.

As discussed, a database key 145 includes a series of
character transitions 210 between successive characters 200
in the series of characters 200 defining that database key. In
various embodiments, a database key 145 is encoded into a
probabilistic data structure 140 by storing information about
the character transitions 210 of that database key 145 in a
bitmap 300. With the illustrated embodiment in mind, con-
sider an example in which a character transition 210 Z—A
of a database key 145 “PIZZA” is being encoded in bitmap
300. To encode that character transition 210, transaction
engine 120 may store an indication 315 of that character
transition 210 at intersection 310A. As illustrated, intersec-
tion 310A corresponds to the intersection of characters “A”
and “Z”—note that characters 200 on the left side of the
matrix may correspond to the beginning character of a
character transition 210 while characters 200 on the top side
of the matrix correspond to the ending character. An indi-
cation 315, in various embodiments, is a bit value that is set
to indicate the occurrence of a character transition 210. As
shown, a bit value of “1” is set at intersection 310A to
indicate the occurrence of character transition 210 Z—A. As
discussed in greater detail with respect to FIG. 4, indication
315 may correspond to lineage information or a pointer that
points to lineage information.

In some embodiments, when encoding a database key
145, transaction engine 120 may store, in bitmap 300, an
indication 315 of a character transition 210 between the last
character 200 of that database key and terminal character
204. This may reduce the false positive rate of probabilistic
data structure 140 as probabilistic data structure 140 can be
encoded with database keys 145 of different length. With the
illustrated embodiment in mind, consider an example in
which a terminal character transition 210 of a database key
145 “JFDLIA” is being encoded in bitmap 300. Transaction
engine 120 may store an indication 315 of that transition 210
A— at intersection 310B as shown.

Turning now to FIG. 3B, a block diagram of an example
probabilistic data structure 140 is shown. In the illustrated
embodiment, probabilistic data structure 140 includes bit-
maps 300 that define a series of levels 320 that form a
three-dimensional structure. In some embodiments, proba-
bilistic data structure 140 may be implemented differently
than shown. As an example, the top level of probabilistic
data structure 140 may be a root character-by-character
matrix as shown in FIG. 3C.

US 11,829,398 B2

9

As discussed, a database key 145 includes a series of
character transitions 210. These character transitions 210
may form an ordering where each successive character
transition 210 corresponds to a successive level 320
included in probabilistic data structure 140. Accordingly,
when encoding a database key 145, in various cases, mul-
tiple levels 320 may be used to store indications 315 of the
character transitions 210 of the database key 145. Consider
an example in which the database key 145 “ABC” is being
encoded. The bitmap 300 of the first, top level 320 may store
an indication 315 of the character transition 210 { }—A, the
bitmap 300 of the next, second level 320 may store an
indication 315 of the character transition 210 A—B, the
bitmap 300 of the third level 320 may store an indication 315
of the character transition 210 B—C, and the bitmap 300 of
the fourth level 320 may store an indication 315 of the
character transition 210 C—@. In some embodiments, char-
acter transitions 210 from root character 202 or to terminal
character 204 may not be stored.

When encoding a database key 145 that involves storing
indications 315 within bitmaps 300 of multiple, different
levels 320, in various embodiments, transaction engine 120
may store those indications 315 in a parallel manner. That is,
instead of initially storing an indication 315 of the first
character transition 210 and then proceeding to store an
indication 315 of the second character transition 210 of a
particular database key 145, transaction engine 120 may
store both of those indications 315 at relatively the same
time (i.e., in parallel). Continuing the previous example,
transaction engine 120 may write indications 315 for all four
character transition 210 to bitmaps 300 in parallel.

Turning now to FIG. 3C, a block diagram of an example
top level bitmap 300 is shown. In the illustrated embodi-
ment, bitmap 300 corresponds to a character-by-character
matrix that comprises multiple intersections 310 that are
defined by the intersection of a character 200 and root
character 202. In various embodiments, transaction engine
120 may store indications 315 of character transitions 210
between root character 202 and the starting character 200 of
each database key 145 encoded. As such, the bitmap 300 of
the top level 320 that is included in the three-dimensional
structure of probabilistic data structure 140 may correspond
to the illustrated bitmap 300.

