
US 20210399997A1
MONT IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2021/0399997 A1

JAVADI et al . (43) Pub . Date : Dec. 23 , 2021

(54) FORWARDING ELEMENT DATA PLANE
PERFORMING FLOATING POINT
COMPUTATIONS

(71) Applicant : Barefoot Networks , Inc. , Santa Clara ,
CA (US)

(72) Inventors : Masoud Moshref JAVADI , San Jose ,
CA (US) ; Changhoon KIM , Palo Alto ,
CA (US) ; Patrick W. Bosshart , Plano ,
TX (US) ; Anurag AGRAWAL , Santa
Clara , CA (US)

2

(21) Appl . No .: 17 / 221,538

(22) Filed : Apr. 2 , 2021

(52) U.S. CI .
CPC H04L 49/3063 (2013.01) ; G06F

2009/45595 (2013.01) ; G06N 3/08 (2013.01) ;
G06F 9/45558 (2013.01)

(57) ABSTRACT
Some embodiments provide a network forwarding element
with a data - plane forwarding circuit that has a parameter
collecting circuit to store and distribute parameter values
computed by several machines in a network . In some
embodiments , the machines perform distributed computing
operations , and the parameter values that compute are
parameter values associated with the distributed computing
operations . The parameter collecting circuit of the data
plane forwarding circuit (data plane) in some embodiments
(1) stores a set of parameter values computed and sent by a
first set of machines , and (2) distributes the collected param
eter values to a second set of machines once it has collected
the set of parameter values from all the machines in the first
set . The first and second sets of machines are the same set
of machines in some embodiments , while they are different
sets of machines (e.g. , one set has at least one machine that
is not in the other set) in other embodiments . In some
embodiments , the parameter collecting circuit performs
computations on the parameter values that it collects and
distributes the result of the computations once it has pro
cessed all the parameter values distributed by the first set of
machines . The computations are aggregating operations
(e.g. , adding , averaging , etc.) that combine corresponding
subset of parameter values distributed by the first set of
machines .

Related U.S. Application Data
(63) Continuation of application No. 16 / 147,755 , filed on

Sep. 30 , 2018 , now Pat . No. 10,986,042 .
(60) Provisional application No. 62 / 733,441 , filed on Sep.

19 , 2018 , provisional application No. 62 / 718,373 ,
filed on Aug. 13 , 2018 .

Publication Classification

(51) Int . Cl .
H04L 12/935
G06F 9/455
GO6N 3/08

(2006.01)
(2006.01)
(2006.01)

705
ML

Machine A
720 ML

Machine G 710
715 715

705 AO .. , A31
720

720 710 715
ML 710 705 710 ML

Machine H Machine B 715 705
720

GO ... G31

BO ... B31 HO..H31
705 710 720 715 715

720 705 710
ML

Machinc C
ML

Machine I

CO ... C31 I0 ... 131
Forwarding
Element
Data
Plane 710 705 715 720 705 710 715 720

ML
Machine D

ML
Machine)

DO ... D31 JO ... J31

705 720 720 715 705 715 710 705 720 715 710
ML

Machinc E KO ... K31 710 ML
Machine K EO ... E31 FO ... F31 705 LOL31 720

ML
Machine F

ML
Machine L

100

Control Plane

110

125

110

115

112

105

105

Patent Application Publication

Data Plane

ML Machine

Intervening Network Fabric

Intervening Network Fabric

ML Machine

120

140

142

130

132

134

144

130

132

134

/

135 Message Generator

209 - SE ECE - SE

Parser

MAU Stage 1

MAU Stage N

Traffic Manager
Deparser

Parser

MAU Stage 1

MAU Stage N

Deparser

Dec. 23 , 2021 Sheet 1 of 12

152

154

156

150

Parameter Extractor

Parameteri Values

Parameter Forwarding Circuit

US 2021/0399997 A1

Figure 1

Ingress Pipeline

TM

Egress Pipeline

220

MAU
MAU

MAU
MAU

MAU
MAU

MAU
MAU

WWW .

Replication Engine

205

Patent Application Publication

Store Gradients from Last ML Machine

Last Message Sent Back to TM for Replication

Ingress Pipeline

TM

Egress Pipeline

MAU
MAU

MAU
MAU

MAU
MAU

MAU
MAU

Replication Engine

210

Dec. 23 , 2021 Sheet 2 of 12

Ingress Pipeline

TM

Egress Pipeline

MAU
MAU

MAU
•

MAU

MAU
MAU

MAU
MAU

.

Replication Engine

215

US 2021/0399997 A1

TM Generates 4 Messages for Each of 12 ML Machines & Egress Pipeline Stores Gradients in These Messages

Figure 2

Storage Index Location U
Stage 0

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Stage 6

Stage 7

Stage 8

Stage 9

Stage 10

Stage 11

a0b0

a4b4

cOdo

c4d4

kolo

k414

Patent Application Publication

albl

a5b5

cldl

c5d5

kill

k515

a2b2

a6b6

c2d2

c6d6

o

000
k212

k616

a3b3

a7b7

c3d3

c7d7

k313

k717

Figure 3

Storage Index Location X
Stage 0

Dec. 23 , 2021 Sheet 3 of 12

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Stage 6

Stage 7

Stage 8

Stage 9

Stage 10

Stage 11

I

c8d8

c12d12

e8f8

e12f12

a8b8

al2b12

0 0
I

c9d9

c13d13

e9f9

e13f13

D

a9b9

al3b13

0000

c10d10

c14d14

e10f10

el4f14

al0b10

al4b14

vi

clld11

c15d15

ellf11

e15f15

allb11

al5b15

US 2021/0399997 A1

Figure 4

Storage Index Location Y
Stage 0

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Stage 6

Stage 7

Stage 8

Stage 9

Stage 10

Stage 11

www

www

www

e16f16

e20f20

al6b16

a20620

c16d16

c20d20

Patent Application Publication

e17f17

e21f21

al7b17

a21b21

c17d17

c21d21

T

www

L

e18f18

e22f22

al8b18

a22b22

c18d18

c22d22

el9f19

e23f23

a19b19

a23b23

c19d19

c23d23
1

Figure 5

Storage Index Location Z

Dec. 23 , 2021 Sheet 4 of 12

Stage 0

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Stage 6

Stage 7

Stage 8

Stage 9

Stage 10

Stage 11

a24b24

a28b28

c24d24

c28d28

e24f24

e28f28

a25b25

a29b29

c25d25

c29d29

e25f25

e29f29

101

a26b26

a30b30

c26d26

c30d30

e26f26

e30f30
1

10

a27b27

a31b31

c27d27

c31d31

e27f27

e31f31

US 2021/0399997 A1

Figure 6

AO.BO.CO.DO.EO.FO.HO.10.JO.KO.LO.A1.B1.01.11.E1.F1.H1.11 . - 1.KI.L1 . A2.B2.C2.02.E2.F2.H2.12.J2.K2.L2.A3.B3.C3.D3.E3.F3.H3.13.J3.K3.L3 . A4.B4.C4.D4.E4.F4.H4.14.J4.K4.L4.A5.B5.C5.D5.E5.F5.H5.15.J5.K5.15 . A6.B6.C6.06.E6.F6.H6.16.J6.K6.L6 A7.B7.07.07.E7.F7.H7.17.J7.K7.L7

Patent Application Publication

705 A8.B8.C8.D8.ES.F8.H8.18.J8.K8.L8.A9.B9.C9.D9.E9.F9.H9.19.J9.K9.L9.A10.B10.C10.D10.E10.F10 H10.110.J10.K10.L 10.A 11.B11.011.D11.E11.F11.H11.111.111.K11.L11.A12.B12.C12.012.E12.F12 .
H12.112.J12.K12.L12.A13.B13.C13.013.E13.F13.H13.113.J13.K13.L13.A 14.B 14.C 14.014.E14.F14 .

H14.114.J14.K 14.L14 .A15.B 15.C 15.D15.E15.F15.H15.115.J15.K15.L15

710

A 16.B 16.C16.D16.E16.F16.H16.116.J16.K16.L16.A 17.B17.217.D17.E17.F17.H17.117.J17.K17.L 17 . A18.B 18.018.D 18.E18.F18.H18.118.J18.K 18.L18.A 19.B19.219.019 . E19.F19 H19.119.319.K 19.L 19 A20.B20.C20.D 20.E20.F20.H20.120.J20.K20.L20.A21.B21.C21.D21.E21.F21.H21.121.J21.K21.L21 . A22.B22.C22.D 22.E22.F22.H22.122.J22.K22.L22.A23.B23.C23.D23.E23.F23.H23.123.J23.K23.L23

Dec. 23 , 2021 Sheet 5 of 12

715

A24.B24.C24.D24.E24.F24.H24.124.J24.K24.L24.A25.B25.C25.025.E25.F25.H25.125.J25.K25.L25 . A26.B 26.C26.026.E26.F26.H26.126.J26.K26.L26.A27.B27.227.027.E27.F27.H27.127.J27.K27.L27 . A28.B28.C28.028.E28.F28.H28.128.J28.K28.L28.A29.B29.C29.D 29.E29.F29.H29.129.J29.K29.L29 A30.B30.C30.D30.E30.F30.H30.130.J30.K30.L30.A31.B31.031.D31.E31.F31.H31.131.J31.K31.L31
Figure 7

US 2021/0399997 A1

720

705

ML Machine A

720

ML Machine G

710

715

715

710

720

705

715

720

710

ML Machine B

710

AO ... A31

705

ML Machine H

Patent Application Publication

705

715

GO ... G31

720

HO ... H31

BO ... B31

705
710

715
720

715

705
710

720

ML Machine C

ML Machine I

CO ... C31

10 ... 131

Forwarding Element Data Plane

Dec. 23 , 2021 Sheet 6 of 12

710

715

720

705

705

710

715

720

ML Machine D

ML Machine J

DO ... D31

JO ... J31

720

705

715

720

705

710

710

715

705

720

ML Machine E

710 715

EO ... E31

ML Machine K

KO ... K31

FO ... F31

710 715 720

LO ... L31

705

US 2021/0399997 A1

ML Machine F

ML Machine L

Figure 8

132

Patent Application Publication

925

Action Instruction memory

905

920

HV

Match Tables

Action Parameter Memory

940

HV

Action Crossbar

Action ALU (VLIW)

Dec. 23 , 2021 Sheet 7 of 12

910

930

935

Stateful ALU Stateful Table

Figure 9

US 2021/0399997 A1

915

Patent Application Publication Dec. 23 , 2021 Sheet 8 of 12 US 2021/0399997 A1

1000
START

1005

No
Message
from ML
machine

Yes 1010

Mark header vector to indicate that it contains weight gradients
from an ML machine

1015
Set bitmap to identify that the ML machine has sent its gradients

and if bitmap shows that all ML machines have sent their gradients ,
then mark the header vector to note this

1020

Shift weight gradients to left if required for the ML machine

1025

Store weight gradients in SALU registers according to the storage
pattern associated with the ML machine that sent the gradient set

1030

No
Last gradient

message for group
of gradients ?

Yes 1035

Generate multiple data messages to send the stored gradients in the
group to each ML machine

1040

Retrieve the gradients from the SALU registers , store them in the
generated data messages and send the data messages to the ML

machines

END

Figure 10

ML Machine A

ML Machine G

1

SO ... S31

Da

Si = Ai + Bi + Cit ... + Li

SO ... S31

SO ... S31

ML Machine B

GO ... G31

AO ... A31

ML Machine H

SO ... S31

Patent Application Publication

HO ... H31

BO ... B31

SO ... S31

SO ... S31

ML Machine C

ML Machine I

10 ... 131

CO ... C31

Forwarding Element Data Plane

SO ... $ 31

SO ... S31

Dec. 23 , 2021 Sheet 9 of 12

ML Machine D

ML Machine J

DO ... D31

JO ... J31

SO ... S31

SO ... S31

ML Machine E

EO ... E31

ML Machine K

SO ... S31

SO .. , S31

KO ... K31

FO .. , F31

LO ... L31

US 2021/0399997 A1

ML Machine F

ML Machine L

Figure 11

100

Control Plane

110

125

110

1151

112

105

107

Data Plane

Patent Application Publication

Source Device

Intervening Network Fabric

Intervening Network Fabric

Destination Device

120

140

142

130

132

134

/

144

130

132

134

135 Message Generator
Parser

MAU Stage 1

MAU Stage N

Deparser

Parser

Traffic Manager

MAU Stage 1

MAU Stage N

Deparser

Dec. 23 , 2021 Sheet 10 of 12

1250
1257

1252

1253

1254

1255

1256

Parameter Extractor

Floating Point to Fixed Point Converter

Computation Engine
Parameter Values

Parameter Forwarding Circuit

Fixed Point to Floating Point Converter

US 2021/0399997 A1

Figure 12

Patent Application Publication Dec. 23 , 2021 Sheet 11 of 12 US 2021/0399997 A1

START
1300

1305

No Message
from ML
machine

Yes 1307

Mark header vector to indicate that it contains weight gradients
from an ML machine

1310
Set bitmap to identify that the ML machine has sent its gradients

and if bitmap shows that all ML machines have sent their gradients ,
then mark the header vector to note this

1315

Retrieve each gradient from header vector and convert the gradient
from floating - point format to a fixed point format

1325 1320

Yes
First

data message for
groups of
weights ?

