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EFFICACY AND / OR THERAPEUTIC 
PARAMETER RECOMMENDATION USING 

INDIVIDUAL PATIENT DATA AND 
THERAPEUTIC BRAIN NETWORK MAPS 

CROSS - REFERENCE TO RELATED 

APPLICATION ( S ) 
[ 0001 ] This application claims priority to U.S. Provisional 
Application No. 62 / 584,669 filed Nov. 10 , 2017 , which is 
incorporated herein by reference , in its entirety , for any 
purpose . 

TECHNICAL FIELD 

[ 0002 ] Examples described herein relate generally to neu 
ral therapy , and examples of predicting the efficacy and / or 
parameters of treatments , such as neurostimulation treat 
ment , are described . 

BACKGROUND 

[ 0003 ] Neurostimulation is an emerging promising 
therapy for neurological diseases including epilepsy , depres 
sion , Parkinson's disease , and Alzheimer's disease . How 
ever , currently there is no method to predict the efficacy of 
the therapy before implantation . In addition , because neu 
rological diseases vary among individual patients ( e.g. 
abnormal brain regions that cause seizure vary between 
epilepsy patients ) , repeated neurostimulation parameter 
adjustments are needed for each individual patient to iden 
tify his / her most effective stimulation setting . This long 
tedious parameter adjustment process has largely increased 
the medical care cost and causes frustration for both physi 
cian and patients . It has also reduced the overall efficacy of 
the neurostimulation therapy because many negative cases 
are results of early termination of the parameter adjustment . 

[ 0010 ] In some examples , methods may include repeat 
edly multiplying each convolution kernel with the individual 
patient data and the therapeutic brain network response map , 
and storing results as pixels in a plurality of feature maps . 
[ 0011 ] In some examples , the statistical prediction model 
may include a deep convolutional neural network comprises 
stacked convolution , rectified linear unit , and pooling layers 
configured to extract further features from the feature maps . 
[ 0012 ] In some examples , methods may include predicting 
the efficacy based on the further features from the feature 
maps . 
[ 0013 ] In some examples , methods may include predicting 
parameters for the treatment using the statistical prediction 
model . 

[ 0014 ] In some examples , the treatment includes vagus 
nerve stimulation and the neural status may be a seizure . 
[ 0015 ] In some examples , the individual patient data of the 
neural status comprises data of epileptiform spike or seizure 
network image indicative of brain regions in a seizure 
generation and propagation and pathways between these 
regions . 
[ 0016 ] In some examples , obtaining the individual patient 
data of the neural status comprises using an electroencepha 
logram ( EEG ) or magnetoencephalogram ( MEG ) , and 
obtaining the therapeutic brain network response map com 
prises using functional magnetic resonance imaging ( fMRI ) , 
positron emission tomography ( PET ) , and / or single - photon 
emission computed tomography ( SPECT ) . 
[ 0017 ] In some examples , obtaining the individual patient 
data of the neural status includes using group averaged 
spikes and source localization , using spike ICA analysis and 
source localization , using seizure network analysis , or com 
binations thereof . 
[ 0018 ] In some examples , obtaining the individual patient 
data includes projecting data onto a brain space , identifying 
brain regions that are involved in the neural status , calcu 
lating pathways between seizure brain regions , or combina 
tions thereof . 

[ 0019 ] In some examples , the therapeutic brain network 
respon map corresponds to a brain response to the treat 
ment using a certain set of parameters . 
[ 0020 ] Examples of systems are described herein . An 
example system may include at least one processor , and 
computer readable media encoded with instructions that , 
when executed by the at least one processor , cause the 
system to provide image data of a neural status of a patient 
and a therapeutic brain network response map as inputs to a 
statistical prediction model for a treatment , and predict an 
efficacy of the treatment using the statistical prediction 
model . 

[ 0021 ] In some examples , the statistical prediction model 
may include convolution kernels configured to extract fea 
tures from the individual patient data of the neural status and 
the therapeutic brain network response map . 
[ 0022 ] In some examples , values in the convolution ker 
nels are learned during a training of the statistical prediction 
model for the treatment . 
[ 0023 ] In some examples , the instructions may further 
cause the system to repeatedly multiply each convolution 
kernel with the individual patient data and the therapeutic 
brain network response map , and store results as pixels in a 
plurality of feature maps . 
[ 0024 ] In some examples , the statistical prediction model 
may include a deep convolutional neural network comprises 

SUMMARY 

[ 0004 ] Examples of methods are described herein . An 
example method includes obtaining individual patient data 
of a neural status of a patient , obtaining a therapeutic brain 
network response map of a treatment , and predicting an 
efficacy of the treatment for the patient based on a compari 
son of the data of the neural status and the brain network 
response map . 
[ 0005 ] In some examples , predicting the efficacy of the 
treatment may include providing the individual patient data 
and the therapeutic brain network response map as inputs to 
a statistical prediction model for the treatment , and predict 
ing the efficacy of the treatment using the statistical predic 
tion model . 
[ 0006 ] In some examples , the statistical prediction model 
may include feature extraction techniques configured to 
extract features from the individual patient data regarding 
neural status and the brain network response map . 
[ 0007 ] In some examples , the features may include an 
overlap area between the individual patient data and the 
brain network response map . 
[ 0008 ] In some examples , the statistical prediction model 
may include convolution kernels configured to extract fea 
tures from the individual patient data of the neural status and 
the therapeutic brain network response map . 
[ 0009 ] In some examples , values in the convolution ker 
nels are learned during a training of the statistical prediction 
model for the treatment . 
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stacked convolution , rectified linear , and pool layers con 
figured to extract further features from the feature maps . 
[ 0025 ] In some examples , the instructions may further 
cause the system to predict the efficacy based on the further 
features from the feature maps . 
[ 0026 ] In some examples , the instructions may further 
cause the system to predict parameters for the treatment 
using the statistical prediction model . 
[ 0027 ] In some examples , the treatment may include 
vagus nerve stimulation and the neural status may be a 
seizure . 
[ 0028 ] In some examples , data of the neural status com 
prises data of an epilepsy source image indicative of a 
seizure origin . 
[ 0029 ] In some examples , systems may include an elec 
troencephalogram ( EEG ) system coupled to the at least one 
processor or a magnetoencephalogram ( MEG ) system 
coupled to the at least one processor and configured to 
provide the image data , and a functional magnetic resonance 
imaging ( MRI ) system coupled to the at least one processor 
and configured to provide the therapeutic brain network 
map . 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0030 ] FIG . 1 is a schematic illustration of a system 
arranged in accordance with examples described herein . 
[ 0031 ] FIG . 2 illustrates a statistical prediction model 
process 200 in accordance with examples described herein . 
[ 0032 ] FIG . 3 illustrates a statistical prediction model 
process 300 in accordance with examples described herein . 
[ 0033 ] FIG . 4 illustrates an image set 400 in accordance 
with examples described herein . 
[ 0034 ] FIG . 5 is a schematic illustration of epileptiform 
spike or seizure network analysis in accordance with 
examples described herein . 
[ 0035 ] FIG . 6 illustrates a pixelwise feature extraction 
model for neurostimulation efficacy prediction arranged in 
accordance with examples described herein . 