Turning now to FIG. 4, a block diagram of example
lineage information and bitmap 300 is shown. In the illus-
trated embodiment, bitmap 300 includes intersections 310A
and 310B that store pointer information 420A and 420B,
respectively. As further shown, lineage information 410A
includes lineages 415A and 415B, and lineage information
410B includes lineages 415C and 415D. In some embodi-
ments, bitmap 300 and lineage information 410A and 410B
may be implemented differently than shown. As an example,
lineages 415 may be include more or less characters 200.

As mentioned, when encoding database keys 145, certain
information may be lost about which database key 145
caused an indication 315 to be stored. Consider an example
in which transaction engine 120 performs a database key
lookup for a database key 145 “LTTZA” that involves
checking for the character transition 210 Z—A in bitmap
300 of FIG. 3A. As shown in FIG. 3A, an indication 315 is
set for the character transition 210 Z—A but it may not be
clear if that indication 315 was set for database key 145
“LTTZA” or another database key 145, such as “PIZZA.”
Accordingly, in various embodiments, lineage information
410 may be stored in association with a character transition
210 to identify database keys 145 (or a portion of them) that

10

15

20

25

30

35

40

45

50

55

60

65

10

were encoded into probabilistic data structure 140 and were
associated with that character transition.

Lineage information 410, in various embodiments, iden-
tifies lineages 415 for character transitions 210. A lineage
415, in various embodiments, identifies one or more char-
acters 200 that preceded a character transition 210 and is
associated with a corresponding database key 145. Consider
the illustrated embodiment for example. As depicted, inter-
section 310A (which corresponds to character transition 210
Z—A) includes pointer information 420A that points to
lineage information 410A. Lineage information 410A
includes two lineages 415A and 415B for the character
transition 210 Z—A. Lineage 415A identifies a lineage of
[PIZ] and lineage 415B identifies a lineage of [TTT].
Accordingly, lineages 415A and 415B may indicate that
database keys 145 “PIZZA” and “TTTZA” were encoded in
probabilistic data structure 140—as discussed below, lin-
eages 415 may specify a predefined number of characters
200 that does not include all characters 200 that preceded a
character transition 210. As a result, if transaction engine
120 checks the character transition 210 Z—A in bitmap 300
of FIG. 4 as part of a lookup for a database key 145
“LTTZA,” then transaction engine 120 may determine that
database key 145 “LTTZA” was not encoded.

In various embodiments, transaction engine 120 may
store lineage information 410 for each character transition
210 that is set in a bitmap 300. As shown, for example,
intersections 310A and 310B for character transitions 210
Z—A and Z— include pointer information 420A and 420B
to lineage information 410A and 410B, respectively. In some
embodiments, lineage information 410A and 410B are
stored at separate locations while, in other embodiments,
they are stored at the same location. In some embodiments,
instead of storing lineages 415 as series of characters 200,
lineages 415 are stored as hash values that are derived by
performing a hash function on the series of characters 200.
For example, instead of storing [PIZ] for lineage 415A, a
hash value derived by hashing [PIZ] may be stored for
lineage 415A. In some embodiments, if a number of lineages
415 associated with a character transition 210 does not
satisfy a defined threshold (e.g., more than three), then those
lineages 415 may be stored in bitmap 300 instead of sepa-
rately. Accordingly, in some cases, a hash value of certain
lineages 415 may be stored at an intersection 310 in place of
pointer information 420 for the associated character transi-
tion 210.

As discussed, a probabilistic data structure 140 may
include multiple bitmaps 300 that define a hierarchy of
levels 320 that forms a three-dimensional structure. Accord-
ingly, lineage information 410 may be specific to a character
transition 210 in a bitmap 300 of a specific level 320 of the
three-dimensional structure. As an example, the character
transition 210 Z—A may be set in two different bitmaps 300
of different levels 320. The lineage information 410 that is
associated with that character transition may be different for
each bitmap 300. That is, pointer information 420 in a
bitmap 300 of a first level 320 may point to lineage infor-
mation 410 that includes a lineage 415 [OOZ] while pointer
information 420, for the same character transition 210, but
in a bitmap 300 of a second, different level 320 may point
to linecage information 410 that includes a lineage 415
[KLZ].

