» UK Patent Application .,GB ,2576793

(43)Date of A Publication

(13)A

04.03.2020

(21) Application No: 1817759.2

(22) Date of Filing: 31.10.2018

(71) Applicant(s):
Imagination Technologies Limited
(Incorporated in the United Kingdom)
Imagination House, Home Park Estate,
KINGS LANGLEY, Hertfordshire, WD4 8LZ,
United Kingdom

(72) Inventor(s):
Thomas Michael Rose

(74) Agent and/or Address for Service:
CMS Cameron McKenna Nabarro Olswang LLP
Cannon Place, 78 Cannon Street, London, EC4N 6AF,
United Kingdom

(51) INT CL:

GOG6F 7/02 (2006.01) GOG6F 7/24 (2006.01)

(56) Documents Cited:

US 20130007419 A US 20080288565 A

(58) Field of Search:
INT CL GO6F

Other: EPODOC, WPI, Patent Fulltext

(54) Title of the Invention: Selecting an ith largest or a pth smallest number from a set of n m-bit numbers
Abstract Title: Method of selecting the ith largest or pth smallest number form a set of n numbers.

(57) A method of hardware logic selecting the i" largest or the

pth smallest number from a set of n m-bit numbers is
described. The method is performed iteratively and in the

rth iteration, of the method, each of the (m-r)th bits from
the m-bit numbers is summed to generate a summation
result, the result is then compared to a threshold value.

Depending upon the outcome of the comparison, the "

bit of the selected number is determined and the (m-r-1)
bit of each of the m-bit numbers is selectively updated
based on the outcome of the comparison and the value of

the (m-r)th bit in the m-bit number. In the first iteration, the
most significant bit from each of the m-bit numbers is
summed and each subsequent iteration sums bits
occupying successive bit positions in the numbers.
Finally data indicative of the selected number is output,
which may be the number or the position within the n
numbers of the selected number. The updating may be
done by setting a flag for each m-bit number to one or
zero, the flag is then used to change or not change the
relevant bit in the associated m-bit number.

th

FIG. 3A

MSB OF EACH NUMBER

S R—

302
N SET8ITIN
OUTPUT NUMBER L 307
TO ZERO
Y
SET BIT IN
OUTPUT NUMBER |/~ 308
TO ONE
i f304 i
SET MIN_FLAG SET MAX_FLAG
FOR ALL BITS FOR ALL BITS {308
WITH BIT = 0 WITH BIT = 1
¥
MODIFY NEXT BIT
OF EACH NUMBER

BASED ON FLAG |~ 308

VALUES

vV €6/9.G¢ 899

No

Ny

Na

N -2

Nn-i

100
FiG. 1
102 102
" . S\\max \\max output,
{
" \\Wffmiﬁ - imin{/"\\max output,
” PN \max - \\max‘\\ !min outputs
(-
{ o i
s \\gl min g min 102 output
102 102
200
FIG. 2
x {im-11 % [m-2 x 11«10
208 208

204

20f13

Q06 ¥4 NO Q3svd

SIMTIVA

HIGWNN HOYE S0
L LXEN AJICON

]

L

{ o= LIE ML
SLIg T HOd
Oy 14 XY L3S

wmm.vw $

SOL L] HEERNN 10RO

OM3Z O
HIGWNN 1NdLNO
NiLIE 139

mam&m

0 = LIg HIAA
SL1E TV HOd
OV14 NI L3S

vmmkﬁ %

HNO Ol

NI LG L3S

HIGWON HIOVE 40 SN

gt Ol

80¢ 7

S3MTVA
Y4 NGO G38vd
HAGRNN HOV3 40

118 LX3N A0

]

L= Lig M 0 = L8 HUM
90e w7 SLIS T O3 wtmﬁu.ﬁ {4
S aE IR OYd NI 133
4 J
158>
NG OL
cop 7] SFBANN 1NdLN0
N LIg 138
O¥IZ 0L
20T] MIEWON LNGLNO
NE LIS 138

HIBWON HOVI 30 GOSN

Ve Ol

3 of13

FiG. 3C

Bir

310

SET BIT TO ONE

13‘32

FIG. 3D

X [}

miny [i+1] ,{>M
-

322

1 MAX FlAG = 17 Boo

308

314

SET BIT TO ZERO

1{516

max [j+1]

MIN FLAG = 17 >

320

_ | LEAVE BIT VALUE

UNCHANGED

L 318

4dof13

29
o
2.0
Flddiy
T wm
zZes~ :
o) V4
87%
48 Di

' siﬁg,........iﬁkmm 74
e B 14z
0 g
2) §F
\Z e || R4
2D
'SLE.............S 74
\Z {1z
' .l
%mm

Xeus | U

MdING

pART=IH

48 "Oid

50f13

336

min]

338

max [}

340

344
Al \
h z [j]

flagy [i+1] %
FIG. 31

403
6of13 3

403
N, 1
; MIN
N, 5
N 1
: 1
Ny]
: 0 0
0
Na 0 0
0 1
404
1 4] 8 MIN
a 1 0 0
g |1 1 SNSSNI 1 1
1 0 0 g
0 1 0 0 Q
0 1
408
0
1 4] 1 1
MIN
0
o 1 0 a
" 1 1 4] L
1
1 9] 0 g
1 0
o 1 1 G
0 0
FIG. 4 0 1

7o0f13

MSB OF EACH NUMBER

SEG?
SET BIT IN
OUTPUT NUMBER
TO ZERO
SET BIT IN
OUTPUT NUMBER |/~ 303 FIG. 6§
TO ONE
i 504 5086
I ¥
SET ALL BITS IN SET ALL BITS IN
NUMBERS WITH NUMBERS WITH
BIT = 3 TO ZERO BIT= 1 TO ONE
% rﬁoa
NEXT BIT OF »
EACH NUMBER
MSE OF EACH NUMBER
()30?
SET BITIN
g QUTPUT NUMBER
TO ZERO
SET BIT IN
OUTPUT NUMBER b/ 305 3908 FIG. 9
TO ONE
SET FLAG FOR
$ {“gm ALL NUMBERS
WITH BiT=1
BET FLAG FOR
ALL NUMBERS
WITH BIT=0
@ f%g
MODIFY NEXT BIT UPDATE |
OF EACH NUMBER |] MEL 07
BASED ON FLAG TO1-Z
| VALUE

8 of13

802 603
:
1 5 3 ! 804
0 1 0
1 1 0 \ 1 O 1
1 0 ¢ 0 0 0
O 1 1 1 1 0
1 0 ¢
0 0 4]
110 806 11010
é
1 0 1 1 1 1
¢ 0 0 g 0 0
1 1 1 1 1 1
1 0 g 1 G g
0 0 G 0 G g

FIG. 6

9of13

80¢%

¢

<+ d0L

LN 4awvaan

HIAGWNN HOVI

40 L8 LX3N

|

i

OMEZ OL | = Lig
HLA SHIGRNN
NI SLIg TV 138

8- =V4
OL 0 = 119 HiMm
SHIGNNN TV

NI 8118 TV 138

J

g0l

O¥gZz Ol

L0~/ HIABANN N4IN0

Ni LG 138

gm\m w
ANO OL
HIGANN LNdLNO
NE LIS 135

HIAGAWNN HOY3E 40 SN

g4 "9l

805

¢

L0L _p

7-104
1 3LY3dN

I

OM3Z OL | = 118
HLI SHITRNN
NI SLIE TV 138

J

904

OuzZ Od

HIGWNN 1NdiNo

NI Lig 138

L0¢

J

05

HAGWNN HOVI
40 Lig LX3N

4

QHIZ 0L 0= 118
HLIAA SHAGHNN
NI SLig TV 138

&

INO OL
YIGWAN LNdIN0

Ni L8 135

HIAWNN HOYS 40 G5

Vi 'Old

8 Oid

g0

P08

£08

08

11 of 13

f 1004
FIND LARGEST FOUR (/" 1002
g NUMBERS USING METHOD 4-SORTER
OF FIG. 3A
i {,1 006
MASK LARGEST FOUR FIG 10
NUMBERS USING FLAG
CircurT INTEGRATED
IC DEFINITION Layour LAYQUT CIRCUIT INTEGRATED
TASET PROCESSING | DEFINITION CIRCUIT
DATASET S GENERATION
1304 1308
1302 i 13
f 1404
1402
GENERATE A SETOF |/ SELECT THE ITH LARGEST
o] NUMBERS USING A MSB- OR PTH SMALLEST NUMBER
" FIRST ITERATIVE FROM THE 3ET OF e
GENERATING PROCESS NUMBERS USING &4 MSE-
FIRST ITERATIVE
SELECTION PROCESS
14086
ONE OF ™%
N NUMBERS ™\
{ DEFINITELY NOT
N\ THE OUTPUT /
¥ j{,’itﬁzﬂﬁ
HALT GENERATION OF

FIG. 14

THAT NUMBER

oo G u3

120f13

Foo 8, Dorke-Tonpdfoor QDD BEVEPT

R R TR FA R = \h.\m. A 0%
: Factin ooddae w8Y awkE
Datchsr S Al 1
s :
S
3
- g
i
&
poo RS 9
ey " T e,
£ S P] * ¥ 3 R
Silog 033
v WV, Basin-Cong o VRUSS, BT
TG g T ; i oreoa Sk oo L0ty 087 WASS, Lo
. B kS
Ketctoor oerion, S GRS
W 53
B
:
] o
& et { H \
P00 :
S N N
3 Lol 3
g FS '\
. i Y .