utilized instead of the scalp recorded electric potential time 
series so that the recorded brain activity can be estimated on 
or inside the brain instead of on the scalp in some examples . 
Brain network analysis may also be utilized so that the brain 
regions involved in the neurological disease and the path 
ways between these regions can be estimated . In some 
examples , brain network response maps induced by a treat 
ment ( e.g. , neurostimulator ) are also acquired for the pre 
diction , which contains information of the neurostimulation 
mechanisms and can further improve the prediction accu 
racy . The therapeutic brain network response map can be 
acquired by techniques such as , but not limited to , whole 
brain imaging techniques such as the functional magnetic 
resonance imaging ( fMRI ) , positron emission tomography 
( PET ) , and / or single - photon emission computed tomogra 
phy ( SPECT ) . 
[ 0039 ] Examples described herein may provide efficacy 
and / or parameter prediction services . One or more patient's 
EEG recordings may be received . Epileptiform spike ( s ) 
and / or seizure network ( s ) for the patients may be analyzed 
and a statistical prediction model may be applied to predict 
a treatment efficacy based on features that compare the 
disease state images ( e.g. , epileptiform spike ( s ) or seizure 
network image ( s ) ) and representative fMRI brain network 
response maps for a therapy . The predicted efficacy and 
suggested parameters may then be provided . With this 
service , long neurostimulation parameter adjustment pro 
cesses for therapies can be eliminated and / or reduced , suc 
cess rate of therapy can be improved , and unnecessary 
implantations or other interventions may be avoided . 
[ 0040 ] Examples described herein may go beyond simply 
predicting with epilepsy Types or spikes sources , rather , 
both EEG disease state image and fMRI brain network 
response maps may be utilized by the statistical prediction 
model , where the disease state image ( e.g. spike and / or 
seizure network image ( s ) ) may be indicative of the cause 
and / or evolution of a patient disease status ( e.g. a seizure ) , 
and the fMRI maps may be indicative of the therapeutic 
activities induced by the therapy ( e.g. , vagus nerve stimu 
lation ( VNS ) ) . By comparing the two , how VNS affects the 
seizure generation and / or propagation may be analyzed and 
the prediction accuracy may be significantly improved . In 
some examples , a deep neural network may be applied to 
autonomously learn optimal features from the disease state 
image ( e.g. , EEG spike ( s ) and / or seizure network image ( s ) ) 
and the fMRI brain network response maps . While simple 
features such as a pixel - wise comparison between the EEG 
and fMRI maps can be utilized , weighting brain regions 
differently in EEG and fMRI maps may also be utilized for 
accurate prediction . DNN offers an opportunity to extract 
features autonomously , which may be more optimal than 
manually designed features . In some examples , only clinical 
routine status data ( e.g. , epilepsy EEG recordings ) may be 
needed from the patients for the therapy ( e.g. , VNS ) efficacy 
prediction , which may save the patients from additional 
examinations . Generally , many patients without dramatic 
brain damage may share similar brain network response to 
therapy and the therapeutic brain network response maps 
can also be fixed in the model . 
[ 0041 ] Examples described herein may utilize compari 
sons of patient brain status data and brain network maps of 
treatments to predict efficacy of a treatment and / or predict 
parameters for use in the treatment of a neurological con 
dition . In some examples , statistical prediction models are 

DETAILED DESCRIPTION 

[ 0036 ] Certain details are set forth below to provide a 
sufficient understanding of described embodiments . How 
ever , it will be clear to one skilled in the art that embodi 
ments may be practiced without these particular details . In 
some instances , well - known brain imaging techniques and 
systems , circuits , control signals , timing protocols , and / or 
software operations have not been Shown in detail in order 
to avoid unnecessarily obscuring the described embodi 
ments . 

