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Some embodiments provide a network forwarding element 
with a data - plane forwarding circuit that has a parameter 
collecting circuit to store and distribute parameter values 
computed by several machines in a network . In some 
embodiments , the machines perform distributed computing 
operations , and the parameter values that compute are 
parameter values associated with the distributed computing 
operations . The parameter collecting circuit of the data 
plane forwarding circuit ( data plane ) in some embodiments 
( 1 ) stores a set of parameter values computed and sent by a 
first set of machines , and ( 2 ) distributes the collected param 
eter values to a second set of machines once it has collected 
the set of parameter values from all the machines in the first 
set . The first and second sets of machines are the same set 
of machines in some embodiments , while they are different 
sets of machines ( e.g. , one set has at least one machine that 
is not in the other set ) in other embodiments . In some 
embodiments , the parameter collecting circuit performs 
computations on the parameter values that it collects and 
distributes the result of the computations once it has pro 
cessed all the parameter values distributed by the first set of 
machines . The computations are aggregating operations 
( e.g. , adding , averaging , etc. ) that combine corresponding 
subset of parameter values distributed by the first set of 
machines . 
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FORWARDING ELEMENT DATA PLANE 
PERFORMING FLOATING POINT 

COMPUTATIONS 

CLAIM OF BENEFIT TO PRIOR 
APPLICATIONS 

. 

[ 0001 ] This application is a continuation of U.S. patent 
application Ser . No. 16 / 147,755 , filed Sep. 30 , 2018. U.S. 
patent application Ser . No. 16 / 147,755 claims the benefit of 
U.S. Provisional Patent Application 62 / 733,441 , filed Sep. 
19 , 2018 and U.S. Provisional Patent Application 62/718 , 
373 , filed Aug. 13 , 2018. The entire specifications of all of 
those patent applications are hereby incorporated herein by 
reference in their entirety . 

BACKGROUND 

a [ 0002 ] In recent years , many network operations have 
migrated to data compute servers that execute virtual 
machines or containers , as these servers have extra compu 
tational resources and can handle some amount of network 
operations . At the same time , however , the processing power 
of network forwarding elements has dramatically increased 
and this processing power often remains untapped in many 
common network deployments . In addition , the packet pro 
cessing line rates of some of the fastest network forwarding 
elements are dramatically higher than the computational 
powers of the data compute servers . Accordingly , it would 
be beneficial to use the packet processing data plane pipe 
lines of the network forwarding elements to absorb some of 
the data compute operations from the data compute servers , 
so that these operations can be performed in the network at 
dramatically faster rates . 

[ 0005 ] The operations of the data plane's message pro 
cessing stages are configured by a local or remote control 
plane in some embodiments . In some embodiments , a local 
control plane is implemented by a control software layer that 
is executed by one or more general purpose processors ( e.g. , 
CPUs ) of the forwarding element , while a remote control 
plane is implemented by a control software layer executed 
by one or more CPUs of another forwarding element or a 
remote computer ( e.g. , server ) . 
[ 0006 ] In some embodiments , the parameter collecting 
circuit of the data plane includes a parameter extracting 
circuit to extract , from a subset of the data messages , 
parameter values computed and distributed by the first set of 
machines . The parameter values in some embodiments are 
stored as key - value pairs in the headers of the subset of the 
data messages that the data plane receives from the first set 
of machines . For instance , in some embodiments , the header 
of each data message from a first - set machine includes ( 1 ) a 
layer 4 port ( e.g. , UDP source port ) value that specifies that 
the data message contains a key - value pair and ( 2 ) an option 
field that stores the key ( i.e. , the parameter ) and its value . In 
other embodiments , the layer - 4 option field only includes 
key values ( and not the keys ) as the key values are specified 
in a particular order that can be used to associated different 
values stored in the header with different keys . Still other 
embodiments use other techniques to store and retrieve the 
parameter values in the payloads and / or headers of the data 
messages from the first - set machines . 
[ 0007 ] The parameter collecting circuit includes a set of 
one or more storages in which the parameter extracting 
circuit stores the extracted parameter values . The collecting 
circuit also includes a parameter forwarding circuit to 
retrieve the stored parameter values and to forward the 
retrieved parameter values to the second set of machines . 
The parameter forwarding circuit in some embodiments 
retrieves and forwards the stored parameter values after all 
the parameter values that are distributed by all of the 
machines in the first set have been stored in the set of 
storages . In other embodiments , the parameter forwarding 
circuit retrieves and forwards the stored parameter values to 
the second set of machines based on other criteria ( e.g. , after 
a duration of a time measured by a timer ) . 
[ 0008 ] In some embodiments , the parameter forwarding 
circuit includes a data message generator that generates 
several data messages to store the retrieved parameter values 
to forward to the second - set machines . The data message 
generator in some embodiments generates data messages by 
replicating a last data message that provides a last set of one 
or more parameter values to complete a group of parameter 
values collected from the first machine . In some embodi 
ments , the data message generator is implemented by the 
data plane traffic manager , which forwards data messages 
from the data plane's ingress message - processing pipelines 
to its egress message - processing pipelines . 
[ 0009 ] The traffic manager in some embodiments includes 
a mirror buffer that includes the set of storages that store the 
parameter values contained in the data messages sent by the 
first - set machines . In some embodiments , the data plane 
( e.g. , a message processing stage of an ingress processing 
pipeline or an egress processing pipeline ) implements a bit 
map generator that generates a bit map to keep track of 
different parameter value sets received from different first 
set machines . When the bit map indicates that all the 
parameter - value sets from all the first - set machines have 

BRIEF SUMMARY 

a 

[ 0003 ] Some embodiments of the invention provide a 
data - plane forwarding circuit ( data plane ) that has a param 
eter collecting circuit that stores parameter values sent by a 
first set of machines in a network and distributes the param 
eter values to a second set of machines in the network . The 
first and second sets of machines are the same set of 
machines in some embodiments , while they are different sets 
of machines ( e.g. , one set has at least one machine that is not 
in the other set ) in other embodiments . The machines in 
some embodiments are virtual machines ( VMs ) , containers , 
or standalone computers / servers . Also , in some embodi 
ments , the machines perform distributed computing opera 
tions , and the parameter values that are distributed by the 
first machine set and the data plane are parameter values 
associated with the distributed computing operations . 
[ 0004 ] To perform its forwarding operations , the data 
plane includes several data message processing stages that 
are configured to process the data tuples associated with the 
data messages received by the data plane . In some embodi 
ments , the data plane's message - processing stages are orga 
nized into several ingress message - processing stages and 
egress message - processing stages , which are communica 
tively linked through a crossbar switch , called a traffic 
manager . In some embodiments , parts of the data plane 
message - processing stages are also configured to implement 
the parameter collecting circuit . In other embodiments , the 
data plane has a dedicated parameter collecting circuit that 
does not use re - purposed message processing stages for 
parameter distribution operations . 
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been received , the traffic manager's data message generator 
retrieves the stored parameter values from the mirror buffer , 
generates one or more messages for each second - set 
machine , embeds the retrieved stored parameter values in 
each of the generated messages , and provides the generated 
data messages to one or more egress pipelines for forward 
ing to the second - set machines . In some embodiments , the 
generated messages have to be recirculated back to the 
ingress pipelines to identify the egress pipelines that are 
supposed to process each message for each second - set 
machine . 
[ 0010 ] Instead of using a mirror buffer in the traffic 
manager to store the parameter values from the first - set 
machines , the data plane circuit in some embodiments uses 
stateful storages of stateful processing units in the data plane 
to store these values . Specifically , in some embodiments , at 
least a set of message - processing stages include stateful 
processing units ( e.g. , stateful arithmetic logic units , ALUS ) 
and stateful storages ( e.g. , stateful registers or tables ) for 
these processing units . 
[ 0011 ] The data plane in some embodiments has a parser 
that extracts a header from a received data message , and 
formats this header as a header vector ( HV ) for processing 
by the data - plane message processing stages . Header vectors 
can be modified by successive message processing stages as 
part of their message processing operations . When process 
ing a header vector for a data message from a first - set 
machine , a message processing stage can determine that the 
header vector contains one or more parameter values from a 
first - set machine ( e.g. , by matching one or more header 
vector attributes with match rules stored in the message 
processing stage ) . Based on this determination , the process 
ing stage can direct its stateful processing unit to store one 
or more parameter values in its stateful storage , and / or mark 
the header vector so that one or more subsequent stateful 
processing units of one or more subsequent message pro 
cessing stages can store the parameter values in their stateful 
storages . 
[ 0012 ] In some embodiments , the stateful processing units 
and storages that are used to implement the parameter 
collecting circuit are all part of one or more ingress pipe 
lines . In other embodiments , the parameter collecting circuit 
is implemented by stateful processing units and storages of 
both the ingress and egress pipelines . In still other embodi 
ments , the stateful processing units and storages that are 
used to implement the parameter collecting circuit are all 
part of one or more egress pipelines . In some of the 
embodiments in which the stateful processing units and 
storages are in one or more egress pipelines , one or more 
ingress pipelines are used to shift the parameter values in the 
header vectors to facilitate interleaving the storage of these 
parameter values . 
[ 0013 ] In some embodiments , each machine in the first 
machine set distributes a set of several parameter values , 
with each parameter value in each machine's distributed 
parameter - value set having an associated parameter value in 
each other parameter value set distributed by each other 
machine in the first set . For example , in some embodiments , 
the first set includes four machines 1-4 , and each machine 
distributes three values for three parameters A - C . In this 
example , the four values ( A1 , A2 , A3 , and A4 from 
machines 1 , 2 , 3 , and 4 ) for parameter A are associated as 
they are values for the same parameter , the four values for 
parameter B ( B1 , B2 , B3 , and B4 from machines 1 , 2 , 3 , and 

4 ) are associated as they are values for the same parameter , 
and the four values for parameter C ( C1 , C2 , C3 , and C4 
from machines 1 , 2 , 3 , and 4 ) are associated as they are 
values for the same parameter . 
[ 0014 ] In some embodiments , the parameter forwarding 
circuit of the data plane’s parameter collecting circuit sends 
the stored parameter values ( i.e. , the values stored in the data 
plane ) in an interleaved manner that places next to each 
other sets of associated values collected from different 
machines . For instance , for the above - described example , 
the parameter forwarding circuit in some embodiments 
sends a message to each of the machines 1-4 with all the 
parameter A values next to each other , all the parameter B 
values next to each other , and all the parameter C values next 
to each other ( e.g. , the message would contain : A1 , A2 , A3 , 
A4 , B1 , B2 , B3 , B4 , C1 , C2 , C3 , C4 ) . 
[ 0015 ] To help with output interleaving , the parameter 
extracting circuit in some embodiments interleaves the stor 
ages of the parameter values distributed by each machine so 
that sets of associated parameter values are stored in the 
same storage locations , adjacent storage locations , and / or 
similarly addressed storage locations . For instance , the 
parameter extracting circuit in some of these embodiments 
uses an interleaved storage pattern to store parameter values 
of different machines in order to simplify interleaving the 
output of these parameter values . In some embodiments , the 
parameter extracting circuit also shifts some of the param 
eter values in the header vectors to facilitate the interleaved 
storage of the parameter values ( e.g. , shifts parameter values 
from machine 1 so that they can be stored next to their 
related values from machine 2 ) . 
[ 0016 ] The parameter extracting circuit in some embodi 
ments rotates its interleaved storage of parameter values for 
different subsets of machines in order to ensure that the 
desired sets of associated parameters values are stored near 
each other or in a set of associated or related storage 
locations . One example of rotated storage patterns would be 
storing first - parameter values of machines 1 and 2 in an 
earlier first stateful storage , while storing first - parameter 
values of machines 3 and 4 in a later second stateful storage , 
but then storing second - parameter values of machines 1 and 
2 in the later second stateful storage , while storing second 
parameter values of machines 3 and 4 in the earlier first 
stateful storage . 
[ 0017 ] In some embodiments , the parameter collecting 
circuit performs computations on the parameter values that 
it collects and distributes the result of the computations once 
it has processed all the parameter values distributed by the 
first set of machines . The computations are aggregating 
operations ( e.g. , adding , averaging , etc. ) that combine cor 
responding subsets of parameter values distributed by the 
first set of machines . For instance , in some embodiments , 
each first - set machine distributes four multi - bit parameter 
values A , B , C , and D , each of which corresponds to one 
parameter value distributed by each of the other first - set 
machines . In some of these embodiments , the parameter 
collecting circuit adds all the A's , B's , C's , and D's , and then 
distributes to the second - set machines the resulting sum 
once it has added the last set of parameter values A - D that 
it receives from the last first - set machine . 
[ 0018 ] For instance , in some embodiments , the data plane 
is configured to collect and aggregate sets of weight gradi 
ents from several machines that process known input / output 
training sets to train the weights of a neural network . In some 
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[ 0030 ] FIG . 13 conceptually illustrates a process that a 
parameter collecting circuit performs in some embodiments . 
[ 0031 ] FIG . 14 illustrates an example of a 16 - bit floating 
point value , its corresponding 43 - bit fixed point value , and 
two containers to store the 43 - bit fixed point value . 
[ 0032 ] FIG . 15 illustrates the operations that some 
embodiments perform to convert a floating - point weight 
gradient Wi to a fixed - point weight gradient , add the con 
verted weight gradient to a total Si that is maintained for that 
gradient's associated weight , and to convert the fixed - point 
weight gradient sum to a floating - point weight gradient sum . 