\
V\
Ty *
X X
R E . - S
A

pL R GRS A R R I R e

‘

LR

Sranepnily (ot eodien, oEId oRd ..
b&me. LA NS
Saxchar_vedisn, axEE a0

S

3 FRREI 3
4. 1% A Y 3

FIG. 11A

FiG. 11B

FIG. 110

13 of 13

1230
FIG. 12A
SUMMATION J COMPARISON 1 UPDATING I oureur
LOGIC UNIT T LOGIC UNIT T LOGIC UNIT i
\\\ \..._\ I T /,a...j i T fﬁ‘,}
1339 ?234\1 P 1238 i : 1238
e T Dever |
| CONTROL %"”'”"} LOGIC UNIT :
L togicunr ;1 MOSEUNT
1235 1237
1240
(GENERATION SELECTION
LOGIC UNIT LOGIC UNIT 3 OuUTRUT
1242 1244 1246
FIG. 12B
1?@2 1204
1214
CPU GPU ()
— DispLay Fp1216
KJ SPEAKERS 1218
1222
— CAMERA P p._1220

1206 N\ MEMORY

FIG. 12C

SELECTING AN ™ LARGEST OR A ™ SMALLEST NUMBER FROM A SET OF N M-BIT
NUMBERS

Background

[0001] There are many situations where hardware is required to sort two or more input binary
numbers, i.e. to arrange them in order of size. Such sorters are typically constructed from a
number of identical logic blocks as shown in FIG. 1. FIG. 1 shows a schematic diagram of an
example hardware arrangement 100 for sorting 4 inpuls, x4, %3, x5, %, into size order, i.e. such
that output, = output, = outputs = output,. It can be seen that this sorter 100 comprises 5
identical logic blocks 102 each of which outputs the largest and smallest {iL.e. max and min)
values of two inputs {which may be denoted a and b).

[0002] Each of the logic blocks 102 receives two n-bit integer inputs {a, b) and comprises a
comparator that returns a Boolean that indicates whether a > b. The output of the comparator,
which may be referred to as the 'select’ signal, is then used fo control a plurality of n-bit wide
multiplexers that each choose hetween n-bits from a or n-bits from b. If the logic block 102
outputs both the maximum and minimum values (from a and b, as shown in the examples in
FIG. 1), the select signal is used to conirol the multiplexing of 2n-bits (e.g. in the form of 2n 1-bit
wide muitiplexers or two n-bit wide multiplexers). Alternatively, if the logic block has only one
output {(which is either the maximum or minimum of a and b), the select signal is used to control
the multiplexing of n-bits (e.g. In the form of n 1-bit wide multiplexers or one n-bit wide
muttiplexer).

{0003} In the arrangement described above, the select signal is used to power a plurality of
logic elements (e.g. logic gates) within a logic block 102 and this results in a large propagation
delay. This effect of a delay is caused by a single gate oulput wire having to charge the
transistors in a large number of gates (before these latter gates can propagate their cutputs)
and may be referred to as ‘fanout’. Whilst this delay may be acceptable when only sorling two
input numbers, whers these logic blocks 102 are concatenated (e.q. as in the sorter 100 shown
in FIG. 1 or larger sorters for more than 4 inputs) the resulting delay of the sorting circuit
increases which may seriously impact performance (e.g. it may result in the sorting process
taking more than a single clock cycle).

{0004] A solution to this delay is to include a large number of buffers {e.q. at least n buffers,
which may be arranged in a tree structure) with each of the buffers being driven by the select
signal, however, this results in a hardware arrangement that is significantly larger {e.g. in terms
of area of logic).

[0005] The embodiments described below are provided by way of example only and are not
fimiting of implementations which solve any or all of the disadvantages of known hardware and
methods for sorting numbers and/or selecting a number from a set of numbers based on iis
ordered position in the set.

Summary

{0006] This Summary is provided to infroduce a selection of concepts in a simplified form that
are further described below in the Detailled Description. This Summary is not intended to
identify key features or essential features of the claimed subject matter, nor is it intended to be
used to limit the scope of the claimed subisct matter.

2

[0007] A method of selecting, in hardware logic, an i largest or & p® smallest number from a
set of n m-bit numbers is described. The method is performed iteratively and in the ™ iteration,
where 1 is between 1 and m, the method comprises: summing the (m-r)" bit, where the (m-1)®
bit is the most significant bit, from each of the m-bit numbers o generate a summation resuit
and comparing the summation result to a threshold value. Depending upon the outcome of the
comparison, the {m-r)" bit of the selected number is determined and culput and additionally the
{m-r~1)" bit of each of the m-bit numbers is selectively updated based on the outcome of the
comparison and the value of the {m-r}" bit in the m-bit number. In a first iteration, r=1 and the
most significant bit from each of the m-bit numbers is summed and the most significant bit of the
selected number is output. Each subsequent iteration sums the most significant bits of the
numbers vet to be summed, which are the bils occcupying successive bit positions in their
respective numbers (for r=2 bits in position m-2, for r=3 bits in position m-3, etc.) and outputs
the next bit of the selected number. There are examples of this method which also output the
index of the i largest or a p"™ smallest number,

[0008] A first aspect provides a method of selecting, in hardware logic, a number from a set of n
m-bit numbers, wherein the selected number is either an " largest or a p* smallest number
from the set of n m-bit numbers, where |, p, m and n are integers, the method comprising a
plurality of iterations and each of the iterations comprising: summing a bit from each of the m-bit
numbers {0 generate a summation result, wherein all the bits being summed occupy an identical
bit position within their respective number; comparing the summation result fo a threshold value,
wherein the threshold value is calculated based on i or p; seiting, based on an outcome of the
comparison, a bit of the selected number; and for each of the m-bit numbers, based on the
outcome of the comparison and a value of the bit from the m-bit number, selectively updating a
bit in the m-bit number occupying a next bit position, wherein in a first iteration, 3 most
significant bit from each of the m-bit numbers is summed and a most significant bit of the
selected number is set and each subsequent iteration sums bils occupying successive bit
positions in their respective numbers and sets a next bit of the selected number, and whersin
the method comprises cutputting data indicative of the selected number.

[0008] Cutputting data indicative of the selected number may comprise either: ocutputting the
selected number; or outpuiting an indication of the position, within the n m-bit numbers, of the
selected number.

[0010] Setling, based on an outcome of the comparison, a bit of the selected number may
comprise: in response to determining that the summation result exceeds the threshold value,
setiing the bit of the selected number fo one; and in response to determining that the
summation result is less than the threshold value, setting the bit of the selected number to zero.

[0011] In a r" iteration, summing a bit from each of the m-bit numbers to generate a summation
result, may comprise summing a bit having a bit index m-r from each of the m-bit numbers to
generate a summation result, wherein each bit is either an original bit from one of the m-bit
numbers or an updated bit from a previous iteration.

[0012] The selected number may be the i largest number from the set of n m-bit numbers and
the threshold value may be equal to i. In other examples, the selected number may be the p*
smaliest number from the set of n m-bit numbers and the threshold value is equal to (n-p) or (n-
pti).

3

10013] Selectively updating a bit in the m-bit number occupying a next bit position based on the
outcome of the comparison and a value of the bit from the m-bit number may comprise:
selectively setling a flag associated with the m-bit number based on the cuicome of the
comparison and a vaiue of the bit from the m-bit number; and selectively updating a bit in the m-
bit number occupying a next bit position based on values of one or more flags associated with
the m-bif number.

10014] Selectively setling a flag associated with the m-bit number based on the oulcome of the
comparison and a value of the bit from the m-bit number may comprise: in response to
determining that the summation result exceeds the threshold value and that the value of the bit
is zero, setting a min flag associated with the m-bit number; and in response to determining that
the summation result is less than the threshold value and that the value of the bit is one, setting
a max flag associated with the m-bit number, and wherein selectively updating a bit in the m-bit
number occupying a next bit position based on values of one or more flags associated with the
m-bit number comprises: in response to determining that the max flag associated with the m-bit
number is set, setting the bit in the m-bit number occupying the next bit position to one; in
response to determining that the min flag associated with the m-bit number is set, setting the bit
in the m-bit number occupying the next bit position fo zero; and in response to delermining that
neither the max flag nor the min flag associated with the m-bif number is set, leaving the bit in
the m-bit number occupying the next bit position unchanged.

[0015] Selectively sefting a flag associated with the m-bit number based on the outcome of the
comparison and a value of the bit from the m-bit number may comprise: in response fo
determining that the summation result exceeds the threshold value and that the valus of the bit
is zero, sefting a particular flag associated with the m-bit number; and in response to
determining that the summation result is less than the threshold value and that the value of the
bit is one, setling the particular flag associated with the m-bit number and updsting the
threshoid value by an amount equal to the summation result, and wherein selectively updating a
bif in the m-bit number occupying a next bit position based on values of one or more flags
associated with the m-bit number comprises: in response to determining that the particular flag
is set, setling the bit in the m-bit number occupying the next bit position to a predefined value;
and in response to determining that the particular flag associated with the m-bit number is not
sel, leaving the bit in the m-bit number occupying the next bit position unchanged. The
predefined vaiue may be zero.

{0016] Selectively setling a flag associated with the m-bit number based on the cutcome of the
comparison and a value of the bit from the m-bit number may comprise: in response to
determining that the summation result exceeds the threshold value and that the value of the bit
is zero, setling a particular flag associated with the m-bit number and updating the threshold
value by an amount equal to n minus the summation resulf; and in response to determining that
the summation result is less than the threshold value and that the value of the bit is one, setting
the particular flag associated with the m-bit number, and whersin selectively updating a bit in
the m-bit number occupying a next bit position based on values of one or more flags associated
with the m-bit number comprises: in response fo determining that the particular flag is set,
setting the bit in the m-bit number occupying the next bit position to a predefined value; and in
response fo determining that the particular flag associated with the m-bit number is not set,

4

isaving the bit in the m-bit number occupying the next bit position unchanged. The predsfined
value may be one.

{00171 The method may further comprise: determining how many of the m-bit numbers have an
associated flag thatl is setl; and in response to determining that n-1 of the m-bit numbers have an
associated flag set, outputling data indicative of the m-bit number without an associated flag
sei.

[0018] Selectively updating a bit in the m-bit number occupying a next bit position based on the
outcome of the comparison and a value of the bit from the m-bit number may comprise: in
response to determining that the summation result exceeds the threshold value and that the
value of the bit is zero, updating all bits in the m-bit number to zero; and in response to
determining that the summation result does not exceed the threshold value and that the value of
the bit is one, updating all bits in the m-bit number {o one.

[0019] Selectively updating a bit in the m-bit number occupying a next bit position based on the
outcome of the comparison and a value of the bit from the m-bit number may comprise: in
response to determining that the summation result exceeds the threshold value and that the
value of the bit is zero, updating all bits in the m-bit number to zero; and in response to
determining that the summation result does not exceed the threshold value and that the value of
the bit is one, updating all bits in the m-bit number to zero and reducing the threshold value by
an amount equal {o the summation result.

