w0 2023/158531 A1 |0 0000 AP0 000 0 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
24 August 2023 (24.08.2023)

(10) International Publication Number

WO 2023/158531 Al

WIPO I PCT

(51) International Patent Classification:
GO6F 30/327 (2020.01) GO6F 30/333 (2020.01)
GO6F 30/3308 (2020.01)

(21) International Application Number:
PCT/US2023/010587

(22) International Filing Date:
11 January 2023 (11.01.2023)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
63/311,546 18 February 2022 (18.02.2022) US

(71) Applicant: SIFIVE, INC. [US/US]; 1875 S. Grant St.,
Suite 600, San Mateo, California 94402 (US).

(72) Inventors: IZRAELEVITZ, Adam Moshe; 1875 S. Grant
St., Suite 600, San Mateo, California 94402 (US). CHEN,
Albert Pengju; 1875 S. Grant St., Suite 600, San Mateo,

California 94402 (US).

Agent: KANALAKIS, Scott et al.; 3001 West Big Beaver
Rd., Suite 624, Troy, Michigan 48084 (US).

(74)

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,

CA, CH, CL, CN, CO, CR, CU, CV, CZ, DE, DJ, DK, DM,

84

DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IQ, IR, IS, IT, M, JO, JP, KE,
KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU,
LY, MA, MD, MG, MK, MN, MW, MX, MY, MZ, NA, NG,
NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS,
RU, RW, SA, SC, SD, SE, SG, SK, SL. ST, SV, SY, TH,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS,
ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, CV,
GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, ME, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI,
SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

(54) Title: INTEGRATED CIRCUIT DESIGN VERIFICATION WITH SIGNAL FORCING

'/ 700

702 \

GENERATE AN INTEGRATED CIRCUIT DESIGN INCLUDING
INSTANCES OF MODULE DESCRIPTIONS

704 \

RECEIVE A PARAMETER INDICATING THAT AN INPUT OF AN
TNSTANCE THAT 1S INTERNAT. TO THE INTEGRATED CTRCUTT
DESIGN SHOULD BE EXPOSED TO A SIMULATOR

706 ~\ l

GENERATE ANNOTATION(S}) BASED ON THE PARAMETER T'OR USE
WITH A COMPILER TO PERMIT A SIMULATOR TO ACCESS A NODE

IN AN RTL DATA STRUCTURE ASSOCIATED WITH THE INPUT.

708 —\

COMPILE THE INTEGRATED CIRCUIT DESIGN, USING THE
ANNOTATION(S), TO PRODUCE THE RTL DATA STRUCTURE

718 \ l

SIMULATE THE RTL DATA STRUCTURE WITH A SIMULATOR.
ACCLSSING THE NODL ASSOCIATED WITH THE INPUT

712 \

FINALIZE THE INTEGRATED CIRCUI'T DESIGN BASED ON THE
SIMULATION AND STORE AND/OR TRANSMIT THE DESIGN FOR
MANUFACTURING

FIG. 7

(57) Abstract: An integrated circuit design may be generated for an integrat-
ed circuit. The integrated circuit design may include an instance of a module
description that describes a functional operation of a module (702). The in-
stance may include an input that is internal to the integrated circuit design.
The integrated circuit design may be encoded in an intermediate representa-
tion, IR, data structure. A parameter may be received indicating that the input
should be exposed to a simulator (704). The IR data structure may be com-
piled to produce a register-transfer level, RTL, data structure (708). The RTL
data structure may encode a logic description associated with the instance.
The parameter may be used to permit a simulator to access a node in the RTL
data structure that is associated with the input (710).

WO 2023/158531 PCT/US2023/010587

INTEGRATED CIRCUIT DESIGN VERIFICATION WITH SIGNAL FORCING

CROSS-REFERENCE TO RELATED APPLICATION(S)
[0001] This application claims priority to and the benefit of U.S. Provisional Patent
Application Serial No. 63/311,546, filed February 18, 2022, the entire disclosure of which is

hereby incorporated by reference.

TECHNICAL FIELD
[0002] This disclosure relates generally to integrated circuit design and, more

specifically, to integrated circuit design verification with signal forcing.

BACKGROUND
[0003] Integrated circuits may be designed and tested in a multi-step process that
involves multiple specialized engineers performing a variety of different design and
verification tasks on an integrated circuit design. A variety of integrated circuit design tool
chains may be used by these engineers to handle different parts of the integrated circuit

design workflow of using commercial electronic design automation (EDA) tools.

BRIEF DESCRIPTION OF THE DRAWINGS
[0004] The disclosure is best understood from the following detailed description when
read in conjunction with the accompanying drawings. It is emphasized that, according to
common practice, the various features of the drawings are not to-scale. On the contrary, the
dimensions of the various features are arbitrarily expanded or reduced for clarity.
[0005] FIG. 1 is a block diagram of an example of a system for facilitating generation and
manufacture of integrated circuits.
[0006] FIG. 2 is a block diagram of an example of a system for facilitating generation of
integrated circuits.
[0007] FIG. 3 is a block diagram of an example of a system for integrated circuit design
verification with signal forcing.
[0008] FIG. 4 is a block diagram of another example of a system for integrated circuit

design verification with signal forcing.

WO 2023/158531 PCT/US2023/010587

[0009] FIG. 5 is a block diagram of an example of a system including an integrated
circuit design with instances of module descriptions.

[0010] FIG. 6 is a block diagram of an example of a system including an integrated
circuit design in which an input of an instance of a module description is selected for signal
forcing.

[0011] FIG. 7 is flow chart of a process for integrated circuit design verification with
signal forcing.

[0012] FIG. 8 is flow chart of another process for integrated circuit design verification

with signal forcing.

DETAILED DESCRIPTION
[0013] Automated generation of integrated circuit designs permits a configuration of an
application specific integrated circuit (ASIC) or a system on a chip (SoC) to be specified in
terms of design parameters (or colloquially knobs). A system may then automate the
operation of commercial electronic design automation (EDA) tools for design of the
integrated circuit using the design parameters.
[0014] For example, a system may execute an integrated circuit generator (or simply a
generator) to access design parameters and generate an integrated circuit design. In some
implementations, the generator may use a hardware description language (HDL) embedded in
a general-purpose programming language (e.g., Scala) that supports object-oriented
programming and/or functional programming. For example, Chisel, an open source HDL
embedded in Scala, a statically typed general purpose programming language that supports
both object-oriented programming and functional programming, may be used to generate an
integrated circuit design. The generator may include module descriptions that specify
input(s), output(s), and/or a description(s) of a functional operation of a module (e.g., a
processor core, cache, or the like, which may be represented, for example, by a Scala class).
[0015] In a process referred to as elaboration, the generator may execute to generate an
integrated circuit design based on the design parameters. The integrated circuit design may
include instances of module descriptions with connections being made. For example, the
generator may execute constructor code to establish instances of Scala classes, with wired
connections between them, as an instantiation of an integrated circuit design. In some
implementations, the integrated circuit design may be encoded in an intermediate
representation (IR) data structure. The IR data structure may be configured for optimization

and/or translation by a compiler to produce a register-transfer level (RTL) data structure. For

2.

WO 2023/158531 PCT/US2023/010587

example, the generator may generate the integrated circuit design as a flexible intermediate
representation for register-transfer level (FIRRTL) data structure. The FIRRTL data structure
may be compiled by a FIRRTL compiler to produce an RTL data structure.

[0016] In a process referred to as compilation, the elaborated integrated circuit design
(e.g., the IR data structure) may be compiled to generate an RTL data structure. For example,
compiling the integrated circuit design may comprise executing one or more lowering
transformations (e.g., compiler transformations that remove high-level constructs) to
transform the integrated circuit design to generate the RTL data structure. The RTL data
structure may encode a topology of logic associated with the instances of module descriptions
implemented in the integrated circuit design (e.g., logic descriptions of the modules, such as
the processor cores, caches, and the like). The RTL data structure may be compatible with
EDA tools that may be used for functional verification (e.g., simulation analysis), synthesis
(e.g., conversion to a gate-level description), placement and routing (e.g., physical design),
and/or manufacturing of an integrated circuit (e.g., a processor, a microcontroller, an ASIC, or
an SoC). In some implementations, the RTL data structure may comprise Verilog. For
example, the integrated circuit design may be compiled using a FIRRTL compiler to generate
Verilog.

[0017] During the design process, it may be useful to verify (e.g., test) the logic
descriptions associated with one or more modules implemented in the RTL data structure,
such as one of the processor cores or caches. One technique for testing such logic
descriptions is to permit a simulator to write and/or read signal values on one or more nodes
associated with a module. Writing a signal value to a node may comprise injecting a signal
value or logic (e.g., signal forcing) on a node that is associated with an input to the module,
such as injecting a logic high (*17) or a logic low (“0”) value. Reading a signal value from a
node may comprise detecting a signal value or logic (e.g., signal monitoring) on a node that is
associated with an output of the module, such as detecting a logic high (*“1”") or a logic low
(““0”) value. This may permit changing states and/or reading states associated with the
module. For example, to verify a logic description associated with a cache that implements
error correction code (ECC) logic, it may be desirable for a simulator to inject a signal value
on a node associated with an input to the cache. The simulator might inject the signal value to
induce an ECC error in the cache (e.g., flip a bit). The simulator may then monitor a signal
value on a node associated with an output of the cache to determine whether the cache
properly detected the error and/or corrected the error.