Store each weight's received
gradient value in storage
location for that weight

No
1330

Add each weight's received gradient value to value stored
previously for the weight

1335
No

Last gradient
message for group

of gradients ?

Yes 1340

Retrieve gradient sums and convert each sum from fixed - point
format to floating point format

1345

Store the computed gradient sums for all the weights in N data
messages and send one message to each of the N ML machines

END

Figure 13

X.s

Xe

X.f

sign (1 bit)

exponent e
(5 bits)

Fraction fbits (10 bits)

sign (1 bit)

1 extra bit

Bits to represent exponent e (31 bits)

Fraction f bits (10 bits)

X : 16 - bit half - precision floating point

43 - bit converted fixed point

Patent Application Publication

21 bits

22 bits

Figure 14

32 Bit Container Y

32 Bit Container Z

Dec. 23 , 2021 Sheet 12 of 12

1505

1510

1515

1530

1535

1540

Sign Circuit

Shift Circuit

Accumulate Circuit

Sign Circuit

Exponent Identifying Circuit

Shift Circuit

1520

1525

CH

Carry / Borrow Adjustor

US 2021/0399997 A1

Figure 15

SALU Registers

US 2021/0399997 A1 Dec. 23 , 2021
1

FORWARDING ELEMENT DATA PLANE
PERFORMING FLOATING POINT

COMPUTATIONS

CLAIM OF BENEFIT TO PRIOR
APPLICATIONS

.

[0001] This application is a continuation of U.S. patent
application Ser . No. 16 / 147,755 , filed Sep. 30 , 2018. U.S.
patent application Ser . No. 16 / 147,755 claims the benefit of
U.S. Provisional Patent Application 62 / 733,441 , filed Sep.
19 , 2018 and U.S. Provisional Patent Application 62/718 ,
373 , filed Aug. 13 , 2018. The entire specifications of all of
those patent applications are hereby incorporated herein by
reference in their entirety .

BACKGROUND

a [0002] In recent years , many network operations have
migrated to data compute servers that execute virtual
machines or containers , as these servers have extra compu
tational resources and can handle some amount of network
operations . At the same time , however , the processing power
of network forwarding elements has dramatically increased
and this processing power often remains untapped in many
common network deployments . In addition , the packet pro
cessing line rates of some of the fastest network forwarding
elements are dramatically higher than the computational
powers of the data compute servers . Accordingly , it would
be beneficial to use the packet processing data plane pipe
lines of the network forwarding elements to absorb some of
the data compute operations from the data compute servers ,
so that these operations can be performed in the network at
dramatically faster rates .

[0005] The operations of the data plane's message pro
cessing stages are configured by a local or remote control
plane in some embodiments . In some embodiments , a local
control plane is implemented by a control software layer that
is executed by one or more general purpose processors (e.g. ,
CPUs) of the forwarding element , while a remote control
plane is implemented by a control software layer executed
by one or more CPUs of another forwarding element or a
remote computer (e.g. , server) .
[0006] In some embodiments , the parameter collecting
circuit of the data plane includes a parameter extracting
circuit to extract , from a subset of the data messages ,
parameter values computed and distributed by the first set of
machines . The parameter values in some embodiments are
stored as key - value pairs in the headers of the subset of the
data messages that the data plane receives from the first set
of machines . For instance , in some embodiments , the header
of each data message from a first - set machine includes (1) a
layer 4 port (e.g. , UDP source port) value that specifies that
the data message contains a key - value pair and (2) an option
field that stores the key (i.e. , the parameter) and its value . In
other embodiments , the layer - 4 option field only includes
key values (and not the keys) as the key values are specified
in a particular order that can be used to associated different
values stored in the header with different keys . Still other
embodiments use other techniques to store and retrieve the
parameter values in the payloads and / or headers of the data
messages from the first - set machines .
[0007] The parameter collecting circuit includes a set of
one or more storages in which the parameter extracting
circuit stores the extracted parameter values . The collecting
circuit also includes a parameter forwarding circuit to
retrieve the stored parameter values and to forward the
retrieved parameter values to the second set of machines .
The parameter forwarding circuit in some embodiments
retrieves and forwards the stored parameter values after all
the parameter values that are distributed by all of the
machines in the first set have been stored in the set of
storages . In other embodiments , the parameter forwarding
circuit retrieves and forwards the stored parameter values to
the second set of machines based on other criteria (e.g. , after
a duration of a time measured by a timer) .
[0008] In some embodiments , the parameter forwarding
circuit includes a data message generator that generates
several data messages to store the retrieved parameter values
to forward to the second - set machines . The data message
generator in some embodiments generates data messages by
replicating a last data message that provides a last set of one
or more parameter values to complete a group of parameter
values collected from the first machine . In some embodi
ments , the data message generator is implemented by the
data plane traffic manager , which forwards data messages
from the data plane's ingress message - processing pipelines
to its egress message - processing pipelines .
[0009] The traffic manager in some embodiments includes
a mirror buffer that includes the set of storages that store the
parameter values contained in the data messages sent by the
first - set machines . In some embodiments , the data plane
(e.g. , a message processing stage of an ingress processing
pipeline or an egress processing pipeline) implements a bit
map generator that generates a bit map to keep track of
different parameter value sets received from different first
set machines . When the bit map indicates that all the
parameter - value sets from all the first - set machines have

BRIEF SUMMARY

a

[0003] Some embodiments of the invention provide a
data - plane forwarding circuit (data plane) that has a param
eter collecting circuit that stores parameter values sent by a
first set of machines in a network and distributes the param
eter values to a second set of machines in the network . The
first and second sets of machines are the same set of
machines in some embodiments , while they are different sets
of machines (e.g. , one set has at least one machine that is not
in the other set) in other embodiments . The machines in
some embodiments are virtual machines (VMs) , containers ,
or standalone computers / servers . Also , in some embodi
ments , the machines perform distributed computing opera
tions , and the parameter values that are distributed by the
first machine set and the data plane are parameter values
associated with the distributed computing operations .
[0004] To perform its forwarding operations , the data
plane includes several data message processing stages that
are configured to process the data tuples associated with the
data messages received by the data plane . In some embodi
ments , the data plane's message - processing stages are orga
nized into several ingress message - processing stages and
egress message - processing stages , which are communica
tively linked through a crossbar switch , called a traffic
manager . In some embodiments , parts of the data plane
message - processing stages are also configured to implement
the parameter collecting circuit . In other embodiments , the
data plane has a dedicated parameter collecting circuit that
does not use re - purposed message processing stages for
parameter distribution operations .

US 2021/0399997 A1 Dec. 23 , 2021
2

been received , the traffic manager's data message generator
retrieves the stored parameter values from the mirror buffer ,
generates one or more messages for each second - set
machine , embeds the retrieved stored parameter values in
each of the generated messages , and provides the generated
data messages to one or more egress pipelines for forward
ing to the second - set machines . In some embodiments , the
generated messages have to be recirculated back to the
ingress pipelines to identify the egress pipelines that are
supposed to process each message for each second - set
machine .
[0010] Instead of using a mirror buffer in the traffic
manager to store the parameter values from the first - set
machines , the data plane circuit in some embodiments uses
stateful storages of stateful processing units in the data plane
to store these values . Specifically , in some embodiments , at
least a set of message - processing stages include stateful
processing units (e.g. , stateful arithmetic logic units , ALUS)
and stateful storages (e.g. , stateful registers or tables) for
these processing units .
[0011] The data plane in some embodiments has a parser
that extracts a header from a received data message , and
formats this header as a header vector (HV) for processing
by the data - plane message processing stages . Header vectors
can be modified by successive message processing stages as
part of their message processing operations . When process
ing a header vector for a data message from a first - set
machine , a message processing stage can determine that the
header vector contains one or more parameter values from a
first - set machine (e.g. , by matching one or more header
vector attributes with match rules stored in the message
processing stage) . Based on this determination , the process
ing stage can direct its stateful processing unit to store one
or more parameter values in its stateful storage , and / or mark
the header vector so that one or more subsequent stateful
processing units of one or more subsequent message pro
cessing stages can store the parameter values in their stateful
storages .
[0012] In some embodiments , the stateful processing units
and storages that are used to implement the parameter
collecting circuit are all part of one or more ingress pipe
lines . In other embodiments , the parameter collecting circuit
is implemented by stateful processing units and storages of
both the ingress and egress pipelines . In still other embodi
ments , the stateful processing units and storages that are
used to implement the parameter collecting circuit are all
part of one or more egress pipelines . In some of the
embodiments in which the stateful processing units and
storages are in one or more egress pipelines , one or more
ingress pipelines are used to shift the parameter values in the
header vectors to facilitate interleaving the storage of these
parameter values .
[0013] In some embodiments , each machine in the first
machine set distributes a set of several parameter values ,
with each parameter value in each machine's distributed
parameter - value set having an associated parameter value in
each other parameter value set distributed by each other
machine in the first set . For example , in some embodiments ,
the first set includes four machines 1-4 , and each machine
distributes three values for three parameters A - C . In this
example , the four values (A1 , A2 , A3 , and A4 from
machines 1 , 2 , 3 , and 4) for parameter A are associated as
they are values for the same parameter , the four values for
parameter B (B1 , B2 , B3 , and B4 from machines 1 , 2 , 3 , and

4) are associated as they are values for the same parameter ,
and the four values for parameter C (C1 , C2 , C3 , and C4
from machines 1 , 2 , 3 , and 4) are associated as they are
values for the same parameter .
[0014] In some embodiments , the parameter forwarding
circuit of the data plane’s parameter collecting circuit sends
the stored parameter values (i.e. , the values stored in the data
plane) in an interleaved manner that places next to each
other sets of associated values collected from different
machines . For instance , for the above - described example ,
the parameter forwarding circuit in some embodiments
sends a message to each of the machines 1-4 with all the
parameter A values next to each other , all the parameter B
values next to each other , and all the parameter C values next
to each other (e.g. , the message would contain : A1 , A2 , A3 ,
A4 , B1 , B2 , B3 , B4 , C1 , C2 , C3 , C4) .
[0015] To help with output interleaving , the parameter
extracting circuit in some embodiments interleaves the stor
ages of the parameter values distributed by each machine so
that sets of associated parameter values are stored in the
same storage locations , adjacent storage locations , and / or
similarly addressed storage locations . For instance , the
parameter extracting circuit in some of these embodiments
uses an interleaved storage pattern to store parameter values
of different machines in order to simplify interleaving the
output of these parameter values . In some embodiments , the
parameter extracting circuit also shifts some of the param
eter values in the header vectors to facilitate the interleaved
storage of the parameter values (e.g. , shifts parameter values
from machine 1 so that they can be stored next to their
related values from machine 2) .
[0016] The parameter extracting circuit in some embodi
ments rotates its interleaved storage of parameter values for
different subsets of machines in order to ensure that the
desired sets of associated parameters values are stored near
each other or in a set of associated or related storage
locations . One example of rotated storage patterns would be
storing first - parameter values of machines 1 and 2 in an
earlier first stateful storage , while storing first - parameter
values of machines 3 and 4 in a later second stateful storage ,
but then storing second - parameter values of machines 1 and
2 in the later second stateful storage , while storing second
parameter values of machines 3 and 4 in the earlier first
stateful storage .
[0017] In some embodiments , the parameter collecting
circuit performs computations on the parameter values that
it collects and distributes the result of the computations once
it has processed all the parameter values distributed by the
first set of machines . The computations are aggregating
operations (e.g. , adding , averaging , etc.) that combine cor
responding subsets of parameter values distributed by the
first set of machines . For instance , in some embodiments ,
each first - set machine distributes four multi - bit parameter
values A , B , C , and D , each of which corresponds to one
parameter value distributed by each of the other first - set
machines . In some of these embodiments , the parameter
collecting circuit adds all the A's , B's , C's , and D's , and then
distributes to the second - set machines the resulting sum
once it has added the last set of parameter values A - D that
it receives from the last first - set machine .
[0018] For instance , in some embodiments , the data plane
is configured to collect and aggregate sets of weight gradi
ents from several machines that process known input / output
training sets to train the weights of a neural network . In some

a

2

US 2021/0399997 A1 Dec. 23 , 2021
3

[0030] FIG . 13 conceptually illustrates a process that a
parameter collecting circuit performs in some embodiments .
[0031] FIG . 14 illustrates an example of a 16 - bit floating
point value , its corresponding 43 - bit fixed point value , and
two containers to store the 43 - bit fixed point value .
[0032] FIG . 15 illustrates the operations that some
embodiments perform to convert a floating - point weight
gradient Wi to a fixed - point weight gradient , add the con
verted weight gradient to a total Si that is maintained for that
gradient's associated weight , and to convert the fixed - point
weight gradient sum to a floating - point weight gradient sum .