[0020] The method may comprise m iterations and in the m" iteration, a least significant bit
from each of the m-bit numbers is summed and a least significant bit of the selected number is
set.

j0021] A second aspect provides a hardwars logic unit arranged to select an " largest or pt
smallest number from a set of n m-bit numbers, where i, p, m and n are integers, the hardware
logic unit being arranged to operate iteratively and comprising: summation logic arranged {o, in
each iteration, sum a bit from each of the m-bit numbers to generate a summation resuf,
wherein all the bits being summed occupy an identical bit position within their respective
number such that in a first iteration, a most significant bit from each of the m-bit numbers is
summed and each subsequent iteration sums bits occupying successive bit positions in their
respective numbers; comparison logic arranged to, in each iteration, compare the summation
result generated by the summation logic in that iteration to a threshold value and set a bit of the
selected number based on an cuicome of the comparison, wherein the threshold value is
calculated based on i or p; updating logic arranged to, in each iteration and for each of the m-bit
numbers, selectively update a bit in the m-bit number occupying a next bit position based on the
outcome of the comparison in that iteration and a value of the bit from the m-bit number: and an
cutput arranged o output data indicative of the selected number.

{0022] The hardware logic unit may further comprise: flag control logic arranged to selectively
set a flag associated with the m-bit number based on the culcome of the comparison and a
value of the bit from the m-bit number; and wherein the updating logic is arranged to selsctively
update a bit in the m-bit number occupying a next bit position based on valuss of one or more
flags associated with the m-bit number.

5

{0023} The flag control logic may comprise: a min flag logic block arranged to, in response 1o
determining that the summation result exceeds the threshold valus and that the value of the bit
is zero, set a min flag associated with the m-bit number; and a max flag logic block arranged to,
in response to determining that the summation result is less than the threshold value and that
the value of the bit is one, set a max flag associated with the m-bit number, and wherein the
updating logic is arranged to: in response to determining that the max flag associated with the
m-bit number is set, set the bit in the m-bit number occupying the next bit position to one; in
response o determining that the min flag associated with the m-bit number is set, set the bit in
the m-bit number occupying the next bit position to zero; and in response to determining that
neither the max flag nor the min flag associated with the m-bit number is set, leave the bit in the
m-bit number occupying the next bit position unchanged.

[0024] The flag control logic may be arranged to: in response to determining that the
summation resull exceeds the threshold value and that the value of the bit is zero, sst a
particular flag associated with the m-bit number; and in response to determining that the
summation result is less than the threshold value and that the value of the bit is one, set the
particular flag associaled with the m-bit number and updating the threshold value by an amount
equal to the summation resull, and wherein the updating logic is arranged to: in response to
determining that the particular flag is set, set the bit in the m-bit number occupying the next bit
position {o a predefined value; and in response to determining that the particular flag is not set,
leave the bit in the m-bil number occupying the next bit position unchanged. The predefined
value may be zero.

[0025] The flag control logic may be aranged to: in response to determining that the
summation result exceeds the threshold value and that the value of the bit is zero, set a
particular flag associated with the m-bit number and updating the threshold value by an amount
equal to n minus the summation result; and in response to determining that the summation
result is less than the threshold value and that the value of the bit is one, set the particular flag
associated with the m-bit number, and wherein the updating logic is arranged to: in response to
determining that the particular flag is set, set the bit in the m-bit number cccupying the next bit
position to a predefined value; and in response to determining that the particular flag is not set,
leave the bit in the m-bit number occupying the next bit position unchanged. The predsfined
value may bs one.

{0026} The hardware logic unit may further comprise: an early exit hardware logic block
arranged to determine how many of the m-bit numbers have an associated flag that is set; and
in response to determining that n-1 of the m-bit numbers have an associated flag set, to output
the m-bit number without an associated flag set as the selected number.

[0027] The updating logic may be arranged to: in response to determining that the summation
result exceeds the threshold value and that the value of the bit is zero, update all bits in the m-
bit number to zero; and in response to determining that the summation result does not excead
the threshold value and that the value of the bit is one, update all bits in the m-bit number to
one.

{0028] The updating logic may be arranged to: in response to determining that the summation
result exceeds the threshold value and that the value of the bit is zero, update all bits in the m-
bit number to zero; and in response to determining that the summation result does not exceed

6

the threshold value and that the value of the bit is one, update all bits in the m-bit number to
zero and reduce the threshold value by an amount egual to the summation result.

[0028] A third aspect provides a hardware logic unit configured to perform the method
described above.

[0030] A fourth aspect provides a method of manufacturing, using an integrated circuit
manufacturing system, a hardware logic unit as detailed above.

[0031] Afifth aspect provides an integrated circult definition dataset that, when processed in an
integrated circuit manufacturing system, configures the integrated circuit manufacturing system
to manufacture a hardware logic unit as detailed above.

[0032] A sixth aspect provides a computer readable storage medium having stored thereon a
computer readable description of an integrated circuit that, when processed in an integrated
circuit manufacturing system, causes the integrated circuit manufacturing system fo
manufaciure a hardware logic unit as detalled above.

[0033] A seventh aspect provides an integrated circuit manufacturing system comprising: a
computer readable storage medium having stored thereon a computer readable description of
an integrated circuit that describes a hardware logic unit as detailed above; a layout processing
system configured to process the integrated circuit description so as to generate a circuit layout
description of an inlegrated circuit embodying the hardware logic unit; and an integrated circuit
generation system configured to manufacture the hardware logic unit according to the circuit
layout description.

[0034] An sighth aspect provides a method, implemented in hardware logic, for generating and
selecting a number, the method comprising: performing a MSB-first (most significant bit first)
iterative generating process for generating a set of n numbers; concurrently with performing the
MSB-first iterative generating process for generating the set of n numbers, performing a MSB-
first iterative selection process fo select either an i largest or a p" smallest number from the set
of n numbers, where i, p and n are integers; and in response to the MSB-first iterative selection
process determining that a particular one of the numbers of said set of n numbers will not be the
selected number, halting the generation of said particular number by said MSB-first iterative
generating process after at least one of the bils of said particular number has been generated
and before all of the bits of said particular number have been generated, wherein the method
comprises outputting data indicative of the selected number,

{0036} The MSB-first Herative generating process may be a CORDIC (Coordinate Rotation
Digital Computer) process or an Online Arithmetic process.

{00386} Performing the MSB-first iterative selection process may comprise performing a plurality
of iterations, wherein each of the iterations may comprise: summing a bit from each of the
numbers of the set to generate a summation result, wherein all the bits being summed occupy
an identical bit position within their respective number; comparing the summation result to a
threshold value, wherein the threshold value is calculated based on i or p; setting, based on an
outcome of the comparison, a bit of the selected number; and for each of the numbers of the
set, based on the outcome of the comparison and a value of the bit from the number, selectively
updating a bit in the number occupying a next bit position. In a first iteration, a most significant
bit from each of the numbers of the set may be summed and a most significant bit of the

7

selected number may be set and each subsequent iteration sums bits occupying successive bit
positions in their respective numbers and sets a next bit of the selected number.

[0037] The selected number may be the i largest number from the set of n numbers and the
threshold value is equal to I In other examples, the selected number may be the p" smallest
number from the set of n numbers and the threshold value is equal to {n-p) or (n-p+1).

0038} Each of the n numbers of the set, if fully generated, may be m-bit numbers.

[0039] Qutputting data indicative of the selected number may comprise either: outputling the
selected number,; or outputting an indication of the position, within the set of n numbers, of the
selected number.

[00407 A ninth aspect provides a processing unit configured to generate and select a number,
the processing unit comprising: a generation logic unit, implemented in hardware, configured to
perform a MSB-first iterative generating process for generating a set of n numbers; a selection
logic unit, implemented in hardware, configured to operate concurrently with the generation
logic unit, and configured to perform a MSB-first iterative selection process to select sither an i
largest or a p” smallest number from the set of n numbers, where i, p and n are integers; and an
output arranged to output data indicative of the selected number, wherein the processing unit is
configured to, in response to the selection logic unit determining that a particular one of the
numbers of said set of n numbers will not be the selscted number, cause the generation logic
unit to halt the generation of said particular number by said MSB-first iterative generating
process after at least one of the bits of said particular number has been generated and before
all of the bits of said particular number have been generated.

{0041] The selection logic may comprise: summation logic arranged o, in each iteration, sum a
bit from each of the numbers to generate a summation result, wherein all the bits being summed
occupy an identical bit position within their respective number; comparison logic arranged o, in
each iteration, compare the summation result generated by the summation logic in that iteration
to a threshold value and set a bit of the selected number based on an outcome of the
comparison, wherein the threshold value is calculated based on i or p; and updating logic
arranged lo, in each iteration and for sach of the numbers, selectively update a bit in the
number occupying a next bit position based on the outcome of the comparison in that iteration
and a value of the bit from the number. The summation logic may be arranged such that in a
first iteration, a most significant bit from each of the numbers is summed and each subsequent
iteration sums bits occupying successive bit positions in their respective numbers.

{0042} A tenth aspect provides a processing unit configured fo perform the method for
generaling and selecting a number, as detailed above.

[0043] An eleventh aspect provides a method of manufacturing, using an integrated circuit
manufacturing system, a processing unit as detailed above.

{0044} A twelfth aspect provides an integrated circuit definition dataset that, when processed in
an integrated circuit manufacturing system, configures the integrated circuit manufacturing
system to manufacture a processing unit as detailed above.

[0045] A thirteenth aspect provides a computer readable storage medium having stored thereon
a computer readable description of an integrated circuit that, when processed in an integrated

8

circuit manufacturing system, causes the integrated circuit manufacluring system 1o
manufacture a processing unit as detailed above.

[0046] A fourteenth aspect provides an integrated circuit manufacturing system comprising: a
computer readable storage medium having stored therson a computer readable description of
an integrated circuit that describes a processing unit as detalled above; a layout processing
system configured to process the integrated circuit description so as to generate a circuit layout
description of an integrated circuit embodying the processing unit; and an integrated circuit
generation system configured to manufacture the processing unit according fo the circuit layout
description.