DETAILED DESCRIPTION 

of these embodiments , the data plane adds the different 
weight gradients that it collects from the ML machines 105 
for each of the several weights , and then distributes to the 
machines the aggregated weight gradients for each of these 
weights . To perform its aggregation operations , the data 
plane converts floating - point weight gradients that it 
receives from the machines to fixed - point weight - gradients 
that it aggregates , and then converts the aggregated fixed 
point values back to aggregated floating - point weight gra 
dients that it distributes back to the ML machines . 
[ 0019 ] The preceding Summary is intended to serve as a 
brief introduction to some embodiments of the invention . It 
is not meant to be an introduction or overview of all 
inventive subject matter disclosed in this document . The 
Detailed Description that follows and the Drawings that are 
referred to in the Detailed Description will further describe 
the embodiments described in the Summary as well as other 
embodiments . Accordingly , to understand all the embodi 
ments described by this document , a full review of the 
Summary , Detailed Description and the Drawings is needed . 
Moreover , the claimed subject matters are not to be limited 
by the illustrative details in the Summary , Detailed Descrip 
tion and the Drawings , but rather are to be defined by the 
appended claims , because the claimed subject matters can be 
embodied in other specific forms without departing from the 
spirit of the subject matters . 

BRIEF DESCRIPTION OF FIGURES 

a 

[ 0020 ] The novel features of the invention are set forth in 
the appended claims . However , for purposes of explanation , 
several embodiments of the invention are set forth in the 
following figures . 
[ 0021 ] FIG . 1 illustrates an example of a forwarding 
element with a data plane circuit that can be configured to 
implement an all - gather parameter collecting circuit of some 
embodiments . 
[ 0022 ] FIG . 2 illustrates an example of a replication pro 
cess of some embodiments that generates several replicate 
data messages in which the extracted and stored weight 
gradient sets can be embedded and distributed to the ML 
machines . 
[ 0023 ] FIGS . 3-6 illustrates four SALU storage locations 
( e.g. , four SALU registers ) in four SALU tables ( e.g. , four 
register sets ) that are identified by the same address value 
( e.g. , by the same hash index value that is generated by 
hashing a set of header vector values ) . 
[ 0024 ] FIG . 7 illustrates the sequence of weight gradients 
that are included in the four data messages that the parameter 
collecting circuit sends to each ML machine in some 
embodiments . 
[ 0025 ] FIG . 8 illustrates the data messages exchanged 
between the twelve ML machines A - L and the data plane in 
the all - gather example of FIGS . 3-7 . 
[ 0026 ] FIG . 9 illustrates a match action unit of some 
embodiments . 
[ 0027 ] FIG . 10 conceptually illustrates a process that the 
parameter collecting circuit performs in some embodiments . 
[ 0028 ] FIG . 11 illustrates the interaction between the data 
plane and the ML machines when the data plane operates in 
an all - reduce implementation in some embodiments . 
[ 0029 ] FIG . 12 conceptually illustrates the components of 
a parameter collecting circuit in some embodiments when 
the data plan is configured to perform an all - reduce opera 
tions in some embodiments . 

[ 0033 ] In the following detailed description of the inven 
tion , numerous details , examples , and embodiments of the 
invention are set forth and described . However , it will be 
clear and apparent to one skilled in the art that the invention 
is not limited to the embodiments set forth and that the 
invention may be practiced without some of the specific 
details and examples discussed . 
[ 0034 ] Some embodiments provide a network forwarding 
element with a data - plane forwarding circuit that has a 
parameter collecting circuit to store and distribute parameter 
values computed by several machines in a network . In some 
embodiments , the machines perform distributed computing 
operations , and the parameter values that compute are 
parameter values associated with the distributed computing 
operations . The parameter collecting circuit of the data 
plane forwarding circuit ( data plane ) in some embodiments 
( 1 ) stores a set of parameter values computed and sent by a 
first set of machines , and ( 2 ) distributes the collected param 
eter values to a second set of machines once it has collected 
the set of parameter values from all the machines in the first 
set . The first and second sets of machines are the same set 
of machines in some embodiments , while they are different 
sets of machines ( e.g. , one set has at least one machine that 
is not in the other set ) in other embodiments . 
[ 0035 ] In some embodiments , the parameter collecting 
circuit performs computations on the parameter values that 
it collects and distributes the result of the computations once 
it has processed all the parameter values distributed by the 
first set of machines . The computations are aggregating 
operations ( e.g. , adding , averaging , etc. ) that combine cor 
responding subset of parameter values distributed by the first 
set of machines . For instance , in some embodiments , each 
first - set machine distributes four multi - bit parameter values 
A , B , C , and D , each of which corresponds to one parameter 
value distributed by each of the other first - set machines . In 
some of these embodiments , the parameter collecting circuit 
adds all the A's , B's , C's and D's , and then distributes to the 
second - set machines the resulting sum once it has added the 
last set of parameter values A - D that it receives from the last 
first - set machine . 
[ 0036 ] In the discussion below , “ all reduce ” refers to the 
parameter collecting circuit embodiments that perform 
aggregating computations on the collected parameter values 
to reduce these values to one set of aggregate parameter 
values that these embodiments distribute to the second - set 
machines . On the other hand , the discussion uses " all 
gather ” to refer to the parameter collecting circuit embodi 
ments that just collect and distribute the parameter values 
sent by the first - set machines . Several of the “ all reduce ” and 
“ all gather ” examples provided below are for machine 
training learning processes of some embodiments . One of 
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ordinary skill will realize that other embodiments use the 
" all reduce " and " all gather " operations of the data plane for 
other distributed computing applications . 
[ 0037 ] In this document , data messages refer to a collec 
tion of bits in a particular format sent across a network . One 
of ordinary skill in the art will recognize that the term data 
message may be used herein to refer to various formatted 
collections of bits that may be sent across a network , such 
as Ethernet frames , IP packets , TCP segments , UDP data 
grams , etc. Also , as used in this document , references to L2 , 
L3 , L4 , and L7 layers ( or layer 2 , layer 3 , layer 4 , and layer 
7 ) are references respectively to the second data link layer , 
the third network layer , the fourth transport layer , and the 
seventh application layer of the OSI ( Open System Inter 
connection ) layer model . 
[ 0038 ] FIG . 1 illustrates an example of a forwarding 
element 100 with a data plane circuit 120 that can be 
configured to implement an all - gather parameter collecting 
circuit 150. This parameter collecting circuit stores param 
eter values computed and sent by several machines 105 , and 
then distributes the collected parameter values to the same 
machines once it has collected the parameter values from all 
the machines . The machines in some embodiments are 
virtual machines ( VMs ) , containers , and / or standalone com 
puters / servers . 
[ 0039 ] Different embodiments use the parameter collect 
ing circuit 150 to collect different types of parameter values 
for different distributed computing applications . In the 
example illustrated in FIG . 1 as well as other figures , the 
parameter values are weight value gradients associated with 
machine learning operations . In other embodiments , the 
collected parameter values are other types of parameter 
values . 
[ 0040 ] In FIG . 1 , the machines 105 perform machine 
learning ( ML ) training processes that produce weight value 
gradients that need to be shared between the machines . 
Specifically , the machines 105 process inputs / outputs train 
ing sets to train the weight values of a neural network with 
different machines processing different batches of known 
input / output training sets and performing back propagation 
operations to adjust weight values of the neural network . In 
this environment , the machines need to share weight value 
gradients that they compute for edges between the neurons 
in the neural network . Accordingly , once they compute a set 
of weight value gradients , the machines 105 embed these 
gradients in data messages ( e.g. , embed them in UDP 
headers of packets ) and transmit these data messages ( e.g. , 
the packets ) through a network 110 that connects the 
machines 105 . 
[ 0041 ] The forwarding element 100 forwards data mes 
sages within the network 110. The forwarding element 100 
can be any type of forwarding element , such as a switch , a 
router , a bridge , etc. In FIG . 1 , the forwarding element is 
deployed as a non - edge forwarding element in the interior of 
the network to forward data messages between the machines 
105. In other cases , the forwarding element 100 is deployed 
as an edge forwarding element at the edge of the network to 
connect to compute devices ( e.g. , standalone or host com 
puters ) that serve as sources and destinations of the data 
messages . As a non - edge forwarding element , the forward 
ing element 100 forwards data messages between forward 
ing elements in the network ( i.e. , through intervening net 
work fabric 110 ) . As an edge forwarding element , the 
forwarding element forwards data messages to and from 