The amount of information that is included in a lineage
415 may vary depending on the lineage sampling scheme
that is used. Various lineage sampling schemes are discussed
below and an exemplary database key 145 “AFDFJKL” is
used to help facilitate these discussions. In some embodi-

US 11,829,398 B2

11

ments, a full lineage sampling scheme is used in which a
lineage 415 corresponds to all characters 200 of a database
key 145 that preceded a character transition 210 associated
with the database key. For example, for character transition
210 K—L, a lineage 415 associated with “AFDFJKL” may
specify [AFDFJ]. For character transition 210 D—F, a
lineage 415 may specify [AF]. In some embodiments, a
fixed-length lineage sampling scheme is used in which each
lineage 415 consumes a maximum fixed-size of space (e.g.,
524 KB). As such, in various cases, each lineage 415
specifies up to a maximum number of characters 200. As an
example, for character transition 210 K—1,, a lineage 415
associated with “AFDFJKL” may specify [FJ] and, for
character transition 210 D—F, a lineage 415 may specify
[AF]. In some embodiments, a variable-length lineage sam-
pling scheme is used in which lineages 415 of different
groups of levels 320 consume different maximum fixed-
sizes of space. As an example, lineages 415 that correspond
to character transitions 210 A—F, F—D, and D—F may
specify up to a maximum of two characters 200 while
character transitions 210 F—1J, J—=K, and K—I. may specify
up to a maximum of four characters 200. That is, lineages
415 associated with character transitions 210 in the first half
of'levels 320 may specify up to a first limit of characters 200
while lineages 415 associated with character transitions 210
in the second half of levels 320 may specify up to a second
limit of characters 200.

Turning now to FIG. 5, a block diagram of example
interactions between two database nodes 110 is shown. In
the illustrated embodiment, database node 110A includes
probabilistic data structure 140, and database node 110B
includes transaction engine 120 having a lineage engine 510.
In some embodiments, database nodes 110 may be imple-
mented differently than shown. As an example, database
node 110B may include multiple probabilistic data structures
140 that it may share with database node 110A.

As mentioned previously, throughout the duration of its
operation, database node 110A may receive database trans-
action requests 105 to perform database transactions. Per-
forming a database transaction may involve writing database
records 135 to an in-memory cache 130 of database node
110A. In addition to writing records 135 to in-memory cache
130, database node 110A may insert/encode database keys
145, which correspond to those database records, into a set
of probabilistic data structures 140. Database node 110A
may share one or more of those probabilistic data structures
140 with database node 110B. In various embodiments,
database node 110A inserts database keys 145 into a proba-
bilistic data structure 140 until a specified amount of keys
have been inserted. Database node 110A may then create
another probabilistic data structure 140 and continue insert-
ing database keys 145.

Before providing a probabilistic data structure 140, in
various embodiments, database node 110A performs a com-
pression operation on the probabilistic data structure 140 to
reduce its memory footprint. In some embodiments, when
database node 110A creates a probabilistic data structure
140, database node 110A allocates a fixed amount of
memory for each level 320 included in the probabilistic data
structure 140—e.g., each bitmap 300 is allocated with a
fixed amount of memory. During the compression operation,
database node 110A may identify ways to compress one or
more levels 320. In various instances, database keys 145
may share common character transitions 210—e.g., a set of
database keys 145 may share common characters 200 that
correspond to the same organization ID. As a result, the
amount of information stored in bitmaps 300 (e.g., the

25

40

45

55

12

number of bits set) that correspond to character transitions
210 of those common characters 200 may be limited (e.g.,
only one bit may be set). Accordingly, in various cases,
database node 110A may replace those bitmaps 300 with
information that is in a smaller, different format, such as a
String object. That information may specify the character
transitions 210 without using the matrix structure that may
be included in bitmaps 300.