[0018] While a simulator may access nodes that are external to a design (e.g., system

3-

WO 2023/158531 PCT/US2023/010587

level inputs and/or outputs of the RTL data structure), providing the simulator with access to
nodes that are internal to the design may be a manual and/or time consuming process. For
example, providing access to nodes that are internal to the design may involve manually
editing the RTL data structure in multiple locations to include cross module references, force
statements, and/or binding logic (and/or preparing such cross module references, force
statements, and/or binding logic in a separate configuration file). Further, when a change is
made by the integrated circuit generator, the RTL data structure may become out of sync with
the integrated circuit design that is produced by the generator. As a result, the integrated
circuit design may be compiled again, which may involve manually editing the RTL data
structure again. Accordingly, there is a need to permit testing of logic descriptions in an RTL
data structure in a way that improves efficiency and/or keeps the design and simulation
processes in sync.

[0019] Described herein are techniques which permit testing of logic descriptions in an
RTL data structure (e.g., simulation). An integrated circuit generator may be used to generate
an integrated circuit design including instances of module descriptions. A module description
may specify input(s), output(s), and/or a description(s) of a functional operation of a module
(e.g., a processor core, cache, or the like, which may be represented, for example, by a Scala
class). Instances of module descriptions may include input(s) and/or output(s) (e.g., wires)
that may be internal to the integrated circuit design (e.g., as opposed to a system level
input(s) and/or output(s) that may be external to the integrated circuit design). The generator
(e.g., Chisel) may use an HDL embedded in a general-purpose programming language (e.g.,
Scala) to generate the integrated circuit design. The integrated circuit design may be encoded
in an IR data structure. A control interface, such as an application program interface (API),
may receive a parameter indicating that an input of an instance of a module description
should be exposed to a simulator. A compiler (e.g., a FIRRTL compiler) may compile the IR
data structure to produce an RTL data structure. The RTL data structure may encode logic
descriptions associated with the instances of module descriptions implemented in the
integrated circuit design (e.g., Verilog). The parameter may be used to permit a simulator to
access a node associated with the input (e.g., to force a signal value to the node) in the RTL
data structure.

[0020] In some implementations, the control interface may receive a parameter indicating
that an output of an instance of a module description should be exposed to a simulator. The
parameter may be used to permit a simulator to access a node associated with the output (e.g.,

to monitor a signal value at the node) in the RTL data structure. In some implementations, a

4-

WO 2023/158531 PCT/US2023/010587

point in the integrated circuit design may be an input and an output (e.g., bi-directional or
“I/O”), and the parameter may be used to permit a simulator to access the node associated
with the input and the output (e.g., to force a signal value and/or to monitor a signal value at
the node) in the RTL data structure.

[0021] In some implementations, the parameter may be used to generate an annotation for
a compiler that is used to compile the integrated circuit design to generate an RTL data
structure. For example, the parameter may be used to generate an annotation for a FIRRTL
compiler that is used to compile the integrated circuit design to generate Verilog. The
annotation may be used to build and/or modify one or more transformations that are used by
the compiler. For example, the compiler may use the annotation to configure cross module
references, force statements, and/or binding logic (e.g., Verilog forces) to permit access to the
one or more nodes by the simulator.

[0022] In some implementations, the parameter may be used to generate a configuration
file (e.g., instructions) that specifies the node. The configuration file may permit the
simulator to force the signal value to the node, and/or monitor a signal value at the node,
when simulating the RTL data structure. For example, a simulator that natively supports force
statements (e.g., Synopsys VCS®) may use the configuration file to force a signal value to the
node, and/or monitor a signal value at the node, when simulating the RTL data structure.
[0023] In some implementations, the parameter may be used to configure the RTL data
structure to permit the simulator to force the signal value to the node and/or monitor a signal
value at the node (e.g., without generating a configuration file). For example, a simulator that
does not natively support force statements (e.g., Verilator) may use the RTL data structure, as
configured by the compiler, to force a signal value to the node, and/or monitor a signal value
at the node, when simulating the RTL data structure. As a result, techniques described herein
may permit testing of logic in an RTL data structure in a way that improves efficiency and/or
keeps the design and simulation processes in sync.

[0024] FIG. 1 is a block diagram of an example of a system 100 for generation and
manufacture of integrated circuits. The system 100 includes a network 106, an integrated
circuit design service infrastructure 110 (e.g., integrated circuit generator), a field
programmable gate array (FPGA)/emulator server 120, and a manufacturer server 130. For
example, a user may utilize a web client or a scripting application program interface (API)
client to command the integrated circuit design service infrastructure 110 to automatically
generate an integrated circuit design based on a set of design parameter values selected by the

user for one or more template integrated circuit designs. In some implementations, the

5.

WO 2023/158531 PCT/US2023/010587

integrated circuit design service infrastructure 110 may be configured to generate an
integrated circuit design like the integrated circuit design 310 shown in FIG. 3, the integrated
circuit design 410 shown in FIG. 4, the integrated circuit design 510 shown in FIG. 5, and/or
the integrated circuit design 610 shown in FIG. 6.

[0025] The integrated circuit design service infrastructure 110 may include a register-
transfer level (RTL) service module configured to generate an RTL data structure for the
integrated circuit based on a design parameters data structure. For example, the RTL service
module may be implemented as Scala code. For example, the RTL service module may be
implemented using Chisel. For example, the RTL service module may be implemented using
flexible intermediate representation for register-transfer level (FIRRTL) and/or a FIRRTL
compiler. For example, the RTL service module may be implemented using Diplomacy. For
example, the RTL service module may enable a well-designed chip to be automatically
developed from a high level set of configuration settings using a mix of Diplomacy, Chisel,
and FIRRTL. The RTL service module may take the design parameters data structure (e.g., a
java script object notation (JSON) file) as input and output an RTL data structure (e.g., a
Verilog file) for the chip.

[0026] In some implementations, the integrated circuit design service infrastructure 110
may invoke (e.g., via network communications over the network 106) testing of the resulting
design that is performed by the FPGA/emulation server 120 that is running one or more
FPGAs or other types of hardware or software emulators. For example, the integrated circuit
design service infrastructure 110 may invoke a test using a field programmable gate array,
programmed based on a field programmable gate array emulation data structure, to obtain an
emulation result. The field programmable gate array may be operating on the
FPGA/emulation server 120, which may be a cloud server. Test results may be returned by
the FPGA/emulation server 120 to the integrated circuit design service infrastructure 110 and
relayed in a useful format to the user (e.g., via a web client or a scripting API client).

[0027] The integrated circuit design service infrastructure 110 may also facilitate the
manufacture of integrated circuits using the integrated circuit design in a manufacturing
facility associated with the manufacturer server 130. In some implementations, a physical
design specification (e.g., a graphic data system (GDS) file, such as a GDSII file) based on a
physical design data structure for the integrated circuit is transmitted to the manufacturer
server 130 to invoke manufacturing of the integrated circuit (e.g., using manufacturing
equipment of the associated manufacturer). For example, the manufacturer server 130 may

host a foundry tape-out website that is configured to receive physical design specifications

-6-

WO 2023/158531 PCT/US2023/010587

(e.g., such as a GDSII file or an open artwork system interchange standard (OASIS) file) to
schedule or otherwise facilitate fabrication of integrated circuits. In some implementations,
the integrated circuit design service infrastructure 110 supports multi-tenancy to allow
multiple integrated circuit designs (e.g., from one or more users) to share fixed costs of
manufacturing (e.g., reticle/mask generation, and/or shuttles wafer tests). For example, the
integrated circuit design service infrastructure 110 may use a fixed package (e.g., a quasi-
standardized packaging) that is defined to reduce fixed costs and facilitate sharing of
reticle/mask, wafer test, and other fixed manufacturing costs. For example, the physical
design specification may include one or more physical designs from one or more respective
physical design data structures in order to facilitate multi-tenancy manufacturing.

[0028] In response to the transmission of the physical design specification, the
manufacturer associated with the manufacturer server 130 may fabricate and/or test
integrated circuits based on the integrated circuit design. For example, the associated
manufacturer (e.g., a foundry) may perform optical proximity correction (OPC) and similar
post—tape-out/pre-production processing, fabricate the integrated circuit(s) 132, update the
integrated circuit design service infrastructure 110 (e.g., via communications with a controller
or a web application server) periodically or asynchronously on the status of the
manufacturing process, perform appropriate testing (e.g., wafer testing), and send to a
packaging house for packaging. A packaging house may receive the finished wafers or dice
from the manufacturer and test materials and update the integrated circuit design service
infrastructure 110 on the status of the packaging and delivery process periodically or
asynchronously. In some implementations, status updates may be relayed to the user when the
user checks in using the web interface, and/or the controller might email the user that updates
are available.

[0029] In some implementations, the resulting integrated circuit(s) 132 (e.g., physical
chips) are delivered (e.g., via mail) to a silicon testing service provider associated with a
silicon testing server 140. In some implementations, the resulting integrated circuit(s) 132
(e.g., physical chips) are installed in a system controlled by the silicon testing server 140
(e.g., a cloud server), making them quickly accessible to be run and tested remotely using
network communications to control the operation of the integrated circuit(s) 132. For
example, a login to the silicon testing server 140 controlling a manufactured integrated
circuit(s) 132 may be sent to the integrated circuit design service infrastructure 110 and
relayed to a user (e.g., via a web client). For example, the integrated circuit design service

infrastructure 110 may be used to control testing of one or more integrated circuit(s) 132.