edge compute devices to each other , to other edge forward 
ing elements , and / or to non - edge forwarding elements . 
[ 0042 ] As shown , the forwarding element 100 includes ( 1 ) 
a data plane circuit 120 ( the “ data plane 120 % ) that performs 
the forwarding operations of the forwarding element 100 to 
forward data messages received by the forwarding element 
to other devices , and ( 2 ) a control plane circuit 125 ( the 
“ control plane 125 " ) that configures the data plane circuit . 
The forwarding element 100 also includes physical ports 112 
that receive data messages from , and transmit data messages 
to , devices outside of the forwarding element 100 . 
[ 0043 ] The control plane 125 configures the data plane 
120 to perform its message forwarding and parameter col 
lection operations . In some embodiments , the control plane 
includes ( 1 ) one or more processors ( such as a micropro 
cessor with multiple processing cores or units ) that execute 
instructions , and ( 2 ) a memory that stores instructions for 
processes that when executed by the processors perform the 
control plane operations . These instructions can be specified 
by ( 1 ) a manufacturer of the network forwarding element 
100 that includes the control and data planes 125 and 120 , 
( 2 ) a network administrator that deploys and maintains the 
network forwarding 100 , or ( 3 ) one or more automated 
processes that execute on servers and / or network forwarding 
elements that monitor network conditions . The control plane 
processor , or another circuit of the control plane , commu 
nicates with the data plane ( e.g. , to configure the data plane 
or to receive statistics from the data plane ) through a 
control / data plane interface . 
[ 0044 ] The data plane circuit 120 includes ports 115 that 
receive data messages to process and transmit data messages 
after they have been processed . Some ports 115 of the data 
plane 120 are associated with the physical ports 112 of the 
forwarding element 100 , while other ports 115 are associ 
ated with other modules of the data plane 120. For instance , 
in some embodiments , one or more ports 115 are recircula 
tion ports that recirculate a data message that is processed by 
an egress pipeline 142 back to an ingress pipeline 140. The 
data plane 120 also includes message generators 135 , mul 
tiple ingress pipeline stages 140 , multiple egress pipeline 
stages 142 , and a traffic manager 144. In some embodiments , 
the data plane is implemented on an application specific 
integrated circuit ( ASIC ) , and its components are defined on 
this integrated circuit . 
[ 0045 ] The message generators generate messages in the 
data plane . In some embodiments , these messages can direct 
circuits in the data plane to perform certain operations or to 
store data in the messages for export to the control plane or 
to another device through a network . The ingress and egress 
pipelines process the data messages received by the for 
warding element in order to forward these messages to their 
destinations in the network . The traffic manager 144 in some 
embodiments includes a crossbar switch that directs mes 
sages from the ingress pipelines to egress pipelines . 
[ 0046 ] Each ingress or egress pipeline includes several 
configurable ( i.e. , programmable ) message - processing 
stages 132 that can be configured to perform the data - plane 
forwarding operations of the forwarding element 100 to 
process and forward data messages to their destinations . 
These message - processing stages perform these forwarding 
operations by processing data tuples ( e.g. , message headers ) 
associated with data messages received by the data plane 
120 in order to determine how to forward the messages . 
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[ 0047 ] The message processing stages in this example are 
match - action units ( MAUS ) 132. As further described below 
by reference to FIG . 9 , an MAU is a circuit in some 
embodiments that includes match tables that store multiple 
records for matching with data tuples ( e.g. , header vectors ) 
of the processed data messages . When a data message 
matches a match record , the MAU then performs an action 
specified by an action record associated with the identified 
match record ( e.g. , an action record that is identified by the 
identified match record ) . 
[ 0048 ] In some embodiments , an MAU also includes a set 
of stateful ALUS ( e.g. , four ALUS ) that perform arithmetic 
operations based on parameters specified by the header 
vectors and / or the match tables . The ALUS can store the 
result of their operations in stateful tables that they access 
and / or can write these results in the header vectors ( e.g. , 
directly , or by directing another action ALU to write these 
results in the header vectors ) for other MAU stages to 
process . 
[ 0049 ] In addition to the MAU stages , each ingress or 
egress pipeline includes a parser 130 and a deparser 134. A 
pipeline's parser 130 extracts a message header from a data 
message that the pipeline receives for processing . In some 
embodiments , the extracted header is in a format of a header 
vector ( HV ) that is processed , and in some cases modified , 
by successive message processing stages 132 as part of their 
message processing operations . The parser 130 of a pipeline 
passes the payload of the message to the deparser 134 as the 
pipeline's message - processing stages 132 operate on the 
header vectors . In some embodiments , the parser also passes 
the message header to the deparser 134 along with the 
payload ( i.e. , the parser passes the entire message to the 
deparser ) . 
[ 0050 ] When a pipeline finishes processing a data message 
and the message has to be provided to the traffic manager ( in 
case of an ingress pipeline ) or to a port 115 ( in case of an 
egress pipeline ) to be forwarded to the message’s next hop 
( e.g. , to its destination compute node or next forwarding 
element ) , a deparser 134 of the pipeline in some embodi 
ments produces the data message header from the message's 
header vector that was processed by the pipeline's last 
message processing stage , and combines this header with the 
data message's payload . In some embodiments , the deparser 
134 uses part of the header received form the parser 130 to 
reconstitute the message from its associated header vector . 
[ 0051 ] As shown in FIG . 1 , parts of the data plane mes 
sage - processing stages in some embodiments are also con 
figured to implement the parameter collecting circuit 150 . 
As mentioned above , the local control plane 125 in some 
embodiments configures the data plane 120 to perform its 
message forwarding and parameter collection operations . In 
other embodiments , a remote control plane configures the 
data plane 120 to implement its forwarding circuits and / or 
parameter - collection circuits . A remote control plane is 
implemented in some embodiments by a control software 
layer executed by one or more CPUs of another forwarding 
element or a remote computer ( e.g. , server ) . 
[ 0052 ] In some embodiments , the parameter collecting 
circuit 150 circuit examines each data message received by 
the data plane to determine whether the data message comes 
from one of the machines 105. If not , this circuit does not 
process the data message ; the message is just processed by 
the message processing stages 132 of the data plane and 
forwarded to its destination . On the other hand , when the 

data message originated from an ML machine 105 , the 
parameter collecting circuit 150 extracts several weight 
gradients ( e.g. , 32 gradients ) from the data message header 
and stores these values in the stateful ALUS ( SALUS ) of 
several MAU stages 132. Once the parameter collecting 
circuit 150 has stored the weight gradients in a particular set 
of weight gradients from all the machines 105 , the parameter 
collecting circuit in some embodiments distributes all the 
collected weight gradients to the machines 105. In other 
embodiments , the parameter collecting circuit retrieves and 
forwards the stored parameter values to the machines 105 
based on other criteria ( e.g. , after a duration of a time 
measured by a timer ) . 
[ 0053 ] The parameter values in some embodiments are 
stored as key - value pairs in the headers of the data messages 
that the data plane receives from the first set of machines 
( e.g. , the ML machines ) . For instance , in some embodi 
ments , the header of each data message from a first - set 
machine includes ( 1 ) a layer 4 port ( e.g. , UDP source port ) 
value that specifies that the data message contains a key 
value pair , and ( 2 ) an option field that stores the key ( i.e. , the 
parameter ) and its value . In other embodiments , the layer - 4 
option field only includes key values ( and not the keys ) as 
the key values are specified in a particular order that can be 
used to associated different values stored in the header with 
different keys . 
[ 0054 ] Still other embodiments use other techniques to 
store and retrieve the parameter values in the payloads 
and / or headers of the data messages from the first - set 
machines . For instance , in some embodiments , an IPS 
( in - network parameter server ) header is placed after a UDP 
header , and this IPS header is followed by the weight 
gradients , as indicated by the example below . 

[ 0055 ] Ethernet , IP , UDP , IPS header , Weight 0 , Weight 
1 , 

The IPS header has two fields in some embodiments : a 
memory index to show where in data plane to put the 
parameter values and an identifier to identify the location of 
a set of weight ( associated with the received weight gradi 
ents ) in the total number of weights of the neural network . 
[ 0056 ] In other embodiments , the IPS header is placed 
after the Ethernet header , such as 

[ 0057 ] Ethernet , IPS header , Weight 0 , Weight 1 , ... 
This is useful when the ML machines are specialty ML cards 
as opposed to servers with GPUs . For such specialty 
machines , it is not desirable to waste bandwidth for IP and 
UDP headers as only the Ethernet header is necessary for 
exchanging messages between the ML cards and the for 
warding element . 
[ 0058 ] FIG . 1 conceptually illustrates that the parameter 
collecting circuit 150 includes a parameter extractor 152 , a 
parameter storage 154 , and a parameter forwarding circuit 
156. The parameter extractor 152 extracts weight gradients 
from messages sent by the ML machines 105 , and stores 
these extracted weight gradients in the parameter storage 
154. Once all the weight gradients in a set of weight 
gradients are collected from all the ML machines 105 , the 
parameter forwarding circuit 156 retrieves all the stored 
weight gradients and forwards them in one or more mes 
sages back to all of the ML machines 105 . 
[ 0059 ] In some embodiments , the parameter extractor 152 
and the parameter storage 154 are implemented by multiple 
MAU stages 132. Specifically , as mentioned above , the data 
plane parser 130 extracts a header from a received data 
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message , and formats this header as a header vector ( HV ) for 
processing by the data - plane message processing stages 132 . 
Header vectors can be modified by successive message 
processing stages as part of their message processing opera 
tions ( e.g. , forwarding operations and / or parameter - collec 
tion operations ) . 
[ 0060 ] When processing a header vector for a data mes 
sage from an ML machine 105 , an initial MAU stage in an 
ingress pipeline in some embodiment identifies that the data 
message has originated from one of the ML machines ( e.g. , 
by matching one or more source network address values in 
the header vector with match rules stored in a match table of 
the MAU stage ) . This MAU stage then has its action ALU 
mark the header vector to indicate that it contains weight 
gradients from an ML machine . In order to pack the storage 
of the weight gradients , this MAU stage in some embodi 
ments also has its action ALU perform a shift operation to 
shift the weight gradients from certain ML machines , as 
further described below . In other embodiments , one or more 
other MAU stages in the ingress pipeline perform this 
shifting operation . 
[ 0061 ] At the end of the ingress pipeline , the header vector 
of this message is combined with the message payload , and 
the combined message is provided to the traffic manager 
( TM ) . Based on the designation of the message as one that 
contains weight gradients , the traffic manager 144 in some 
embodiments places the message in a TM egress queue ( not 
shown ) that is associated with the egress pipeline 142 
designated for processing a particular weight gradient set 
distributed by the ML machines . 
[ 0062 ] From this TM egress queue , the data message 
passes to its corresponding egress pipeline 142 , which has its 
parser 130 separate the message into its payload and header 
vector , pass the payload ( or entire message ) along a bypass 
path to the deparser 134 of the pipeline and pass the header 
vector to the first MAU stage 132 of the pipeline . In some 
embodiments , the SALUs and stateful tables of this egress 
processing pipeline form the parameter extractor circuit 152 
and the parameter storage 154. For instance , in some 
embodiments , an egress pipeline has twelve MAU stages , 
each of which has four SALUs that can store two 16 - bit 
weight gradients in four SALU tables . This allows each 
egress pipeline to collect 3216 - bit weight gradients from 12 
ML machines 105 . 
[ 0063 ] Under this approach , whenever the message's 
header vector reaches one of these egress MAUs 132 , a 
match table of the MAU determines that the header vector 
contains several weight gradients that need to be extracted 
and directs its associated SALUs to extract the weight 
gradients . The SALUs then extract the weight gradients and 
store these gradients in the ALUs ' associated stateful tables . 
For instance , as further described below , each egress SALU 
in some embodiments stores two 16 - bit gradients from two 
different ML machines 105 in each 32 - bit stateful table 
record ( e.g. , in each 32 - bit SALU register ) . 
[ 0064 ] In some embodiments , one ingress or egress MAU 
stage maintains a bitmap ( e.g. , in the MAU’s SALU ) that 
has one bit for each ML machine that has sent its set of 
weight gradients . Each time this MAU stage determines that 
a header vector that it processes corresponds to a data 
message from one of the ML machines , it changes the bit 
value for this ML machine in its bitmap to set ( e.g. , changes 
this value from 0 to 1 ) . Once all the bits in the bitmap have 
been set , this MAU stage determines that all the weight 