After compressing a probabilistic data structure 140 into
a more space-efficient format, database node 110A may send
that probabilistic data structure 140 to database node 110B.
In some embodiments, probabilistic data structures 140 is
included in a database record response 530 to a database
record request 520. That is, database node 110B may send a
database record request 520 to database node 110A for any
database record 135 that corresponds to a particular database
key 145. Database node 110A may return a database record
response 530 that includes a database record 135 if database
node 110A locates a database record 135 in its in-memory
cache 130 that corresponds to the particular database key
145. As part of the response, database node 110A may
include one or more “new” probabilistic data structures 140
that have not been provided to database node 110B. In some
cases, database record response 530 may not include a
database record 135, but only probabilistic data structures
140 if no database record 135 is found that corresponds to
the specified database key 145.

In various cases, database node 110B may use probabi-
listic data structures 140 in order to determine whether to
issue a database record request 520 for a database record
135. In order to make that determination, in various embodi-
ments, database node 110B performs a database key lookup
to determine whether a database key 145 corresponding to
the database record 135 has been encoded in a probabilistic
data structure 140. In some cases, database node 110B may
perform a single-key lookup. In order to perform a single-
key lookup, lineage engine 510 may be executed to calculate
all lineages 415 for the relevant database key 145. Database
node 110B may then perform a vectorized lineage check
across all bitmaps 300 in the levels 320 that are relevant to
that database key. The check across the bitmaps 300 may be
performed in parallel. That is, database node 110B may
check, in parallel, the bitmap 300 in each relevant level 320
to determine whether an indication 315 has been set for the
expected character transition 210. If there is an indication
315 and it identifies lineage information 410, then database
node 110B may check the lineages 415 specified in that
information to determine if one of them matches the lineage
415 calculated by lineage engine 510 for the corresponding
character transition 210. If database node 110B determines
that a database key 145 has been encoded in a probabilistic
data structure 140, then database node 110B may send a
database record request 520 to database node 110A for a
database record 135 that is associated with that database key
145.

In some cases, database node 110B may perform a data-
base key range lookup. Database node 110B may initially
perform a single-key lookup using the start database key 145
of the specified key range. If the start database key 145 has
been encoded, then database node 110B may determine that
the range is non-empty and may send one or more database
record requests 520 to database node 110A for database
records 135 associated with that key range. If the start
database key 145 has not been encoded, then database node
110B may determine the longest common prefix between
database keys 145 encoded in probabilistic data structure
140 and the start database key 145. To make that determi-

US 11,829,398 B2

13

nation, database node 110B may proceed through the char-
acter transitions 210 of the start database key 145 until a
character transition 210 of the start database key 145 is not
set in probabilistic data structure 140. From the longest
common prefix, database node 110B may determine the least
database key 145 greater than the start key 145. To make that
determination, if there exists a valid extension of the prefix
by introducing a new character 200 that is lexicographically
greater than the start key 145, then database node 110B may
continually extend the prefix (by adding characters 200)
until the terminal character 204 is reached to form a key 145.
If there does not exist a valid extension, then database node
110B may truncate the prefix by one least significant char-
acter 200 and then may repeat the prior extension process to
form a key 145 until either a key 145 is formed or the prefix
is empty of characters 200. If the least key 145 greater than
the start key 145 is less than or equal to the end key 145 of
the specified key range, then database node 110B may
determine that the range is non-empty and may send one or
more database record requests 520 to database node 110A
for database records 135 associated with that key range.

Turning now to FIG. 6, a flow diagram of a method 600
is shown. Method 600 is one embodiment of a method
performed by a database node (e.g., a database node 110) to
maintain a probabilistic data structure (e.g., a probabilistic
data structure 140). In some embodiments, method 600 may
include additional steps than shown. As an example, the
database node may receive a transaction request (e.g., a
transaction request 105) that specifies a transaction that
involves writing a set of database records to an in-memory
cache (e.g., an in-memory cache 130) of the database node.