-

WO 2023/158531 PCT/US2023/010587

[0030] FIG. 2 is a block diagram of an example of a system 200 for facilitating
generation of integrated circuits, for facilitating generation of a circuit representation for an
integrated circuit, and/or for programming or manufacturing an integrated circuit. The system
200 is an example of an internal configuration of a computing device that may be used to
implement the integrated circuit design service infrastructure 110, and/or to generate a file
that generates a circuit representation of an integrated circuit design like the integrated circuit
design 310 shown in FIG. 3, the integrated circuit design 410 shown in FIG. 4, the integrated
circuit design 510 shown in FIG. 5, and/or the integrated circuit design 610 shown in FIG. 6.
The system 200 can include components or units, such as a processor 202, a bus 204, a
memory 206, peripherals 214, a power source 216, a network communication interface 218, a
user interface 220, other suitable components, or a combination thereof.

[0031] The processor 202 can be a central processing unit (CPU), such as a
microprocessor, and can include single or multiple processors having single or multiple
processing cores. Alternatively, the processor 202 can include another type of device, or
multiple devices, now existing or hereafter developed, capable of manipulating or processing
information. For example, the processor 202 can include multiple processors interconnected
in any manner, including hardwired or networked, including wirelessly networked. In some
implementations, the operations of the processor 202 can be distributed across multiple
physical devices or units that can be coupled directly or across a local area or other suitable
type of network. In some implementations, the processor 202 can include a cache, or cache
memory, for local storage of operating data or instructions.

[0032] The memory 206 can include volatile memory, non-volatile memory, or a
combination thereof. For example, the memory 206 can include volatile memory, such as one
or more dynamic random access memory (DRAM) modules such as double data rate (DDR)
synchronous DRAM (SDRAM), and non-volatile memory, such as a disk drive, a solid-state
drive, flash memory, Phase-Change Memory (PCM), or any form of non-volatile memory
capable of persistent electronic information storage, such as in the absence of an active power
supply. The memory 206 can include another type of device, or multiple devices, now
existing or hereafter developed, capable of storing data or instructions for processing by the
processor 202. The processor 202 can access or manipulate data in the memory 206 via the
bus 204. Although shown as a single block in FIG. 2, the memory 206 can be implemented as
multiple units. For example, a system 200 can include volatile memory, such as random

access memory (RAM), and persistent memory, such as a hard drive or other storage.

WO 2023/158531 PCT/US2023/010587

[0033] The memory 206 can include executable instructions 208, data, such as
application data 210, an operating system 212, or a combination thereof, for immediate
access by the processor 202. The executable instructions 208 can include, for example, one or
more application programs, which can be loaded or copied, in whole or in part, from non-
volatile memory to volatile memory to be executed by the processor 202. The executable
instructions 208 can be organized into programmable modules or algorithms, functional
programs, codes, code segments, or combinations thereof to perform various functions
described herein. For example, the executable instructions 208 can include instructions
executable by the processor 202 to cause the system 200 to automatically, in response to a
command, generate an integrated circuit design and associated test results based on a design
parameters data structure. The application data 210 can include, for example, user files,
database catalogs or dictionaries, configuration information or functional programs, such as a
web browser, a web server, a database server, or a combination thereof. The operating system
212 can be, for example, Microsoft Windows®, macOS®, or Linux®; an operating system for
a small device, such as a smartphone or tablet device; or an operating system for a large
device, such as a mainframe computer. The memory 206 can comprise one or more devices
and can utilize one or more types of storage, such as solid-state or magnetic storage.

[0034] The peripherals 214 can be coupled to the processor 202 via the bus 204. The
peripherals 214 can be sensors or detectors, or devices containing any number of sensors or
detectors, which can monitor the system 200 itself or the environment around the system 200.
For example, a system 200 can contain a temperature sensor for measuring temperatures of
components of the system 200, such as the processor 202. Other sensors or detectors can be
used with the system 200, as can be contemplated. In some implementations, the power
source 216 can be a battery, and the system 200 can operate independently of an external
power distribution system. Any of the components of the system 200, such as the peripherals
214 or the power source 216, can communicate with the processor 202 via the bus 204.
[0035] The network communication interface 218 can also be coupled to the processor
202 via the bus 204. In some implementations, the network communication interface 218 can
comprise one or more transceivers. The network communication interface 218 can, for
example, provide a connection or link to a network, such as the network 106 shown in FIG. 1,
via a network interface, which can be a wired network interface, such as Ethernet, or a
wireless network interface. For example, the system 200 can communicate with other devices
via the network communication interface 218 and the network interface using one or more

network protocols, such as Ethernet, transmission control protocol (TCP), Internet protocol

-

WO 2023/158531 PCT/US2023/010587

(IP), power line communication (PLC), Wi-FHi, infrared, general packet radio service (GPRS),
global system for mobile communications (GSM), code division multiple access (CDMA), or
other suitable protocols.

[0036] A user interface 220 can include a display; a positional input device, such as a
mouse, touchpad, touchscreen, or the like; a keyboard; or other suitable human or machine
interface devices. The user interface 220 can be coupled to the processor 202 via the bus 204.
Other interface devices that permit a user to program or otherwise use the system 200 can be
provided in addition to or as an alternative to a display. In some implementations, the user
interface 220 can include a display, which can be a liquid crystal display (LCD), a cathode-
ray tube (CRT), a light emitting diode (LED) display (e.g., an organic light emitting diode
(OLED) display), or other suitable display. In some implementations, a client or server can
omit the peripherals 214. The operations of the processor 202 can be distributed across
multiple clients or servers, which can be coupled directly or across a local area or other
suitable type of network. The memory 206 can be distributed across multiple clients or
servers, such as network-based memory or memory in multiple clients or servers performing
the operations of clients or servers. Although depicted here as a single bus, the bus 204 can be
composed of multiple buses, which can be connected to one another through various bridges,
controllers, or adapters.

[0037] A non-transitory computer readable medium may store a circuit representation
that, when processed by a computer, is used to program or manufacture an integrated circuit.
For example, the circuit representation may describe the integrated circuit specified using a
computer readable syntax. The computer readable syntax may specify the structure or
function of the integrated circuit or a combination thereof. In some implementations, the
circuit representation may take the form of a hardware description language (HDL) program,
a register-transfer level (RTL) data structure, a flexible intermediate representation for
register-transfer level (FIRRTL) data structure, a Graphic Design System II (GDSII) data
structure, a netlist, or a combination thereof. In some implementations, the integrated circuit
may take the form of a field programmable gate array (FPGA), application specific integrated
circuit (ASIC), system-on-a-chip (SoC), or some combination thereof. A computer may
process the circuit representation in order to program or manufacture an integrated circuit,
which may include programming a field programmable gate array (FPGA) or manufacturing
an application specific integrated circuit (ASIC) or a system on a chip (SoC). In some
implementations, the circuit representation may comprise a file that, when processed by a

computer, may generate a new description of the integrated circuit. For example, the circuit

-10-

WO 2023/158531 PCT/US2023/010587

representation could be written in a language such as Chisel, an HDL embedded in Scala, a
statically typed general purpose programming language that supports both object-oriented
programming and functional programming.

[0038] In an example, a circuit representation may be a Chisel language program which
may be executed by the computer to produce a circuit representation expressed in a FIRRTL
data structure. In some implementations, a design flow of processing steps may be utilized to
process the circuit representation into one or more intermediate circuit representations
followed by a final circuit representation which is then used to program or manufacture an
integrated circuit. In one example, a circuit representation in the form of a Chisel program
may be stored on a non-transitory computer readable medium and may be processed by a
computer to produce a FIRRTL circuit representation. The FIRRTL circuit representation
may be processed by a computer to produce an RTL circuit representation. The RTL circuit
representation may be processed by the computer to produce a netlist circuit representation.
The netlist circuit representation may be processed by the computer to produce a GDSII
circuit representation. The GDSII circuit representation may be processed by the computer to
produce the integrated circuit.

[0039] In another example, a circuit representation in the form of Verilog or VHDL may
be stored on a non-transitory computer readable medium and may be processed by a
computer to produce an RTL circuit representation. The RTL circuit representation may be
processed by the computer to produce a netlist circuit representation. The netlist circuit
representation may be processed by the computer to produce a GDSII circuit representation.
The GDSII circuit representation may be processed by the computer to produce the integrated
circuit. The foregoing steps may be executed by the same computer, different computers, or
some combination thereof, depending on the implementation.

[0040] FIG. 3 is a block diagram of an example of a system 300 for integrated circuit
design verification with signal forcing. The system 300 may include an integrated circuit
design 310, a control interface 320, a compiler 340, and a simulator 350. An integrated circuit
generator may be used to generate the integrated circuit design 310. For example, the
integrated circuit design service infrastructure 110 shown in FIG. 1 may be used to generate
the integrated circuit design 310. The generator may use an HDL embedded in a general-
purpose programming language (e.g., Scala) that supports object-oriented programming
and/or functional programming. For example, Chisel, an open source HDL embedded in
Scala, a statically typed general purpose programming language that supports both object-

oriented programming and functional programming, may be used to generate the integrated

-11-

WO 2023/158531 PCT/US2023/010587

circuit design 310. The integrated circuit design 310 may be encoded in an IR data structure
(e.g., a FIRRTL data structure).

[0041] The integrated circuit design 310 may include instances of module descriptions. A
module description may describe a functional operation of a module (e.g., operation of a
processor core or a cache). The integrated circuit design 310 may be executed so that it is
elaborated (e.g., expanded) to include the instances of the module descriptions. For example,
the integrated circuit design 310 may be elaborated to include instances 1 through N of
module description 1, and instances 1 through M of module description 2. The module
descriptions can be manipulated using functions of a general-purpose programming language
(e.g., embedded in Scala). Interfaces to the module descriptions can be encoded in types
associated with the general-purpose programming language.