gradient sets have been received from all the ML machines . 
Hence , in these embodiments , this MAU stage sets a value 
in the header vector to indicate that this header vector 
finished the collection of related weight gradient sets from 
all of the ML machines . This MAU stage partly implements 
the parameter forwarding circuit 156 in some embodiments . 
Instead of a bitmap , the data plane in other embodiments 
uses other schemes ( e.g. , a counter ) to determine when the 
data plane has weight gradient sets from all the ML 
machines . 
[ 0065 ] Once the header vector is marked as being the 
header vector that provides the last weight gradient set from 
the last ML machine , the data plane 120 in some embodi 
ments uses that header vector to generate several replicate 
data messages in which the extracted and stored weight 
gradient sets can be embedded and distributed to the ML 
machines . FIG . 2 illustrates an example of this operation in 
some embodiments . Specifically , it illustrates three stages of 
operations 205 , 210 , and 215. The first stage of operations 
205 shows the processing of a header vector to store in the 
egress MAU stages a last set of weight gradients that 
completes the collection of a group of several sets of weight 
gradients from several ML machines ( e.g. , twelve sets of 32 
weight gradients 0-31 from twelve ML machines A - L ) . 
[ 0066 ] The second stage of operations 210 shows the 
conversion of this header vector back to a data message that 
is fed back through an ingress pipeline 140 to the traffic 
manager 144. In this stage , the ingress pipeline converts the 
data message back to a header vector and marks the header 
vector for replication based on its marking as the last header 
vector by the bitmap generating MAU . This header vector is 
converted to a data message that is then supplied to the 
traffic manager 144 . 
[ 0067 ] In the third stage of operations 215 , the traffic 
manager 144 then detects the replication marking , and based 
on this marking , has its replication engine 220 generate 
several replicated copies ( e.g. , 47 ) of this message . These 
copies plus the original data message are then converted to 
header vectors that are processed by the egress pipeline that 
stores the completed group of weight gradients . The MAUS 
in this egress pipeline then retrieve different sub - groups of 
weight gradients and store these retrieved sub - groups in 
different header vectors . In some embodiments , each replica 
stores the same sub - group of weight gradients as several 
other ( e.g. , 11 ) replicas but is addressed to a different ML 
machine ( e.g. , it is addressed to one of 12 ML machines ) . 
[ 0068 ] For instance , in some embodiments with 12 ML 
machines that produce 32 weight gradients each , there are 
384 weight gradients that need to be distributed to each ML 
machine . In some of these embodiments , each data message 
can carry at most only 96 gradients , so four data messages 
are used to supply the 384 gradients to each ML machine . 
Four messages for each of the twelve clients requires 47 
replicas to be generated by the TM 144 in addition to the last 
recirculated data message . The TM 144 in some embodi 
ments identifies the destination addresses of each of the 
replicated / recirculated data message based on configuration 
data that it receives to program its operations . In other 
embodiments , the ingress pipeline that processes the recir 
culated data message in the second stage 210 specifies the 
destination addresses for the twelve sets of four data mes 
sages . In the above example , the parameter forwarding 
circuit 156 is implemented by the bitmap generating MAU , 
the data plane circuits that recirculate the final data message 
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back to an ingress pipeline , this ingress pipeline that marks 
the recirculated message for replication , the TM that repli 
cates the recirculated message , and the egress MAU stages 
that retrieve the different sub - groups of weight gradients 
from their SALU tables and store them in the header vectors 
of the replicated / recirculated messages . 
[ 0069 ] In the data messages that the parameter collecting 
circuit 150 sends back to the ML machines , this circuit 
interleaves the weight gradients sent by different ML 
machines so that weight gradients that are for the same 
weight in the neural network are next to each other . Because 
of this , the ML machines do not have to expend resources to 
gather weight gradients for the same weights before per 
forming a computation ( e.g. , producing an average ) from 
these gradients . In other words , the parameter collecting 
circuit 150 in some embodiments reports the weight gradi 
ents back to the ML machines in an interleaved manner ( that 
has gradients for the same weights coalesced and reported 
together ) in order to free up the computational resources of 
the ML machines for other operations . 
[ 0070 ] To help with the interleaving of the weight gradi 
ents in the data messages sent to the ML machines , the 
parameter collecting circuit 150 in some embodiments inter 
leaves the storage of the weight gradients sent by different 
ML machines so that weight gradients for the same weights 
are stored in the same storage locations , adjacent storage 
locations , and / or similarly addressed storage locations . To 
further assist with this interleaving , the parameter collecting 
circuit in some embodiments shifts the weight gradients 
from certain ML machines so that two or more gradients 
related to the same weight can be stored in the same storage 
location ( e.g. , two 16 - bit gradients for the same weight can 
be stored in the same 32 - bit SALU register location ) . 
[ 0071 ] FIGS . 3-6 illustrate an example of this interleaved 
storage for some embodiments of the invention . In this 
example , each egress MAU stage has four SALUs that 
access four stateful tables ( e.g. , four sets of SALU registers ) 
to store 3216 - bit weight gradients distributed by 12 ML 
machines 105. The machines are identified by letters A to L , 
while the gradients are identified by numbers 0-31 . The 
gradients identified by the same numbers are gradients that 
correspond to the same weight ( e.g. , weight 1 , weight 2 , etc. ) 
in the neural network . 
[ 0072 ] For each one of twelve egress MAU stages , each of 
the FIGS . 3-6 illustrates four SALU storage locations ( e.g. , 
four SALU registers ) in four SALU tables ( e.g. , four register 
sets ) that are identified by the same address value ( e.g. , by 
the same hash index value that is generated by hashing a set 
of header vector values ) . The commonly addressed locations 
in FIG . 3 store the weight gradients 0-7 from all the 
machines A - L , the commonly addressed locations in FIG . 4 
store the weight gradients 8-15 from all the machines A - L , 
the commonly addressed locations in FIG . 5 store the weight 
gradients 16-23 from all the machines A - L , and the com 
monly addressed locations in FIG . 6 store the weight gra 
dients 24-31 from all the machines A - L . 
[ 0073 ] Also , in this example , the gradients for ML 
machines A , C , E , G , I , and K are shifted up ( i.e. , to the left ) 
by 16 - bits so that they can be stored respectively next to the 
gradients from ML machines B , D , F , H , J and L. In some 
embodiments , the ingress - pipeline parsers 130 initially store 
each 16 - bit weight gradient as the lower 16 bits in a 32 - bit 
container in a header vector . Subsequently , one or more 
ingress MAU stages ( e.g. , the action ALUs of these stages ) 

in these embodiments perform a 16 - bit leftward shift of the 
weight gradients from ML machines A , C , E , G , I , and K. As 
shown , this allows 16 - bit gradients from machines A and B 
to be stored in the same 32 - bit register locations , 16 - bit 
gradients from machines C and D to be stored in the same 
32 - bit register locations , 16 - bit gradients from machines E 
and F to be stored in the same 32 - bit register locations , 
16 - bit gradients from machines G and H to be stored in the 
same 32 - bit register locations , 16 - bit gradients from 
machines I and J to be stored in the same 32 - bit register 
locations , and 16 - bit gradients from machines K and L to be 
stored in the same 32 - bit register locations . 
[ 0074 ] FIGS . 3-6 also illustrate that by producing the 
storage address index values differently for different pairs of 
ML machines , the parameter collecting circuit can use 
different rotated storage patterns for different pairs of ML 
machines . For instance , for gradients from ML machines A 
and B , the parameter collecting circuit produces index 
values to store the gradients ( -7 in the first two egress MAU 
stages , gradients 8-15 in the last two egress MAU stages , 
gradients 16-23 in the egress MAU stages 8 and 9 , and 
gradients 24-31 in the egress MAU stages 6 and 7. On the 
other hand , for gradients from ML machines C and D , the 
parameter collecting circuit produces index values to store 
the gradients 0-7 in the egress MAU stages 2 and 3 , 
gradients 8-15 in the first two egress MAU stages , gradients 
16-23 in the last two egress MAU stages , and gradients 
24-31 in the egress MAU stages 8 and 9 . 
[ 0075 ] This rotated storage approach makes it easier to 
read out weight gradients ( -7 from all the machines A - L 
together , weight gradients 8-15 from all the machines A - L 
together , weight gradients 16-23 from all the machines A - L 
together , and weight gradients 24-31 from all the machines 
A - L together . Specifically , for the replication approach illus 
trated in FIG . 2 , each egress MAU stage would store in each 
of the four recirculated / replicated messages the gradient 
values that are stored at one common index address location 
in the stage's SALU registers . Accordingly , the gradient 
values stored in FIG . 3 would be stored in a first message of 
these four messages , the gradient values stored in FIG . 4 
would be stored in a second message , the gradient values 
stored in FIG . 5 would be stored in a third message , and the 
gradient values stored in FIG . 6 would be stored in a fourth 
message . 
[ 0076 ] For the example illustrated in FIGS . 3-6 ( with 
twelve ML machines A - L and 32 gradients 0-31 ) , FIG . 7 
illustrates the sequence of weight gradients that are included 
in the four data messages 705-720 that the parameter col 
lecting circuit 150 sends to each ML machine 105 in some 
embodiments . As shown , the data message 705 includes the 
weight gradients 0-7 from all the machines A - L , with the 
weight 0 gradients first , followed by all the gradients of the 
other weights in sequence through the gradients of the 7th 
weight . Similarly , the data message 710 includes the weight 
gradients 8-15 from all the machines A - L , with the weight 
8 gradients first , followed by all the gradients of the other 
weights in sequence through the gradients of the 15th 
weight . 
[ 0077 ] The data message 715 includes the weight gradi 
ents 16-23 from all the machines A - L , with the weight 16 
gradients first , followed by all the gradients of the other 
weights in sequence through the gradients of the 23rd 
weight . Finally , the data message 720 includes the weight 
gradients 24-31 from all the machines A - L , with the weight 
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24 gradients first , followed by all the gradients of the other 
weights in sequence through the gradients of the 31st 
weight . 
[ 0078 ] FIG . 8 illustrates the data messages exchanged 
between the twelve ML machines A - L and the data plane 
120 in the all - gather example of FIGS . 3-7 . As shown , each 
of the ML machines sends a data message with 32 weight 
gradients identified by the numbers 0-31 and the letter 
associated with the ML machine ( e.g. , A0 - A31 are sent by 
ML machine A , BO - B31 are sent by ML machine B , and so 
on ) . This figure also shows that after collecting the weight 
gradients from all the ML machines A - L , the data plane 120 
sends the four messages 705-720 of FIG . 7 to each of the ML 
machines . 
[ 0079 ] These messages contain all the collected weight 
gradients with message 705 including weight gradients 
A0 - L7 , message 710 including weight gradients A8 - L15 , 
message 715 including weight gradients A16 - L23 , and mes 
sage 720 including weight gradients A24 - L31 , as illustrated 
in FIG . 7. For each of the 32 weights , each ML machine M - L 
in some embodiments computes an average weight gradient 
by adding the gradients that it receives for that weight and 
then dividing that sum by the number of ML machines , 
which in this example is twelve . 
[ 0080 ] The embodiments described above keep constant 
the index values during the retrieval of the stored weight 
gradients from the SALU registers but change the index 
values during the storing of the gradients in the SALU 
registers . Other embodiments , on the other hand , change the 
index values during the retrieval of the stored weight gra 
dients from the SALU registers while keeping constant the 
index values during the storing of the gradients in the SALU 
registers . 
[ 0081 ] Different embodiments use different approaches to 
make sure that different stages of the data - plane generate the 
same memory index for the same parameter identifiers . 
Some embodiments generate a hash identifier to memory 
index based on a common hash function . When receiving the 
result of a memory index , these MAUs in these embodi 
ments push to the next memory index . In other embodi 
ments , the MAU stages keep an ordered list of parameters . 
When they gather the result of a memory index , the MAU 
stages push to the next memory index . This approach 
assumes that no packet is lost or re - ordered . Still other 
embodiments use a circuit in the forwarding element direct 
the MAU stages to use a particular identifier to send for a 
particular memory index . Upon sending the result from a 
memory index , the data plane also includes the identifier of 
the next parameter that should be sent for that memory 
index . 

[ 0082 ] Other embodiments also implement the parameter 
collecting circuit 150 differently in the data plane 120. For 
instance , other embodiments implement the parameter 
extractor 152 , parameter storage 154 and parameter for 
warding circuit 156 with different number of stages and / or 
with different numbers of SALUs and stateful tables than the 
exemplary embodiments described above . While several 
embodiments were described in which the egress MAU 
stages were used to implement the parameter storage 154 , 
other embodiments use the SALUs of the ingress MAUs to 
implement some or all of the parameter storage 154. Sill 
other embodiments use SALUs of both the ingress and 
egress MAUs to implement the parameter storage 154 . 