[0047] The number sorling hardware logic unit and/or processor comprising hardware logic
configured to perform one of the methods as described herein may be embodied in hardware on
an integrated circuit. There may be provided a method of manufacturing, at an integrated oirouit
manufacturing system, a number sorting hardware logic unit and/or a processor comprising
hardware logic configured to perform one of the methods as described herein. There may be
provided an integrated circuit definition dataset that, when processed in an integrated circuit
manufacturing system, configures the system to manufacture an number sorting hardware logic
unit and/or a processor comprising hardware logic configured o perform one of the methods as
described herein. There may be provided a non-transitory computer readable storage medium
having stored therson a computer readable description of an integrated circuit that, when
processed, causes a layout processing system fo generate a circuit layout description used in
an infegrated cirouil manufacturing system to manufacture a number sorting hardware logic unit
and/or a processor comprising hardware logic configured {o perform one of the methods as
described herein.

{0048} There may be provided an integrated circuit manufacturing system comprising: a non-
transitory computer readable storage medium having stored thereon a computer readable
integrated circuit description that describes the number sorting hardware logic unit and/or
processor comprising hardware logic configured to perform one of the methods as described
herein; a layout processing system configured to process the integrated circuit description so as
{o generate a circuit layout description of an integrated circuit embodying the number sorting
hardware logic unit and/or processor comprising hardware logic configured to perform one of
the methods as described herein; and an integrated circuit generation system configured to
manufacture the number sorting hardware logic unit andl/or processor comprising hardware
logic configured to perform one of the methods as described herein according to the circuit
layout description.

[0049] There may be provided computer program code for performing any of the methods
described herein. There may be provided non-transitory computer readable storage medium
having stored thereon computer readable instructions that, when executed at a computer
system, cause the compuler system to perform any of the methods described herein.

[0050] The above features may be combined as appropriate, as would be apparent to a skilled
person, and may be combined with any of the aspects of the examples described herein.

Brief Description of the Drawings

{C051] Examples will now be described in detail with reference to the accompanying drawings
in which:

[0052] FIG. 1 is a schematic diagram of an example hardware arrangement for sorting 4 inputs;

{00563] FIG. 2 shows a graphical representation of the set of n m-bit numbers which are input to
the methods and hardware described herein,

[0054] FIG. 3A is a flow diagram showing a first example method of calculating the i largest
number from the input set of n m-bit numbers;

{0055] FIG. 3B is a flow diagram showing a first example method of calculating the p* smallest
number from the input set of n m-bift numbers;

{0058] FiG. 3C is a flow diagram showing an operation from the methods of FiGs. 3A and 3B in
more detail;

[0057] FIG. 3D is a circuit diagram of an example hardware implementation of the operation
shown in FIG. 3C;

{0058} FIG. 3k shows a iruth {able for the hardware arrangement shown in FIG. 3D;

{0059] FIG. 3F shows a schematic diagram of an example hardware arangement that
implements an operation in the method of FIG. 3A;

{0060] FIG. 3G and 3H show schematic diagrams of two different example hardware
arrangements that implements an operation in the methods of FiGs. 3A and 3B:

{0061] FIG. 3I shows a schematlic disgram of an example hardware arrangement that
implements an operation in the method of FIG. 8;

[0062] FIG. 4 lllustrates an example of the operation of the method of FIG. 3A;

[0063] FIG. 5 is a flow diagram showing a second example method of calculating the i largest
number from the input set of n m-bit numbers;

[0064] FIG. § illustrates an example of the operation of the method of FIG. 5;

{0065} FIG. 7A is a flow diagram showing a third example method of calculating the I largest
number from the input set of n m-bit numbers;

[0066] FIG. 78 is a flow diagram showing a further example method of calculating the p®
smallest number from the input set of n m-bit numbers;

[0067] FIG. 8 illustrates an example of the operation of the method of FIG. 7A;

(0068} FIG. 9 is a flow diagram showing a fourth example method of calculating the i largest
number from the input set of n m-bit numbers;

(0069} FIG. 10 is a schematic diagram showing the use of the method of FIG. 3A to perform
sorting;

[0070] FiGs. 11A, 11B and 11C are graphs showing synthesis results for the methods
described herein;

i3

[0071] FIG. 12A is a schematic diagram of a hardware logic unit arranged to select the i
largest number or the p™ smallest number from an input set of n m-bit numbers;

{0072] FIG. 128 is a schematic diagram of a processing unit arranged to generate and select a
number;

{0073] FIG. 12C shows a computer sysiem in which a graphics processing system is
implemented,;

[0074] FIG. 13 shows an integrated circuit manufacturing system for generating an integrated
circuit embodying a graphics processing system; and

[0075] FIG. 14 is a flow diagram of an example method of generating and selecting a number
from a set of n numbers that are generated ieratively, starting with the MSB.

[0078] The accompanying drawings illustrate various examples. The skilled person will
appreciate that the iHlustrated element boundaries (e.g., boxes, groups of boxes, or other
shapes) in the drawings represent one example of the boundaries. It may be that in some
examples, one element may be designed as multiple elements or that multiple elements may be
designed as one element. Common reference numerals are used throughout the figures, where
appropriate, {0 indicate similar features.

Detailed Description

[0077] The following description is presented by way of example to enable a person skilled in
the art to make and use the invention. The present invention is not limited to the embodimenis
described herein and various meodifications fo the disclosed embodiments will be apparent to
those skilled in the art.

{0078] Embodiments will now be described by way of example only.

[0078] There are many applications where it is useful to select the i largest or p® smaliest
integer from a set of integers. Typically this is implemented using a sorting algorithm, or sorting
network (e.g. as described above with reference to FIG. 1) to sori the integers into an ordered
list and then the relevant integer from the list can be output. Howsver, the size of the resulting
hardware can be large, even if redundant logic (which doesn't affect the required output) is
removed as part of the synthesis of the hardware.

[0080] Described herein is a method and hardware for selecting the i largest or p™ smallest
number from a set of n m-bit numbers without first sorting the set of numbers. Using the
methods described herein, the hardware is smaller than a sorting network, e.g. it scales in area
as O(n*m}) rather than O{m*n*(In{n)*)). Furthermore, as the method is iterative, the area of the
hardware used to implement the method can be made even smaller by trading performance /
throughput {(e.g. by synthesizing only one iteration or less than m iterations and then reusing the
hardware logic over multiple cycles). Additionally, the method enabiles performance / throughput
{0 be increased at a cost of additional area {(e.g. by increasing the number of bits that are
assessed in each iteration above 1).

[0081] The methods described herein may be adapted to apply to numbers represented in
signed or unsigned fixed point format, floating point format and signed or unsigned normalised
format. For example, for signed and floating point numbers, the top bit of each number is

i

negated on both input to the method and output from the method. For unsigned fixed point
numbers, no changes are required to the methods. For normalised formats, the bit string is
treated as a nommal unsigned (or signed} number. In various examples, the numbers may be
integers. In various examples, the numbers may be binary approximations of values with no
finite binary representation in the standard fixed point format (e.g. 1/3 or the square root of 2),
where the binary approximations are generated one bit at a time.

[0082] The method involves examining the most significant bit (MSB) from each of the numbers
in the sat and based on the oulcome of the analysis setting one or more flags or mask bits. The
method is then repeated, selecting the next bit from each of the numbers in the set, adjusting
the bit values dependent upon the flags or mask bits and then performing the same analysis (or
very similar analysis} as was performed on the M3B. As with the first iteration (that involved the
MSBs), based on the outcome of the analysis, one or more flags or mask bits may be set. The
method may iterate through each of the m bits in the numbers in order to determine which of the
numbers is the I largest or p™ smallest number. In each iteration, a bit from the output number
(i.e. the i largest or p™ smallest number) is set and the output from the method may be either
the output number itself or other data that identifies {or indicates) the output number from within
the set of n m-bit numbers {e.g. in the form of an index of the output number within the set of n
numbsrs).

[0083] In describing the various embodiments and examples below, the following notation is
used, which can be described with reference to FIG. 2:

¢ 11is the number of numbers in the set 200,
¢ kis the number index and ranges between 0 and (n-1),

s N are the numbers in the set 200, such that the first number 202 in the set 200 is N
and the last number 204 in the set 200 is Npa,

= is the number of bits in each of the numbers in the set and each number in the sat
comprises the same number of bits,

* | is the bit index and ranges between {m-1) for the MSB 206 and 0 for the least
significant bit (LSB) 208 in each number, and in examples where the method analyses a
single bit from each number in the set in each iteration (from the MSB to the L3B), j may
also be referred to as the iteration index,

» 1 is the iteration number that ranges between one (for the first iteration, where j=m-1)
and m (for the last iteration, where j=0), hence j=m-r in examples in which one bit
position is considered per iteration.

» xj} refers to bit j of the number Ny, where j=m-1 for the MSB and j=0 for the LSB,
s i} refers to the modified bit | of the number N,

s iand p are integers in the range 1 to n and the methods described herein identify the i©
largest or p™ smailest number from the set of numbers, and the desired number, Le. the
i largest or p* smallest number, is referred to hersin as the output number,

« mingfj] is the minimum flag {or min_flag) for the number Ny following analysis of the ™ bit
of the number Ny,

12

s minm] is the initial (i.e. starting) value of the minimum flag for the number Ny,

« maxdi] is the maximum flag (or max_flag) for the number Ny as set following analysis of
the i bit of the numbser Ny,

= max{m] is the initial (i.e. starting) value of the maximum flag for the number N,

s flagifi] is the flag for the number Ny as set following analysis of the bit of the number
Nk in examples where a single flag is used, and

e flagm] is the initial (i.e. starling) value of the single flag for the number Ny.

[0084] FIG. 2 shows a graphical representation of the set 200 of n m-bit numbers which are
input to the methods and hardware described herein. The numbers within the set are not in any
particular order and hence the value of k only identifies the position of the number in the set
{and hence is used to refer to a particular number N} and does not provide any information
about the relative size of the number Ny compared io other numbers in the set 200.

[0085] The methods and hardware described herein may be used to find the i largest or p®
smallest number from the set 200 of n m-bit numbers without first sorting the set of numbaers.

[0086] FIG. 3A is a flow diagram of a first example method of calculating (or identifying) the i
largest number from the input set of n m-bit numbers. In various examples the value of i is fixed
and in other examples, the value of | is an input variable. As shown in FIG. 3A, the method is
iterative and uses two flags per number: min_flag and max_flag (i.e. 2n flag bits in fotal). The
minimum flag, min_flag or mind |, when set indicates that the particular number is smalier than
the output number (the i largest number) and the maximum flag, max_flag or max |, when sat
indicates that the particular number is larger than the output number. Initially (when j=m), the
flags may all be unset (e.g. set o zero) unless some pre-masking has been performed (as
described below). As described below, the method builds up the output number, one bit per
iteration.