[ 0037 ] Examples of systems and methods described herein 
may predict the efficacy of a treatment ( e.g. , neurostimula 
tion , drugs , cell therapy , gene therapy ) , which may aid in 
avoiding unnecessary treatment ( e.g. , neurostimulation 
implant surgery ) . Examples of systems and methods 
described herein may predict the most effective treatment 
parameters ( e.g. , stimulation parameters ) for each individual 
patient before or after surgery to avoid long tedious stimu 
lation parameter adjustment process . 
[ 0038 ] Examples described herein may utilize a statistical 
prediction model , which may be based on brain source 
imaging and / or brain network analysis . Brain source imag 
ing , such as imaging using source localized electroencepha 
logram ( EEG ) and magnetoencephalogram ( MEG ) may be 
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used to perform the comparison and / or prediction . The 
comparisons and statistical prediction models described 
herein may be implemented in hardware , software , or com 
binations thereof . For example , software may be used to 
implement a comparison and / or a statistical prediction 
model . The software may be programmed on one or more 
computing systems . For example , one or more processors 
may be coupled to computer readable media , which may 
encode executable instructions for one or more statistical 
prediction models for treatments . 
[ 0042 ] FIG . 1 is a schematic illustration of a system 
arranged in accordance with examples described herein . The 
system 100 includes individual patient data 102 , therapeutic 
brain network map 104 , computing system 106 , processor ( s ) 
108. executable instructions for statistical prediction model 
for treatment 110 , memory 112 , display 114 , network inter 
face ( s ) 116 , and treatment device ( s ) 118. Additional , fewer , 
and / or other components may be used in other examples . 
[ 0043 ] Examples described herein may utilize data of a 
patient's neural status ( e.g. , image data relating to a neuro 
logical event ) , such as individual patient data 102 of FIG . 1 . 
Individual patient data relating to any of a variety of neural 
events may be used , including , but not limited to , a seizure 
( e.g. , an epileptic seizure ) , Parkinson's condition , Alzheim 
er's condition , or depression . For example , the individual 
patient data may be associated with an epileptiform spike 
source image illustrating the origin of a seizure and / or a 
seizure network image illustrating brain regions involved in 
a seizure and pathways between these regions ( e.g. , 
sequence of the seizure activity ) . The individual patient data 
may be obtained , for example , using source localization 
and / or brain network analysis of electroencephalogram 
( EEG ) and / or magnetoencephalogram ( MEG ) . Generally , 
EEG refers to a functional neuroimaging method that detects 
brain electrical activities using non - invasive or invasive 
electrodes . Generally . MEG refers to a functional neuroim 
aging method that Measures electromagnetic field changes 
around the brain to map brain activities . Source localization 
images generally refer to the use of multiple brain electrical 
signals measured outside of brain to identify the electrical 
activity on and / or inside the brain . Brain network analysis 
generally refers to the use of mathematical and statistical 
algorithms to identify brain regions involved in the brain 
electrical activity ( such as a seizure ) and the pathways 
among these regions ( such as the sequence of seizure 
activity ) . 
[ 0044 ] The individual patient data may correspond to a 
1 - dimensional time series , 2 - dimensional or 3 - dimensional 
image . In some examples , one set of individual patient data 
102 may be used , e.g. , corresponding to an image of a brain 
undergoing a neural event . In some examples , multiple sets 
of individual patient data 102 may be used , e.g. , correspond 
ing to multiple images of the brain undergoing several neural 
events . Generally , the individual patient data 102 used may 
be from the patient to be treated . 
[ 0045 ] An example of generating individual patient data 
102 using EEG epileptiform spikes will now be described 
with reference to FIG . 1 and FIG . 5. FIG . 5 is a schematic 
illustration of epileptiform spike or seizure network analysis 
in accordance with examples described herein . The process 
and data shown in FIG . 5 may be collected and / or manipu 
lated by the system of FIG . 1 in some examples . EEG 
generally refers to a method that is used to record brain 
electrical activities from the scalp . It is may be used in 