Method 600 begins in step 610 with the database node
maintaining a probabilistic data structure capable of encod-
ing database keys (e.g., database keys 145). In various
embodiments, the probabilistic data structure includes a
plurality of levels (e.g., levels 320), each of which is capable
of storing an indication (e.g., an indication 315) of a
transition (e.g., a transition 210) between successive char-
acters (e.g., characters 200) in a given database key.

In step 620, the database node inserts a database key into
the probabilistic data structure. The database key comprises
a series of characters. Accordingly, when inserting the
database key, the database node may store, for each transi-
tion between successive ones of the series of characters, an
indication in a corresponding level of the plurality of levels
(e.g., the first transition may be stored in the top level) that
is indicative of that transition. In some cases, the database
node may store, in a corresponding level of the plurality of
levels (e.g., a bottom level), an indication indicative of a
transition from a last character of the series of characters to
a terminal character (e.g., a terminal character 204) separate
from the series of characters.

In some cases, a particular indication may be stored for a
transition between particular successive characters of the
database key and lineage information (e.g., lineage infor-
mation 410) may be maintained, in association with the
particular indication, that specifies a set of database key
lineages (e.g., lineages 415). A given database key lineage
may identify one or more characters that precede a given
transition (e.g., the lineage [SLO] for the transition
“O”—“T” of “SLOT”) between successive characters of a
corresponding database key. In various embodiments, the
lineage information is stored separately from the plurality of
levels that include the particular indication. Accordingly, the
particular indication may be a pointer (e.g., pointer infor-
mation 420) that identifies a location where the lineage
information is stored. In some embodiments, each database

20

30

35

40

45

14

key lineage that is maintained in association with the proba-
bilistic data structure identifies the same number of charac-
ters (i.e., the same character length). In some cases, the
particular indication corresponds to at least two different
database keys that have been inserted into the probabilistic
data structure. Accordingly, the set of database key lineages
may include a respective database key lineage for each of the
at least two different database keys.

The database node may send, to a second database node,
the probabilistic data structure to enable the second database
node to determine whether to request a database record from
the database node. The database node may also receive, from
the second database node, a second probabilistic data struc-
ture that enables the database node to determine whether to
request a database record from the second database node.
Accordingly, the database node may determine whether to
request a database record for a particular database key by
determining whether the second probabilistic data structure
includes levels that store indications that are indicative of
transitions between successive characters included in the
particular database key. In response to determining that the
second probabilistic data structure includes levels storing
indications that are indicative of the transitions between
successive characters included in the particular database
key, the database node may send a request to the second
database node for a database record associated with the
particular database key. Determining whether to request a
database record may further include calculating a plurality
of database key lineages that correspond to the transitions
between successive characters included in the particular
database key and comparing the plurality of database key
lineages against database key lineages maintained in asso-
ciation with the indications.

Turning now to FIG. 7, a flow diagram of a method 700
is shown. Method 700 is one embodiment of a method
performed by a computer system (e.g., a database node 110)
in order to maintain a data structure (e.g., a probabilistic data
structure 140). Method 700 may be performed by executing
a set of program instructions stored on a non-transitory
computer-readable medium. In some embodiments, method
700 may include additional steps than shown. For example,
the database node may receive a request (e.g., a transaction
request 105) that specifies a transaction that involves writing
a set of database records to an in-memory cache (e.g., an
in-memory cache 130) of the database node.

Method 700 begins in step 710 with the computer system
writing a database record (e.g., a database record 135) to a
particular location (e.g., an in-memory cache 130).