[0042] An instance of a module description may be representative of hardware to be
implemented in the integrated circuit (e.g., the processor core or the cache). For example,
module description 1 may correspond to a processor core, and instances 1 through N of
module description 1 may correspond to N instances of the processor core. For example,
module description 2 may correspond to a cache, and instances 1 through M of module
description 2 may correspond to M instances of the cache. Additionally, one or more
instances may be configured to be in communication with one or more other instances. For
example, the instances of module description 1 may be connected (e.g., wired) to the
instances of module description 2, such via an internal system bus (e.g., internal to the
integrated circuit design 310). In some implementations, the internal system bus could be a
TileLink bus to be implemented in an ASIC or an SoC.

[0043] An instance of a module description may include inputs and/or outputs that are
internal to the integrated circuit design 310 (e.g., internal inputs and/or outputs). An instance
of a module description may also include inputs and/or outputs that are external to the
integrated circuit design 310 (e.g., system level inputs and/or outputs).

[0044] The integrated circuit design 310 may be compiled by the compiler 340 (e.g.,
execute the transformations) to generate the RTL data structure 345. The RTL data structure
345 may encode logic descriptions associated with the instances of module descriptions
implemented in the integrated circuit design 310. In some implementations, the compiler 340
may be a FIRRTL compiler that compiles the integrated circuit design 310 to generate the
RTL data structure 345. In some implementations, the RTL data structure 345 may comprise

Verilog.

-12-

WO 2023/158531 PCT/US2023/010587

[0045] When the integrated circuit design 310 is compiled, inputs and/or outputs that are
external to the integrated circuit design 310 may be exposed to the simulator 350 in the RTL
data structure 345, while inputs and/or outputs that are internal to the integrated circuit design
310 might not be exposed to the simulator 350. Accordingly, in some implementations, the
control interface 320 may execute in the system 300 to receive one or more parameters
indicating that one or more inputs and/or outputs that are internal to the integrated circuit
design 310 should be exposed to the simulator 350. This may permit the simulator 350 to
force signal values to, and/or monitor signal values at, one or more nodes associated with the
one or more inputs and/or outputs.

[0046] For example, the control interface 320 may be an API executing in the system
300. The control interface 320 may receive the one or more parameters pointing to the inputs
and/or outputs in the integrated circuit design 310. For example, the control interface 320
may receive a first parameter pointing to an input of instance 1 of module description 1,
indicating that such input should be exposed to the simulator 350 (e.g., for injecting a signal
value or logic on a node associated with the input). The input and the node may correspond to
a same point in the design. For example, the input of instance 1 of module description 1 may
be an input associated with the internal system bus in the integrated circuit design 310. The
control interface 320 may also receive a second parameter pointing to an output of instance 1
of module description 1, indicating that such output should be exposed to the simulator 350
(e.g., for detecting a signal value or logic on a node associated with the output). The output
and the node may correspond to a same point in the design. For example, the output of
instance 1 of module description 1 may be an output associated with the internal system bus
in the integrated circuit design 310.

[0047] In some implementations, a point in the integrated circuit design 310 may be an
input and an output (e.g., bi-directional or I/0). The control interface 320 may receive a
parameter indicating that the input and the output should be exposed to the simulator 350
(e.g., for injecting a signal value or logic and/or detecting a signal value or logic on a node
associated with the input and the output).

[0048] The control interface 320 may execute in the system 300 to generate one or more
compiler annotations 335 for the compiler 340. The annotations 335 may be based on the one
or more parameters received by the control interface 320. The annotations 335 may be used
to build and/or modify one or more transformations that are executed by the compiler 340,
such as to configure cross module references, force statements, and/or binding logic with

respect to one or more nodes in the RTL data structure 345 (e.g., associated with the inputs

13-

WO 2023/158531 PCT/US2023/010587

and/or outputs specified by the parameters). This may permit access to the one or more nodes
by the simulator 350. This may also permit mapping the one or more nodes to force
statements, as opposed to wires in the RTL data structure 345. In some implementations, the
annotations 335 may comprise one or more strings in a serialized data format.

[0049] The compiler 340 may execute the one or more transformations, based on the
annotations 335, to generate a configuration file 348 (e.g., instructions) that may be used by
the simulator 350. The configuration file 348 may permit the simulator 350 to access the one
or more nodes in the RTL data structure 345. For example, the configuration file 348 may
include representations of cross module references, force statements, and/or binding logic
that permit the simulator 350 to access the one or more nodes when simulating the RTL data
structure 345. In some implementations, the configuration file 348 may comprise Verilog.
Accordingly, driving logic may be configured in the annotations 335, based on the one or
more parameters specifying internal input(s) and/or output(s) in the integrated circuit design
310, for the compiler 340 to produce driving logic for the simulator to use in connection with
nodes in the RTL data structure 345 that are associated with the input(s) and/or output(s).
[0050] The simulator 350, which may be a simulator that natively supports force
statements (such as Synopsys VCS), may use the configuration file 348 to access the one or
more nodes when simulating the RTL data structure 345 (e.g., when executing test vectors).
In other words, the configuration file may implement the cross module references, force
statements, and/or binding logic for simulating the RTL data structure 345. For example, the
simulator 350 may use the configuration file 348 to access a first node associated with an
input, such as to inject a signal value or logic to the node (e.g., signal forcing). The simulator
350 may also use the configuration file 348 to access a second node associated with an
output, such as to detect a signal value or logic on the node (e.g., signal monitoring).
Accordingly, the simulator 450 may simulate the RTL data structure 345, using the
configuration file 348, to verify (e.g., test) logic that is internal to the design as desired for
functional verification (such as a logic description associated with an instance of module
description 2, which might correspond to a cache). For example, the simulator 350 may
simulate the RTL data structure 345, using the configuration file 348, to test logic associated
with a cache that is internal to the design by forcing a signal value to a first node (e.g.,
associated with an input of the cache) and by monitoring a signal value on a second node
(e.g., associated with an output of the cache).

[0051] FIG. 4 is a block diagram of another example of a system 400 for integrated

circuit design verification with signal forcing. The system 400 may include an integrated

-14-

WO 2023/158531 PCT/US2023/010587

circuit design 410, a control interface 420, and a compiler 440, like the integrated circuit
design 310, the control interface 320, and the compiler 340, shown in FIG. 3, respectively. An
integrated circuit generator may be used to generate the integrated circuit design 410. For
example, the integrated circuit design service infrastructure 110 shown in FIG. 1 may be used
to generate the integrated circuit design 410.

[0052] The control interface 420 may execute in the system 400 to receive one or more
parameters indicating that certain inputs and/or outputs that are internal to the integrated
circuit design 410 should be exposed to the simulator 450 (e.g., for signal forcing and/or
signal monitoring by the simulator 450). For example, the control interface 420 may be an
API executing in the system 400. The control interface 420 may receive the one or more
parameters pointing to the inputs and/or outputs in the integrated circuit design 410. For
example, the control interface 420 may receive a first parameter pointing to an input of
instance 1 of module description 1 in the integrated circuit design 410, indicating that such
input should be exposed to the simulator 450 (e.g., for injecting a signal value or logic on a
node associated with the input). The input and the node may correspond to a same point in
the design. For example, the input of instance 1 of module description 1 may be an input
associated with the internal system bus in the integrated circuit design 410. The control
interface 420 may also receive a second parameter pointing to an output of instance 1 of
module description 1 in the integrated circuit design 410, indicating that such output should
be exposed to the simulator 450 (e.g., for detecting a signal value or logic on a node
associated with the output). The output and the node may correspond to a same point in the
design. For example, the output of instance 1 of module description 1 may be an output
associated with the internal system bus in the integrated circuit design 410.

[0053] The control interface 420 may execute in the system 400 to generate one or more
compiler annotations 435 for the compiler 440. The annotations 435 may be based on the one
or more parameters received by the control interface 420. The annotations 435 may be used
to build and/or modify one or more transformations that are executed by the compiler 440,
such as to configure cross module references, force statements, and/or binding logic with
respect to one or more nodes in the RTL data structure 445 (e.g., associated with the inputs
and/or outputs specified by the parameters). This may permit access to the one or more nodes
by the simulator 450. This may also permit mapping the one or more nodes to force
statements, as opposed to wires in the RTL data structure 445. In some implementations, the

annotations 435 may comprise one or more strings in a serialized data format.

-15-

WO 2023/158531 PCT/US2023/010587

[0054] The compiler 440 may execute the one or more transformations, based on the
annotations 435, to compile the integrated circuit design 410 to generate the RTL data
structure 445. The RTL data structure 445, as produced by the compiler, may permit the
simulator 450 to access the one or more nodes in the RTL data structure 445. For example,
the RTL data structure 445 may include representations of cross module references, force
statements, and/or binding logic that permit the simulator 450 to access the one or more
nodes when simulating the RTL data structure 445. Accordingly, driving logic may be
configured in the annotations 435, based on the one or more parameters specifying internal
input(s) and/or output(s) in the integrated circuit design 410, for the compiler 440 to produce
driving logic for the simulator to use in connection with nodes in the RTL data structure 445
that are associated with the input(s) and/or output(s).

[0055] The simulator 450, which may be a simulator that does not natively support force
statements (such as Verilator), may then use the RTL data structure 445 to access the one or
more nodes when simulating the RTL data structure 445 (e.g., when executing test vectors).
In other words, the RTL data structure 445 that is simulated by the simulator 450 may already
have the cross module references, force statements, and/or binding logic implemented. For
example, the simulator 450 may use the RTL data structure 445 to access a first node
associated with an input, such as to inject a signal value or logic to the node (e.g., signal
forcing). The simulator 450 may also use the RTL data structure 445 to access a second node
associated with an output, such as to detect a signal value or logic on the node (e.g., signal
monitoring). Accordingly, the simulator 450 may simulate the RTL data structure 445 to
verify (e.g., test) logic that is internal to the design as desired for functional verification (such
as a logic description associated with an instance of module description 2, which might
correspond to a cache). For example, the simulator 450 may simulate the RTL data structure
445 to test logic associated with a cache that is internal to the design by forcing a signal value
to a first node (e.g., associated with an input of the cache) and by monitoring a signal value
on a second node (e.g., associated with an output of the cache).