DETAILED DESCRIPTION

of these embodiments , the data plane adds the different
weight gradients that it collects from the ML machines 105
for each of the several weights , and then distributes to the
machines the aggregated weight gradients for each of these
weights . To perform its aggregation operations , the data
plane converts floating - point weight gradients that it
receives from the machines to fixed - point weight - gradients
that it aggregates , and then converts the aggregated fixed
point values back to aggregated floating - point weight gra
dients that it distributes back to the ML machines .
[0019] The preceding Summary is intended to serve as a
brief introduction to some embodiments of the invention . It
is not meant to be an introduction or overview of all
inventive subject matter disclosed in this document . The
Detailed Description that follows and the Drawings that are
referred to in the Detailed Description will further describe
the embodiments described in the Summary as well as other
embodiments . Accordingly , to understand all the embodi
ments described by this document , a full review of the
Summary , Detailed Description and the Drawings is needed .
Moreover , the claimed subject matters are not to be limited
by the illustrative details in the Summary , Detailed Descrip
tion and the Drawings , but rather are to be defined by the
appended claims , because the claimed subject matters can be
embodied in other specific forms without departing from the
spirit of the subject matters .

BRIEF DESCRIPTION OF FIGURES

a

[0020] The novel features of the invention are set forth in
the appended claims . However , for purposes of explanation ,
several embodiments of the invention are set forth in the
following figures .
[0021] FIG . 1 illustrates an example of a forwarding
element with a data plane circuit that can be configured to
implement an all - gather parameter collecting circuit of some
embodiments .
[0022] FIG . 2 illustrates an example of a replication pro
cess of some embodiments that generates several replicate
data messages in which the extracted and stored weight
gradient sets can be embedded and distributed to the ML
machines .
[0023] FIGS . 3-6 illustrates four SALU storage locations
(e.g. , four SALU registers) in four SALU tables (e.g. , four
register sets) that are identified by the same address value
(e.g. , by the same hash index value that is generated by
hashing a set of header vector values) .
[0024] FIG . 7 illustrates the sequence of weight gradients
that are included in the four data messages that the parameter
collecting circuit sends to each ML machine in some
embodiments .
[0025] FIG . 8 illustrates the data messages exchanged
between the twelve ML machines A - L and the data plane in
the all - gather example of FIGS . 3-7 .
[0026] FIG . 9 illustrates a match action unit of some
embodiments .
[0027] FIG . 10 conceptually illustrates a process that the
parameter collecting circuit performs in some embodiments .
[0028] FIG . 11 illustrates the interaction between the data
plane and the ML machines when the data plane operates in
an all - reduce implementation in some embodiments .
[0029] FIG . 12 conceptually illustrates the components of
a parameter collecting circuit in some embodiments when
the data plan is configured to perform an all - reduce opera
tions in some embodiments .

[0033] In the following detailed description of the inven
tion , numerous details , examples , and embodiments of the
invention are set forth and described . However , it will be
clear and apparent to one skilled in the art that the invention
is not limited to the embodiments set forth and that the
invention may be practiced without some of the specific
details and examples discussed .
[0034] Some embodiments provide a network forwarding
element with a data - plane forwarding circuit that has a
parameter collecting circuit to store and distribute parameter
values computed by several machines in a network . In some
embodiments , the machines perform distributed computing
operations , and the parameter values that compute are
parameter values associated with the distributed computing
operations . The parameter collecting circuit of the data
plane forwarding circuit (data plane) in some embodiments
(1) stores a set of parameter values computed and sent by a
first set of machines , and (2) distributes the collected param
eter values to a second set of machines once it has collected
the set of parameter values from all the machines in the first
set . The first and second sets of machines are the same set
of machines in some embodiments , while they are different
sets of machines (e.g. , one set has at least one machine that
is not in the other set) in other embodiments .
[0035] In some embodiments , the parameter collecting
circuit performs computations on the parameter values that
it collects and distributes the result of the computations once
it has processed all the parameter values distributed by the
first set of machines . The computations are aggregating
operations (e.g. , adding , averaging , etc.) that combine cor
responding subset of parameter values distributed by the first
set of machines . For instance , in some embodiments , each
first - set machine distributes four multi - bit parameter values
A , B , C , and D , each of which corresponds to one parameter
value distributed by each of the other first - set machines . In
some of these embodiments , the parameter collecting circuit
adds all the A's , B's , C's and D's , and then distributes to the
second - set machines the resulting sum once it has added the
last set of parameter values A - D that it receives from the last
first - set machine .
[0036] In the discussion below , “ all reduce ” refers to the
parameter collecting circuit embodiments that perform
aggregating computations on the collected parameter values
to reduce these values to one set of aggregate parameter
values that these embodiments distribute to the second - set
machines . On the other hand , the discussion uses " all
gather ” to refer to the parameter collecting circuit embodi
ments that just collect and distribute the parameter values
sent by the first - set machines . Several of the “ all reduce ” and
“ all gather ” examples provided below are for machine
training learning processes of some embodiments . One of

US 2021/0399997 A1 Dec. 23 , 2021
4

ordinary skill will realize that other embodiments use the
" all reduce " and " all gather " operations of the data plane for
other distributed computing applications .
[0037] In this document , data messages refer to a collec
tion of bits in a particular format sent across a network . One
of ordinary skill in the art will recognize that the term data
message may be used herein to refer to various formatted
collections of bits that may be sent across a network , such
as Ethernet frames , IP packets , TCP segments , UDP data
grams , etc. Also , as used in this document , references to L2 ,
L3 , L4 , and L7 layers (or layer 2 , layer 3 , layer 4 , and layer
7) are references respectively to the second data link layer ,
the third network layer , the fourth transport layer , and the
seventh application layer of the OSI (Open System Inter
connection) layer model .
[0038] FIG . 1 illustrates an example of a forwarding
element 100 with a data plane circuit 120 that can be
configured to implement an all - gather parameter collecting
circuit 150. This parameter collecting circuit stores param
eter values computed and sent by several machines 105 , and
then distributes the collected parameter values to the same
machines once it has collected the parameter values from all
the machines . The machines in some embodiments are
virtual machines (VMs) , containers , and / or standalone com
puters / servers .
[0039] Different embodiments use the parameter collect
ing circuit 150 to collect different types of parameter values
for different distributed computing applications . In the
example illustrated in FIG . 1 as well as other figures , the
parameter values are weight value gradients associated with
machine learning operations . In other embodiments , the
collected parameter values are other types of parameter
values .
[0040] In FIG . 1 , the machines 105 perform machine
learning (ML) training processes that produce weight value
gradients that need to be shared between the machines .
Specifically , the machines 105 process inputs / outputs train
ing sets to train the weight values of a neural network with
different machines processing different batches of known
input / output training sets and performing back propagation
operations to adjust weight values of the neural network . In
this environment , the machines need to share weight value
gradients that they compute for edges between the neurons
in the neural network . Accordingly , once they compute a set
of weight value gradients , the machines 105 embed these
gradients in data messages (e.g. , embed them in UDP
headers of packets) and transmit these data messages (e.g. ,
the packets) through a network 110 that connects the
machines 105 .
[0041] The forwarding element 100 forwards data mes
sages within the network 110. The forwarding element 100
can be any type of forwarding element , such as a switch , a
router , a bridge , etc. In FIG . 1 , the forwarding element is
deployed as a non - edge forwarding element in the interior of
the network to forward data messages between the machines
105. In other cases , the forwarding element 100 is deployed
as an edge forwarding element at the edge of the network to
connect to compute devices (e.g. , standalone or host com
puters) that serve as sources and destinations of the data
messages . As a non - edge forwarding element , the forward
ing element 100 forwards data messages between forward
ing elements in the network (i.e. , through intervening net
work fabric 110) . As an edge forwarding element , the
forwarding element forwards data messages to and from

edge compute devices to each other , to other edge forward
ing elements , and / or to non - edge forwarding elements .
[0042] As shown , the forwarding element 100 includes (1)
a data plane circuit 120 (the “ data plane 120 %) that performs
the forwarding operations of the forwarding element 100 to
forward data messages received by the forwarding element
to other devices , and (2) a control plane circuit 125 (the
“ control plane 125 ") that configures the data plane circuit .
The forwarding element 100 also includes physical ports 112
that receive data messages from , and transmit data messages
to , devices outside of the forwarding element 100 .
[0043] The control plane 125 configures the data plane
120 to perform its message forwarding and parameter col
lection operations . In some embodiments , the control plane
includes (1) one or more processors (such as a micropro
cessor with multiple processing cores or units) that execute
instructions , and (2) a memory that stores instructions for
processes that when executed by the processors perform the
control plane operations . These instructions can be specified
by (1) a manufacturer of the network forwarding element
100 that includes the control and data planes 125 and 120 ,
(2) a network administrator that deploys and maintains the
network forwarding 100 , or (3) one or more automated
processes that execute on servers and / or network forwarding
elements that monitor network conditions . The control plane
processor , or another circuit of the control plane , commu
nicates with the data plane (e.g. , to configure the data plane
or to receive statistics from the data plane) through a
control / data plane interface .
[0044] The data plane circuit 120 includes ports 115 that
receive data messages to process and transmit data messages
after they have been processed . Some ports 115 of the data
plane 120 are associated with the physical ports 112 of the
forwarding element 100 , while other ports 115 are associ
ated with other modules of the data plane 120. For instance ,
in some embodiments , one or more ports 115 are recircula
tion ports that recirculate a data message that is processed by
an egress pipeline 142 back to an ingress pipeline 140. The
data plane 120 also includes message generators 135 , mul
tiple ingress pipeline stages 140 , multiple egress pipeline
stages 142 , and a traffic manager 144. In some embodiments ,
the data plane is implemented on an application specific
integrated circuit (ASIC) , and its components are defined on
this integrated circuit .
[0045] The message generators generate messages in the
data plane . In some embodiments , these messages can direct
circuits in the data plane to perform certain operations or to
store data in the messages for export to the control plane or
to another device through a network . The ingress and egress
pipelines process the data messages received by the for
warding element in order to forward these messages to their
destinations in the network . The traffic manager 144 in some
embodiments includes a crossbar switch that directs mes
sages from the ingress pipelines to egress pipelines .
[0046] Each ingress or egress pipeline includes several
configurable (i.e. , programmable) message - processing
stages 132 that can be configured to perform the data - plane
forwarding operations of the forwarding element 100 to
process and forward data messages to their destinations .
These message - processing stages perform these forwarding
operations by processing data tuples (e.g. , message headers)
associated with data messages received by the data plane
120 in order to determine how to forward the messages .