[0087] in the first iteration {r=1, j=m-1} the MSBs 206 of each number are summed and if the
sum of the MSBs is greater than or equal to | ('Yes' in block 302) then this means that the MSB
of the i largest number from the input set (i.e. the MSB of the cutput number) is a one and the
MSB of the output number may be set to one (block 305). However, if the sum of the MS3Bs is
fess than i {'No’ in block 302), then this means that the MSB of the i largest number from the
input set {i.e. the MSB of the output number) is a zero and the MSB of the cutput number may
be set to zero (block 307). Additionally, in response to determining that the sum of the MSBs is
greater than or equal to i ("Yes' in block 302), the min_flag is set for all those numbers with an
MSB=0 (block 304} and in response to determining that the sum of the MSBs is not greater than
or equal to | ('No' in block 302}, the max_flag is set for all those numbers with an MSB=1 (block
306).

[0088] The second iteration (=2, j=m-2) staris by taking the next bit from each of the numbers
and modifying the bits using the flag values {block 308). In particular, the value of the bits may
be altered where either the min_flag or the max_fiag is set for the number, as shown in FIG. 3C.
if the max_flag for the number is set ("Yes’ in block 310}, then the bit from that number (i.e. the
second most significant bit from the number for the second iteration) is set to one (block 312)
irrespective of whether the bit value is actually a one or a zero. Similarly, if the min_flag for the

13

number is set ("Yes' in block 314), then the bit is set o zero (block 318) irrespective of whether
the bit value is actually a one or a zero. According to the methods described herein, a number
cannot have both the max_flag and the min_flag set. If neither flag is set (No’ in blocks 310 and
314) then the value of the bit is left unchanged (block 318).

[0089] The alteration of the bils (in block 308, as shown in detail in FIG. 3C) can also be
described by the following logic equation:

zelf} = 4) mung) + 1] + max, [j + 1]

where - represents a logical AND operation and + represents a logical OR operation. The
corresponding hardware arrangement 320, which may be replicated n-times (one for sach
number in the set 200} is shown in FIG. 3D and comprises a NOT gate 322, an AND gate 324
and an OR gale 326. As shown in FIG. 3D, the current bit is combined with an inverted version
of the current minimum flag (as set in the previous iteration) in an AND gate 324 and then the
output of the AND gate 324 is combined with the current maximum flag (as set in the pravious
iteration) in an OR gate 326. The truth table for the reachable states of the hardware
arrangement 320 is shown in FIG. 3E.

[0090] The altered bits (as generated in block 308) are then summed and if the sum is greater
than or equal to | ('Yes’ in block 302) then this means that the next bit of the I largest number
from the input set (i.e. the next bit of the output number) is a one and the next bit of the output
bit may be set to one (block 305); however, if the sum is less than i ('No’ in block 302), then this
means that the next bit of the i largest number from the input set {i.e. the next bit of the output
number) is a zero and the next bit of the output number may be set to zero (block 307). In this
way the method builds the output number (in blocks 305 and 307), one bit at a time and one bit
per iteration. in response to determining that the sum is greater than or equal to | (*Yes' in block
302}, the min_flag is set for all those numbers with an altered bit equal to zero (block 304) and
in response to determining that the sum is not greater than or equal to i {'No’ in block 302), the
max_flag is set for all those numbers with an altered bit equal to one (block 308).

[0091] The summing of the bits (in block 302) can also be described by the following logic

equation:
n—1)
sumy = Z Ze 1]
ie=0

The corresponding hardware arrangement 328 comprises a plurality of adders (e.g. a plurality of
full adders 330 which each add together three bits, i.e. for three different values of k, followed
by one or more ripple carry adders 332). An example hardware arrangement is shown in FIG.
3F; however the summation may be implemented in hardware in other ways.

{0092} The updating of the minimum flag (in block 304) and maximum flag (in block 308) can
also be described by the following logic equations:

vl = (sumj =i71:0
ming[j1 = ming[j + 1] + (y[/1- 2, 1} max, [y + 1])
maxy{fl = max, j+ 11+ (ﬁ xelil s ming[j + 1])

14

In these last two equations, the first terms refer fo the flag values from the previous iteration
and are used to ensure that the flag is not changed i it has already been set by an earlier bit
within a number. The same two last equations may also be used when referring to the altered
bits (z,[/1) by simply replacing x,{j] by z, /], as x, [j] = z,[j] when both flags are 0 and ¥ either
of the flags are 1 then the value of x,[j] is irelevant in the equations above, however the
hardware implementation using the altered bits may be larger (in terms of area of hardware
fogic) than using the original bits. The corresponding hardware arrangements 336, 338 are
shown in FiGs. 3G and 3H and comprise a combination of NOT, AND and OR gates (or other
logic blocks which implement the same functionality as the NOT, AND and OR gates and which
may be referred to as NOT, AND and OR logic blocks).

{3083} The method of FIG. 3A may then be repeated for all m bits in the input numbers to build
up the oulput number or, in various examples, there may be additional logic that identifies when
a result has been obtained before all m iterations are complete (i.e. when there is only one
distinct value in the set of numbers 200 that has neither the max_flag nor the min_flag set) and
outputs the result at that stage. In various examples, the additional logic may additionally, or
instead, be used to iimit the number of iterations that are performed (i.e. to provide a maximum
value of 1, rmax) and then output the result at that stage. In such examples, only a part of the
output number has been built up and so the remaining bils, or the entire output number, may be
obtained by selecting one of the numbers from the set of input numbers based on the flag
values, or alternatively, other data that identifies the output number {e.g. the number index, k)
may be output, Although if the set of input numbers may include duplicate values (i.e. if it is not
guaranteed that all the n numbers in the input set are unique), such that there may be more
than one input number that is the i largest number in the input set of n m-bit numbers, then this
adds complexity {o the additional logic and so the benefit of having the additional logic may be
reduced or lost. This additional logic may be referred to as an early exit logic unit.

[0094] Performing a bitwise OR on the ming[j] and max,[j] signals and then negating the
result vields a signal which has a 1 in the k" bit if, and only if, bits m-1 to | of the output number
malches bits m-1 to | in the number N,,.

[0085] The method of FIG. 3A can be described with reference to the example shown in FIG. 4,
where n=5 and i=3. In the first teration 402, the MSBs of each number are summed and the
result is 3. As the sum is equal to | {'Yes' in block 302), the MSB of the output number 403 is set
to one (block 305} and the min_flag is set for those numbers where the MSB is zero {block 304).
in the example shown, the min_flag is set for numbers Ny and Na.

[3086] in the second iteration, the next bits in each of the 5 numbers are first modified based on
the flag values (block 308} to get the z,[m — 2] values and in this example, as only the flags for
numbers N: and N, are sel, only these bits are modified from a one to a zero. The modified hits
404 are then summed and the result is 1. As the sum is less than | (No' in block 302), the next
bit of the output number is set to zero (block 307) and the max_flag is set for those numbers
where the modified bit is one (block 306). In the sxample shown, the max_flag is set for number
Na.

[0097] The third iteration again starls by modifying the next bits in each of the 5 numbers based
on the flag values (block 308) to get the z,[m - 3] values and in this example, as the flags for
numbers Ny, Nz and N, are set, only these bits are affected, although as shown in FIG. 4, whilst

15

the values of the 3" bits of numbers Nz and Ns are flipped (from a 0 to a 1 for number Na
because of the max_fiag and from a 1 to a 0 for number N, because of the min_flag) the 3 bit
of number Ny is not medified as it is already a zero and it is the min_flag that is set. As before
the modified bits 406 are summed and in this case the result is 2. As the sum is less than | (No’
in block 302), the next bit of the output number is set to zero (block 307) and the max_flag is set
for those numbers where the modified bit is one {(block 306). In the example shown, the
max_flag is set for number No. At this point there is only one number which does not have a flag
that is set, number Ns, and this is therefore the output number, ie. the i largest number from
the input set. The method may stop at this point {e.g. if logic is provided to assess the flags and
determine when only one number does not have a flag set) or the method may continue until all
bits have been assessed.

{0088] it can be appreciated that if m=8 in the example of FIG. 4 and the five input values (Ny-
Na} are 10Dooxx, 01000, T10axxx, 100000 and 011Dooxx (where each x can represent
either 0 or 1) then as shown in FIG. 4, the third largest number is determined to be 100xxx0x,
and this can be determined just by analysing the first three bits of the inputs values in this
example. As described above, following the third iteration, only the three most significant bits of
the output number 403 (bits 100) have been built up and the remaining five bils may be
determined either by continuing with the remaining five iterations of the method or by selecting
Na based on the flag values and either adding the 5 LSBs to the already generated output
number 403 or outputling Ns and discarding the three bits that have already been built up.
Alternatively, instead of outputting the output number itself, data identifying that output number
{e.g. the index k=3) may be oulput.

[0099] Whilst FIG. 3A shows a first example method of caloulating (or identifying) the i largest
number from the input set of n m-bit numbers, a very similar method may be used to calculate
{or identify) the p™ smallest number from the input set of n m-bit numbers and one example is
shown in FIG. 3B. In the method of FIG. 3B, the only differences compared to the method of
FIG. 3A, are that the summation is compared fo the value of (n-p) and the comparison switches
from ‘greater than or equal’ (in block 302 of FIG. 3A) to ‘strictly greater than' (in block 303 of
FiG. 3B). Alternatively, the comparison performed in block 303 of FIG. 3B may be whether the
sum is greater than or equal to (n+1-p). if the sum of MSBs (or altered bits for subsequent
iterations} is greater than (n-p) {'Yes’ in block 303}, the MSB of the output number is set to one
{block 305) and the min_flag is set for all those numbers with an MSB or altered bit equal to
zero (block 304). If, however, the sum is not greater than (n-p) ('No’ in block 303), the MSB of
the output number is set fo zero (block 307) and the max_flag is set for all those numbers with
an MSB or altered bit equal to one (block 306). As before, the method is then repeated for
subsequent bits in each of the numbers in the input set to build up the output number. The
method may terminate either after m iterations or, where the additional hardware is provided, in
response {o determining that there is only a single number in the input set that does not have
any flags set.