[ 0083 ] In other embodiments , the data plane has a dedi 
cated parameter collection circuit that does not use re 
purposed message processing stages for parameter distribu 
tion operations . Alternatively , other embodiments use other 
data plane configurations to implement the parameter col 
lecting circuit 150. For instance , in some embodiments , the 
traffic manager 144 includes a mirror buffer that includes the 
set of storages that store the parameter values contained in 
the data messages sent by the ML machines . When the MAU 
that implements the bit map generator determines that the 
last ML machine has provided the data message with the last 
weight gradient set in a group of gradients , it sets a bit in the 
message's associated header vector to notify the traffic 
manager that after processing this message , the traffic man 
ager should have all the gradients in a group of gradients . 
[ 0084 ] Based on this setting , the traffic manager's 
retrieves the stored parameter values from the mirror buffer , 
generates one or more messages for each ML machine , 
embeds the retrieved stored parameter values in each of the 
generated messages , and provides the generated data mes 
sages to one or more egress pipelines for forwarding to the 
ML machines . In some embodiments , the generated mes 
sages have to be recirculated back to the ingress pipelines to 
identify the egress pipelines that are supposed to process 
each message for each ML machine . In other embodiments , 
the TM is configured with the addresses of these ML 
machines . 
[ 0085 ] FIG . 9 illustrates a match action unit 132 of some 
embodiments . As mentioned above , an ingress pipeline 140 
or egress pipeline 142 in some embodiments has several 
MAU stages 132 , each of which includes message - process 
ing circuitry for forwarding received data messages and / or 
performing stateful operations based on header vectors 
associated with the data message . In some embodiments , the 
control plane 125 of the forwarding element 100 or a remote 
control plane configures the MAU stages 132 of the data 
plane 120 to implement not only the forwarding operations 
of these MAU stages , but also the parameter collecting 
operations that some of the MAU stages 132 perform . These 
operations are performed by processing values stored in the 
header vectors that are generated for the data messages . 
[ 0086 ] The stateful operations of the data plane are 
enabled by the data plane's ability to store data that it 
generates from processing earlier data messages for process 
ing subsequent data messages . To perform stateful parameter 
collecting operations , the parameter collecting MAU stages 
132 in some embodiments use their stateful ALUS 910 and 
their associated stateful tables 915 , as shown in FIG . 9. In 
addition to the stateful ALUS 910 and stateful tables 915 , the 
MAU stage 132 in some embodiments has a set of one or 
more match tables 905 , an action crossbar 930 , an action 
parameter memory 920 , an action instruction memory 925 , 
and an action ALU 935 . 
[ 0087 ] The match table set 905 can compare one or more 
fields in a received message's header vector to identify one 
or more matching flow entries ( i.e. , entries that match the 
message's HV ) . The match table set 905 can include TCAM 
( ternary content addressable memory ) tables or exact match 
tables in some embodiments . In some embodiments , the 
match table set can be accessed at an address that ( 1 ) is a 
value extracted from one or more fields of the message's 
header vector , or ( 2 ) is a hash of this extracted value . In 
some embodiments , the local control plane , or a remote 
control plane , supplies flow entries ( e.g. , the flow - match 
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identifiers and / or action identifiers ) to store in one or more 
match tables and associated action tables . 
[ 0088 ] In some embodiments , the value stored in a match 
table record that matches a message's flow attributes , or that 
is accessed at a hash - generated address from one or more 
message flow attributes , provides addresses of records to 
access and process in the action parameter memory 920 and 
action instruction memory 925. Conjunctively or alterna 
tively , a match table record in some embodiments has an 
associated record in the action instruction memory and / or an 
associated record in the action parameter memory that 
specifies an action instruction to execute and / or an action 
parameter to process . The actions performed by the MAU 
stage 132 can include actions that the forwarding element 
has to perform on a received data message to process the 
data message ( e.g. , to drop the message , or to forward the 
message to its destination machine or to other intervening 
forwarding elements ) . 
[ 0089 ] Also , in some embodiments , the value stored in a 
match table record that matches a message's flow identifier , 
or that is accessed at a hash - generated address , can provide 
an address and / or parameter for one or more records in the 
stateful table set 915 , and can provide an instruction and / or 
parameter for the set of stateful ALUS 910. As shown , the 
stateful ALUS 910 and the stateful tables 915 also receive a 
processed message's header vector . The header vectors can 
include instructions and / or parameters for the stateful ALUS , 
while containing addresses and / or parameters for the stateful 
tables 915 . 
[ 0090 ] The stateful ALUS 910 in some embodiments per 
form one or more stateful operations , while stateful tables 
915 store state data used and generated by the stateful ALUS 
910. In some embodiments , the stateful ALUS perform 
operations synchronously with the data flow of the message 
processing pipeline ( i.e. , synchronously at the data line rate 
of the data plane 120 ) . As such , the stateful ALUS can 
process a different header vector on every clock cycle , thus 
ensuring that the stateful ALUs would be able to operate 
synchronously with the dataflow of the message - processing 
pipeline . 
[ 0091 ] In some embodiments , the local or remote control 
plane provides configuration data to program the stateful 
ALUS 910 of the MAUS 132 of the data plane 120. The 
stateful ALU 910 outputs an action parameter to the action 
crossbar 930. The action parameter memory 920 also out 
puts an action parameter to this crossbar 930. The action 
parameter memory 920 retrieves the action parameter that it 
outputs from its record that is identified by the address 
provided by the match table set 905. The action crossbar 930 
in some embodiments maps the action parameters received 
from the stateful ALUS 910 and action parameter memory 
920 to an action parameter bus 940 of the action ALU 935 . 
This bus provides the action parameter to this ALU 935. For 
different data messages , the action crossbar 930 can map the 
action parameters from stateful ALUS 910 and memory 920 
differently to this bus 940. The crossbar can supply the 
action parameters from either of these sources in their 
entirety to this bus 940 , or it can concu currently select different 
portions of these parameters for this bus . 
[ 0092 ] The action ALU 935 also receives an instruction to 
execute from the action instruction memory 925. This 
memory 925 retrieves the instruction from its record that is 
identified by the address provided by the match table set 
905. The action ALU 935 also receives the header vector for 

each message that the MAU processes . Such a header vector 
can also contain a portion or the entirety of an instruction to 
process and / or a parameter for processing the instruction . 
[ 0093 ] The action ALU 935 in some embodiments is a 
very large instruction word ( VLIW ) processor . The action 
ALU 935 executes instructions ( from the instruction 
memory 925 or the header vector ) based on parameters 
received on the action parameter bus 940 or contained in the 
header vector . The action ALU stores the output of its 
operation in the header vector in order to effectuate a 
message forwarding operation and / or stateful operation of 
its MAU stage 132. The output of the action ALU forms a 
modified header vector ( HV ' ) for the next MAU stage or the 
deparser . In some embodiments , examples of such actions 
include ( 1 ) bit shifting some of the weight gradients in the 
header vector , and ( 2 ) the writing of parameters stored in the 
SALU tables in the header vectors . 
[ 0094 ] In other embodiments , the match tables 905 and the 
action tables 915 , 920 and 925 of the MAU stage 132 can be 
accessed through other methods as well . For instance , in 
some embodiments , each action table 915 , 920 or 925 can be 
addressed through a direct addressing scheme , an indirect 
addressing scheme , and an independent addressing scheme . 
The addressing scheme that is used depends on the configu 
ration of the MAU stage , which in some embodiments , is 
fixed for all data messages being processed , while in other 
embodiments can be different for different data messages 
being processed . 
[ 0095 ] In the direct addressing scheme , the action table 
uses the same address that is used to address the matching 
flow entry in the match table set 905. As in the case of a 
match table 905 , this address can be a hash generated 
address value or a value from the header vector . Specifically , 
the direct address for an action table can be a hash address 
that a hash generator ( not shown ) of the MAU generates by 
hashing a value from one or more fields of the message's 
header vector . Alternatively , this direct address can be a 
value extracted from one or more fields of the header vector . 
[ 0096 ] On the other hand , the indirect addressing scheme 
accesses an action table by using an address value that is 
extracted from one or more records that are identified in the 
match table set 905 for a message's header vector . As 
mentioned above , the match table records are identified 
through direct addressing or record matching operations in 
some embodiments . 
[ 0097 ] The independent address scheme is similar to the 
direct addressing scheme except that it does not use the same 
address that is used to access the match table set 905. Like 
the direct addressing scheme , the table address in the inde 
pendent addressing scheme can either be the value extracted 
from one or more fields of the message's header vector , or 
it can be a hash of this extracted value . In some embodi 
ments , not all the action tables 915 , 920 and 925 can be 
accessed through these three addressing schemes , e.g. , the 
action instruction memory 925 in some embodiments is 
accessed through only the direct and indirect addressing 
schemes . Also , other addressing schemes are used to address 
some of the tables ( e.g. , action tables ) . 
[ 0098 ] FIG . 10 conceptually illustrates a process 1000 that 
the parameter collecting circuit 150 performs in some 
embodiments . The MAU stages 132 that implement the 
parameter collecting circuit 150 in some embodiments have 
the MAU circuit architecture illustrated in FIG . 9. In some 
embodiments , the process 1000 is performed for each 
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received data message that is processed by the data plane 
120 from each particular ML machine . As shown , the data 
plane 120 initially determines ( at 1005 ) whether the data 
message is from an ML machine . In some embodiments , an 
ingress MAU stage 132 makes this determination by match 
ing the received data message's source information ( e.g. , the 
source IP address and / or source port address in the mes 
sage's associated header vector that the MAU is processing ) 
with a record in its match table 905 . 
[ 0099 ] When the data message is not from an ML 
machine , the process 1000 ends and the data plane 120 
processes this message's header vector according to its 
configured forwarding operations , in order to forward the 
data message along its path to the message's destination . 
Alternatively , when the data message is from a particular 
ML machine , the ingress MAU stage ( that determined that 
the message came from a particular ML machine ) marks ( at 
1010 ) the header vector to indicate that it is one that contains 
weight gradients from the particular ML machine . 
[ 0100 ] Next , at 1015 , this MAU stage or another MAU 
stage has its SALU 910 set a bit in a bitmap that it maintains 
in its stateful ALU table 915 to identify that the particular 
ML machine has provided its set of weight gradients for a 
particular group of weights . In some embodiments , this bit 
is set after the weight gradient set has been processed ( i.e. , 
after the gradients in this set have been stored ) . In setting the 
bitmap ( at 1015 ) , the SALU 910 also outputs in some 
embodiments the bitmap so that the SALU 910 , its associ 
ated action ALU 935 or a subsequent MAU 132 can analyze 
the bitmap and determine whether all the bits have been set 
to indicate that all the ML machines have provided their 
weight gradient sets for a particular group of weights . When 
an MAU stage determines that the bitmap indicates that all 
the ML machines have provided their weight gradient sets , 
the action ALU of that stage marks the header vector to 
indicate that this vector's data message has provided the last 
weight gradient set for the particular group of weights . 
[ 0101 ] At 1020 , the action ALUs of the ingress MAUs 132 
shift the weight gradients to the left by 16 - bits when the 
weight gradients are sent by certain ML machines ( e.g. , 
machines A , C , E , G , I , and K ) . This shifting allows the 
weight gradients for these machines to be eventually stored 
in the same registers as the corresponding weight gradients 
from the other machines ( e.g. , machines B , D , F , H , and L ) , 
as shown in FIGS . 3-6 . 
[ 0102 ] In some embodiments , each 16 - bit weight gradient 
is initially stored by an ingress pipeline parser 130 in the 
least significant 16 bits of a 32 - bit container for that gradient 
( i.e. , for that weight ) in the header vector . When the data 
message is from the subset of ML machines that need their 
gradients shifted , one or more header vector attributes ( e.g. , 
source IP / port address , ML machine identifier , etc. ) matches 
in some embodiments a record of a match table in an ingress 
MAU . This matching record has an associated action record 
that directs the action ALU of that stage to shift the 16 - bit 
gradient from the least significant 16 bits of its container to 
its most significant 16 bits . 
[ 0103 ] At 1025 , the process 1000 then extracts each 
weight gradient from its container in the header vector and 
stores them in the SALU registers of the egress MAUS 
according to the storage pattern configured for that weight 
gradient and the data message's source ML machine . 
Examples of such storage patterns were described above by 
reference to FIGS . 3-6 . The pattern in this example has eight 