[0056] FIG. 5 is a block diagram of an example of a system 500 including an integrated
circuit design with instances of module descriptions. The system 500 may include the
integrated circuit design 510 and a control interface 520 like the integrated circuit design 310
and the control interface 320 shown in FIG. 3 and/or the integrated circuit design 410 and the
control interface 420 shown in FIG. 4. An integrated circuit generator may be used to
generate the integrated circuit design 510. For example, the integrated circuit design service

infrastructure 110 shown in FIG. 1 may be used to generate the integrated circuit design 510.

-16-

WO 2023/158531 PCT/US2023/010587

[0057] The integrated circuit design 510 may be elaborated (e.g., expanded) to include
one or more instances of one or more module descriptions, such as instances 515A and 515B
of a first module description, and instance 517A of a second module description. For
example, instances 515A and 515B may be instances of a module description corresponding
to a processor core (e.g., processor core 1 and processor core 2). For example, instance 517A
may be an instance of a module description corresponding to a cache (e.g., a level 3 (L3)
cache shared by processor core 1 and processor core 2). The integrated circuit design 510
may be elaborated by executing the integrated circuit design 510. For example, the integrated
circuit design 510 may be elaborated by executing Chisel. The integrated circuit design 510
may be encoded in IR data structure (e.g., a FIRRTL data structure).

[0058] The instances may include inputs and/or outputs that are internal to the integrated
circuit design 510 (e.g., internal inputs and/or outputs). For example, instances 515A and
515B may include inputs and/or outputs to an internal system bus 560, such as via
connections 570A and 570B, respectively. In some implementations, the internal system bus
560 could be a TileLink bus. Further, instance 517A may include inputs and/or outputs to the
internal system bus 560, such as via connection 580A. The instances 515A and 515B and the
instance 517A may be configured to communicate with one another via the internal system
bus 560, such as for processing memory requests (e.g., reads and/or writes) between
processor cores and cache. The instances may also include inputs and/or outputs that are
external to the integrated circuit design 510 (e.g., system level inputs and/or outputs). For
example, instance 517A may include inputs and/or outputs external to the integrated circuit
design 510, such as via connections 590A. The instance 517A may be configured to
communicate external to the integrated circuit design 510 via the connections 590A, such as
for processing memory requests (e.g., reads and/or writes) through cache controller
associated with a main memory (not shown).

[0059] The integrated circuit design 510 may be compiled by a compiler (e.g., the
compiler 340 or the compiler 440) to generate an RTL data structure (e.g., the RTL data
structure 345 or the RTL data structure 445). The RTL data structure may encode logic
descriptions associated with instances in the integrated circuit design 510, such as instances
515A, 515B, and 517A. When the integrated circuit design 510 is compiled, inputs and/or
outputs that are external to the integrated circuit design 510 (e.g., connections 590A) may be
exposed to a simulator (e.g., the simulator 350 or the simulator 450). Inputs and/or outputs
that are internal to the integrated circuit design 510 (e.g., connections 570A and 570B) might

not be exposed to the simulator.

-17-

WO 2023/158531 PCT/US2023/010587

[0060] FIG. 6 is a block diagram of an example of a system 600 including an integrated
circuit design 610 in which an input of an instance of a module description is selected for
signal forcing. The system 600 may include the integrated circuit design 610 and a control
interface 620 like the integrated circuit design 510 and the control interface 520 shown in
FIG. 5. An integrated circuit generator may be used to generate the integrated circuit design
610. For example, the integrated circuit design service infrastructure 110 shown in FIG. 1
may be used to generate the integrated circuit design 610.

[0061] The integrated circuit design 610 may be elaborated (e.g., expanded) to include
one or more instances of one or more module descriptions, such as instances 615A and 615B
of a first module description, and instance 617A of a second module description. For
example, instances 615A and 615B may be instances of a module description corresponding
to a processor core (e.g., processor core 1 and processor core 2). For example, instance 617A
may be an instance of a module description corresponding to a cache (e.g., an L3 cache
shared by processor core 1 and processor core 2). The integrated circuit design 610 may be
elaborated by executing the integrated circuit design 610. For example, the integrated circuit
design 610 may be elaborated by executing Chisel. The integrated circuit design 610 may be
encoded in IR data structure (e.g., a FIRRTL data structure).

[0062] The instances may include inputs and/or outputs that are internal to the integrated
circuit design 610 (e.g., internal inputs and/or outputs). For example, instances 615A and
615B may include inputs and/or outputs to an internal system bus 660, such as via
connections 670A and 670B, respectively. In some implementations, the internal system bus
660 could be a TileLink bus. Further, instance 617A may include inputs and/or outputs to the
internal system bus 660, such as via connections 680A. For example, the instances 615A and
615B and the instance 617A may be configured to communicate with one another via the
internal system bus 660, such as for processing memory requests (e.g., reads and/or writes)
between processor cores and cache.

[0063] The instances may also include inputs and/or outputs that are external to the
integrated circuit design 610 (e.g., system level inputs and/or outputs). For example, instance
517A may include inputs and/or outputs external to the integrated circuit design 610, such as
via connection 690A. The instance 617A may be configured to communicate external to the
integrated circuit design 610 via the connection 690A, such as for processing memory
requests (e.g., reads and/or writes) through cache controller associated with a main memory

(not shown).

-18-

WO 2023/158531 PCT/US2023/010587

[0064] The integrated circuit design 610 may be compiled by a compiler (e.g., the
compiler 340 or the compiler 440) to generate an RTL data structure (e.g., the RTL data
structure 345 or the RTL data structure 445). The RTL data structure may encode logic
descriptions associated with instances in the integrated circuit design 610, such as instances
615A, 615B, and 617A. When the integrated circuit design 610 is compiled, inputs and/or
outputs that are external to the integrated circuit design 610 (e.g., the connections 690A) may
be exposed to a simulator (e.g., the simulator 350 or the simulator 450). Inputs and/or outputs
that are internal to the integrated circuit design 610 (e.g., the connections 670A, 670B, and
680A) might not be exposed to the simulator.

[0065] Accordingly, in some implementations, the control interface 620 may execute in
the system 600 to receive one or more parameters indicating that one or more inputs and/or
outputs that are internal to the integrated circuit design 610 (e.g., the connections 670A,
670B, and/or 680A) should be exposed to the simulator. This may permit the simulator to
force signal values to, and/or monitor signal values at, one or more nodes associated with the
one or more inputs and/or outputs when simulating the RTL data structure. For example,
instance 617A may correspond to an L3 cache comprising an error correction code (ECC)
memory. The control interface 620 may receive a first parameter pointing to an input of
instance 617A (e.g., via the connections 680A) and a second parameter pointing to an output
of instance 617A (e.g., also via the connections 680A). The control interface 620 may execute
to generate one or more compiler annotations (e.g., the annotations 335 or the annotations
435), based on the parameters, to build and/or modify one or more transformations for the
compiler. In turn, the compiler may configure cross module references, force statements,
and/or binding logic with respect to first and second nodes associated with the input and the
output (e.g., in a configuration file and/or in the RTL data structure), respectively. The
simulator may then simulate the RTL data structure using the cross module references, force
statements, and/or binding logic to access the nodes. For example, the simulator may simulate
the RTL data structure by injecting a signal value on the first node associated with the input
(e.g., forcing a signal value, such as injecting a logic high (*“1”) or a logic low (*“0”) value) so
as to induce an ECC error in the cache (e.g., flip a bit). The simulator may then monitor a
signal value on the second node associated with the output (e.g., detecting a logic high (“17)
or a logic low (“0”) value) to determine whether the ECC memory properly detected the error
and/or corrected the error.

[0066] In some implementations, the integrated circuit design 610 may implement a

verification logic 632. For example, the verification logic 632 may be generated when the

-19-

WO 2023/158531 PCT/US2023/010587

integrated circuit design 610 is elaborated. The verification logic 632 may include inputs
and/or outputs that are external to the integrated circuit design 610 and therefore exposed to a
simulator (e.g., system level inputs and/or outputs), such as the connections 695A. To permit
the simulator to force signal values to, and/or monitor signal values at, one or more nodes
associated with the one or more inputs and/or outputs that are internal to the integrated circuit
design 610 (e.g., internal inputs and/or outputs), the verification logic 632 may be further
connected to the one or more inputs and/or outputs that are internal to the integrated circuit
design 610. For example, to permit the simulator to force signal values to an input and/or
monitor signal values at an output of instance 617A, such as via the connections 680A, the
verification logic 632 may be connected to the input and/or the output via the connections
680A. A simulator may then access nodes associated with the input and/or the output (e.g.,
the connections 680A) via the verification logic 632 and the connections 695A. For example,
an API may be used to access the connections 690A and 695A.