epilepsy diagnosis , for example , to detect epileptiform 
spikes and seizures . During an epilepsy EEG monitoring 
session , brain signals of an epilepsy patient may be con 
tinuously monitored using multiple electrodes . FIG . 5 
includes a schematic illustration of a patient fitted with 
electrodes for a multi - channel EEG recording , EEG 501 . 
Generally any number or placement of electrodes may be 
used . The EEG recording may generate data , such as epi 
leptiform spikes 502 and / or seizure data 511 shown in FIG . 
5. Other or different EEG data may also be generated in . 
some examples . Abnormal epileptiform spikes 502 may be 
marked , for example , by professional EEG readers . These 
epileptiform spikes 502 may be related to the seizure gen 
eration and the source of these spikes may indicate abnormal 
brain regions . In the epilepsy EEG analysis , a scalp potential 
map at the peak ( or other locations ) of an epileptiform spike 
may be first computed . Then , based on an inverse electrical 
brain signal propagation model , the source of the spike on or 
inside the brain can be identified . Multiple EEG source 
localization algorithms may be used , such as linear distrib 
uted algorithms including minimum norm least squares 
( MNLS ) , dynamic statistical parametric mapping ( dSPM ) , 
low - resolution brain electromagnetic tomography ( LO 
RETA ) , standardized LORETA ( SLORETA ) , exact 
LORETA ( ELORETA ) , etc. , and dipole source localization 
algorithms such as non - linear least square , beamforming , 
multiple signal classification ( MUSIC ) , etc. 
[ 0046 ] In one example , a raw EEG recording may be first 
filtered with a bandpass filter ( e.g. , a 0.1 to 70 Hz bandpass 
filter ) and a notch filter ( e.g. , a 60 Hz notch filter ) to remove 
unwanted noise . The simultaneous EKG recording may then 
be analyzed to help identify cardiac artifacts in the EEG 
recordings . The cardiac artifacts may then be eliminated 
and / or reduced using algorithms such as the Signal - Space 
Projection ( SSP ) or Independent Component Analysis 
( ICA ) . After the preprocessing , epileptiform spikes may be 
identified manually by a professional EEG reader or auto 
matically using software ( e.g. Persyst P13 , BESA epilepsy ) 
from the EEG recording . In some examples , a professional 
EEG reader may then review and verily the software 
detected spike selection . 
[ 0047 ] Two different types of spike source localization 
analyses may be applied to the selected spikes for each 
patient . For the first analysis , individual spikes are catego 
rized by the EEG channel that has the largest amplitude at 
the spike peak , as shown by operation 503 in FIG . 5. For 
example , if certain spike shows the highest amplitude at T3 
channel , it is marked as a T3 spike . Other categorization 
methods may additionally or instead be used . Spikes within 
each category may then be averaged , to provide averaged 
spikes 504. Source localization analysis 505 may be per 
formed for the averaged spikes 504. One or multiple aver 
aged spike sources 506 can then be identified and may be 
used as all or part of individual patient data 102. The spike 
sources generally refer to an identification of one or more 
regions of a brain and / or brain network which may contrib 
ute to the cause of one or more seizures . The executable 
instructions 110 of FIG . 1 may include executable instruc 
tions for performing categorization ( e.g. , operation 503 of 
FIG . 5 ) and / or source localization ( e.g. , operation 505 of 
FIG . 5 ) . 
[ 0048 ] Instead of or in addition to averaging spikes , in a 
second analysis , independent component analysis ( ICA ) 
may be applied to identify independent spike sources . ICA 
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is shown as operation 507 in FIG . 5. Spikes identified for 
each subject may be first analyzed using spatial ICA . Mul 
tiple ICA components 508 may include spatial and temporal 
sub - components which may be identified , where each may 
represent a possible independent spike electrical potential 
map . The ICA weight across time may then be visualized 
( e.g. , displayed , such as by using display 114 of FIG . 1 ) to 
verify if the corresponding ICA map is originated from spike 
or noise . For example , ICA component 0 and 1 may show a 
high peak during the spike discharge for most of the spike 
epochs , while ICA component 2's weight changing across 
time shows a noisy pattern . Therefore , only ICA component 
O and 1 are independent spike sources , while ICA compo 
nent 2 is noise . After the ICA analysis . ICA spatial maps may 
then be fed into the source localization algorithm , shown as 
operation 509 in FIG . 5 , to identify the corresponding spike 
network 510. Such spike network 510 data may be used as 
all or part of individual patient data 102 of FIG . 1. The 
executable instructions 110 of FIG . 1 may include execut 
able instructions for performing ICA analysis ( e.g. , opera 
tion 507 of FIG . 5 ) and / or source localization and spike 
network analysis ( e.g. , operation 510 of FIG . 5 ) . 
[ 0049 ] In some examples , alternatively or additionally , 
seizure network analysis may be used for generating indi 
vidual patient data using EEG , such as individual patient 
data 102 of FIG . 1. EEG recordings from the multi - channel 
EEG recording 501 are shown as seizure EEG 511 of FIG . 
5. One or multiple episodes of seizure in the seizure EEG 
511 may be annotated either manually and / or by a profes 
sional EEG reader or automatically by software ( e.g. Persyst 
P13 , BESA epilepsy ) . Episode ( s ) of seizure within a long 
seizure EEG may be extracted and preprocessed analogous 
to that shown and described with respect to methods using 
ICAs , e.g. , bandpass filtering , notch filtering , noise and / or 
artifact suppression may be used . The preprocessed seizure 
EEG 511 may be source localized onto the brain using 
source localization methods analogous to those described 
with respect to methods using group averages and / or ICAs . 
A sequence of source localized seizure data 512 in the brain 
space can be provided . The source localized seizure data 
may include an association , over time , between particular 
brain regions and brain activity ( e.g. , seizure activity ) . 
[ 0050 ] Seizure network analysis may be performed with 
one or multiple of the source localized seizure data 512 ( e.g. , 
one or more collections of data representing all or portions 
of a brain at a particular time ) . During the analysis , brain 
regions that the seizure started at and propagated to may be 
identified . This identification algorithm may first calculate 
the variance across the time for brain voxels in the source 
localized space , then search for local variance maximums 
across brain voxels to provide a variance map 513. The 
variance map 513 may provide the brain signal variance at 
particular brain locations and / or regions . Brain regions 
involved during the seizure , e.g. , seizure brain regions 514 
can be computed as regions that are local maximums in the 
variance map 513. For example , regions having a greatest 
variance across the neighboring brain regions may be deter 
mined to be the center of the seizure brain regions . 
[ 0051 ] In a more generalized scenario , source localized 
seizure episodes may first be segmented into overlapping 
epochs ( overlapping window analysis ) , and the same vari 
ance local maximum calculation can be performed to iden 
tify brain regions involved during each epoch of the seizure . 
Brain regions that are consistently involved across all sei 