of twelve egress MAU stages storing four weight gradients 
from the 32 weight gradients distributed by each ML 
machine in some embodiments . 
[ 0104 ] Next , at 1030 , the process 1000 determines 
whether the data message is the last gradient message that 
provided the final weight gradient set for the group of 
weights . In some embodiments , after all the weight gradients 
have been stored for the last data message by several MAU 
stages , the final MAU stage or an MAU stage after this one 
then updates the bitmap , determines from the updated bit 
map that all the weight gradient sets have been collected , 
and then marks the header vector of the last data message for 
recirculation back through the ingress and egress pipelines 
so that the stored weight gradients can be retrieved from the 
MAU stages . Other embodiments perform the determination 
and operation at 1035 differently . 
[ 0105 ] At 1035 , the TM 144 generates several replicated 
data messages for each ML machine from the last data 
message . It then passes these replicated data messages 
through the egress MAU pipeline that stores all the collected 
weight gradients . These egress MAU stages then store the 
collected weight gradients according to the desired reporting 
pattern ( e.g. , the pattern shown in FIG . 7 ) the header vectors 
associated with each ML machine's data messages . In some 
embodiments , each SALU of an egress MAU outputs the 
desired weight gradients from its SALU registers , and the 
egress MAU's action ALU writes the outputted weight 
gradients in the desired 32 - bit containers at the desired 
location in the header vector . These header vectors are then 
packaged by the egress pipeline deparser 134 into data 
messages that are forwarded to the ML machines through a 
direct wire connection or through intervening network fab 
ric . 
[ 0106 ] In some embodiments , the data plane 120 is con 
figured to perform all - reduce parameter - collecting opera 
tions instead of all - gather parameter - collecting operations . 
For instance , the data plane 120 in some embodiments adds 
the different weight gradients that it collects from the ML 
machines 105 for the same weight values in a neural network 
and distributes to the ML machines the aggregated weight 
gradients for each of several weights in the neural network . 
To perform its all - gather operations , the data plane 120 
converts floating - point weight gradients that it receives from 
the ML machines to fixed - point weight - gradients that it 
aggregates and then converts the aggregated fixed - point 
values back to aggregated floating - point weight gradients 
that it distributes back to the ML machines . 
[ 0107 ] FIG . 11 illustrates the interaction between the data 
plane 120 and the ML machines 105 when the data plane 120 
operates in an all - reduce implementation . Like FIG . 8 , FIG . 
11 shows the data plane receiving 32 weight gradients 0-31 
from twelve ML machines A - L . However , unlike its all 
gather operation , the data plane during its all - reduce opera 
tion adds the received weight gradients that correspond to 
the same weight I , and then distributes to the ML machines 
one data message with one aggregated SI value for each 
weight I. 
[ 0108 ] For each of the 32 weights , the S value equals the 
sum of the twelve weight gradients that the data plane 
receives from the twelve ML machines A - L for that weight , 
as shown in FIG . 11. Each ML machine A - L then computes 
an average gradient for each weight by dividing the gradient 
sum SI that it receives for each weight gradient I by the 
number of ML machines , which in this example is twelve . 
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[ 0109 ] FIG . 12 conceptually illustrates the components of 
the parameter collecting circuit 1250 when the data plan 120 
is configured to perform an all - reduce operations in some 
embodiments . As shown , the parameter collecting circuit 
1250 conceptually includes a parameter extractor 1252 , a 
floating - point to fixed - point converter 1253 , a computation 
engine 1254 , a parameter storage 1255 , a parameter for 
warding circuit 1256 and a fixed - point to floating - point 
converter 1257 . 
[ 0110 ] In examining a header vector for a received data 
message , the parameter extractor 152 in some embodiments 
determines that the data message originated from an ML 
machine 105 and contains a set of weight gradients . The 
weight gradients are received in a floating - point format ( e.g. , 
a half - precision , floating - point format ) in some embodi 
ments . As the data plane 120 performs its gradient additions 
in a fixed - point format , the parameter extractor 152 has the 
floating - point to fixed - point converter 1253 convert each 
gradient stored in the header vector to a fixed - point format . 
As further described below , this converter in some embodi 
ments converts each gradient value from a 16 - bit floating 
format that is stored in a 32 - bit container in the header vector 
to a 43 - bit fixed - point value that is stored as 21 - bit and 
22 - bit values in two 32 - bit containers Y and Z. 
[ 0111 ] The computation engine 1254 then adds each con 
verted fixed - point gradient value for a weight to an aggre 
gate gradient value stored in the storage 1255 for that 
weight . When the received data message is the first data 
message that provides the first set of weight gradients from 
a group of ML machines , the computation engine 1254 
simply saves the converted fixed - point gradient value for 
each weight in the storage 1255 for that weight . In the 
embodiments where the received data message has 32 
gradients for 32 weights and each gradient is received as a 
16 - bit half - precision floating point value that is converted 
into a 43 - bit fixed - point value stored in two 32 - bit containers 
Y and Z , the computation engine 1254 adds the values of the 
32 - bit containers Y and Z for a weight to two 32 - bit storage 
locations for that weight in the storage 1255. Again , when 
the received data message is the first data message that 
provides the first set of weight gradients from a group of ML 
machines , the computation engine 1254 simply saves the 
values of the 32 - bit containers Y and Z for a weight in the 
two 32 - bit storage locations for that weight in the storage 
1255 . 
[ 0112 ] Once all the weight gradient sets from all the ML 
machines have been received and the computation engine 
1254 has produced a sum for each weight ( i.e. , by adding all 
the gradients that the parameter collecting circuit 1250 
receives for each weight ) , the parameter forwarding circuit 
1256 embeds the generated sums in several ( e.g. , twelve ) 
data messages that it sends to several ( e.g. , twelve ) ML 
machines . Before the parameter collecting circuit 1250 
sends these messages , the fixed - point to floating - point con 
verter 1257 converts each gradient sum from a fixed - point 
format to a floating - point format . 
[ 0113 ] FIG . 13 conceptually illustrates a process 1300 that 
the parameter collecting circuit 1250 performs in some 
embodiments . The MAU stages 132 that implement the 
parameter collecting circuit 1250 in some embodiments 
have the MAU circuit architecture that was described above 
by reference to FIG . 9. In some embodiments , the process 
1300 is performed for each received data message that is 
processed by the data plane 120 from each particular ML 

machine . As shown , the data plane 120 initially determines 
( at 1305 ) whether the data message is from an ML machine . 
In some embodiments , an ingress MAU stage 132 makes 
this determination by matching the received data message's 
source information ( e.g. , the source IP address and / or source 
port address in the message's associated header vector that 
the MAU is processing ) with a record in its match table 905 . 
[ 0114 ] When the data message is not from an ML machine , 
the process 1300 ends and the data plane 120 processes this 
message's header vector according to its configured for 
warding operations , in order to forward the data message 
along its path to the message's destination . Alternatively , 
when the data message is from a particular ML machine , the 
ingress MAU stage ( that determined that the message came 
from a particular ML machine ) marks ( at 1307 ) the header 
vector to indicate that it is one that contains weight gradients 
from the particular ML machine . 
[ 0115 ] Next , at 1310 , this MAU stage , or another MAU 
stage , has its SALU 910 set a bit in a bitmap that it maintains 
in its stateful ALU table 915 to identify that the particular 
ML machine has provided its set of weight gradients for a 
particular group of weights . In some embodiments , this bit 
is set after the weight gradient set has been processed ( i.e. , 
after the gradients in this set have been added to the gradient 
sums that are being maintained for the group of weights ) . In 
setting the bitmap ( at 1310 ) , the SALU 910 also outputs in 
some embodiments the bitmap so that the SALU 910 , its 
associated action ALU 935 , or a subsequent MAU 132 can 
analyze the bitmap and determine whether all the bits have 
been set to indicate that all the ML machines have provided 
their weight gradient sets for a particular group of weights . 
When an MAU stage determines that the bitmap indicates 
that all the ML machines have provided their weight gradi 
ent sets , the action ALU of that stage marks the header 
vector to indicate that this vector's data message has pro 
vided the last weight gradient set for the particular group of 
weights . As mentioned above , the data plane in other 
embodiments uses other schemes ( e.g. , a counter ) to identify 
when the data plane has weight gradient sets from all the ML 
machines . 
[ 0116 ] At 1315 , the process 1300 then retrieves in several 
successive MAU stages each weight gradient from the 
header vector and converts each retrieved gradient from a 
floating - point format to a fixed - point format . In some 
embodiments , each weight gradient is 16 - bit value that 
expresses a floating - point number in a half - precision format . 
FIG . 14 illustrates an example of such a 16 - bit value X. As 
shown , the most significant bit ( MSB ) of this 16 - bit value is 
the sign bit X.s. The next five bits are the exponent bits X.e , 
and the final 10 bits are the fraction bits X.f , also called the 
significand or mantissa bits . This 16 - bit value expresses a 
floating point number according to the following two equa 
tions : 

Floating point number N = ( - 1 ) { . * 2-14 * 0.X.f when 
X.e = 0 ( subnormal case ) , or 

a 

a 

( -1 ) 4.5 * 2X.e - 15 * 1.X.f when X.e = 0 . 
[ 0117 ] FIG . 14 also illustrates that the MAUs in some 
embodiments convert each received 16 - bit floating point 
gradient value ( that is stored in a 32 - bit container in the 
header vector ) to a 43 - bit fixed - point value that is stored as 
21 bits and 22 bits in two 32 - bit containers Y and Z. As 
shown , the 43 bits account for ( 1 ) 1 sign bit , ( 2 ) 1 extra bit 
to account for the “ 1.X.f " component of the above - described 
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floating point equation for when the floating point exponent 
( X.e ) is not zero , ( 3 ) a 31 bit value to represent each possible 
exponent value from a 5 - bit exponent ( X.e ) without account 
ing for the zero exponent value , and ( 4 ) the 10 fraction bits 
( X.f ) . 
[ 0118 ] The container Y is referred to below as the upper 
container ( as it stores the upper 21 bits of the 43 - bit value ) , 
while the container Z is referred to as the lower container ( as 
it stores the lower 22 bits of the 43 - bit value ) . The 32 - bit 
containers Y and Z have sufficient extra MSBs ( 11 for Y and 
10 for Z ) to account for carry values that may result while 
adding weight gradients . When there are twelve ML 
machines A - L , at most 4 extra bits are needed in the MSBs 
of these containers to account for the carry values . A process 
for converting a weight gradient from a fixed - point format to 
a floating - point format will be described below by reference 
to FIG . 15 . 