[0100] In another example method of calculating the p* smallest number from the input set of n
m-bit numbers, all the input numbers N¢ may be bitwise inverted (N, — N} and then the method
of FIG. 3A may be used with i=p, so long as the final output is inverted back to its original form
prior to being oulput.

Is

[0101] FIG. 5is a flow diagram of a second example method of calculating {or identifying) the it"
largest number from the input set of n m-bit numbers. Like the first method, as described above
and shown in FIG. 3A, the second method is also iterative; however, it does not use flags.
Instead, based on the result of the summation (in block 302), the values of the numbers
themselves are updated (blocks 504 and 508). In response to determining that the sum of the
MSBs is greater than or equal to | {'Yes’ in block 302}, the MSB of the output number is set to
one (block 305) and all the bits in those numbers with an MSB=0 are set to zero (block 504) and
in response to determining that the sum of the MSBs is not greater than or equal to | (No' in
block 302}, the MSB of the output number is set to zero (block 307) and the all the bits in those
numbers with an MSB=1 ars set {0 one {block 506).

{0102} The second iteration (j=m-2) starls by taking the next bit from each of the numbers
(block 508}, where some of these numbers may be the original numbers and others are the
numbers that were modified in the first iteration (e.g. in block 504 or 508). The bits are summed
and dependent upon the whether the sum is greater than or equal to i (in block 302), ons or
more of the remaining, original numbers may be set to all zeros (in block 504) or all ones {in
block 506) and a further bit is added to the output number (in block 305 or 307).

[0103] The updating of the numbers (in blocks 504 and 506) can also be described by the
_following logic equations:

zelh] = y[1- Caclil + % [hD + ¥ (e [+ i [0D)
forh=0,1, ..., m-1.

[0104] The method of FIG. 5 may then be repeated for all m bits in the input numbers or, in
various examples, there may be additional logic that identifies when a result has been obtained
earlier {i.e. when there is only one distinct value left among the updated numbers Ny which are
not all ones or all zeros) and outputs the result at that stage (as described above). As noted
above, this becomes more complex if there may be more than one number that is the i biggest.

[0105] The method of FIG. 5 can be described with reference to the example shown in FIG. 8,
where n=5 and i=3. In the first iteration 802, the MSBs of each number are summed and the
result is 3. As the sum is equal to | ('Yes’ in block 302), the MSB of the output number 603 is set
to one (block 308} and those numbers where the MSB is zero are modified so that all their bits
are equal to zero (block 504) and in the example shown numbers Ny and Ns are modified in this
way.

[0106] In the second iteration 604, the next bits in each of the 5 numbers (original numbars N,
Na, Nz and modified numbers Ny and M) are summed and the result is 1. As the sum is less
than i ('No’ in block 302}, the next most significant bit of the oulput number 603 is set o zero
{block 307) and those numbers where the bit is one are modified so that all their bits are equal
to one (biock 506) and in the example shown number N; is modified in this way.

[0107] in the third iteration 6086, the next bits in each of the 5 numbers (original numbers Ny and
Na and modified numbers Ny Nz and Ni) are summed and in this case the result is 2. As the sum
is less than | ('No’ in block 302}, the next bit of the output number 603 is set to one (block 307)
and those numbers where the bit is one have all their bits set equal to one (block 506) and in
the example shown number Ng is modified in this way. Al this point there is only one original
number in the set (i.e. one number that is not all ones or all zeros), number N, and this is

i7

therefore the output number, i.e. the i largest number from the input set. The method may stop
at this peint {e.g. if logic is provided to assess the flags and determine when only one original,
unmodified number remains in the set) or the method may continue until all bits have been
assessed and all bits of the culput number generated {one bit per iteration).

[0108] Whilst FIG. 5 shows a first example method of calculating {or identifying) the i largest
number from the input set of n m-bit numbers, a very similar method may be used to calculate
{or identify) the p' smallest number from the input set of n m-bit numbers. Like in the method of
FIG. 38, this involves changing the metheod of FIG. 5 only such that the summation is compared
to the value of (n-p} or {n+1-p) rather than i {in block 302). Where (n-p) is used, if the sum of bils
is strictly greater than {n-p), then the next bit in the output number is set fo one and those
numbers with a bit equal to zero are modified so that all the bits are equal to zero (block 504)
and in response to determining that the sum is not greater than (n-p}, the next bit in the output
number is set to zero and those numbers with a bit equal 1o one are modified so that all the bits
are equal to one (block 506). Alternatively, where (n+1-p} is used, if the sum of bits is greater
than or equal to {n+1-p} then the next bit in the output number is set fo one {block 305) and
those numbers with a bit equal to zero are modified so that all the bits are equal to zero (block
504} and in response to determining that the sum is less than (n+1-p), the next bit in the output
number is set to zero {block 307} and those numbers with a bit equal to one are modified so that
ali the bits are equal to one (block 506).

[3108] In ancther example method of calculating the p® smallest number from the input setof n
m-bit numbers, all the input numbers Ny may be bitwise inverted (N, — N} and then the method
of FIG. 5 may be used with i=p, so long as the final output is inverted back to its original form
prior to being output.

[0110] FIG. TA is a flow diagram of a third example method of calculating (or identifying) the i
largest number from the input set of n m-bit numbers. Like the first and second methods, as
described above and shown in FiGs. 3A and 5§, the third method is also iterative. Like the
second method (shown in FIG. 5}, the third method modifies numbers instead of using flags;
however, instead of modifying some numbers to all zeros and others to all ones, all numbers
are modified to be the same value (e.g. all zeros or all ones) and in the examples shown, all
numbers are modified to be all zeros. In response o determining that the sum of the MSBs is
greater than or equal to i {('Yes in block 302), the next bit in the cutput number is set to one
{block 305} and all the bits in those numbers with an MSB=0 are set to zero (block 504). In
response {0 determining that the sum of the MSBs is not greater than or equal to | (No’ in block
302}, the next bit in the output number is set to zero (block 307) and all the bifs in those
numbers with an MSB=1 are set {o zero {block 706} and then, in order that the next iteration
performs a correct comparison (in block 302), the value of i is then decremented by the total of
the summation in that iteration (block 707).

{0111] The second iteration (j=m-2) starls by taking the next bit from each of the numbers
{block 508), where some of these numbers may be the original numbers and cthers are the
numbers that were modified {e.g. to be all zeros) in the first iteration. The bits are summed and
dependent upon the whether the sum is greater than or equal to i {in block 302), the next bit in
the output integer is set (in block 305 or 307) and different numbers from the remaining, original
numbers may be set {o all zeros (in block 504 or 708). Only if the sum was less than i ('No’ in

I8

block 302}, is the value of | is further decremented by the total of the summation in that iteration
{block 707). The method of FIG. 7A may then be repeated for all m bits in the input numbers or,
as described above, the method may be terminated when all except for one of the numbers in
the input set have been modified (e.g. to all zeros) and this remaining number is then the cutput
number,

[0112] The updating of the numbers (in blocks 504 and 708) can also be described by the
following logic equations:

zilk] = (U1 - % 0T) + U7 - xli])) - 2]
forh=0,1, .., m1

{0113] The method of FIG. 7A can be described with reference to the example shown in FIG. 8,
where n=5 and i=3. In the first iteration 802, the MSBs of each number are summed and the
result is 3. As the sum is equal to | ("Yes' in block 302), the MSB of the cutput number 803 is set
to one {block 3058) and those numbers where the MSB is zero are modified so that all their bits
are equal to zero (block 504) and in the example shown numbers Nt and Ny are modified in this
way.

[0114] In the second iteration 804, the next bits in each of the 5 numbers {(original numbers Na,
N2, Ns and modified numbers Ny and Ny} are summed and the result is 1. As the sum is less
than i {'No’ in block 302), the next bit in the cutput number is set to zero (block 307) and those
numbers where the bit is one are modified so that all their bits are equal to zero (block 708) and
in the example shown number Nz is modified in this way. The value of i is then decremented by
the result of the summation (i.e. by one) so that for the next iteration i=2.

{0115} in the third iteration 806, the next bits in each of the 5 numbers {original numbers Ny and
N; and modified numbers Ny Ny and Nai) are summed and in this case the result is 1. As the sum
is less than i ('No’ in block 302}, the next bit in the output number is set to zero {block 307) and
those numbers where the bit is one are modified so that all their bits are equal fo zero (block
706) and in the example shown number Ny is modified in this way. The value of | may be
decremented again by the result of the summation {i.e. by one) so that i=1. At this point there is
only one original number in the set, number N, and this is therefore the output number, i.e. the
i largest number from the input set. The method may stop at this point (e.g. if logic is provided
to assess the flags and determine when only one original, unmodified number remains in the
set) or the method may continue until all bits have been assessed.

[0116] Whilst FIG. 7A shows a first example method of calculating {or identifying) the " largest
number from the input set of n m-bit numbers, a very similar method may be used to calculate
{or identify) the p* smallest number from the input set of n m-bit numbers, as shown in FIG. 7B.
As with FIG. 3B, whilst FIG. 7B shows a comparison, in block 303, of whether the sum is strictly
greater than {n-p}, in other examples the comparison may be whether the sum is greater than or
equal to {n+1-p). In another example method of calculating the p™ smallest number from the
input set of n m-bit numbers, all the input numbers Ny may be bitwise inverted (N, — N,) and
then the method of FIG. 7A may be used with i=p, so long as the final output is inverted back to
its original form prior to being output.

ig

{0117] FIG. 8 is a flow diagram of a fourth example method of calculating (or identifying) the i
largest number from the input set of n m-bit numbers. Like the first, second and third methods,
as described above and shown in FiGs. 3A, 5 and 7A, the fourth method is also ierative. Like
the first method (shown in FIG. 3A), the fourth method usss a flag; however, only a single flag is
used. In response to determining that the sum of the MSBs is greater than or equal to i (*Yes’ in
block 302}, the MGB of the output number is set to one (block 305) and the flag is set for those
numbers with an MSB=0 (block 904). In response {o determining that the sum of the MSBs is
not greater than or equal to | (No’ in block 302}, the MSB of the output number is setl o zero
{block 307) and the flag is set for those numbers with an MSB=1 (block 908) and then, in order
that the next iteration performs a correct comparison (in block 302), the value of i is then
decremented by the total of the summation in that iteration (block 707).