a

a

US 2021/0399997 A1 Dec. 23 , 2021
5

a

a a

[0047] The message processing stages in this example are
match - action units (MAUS) 132. As further described below
by reference to FIG . 9 , an MAU is a circuit in some
embodiments that includes match tables that store multiple
records for matching with data tuples (e.g. , header vectors)
of the processed data messages . When a data message
matches a match record , the MAU then performs an action
specified by an action record associated with the identified
match record (e.g. , an action record that is identified by the
identified match record) .
[0048] In some embodiments , an MAU also includes a set
of stateful ALUS (e.g. , four ALUS) that perform arithmetic
operations based on parameters specified by the header
vectors and / or the match tables . The ALUS can store the
result of their operations in stateful tables that they access
and / or can write these results in the header vectors (e.g. ,
directly , or by directing another action ALU to write these
results in the header vectors) for other MAU stages to
process .
[0049] In addition to the MAU stages , each ingress or
egress pipeline includes a parser 130 and a deparser 134. A
pipeline's parser 130 extracts a message header from a data
message that the pipeline receives for processing . In some
embodiments , the extracted header is in a format of a header
vector (HV) that is processed , and in some cases modified ,
by successive message processing stages 132 as part of their
message processing operations . The parser 130 of a pipeline
passes the payload of the message to the deparser 134 as the
pipeline's message - processing stages 132 operate on the
header vectors . In some embodiments , the parser also passes
the message header to the deparser 134 along with the
payload (i.e. , the parser passes the entire message to the
deparser) .
[0050] When a pipeline finishes processing a data message
and the message has to be provided to the traffic manager (in
case of an ingress pipeline) or to a port 115 (in case of an
egress pipeline) to be forwarded to the message’s next hop
(e.g. , to its destination compute node or next forwarding
element) , a deparser 134 of the pipeline in some embodi
ments produces the data message header from the message's
header vector that was processed by the pipeline's last
message processing stage , and combines this header with the
data message's payload . In some embodiments , the deparser
134 uses part of the header received form the parser 130 to
reconstitute the message from its associated header vector .
[0051] As shown in FIG . 1 , parts of the data plane mes
sage - processing stages in some embodiments are also con
figured to implement the parameter collecting circuit 150 .
As mentioned above , the local control plane 125 in some
embodiments configures the data plane 120 to perform its
message forwarding and parameter collection operations . In
other embodiments , a remote control plane configures the
data plane 120 to implement its forwarding circuits and / or
parameter - collection circuits . A remote control plane is
implemented in some embodiments by a control software
layer executed by one or more CPUs of another forwarding
element or a remote computer (e.g. , server) .
[0052] In some embodiments , the parameter collecting
circuit 150 circuit examines each data message received by
the data plane to determine whether the data message comes
from one of the machines 105. If not , this circuit does not
process the data message ; the message is just processed by
the message processing stages 132 of the data plane and
forwarded to its destination . On the other hand , when the

data message originated from an ML machine 105 , the
parameter collecting circuit 150 extracts several weight
gradients (e.g. , 32 gradients) from the data message header
and stores these values in the stateful ALUS (SALUS) of
several MAU stages 132. Once the parameter collecting
circuit 150 has stored the weight gradients in a particular set
of weight gradients from all the machines 105 , the parameter
collecting circuit in some embodiments distributes all the
collected weight gradients to the machines 105. In other
embodiments , the parameter collecting circuit retrieves and
forwards the stored parameter values to the machines 105
based on other criteria (e.g. , after a duration of a time
measured by a timer) .
[0053] The parameter values in some embodiments are
stored as key - value pairs in the headers of the data messages
that the data plane receives from the first set of machines
(e.g. , the ML machines) . For instance , in some embodi
ments , the header of each data message from a first - set
machine includes (1) a layer 4 port (e.g. , UDP source port)
value that specifies that the data message contains a key
value pair , and (2) an option field that stores the key (i.e. , the
parameter) and its value . In other embodiments , the layer - 4
option field only includes key values (and not the keys) as
the key values are specified in a particular order that can be
used to associated different values stored in the header with
different keys .
[0054] Still other embodiments use other techniques to
store and retrieve the parameter values in the payloads
and / or headers of the data messages from the first - set
machines . For instance , in some embodiments , an IPS
(in - network parameter server) header is placed after a UDP
header , and this IPS header is followed by the weight
gradients , as indicated by the example below .

[0055] Ethernet , IP , UDP , IPS header , Weight 0 , Weight
1 ,

The IPS header has two fields in some embodiments : a
memory index to show where in data plane to put the
parameter values and an identifier to identify the location of
a set of weight (associated with the received weight gradi
ents) in the total number of weights of the neural network .
[0056] In other embodiments , the IPS header is placed
after the Ethernet header , such as

[0057] Ethernet , IPS header , Weight 0 , Weight 1 , ...
This is useful when the ML machines are specialty ML cards
as opposed to servers with GPUs . For such specialty
machines , it is not desirable to waste bandwidth for IP and
UDP headers as only the Ethernet header is necessary for
exchanging messages between the ML cards and the for
warding element .
[0058] FIG . 1 conceptually illustrates that the parameter
collecting circuit 150 includes a parameter extractor 152 , a
parameter storage 154 , and a parameter forwarding circuit
156. The parameter extractor 152 extracts weight gradients
from messages sent by the ML machines 105 , and stores
these extracted weight gradients in the parameter storage
154. Once all the weight gradients in a set of weight
gradients are collected from all the ML machines 105 , the
parameter forwarding circuit 156 retrieves all the stored
weight gradients and forwards them in one or more mes
sages back to all of the ML machines 105 .
[0059] In some embodiments , the parameter extractor 152
and the parameter storage 154 are implemented by multiple
MAU stages 132. Specifically , as mentioned above , the data
plane parser 130 extracts a header from a received data

US 2021/0399997 A1 Dec. 23 , 2021
6

a

message , and formats this header as a header vector (HV) for
processing by the data - plane message processing stages 132 .
Header vectors can be modified by successive message
processing stages as part of their message processing opera
tions (e.g. , forwarding operations and / or parameter - collec
tion operations) .
[0060] When processing a header vector for a data mes
sage from an ML machine 105 , an initial MAU stage in an
ingress pipeline in some embodiment identifies that the data
message has originated from one of the ML machines (e.g. ,
by matching one or more source network address values in
the header vector with match rules stored in a match table of
the MAU stage) . This MAU stage then has its action ALU
mark the header vector to indicate that it contains weight
gradients from an ML machine . In order to pack the storage
of the weight gradients , this MAU stage in some embodi
ments also has its action ALU perform a shift operation to
shift the weight gradients from certain ML machines , as
further described below . In other embodiments , one or more
other MAU stages in the ingress pipeline perform this
shifting operation .
[0061] At the end of the ingress pipeline , the header vector
of this message is combined with the message payload , and
the combined message is provided to the traffic manager
(TM) . Based on the designation of the message as one that
contains weight gradients , the traffic manager 144 in some
embodiments places the message in a TM egress queue (not
shown) that is associated with the egress pipeline 142
designated for processing a particular weight gradient set
distributed by the ML machines .
[0062] From this TM egress queue , the data message
passes to its corresponding egress pipeline 142 , which has its
parser 130 separate the message into its payload and header
vector , pass the payload (or entire message) along a bypass
path to the deparser 134 of the pipeline and pass the header
vector to the first MAU stage 132 of the pipeline . In some
embodiments , the SALUs and stateful tables of this egress
processing pipeline form the parameter extractor circuit 152
and the parameter storage 154. For instance , in some
embodiments , an egress pipeline has twelve MAU stages ,
each of which has four SALUs that can store two 16 - bit
weight gradients in four SALU tables . This allows each
egress pipeline to collect 3216 - bit weight gradients from 12
ML machines 105 .
[0063] Under this approach , whenever the message's
header vector reaches one of these egress MAUs 132 , a
match table of the MAU determines that the header vector
contains several weight gradients that need to be extracted
and directs its associated SALUs to extract the weight
gradients . The SALUs then extract the weight gradients and
store these gradients in the ALUs ' associated stateful tables .
For instance , as further described below , each egress SALU
in some embodiments stores two 16 - bit gradients from two
different ML machines 105 in each 32 - bit stateful table
record (e.g. , in each 32 - bit SALU register) .
[0064] In some embodiments , one ingress or egress MAU
stage maintains a bitmap (e.g. , in the MAU’s SALU) that
has one bit for each ML machine that has sent its set of
weight gradients . Each time this MAU stage determines that
a header vector that it processes corresponds to a data
message from one of the ML machines , it changes the bit
value for this ML machine in its bitmap to set (e.g. , changes
this value from 0 to 1) . Once all the bits in the bitmap have
been set , this MAU stage determines that all the weight

gradient sets have been received from all the ML machines .
Hence , in these embodiments , this MAU stage sets a value
in the header vector to indicate that this header vector
finished the collection of related weight gradient sets from
all of the ML machines . This MAU stage partly implements
the parameter forwarding circuit 156 in some embodiments .
Instead of a bitmap , the data plane in other embodiments
uses other schemes (e.g. , a counter) to determine when the
data plane has weight gradient sets from all the ML
machines .
[0065] Once the header vector is marked as being the
header vector that provides the last weight gradient set from
the last ML machine , the data plane 120 in some embodi
ments uses that header vector to generate several replicate
data messages in which the extracted and stored weight
gradient sets can be embedded and distributed to the ML
machines . FIG . 2 illustrates an example of this operation in
some embodiments . Specifically , it illustrates three stages of
operations 205 , 210 , and 215. The first stage of operations
205 shows the processing of a header vector to store in the
egress MAU stages a last set of weight gradients that
completes the collection of a group of several sets of weight
gradients from several ML machines (e.g. , twelve sets of 32
weight gradients 0-31 from twelve ML machines A - L) .
[0066] The second stage of operations 210 shows the
conversion of this header vector back to a data message that
is fed back through an ingress pipeline 140 to the traffic
manager 144. In this stage , the ingress pipeline converts the
data message back to a header vector and marks the header
vector for replication based on its marking as the last header
vector by the bitmap generating MAU . This header vector is
converted to a data message that is then supplied to the
traffic manager 144 .
[0067] In the third stage of operations 215 , the traffic
manager 144 then detects the replication marking , and based
on this marking , has its replication engine 220 generate
several replicated copies (e.g. , 47) of this message . These
copies plus the original data message are then converted to
header vectors that are processed by the egress pipeline that
stores the completed group of weight gradients . The MAUS
in this egress pipeline then retrieve different sub - groups of
weight gradients and store these retrieved sub - groups in
different header vectors . In some embodiments , each replica
stores the same sub - group of weight gradients as several
other (e.g. , 11) replicas but is addressed to a different ML
machine (e.g. , it is addressed to one of 12 ML machines) .
[0068] For instance , in some embodiments with 12 ML
machines that produce 32 weight gradients each , there are
384 weight gradients that need to be distributed to each ML
machine . In some of these embodiments , each data message
can carry at most only 96 gradients , so four data messages
are used to supply the 384 gradients to each ML machine .
Four messages for each of the twelve clients requires 47
replicas to be generated by the TM 144 in addition to the last
recirculated data message . The TM 144 in some embodi
ments identifies the destination addresses of each of the
replicated / recirculated data message based on configuration
data that it receives to program its operations . In other
embodiments , the ingress pipeline that processes the recir
culated data message in the second stage 210 specifies the
destination addresses for the twelve sets of four data mes
sages . In the above example , the parameter forwarding
circuit 156 is implemented by the bitmap generating MAU ,
the data plane circuits that recirculate the final data message

>

US 2021/0399997 A1 Dec. 23 , 2021
7

9

back to an ingress pipeline , this ingress pipeline that marks
the recirculated message for replication , the TM that repli
cates the recirculated message , and the egress MAU stages
that retrieve the different sub - groups of weight gradients
from their SALU tables and store them in the header vectors
of the replicated / recirculated messages .
[0069] In the data messages that the parameter collecting
circuit 150 sends back to the ML machines , this circuit
interleaves the weight gradients sent by different ML
machines so that weight gradients that are for the same
weight in the neural network are next to each other . Because
of this , the ML machines do not have to expend resources to
gather weight gradients for the same weights before per
forming a computation (e.g. , producing an average) from
these gradients . In other words , the parameter collecting
circuit 150 in some embodiments reports the weight gradi
ents back to the ML machines in an interleaved manner (that
has gradients for the same weights coalesced and reported
together) in order to free up the computational resources of
the ML machines for other operations .
[0070] To help with the interleaving of the weight gradi
ents in the data messages sent to the ML machines , the
parameter collecting circuit 150 in some embodiments inter
leaves the storage of the weight gradients sent by different
ML machines so that weight gradients for the same weights
are stored in the same storage locations , adjacent storage
locations , and / or similarly addressed storage locations . To
further assist with this interleaving , the parameter collecting
circuit in some embodiments shifts the weight gradients
from certain ML machines so that two or more gradients
related to the same weight can be stored in the same storage
location (e.g. , two 16 - bit gradients for the same weight can
be stored in the same 32 - bit SALU register location) .
[0071] FIGS . 3-6 illustrate an example of this interleaved
storage for some embodiments of the invention . In this
example , each egress MAU stage has four SALUs that
access four stateful tables (e.g. , four sets of SALU registers)
to store 3216 - bit weight gradients distributed by 12 ML
machines 105. The machines are identified by letters A to L ,
while the gradients are identified by numbers 0-31 . The
gradients identified by the same numbers are gradients that
correspond to the same weight (e.g. , weight 1 , weight 2 , etc.)
in the neural network .
[0072] For each one of twelve egress MAU stages , each of
the FIGS . 3-6 illustrates four SALU storage locations (e.g. ,
four SALU registers) in four SALU tables (e.g. , four register
sets) that are identified by the same address value (e.g. , by
the same hash index value that is generated by hashing a set
of header vector values) . The commonly addressed locations
in FIG . 3 store the weight gradients 0-7 from all the
machines A - L , the commonly addressed locations in FIG . 4
store the weight gradients 8-15 from all the machines A - L ,
the commonly addressed locations in FIG . 5 store the weight
gradients 16-23 from all the machines A - L , and the com
monly addressed locations in FIG . 6 store the weight gra
dients 24-31 from all the machines A - L .
[0073] Also , in this example , the gradients for ML
machines A , C , E , G , I , and K are shifted up (i.e. , to the left)
by 16 - bits so that they can be stored respectively next to the
gradients from ML machines B , D , F , H , J and L. In some
embodiments , the ingress - pipeline parsers 130 initially store
each 16 - bit weight gradient as the lower 16 bits in a 32 - bit
container in a header vector . Subsequently , one or more
ingress MAU stages (e.g. , the action ALUs of these stages)