zure epochs can then be identified by averaging or statistical 
testing across all brain regions estimated from the seg 
mented seizure epochs . 
[ 0052 ] EEG source localized time - series data for each 
brain region identified as a seizure brain region may be 
extracted . For example , the time - series data of seizure brain 
regions 515 of FIG . 5 may be extracted by extracting data 
from the source localized seizure data 512 which corre 
sponds to seizure brain regions 514. Accordingly , the time 
series data of seizure brain regions 515 may correspond to 
EEG data associated with regions of the brain active during 
seizure . Pathways between these brain regions may be 
analyzed together with these time - series . For example , a 
connectivity analysis may be used to identify one or more 
seizure pathways , e.g. , seizure pathway 516 , which may 
indicate connections between brain regions which may be 
involved in producing , sustaining , and / or ending a seizure 
event . Seizure pathway analysis methods which may be used 
include correlation , coherence , imaginary coherence , phase 
locking value , auto - aggressive modeling , and / or partial 
directed coherence . Other analysis methods may also be 
used . The executable instructions 110 of FIG . 1 may include 
executable instructions for performing source localization 
( e.g. , providing source localized seizure data 512 of FIG . 5 ) 
and / or variance calculation , maximum search , time - series 
extraction , and / or connectivity analysis ( e.g. , providing vari 
ance map 513 of FIG . 5 , providing seizure brain regions 514 
of FIG . 5 , providing time - series of seizure brain regions 515 
of FIG . 5 , and / or providing seizure pathway 516 of FIG . 5 ) . 
Seizure brain regions 514 , seizure pathway 516 , time - series 
of seizure brain regions 515 , and / or other data shown or 
described with reference to FIG . 5 may be used as all or part 
of individual patient data 102 of FIG . 1 . 
[ 0053 ] Other metrics may be used additionally to or 
instead of spike source localization and seizure network 
analysis results include . Other metrics include , but are not 
limited to spike propagation network map , ICA - based sei 
zure source localization map , which may also or instead be 
used as all or part of individual patient data 102 . 
[ 0054 ] Examples described herein may utilize one or more 
brain network response maps , such as therapeutic brain 
network map 104 of FIG . 1 , Brain network response maps 
described herein may refer to image data of brain responses 
to a treatment utilizing a certain set of treatment parameters . 
The brain network response maps , such as therapeutic brain 
network map 104 , may be obtained using functional mag 
netic resonance imaging ( fMRI ) , positron emission tomog 
raphy ( PET ) , and / or single - photon emission computed 
tomography ( SPECT ) . fMRI generally refers to a method 
that indirectly measures brain activities by using blood 
oxygen level changes . The therapeutic brain network 
response maps may be 2 - dimensional or 3 - dimensional , and 
in some examples may be aligned to the individual patient 
data 102 ( e.g. , aligned to an epilepsy spike or seizure 
network image ) . Any number of therapeutic brain network 
maps may be used . Generally , multiple brain network maps 
may be used which correspond to different sets of param 
eters for the treatment ( e.g. , one set of parameters may be 
used to generate one brain network map , and another set of 
parameters may be used to generate another brain network 
map ) . In some examples , one or more of the brain network 
maps , such as therapeutic brain network map 104 may be 
from the patient ( e.g. , a same patient as associated with the 
individual patient data 102 ) . However , in some examples , 
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one or more of the brain network maps may be wholly 
and / or partially derived from data from other patients other 
than the patient being treated ( e.g. , other than the patient 
from whose brain activity the individual patient data 102 is 
derived ) . In some examples , one or more brain network 
maps represent an average or other combination of maps 
from a group of patients or maps measured for a specific 
patient . For example , one of the brain network maps may be 
a brain network map that is a combination ( e.g. average ) of 
multiple brain network maps from different patients using 
same therapeutic parameters ( e.g. , frequency , amplitude , 
duration ) . In some examples utilizing neurostimulation 
therapy , if a patient has not been implanted , then brain 
network maps or combinations of brain network maps from 
other patients may be used . If a patient has been implanted , 
brain network maps associated with the patient may be used , 
or may be used in combination with other brain network 
maps . The brain network response maps , such as therapeutic 
brain network map 104 , generally illustrate areas of brains 
affected by a treatment . 
[ 0055 ] An example of fMRI used to obtain a therapeutic 
brain network map may now be described . Generally , func 
tional magnetic resonance imaging is a method that enables 
whole brain activity monitoring using blood oxygen level 
changes . fMRI may be utilized herein record the therapeutic 
brain activities induced by one or more therapies , such as 
neurostimulations vagus nerve stimulation ) . In a patient with 
a neurostimulator , the neurostimulator may be programmed 
to one of the parameter settings under - investigation and the 
patient may then be scanned using an MRI scanner . During 
the image pre - processing , fMRI is motion corrected and 
aligned to a standard template brain . Brain activities that are 
related to the designed therapy ( e.g. , neurostimulation ) will 
then be statistically analyzed using the general linear model 
( GLM ) or other equivalent fMRI analysis method . Multiple 
subjects may be scanned and the average response of the 
targeting population group may be concluded and may be 
used as one or more of the brain network maps described 
herein , such as therapeutic brain network map 104 . 
[ 0056 ] In addition to or instead of an averaged fMRI map , 
other potential metrics may be used to quantify the thera 
peutic function of the therapy ( e.g. , neurostimulation ) . For 
example , these metrics include but not limited to quantifying 
the frequency of how often each region becomes active in 
fMRI during the neurostimulation , and the group t - test 
statistics map of the individual fMRI maps . 
[ 0057 ] Brain network maps may generally be provided 
relating to any of a number of treatments including , but not 
limited to , neurostimulation therapies ( e.g. , vagus nerve 
stimulation ( VNS ) , responsive neurostimulation ( RNS ) , 
transcranial magnetic stimulation ( TMS ) , and deep brain 
stimulation ( DBS ) ) , pharmaceutical therapies , and / or talk or 
experiential therapies . Generally , neurostimulation may 
refer to therapy for treating neurological and psychiatric 
diseases . Electrical stimulation may be utilized its neuro 
stimulation therapy to directly or indirectly activate or 
inhibit brain networks . In some examples , brain network 
maps may be provided associated with a particular set of 
parameters of the stimulation ( e.g. for a certain stimulation 
frequency and amplitude for neurostimulation , or for a 
certain dosage and frequency of pharmaceutical therapy ) . 
Vagus nerve stimulation ( VNS ) generally refers to one type 
of neurostimulation . In VNS , a stimulator is implanted under 
skin and sends electrical pulses through the left vagus nerve . 