[0118] The second iteration {j=m-2) starts by taking the next bit from each of the numbers and
modifying the bits using the flag values (block 808). If the flag is set for a number, then the bit is
set to a predefined value, e.g. zero, irrespective of whether the bit value is actually a one or a
zero. i the flag is not set, then the value of the bit is left unchanged.

{0118] The alteration of the bits (in block 808) can also be described by the following logic
squation:

2] = %1 flag s + 1]

The corresponding hardware arrangement 340, which may be replicated n-times (one for each
number in the set 200) is shown in FIG. 31 and comprises a NOT gate 342 and an AND gate
344, i.e. the current bit is combined with an inverted version of the cumrent flag (as set in the
pravious iteration) in an AND gate.

[0120] The altered bits (as generated in block 808) are then summed and dependent upon the
whether the sum is greater than or equal to i (in block 302}, one or more further flags may be
set (in block 904 or 906). If the predefined value is zero and the sum was less than i {N¢' in
block 302}, the value of i is updated by decrementing the threshold value by the total of the
summation in that iteration (block 707). Letling i; denote the threshold value, i, used in the

comparison of the /™ bits, this updating can be described by:

.o ij'{"l ifsu?nj.g.l _.>. ij+1

5= fpq = sumy if sumyy < gy’
in a variation of that shown in FIG. 8, if the predefined value is one (instead of zero) and the
sum was greater than or equal to i {'Yes' in block 302), the value of i is updated by incrementing
the threshold value by the number of rows which are changed this iferation, this will be the total

number of inputs minus the tofal of the summation in that iteration (block 707) this updating can
be described by:

{ij'i'l ifsumj+1 < ij"}'l

fppg + (n— sumyyq) fsumpy =i

The method of FIG. 8 (or the variation of that method) may then be repeated for ali m bits in the
input numbers.

[0121] Whilst FIG. @ shows a first example method of calculating (or identifying) the i largest
number from the input set of n m-bit numbers, a very similar method may be used to calculate

28

{or identify) the p® smallest number from the input set of n m-bit numbers by changing the
comparison performed (e.g. from block 302 to block 303 or to the modified version of block 303
described above, where the sum is compared to (n+1-p)) and the way in which the threshold is
updated (e.g. from block 707 to block 717). In ancther example method of calculating the p®
smallest number from the input set of n m-bit numbers, all the input numbers N may be inverted
(N — N} and then the method of FIG. 9 may be used with i=p, so long as the final output is
inverted back to its original form.

{0122] In yet further variations, instead of using flags or updating the bits within the numbers,
bits in a mask may be set in response to the comparison {e.g. in block 302) and then for
subseguent iterations, the bifs in the numbers may be combined (e.q. using AND gates) with the
mask values. This has the same effect as the updating of the numbers (in the examples
described above).

{0123} Synthesis experiments suggest that the use of two flags {as in the methods of FiGs. 3A
and 3B) is more efficient in some circumstances than the other methods described herein in the
sense that it requires smaller area of hardware logic to implement. In other circumsiances the
other methods described herein may be more efficient (e.g. the method of FIG. 5 may be more
efficient if the cost of a register to store flags is more than the additional logic to update the bits
in the input numbers and/or the methods of FiGs. 7A, 7B and 9 may be more efficient in
circumstances where the logic that performs the updating of | or p can be made small).

{0124} Furthermore, unlike the other methods described herein, the use of two flags (as in the
methods of FIGs. 3A and 3B} enables the identification of two subsets of the set of numbers
200. Having determined the i" largest number or the p* smallest number from the input set of n
m-bit numbers, the maximum flags may be used to identify all numbers within the set that are
larger than the output number and the minimum flags may be used to identify all numbers within
the set that are smaller than the output number. This may then be used iteratively to implement
a sorting operation and an example of a 4T-sorter which works when each of the N, are unique
is shown in FIG. 10, where T is an integer. As shown in FIG. 10, the input set comprises 4T
input numbers (n=4T), the method of FIG. 3A is then used (in biock 1002) to find the largest four
numbers in the input set (e.g. by sefting i=4). The largest four numbers from the input set are
then input to a 4 sorter (block 1004). These largest four numbers are also masked from the
input set using a flag, e.g. the min_flag (block 1006} and the masked input set are then input to
a second iteration of the method of FIG. 3A (block 1002). Alternatively, the masking may use
the max_flag and in such an implementation, the value of | that is used in subsequent iterations
of block 1002 increases by four for each iteration. In this case an additional flag would be
required for each number to keep track of which numbers had previously been passed to the 4
sorter. Such a sorting arrangement can be implemented in a small area of hardware logic
because of its iterative nature and because the 4-sorier can be implemented in a very smali
area of hardware logic. In further examples, a sorting operation may be implemented by only
using the methods of FiGs. 3A and/or 3B.

[0125] i the inputs N, o the method of FIG. 10 were not known to be unigue then there are
extra complications. For example if five inputs were the same value it would not be possible to
pass these five values 1o the 4 sorfer. A solution, in the case where the min_flag is being set, is
to count how many outputs are sent and if this value is greater than 4 ignore the output and set

21

the value of { to 1 for the next iteration. This way all outputs from this next iteration will have the
same value and these values could bypass the 4 sorter. The min_flag on these inputs would be
set and the value of { would be set to 4 again for the next iteration. This exira logic will cost area
to implement in hardware and reduce throughput of the system.

[0126] FIG. 12A is a schematic diagram of a hardware logic unit 1230 arranged fo implernent
the methods described above (i.e. to select an i" largest or p™ smallest number from a set of n
m-bit numbers). As shown in FIG. 12A, the hardware logic unit 1230 comprises a summation
logic unit 1232, a comparison logic unit 1234 and an updating logic unit 1236. The hardware
logic unit 1230 also comprises an output 1238 and may comprise an input (not shown in FIG.
12A) for receiving the set of n m-bit numbers. As described above, the summation logic unit
1232 is arranged {o sum a bit from sach of the m-bit numbers to generate a summation result,
wherein all the bits being summed occupy an identical bit position within their respective
number and an example implementation is shown in FIG. 3F and described above. The
comparison logic unit 1234 is arranged to compare the summation result generated by the
summation logic in that iteration o a threshold value and set a bit of the selected number based
on an outcome of the comparison. The updating logic unit 1236 is arranged, for each of the m-
bit numbers, to selectively update a bit in the m-bit number occupying a next bit position based
on the outcome of the comparison in that iteration and a value of the bit from the m-bit number
and example implementations are shown in FiGs. 3D and 3! and described above. The term
‘selectively update’ refers to the fact that the updating logic may not necessarily change the
vaiues of any bits when performing an updats.

{0127} As shown in FIG. 12A and described above, the hardware logic unit 1230 may
additionally comprise a flag controf logic unit 1235 and/or an early exit logic unit 1237. The flag
contfrol logic unit 1235 is arranged to selectively set a flag associated with the m-bit number
based on the outcome of the comparison and a value of the bit from the m-bit number (where
the term 'selectively’ is used as described above, to indicate that a flag value may be changed
or left unchanged in any iteration) and two example implementations of the flag control logic unit
1235 are shown in FiGs. 3G and 3H and described above. The early exit logic unit 1237 is
arranged to determine when a result has been obtained before all m iterations are complete and
then output the result (or the dala identifying the result) at that stage. This determination by the
early exit logic unit 1237 may be made based on analysis of flag values and/or the output from
the updating logic unit 1236 (i.e. by determining that all except one of the m-bit numbers has
had ali of its bit values updated to a predefined valus).

{0128] FiGs. 11A-11C show three example area-delay graphs for hardware that implements the
methods described herein to find the median of a set of input numbers (the curve labelled
‘radix_mediar’ in the graphs). In such examples,
. _n+1
PE { 2 J
And the hardware is arranged to find the i largest item in a list of size n of Um values {i.e.
unsigned m-bit numbers). In the graph shown in FIG. 11A, n=7 and m=18, in the graph shown
in FIG. 11B, n=7 and m=11 and in the graph shown in FIG. 11C, n=32 and m=5. As shown in
the graphs, the hardware can be made smaller than alternative hardware (e.g. the
‘ransposition_median’ hardware that uses a bubble sort network with only the median output

22

connected and the 'batcher_median’ hardware that comprises a batcher odd-even merge sort
network} but this smaller hardware is typically slower {i.e. it involves a larger delay).

[0128] Although the methods are described herein with a single bit being assessed in each
iteration, in other examples, more than one bit {e.g. bit pairs) may be assessed in each iteration.
This increases the size of the hardware that implements the method but increases the
throughput of the hardware.

[0130] In the examples described above, there are n numbers in the input set and the number
sorting hardware logic unit is arranged {o identify the i largest or p™ smallest number from that
input set. In some examples, however, there may be fewer than n numbers in the input set, e.g.
n’ numbers in the input set. In such examples, where flags are used {e.g. in the methods of
FiGs. 3A and 3B}, pre-masking may be used such that the initial values of some of the flags
may be set (e.g. set to one, rather than zero). In the event that the i largest number is to be
identified using the method of FIG. 3A, the n’ numbers are positioned at the start of the set (as
numbers No to Nuy) and it is the last (n-n') flags that are set, L.e. the flags for numbers Ny to Ni
1. In contrast, if the p™ smallest number is to be identified using the method of FIG. 3B, the o’
numbers are positioned at the end of the set (as numbers Nox 10 Ne) and it is the first (n-n')
flags that are set, i.e. the flags for numbers Np to Ny.nt. Pre-masking may similarly be applied to
the flags in the method of FIG. 9. Additionally, where the other methods are used that do not
use flags {2.g. as shown in FIGs. 5, 7A and 7B), instead of using pre-masking, the input sef of n'
numbers may be padded by the addition of n-n' dummy input numbers, with the bits of these
dummy input numbers being either all Os where the hardware is configured to identify i largest
number or all 1s where the hardware is configured to identify the p™ smallest number.

0131} In the examples described above, each of the input numbers N, are m-bit numbers,
where m is fixed and is the same for all input numbers in the set. In other examples, whilst, the
input numbers may each comprise m-bits if fully generated, not all m-bits {of some or all of the
input numbers) may be available (i.e. generated) in a particular iteration. Any of the methods
described above may be modified to operate on such input numbers which may be generated
by any MGSB-first iterative process {(such as CORDIC or Online Arithmetic) and in such
exampies, the index, |, represents the bit index assuming all m-bits have been generated. As
noted above, j=m-r in exampiles in which one bit position is considered per iteration.