in these embodiments perform a 16 - bit leftward shift of the
weight gradients from ML machines A , C , E , G , I , and K. As
shown , this allows 16 - bit gradients from machines A and B
to be stored in the same 32 - bit register locations , 16 - bit
gradients from machines C and D to be stored in the same
32 - bit register locations , 16 - bit gradients from machines E
and F to be stored in the same 32 - bit register locations ,
16 - bit gradients from machines G and H to be stored in the
same 32 - bit register locations , 16 - bit gradients from
machines I and J to be stored in the same 32 - bit register
locations , and 16 - bit gradients from machines K and L to be
stored in the same 32 - bit register locations .
[0074] FIGS . 3-6 also illustrate that by producing the
storage address index values differently for different pairs of
ML machines , the parameter collecting circuit can use
different rotated storage patterns for different pairs of ML
machines . For instance , for gradients from ML machines A
and B , the parameter collecting circuit produces index
values to store the gradients (-7 in the first two egress MAU
stages , gradients 8-15 in the last two egress MAU stages ,
gradients 16-23 in the egress MAU stages 8 and 9 , and
gradients 24-31 in the egress MAU stages 6 and 7. On the
other hand , for gradients from ML machines C and D , the
parameter collecting circuit produces index values to store
the gradients 0-7 in the egress MAU stages 2 and 3 ,
gradients 8-15 in the first two egress MAU stages , gradients
16-23 in the last two egress MAU stages , and gradients
24-31 in the egress MAU stages 8 and 9 .
[0075] This rotated storage approach makes it easier to
read out weight gradients (-7 from all the machines A - L
together , weight gradients 8-15 from all the machines A - L
together , weight gradients 16-23 from all the machines A - L
together , and weight gradients 24-31 from all the machines
A - L together . Specifically , for the replication approach illus
trated in FIG . 2 , each egress MAU stage would store in each
of the four recirculated / replicated messages the gradient
values that are stored at one common index address location
in the stage's SALU registers . Accordingly , the gradient
values stored in FIG . 3 would be stored in a first message of
these four messages , the gradient values stored in FIG . 4
would be stored in a second message , the gradient values
stored in FIG . 5 would be stored in a third message , and the
gradient values stored in FIG . 6 would be stored in a fourth
message .
[0076] For the example illustrated in FIGS . 3-6 (with
twelve ML machines A - L and 32 gradients 0-31) , FIG . 7
illustrates the sequence of weight gradients that are included
in the four data messages 705-720 that the parameter col
lecting circuit 150 sends to each ML machine 105 in some
embodiments . As shown , the data message 705 includes the
weight gradients 0-7 from all the machines A - L , with the
weight 0 gradients first , followed by all the gradients of the
other weights in sequence through the gradients of the 7th
weight . Similarly , the data message 710 includes the weight
gradients 8-15 from all the machines A - L , with the weight
8 gradients first , followed by all the gradients of the other
weights in sequence through the gradients of the 15th
weight .
[0077] The data message 715 includes the weight gradi
ents 16-23 from all the machines A - L , with the weight 16
gradients first , followed by all the gradients of the other
weights in sequence through the gradients of the 23rd
weight . Finally , the data message 720 includes the weight
gradients 24-31 from all the machines A - L , with the weight

a

US 2021/0399997 A1 Dec. 23 , 2021
8

.

.

a

24 gradients first , followed by all the gradients of the other
weights in sequence through the gradients of the 31st
weight .
[0078] FIG . 8 illustrates the data messages exchanged
between the twelve ML machines A - L and the data plane
120 in the all - gather example of FIGS . 3-7 . As shown , each
of the ML machines sends a data message with 32 weight
gradients identified by the numbers 0-31 and the letter
associated with the ML machine (e.g. , A0 - A31 are sent by
ML machine A , BO - B31 are sent by ML machine B , and so
on) . This figure also shows that after collecting the weight
gradients from all the ML machines A - L , the data plane 120
sends the four messages 705-720 of FIG . 7 to each of the ML
machines .
[0079] These messages contain all the collected weight
gradients with message 705 including weight gradients
A0 - L7 , message 710 including weight gradients A8 - L15 ,
message 715 including weight gradients A16 - L23 , and mes
sage 720 including weight gradients A24 - L31 , as illustrated
in FIG . 7. For each of the 32 weights , each ML machine M - L
in some embodiments computes an average weight gradient
by adding the gradients that it receives for that weight and
then dividing that sum by the number of ML machines ,
which in this example is twelve .
[0080] The embodiments described above keep constant
the index values during the retrieval of the stored weight
gradients from the SALU registers but change the index
values during the storing of the gradients in the SALU
registers . Other embodiments , on the other hand , change the
index values during the retrieval of the stored weight gra
dients from the SALU registers while keeping constant the
index values during the storing of the gradients in the SALU
registers .
[0081] Different embodiments use different approaches to
make sure that different stages of the data - plane generate the
same memory index for the same parameter identifiers .
Some embodiments generate a hash identifier to memory
index based on a common hash function . When receiving the
result of a memory index , these MAUs in these embodi
ments push to the next memory index . In other embodi
ments , the MAU stages keep an ordered list of parameters .
When they gather the result of a memory index , the MAU
stages push to the next memory index . This approach
assumes that no packet is lost or re - ordered . Still other
embodiments use a circuit in the forwarding element direct
the MAU stages to use a particular identifier to send for a
particular memory index . Upon sending the result from a
memory index , the data plane also includes the identifier of
the next parameter that should be sent for that memory
index .

[0082] Other embodiments also implement the parameter
collecting circuit 150 differently in the data plane 120. For
instance , other embodiments implement the parameter
extractor 152 , parameter storage 154 and parameter for
warding circuit 156 with different number of stages and / or
with different numbers of SALUs and stateful tables than the
exemplary embodiments described above . While several
embodiments were described in which the egress MAU
stages were used to implement the parameter storage 154 ,
other embodiments use the SALUs of the ingress MAUs to
implement some or all of the parameter storage 154. Sill
other embodiments use SALUs of both the ingress and
egress MAUs to implement the parameter storage 154 .

[0083] In other embodiments , the data plane has a dedi
cated parameter collection circuit that does not use re
purposed message processing stages for parameter distribu
tion operations . Alternatively , other embodiments use other
data plane configurations to implement the parameter col
lecting circuit 150. For instance , in some embodiments , the
traffic manager 144 includes a mirror buffer that includes the
set of storages that store the parameter values contained in
the data messages sent by the ML machines . When the MAU
that implements the bit map generator determines that the
last ML machine has provided the data message with the last
weight gradient set in a group of gradients , it sets a bit in the
message's associated header vector to notify the traffic
manager that after processing this message , the traffic man
ager should have all the gradients in a group of gradients .
[0084] Based on this setting , the traffic manager's
retrieves the stored parameter values from the mirror buffer ,
generates one or more messages for each ML machine ,
embeds the retrieved stored parameter values in each of the
generated messages , and provides the generated data mes
sages to one or more egress pipelines for forwarding to the
ML machines . In some embodiments , the generated mes
sages have to be recirculated back to the ingress pipelines to
identify the egress pipelines that are supposed to process
each message for each ML machine . In other embodiments ,
the TM is configured with the addresses of these ML
machines .
[0085] FIG . 9 illustrates a match action unit 132 of some
embodiments . As mentioned above , an ingress pipeline 140
or egress pipeline 142 in some embodiments has several
MAU stages 132 , each of which includes message - process
ing circuitry for forwarding received data messages and / or
performing stateful operations based on header vectors
associated with the data message . In some embodiments , the
control plane 125 of the forwarding element 100 or a remote
control plane configures the MAU stages 132 of the data
plane 120 to implement not only the forwarding operations
of these MAU stages , but also the parameter collecting
operations that some of the MAU stages 132 perform . These
operations are performed by processing values stored in the
header vectors that are generated for the data messages .
[0086] The stateful operations of the data plane are
enabled by the data plane's ability to store data that it
generates from processing earlier data messages for process
ing subsequent data messages . To perform stateful parameter
collecting operations , the parameter collecting MAU stages
132 in some embodiments use their stateful ALUS 910 and
their associated stateful tables 915 , as shown in FIG . 9. In
addition to the stateful ALUS 910 and stateful tables 915 , the
MAU stage 132 in some embodiments has a set of one or
more match tables 905 , an action crossbar 930 , an action
parameter memory 920 , an action instruction memory 925 ,
and an action ALU 935 .
[0087] The match table set 905 can compare one or more
fields in a received message's header vector to identify one
or more matching flow entries (i.e. , entries that match the
message's HV) . The match table set 905 can include TCAM
(ternary content addressable memory) tables or exact match
tables in some embodiments . In some embodiments , the
match table set can be accessed at an address that (1) is a
value extracted from one or more fields of the message's
header vector , or (2) is a hash of this extracted value . In
some embodiments , the local control plane , or a remote
control plane , supplies flow entries (e.g. , the flow - match

a

US 2021/0399997 A1 Dec. 23 , 2021
9

a

identifiers and / or action identifiers) to store in one or more
match tables and associated action tables .
[0088] In some embodiments , the value stored in a match
table record that matches a message's flow attributes , or that
is accessed at a hash - generated address from one or more
message flow attributes , provides addresses of records to
access and process in the action parameter memory 920 and
action instruction memory 925. Conjunctively or alterna
tively , a match table record in some embodiments has an
associated record in the action instruction memory and / or an
associated record in the action parameter memory that
specifies an action instruction to execute and / or an action
parameter to process . The actions performed by the MAU
stage 132 can include actions that the forwarding element
has to perform on a received data message to process the
data message (e.g. , to drop the message , or to forward the
message to its destination machine or to other intervening
forwarding elements) .
[0089] Also , in some embodiments , the value stored in a
match table record that matches a message's flow identifier ,
or that is accessed at a hash - generated address , can provide
an address and / or parameter for one or more records in the
stateful table set 915 , and can provide an instruction and / or
parameter for the set of stateful ALUS 910. As shown , the
stateful ALUS 910 and the stateful tables 915 also receive a
processed message's header vector . The header vectors can
include instructions and / or parameters for the stateful ALUS ,
while containing addresses and / or parameters for the stateful
tables 915 .
[0090] The stateful ALUS 910 in some embodiments per
form one or more stateful operations , while stateful tables
915 store state data used and generated by the stateful ALUS
910. In some embodiments , the stateful ALUS perform
operations synchronously with the data flow of the message
processing pipeline (i.e. , synchronously at the data line rate
of the data plane 120) . As such , the stateful ALUS can
process a different header vector on every clock cycle , thus
ensuring that the stateful ALUs would be able to operate
synchronously with the dataflow of the message - processing
pipeline .
[0091] In some embodiments , the local or remote control
plane provides configuration data to program the stateful
ALUS 910 of the MAUS 132 of the data plane 120. The
stateful ALU 910 outputs an action parameter to the action
crossbar 930. The action parameter memory 920 also out
puts an action parameter to this crossbar 930. The action
parameter memory 920 retrieves the action parameter that it
outputs from its record that is identified by the address
provided by the match table set 905. The action crossbar 930
in some embodiments maps the action parameters received
from the stateful ALUS 910 and action parameter memory
920 to an action parameter bus 940 of the action ALU 935 .
This bus provides the action parameter to this ALU 935. For
different data messages , the action crossbar 930 can map the
action parameters from stateful ALUS 910 and memory 920
differently to this bus 940. The crossbar can supply the
action parameters from either of these sources in their
entirety to this bus 940 , or it can concu currently select different
portions of these parameters for this bus .
[0092] The action ALU 935 also receives an instruction to
execute from the action instruction memory 925. This
memory 925 retrieves the instruction from its record that is
identified by the address provided by the match table set
905. The action ALU 935 also receives the header vector for