[0067] FIG. 7 is flow chart of a process 700 for integrated circuit design verification with
signal forcing. The process 700 includes generating 702 an integrated circuit design including
instances of module descriptions; receiving 704 a parameter indicating that an input of an
instance should be exposed to a simulator; generating 706 annotation(s) based on the
parameters; compiling 708 the integrated circuit design, using the annotations, to produce an
RTL data structure; simulating 710 the RTL data structure; and storing and/or transmitting
712 the integrated circuit design. For example, the process 700 may be implemented using
the system 100 shown in FIG. 1, the system 200 shown in FIG. 2, the system 300 shown in
FIG. 3, the system 400 shown in FIG. 4, the system 500 shown in FIG. 5, and/or the system
600 shown in FIG. 6.

[0068] The process 700 may include generating 702 an integrated circuit design (e.g., the
integrated circuit design 410) including instances of module descriptions. For example, the
integrated circuit design service infrastructure 110 shown in FIG. 1 may be used to generate
the integrated circuit design. The generator may use an HDL embedded in a general-purpose
programming language (e.g., Scala) that supports object-oriented programming and/or
functional programming. For example, Chisel may be used to generate the integrated circuit
design. The integrated circuit design may be encoded in an IR data structure (e.g., a FIRRTL
data structure). The instances of module descriptions may be representative of hardware to be
implemented in the integrated circuit design (e.g., processors cores, caches, and the like). The

instances of module descriptions may include input(s) and/or output(s).

20-

WO 2023/158531 PCT/US2023/010587

[0069] The process 700 may also include receiving 704 a parameter indicating that an
input of an instance that internal to the integrated circuit design should be exposed to a
simulator (e.g., the simulator 450). For example, an instance of a module description may
include inputs and/or outputs that are internal to the integrated circuit design (e.g., internal
inputs and/or outputs), and/or inputs and/or outputs that are external to the integrated circuit
design (e.g., system level inputs and/or outputs). When the integrated circuit design is
compiled to produce an RTL data structure (e.g., the RTL data structure 445), inputs and/or
outputs that are external to the integrated circuit design may be exposed to the simulator by
the RTL data structure, while inputs and/or outputs that are internal to the integrated circuit
design might not be exposed to the simulator by the RTL data structure. Accordingly, in some
implementations, a control interface (e.g., the control interface 420) may execute to receive a
parameter indicating that an input that is internal to the integrated circuit design should be
exposed to a simulator. In some implementations, the control interface may be an API
executing in the system. The control interface may receive a parameter pointing to the input.
In some implementations, the input may be associated with an input and an output (e.g., and
I/0). In some implementations, the control interface may receive multiple parameters
pointing to multiple inputs and/or outputs.

[0070] The process 700 may also include generating 706 one or more compiler
annotation(s) based on the parameters for use with a compiler (e.g., the compiler 440). The
one or more annotations may permit the simulator to access a node in the RTL data structure
that is associated with the input. For example, the control interface may further execute in the
system to generate the one or more annotations for the compiler. The one or more annotations
may be based on the parameter. The one or more annotations may be used to build and/or
modify one or more transformations that are executed by the compiler, such as to configure
cross module references, force statements, and/or binding logic with respect to a node in the
RTL data structure (e.g., associated with the input specified by the parameter). This may
permit access to the one or more nodes by the simulator (e.g., the simulator 450). In some
implementations, the one or more annotations may comprise one or more strings in a
serialized data format.

[0071] The process 700 may also include compiling 708 the integrated circuit design
using the one or more annotations. The compiler may compile the integrated circuit design
(e.g., execute the transformations, based on the annotations) to produce the RTL data
structure (e.g., the RTL data structure 445). The RTL data structure, as produced by the

compiler, may permit the simulator to access the node (e.g., the node associated with the

21-

WO 2023/158531 PCT/US2023/010587

input that is internal to the integrated circuit design) in the RTL data structure. For example,
the RTL data structure may include representations of cross module references, force
statements, and/or binding logic that permit the simulator to access the node when simulating
the RTL data structure. In some implementations, the compiler may be a FIRRTL compiler
that compiles the integrated circuit design (e.g., in FIRRTL) to generate the RTL data
structure. In some implementations, the compiler may compile the integrated circuit design to
generate the RTL data structure comprising Verilog.

[0072] The process 700 may also include simulating 710 the RTL data structure with a
simulator (e.g., the simulator 450) accessing the node (e.g., the node associated with the input
that is internal to the integrated circuit design). The simulator may access the node to test a
logic description associated with another instance of the integrated circuit design. For
example, a simulator (such as Verilator), which might not natively support force statements,
may use the RTL data structure to access the node when simulating the RTL data structure. In
other words, the RTL data structure that is simulated by the simulator may already have the
cross module references, force statements, and/or binding logic implemented. The simulator
may simulate the RTL data structure to verify (e.g., test) logic that is internal to the design as
desired for functional verification (such as a logic description associated with an instance of a
module description).

[0073] The process 700 may also include storing and/or transmitting 712 the integrated
circuit design. The integrated circuit design may be stored for use in subsequent steps, such
as synthesis, placement and routing, implementation of clock trees, and/or simulation
analysis. Additionally, the integrated circuit design may be transmitted for manufacturing of
an integrated circuit, such as a SoC.

[0074] FIG. 8 is flow chart of a process 800 for integrated circuit design verification with
signal forcing. The process 800 includes generating 802 an integrated circuit design including
instances of module descriptions; receiving 804 a parameter indicating that an input of an
instance should be exposed to a simulator; generating 806 annotation(s) based on the
parameters; compiling 808 the integrated circuit design, using the annotation(s), to produce
an RTL data structure and instructions to permit a simulator to access a node in the RTL data
structure that is associated with the input; simulating 810 the RTL data structure using the
instructions; and storing and/or transmitting 812 the integrated circuit design. For example,
the process 800 may be implemented using the system 100 shown in FIG. 1, the system 200
shown in FIG. 2, the system 300 shown in FIG. 3, the system 400 shown in FIG. 4, the
system 500 shown in FIG. 5, and/or the system 600 shown in FIG. 6.

2.

WO 2023/158531 PCT/US2023/010587

[0075] The process 800 may include generating 802 an integrated circuit design (e.g., the
integrated circuit design 310) including instances of module descriptions. For example, the
integrated circuit design service infrastructure 110 shown in FIG. 1 may be used to generate
the integrated circuit design. The generator may use an HDL embedded in a general-purpose
programming language (e.g., Scala) that supports object-oriented programming and/or
functional programming. For example, Chisel may be used to generate the integrated circuit
design. The integrated circuit design may be encoded in an IR data structure (e.g., a FIRRTL
data structure). The instances of module descriptions may be representative of hardware to be
implemented in the integrated circuit design (e.g., processors cores, caches, and the like). The
instances of module descriptions may include input(s) and/or output(s).

[0076] The process 800 may also include receiving 804 a parameter indicating that an
input of an instance should be exposed to a simulator (e.g., the simulator 350). For example,
an instance of a module description may include inputs and/or outputs that are internal to the
integrated circuit design (e.g., internal inputs and/or outputs), and/or inputs and/or outputs
that are external to the integrated circuit design (e.g., system level inputs and/or outputs).
When the integrated circuit design is compiled to produce an RTL data structure (e.g., the
RTL data structure 345), inputs and/or outputs that are external to the integrated circuit design
may be exposed to the simulator by the RTL data structure, while inputs and/or outputs that
are internal to the integrated circuit design might not be exposed to the simulator by the RTL
data structure. Accordingly, in some implementations, a control interface (e.g., the control
interface 320) may execute to receive a parameter indicating that an input that is internal to
the integrated circuit design should be exposed to a simulator. In some implementations, the
control interface may be an API executing in the system. The control interface may receive a
parameter pointing to the input. In some implementations, the input may be associated with
an input and an output (e.g., and I/O). In some implementations, the control interface may
receive multiple parameters pointing to multiple inputs and/or outputs.

[0077] The process 800 may also include generating 806 one or more compiler
annotation(s) based on the parameter for use with a compiler (e.g., the compiler 340). The
one or more annotations may permit the simulator to access a node in the RTL data structure
that is associated with the input. For example, the control interface may further execute in the
system to generate the one or more compiler annotations for the compiler. The one or more
annotations may be based on the parameter. The one or more annotations may be used to
build and/or modify one or more transformations that are executed by the compiler, such as to

configure cross module references, force statements, and/or binding logic with respect to a

23

WO 2023/158531 PCT/US2023/010587

node in the RTL data structure (e.g., associated with the input specified by the parameter).
This may permit access to the node by the simulator (e.g., the simulator 350). In some
implementations, the one or more annotations may comprise one or more strings in a
serialized data format.

[0078] The process 800 may also include compiling 808 the integrated circuit design
using the one or more annotations. The compiler may compile the integrated circuit design
(e.g., execute the transformations) to produce the RTL data structure (e.g., the RTL data
structure 345). In some implementations, the compiler may be a FIRRTL compiler that
compiles the integrated circuit design (e.g., in FIRRTL) to produce the RTL data structure. In
some implementations, the compiler may compile the integrated circuit design to generate the
RTL data structure comprising Verilog. The compiler may further execute the one or more
transformations, based on the one or more annotations, to generate a configuration file (e.g.,
the configuration file) for the RTL data structure. The configuration file may permit the
simulator to access the node (e.g., the node associated with the input that is internal to the
integrated circuit design) in the RTL data structure. For example, the configuration file may
include representations of cross module references, force statements, and/or binding logic
that the simulator may use to access the node when simulating the RTL data structure. In
some implementations, the configuration file may comprise Verilog.