In step 720, the computer system inserts a database key
(e.g., a database key 145) that is associated with the database
record into a data structure that includes a hierarchy of
bitmaps (e.g., bitmaps 300). The database key comprises a
series of characters. Inserting the database key may include,
for a given transition (e.g., a transition 210) between suc-
cessive ones of the series of characters (e.g., characters 200),
storing data (e.g., indication 325) in a corresponding bitmap
of'the hierarchy that is indicative of the given transition. The
data stored in the corresponding bitmap may identify lineage
information (e.g., lineage information 410) specifying one
or more lineages (e.g., lineages 415). Accordingly, inserting
the database kay may include storing, in the lineage infor-
mation, a lineage that is indicative of one or more characters
that occur before the given transition in the series of char-
acters. In some embodiments, the computer system performs
a hash on the one or more characters that occur before the
given transition to derive a hash value and stores the lineage
in the lineage information as the hash value.

US 11,829,398 B2

15

In step 730, sending, to another computer system, the data
structure to enable the other computer system to determine
whether to request a database record from the particular
location. prior to inserting the database key into the data
structure, allocating the data structure such that a particular
bitmap in the hierarchy of bitmaps has a particular memory
size; prior to sending the data structure to other computer
system, performing a compression operation on the data
structure, wherein the compression operation includes:
determining that a memory size of data written to the
particular bitmap does not consume a threshold amount of
the particular memory size; and replacing the particular
bitmap with particular data in another format, wherein the
particular data is indicative of the data written to the
particular bitmap. in response to inserting a threshold num-
ber of database keys into the data structure, creating a
second data structure in which to insert subsequent database
keys.

Turning now to FIG. 8, a flow diagram of a method 800
is shown. Method 800 is one embodiment of a method
performed by a database node (e.g., a database node 110) in
order to determine whether to request a database record
(e.g., a database record 135) for a database key (e.g.,
database key 145) from another database node. In some
embodiments, method 800 may include additional steps than
shown. For example, the database node may generate and
send a probabilistic data structure (e.g., a probabilistic data
structure 140) to the other database node.

Method 800 begins in step 810 with the database node
receiving a probabilistic data structure that includes a set of
levels (e.g., levels 320), each of which is capable of storing
indications (e.g., indications 325) of transitions (e.g., tran-
sitions 210) between successive characters (e.g., characters
200) in database keys

In step 820, the database node determines whether to
request a database record for a particular database key from
another database node. The particular database key com-
prises a set of transitions between characters of the particular
database key. Determining whether to request may include,
for each transition of the set of transitions, determining
whether a corresponding level of the set of levels includes an
indication that is indicative of that transition. In some cases,
a particular one of the set of transitions may be associated
with a particular lineage (e.g., lineage 415) that specifies all
characters of the particular database key that precede the
particular transition. Accordingly, the database node may
determine whether the particular lineage is included in a set
of lineages identified by the probabilistic data structure for
the particular transition. In some embodiments, each lineage
of'the set of lineages identifies, for a corresponding database
key, all characters of the corresponding database key that
precede the particular transition in the corresponding data-
base key.

In response to determining that a particular level of the set
of levels does not include an indication indicative of a
corresponding transition of the set of transitions, the data-
base node may access, from a distributed storage separate
from the other database node, a database record for the
particular database key.

In some cases, the database node may perform a database
key range check to determine whether at least one database
key within a database key range has been encoded into the
probabilistic data structure. As such, for each transition of a
set of transitions associated with a beginning key of the
database key range, the database node may determine
whether a corresponding level of the set of levels includes an
indication that is indicative of that transition. In response to

10

15

20

25

30

35

40

45

50

55

60

65

16

determining that the beginning key is not encoded in the
probabilistic data structure, the database node may deter-
mine a longest prefix of the beginning key that has been
encoded in the probabilistic data structure. The database
node may then add one or more characters to the longest
prefix that cause the longest prefix to be lexicographically
greater than the beginning key. The database may determine
whether the longest prefix with the added one or more
characters has been encoded in the probabilistic data struc-
ture.