VNS may be used for drug resistant epilepsy , depression , 
and many other neurological and psychiatric diseases . While 
some examples may be described herein with reference to 
VNS , it is to be understood other therapies may additionally 
or instead be used . 
[ 0058 ] The individual patient data 102 and / or therapeutic 
brain network map 104 may be stored in a memory acces 
sible to the computing system 106 and / or transmitted to the 
computing system 106 ( e.g. , using wired or wireless com 
munication ) . The computing system 106 may be configured 
to predict an efficacy of a treatment and / or parameters for 
use in a treatment based on a comparison and / or statistical 
prediction model for the treatment . 
[ 0059 ] Examples described herein may utilize computing 
systems , which may generally include hardware and / or 
software for implementing comparisons and / or statistical 
prediction models for treatments . For example , the comput 
ing system 106 may include one or more processor ( s ) 108 . 
The processor ( s ) 108 may be implemented , for example , 
using one or more central processing units ( CPUs ) , graphi 
cal processing units ( GPUs ) , application - specific integrated 
circuits ( ASICs ) , field programmable gate arrays ( FPGA ) , or 
other processor circuitry . The processor ( s ) 108 may be in 
communication with memory 112. The memory 112 may 
generally be implemented by any computer readable media 
( e.g. , read - only memory ( ROM ) , random access memory 
( RAM ) , flash , solid state drive , etc. ) . While a single memory 
112 is shown , any number may be used , and they may be 
integrated with the processor ( s ) 108 in a single computing 
system 106 and / or located within another computing system 
and in communication with processor ( s ) 108 . 
[ 0060 ] The memory 112 may be encoded with executable 
instructions for a comparison of the individual patient data 
102 with the therapeutic brain network map 104. Examples 
of comparisons described herein include evaluating an over 
lap between the brain activity evidenced by the individual 
patient data 102 and the areas of the brain affected by the 
treatment at the parameters used to generate the therapeutic 
brain network map 104. Generally , for many treatments , 
overlap of the areas of the brain affected as shown in the 
individual patient data 102 and areas of the brain accessed 
by treatment as shown in therapeutic brain network map 
104 , may indicate that the treatment at the parameters used 
for therapeutic brain network map 104 may be effective in 
treating the patient having the individual patient data 102 . 
[ 0061 ] In some examples , the executable instructions for 
comparison may include executable instructions for statis 
tical prediction model for treatment 110. In some examples , 
the executable instructions for statistical prediction model 
for treatment 110 includes instructions for implementing 
deep artificial neural network with convolution kernels 
configured to extract features from image data ( e.g. Indi 
vidual patient data 102 ) of the neural status and one or more 
brain network response maps ( e.g. , therapeutic brain net 
work map 104 ) . Values in the convolution kernels may in 
some examples be learned during a training of the statistical 
prediction model for the treatment . 
[ 0062 ] The executable instructions for statistical predic 
tion model for treatment 110 may include instructions for 
repeatedly multiplying each convolution kernel with the 
individual patient image data and the therapeutic brain 
network response map , and storing results as pixels in a 
plurality of feature maps . The statistical prediction model 
may include a deep convolutional neural network comprises 
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stacked convolution , rectified linear , and pooling layers 
configured to extract further features from the feature maps . 
The executable instructions for statistical prediction model 
for treatment 110 may include instructions for predicting the 
efficacy of the treatment based on the further features from 
the feature maps . 
[ 0063 ] In some examples , the executable instructions for 
statistical prediction model for treatment 110 may include 
instructions for predicting parameters for the treatment using 
the statistical prediction model . For example , therapeutic 
brain network maps input into computing system 106 may 
include brain network maps relevant to use of the treatment 
at different parameters . The statistical prediction model may 
accordingly recommend parameters for the treatment ( e.g. , 
amplitude , frequency , duration , dosage , etc. ) . The output of 
the computing system operating in accordance with the 
executable instructions for statistical prediction model for 
treatment 110 may be a treatment efficacy and / or recom 
mended parameters . For example , where the statistical pre 
diction model predicts the treatment will be effective , rec 
ommended parameters may be output . If the statistical 
prediction model predicts the treatment will not be effective , 
then “ not effective ” may be reported . Note that multiple 
individual patients may be evaluated using the statistical 
prediction model . In this manner , computing system 106 
may facilitate faster and more accurate predictions of treat 
ment efficacy and parameters settings across patient popu 
lations than possible using previous systems or with unaided 
physician evaluation of patient records . 
[ 0064 ] In some examples , the system 100 may include 
display 114 , which may be in communication with comput 
ing system 106 ( e.g. , using a wired and / or wireless connec 
tion ) , or the display 114 may be integrated with the com 
puting system 106. The display 114 may display a predicted 
efficacy of a treatment and / or recommended parameters for 
a treatment based on the comparison and / or statistical model 
implemented by the computing system 106. Any number or 
variety of displays may be present , including one or more 
LED , LCD , plasma , or other display devices . 
[ 0065 ] In some examples , the system 100 may include 
network interface ( s ) 116. The network interface ( s ) 116 may 
provide communication interface to any network ( e.g. , 
LAN , WAN , Internet ) . The network interface ( s ) 116 may be 
implemented using a wired and / or wireless interface ( e.g. , 
Wi - Fi , BlueTooth , HDMI , USB , etc. ) . The network interface 
( s ) 116 may communicate data regarding the predicted 
efficacy of a treatment and / or recommended parameters for 
a treatment based on the comparison and / or statistical model 
implemented by the computing system 106 . 
[ 0066 ] In some examples , the system 100 may include one 
or more treatment device ( s ) 118. The treatment device ( s ) 
118 may be implemented using , for example , systems 
capable of neurostimulation ( e.g. , vagus nerve stimulation 
systems ) . The treatment device ( s ) 118 may be implemented 
using , for example , systems capable of administering phar 
maceutical treatment ( e.g. , injection devices , pill dispensers , 
etc. ) . The treatment device ( s ) 118 may be programmed or 
otherwise configured to implement a treatment and / or utilize 
treatment parameters recommended by the computing sys 
tem 106. The treatment device ( s ) 118 may communicate 
with computing system 106 in some examples using net 
work interface ( s ) 116 . 
[ 0067 ] FIG . 2 illustrates a statistical prediction model 
process 200 in accordance with examples described herein . 