[0079] The process 800 may also include simulating 810 the RTL data structure, using
the configuration file, with a simulator (e.g., the simulator 350) accessing the node (e.g., the
node associated with the input that is internal to the integrated circuit design). The simulator
may access the node to test a logic description associated with another instance of the
integrated circuit design. For example, a simulator (such as Synopsys VCS), which may
natively support force statements, may use the configuration file to access the node when
simulating the RTL data structure. In other words, the configuration file may implement the
cross module references, force statements, and/or binding logic for simulating the RTL data
structure. The simulator may simulate the RTL data structure, using the configuration file, to
verify (e.g., test) logic that is internal to the design as desired for functional verification (such
as a logic description associated with an instance of module description).

[0080] The process 800 may also include storing and/or transmitting 812 the integrated
circuit design. The integrated circuit design may be stored for use in subsequent steps, such
as synthesis, placement and routing, implementation of clock trees, and/or simulation
analysis. Additionally, the integrated circuit design may be transmitted for manufacturing of

an integrated circuit, such as a SoC.

4.

WO 2023/158531 PCT/US2023/010587

[0081] In a first aspect, the subject matter described in this specification can be embodied
in a method that includes: generating an integrated circuit design for an integrated circuit,
wherein the integrated circuit design includes an instance of a module description that
describes a functional operation of a module, wherein the instance includes an input that is
internal to the integrated circuit design, and wherein the integrated circuit design is encoded
in an intermediate representation (IR) data structure; receiving a parameter indicating that the
input should be exposed to a simulator; compiling the IR data structure to produce a register-
transfer level (RTL) data structure, wherein the RTL data structure encodes a logic
description associated with the instance; and using the parameter to permit a simulator to
access a node in the RTL data structure that is associated with the input. In some
implementations, the method may include generating a configuration file to permit the
simulator to access the node in the RTL data structure when simulating the RTL data
structure. In some implementations, the method may include configuring the RTL data
structure to permit the simulator to access the node in the RTL data structure when simulating
the RTL data structure. In some implementations, the method may include simulating the
RTL data structure, wherein the simulator forces a signal value to the node. In some
implementations, the instance includes an output that is internal to the integrated circuit
design, the parameter is a first parameter, and the node is a first node, and the method may
include receiving a second parameter indicating that the output should be exposed to the
simulator, wherein the second parameter is used to permit the simulator to access a second
node in the RTL data structure that is associated with the output. In some implementations,
the node is further associated with an output. In some implementations, the method may
include the IR data structure is a FIRRTL data structure, and the RTL data structure
comprises Verilog. In some implementations, the instance corresponds to an ECC memory,
the node is a first node, and the method may include simulating the RTL data structure,
wherein the simulator has access to the first node associated with the input that is internal to
the integrated circuit design and has access to a second node that is external to the integrated
circuit design, and wherein the simulator forces a signal value to the first node to induce an
ECC error. In some implementations, the input is part of a system bus that is internal to the
integrated circuit design. In some implementations, the module description describes a
functional operation of at least one of a processor core or a cache. In some implementations,
the input and the node correspond to a same point in the integrated circuit design.

[0082] In a second aspect, the subject matter described in this specification can be

embodied in an apparatus that includes: a memory; and a processor configured to execute

25

WO 2023/158531 PCT/US2023/010587

instructions stored in the memory to: generate an integrated circuit design for an integrated
circuit, wherein the integrated circuit design includes an instance of a module description that
describes a functional operation of a module, wherein the instance includes an input that is
internal to the integrated circuit design, and wherein the integrated circuit design is encoded
in an IR data structure; receive a parameter indicating that the input should be exposed to a
simulator; compile the IR data structure to produce an RTL data structure, wherein the RTL
data structure encodes a logic description associated with the instance; and use the parameter
to permit a simulator to access a node in the RTL data structure that is associated with the
input. In some implementations, the instructions include instructions to generate a
configuration file to permit the simulator to access the node in the RTL data structure when
simulating the RTL data structure. In some implementations, the instructions include
instructions to configure the RTL data structure to permit the simulator to access the node in
the RTL data structure when simulating the RTL data structure. In some implementations, the
instructions include instructions to simulate the RTL data structure, wherein the simulator
forces a signal value to the node. In some implementations, the instance includes an output
that is internal to the integrated circuit design, the parameter is a first parameter, the node is a
first node, and the instructions include instructions to receive a second parameter indicating
that the output should be exposed to the simulator, wherein the second parameter is used to
permit the simulator to access a second node in the RTL data structure that is associated with
the output.

[0083] In a third aspect, the subject matter described in this specification can be
embodied in a non-transitory computer-readable storage medium that includes instructions
that, when executed by a processor, causes the processor to: generate an integrated circuit
design for an integrated circuit, wherein the integrated circuit design includes an instance of a
module description that describes a functional operation of a module, wherein the instance
includes an input that is internal to the integrated circuit design, and wherein the integrated
circuit design is encoded in an IR data structure; receive a parameter indicating that the input
should be exposed to a simulator; compile the IR data structure to produce an RTL data
structure, wherein the RTL data structure encodes a logic description associated with the
instance; and use the parameter to permit a simulator to access a node in the RTL data
structure that is associated with the input. In some implementations, the instructions, when
executed by the processor, further cause the processor to generate a configuration file to
permit the simulator to access the node in the RTL data structure when simulating the RTL

data structure. In some implementations, the instructions, when executed by the processor,

26-

WO 2023/158531 PCT/US2023/010587

further cause the processor to configure the RTL data structure to permit the simulator to
access the node in the RTL data structure when simulating the RTL data structure. In some
implementations, the instructions, when executed by the processor, further cause the
processor to simulate the RTL data structure, wherein the simulator forces a signal value to
the node.

[0084] While the disclosure has been described in connection with certain embodiments,
it is to be understood that the disclosure is not to be limited to the disclosed embodiments but,
on the contrary, is intended to cover various modifications and equivalent arrangements
included within the scope of the appended claims, which scope is to be accorded the broadest

interpretation so as to encompass all such modifications and equivalent structures.

27-

WO 2023/158531 PCT/US2023/010587

What is claimed is:

1. A method comprising:

generating an integrated circuit design for an integrated circuit, wherein the integrated
circuit design includes an instance of a module description that describes a functional
operation of a module, wherein the instance includes an input that is internal to the integrated
circuit design, and wherein the integrated circuit design is encoded in an intermediate
representation (IR) data structure;

receiving a parameter indicating that the input should be exposed to a simulator;

compiling the IR data structure to produce a register-transfer level (RTL) data
structure, wherein the RTL data structure encodes a logic description associated with the
instance; and

using the parameter to permit a simulator to access a node in the RTL data structure

that is associated with the input.

2. The method of claim 1, further comprising:
generating a configuration file to permit the simulator to access the node in the RTL

data structure when simulating the RTL data structure.

3. The method any of claims 1 to 2, further comprising:
configuring the RTL data structure to permit the simulator to access the node in the

RTL data structure when simulating the RTL data structure.

4. The method any of claims 1 to 3, further comprising:
simulating the RTL data structure, wherein the simulator forces a signal value to the

node.

5. The method any of claims 1 to 4, wherein the instance includes an output that
is internal to the integrated circuit design, wherein the parameter is a first parameter, and
wherein the node is a first node, and further comprising:

receiving a second parameter indicating that the output should be exposed to the
simulator, wherein the second parameter is used to permit the simulator to access a second

node in the RTL data structure that is associated with the output.

8-

WO 2023/158531 PCT/US2023/010587

6. The method any of claims 1 to 5, wherein the node is further associated with
an output.
7. The method any of claims 1 to 6, wherein the IR data structure is a flexible

intermediate representation for register-transfer level (FIRRTL) data structure, and wherein

the RTL data structure comprises Verilog.

8. The method any of claims 1 to 7, wherein the instance corresponds to an error
correction code (ECC) memory, and wherein the node is a first node, and further comprising:

simulating the RTL data structure, wherein the simulator has access to the first node
associated with the input that is internal to the integrated circuit design and has access to a
second node that is external to the integrated circuit design, and wherein the simulator forces

a signal value to the first node to induce an ECC error.

9. The method any of claims 1 to 8, wherein the input is part of a system bus that

is internal to the integrated circuit design.

10. The method any of claims 1 to 9, wherein the module description describes a

functional operation of at least one of a processor core or a cache.

11. The method any of claims 1 to 10, wherein the input and the node correspond

to a same point in the integrated circuit design.

12. An apparatus, comprising:

a memory; and

a processor configured to execute instructions stored in the memory to:

generate an integrated circuit design for an integrated circuit, wherein the integrated
circuit design includes an instance of a module description that describes a functional
operation of a module, wherein the instance includes an input that is internal to the integrated
circuit design, and wherein the integrated circuit design is encoded in an IR data structure;

receive a parameter indicating that the input should be exposed to a simulator;

compile the IR data structure to produce an RTL data structure, wherein the RTL data

structure encodes a logic description associated with the instance; and

9.

WO 2023/158531 PCT/US2023/010587

use the parameter to permit a simulator to access a node in the RTL data structure that

is associated with the input.

13. The apparatus of claim 12, wherein the instructions include instructions to:
generate a configuration file to permit the simulator to access the node in the RTL

data structure when simulating the RTL data structure.

14. The apparatus any of claims 12 to 13, wherein the instructions include
instructions to:
configure the RTL data structure to permit the simulator to access the node in the RTL

data structure when simulating the RTL data structure.

15. The apparatus any of claims 12 to 14, wherein the instructions include
instructions to:
simulate the RTL data structure, wherein the simulator forces a signal value to the

node.

16. The apparatus any of claims 12 to 15, wherein the instance includes an output
that is internal to the integrated circuit design, wherein the parameter is a first parameter,
wherein the node is a first node, and wherein the instructions include instructions to:

receive a second parameter indicating that the output should be exposed to the
simulator, wherein the second parameter is used to permit the simulator to access a second

node in the RTL data structure that is associated with the output.