[ 0119 ) After converting the weight gradients from their 
floating - point formats to their fixed - point formats , the pro 
cess determines ( at 1320 ) whether the received data message 
is the first message that provides the first weight gradient set 
for a group of weights . In some embodiments , an MAU 
maintains a bit in its SALU register to indicate whether any 
prior data messages have been received for a group of 
weights . Upon receiving the first data message , the MAU 
has its action ALU set a value in the header vector to notify 
the other MAU stages that the data message is a first data 
message , and its SALU changes the value of the bit it 
maintains . After changing this bit , the MAU no longer 
modifies this value until its registers are reset after all the 
weight gradients for a group of weights have been collected . 
In other embodiments , the MAU that maintains the first 
message bit for a group of weights is one of the MAUs that 
implements the computation engine 1254 that accumulates 
one or more weight gradients in one or more of its SALU 
registers . In still other embodiments , the MAU that performs 
the determination at 1320 assesses the bitmap maintained in 
the data plane . Still other embodiments make this determi 
nation differently . 
[ 0120 ] When the process 1300 determines ( at 1320 ) that 
the received data message is the first message that provides 
the first weight gradient set for a group of weights , several 
MAU stages store the fixed - point converted weight gradi 
ents in their respective SALU registers . As each 43 - bit 
weight gradient is stored as 21 bits and 22 bits in two 32 - bit 
containers Y and Z in the header vector , and each SALU has 
four sets of SALU 32 - bit wide registers , each MAU stage 
stores two 43 - bit weight gradient values in four 32 - bit 
SALU registers in some embodiments . After 1325 , the 

a 

[ 0122 ] Next , at 1335 , the process 1300 determines 
whether the data message is the last gradient message that 
provided the final weight gradient set for the group of 
weights . In some embodiments , each MAU that accumulates 
the weight gradients makes this determination based on the 
value of the bitmap , and upon making this determination it 
outputs ( at 1340 ) the weight gradient sums that it has 
maintained into the header vector . In other embodiments , 
after all the weight gradients have been accumulated for the 
last data message by several MAU stages , the final MAU 
stage or an MAU stage after this one then updates the 
bitmap , determines from the updated bitmap that all the 
weight gradient sets have been collected , and then marks the 
header vector of the last data message for recirculation back 
through the ingress and egress pipelines so that the weight 
gradients can be retrieved from the MAU stages . Other 
embodiments perform the determination and operation at 
1335 differently . 
[ 0123 ] Irrespective of how the collection - completion 
determination is made at 1335 , the process 1300 ( at 1340 ) 
retrieves the gradient sums collected for each weight in the 
SALU registers , stores the result of the sum in two 32 - bit Y 
and Z containers , and converts each sum from a fixed - point 
representation that spans the two containers into one 16 - bit 
representation that is stored in the header vector . The data 
plane operations for performing this conversion will be 
described below by reference to FIG . 15 . 
[ 0124 ] After the weight gradient sums are converted into 
half - precision 16 - bit floating point values , the process ( at 
1345 ) generates one data message for each ML machine , 
embeds the 16 - bit floating point weight gradient sums into 
each data message , and sends each ML machines its data 
message . To do this , the data plane 120 has its TM 144 
replicate the final data message ( similar to the approach 
described above by reference to FIG . 2 ) and embeds the 
weight gradient sums in these replicated messages . In other 
embodiments , the data plane has its message generator 135 
generate messages that are populated with the accumulated 
weight gradient sums . 
[ 0125 ] Other embodiments implement these operations 
differently . For instance , some embodiments first generate 
the replicated message for each ML machine , then retrieve 
the fixed - point weight gradient sums and convert these sums 
to floating point formats . Also , in some embodiments , a data 
message from an ML machine has to be recirculated through 
the data plane one or more times to generate the weight 
gradient sums for each weight in order to support more ML 
machines and / or more weights in each data message , which 
would require more stages and resources than available to 
compute the sums in one pass through the data plane's 
ingress and egress pipelines . 
[ 0126 ] Also , instead of the 43 - bit implementation , other 
embodiments convert 16 - bit floating points to 42 - bit repre 
sentations , and perform the aggregation with respect to the 
42 - bit representations . These embodiments use 11 bits for 
the normal values ( i.e. , 1 plus 10 bits for fraction ) . For the 
exponent 1 , these embodiments do not need to do any shift 
as normal values get a bias of negative 15 in power while 
sub - normal values get a bias of negative 14. Thus , under this 
approach , exponent 1 has a 0 shift ( to align with sub - normal 
values ) and exponent 31 has a 30 - bit shift . Accordingly , 
overall 42 bits are need for 1 sign bit , 30 bits for shifting , and 
11 bits for the fraction ( 1plus 10 bit fraction ) . Some embodi 

process ends . 
[ 0121 ] On the other hand , when the process 1300 deter 
mines ( at 1320 ) that the received data message is not the first 
message that provided the first weight gradient set for the 
group of weights , several MAU stages add ( at 1330 ) the 
fixed - point converted weight gradients to the values stored 
in their respective SALU registers . For a particular weight 
gradient m that is stored in two 32 - bit containers Ym and Zm 
in the header vector , a particular MAU maintains the sum for 
the weight gradient m in two 32 - bit registers , one that 
corresponds to the upper Y container and the other that 
corresponds to the lower Z container . For this weight gra 
dient m , the particular MAU adds the 32 - bit values in 
containers Ym and Zm to these two 32 - bit registers . 
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ments that use this approach use the lower 21 - bit values of 
the 32 - bit Y and Z containers . 
[ 0127 ] FIG . 15 illustrates the operations that some 
embodiments perform to convert a floating - point weight 
gradient Wi to a fixed - point weight gradient , add the con 
verted weight gradient to a total Si that is maintained for that 
gradient’s associated weight , and to convert the fixed - point 
weight gradient sum to a floating - point weight gradient sum . 
Each of these operations in some embodiments is performed 
by one or more MAU stages . These operations will be 
described below by reference to an example that converts a 
half - precision 16 - bit floating point gradient into a 43 - bit 
gradient that is stored in two containers Y and Z , which 
illustrated in the above - described FIG . 14 . 
[ 0128 ] As shown , the first operation is performed by a sign 
processing circuit 150 to account for the sign value in the 
half - precision floating point number . The pseudo code 
below describes the data plane configuration logic that the 
sign circuit 1505 implements . As shown , when the exponent 
is zero , the sign circuit initially sets both containers Y and Z 
( 1 ) to negative X.f when the sign is negative and the 
exponent is zero , ( 2 ) to positive X.f when the sign is positive 
and the exponent is zero , ( 3 ) to 10000000000 minus X.f 
when the sign is negative and the exponent is not zero , and 
( 4 ) to 10000000000 plus X.f when the sign is positive and 
the exponent is not zero . 

by two operation , while shifting a value by 1 to the right 
implements a divide by two operation . 
[ 0131 ] After the sign circuit 1505 processes the gradient , 
a shift circuit 1510 performs shift operations on the Y and Z 
container values to account for the value of the exponent of 
the half - precision value . The pseudo code below describes 
the data plane configuration logic that the shift circuit 1510 
implements . As shown , when the exponent is not zero , the 
shift circuit 150 shifts the bits in the Z container to the left 
by the exponent value ( which is between 1-31 in this case ) 
minus 1. Also , when the exponent value is greater than 23 , 
the shift circuit 150 shifts the bits in the Y container to the 
left by the exponent value ( which is between 24-31 in this 
case ) minus 23 , while when the exponent value is 23 or 
smaller , the shift circuit 150 shifts the bits in the Y container 
to the right by 23 minus the exponent value ( which is 
between 1-23 in this case ) . 

e 

if X.e ! = 0 : 

Z << = ( X.e - 1 ) 

if X.e > 23 

Y << = X.e - 23 

else : 

Y >> = 23 - X.e 

l / when value negative 
1 / when value positive 

if X.e == 0 : // subnormal 
if X.s == 1 : Y = Z = -X.f 
if X.s == 0 : Y = Z = X.f 

else 
if X.s == 1 : Y = Z = -0x400 X.f 
if X.S == 0 : Y = Z = 0x400 + X.f 

l / when value negative 
// when value positive 

[ 0129 ] In some embodiments , one MAU stage implements 
the sign circuit 1505. This MAU stage uses a TCAM with 
the following records to identify the operations that the 
MAU stage's action ALU has to perform . 

TCAM Table 

Sign Exponent Fraction Op Instruction 
X 0 

0 + 
0 

X ( any non - zero 
value ) 

X ( any non - zero 
value ) 

X ( any non - zero 
value ) 

X ( any non - zero 
value ) 

0 

In some embodiments , this shifting operation is performed 
by one or more action ALUs of one or more MAU stages 
based on the matching of the exponent values of the gradi 
ents to match table records . Also , as mentioned above , the 
containers Y and Z in some embodiments are two containers 
in the header vector of a processed data message . Hence , in 
these embodiments , the shift circuit 1510 stores the results 
of it shift operation ( s ) back in these containers Y and Z in the 
header vector . 
[ 0132 ] After the shift circuit 1510 completes its shift 
operation for the weight gradient Wi and stores the result of 
this operation in containers Y and Z for this weight gradient 
in the header vector , the weight gradient has been converted 
into its 43 - bit format stored in two 32 - bit containers Y and 
Z. Accordingly , an accumulate circuit 1515 can then store or 
add this weight gradient to the SALU storage that stores the 
sum of all weight gradients Wi received from all of the ML 
machines . 
[ 0133 ] In some embodiments , two SALUs of an MAU 
stage implement the accumulate circuit 1515 , with each 
SALU storing or adding one container value Y or Z for a 
particular weight gradient Wi . When the data message being 
processed is the first data message in a group of data 
messages from the ML machines that provide a group of 
weight gradient sets , these two SALU registers extract the Y 
and Z 32 - bit values from Y and Z containers in the header 
vector , and store these values in their Y and Z SALU 
registers . On the other hand , when the processed data 
message is not the first data message in the group , each 
SALU extract its corresponding Y or Z 32 - bit value from the 
Y or Z container in the header vector , retrieves the value 
stored in its corresponding register Y and Z , and adds the 
extracted and retrieved values , and stores the result back into 
the Y or Z register . 
[ 0134 ] Some embodiments pipeline the accumulate - side 
operations of the circuits 1505-1510 in order to maximize 

no op ( zero ) 
copy fraction 

( positive subnormal ) 
copy fraction 

( negative subnormal ) 
add 0x400 ( positive 

normal ) 
sub 0x400 ( negative 

normal ) 

+ X 

X 

[ 0130 ] In the above - table , X means do not care . One of 
ordinary skill will realize that the TCAM table does not 
specify an operation instruction but rather identifies directly 
or indirectly an instruction in the MAU's action instruction 
memory in some embodiments for the action ALU of this 
stage to perform . Without this TCAM , up to three exact 
match tables would be needed to implement the operation of 
the sign circuit 1505. In two's complement logic , a negative 
of a number two's complement number is produced by 
inverting each bit and adding 1 to the result . Also , in this 
logic , shifting a value by 1 to the left implements a multiply 
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pseudo code below conceptually describes the operations of 
the sign circuit 1530 in some embodiments . As listed , if Y 
is determined to be a negative number , then X.s ( i.e. , the sign 
value in the half - precision floating point expression ) is set to 
1 ; this value is initially set to 0 and X.s retains this value 
when Y is determined not to be negative . Also , if Y is 
negative and Z is not zero , Y is set to not Y and Z is set to 
negative Z plus 10000000000 . 

if Y < O : 