each message that the MAU processes . Such a header vector
can also contain a portion or the entirety of an instruction to
process and / or a parameter for processing the instruction .
[0093] The action ALU 935 in some embodiments is a
very large instruction word (VLIW) processor . The action
ALU 935 executes instructions (from the instruction
memory 925 or the header vector) based on parameters
received on the action parameter bus 940 or contained in the
header vector . The action ALU stores the output of its
operation in the header vector in order to effectuate a
message forwarding operation and / or stateful operation of
its MAU stage 132. The output of the action ALU forms a
modified header vector (HV ') for the next MAU stage or the
deparser . In some embodiments , examples of such actions
include (1) bit shifting some of the weight gradients in the
header vector , and (2) the writing of parameters stored in the
SALU tables in the header vectors .
[0094] In other embodiments , the match tables 905 and the
action tables 915 , 920 and 925 of the MAU stage 132 can be
accessed through other methods as well . For instance , in
some embodiments , each action table 915 , 920 or 925 can be
addressed through a direct addressing scheme , an indirect
addressing scheme , and an independent addressing scheme .
The addressing scheme that is used depends on the configu
ration of the MAU stage , which in some embodiments , is
fixed for all data messages being processed , while in other
embodiments can be different for different data messages
being processed .
[0095] In the direct addressing scheme , the action table
uses the same address that is used to address the matching
flow entry in the match table set 905. As in the case of a
match table 905 , this address can be a hash generated
address value or a value from the header vector . Specifically ,
the direct address for an action table can be a hash address
that a hash generator (not shown) of the MAU generates by
hashing a value from one or more fields of the message's
header vector . Alternatively , this direct address can be a
value extracted from one or more fields of the header vector .
[0096] On the other hand , the indirect addressing scheme
accesses an action table by using an address value that is
extracted from one or more records that are identified in the
match table set 905 for a message's header vector . As
mentioned above , the match table records are identified
through direct addressing or record matching operations in
some embodiments .
[0097] The independent address scheme is similar to the
direct addressing scheme except that it does not use the same
address that is used to access the match table set 905. Like
the direct addressing scheme , the table address in the inde
pendent addressing scheme can either be the value extracted
from one or more fields of the message's header vector , or
it can be a hash of this extracted value . In some embodi
ments , not all the action tables 915 , 920 and 925 can be
accessed through these three addressing schemes , e.g. , the
action instruction memory 925 in some embodiments is
accessed through only the direct and indirect addressing
schemes . Also , other addressing schemes are used to address
some of the tables (e.g. , action tables) .
[0098] FIG . 10 conceptually illustrates a process 1000 that
the parameter collecting circuit 150 performs in some
embodiments . The MAU stages 132 that implement the
parameter collecting circuit 150 in some embodiments have
the MAU circuit architecture illustrated in FIG . 9. In some
embodiments , the process 1000 is performed for each

a

US 2021/0399997 A1 Dec. 23 , 2021
10

received data message that is processed by the data plane
120 from each particular ML machine . As shown , the data
plane 120 initially determines (at 1005) whether the data
message is from an ML machine . In some embodiments , an
ingress MAU stage 132 makes this determination by match
ing the received data message's source information (e.g. , the
source IP address and / or source port address in the mes
sage's associated header vector that the MAU is processing)
with a record in its match table 905 .
[0099] When the data message is not from an ML
machine , the process 1000 ends and the data plane 120
processes this message's header vector according to its
configured forwarding operations , in order to forward the
data message along its path to the message's destination .
Alternatively , when the data message is from a particular
ML machine , the ingress MAU stage (that determined that
the message came from a particular ML machine) marks (at
1010) the header vector to indicate that it is one that contains
weight gradients from the particular ML machine .
[0100] Next , at 1015 , this MAU stage or another MAU
stage has its SALU 910 set a bit in a bitmap that it maintains
in its stateful ALU table 915 to identify that the particular
ML machine has provided its set of weight gradients for a
particular group of weights . In some embodiments , this bit
is set after the weight gradient set has been processed (i.e. ,
after the gradients in this set have been stored) . In setting the
bitmap (at 1015) , the SALU 910 also outputs in some
embodiments the bitmap so that the SALU 910 , its associ
ated action ALU 935 or a subsequent MAU 132 can analyze
the bitmap and determine whether all the bits have been set
to indicate that all the ML machines have provided their
weight gradient sets for a particular group of weights . When
an MAU stage determines that the bitmap indicates that all
the ML machines have provided their weight gradient sets ,
the action ALU of that stage marks the header vector to
indicate that this vector's data message has provided the last
weight gradient set for the particular group of weights .
[0101] At 1020 , the action ALUs of the ingress MAUs 132
shift the weight gradients to the left by 16 - bits when the
weight gradients are sent by certain ML machines (e.g. ,
machines A , C , E , G , I , and K) . This shifting allows the
weight gradients for these machines to be eventually stored
in the same registers as the corresponding weight gradients
from the other machines (e.g. , machines B , D , F , H , and L) ,
as shown in FIGS . 3-6 .
[0102] In some embodiments , each 16 - bit weight gradient
is initially stored by an ingress pipeline parser 130 in the
least significant 16 bits of a 32 - bit container for that gradient
(i.e. , for that weight) in the header vector . When the data
message is from the subset of ML machines that need their
gradients shifted , one or more header vector attributes (e.g. ,
source IP / port address , ML machine identifier , etc.) matches
in some embodiments a record of a match table in an ingress
MAU . This matching record has an associated action record
that directs the action ALU of that stage to shift the 16 - bit
gradient from the least significant 16 bits of its container to
its most significant 16 bits .
[0103] At 1025 , the process 1000 then extracts each
weight gradient from its container in the header vector and
stores them in the SALU registers of the egress MAUS
according to the storage pattern configured for that weight
gradient and the data message's source ML machine .
Examples of such storage patterns were described above by
reference to FIGS . 3-6 . The pattern in this example has eight

of twelve egress MAU stages storing four weight gradients
from the 32 weight gradients distributed by each ML
machine in some embodiments .
[0104] Next , at 1030 , the process 1000 determines
whether the data message is the last gradient message that
provided the final weight gradient set for the group of
weights . In some embodiments , after all the weight gradients
have been stored for the last data message by several MAU
stages , the final MAU stage or an MAU stage after this one
then updates the bitmap , determines from the updated bit
map that all the weight gradient sets have been collected ,
and then marks the header vector of the last data message for
recirculation back through the ingress and egress pipelines
so that the stored weight gradients can be retrieved from the
MAU stages . Other embodiments perform the determination
and operation at 1035 differently .
[0105] At 1035 , the TM 144 generates several replicated
data messages for each ML machine from the last data
message . It then passes these replicated data messages
through the egress MAU pipeline that stores all the collected
weight gradients . These egress MAU stages then store the
collected weight gradients according to the desired reporting
pattern (e.g. , the pattern shown in FIG . 7) the header vectors
associated with each ML machine's data messages . In some
embodiments , each SALU of an egress MAU outputs the
desired weight gradients from its SALU registers , and the
egress MAU's action ALU writes the outputted weight
gradients in the desired 32 - bit containers at the desired
location in the header vector . These header vectors are then
packaged by the egress pipeline deparser 134 into data
messages that are forwarded to the ML machines through a
direct wire connection or through intervening network fab
ric .
[0106] In some embodiments , the data plane 120 is con
figured to perform all - reduce parameter - collecting opera
tions instead of all - gather parameter - collecting operations .
For instance , the data plane 120 in some embodiments adds
the different weight gradients that it collects from the ML
machines 105 for the same weight values in a neural network
and distributes to the ML machines the aggregated weight
gradients for each of several weights in the neural network .
To perform its all - gather operations , the data plane 120
converts floating - point weight gradients that it receives from
the ML machines to fixed - point weight - gradients that it
aggregates and then converts the aggregated fixed - point
values back to aggregated floating - point weight gradients
that it distributes back to the ML machines .
[0107] FIG . 11 illustrates the interaction between the data
plane 120 and the ML machines 105 when the data plane 120
operates in an all - reduce implementation . Like FIG . 8 , FIG .
11 shows the data plane receiving 32 weight gradients 0-31
from twelve ML machines A - L . However , unlike its all
gather operation , the data plane during its all - reduce opera
tion adds the received weight gradients that correspond to
the same weight I , and then distributes to the ML machines
one data message with one aggregated SI value for each
weight I.
[0108] For each of the 32 weights , the S value equals the
sum of the twelve weight gradients that the data plane
receives from the twelve ML machines A - L for that weight ,
as shown in FIG . 11. Each ML machine A - L then computes
an average gradient for each weight by dividing the gradient
sum SI that it receives for each weight gradient I by the
number of ML machines , which in this example is twelve .

2

US 2021/0399997 A1 Dec. 23 , 2021
11

a

a

a

[0109] FIG . 12 conceptually illustrates the components of
the parameter collecting circuit 1250 when the data plan 120
is configured to perform an all - reduce operations in some
embodiments . As shown , the parameter collecting circuit
1250 conceptually includes a parameter extractor 1252 , a
floating - point to fixed - point converter 1253 , a computation
engine 1254 , a parameter storage 1255 , a parameter for
warding circuit 1256 and a fixed - point to floating - point
converter 1257 .
[0110] In examining a header vector for a received data
message , the parameter extractor 152 in some embodiments
determines that the data message originated from an ML
machine 105 and contains a set of weight gradients . The
weight gradients are received in a floating - point format (e.g. ,
a half - precision , floating - point format) in some embodi
ments . As the data plane 120 performs its gradient additions
in a fixed - point format , the parameter extractor 152 has the
floating - point to fixed - point converter 1253 convert each
gradient stored in the header vector to a fixed - point format .
As further described below , this converter in some embodi
ments converts each gradient value from a 16 - bit floating
format that is stored in a 32 - bit container in the header vector
to a 43 - bit fixed - point value that is stored as 21 - bit and
22 - bit values in two 32 - bit containers Y and Z.
[0111] The computation engine 1254 then adds each con
verted fixed - point gradient value for a weight to an aggre
gate gradient value stored in the storage 1255 for that
weight . When the received data message is the first data
message that provides the first set of weight gradients from
a group of ML machines , the computation engine 1254
simply saves the converted fixed - point gradient value for
each weight in the storage 1255 for that weight . In the
embodiments where the received data message has 32
gradients for 32 weights and each gradient is received as a
16 - bit half - precision floating point value that is converted
into a 43 - bit fixed - point value stored in two 32 - bit containers
Y and Z , the computation engine 1254 adds the values of the
32 - bit containers Y and Z for a weight to two 32 - bit storage
locations for that weight in the storage 1255. Again , when
the received data message is the first data message that
provides the first set of weight gradients from a group of ML
machines , the computation engine 1254 simply saves the
values of the 32 - bit containers Y and Z for a weight in the
two 32 - bit storage locations for that weight in the storage
1255 .
[0112] Once all the weight gradient sets from all the ML
machines have been received and the computation engine
1254 has produced a sum for each weight (i.e. , by adding all
the gradients that the parameter collecting circuit 1250
receives for each weight) , the parameter forwarding circuit
1256 embeds the generated sums in several (e.g. , twelve)
data messages that it sends to several (e.g. , twelve) ML
machines . Before the parameter collecting circuit 1250
sends these messages , the fixed - point to floating - point con
verter 1257 converts each gradient sum from a fixed - point
format to a floating - point format .
[0113] FIG . 13 conceptually illustrates a process 1300 that
the parameter collecting circuit 1250 performs in some
embodiments . The MAU stages 132 that implement the
parameter collecting circuit 1250 in some embodiments
have the MAU circuit architecture that was described above
by reference to FIG . 9. In some embodiments , the process
1300 is performed for each received data message that is
processed by the data plane 120 from each particular ML

machine . As shown , the data plane 120 initially determines
(at 1305) whether the data message is from an ML machine .
In some embodiments , an ingress MAU stage 132 makes
this determination by matching the received data message's
source information (e.g. , the source IP address and / or source
port address in the message's associated header vector that
the MAU is processing) with a record in its match table 905 .
[0114] When the data message is not from an ML machine ,
the process 1300 ends and the data plane 120 processes this
message's header vector according to its configured for
warding operations , in order to forward the data message
along its path to the message's destination . Alternatively ,
when the data message is from a particular ML machine , the
ingress MAU stage (that determined that the message came
from a particular ML machine) marks (at 1307) the header
vector to indicate that it is one that contains weight gradients
from the particular ML machine .
[0115] Next , at 1310 , this MAU stage , or another MAU
stage , has its SALU 910 set a bit in a bitmap that it maintains
in its stateful ALU table 915 to identify that the particular
ML machine has provided its set of weight gradients for a
particular group of weights . In some embodiments , this bit
is set after the weight gradient set has been processed (i.e. ,
after the gradients in this set have been added to the gradient
sums that are being maintained for the group of weights) . In
setting the bitmap (at 1310) , the SALU 910 also outputs in
some embodiments the bitmap so that the SALU 910 , its
associated action ALU 935 , or a subsequent MAU 132 can
analyze the bitmap and determine whether all the bits have
been set to indicate that all the ML machines have provided
their weight gradient sets for a particular group of weights .
When an MAU stage determines that the bitmap indicates
that all the ML machines have provided their weight gradi
ent sets , the action ALU of that stage marks the header
vector to indicate that this vector's data message has pro
vided the last weight gradient set for the particular group of
weights . As mentioned above , the data plane in other
embodiments uses other schemes (e.g. , a counter) to identify
when the data plane has weight gradient sets from all the ML
machines .
[0116] At 1315 , the process 1300 then retrieves in several
successive MAU stages each weight gradient from the
header vector and converts each retrieved gradient from a
floating - point format to a fixed - point format . In some
embodiments , each weight gradient is 16 - bit value that
expresses a floating - point number in a half - precision format .
FIG . 14 illustrates an example of such a 16 - bit value X. As
shown , the most significant bit (MSB) of this 16 - bit value is
the sign bit X.s. The next five bits are the exponent bits X.e ,
and the final 10 bits are the fraction bits X.f , also called the
significand or mantissa bits . This 16 - bit value expresses a
floating point number according to the following two equa
tions :