17. A non-transitory computer-readable storage medium that includes instructions
that, when executed by a processor, causes the processor to:

generate an integrated circuit design for an integrated circuit, wherein the integrated
circuit design includes an instance of a module description that describes a functional
operation of a module, wherein the instance includes an input that is internal to the integrated
circuit design, and wherein the integrated circuit design is encoded in an IR data structure;

receive a parameter indicating that the input should be exposed to a simulator;

compile the IR data structure to produce an RTL data structure, wherein the RTL data

structure encodes a logic description associated with the instance; and

-30-

WO 2023/158531 PCT/US2023/010587

use the parameter to permit a simulator to access a node in the RTL data structure that

is associated with the input.

18. The non-transitory computer-readable storage medium of claim 17, wherein
the instructions, when executed by the processor, further cause the processor to:
generate a configuration file to permit the simulator to access the node in the RTL

data structure when simulating the RTL data structure.

19. The non-transitory computer-readable storage medium any of claims 17 to 18,
wherein the instructions, when executed by the processor, further cause the processor to:
configure the RTL data structure to permit the simulator to access the node in the RTL

data structure when simulating the RTL data structure.

20. The non-transitory computer-readable storage medium any of claims 17 to 19,
wherein the instructions, when executed by the processor, further cause the processor to:
simulate the RTL data structure, wherein the simulator forces a signal value to the

node.

31-

PCT/US2023/010587

WO 2023/158531

1/8

HAAYAS

1 yauniovannvi

otl

.

(S)ILINUID
AALVIDALNI

™~

(4% .K

I Ol

JINLONALSVIANI
HOIAYHS NDISHA
LIND™UED AALVIDALNI

I\ r
011

901

YAAYIS ONLLSHL NOODITIS

ori |\

HIALIS
ONA/ VDA

<~
(o]
o=

001

PCT/US2023/010587

WO 2023/158531

2/8

¢ O

HOVAIHILINI
JASN

90¢
/

~

WALSAS
DNILVYIHJO

4 ¥4

~

4240108
AMOd

vivad
NOLLVOI'lddV

01¢

~

SNOILDMY.LSNI
AT4V.LNDHXH

807
0¢T \ 91¢ \
1114 K
HAOVAIHINI
NOLLVIOINININOD STVIdHdIddd JOSSHOOYUd
AHOMLAN

wﬂm‘\

EN.\

07 .\

007

PCT/US2023/010587

WO 2023/158531

3/8

JOLVINNIS

A
0st \\

TANLDNALS
ViVA 1LY

-

¢ Ol

(N-1 SHONV.LSNI)
A INAON

(N-1 SADONV.LSNI)
| ATNAON

NDISHd LINOYID A4 LVADHLINI

_ 114 NOLLVYNDIANOD

8re K

h 4

I TIdINOD

_ AIVAYALNI TOYLNOD

/'y
orve \

(SINOLLV.LONNYV

0Te

ste

00¢

PCT/US2023/010587

WO 2023/158531

4/8

JOLVININIS

y
11 4 .\

HANLONMYLS
VIVA 1LY

14 4 \

AN K |

118

(WN-T SAONV.LSNI)
71 TNAONW

(N-1 SHONV.LSND
1 T1NAOW

NOISHA LIDUE) AALVIDHLNI

Y

_ ADVAYHLINI TOYLNOD

A4 TIdINOD

ovy .\ ﬂ

(SINOLLVLONNY

oy

Sep

ooy

PCT/US2023/010587

WO 2023/158531

5/8

01s

s O

V06S \I/H

(1 ADNV.LSNI) (Z ADNV.LSNID
\ Z T1INAOW \ 1 A 10A0ON

VLIS asis

V08S \\/H q0LS \/H

099 /) H\\} VOLS

(1 ADNVLSND

\ [A TNAON

Veis

NOISHA LINDAFD AALVIDHLINI

H

_ HOVATHLINI TOLINOD \/

0¢s

PCT/US2023/010587

WO 2023/158531

6/8

019

9 O

V069 \I/H

~

VL19

(1 ADNVISNI)
¢ TINAOW

V&69

v

V089

(T ADNV.LSNID)

\ | ATNAON

ac19

q40L9 \/H

099 k

IDOTNOLLVOIARIIA

(4% K

W ~V0L9

(I ADNV.LSNI)

[AT0AON /

Ve&i9

(NOLLVYOIATAA ¥O4 QAL TAS LAdNE HLIM) NDISHA LIND¥UID AALVIDALNI

H

HOVALALNI TOYLNOD \/

029

009

WO 2023/158531 PCT/US2023/010587

7/8

V/ 700
702 \

GENERATE AN INTEGRATED CIRCUIT DESIGN INCLUDING

INSTANCES OF MODULE DESCRIPTIONS

704 \

RECEIVE A PARAMETER INDICATING THAT AN INPUT OF AN
INSTANCE THAT IS INTERNAL TO THE INTEGRATED CIRCUIT
DESIGN SHOULD BE EXPOSED TO A SIMULATOR

706 -\

GENERATE ANNOTATION(S) BASED ON THE PARAMETER FOR USE
WITH A COMPILER TO PERMIT A SIMULATOR TO ACCESS A NODE
IN AN RTL DATA STRUCTURE 1&8 SOCIATED WITH THE INPUT.

708 \ l

COMPILE THE INTEGRATED CIRCUIT DESIGN, USING THE
ANNOTATION(S), TO PRODUCE THE RTL DATA STRUCTURE

710 \

SIMULATE THE RTL DATA STRUCTURE WITH A SIMULATOR
ACCESSING THE NODE ASSOCIATED WITH THE INPUT

712 \

FINALIZE THE INTEGRATED CIRCUIT DESIGN BASED ON THE
SIMULATION AND STORE AND/OR TRANSMIT THE DESIGN FOR

MANUFACTURING

FIG. 7

WO 2023/158531 PCT/US2023/010587
8/8

v/— 800
802 \

GENERATE AN INTEGRATED CIRCUIT DESIGN INCLUDING
INSTANCES OF MODULE DESCRIPTIONS

804 \

RECEIVE A PARAMETER INDICATING THAT AN INPUT OF AN
INSTANCE THAT IS INTERNAL TO THE INTEGRATED CIRCUIT
DESIGN SHOULD BE EXPOSED TO A SIMULATOR

806 \

GENERATE ANNOTATION(S) BASED ON THE PARAMETER FOR USE
WITH A COMPILER TO PERMIT A SIMULATOR TO ACCESS A NODE
IN AN RTL DATA STRUCTURE ASSOCIATED WITH THE INPUT.

COMPILE THE INTEGRATED CIRCUIT DESIGN, USING THE
ANNOTATION(S), TO PRODUCE THE RTL DATA STRUCTURE AND
A CONFIGURATION FILE

SIMULATE THE RTL DATA STRUCTURE, USING THE
CONFIGURATION FILE, WITH A SIMULATOR ACCESSING THE

NODE ASSOCIATED WITH THE INPUT

812 \

FINALIZE THE INTEGRATED CIRCUIT DESIGN BASED ON THE
SIMULATION AND STORE AND/OR TRANSMIT THE DESIGN FOR
MANUFACTURING

FIG. 8

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2023/010587

A. CLASSIFICATION OF SUBJECT MATTER
INV. GO6F30/327 G06F30/3308 GO6F30/333

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X Eldridge Schuyler ET AL: "Chiire: A 1-20
Configurable Hardware Fault Injection
Framework for RISC-V Systems”,

Proceedings of Second Workshop on Computer

Retrieved from the Internet:

RRV_2018_paper_2.pdf
[retrieved on 2023-05-02]
abstract

page 1 - page 6

Architecture with RISC-V (CARRV'1S,
1 June 2018 (2018-06-01), XP093043364,

URL:https://carrv.github.io/2018/papers/CA

|__K| Further documents are listed in the continuation of Box C.

‘z‘ See patent family annex.

* Special categories of cited documents :

"T" later document published after the international filing date or priority
WA - L . date and not in conflict with the application but cited to understand
A" document defining the general state of the art which is not considered the principle or theory underlying the invention
to be of particular relevance
"E" earlier application or patent but published on or after the international "X document of particular relevance;; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other "v* document of particular relevance;; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is
"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art
"P" document published prior to the international filing date but later than
the priority date claimed "&" document member of the same patent family

Date of the actual completion of the international search

2 May 2023

Date of mailing of the international search report

12/05/2023

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Radev, Boyan

Form PCT/ASA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2023/010587

C(Continuation).

DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X

Geier Johannes: "Fast RTL-based Fault
Injection Framework for RISC-V Cores
Master's Thesis",

16 July 2020 (2020-07-16), XP093042931,
Munich, Germany

Retrieved from the Internet:
URL:https://mediatum.ub.tum.de/doc/1553527
/file.pdf

[retrieved on 2023-04-28]

page 23 - page 27

page 29 - page 50

US 2020/158782 Al (BOSE PRADIP [US] ET AL)
21 May 2020 (2020-05-21)

abstract

paragraph [0004] - paragraph [0006]
paragraph [0020] - paragraph [0025]
paragraph [0033] - paragraph [0048]
paragraph [0051] - paragraph [0102]

1-20

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2023/010587
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2020158782 Al 21-05-2020 Us 2019113572 Al 18-04-2019
Us 2020158782 Al 21-05-2020
Us 2020300913 A1 24-09-2020
Us 2021270897 Al 02-09-2021

Form PCT/ASA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - wo-search-report
	Page 42 - wo-search-report
	Page 43 - wo-search-report