X.s = 1 
a 

if Z == 0 : Y = -Y 

else : Y = not Y ; Z = -Z + 0x400 

the number of weight gradients that can be converted to 
fixed point and accumulated in each pass through the data 
plane 120. Even with this pipelining , the data plane in some 
embodiments might not be able to process all the weight 
gradients in one pass through an ingress pipeline and an 
egress pipeline . In these embodiments , the processed data 
message is recirculated from the egress pipeline back to an 
ingress pipeline one or more times to complete the process 
ing and accumulation of all of the weight gradients . 
[ 0135 ] Some embodiments further reduce the accumulate 
side processing of the data plane by assuming that the weight 
gradients are going be within a small numerical range ( e.g. , 
-2 to 2 ) . Based on this assumption , these embodiments 
convert each 16 - bit half - precision floating point number to 
a smaller number of bits ( e.g. , 27 bits ) that fit within one 
32 - bit container . This approach requires less data - plane 
resources for converting , accumulating , and storing the 
numbers , which , in turn , frees up for data - plane resources 
for processing more weight gradients during each pass 
through the data plane . 
[ 0136 ] Once all the ML machines have provided their 
weight gradient sets for a group of weights , the weight 
gradient sums can be read from the SALU registers 1520 and 
converted back to floating point formats before being 
embedded in data message and transmitted to the ML 
machines . For one weight gradient sum Si , this conversion 
starts with a carry / borrow adjustor 1525. This adjustor 
extracts the Y and Z container values associated with this 
sum from the SALU registers 1520 and modifies the value 
of the upper container Y based on the value of the lower 
container Z to account for needed carry or borrow operations 
that need to be performed before combining the values 
contained in these two containers . 
[ 0137 ] Specifically , as specified by the pseudo code below , 
the carry / borrow adjustor initially computes a t value based 
on whether the lower Z container is negative or not . The 
lower container Z should only have 22 bits , but adding 
different numbers may make it have a carry when Z is 
positive and a borrow when Z is negative . The carry and 
borrow bits are the 10 MSBs of the container Z. The 
carry / borrow bits are saved in the variable called t . When Z 
is negative , t also has to be negative . This is why t is 
concatenated ( merged ) with 22 bits of 1 ( 0xFFFFF3 ) when 
Z is negative ; otherwise , t is a concatenation of O and the 10 
MSBs of the Z container . 

If Y is negative after adding carry / borrow , the sign bit has to 
be set and the number has be made positive . As mentioned 
above , making a number positive in two's complement 
calculation means inverting each value of that number and 
adding 1. To make Z and Y positive , Y has to be set to not 
Y and Z has to be set to not Z + 0x400 . ( Remember Z was 
shifted 10 bits so 1 is 0x400 ) . However , it is hard to compute 
not Z + 0x400 in hardware . Hence , some embodiments com 
pute Z to be not Z + 1 + 0x3ff which can be simplified to 
-Z + 0x3ff . There is one special case , if Z is Othen not 
Z + 0x400 will have a carry . In this case Z should remain 0 
but Y should be not Y + 1 , which is essentially -Y . Accord 
ingly , the pseudo code that describes the operation of the 
sign circuit in some embodiments can be expressed as : 

if Y < O : 

X.s = 1 

if Z ! = 0 : Y = not Y ; Z = -Z + 0x3FF 

else : Y = -Y 

if Z < 0 : t = concat [ 0xFFFFF3 , Z [ 31:22 ] ] 

[ 0139 ] Once the sign examining operations have been 
completed , an exponent identifying circuit 1535 identifies 
the leftmost 1 value in the concatenation of Y and Z is 
identified , and uses this value to set X.e ( i.e. , the exponent 
value in the half - precision floating point expression ) . This 
leftmost 1 value identifies the location in the concatenation 
of Y and Z that identifies a start of fraction bits ( X.f ) 
associated with a floating point value corresponding to the 
fixed point value . For instance , in some embodiments , the bit 
after the leftmost 1 is the start of the fraction bits ( X.f ) . Some 
embodiments do not check whether the leftmost bit is in the 
rightmost 9 bits as this would be the case for a sub - normal 
value . 
[ 0140 ] The pseudo code below expresses the operation of 
the exponent identifying circuit 1535 in some embodiments . 
As shown in the pseudo code below , the concatenation is the 
32 bits of the Y container plus the top 22 bits of the Z 
container . 

else : t = concat [ 0 , Z [ 31:22 ] ] 

Y + = t 

Z = << 10 

m = index of leftmost 1 in concat ( Y , Z [ 31:10 ] ) 

X.e = max ( m - 9,0 ) 

The carry / borrow adjustor also shifts Z to the left by 10 bits 
in order to ensure that data portion of the Z container is 
positioned to the left of this container's left . As mentioned 
above , some embodiments uses one or more action ALUs of 
one or more MAU stages to perform a shift operation . The 
carry / borrow adjustor 1525 writes the adjusted values of Y 
and Z into two containers of a data message being processed 
to retrieve a sum weight gradient . 
[ 0138 ] After dealing with the carry / borrow adjustment , a 
sign circuit 1530 examines the values of containers Y and Z 
in the header vector and based on these values performs 
operations to account for possible negative value for Y. The 

To identify the leftmost 1 value in the concatenation of Y and 
Z , some embodiments use a TCAM match table of an MAU 
stage . In some embodiments , a TCAM match table identifies 
the leftmost 1 value in a received n - bit value by storing 
n - records , each of which stores an n - bit value with a single 
valid bit that is set to 1 and all other bits as Os or don't cares . 
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conversion of a floating point weight gradient ( as f can be 
shifted up to 15 bits to left , f can be 10 bits , plus an extra 1 
bit and another bit for sign ) , as mentioned above . 
[ 0145 ] In these embodiments , the 27 - bit fixed point value 
is stored in a 32 - bit container , which leaves five extra bits 
that can be used to store carry bits that result from adding 
multiple fixed point values . To perform the 16 - bit floating 
point conversion to a 32 - bit fixed point representation , some 
embodiments use a look up table ( LUT ) that stores a single 
32 - bit converted fixed point value for each possible 16 - bit 
half precision floating point value . This LUT is a match table 
of an MAU stage in some embodiments that for each 16 - bit 
half precision floating point value outputs its corresponding 
32 - bit fixed - point value . 
[ 0146 ] To convert a 32 - bit fixed - point value that repre 
sents a sum of weight gradients ( that were converted from 
16 - bit floating point representations to 32 - bit fixed - point 
representations ) , the MAUs of some embodiments imple 
ment the logic reflected by the following pseudo - code . In 
this pseudo code , Y is the 32 - bit container that store the 
32 - bit sum of several 32 - bit converted fixed - point weight 
gradients . 

a 

The records are stored in the TCAM in an order with the 
larger n - bit values ( i.e. , with the leftmost valid 1 values ) in 
earlier TCAM locations . The TCAM in these embodiments 
compares the received n - bit values with all the stored n - bit 
values concurrently . 
[ 0141 ] When multiple stored n - bit values match a received 
value , the TCAM in these embodiments selects the stored 
n - bit value with the leftmost valid 1 bit that matches a 1 bit 
in the received value . Specifically , in comparing the received 
n - bit value with each stored n - bit value , the TCAM in some 
embodiments only compares the single valid 1 value in the 
stored n - bit value with the corresponding bit in the received 
value to determine whether the two n - bit values match . 
When the received value matches at least one n - bit value 
( i.e. , when the received value has a 1 that matches a 1 value 
in a corresponding bit of a stored n - bit value ) , the TCAM 
outputs in some embodiments a value that identifies the 
location of the matching valid 1 value in a matching n - bit 
value with the leftmost valid 1 bit . In some embodiments , 
the value that the TCAM outputs specifies the leftmost bit in 
the received n - bit value . In other embodiments , the leftmost 
bit in the received n - bit value is derived from the value 
output from the TCAM . Some embodiments do not check 
whether the leftmost bit is in the rightmost 9 bits as this 
would be the case for a sub - normal value . 
[ 0142 ] In other embodiments , the TCAM operates differ 
ently . For instance , in some embodiments , the TCAM con 
currently compares each received n - bit value with multiple 
bits in each of its records , with each of its multi - bit records 
having 0 , 1 or don't care ( x ) values for each of its bits and 
only at most one of these bits being a 1 value . In these 
embodiments , only one record with a valid 1 bit would 
identify the leftmost 1 bit in a received value . For instance , 
for a 4 - bit example , the TCAM records would be 0000 , 
0001 , 001x , 0 lxx , lxxx , and xxxx . When the received value 
is 0110 , the TCAM would match the received value with its 
fourth record ( 01xx ) and would that the leftmost 1 bit is the 
third bit from the right . On the other hand , when the received 
value is 0011 , the TCAM would match the received value 
with its third record ( 001x ) and would that the leftmost 1 bit 
is the second bit from the right . 
[ 0143 ] After setting X.e , a shift circuit 1540 shifts the 
concatenation of Y and Z to the left by the max of 10 and 
X.e + 10 . As mentioned above , some embodiments uses one 
or more action ALUs of one or more MAU stages to perform 
a shift operation . The shift circuit then defines X.f to be the 
lower 10 bits of Z , by AND'ng Z with Ox3ff ( which is 
001111111111 ) . The pseudo code below expresses the opera 
tion of the shift circuit 1540 in some embodiments . 

m = 

If YKO , 
Then X.s = 1 
Y = -Y 
index of leftmost 1 in Y 

If m < 10 / sub - normal case / 
X.e = 0 

Else / normal case / 
X.e = m - 9 
Y shifted to right by X.e - 1 

X.f = Y AND'd with Ox3FF / mask operation / 

[ 0147 ] To implement this logic , one or more MAU stages 
perform the sign operations that when Y is negative , set the 
X.s to 1 and invert Y. Another MAU stage then identifies the 
location of the leftmost 1 value in Y. As mentioned above , 
this leftmost 1 value identifies the location in the concat 
enation of Y and Z that identifies a start of fraction bits ( X.f ) 
associated with a floating point value corresponding to the 
fixed point value . As further discussed above , some embodi 
ments identify the location m of the leftmost 1 by using a 
TCAM for the match table of the MAU stage , where this 
TCAM outputs a value that identifies the leftmost bit in Y. 
When m is less than 9 , the Y value is associated with the 
sub - normal case . Hence , an MAU stage sets X.e to zero and 
the Y is not shifted . 
[ 0148 ] On the other hand , when m is equal or larger than 
9 , one or more MAU stages sets X.e to m - 9 , and shift Y to 
the right by X.e minus 1. As mentioned above , the action 
ALUs of one or more MAU stages in some embodiments are 
used to shift bits of a multi - bit value to the right or left by 
a specified amount . Lastly , an MAU stage performs a 
masking operation that sets X.f equal to the result of 
AND’ing Y and 0x3FF ( i.e. , sets X.f equal to the lower 10 
bits of Y ) . Accordingly , one of ordinary skill in the art would 
understand that the invention is not to be limited by the 
foregoing illustrative details , but rather is to be defined by 
the appended claims . 

Z = concat ( Y , Z ) >> max ( 10 , X.e + 10 ) 

X.f = Z & 0x3FF 

[ 0144 ] While the invention has been described with ref 
erence to numerous specific details , one of ordinary skill in 
the art will recognize that the invention can be embodied in 
other specific forms without departing from the spirit of the 
invention . For instance , other embodiments use other 
approaches to convert floating point numbers to fixed point 
numbers and / or to convert fixed point numbers to floating 
point numbers . In some embodiments , the floating - point 
weight gradients that are added are truncated to be between 
-2 and 2. As such , the half - precision floating point exponent 
in these embodiments can have 1 of 16 values ( e.g. , between 
0 to 15 ) , and only 27 bits are needed for a fixed point 

1. For a forwarding element , a data plane circuit for 
forwarding data messages received by the forwarding ele 
ment , the data plane comprising : 
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a parameter extracting circuit to extract floating - point 
parameter values embedded in a set of data messages 
received by the data - plane circuit ; 

a computation circuit to perform computations based on 
the extracted floating - point parameter values ; and 

a parameter forwarding circuit to forward results of the 
computations in data messages forwarded by the for 
warding element . 