Exemplary Computer System

Turning now to FIG. 9, a block diagram of an exemplary
computer system 900, which may implement database node
110, is depicted. Computer system 900 includes a processor
subsystem 980 that is coupled to a system memory 920 and
1/O interfaces(s) 940 via an interconnect 960 (e.g., a system
bus). 1/O interface(s) 940 is coupled to one or more I/O
devices 950. Computer system 900 may be any of various
types of devices, including, but not limited to, a server
system, personal computer system, desktop computer, lap-
top or notebook computer, mainframe computer system,
tablet computer, handheld computer, workstation, network
computer, a consumer device such as a mobile phone, music
player, or personal data assistant (PDA). Although a single
computer system 900 is shown in FIG. 9 for convenience,
system 900 may also be implemented as two or more
computer systems operating together.

Processor subsystem 980 may include one or more pro-
cessors or processing units. In various embodiments of
computer system 900, multiple instances of processor sub-
system 980 may be coupled to interconnect 960. In various
embodiments, processor subsystem 980 (or each processor
unit within 980) may contain a cache or other form of
on-board memory.

System memory 920 is usable store program instructions
executable by processor subsystem 980 to cause system 900
perform various operations described herein. System
memory 920 may be implemented using different physical
memory media, such as hard disk storage, floppy disk
storage, removable disk storage, flash memory, random
access memory (RAM-SRAM, EDO RAM, SDRAM, DDR
SDRAM, RAMBUS RAM,, etc.), read only memory
(PROM, EEPROM, etc.), and so on. Memory in computer
system 900 is not limited to primary storage such as memory
920. Rather, computer system 900 may also include other
forms of storage such as cache memory in processor sub-
system 980 and secondary storage on 1/O Devices 950 (e.g.,
a hard drive, storage array, etc.). In some embodiments,
these other forms of storage may also store program instruc-
tions executable by processor subsystem 980. In some
embodiments, program instructions that when executed
implement transaction engine 120 and probabilistic data
structure 140 may be included/stored within system memory
920.

1/0 interfaces 940 may be any of various types of inter-
faces configured to couple to and communicate with other
devices, according to various embodiments. In one embodi-
ment, I/O interface 940 is a bridge chip (e.g., Southbridge)
from a front-side to one or more back-side buses. I/O
interfaces 940 may be coupled to one or more /O devices
950 via one or more corresponding buses or other interfaces.
Examples of /O devices 950 include storage devices (hard
drive, optical drive, removable flash drive, storage array,
SAN, or their associated controller), network interface
devices (e.g., to a local or wide-area network), or other

US 11,829,398 B2

17

devices (e.g., graphics, user interface devices, etc.). In one
embodiment, computer system 900 is coupled to a network
via a network interface device 950 (e.g., configured to
communicate over WiFi, Bluetooth, Ethernet, etc.).

Although specific embodiments have been described
above, these embodiments are not intended to limit the scope
of the present disclosure, even where only a single embodi-
ment is described with respect to a particular feature.
Examples of features provided in the disclosure are intended
to be illustrative rather than restrictive unless stated other-
wise. The above description is intended to cover such
alternatives, modifications, and equivalents as would be
apparent to a person skilled in the art having the benefit of
this disclosure.

The scope of the present disclosure includes any feature
or combination of features disclosed herein (either explicitly
or implicitly), or any generalization thereof, whether or not
it mitigates any or all of the problems addressed herein.
Accordingly, new claims may be formulated during pros-
ecution of this application (or an application claiming pri-
ority thereto) to any such combination of features. In par-
ticular, with reference to the appended claims, features from
dependent claims may be combined with those of the
independent claims and features from respective indepen-
dent claims may be combined in any appropriate manner and
not merely in the specific combinations enumerated in the
appended claims.

What is claimed is:

1. A method, comprising;

maintaining, by a database node, a data structure used to

encode a plurality of database keys, wherein the data
structure includes a plurality of levels, each of which
includes a character-addressable matrix that encodes
transitions between characters;

inserting, by the database node, a database key into the

data structure, wherein the database key comprises a
series of characters with a plurality of transitions
between two successive characters, wherein the insert-
ing includes encoding the plurality of transitions across
the plurality of levels such that different ones of the
plurality of transitions are encoded in different ones of
the plurality of levels, and wherein a given transition is
encoded by setting, in a character-addressable matrix
that corresponds to the given transition, an indication at
a matrix location addressed using the two successive
characters of the given transition; and

maintaining, in association with the indication by the

database node, lineage information that specifies a set
of database key lineages, a given one of which specifies
one or more characters of a particular inserted database
key that precede the two successive characters that are
also in that particular inserted database key.