Floating point number N = (- 1) { . * 2-14 * 0.X.f when
X.e = 0 (subnormal case) , or

a

a

(-1) 4.5 * 2X.e - 15 * 1.X.f when X.e = 0 .
[0117] FIG . 14 also illustrates that the MAUs in some
embodiments convert each received 16 - bit floating point
gradient value (that is stored in a 32 - bit container in the
header vector) to a 43 - bit fixed - point value that is stored as
21 bits and 22 bits in two 32 - bit containers Y and Z. As
shown , the 43 bits account for (1) 1 sign bit , (2) 1 extra bit
to account for the “ 1.X.f " component of the above - described

US 2021/0399997 A1 Dec. 23 , 2021
12

a

floating point equation for when the floating point exponent
(X.e) is not zero , (3) a 31 bit value to represent each possible
exponent value from a 5 - bit exponent (X.e) without account
ing for the zero exponent value , and (4) the 10 fraction bits
(X.f) .
[0118] The container Y is referred to below as the upper
container (as it stores the upper 21 bits of the 43 - bit value) ,
while the container Z is referred to as the lower container (as
it stores the lower 22 bits of the 43 - bit value) . The 32 - bit
containers Y and Z have sufficient extra MSBs (11 for Y and
10 for Z) to account for carry values that may result while
adding weight gradients . When there are twelve ML
machines A - L , at most 4 extra bits are needed in the MSBs
of these containers to account for the carry values . A process
for converting a weight gradient from a fixed - point format to
a floating - point format will be described below by reference
to FIG . 15 .

[0119) After converting the weight gradients from their
floating - point formats to their fixed - point formats , the pro
cess determines (at 1320) whether the received data message
is the first message that provides the first weight gradient set
for a group of weights . In some embodiments , an MAU
maintains a bit in its SALU register to indicate whether any
prior data messages have been received for a group of
weights . Upon receiving the first data message , the MAU
has its action ALU set a value in the header vector to notify
the other MAU stages that the data message is a first data
message , and its SALU changes the value of the bit it
maintains . After changing this bit , the MAU no longer
modifies this value until its registers are reset after all the
weight gradients for a group of weights have been collected .
In other embodiments , the MAU that maintains the first
message bit for a group of weights is one of the MAUs that
implements the computation engine 1254 that accumulates
one or more weight gradients in one or more of its SALU
registers . In still other embodiments , the MAU that performs
the determination at 1320 assesses the bitmap maintained in
the data plane . Still other embodiments make this determi
nation differently .
[0120] When the process 1300 determines (at 1320) that
the received data message is the first message that provides
the first weight gradient set for a group of weights , several
MAU stages store the fixed - point converted weight gradi
ents in their respective SALU registers . As each 43 - bit
weight gradient is stored as 21 bits and 22 bits in two 32 - bit
containers Y and Z in the header vector , and each SALU has
four sets of SALU 32 - bit wide registers , each MAU stage
stores two 43 - bit weight gradient values in four 32 - bit
SALU registers in some embodiments . After 1325 , the

a

[0122] Next , at 1335 , the process 1300 determines
whether the data message is the last gradient message that
provided the final weight gradient set for the group of
weights . In some embodiments , each MAU that accumulates
the weight gradients makes this determination based on the
value of the bitmap , and upon making this determination it
outputs (at 1340) the weight gradient sums that it has
maintained into the header vector . In other embodiments ,
after all the weight gradients have been accumulated for the
last data message by several MAU stages , the final MAU
stage or an MAU stage after this one then updates the
bitmap , determines from the updated bitmap that all the
weight gradient sets have been collected , and then marks the
header vector of the last data message for recirculation back
through the ingress and egress pipelines so that the weight
gradients can be retrieved from the MAU stages . Other
embodiments perform the determination and operation at
1335 differently .
[0123] Irrespective of how the collection - completion
determination is made at 1335 , the process 1300 (at 1340)
retrieves the gradient sums collected for each weight in the
SALU registers , stores the result of the sum in two 32 - bit Y
and Z containers , and converts each sum from a fixed - point
representation that spans the two containers into one 16 - bit
representation that is stored in the header vector . The data
plane operations for performing this conversion will be
described below by reference to FIG . 15 .
[0124] After the weight gradient sums are converted into
half - precision 16 - bit floating point values , the process (at
1345) generates one data message for each ML machine ,
embeds the 16 - bit floating point weight gradient sums into
each data message , and sends each ML machines its data
message . To do this , the data plane 120 has its TM 144
replicate the final data message (similar to the approach
described above by reference to FIG . 2) and embeds the
weight gradient sums in these replicated messages . In other
embodiments , the data plane has its message generator 135
generate messages that are populated with the accumulated
weight gradient sums .
[0125] Other embodiments implement these operations
differently . For instance , some embodiments first generate
the replicated message for each ML machine , then retrieve
the fixed - point weight gradient sums and convert these sums
to floating point formats . Also , in some embodiments , a data
message from an ML machine has to be recirculated through
the data plane one or more times to generate the weight
gradient sums for each weight in order to support more ML
machines and / or more weights in each data message , which
would require more stages and resources than available to
compute the sums in one pass through the data plane's
ingress and egress pipelines .
[0126] Also , instead of the 43 - bit implementation , other
embodiments convert 16 - bit floating points to 42 - bit repre
sentations , and perform the aggregation with respect to the
42 - bit representations . These embodiments use 11 bits for
the normal values (i.e. , 1 plus 10 bits for fraction) . For the
exponent 1 , these embodiments do not need to do any shift
as normal values get a bias of negative 15 in power while
sub - normal values get a bias of negative 14. Thus , under this
approach , exponent 1 has a 0 shift (to align with sub - normal
values) and exponent 31 has a 30 - bit shift . Accordingly ,
overall 42 bits are need for 1 sign bit , 30 bits for shifting , and
11 bits for the fraction (1plus 10 bit fraction) . Some embodi

process ends .
[0121] On the other hand , when the process 1300 deter
mines (at 1320) that the received data message is not the first
message that provided the first weight gradient set for the
group of weights , several MAU stages add (at 1330) the
fixed - point converted weight gradients to the values stored
in their respective SALU registers . For a particular weight
gradient m that is stored in two 32 - bit containers Ym and Zm
in the header vector , a particular MAU maintains the sum for
the weight gradient m in two 32 - bit registers , one that
corresponds to the upper Y container and the other that
corresponds to the lower Z container . For this weight gra
dient m , the particular MAU adds the 32 - bit values in
containers Ym and Zm to these two 32 - bit registers .

US 2021/0399997 A1 Dec. 23 , 2021
13

a

ments that use this approach use the lower 21 - bit values of
the 32 - bit Y and Z containers .
[0127] FIG . 15 illustrates the operations that some
embodiments perform to convert a floating - point weight
gradient Wi to a fixed - point weight gradient , add the con
verted weight gradient to a total Si that is maintained for that
gradient’s associated weight , and to convert the fixed - point
weight gradient sum to a floating - point weight gradient sum .
Each of these operations in some embodiments is performed
by one or more MAU stages . These operations will be
described below by reference to an example that converts a
half - precision 16 - bit floating point gradient into a 43 - bit
gradient that is stored in two containers Y and Z , which
illustrated in the above - described FIG . 14 .
[0128] As shown , the first operation is performed by a sign
processing circuit 150 to account for the sign value in the
half - precision floating point number . The pseudo code
below describes the data plane configuration logic that the
sign circuit 1505 implements . As shown , when the exponent
is zero , the sign circuit initially sets both containers Y and Z
(1) to negative X.f when the sign is negative and the
exponent is zero , (2) to positive X.f when the sign is positive
and the exponent is zero , (3) to 10000000000 minus X.f
when the sign is negative and the exponent is not zero , and
(4) to 10000000000 plus X.f when the sign is positive and
the exponent is not zero .

by two operation , while shifting a value by 1 to the right
implements a divide by two operation .
[0131] After the sign circuit 1505 processes the gradient ,
a shift circuit 1510 performs shift operations on the Y and Z
container values to account for the value of the exponent of
the half - precision value . The pseudo code below describes
the data plane configuration logic that the shift circuit 1510
implements . As shown , when the exponent is not zero , the
shift circuit 150 shifts the bits in the Z container to the left
by the exponent value (which is between 1-31 in this case)
minus 1. Also , when the exponent value is greater than 23 ,
the shift circuit 150 shifts the bits in the Y container to the
left by the exponent value (which is between 24-31 in this
case) minus 23 , while when the exponent value is 23 or
smaller , the shift circuit 150 shifts the bits in the Y container
to the right by 23 minus the exponent value (which is
between 1-23 in this case) .

e

if X.e ! = 0 :

Z << = (X.e - 1)

if X.e > 23

Y << = X.e - 23

else :

Y >> = 23 - X.e

l / when value negative
1 / when value positive

if X.e == 0 : // subnormal
if X.s == 1 : Y = Z = -X.f
if X.s == 0 : Y = Z = X.f

else
if X.s == 1 : Y = Z = -0x400 X.f
if X.S == 0 : Y = Z = 0x400 + X.f

l / when value negative
// when value positive

[0129] In some embodiments , one MAU stage implements
the sign circuit 1505. This MAU stage uses a TCAM with
the following records to identify the operations that the
MAU stage's action ALU has to perform .