The statistical prediction model process 200 includes indi 
vidual patient data 202 , therapeutic brain network map 204 , 
therapeutic brain network map 206 , therapeutic brain net 
work map 208 , feature map 210 , and convolution , rectified 
linear unit , and pooling layers 212. The executable instruc 
tions for statistical prediction model for treatment 110 of 
FIG . 1 may be used in some examples to implement the 
statistical prediction model process 200 shown in FIG . 2 . 
[ 0068 ] As shown , individual patient data 202 ( which may 
be implemented by and / or used to implement individual 
patient data 102 of FIG . 1 ) is provided as an input . As 
discussed herein , the individual patient data may generally 
be related to an image of a patient brain status . The indi 
vidual patient data may , for example , illustrate a brain region 
where seizure originates from , regions where seizure propa 
gates or other neural event . The individual patient data 202 
may be data relating to an EEG spike or seizure network 
image . A number of brain network maps may also be 
provided as input , such as therapeutic brain network map 
204 , therapeutic brain network map 206 , and therapeutic 
brain network map 208 of FIG . 2. The brain network maps 
of FIG . 2 may be used to implement and / or may be imple 
mented by therapeutic brain network map 104 of FIG . 1 in 
some examples . The brain network maps may each represent 
the effect of a particular therapy ( e.g. , neurostimulation ) at 
different parameter values ( e.g. , frequency , amplitude , dura 
tion ) . The individual patient data 202 and therapeutic brain 
network maps may be compared . For example , a group of 
convolution kernels may be used to compare the individual 
patient data 202 and therapeutic brain network maps , result 
ing , in feature map 210. Parameters of the kernels may be 
learned during training of the statistical prediction model . 
The convolution kernels are used to automatically extract 
features between the individual patient data ( e.g. , epilepsy 
source image ) and the therapeutic brain network response 
maps . Each convolution kernel may be repeatedly multiplied 
with the input data and / or therapeutic brain network maps to 
compare the two and the results may be stored as pixels in 
multiple feature maps , such as feature map 210 . 
[ 0069 ] Next , a deep convolutional neural network may be 
used to further analyze the comparison ( e.g. , further analyze 
feature map 210 ) . Deep neural networks generally refer to a 
type of artificial neural network statistical model that may 
have ten to hundreds of layers for highly complex artificial 
intelligent tasks . In other examples , other models may be 
used . The deep convolutional neural network may utilize 
multiple convolution blocks , with each convolution block 
including multiple possible operations such as multi - kernel 
convolution , rectified linear unit , and ( max / average ) pool 
ing , as shown by convolution , RLU , and pooling layers 212 . 
The order of theses layers does not necessarily need to 
follow this order . These layers are designed to further extract 
features from feature maps previously generated . Multiple 
convolution blocks may be utilized until a final convolution 
block— " convolution block . P ” of FIG . 2 — is obtained . 
[ 0070 ] FIG . 3 illustrates a statistical prediction model 
process 300 in accordance with examples described herein . 
FIG . 3 may receive an input from the process of FIG . 
2 — e.g . , from a final convolution block of a neural network . 
FIG . 3 illustrates flattened data 302 , fully connected layer 
304 , rectified linear unit 305 , and prediction score ( s ) 306 . 
There may be multiple blocks of the fully connected and 
rectified linear unit layers 304 and 305. The executable 
instructions for statistical prediction model for treatment 110 
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may be used to implement all or portions of the statistical 
prediction model process 300 of FIG . 3 . 
[ 0071 ] The flattened data 302 may be generated by flat 
tening an output of the final convolution block of FIG . 2 The 
fully connected layer 304 may be used to shrink a number 
of features to the number of prediction categories . For 
example , each treatment may have a set of different possible 
parameter values for use . Each parameter set may represent 
one prediction category , plus there may be a category for 
overall efficacy of the treatment . As shown in FIG . 3 , 
parameter sets 1 - K may be evaluated . 
[ 0072 ] A softmax layer may be applied to normalize the 
output of the fully connected layer to [ 0 , 1 ] . A score may be 
calculated for each parameter set to provide prediction 
score ( s ) 306. A parameter set that meets certain criteria ( e.g. , 
highest ) may be taken as the output of the prediction . 
[ 0073 ] FIG . 4 illustrates an image set 400 in accordance 
with examples described herein . Graphically , an image 402 
associated with individual patient data is shown . The image 
402 may , for example , be an EEG spike or seizure network 
image , which may depict a seizure origin and its propagated 
brain regions . Therapeutic brain network map 404 and 
therapeutic brain network map 406 may be MARI images 
from other patient ( s ) having a particular treatment at par 
ticular parameter levels . Convolution of these data sets may 
result in feature maps feature map 408 and feature map 
410 , for example . The feature maps include information 
regarding a comparison of the individual patient data with 
therapeutic brain network maps . 
[ 0074 ] In some examples , other machine learning tech 
niques ( e.g. , non - deep neural network model ) may also or 
instead be used to form a statistical prediction model to 
predict the efficacy and optimal parameters for therapies . 
Different from examples of the deep neural network model , 
features may be manually designed in some examples . 
Example features will be described that can be applied to 
predict the efficacy and optimal therapeutic parameters for 
the neurostimulation therapy , although other features may 
also be used . These features could also be learned in the deep 
neural network model when it compares the fMRI and EEG 
images . 
[ 0075 ] One such feature is the overlap area between the 
EEG spike or seizure network image and the fMRI activa 
tion images . FIG . 6 is a schematic illustration of brain 
regions arranged in accordance with examples described 
herein . The seizure network image is shown are regions 601 . 
These regions , may for example , be seizure brain regions 
514 of FIG . 5 and / or seizure pathway 516. The fMRI 
activation image is shown are regions 602. The regions 602 
are those which are activated in a therapeutic brain network 
map described herein ( which regions may or may not 
participate in the patient's seizure regions identified herein ) . 
The overlap area , shown are regions 603 in FIG . 6 , between 
the EEG spike or seizure network image 601 ( e.g. , indi 
vidual patient data 102 ) and the fMRI activation image 602 
( e.g. , therapeutic brain network map 104 ) can be utilized as 
a feature vector 604 in a statistical prediction model to 
determine whether the stimulator works better with a par 
ticular parameter ( e.g. , 20 or 30 Hz stimulation ) . For 
example , there is an area on the upper left of FIG . 6 , where 
the seizure network 601 is fully contained within an active 
region of the fMRI activation images 602. Accordingly , that 
region may be indicated as 100 % . There is an area on the 
lower right where there is a 40 % overlap between the seizure 

network and the fMRI activation images . There is a further 
area on the lower left where there is a 0 % overlap between 
the seizure network 601 and the fMRI activation images . 
Accordingly , the feature vector 604 may be given as [ 100 % , 
40 % , 0 % ] . In one example , if the EEG spike or seizure 
network image has a larger overlap with the 20 Hz fMRI 
activation image than the 30 Hz , the 20 Hz neurostimulation 
may be predicted as preferred than the 30 Hz stimulation for 
this patient . 
[ 0076 ] In general , the overlap area feature can be calcu 
lated between any individual patient data 102 and the 
therapeutic brain network map 104 . 
[ 0077 ] From the foregoing it will be appreciated that , 
although specific embodiments have been described herein 
for purposes of illustration , various modifications may be 
made while remaining with the scope of the claimed tech 
nology . 