2. The method of claim 1, wherein the lineage information
is stored separately from the plurality of levels that include
the indication, and wherein the indication is a pointer that
identifies a location where the lineage information is stored.

3. The method of claim 1, wherein each database key
lineage maintained in association with the data structure
identifies a same number of characters.

4. The method of claim 1, wherein the indication, for the
two successive characters, corresponds to at least two dif-
ferent database keys that have been inserted into the data
structure.

5. The method of claim 4, wherein the set of database key
lineages includes a respective database key lineage for each
of the at least two different database keys.

25

30

40

45

60

65

18

6. The method of claim 1, further comprising:

sending, by the database node to a second database node,
the data structure to enable the second database node to
determine whether to request a database record from
the database node; and

receiving, by the database node from the second database

node, a second data structure that enables the database
node to determine whether to request a database record
from the second database node.
7. The method of claim 6, further comprising:
determining, by the database node, whether to request a
database record for a particular database key, wherein
the determining includes:
determining whether the second data structure includes
levels that store indications that are indicative of
transitions between successive characters included in
the particular database key; and
in response to determining that the second data structure
includes levels storing indications that are indicative of
the transitions between successive characters included
in the particular database key, the database node send-
ing a request to the second database node for a database
record associated with the particular database key.
8. The method of claim 7, wherein the determining
whether to request a database record further includes:
calculating a plurality of database key lineages that cor-
respond to the transitions between successive charac-
ters included in the particular database key; and

comparing the plurality of database key lineages against
database key lineages maintained in association with
the indications.

9. The method of claim 1, wherein the inserting includes:

storing, in a corresponding level of the plurality of levels,

an indication that is indicative of a transition from a last
character of the series of characters to a terminal
character separate from the series of characters.

10. A non-transitory computer readable medium having
program instructions stored thereon that are capable of
causing a computer system to perform operations compris-
ing:

writing a database record to a particular location;

inserting a database key associated with the database

record into a data structure, wherein the database key
comprises a series of characters with a plurality of
transitions between two successive characters, wherein
the data structure includes a plurality of levels, each of
which includes a character-addressable matrix that is
capable of encoding one of the plurality of transitions,
and wherein the inserting includes:
encoding the plurality of transitions across the plurality
of levels such that different ones of the plurality of
transitions are encoded in different ones of the plu-
rality of levels, wherein a given transition is encoded
by setting, in the character-addressable matrix that
corresponds to the given transition, an indication at
a matrix location addressed using the two successive
characters of the given transition;

maintaining lineage information in association with the

indication, wherein the lineage information specifies a
set of database key lineages, a given one of which
specifies one or more characters of a particular inserted
database key that precede the two successive characters
that are also in that particular inserted database key;
and

sending, to another computer system, the data structure to

enable the other computer system to determine whether
to request a database record from the particular loca-
tion.

US 11,829,398 B2

19

11. The non-transitory computer readable medium of
claim 10, wherein the indication identifies the lineage infor-
mation.

12. The non-transitory computer readable medium of
claim 10, wherein the operations further comprise:

prior to inserting the database key into the data structure,

allocating the data structure such that a particular
character-addressable matrix in the plurality of levels
has a particular memory size;

prior to sending the data structure to the other computer

system, performing a compression operation on the

data structure, wherein the compression operation

includes:

determining that a memory size of data written to the
particular character-addressable matrix does not con-
sume a threshold amount of the particular memory
size; and

replacing the particular character-addressable matrix
with particular data in another format, wherein the
particular data is indicative of the data written to the
particular character-addressable matrix.

13. The non-transitory computer readable medium of
claim 10, wherein the operations further comprise:

in response to inserting a threshold number of database

keys into the data structure, creating a second data
structure in which to insert subsequent database keys.

#* #* #* #* #*

25

20