TCAM Table

Sign Exponent Fraction Op Instruction
X 0

0 +
0

X (any non - zero
value)

X (any non - zero
value)

X (any non - zero
value)

X (any non - zero
value)

0

In some embodiments , this shifting operation is performed
by one or more action ALUs of one or more MAU stages
based on the matching of the exponent values of the gradi
ents to match table records . Also , as mentioned above , the
containers Y and Z in some embodiments are two containers
in the header vector of a processed data message . Hence , in
these embodiments , the shift circuit 1510 stores the results
of it shift operation (s) back in these containers Y and Z in the
header vector .
[0132] After the shift circuit 1510 completes its shift
operation for the weight gradient Wi and stores the result of
this operation in containers Y and Z for this weight gradient
in the header vector , the weight gradient has been converted
into its 43 - bit format stored in two 32 - bit containers Y and
Z. Accordingly , an accumulate circuit 1515 can then store or
add this weight gradient to the SALU storage that stores the
sum of all weight gradients Wi received from all of the ML
machines .
[0133] In some embodiments , two SALUs of an MAU
stage implement the accumulate circuit 1515 , with each
SALU storing or adding one container value Y or Z for a
particular weight gradient Wi . When the data message being
processed is the first data message in a group of data
messages from the ML machines that provide a group of
weight gradient sets , these two SALU registers extract the Y
and Z 32 - bit values from Y and Z containers in the header
vector , and store these values in their Y and Z SALU
registers . On the other hand , when the processed data
message is not the first data message in the group , each
SALU extract its corresponding Y or Z 32 - bit value from the
Y or Z container in the header vector , retrieves the value
stored in its corresponding register Y and Z , and adds the
extracted and retrieved values , and stores the result back into
the Y or Z register .
[0134] Some embodiments pipeline the accumulate - side
operations of the circuits 1505-1510 in order to maximize

no op (zero)
copy fraction

(positive subnormal)
copy fraction

(negative subnormal)
add 0x400 (positive

normal)
sub 0x400 (negative

normal)

+ X

X

[0130] In the above - table , X means do not care . One of
ordinary skill will realize that the TCAM table does not
specify an operation instruction but rather identifies directly
or indirectly an instruction in the MAU's action instruction
memory in some embodiments for the action ALU of this
stage to perform . Without this TCAM , up to three exact
match tables would be needed to implement the operation of
the sign circuit 1505. In two's complement logic , a negative
of a number two's complement number is produced by
inverting each bit and adding 1 to the result . Also , in this
logic , shifting a value by 1 to the left implements a multiply

US 2021/0399997 A1 Dec. 23 , 2021
14

pseudo code below conceptually describes the operations of
the sign circuit 1530 in some embodiments . As listed , if Y
is determined to be a negative number , then X.s (i.e. , the sign
value in the half - precision floating point expression) is set to
1 ; this value is initially set to 0 and X.s retains this value
when Y is determined not to be negative . Also , if Y is
negative and Z is not zero , Y is set to not Y and Z is set to
negative Z plus 10000000000 .

if Y < O :

X.s = 1
a

if Z == 0 : Y = -Y

else : Y = not Y ; Z = -Z + 0x400

the number of weight gradients that can be converted to
fixed point and accumulated in each pass through the data
plane 120. Even with this pipelining , the data plane in some
embodiments might not be able to process all the weight
gradients in one pass through an ingress pipeline and an
egress pipeline . In these embodiments , the processed data
message is recirculated from the egress pipeline back to an
ingress pipeline one or more times to complete the process
ing and accumulation of all of the weight gradients .
[0135] Some embodiments further reduce the accumulate
side processing of the data plane by assuming that the weight
gradients are going be within a small numerical range (e.g. ,
-2 to 2) . Based on this assumption , these embodiments
convert each 16 - bit half - precision floating point number to
a smaller number of bits (e.g. , 27 bits) that fit within one
32 - bit container . This approach requires less data - plane
resources for converting , accumulating , and storing the
numbers , which , in turn , frees up for data - plane resources
for processing more weight gradients during each pass
through the data plane .
[0136] Once all the ML machines have provided their
weight gradient sets for a group of weights , the weight
gradient sums can be read from the SALU registers 1520 and
converted back to floating point formats before being
embedded in data message and transmitted to the ML
machines . For one weight gradient sum Si , this conversion
starts with a carry / borrow adjustor 1525. This adjustor
extracts the Y and Z container values associated with this
sum from the SALU registers 1520 and modifies the value
of the upper container Y based on the value of the lower
container Z to account for needed carry or borrow operations
that need to be performed before combining the values
contained in these two containers .
[0137] Specifically , as specified by the pseudo code below ,
the carry / borrow adjustor initially computes a t value based
on whether the lower Z container is negative or not . The
lower container Z should only have 22 bits , but adding
different numbers may make it have a carry when Z is
positive and a borrow when Z is negative . The carry and
borrow bits are the 10 MSBs of the container Z. The
carry / borrow bits are saved in the variable called t . When Z
is negative , t also has to be negative . This is why t is
concatenated (merged) with 22 bits of 1 (0xFFFFF3) when
Z is negative ; otherwise , t is a concatenation of O and the 10
MSBs of the Z container .

If Y is negative after adding carry / borrow , the sign bit has to
be set and the number has be made positive . As mentioned
above , making a number positive in two's complement
calculation means inverting each value of that number and
adding 1. To make Z and Y positive , Y has to be set to not
Y and Z has to be set to not Z + 0x400 . (Remember Z was
shifted 10 bits so 1 is 0x400) . However , it is hard to compute
not Z + 0x400 in hardware . Hence , some embodiments com
pute Z to be not Z + 1 + 0x3ff which can be simplified to
-Z + 0x3ff . There is one special case , if Z is Othen not
Z + 0x400 will have a carry . In this case Z should remain 0
but Y should be not Y + 1 , which is essentially -Y . Accord
ingly , the pseudo code that describes the operation of the
sign circuit in some embodiments can be expressed as :

if Y < O :

X.s = 1

if Z ! = 0 : Y = not Y ; Z = -Z + 0x3FF

else : Y = -Y

if Z < 0 : t = concat [0xFFFFF3 , Z [31:22]]

[0139] Once the sign examining operations have been
completed , an exponent identifying circuit 1535 identifies
the leftmost 1 value in the concatenation of Y and Z is
identified , and uses this value to set X.e (i.e. , the exponent
value in the half - precision floating point expression) . This
leftmost 1 value identifies the location in the concatenation
of Y and Z that identifies a start of fraction bits (X.f)
associated with a floating point value corresponding to the
fixed point value . For instance , in some embodiments , the bit
after the leftmost 1 is the start of the fraction bits (X.f) . Some
embodiments do not check whether the leftmost bit is in the
rightmost 9 bits as this would be the case for a sub - normal
value .
[0140] The pseudo code below expresses the operation of
the exponent identifying circuit 1535 in some embodiments .
As shown in the pseudo code below , the concatenation is the
32 bits of the Y container plus the top 22 bits of the Z
container .

else : t = concat [0 , Z [31:22]]

Y + = t

Z = << 10

m = index of leftmost 1 in concat (Y , Z [31:10])

X.e = max (m - 9,0)

The carry / borrow adjustor also shifts Z to the left by 10 bits
in order to ensure that data portion of the Z container is
positioned to the left of this container's left . As mentioned
above , some embodiments uses one or more action ALUs of
one or more MAU stages to perform a shift operation . The
carry / borrow adjustor 1525 writes the adjusted values of Y
and Z into two containers of a data message being processed
to retrieve a sum weight gradient .
[0138] After dealing with the carry / borrow adjustment , a
sign circuit 1530 examines the values of containers Y and Z
in the header vector and based on these values performs
operations to account for possible negative value for Y. The

To identify the leftmost 1 value in the concatenation of Y and
Z , some embodiments use a TCAM match table of an MAU
stage . In some embodiments , a TCAM match table identifies
the leftmost 1 value in a received n - bit value by storing
n - records , each of which stores an n - bit value with a single
valid bit that is set to 1 and all other bits as Os or don't cares .

US 2021/0399997 A1 Dec. 23 , 2021
15

a

conversion of a floating point weight gradient (as f can be
shifted up to 15 bits to left , f can be 10 bits , plus an extra 1
bit and another bit for sign) , as mentioned above .
[0145] In these embodiments , the 27 - bit fixed point value
is stored in a 32 - bit container , which leaves five extra bits
that can be used to store carry bits that result from adding
multiple fixed point values . To perform the 16 - bit floating
point conversion to a 32 - bit fixed point representation , some
embodiments use a look up table (LUT) that stores a single
32 - bit converted fixed point value for each possible 16 - bit
half precision floating point value . This LUT is a match table
of an MAU stage in some embodiments that for each 16 - bit
half precision floating point value outputs its corresponding
32 - bit fixed - point value .
[0146] To convert a 32 - bit fixed - point value that repre
sents a sum of weight gradients (that were converted from
16 - bit floating point representations to 32 - bit fixed - point
representations) , the MAUs of some embodiments imple
ment the logic reflected by the following pseudo - code . In
this pseudo code , Y is the 32 - bit container that store the
32 - bit sum of several 32 - bit converted fixed - point weight
gradients .

a

The records are stored in the TCAM in an order with the
larger n - bit values (i.e. , with the leftmost valid 1 values) in
earlier TCAM locations . The TCAM in these embodiments
compares the received n - bit values with all the stored n - bit
values concurrently .
[0141] When multiple stored n - bit values match a received
value , the TCAM in these embodiments selects the stored
n - bit value with the leftmost valid 1 bit that matches a 1 bit
in the received value . Specifically , in comparing the received
n - bit value with each stored n - bit value , the TCAM in some
embodiments only compares the single valid 1 value in the
stored n - bit value with the corresponding bit in the received
value to determine whether the two n - bit values match .
When the received value matches at least one n - bit value
(i.e. , when the received value has a 1 that matches a 1 value
in a corresponding bit of a stored n - bit value) , the TCAM
outputs in some embodiments a value that identifies the
location of the matching valid 1 value in a matching n - bit
value with the leftmost valid 1 bit . In some embodiments ,
the value that the TCAM outputs specifies the leftmost bit in
the received n - bit value . In other embodiments , the leftmost
bit in the received n - bit value is derived from the value
output from the TCAM . Some embodiments do not check
whether the leftmost bit is in the rightmost 9 bits as this
would be the case for a sub - normal value .
[0142] In other embodiments , the TCAM operates differ
ently . For instance , in some embodiments , the TCAM con
currently compares each received n - bit value with multiple
bits in each of its records , with each of its multi - bit records
having 0 , 1 or don't care (x) values for each of its bits and
only at most one of these bits being a 1 value . In these
embodiments , only one record with a valid 1 bit would
identify the leftmost 1 bit in a received value . For instance ,
for a 4 - bit example , the TCAM records would be 0000 ,
0001 , 001x , 0 lxx , lxxx , and xxxx . When the received value
is 0110 , the TCAM would match the received value with its
fourth record (01xx) and would that the leftmost 1 bit is the
third bit from the right . On the other hand , when the received
value is 0011 , the TCAM would match the received value
with its third record (001x) and would that the leftmost 1 bit
is the second bit from the right .
[0143] After setting X.e , a shift circuit 1540 shifts the
concatenation of Y and Z to the left by the max of 10 and
X.e + 10 . As mentioned above , some embodiments uses one
or more action ALUs of one or more MAU stages to perform
a shift operation . The shift circuit then defines X.f to be the
lower 10 bits of Z , by AND'ng Z with Ox3ff (which is
001111111111) . The pseudo code below expresses the opera
tion of the shift circuit 1540 in some embodiments .

m =

If YKO ,
Then X.s = 1
Y = -Y
index of leftmost 1 in Y

If m < 10 / sub - normal case /
X.e = 0

Else / normal case /
X.e = m - 9
Y shifted to right by X.e - 1

X.f = Y AND'd with Ox3FF / mask operation /

[0147] To implement this logic , one or more MAU stages
perform the sign operations that when Y is negative , set the
X.s to 1 and invert Y. Another MAU stage then identifies the
location of the leftmost 1 value in Y. As mentioned above ,
this leftmost 1 value identifies the location in the concat
enation of Y and Z that identifies a start of fraction bits (X.f)
associated with a floating point value corresponding to the
fixed point value . As further discussed above , some embodi
ments identify the location m of the leftmost 1 by using a
TCAM for the match table of the MAU stage , where this
TCAM outputs a value that identifies the leftmost bit in Y.
When m is less than 9 , the Y value is associated with the
sub - normal case . Hence , an MAU stage sets X.e to zero and
the Y is not shifted .
[0148] On the other hand , when m is equal or larger than
9 , one or more MAU stages sets X.e to m - 9 , and shift Y to
the right by X.e minus 1. As mentioned above , the action
ALUs of one or more MAU stages in some embodiments are
used to shift bits of a multi - bit value to the right or left by
a specified amount . Lastly , an MAU stage performs a
masking operation that sets X.f equal to the result of
AND’ing Y and 0x3FF (i.e. , sets X.f equal to the lower 10
bits of Y) . Accordingly , one of ordinary skill in the art would
understand that the invention is not to be limited by the
foregoing illustrative details , but rather is to be defined by
the appended claims .

Z = concat (Y , Z) >> max (10 , X.e + 10)

X.f = Z & 0x3FF

[0144] While the invention has been described with ref
erence to numerous specific details , one of ordinary skill in
the art will recognize that the invention can be embodied in
other specific forms without departing from the spirit of the
invention . For instance , other embodiments use other
approaches to convert floating point numbers to fixed point
numbers and / or to convert fixed point numbers to floating
point numbers . In some embodiments , the floating - point
weight gradients that are added are truncated to be between
-2 and 2. As such , the half - precision floating point exponent
in these embodiments can have 1 of 16 values (e.g. , between
0 to 15) , and only 27 bits are needed for a fixed point

1. For a forwarding element , a data plane circuit for
forwarding data messages received by the forwarding ele
ment , the data plane comprising :

US 2021/0399997 A1 Dec. 23 , 2021
16

a parameter extracting circuit to extract floating - point
parameter values embedded in a set of data messages
received by the data - plane circuit ;

a computation circuit to perform computations based on
the extracted floating - point parameter values ; and

a parameter forwarding circuit to forward results of the
computations in data messages forwarded by the for
warding element .