1. A method comprising : 
obtaining individual patient data of a neural status of a 

patient ; 
obtaining a therapeutic brain network response map of a 

treatment ; and 
predicting an efficacy of the treatment for the patient 

based on a comparison of the data of the neural status 
and the brain network response map . 

2. The method of claim 1 , wherein predicting the efficacy 
of the treatment comprises 

providing the individual patient data and the therapeutic 
brain network response map as inputs to a statistical 
prediction model for the treatment ; and 

predicting the efficacy of the treatment using the statistical 
prediction model . 

3. The method of claim 2 , wherein the statistical predic 
tion model comprises feature extraction techniques config 
ured to extract features from the individual patient data 
regarding neural status and the brain network response map . 

4. The method of claim 3 , wherein the features comprise 
an overlap area between the individual patient data and the 
brain network response map . 

5. The method of claim 2 , wherein the statistical predic 
tion model comprises : 

convolution kernels configured to extract features from 
the individual patient data of the neural status and the 
therapeutic brain network response map . 

6. The method of claim 5 , wherein values in the convo 
lution kernels are learned during a training of the statistical 
prediction model for the treatment . 

7. The method of claim 5 , further comprising repeatedly 
multiplying each convolution kernel with the individual 
patient data and the therapeutic brain network response map , 
and storing results as pixels in a plurality of feature maps . 

8. The method of claim 7 , wherein the statistical predic 
tion model further comprises a deep convolutional neural 
network comprises stacked convolution , rectified linear unit , 
and pooling layers configured to extract further features 
from the feature maps . 

9. The method of claim 8 , further comprising predicting 
the efficacy based on the further features from the feature 
maps . 

10. The method of claim 2 , further comprising predicting 
parameters for the treatment using the statistical prediction 
model . 
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18. The system of claim 17 , wherein the statistical pre 
diction model comprises : 

convolution kernels configured to extract features from 
the individual patient data of the neural status and the 
therapeutic brain network response map . 

19. The system of claim 18 , wherein values in the 
convolution kernels are learned during a training of the 
statistical prediction model for the treatment . 

20. The system of claim 18 , wherein the instructions 
further cause the system to repeatedly multiply each con 
volution kernel with the individual patient data and the 
therapeutic brain network response map , and store results as 
pixels in a plurality of feature maps . 

21. The system of claim 20 , wherein the statistical pre 
diction model further comprises a deep convolutional neural 
network comprises stacked convolution , rectified linear , and 
pool layers configured to extract further features from the 
feature maps . 

11. The method of claim 1 , wherein the treatment com 
prises vagus nerve stimulation and the neural status com 
prises a seizure . 

12. The method of claim 11 , wherein the individual 
patient data of the neural status comprises data of epilepti 
form spike or seizure network image indicative of brain 
regions in a seizure generation and propagation and path 
ways between these regions . 

13. The method of claim 1 , wherein obtaining the indi 
vidual patient data of the neural status comprises using an 
electroencephalogram ( EEG ) or magnetoencephalogram 
( MEG ) , and wherein obtaining the therapeutic brain network 
response map comprises using functional magnetic reso 
nance imaging ( fMRI ) , positron emission tomography 
( PET ) , and / or single - photon emission computed tomogra 
phy ( SPECT ) . 

14. The method of claim 1 , wherein obtaining the indi 
vidual patient data of the neural status comprises using 
group averaged spikes and source localization , using spike 
ICA analysis and source localization , using seizure network 
analysis , or combinations thereof . 

15. The method of claim 14 , wherein obtaining the 
individual patient data comprises projecting data onto a 
brain space , identifying brain regions that are involved in the 
neural status , calculating pathways between seizure brain 
regions , or combinations thereof . 

16. The method of claim 1 , wherein the therapeutic brain 
network response map corresponds to a brain response to the 
treatment using a certain set of parameters . 

17. A system comprising : 
at least one processor ; and 
computer readable media encoded with instructions that , 
when executed by the at least one processor , cause the 
system to : 

provide image data of a neural status of a patient and a 
therapeutic brain network response map as inputs to a 
statistical prediction model for a treatment ; and 

predict an efficacy of the treatment using the statistical 
prediction model . 

22. The system of claim 21 , wherein the instructions 
further cause the system to predict the efficacy based on the 
further features from the feature maps . 

23. The system of claim 17 , wherein the instructions 
further cause the system to predict parameters for the 
treatment using the statistical prediction model . 

24. The system of claim 17 , wherein the treatment com 
prises vagus nerve stimulation and the neural status com 
prises a seizure . 

25. The system of claim 24 , wherein the data of the neural 
status comprises data of an epilepsy source image indicative 
of a seizure origin . 

26. The system of claim 17 , further comprising an elec 
troencephalogram ( EEG ) system coupled to the at least one 
processor or a magnetoencephalogram ( MEG ) system 
coupled to the at least one processor and configured to 
provide the image data , and a functional magnetic resonance 
imaging ( fMRI ) system coupled to the at least one processor 
and configured to provide the therapeutic brain network 
map . 