{0132] In such examples, the additional logic {as described above) may, for example, be used
to halt an MSB-first iterative process for generating a particular input number once it is clear that
the number the process is generating will not be the i largest (or p™ smallest, depending upon
the implementation). it is therefore useful to determine this at any early stage and avoid
unnecessary computation and hence save power.

{0133] In various examples, it may be that the numbers N, are values with no finite binary
representation in the standard fixed point format (such as 1/3 or the square root of 2) which are
being generated 1-bit at a time (and hence, whilst m is an integer, the value of m is not fixed but
increases in value as more bits are generated). Using the additional logic, the ¥ largest (or p®
smallest, depending upon the implementation) of these numbers may be able to be found by
looking at the top rmacbits, and then the methods described herein would be able to indicate
which of the inputs is the " largest (or p™ smallest, depending upon the implementation) and
stop the calculations after rmax iterations {e.g. where rma=100). Alternatively, whilst the output

23

value may not definitely be the i largest (or p* smallest, depending upen the implementation),
the value of rrax may be set that the output number has a high probability of being the I largest
{or p*" smaliest, depending upon the implementation). In a variation on this, there may be
various check points implemented (e.qg. various values of rmax) and a decision may be mads at
each check point in turn until the output number can be identified, without performing this
decision al each iteration.

(0134} FIG. 14 is a flow diagram of an example method of generating and selecting a number
from a set of n numbers that are generated iteratively, starting with the MSB. Such a process is
referred to as an MSB-first iterative generative process. As shown in FIG. 14, the set of n
numbers are generated using a MSB-first iterative gensrative process (block 1402) concurrently
with a selection process (block 1404). The selection process {in block 1404) selects either an i
largest or a p™ smallest number from the set of n numbers using the methods described above
and such methods may be described as a MSB-first iterative selection process. The method
further comprises, in response to the MSB-first iterative selection process determining that a
particular one of the numbers of said set of n numbers will not be the selected number {‘Yes’ in
block 1406}, halling the generation of said particular number by said MSB-first iterative
generating process after at least one of the bits of said parficular number has been generated
and before all of the bits of said particular number have been generated (block 1408). The
method continues until the selection process (in block 1404) selecis the i largest or a p®
smallest number from the set of n numbers and then, as described above, dala indicative of the
selected number is output.

[0135] FIG. 12B is a schematic diagramn of a processing unit 1240 arranged to generate and
select a number. The processing unit 1240 comprises a generation logic unit 1242, a selection
logic unit 1244 and an output 1246. The generation logic unit 1242 is arranged to perform a
MSB-first iterative generating process for generating a set of n numbers. The selection logic unit
1244 is arranged to operate concurrently with the generation logic unit 1242, The selection logic
unit 1244 is arranged to perform a MSB-first iterative selection process to select either an i
largest or a p" smallest number from the set of n numbers and consequently, the selection logic
unit 1244 may comprise some or all of the elements of the hardware logic unit 1230 shown in
FiG. 12A and described above. The output 1248 is arranged to output data indicative of the
selected number. The processing unit 1240 is further arranged in response to the selection logic
unit 1244 determining that a particular one of the numbers of said set of n numbers will not be
the selected number, to trigger (or otherwise cause) the generation logic unit 1242 to halt the
generation of that particular number. In this way, the generation {(by the MSB-first iterative
generating process) is stopped for one or more of the numbers afler at least one bit of each
number has been generated and before all of the bits of the one or more numbers have been
gensrated.

[0136] In some of the examples described above and shown in the drawings, the use of specific
logic gates (e.g. NOT, AND, OR gates) is described. It will be appreciated that in other
examples, any arrangement of hardware logic that implements the same functionality (e.g. as a
NOT, AND or OR gales) may be used instead of a single logic gate and these may be referred
to as logic blocks {e.g. NOT, AND and OR logic blocks).

i4

10137} The methods described above may be implemented in hardware {e.g. within a number
sorting hardware logic unit) or soflware. FIG. 12C shows a computer system in which the
methods described herein may be implemented, e.g. within the central processing unit (CPU)
1202 or graphics processing unit (GPU} 1204, As shown in FIG. 12C, the computer system
further comprises a memory 1206 and other devices 1214, such as a display 1216, speakers
1218 and a camera 1220. The components of the computer system can communicate with
each other via a communications bus 1222.

[0138] The methods described herein may be embodied in hardware on an integrated circuit,
e.g. within an number sorting hardware logic unit. Generally, any of the functions, methads,
techniques or components described above can be implemented in software, firmware,
hardware (e.g., fixed logic dircuitry), or any combination thereof. The terms “module,”
“functionality,” “component”, “slement’, "unit”, “block” and “logic” may be used hersin to
generally represent software, firmware, hardware, or any combination thereof. In the case of a
software implementation, the module, functionality, component, slement, unit, block or logic
represents program code that performs the specified {asks when executed on a processor. The
algorithms and methods described herein could be performed by one or more processors
executing code that causes the processor(s) to perform the algorithms/methods. Examples of a
computer-readable storage medium include a random-access memory (RAM), read-only
memory (ROM), an optical disc, flash memory, hard disk memory, and other memory devices
that may use magnetic, optical, and other technigues to store instructions or other data and that
can be accessed by a machine.

[0138] The terms computer program code and computer readable instructions as used herein
refer {o any kind of execuiable code for processors, including code expressed in a machine
language, an interpreted language or a scripting language. Executable code includes binary
code, machine code, bylecods, code defining an integrated circuit (such as a hardware
description language or netlist), and code expressed in a programming language code such as
C, Java or OpenClL. Executable code may be, for example, any kind of software, firmware,
script, module or library which, when suitably exscuied, processed, interpreted, compiled,
executed at a virtual machine or other sofiware environment, cause a processor of the
computer system at which the executable code is supported to perform the tasks specified by
the code.

{0140] A processor, computer, or compuier system may be any kind of device, machine or
dedicated circuit, or collection or portion thersof, with processing capability such that it can
execute instructions. A processor may be any kind of general purpose or dedicated processor,
such as a CPU, GPU, System-on-chip, state machine, media processor, an application-specific
integrated circuit (ASIC), a programmable logic array, a field-programmable gate array (FPGA),
physics processing units (PPUs), radio processing units (RPUs), digital signal processors
{DSPs), general purpose processors {e.g. a general purpose GPU), microprocessors, any
processing unit which is designed fo accelerate tasks ouiside of a CPU, elc. A computer or
computer system may comprise one or more processors. Those skilied in the art will realize
that such processing capabilities are incorporated into many different devices and therefore the
term ‘computer includes sel top boxes, media players, digital radios, PCs, servers, mobile
telephones, personal digital assistants and many other devices.

25

[0141] it is also intended to encompass software which defines a configuration of hardware as
described herein, such as HDL (hardware description language) software, as is used for
designing inlegrated circuits, or for configuring programmable chips, to carry out desired
functions. That is, there may be provided a compuler readable storage medium having
encoded thereon computer readable program code in the form of an integrated circuit definition
dataset that when processed {i.e. run) in an integrated circuit manufacturing system configures
the system to manufacture hardware logic configured to perform any of the methods described
hersin, or to manufaclure a processor comprising any apparatus described herein. An
integrated circuit definition dataset may be, for example, an integrated circuit description.

[0142] Therefore, there may be provided a method of manufacturing, at an integrated circuit
manufacturing system, a processor comprising hardware logic configured to perform one of the
methods as described herein. Furthermore, there may be provided an integrated circuit
definition dataset that, when processed in an integrated circuit manufacturing system, causes
the method of manufacturing processor comprising the hardware logic to be performed.

{0143] An integrated circuit definition dataset may be in the form of computer code, for example
as a netlist, code for configuring a programmable chip, as a hardware description language
defining an infegrated circuit at any level, including as register transfer level (RTL) code, as
high-level circult represeniations such as Verilog or VHDL, and as low-level circuit
representations such as OASIS (RTM) and GDSH. Higher level representations which logically
define an integrated circuit (such as RTL) may be processed at a computer system configured
for generating a manufacturing definition of an integrated circuit in the context of a software
environment comprising definitions of circuit elements and rules for combining those elements
in order o generate the manufacluring definition of an integrated circuit so defined by the
representation. As is typically the case with software executing at a computer system so as to
define a machine, one or more intermediate user steps {e.g. providing commands, variables
stc.} may be required in order for a computer system configured for generating & manufacturing
definition of an integrated circuil to exscule code defining an integrated circuit so as to generate
the manufacturing definition of that integrated circuit.

[0144] An example of processing an integrated circuit definition dataset at an integrated circuit
manufacturing system so as to configure the system to manufacture a processor comprising
hardware logic configured to perform one of the methods as described herein will now be
described with respect to FIG. 13.

[0145] FIG. 13 shows an example of an integrated circuit (IC} manufacturing system 1302
which is configured to manufaciure a number sorting hardware logic unit and/or a processor
comprising hardware logic configured to perform one of the methods as described herein. In
particular, the 1C manufacturing system 1302 comprises a layout processing system 1304 and
an integrated circuit generation system 1306. The 1C manufacturing system 1302 is configured
to receive an IC definition dataset {e.g. defining a processor comprising hardware logic
configured to perform one of the mesthods as described herein), process the 10 definition
dataset, and generate an IC according to the IC definition dataset {e.g. which embodiss an
number sorting hardware logic unit and/or a processor comprising hardware logic configured (o
perform one of the methods as described herein). The processing of the IC definition datasst
configures the 1C manufacturing system 1302 to manufacture an integrated circuit embodying a

26

processor comprising hardware logic configured to perform one of the methods as described
hersin.

[0148] The layout processing system 1304 is configured to receive and process the IC definition
dataset to determine a circuit layout. Methods of determining a circuit layout from an {C
definition dataset are known in the arl, and for example may involve synthesising RTL code to
determine a gale level representation of a circuit fo be generated, e.g. in terms of logical
components {e.g. NAND, NOR, AND, OR, MUX and FLIP-FLOP components). A circuit layout
can be determined from the gate level representation of the circuit by determining positional
information for the logical components. This may be done automatically or with user
involvement in order to optimise the circuit layout. When the layout processing system 1304
has determined the circuit layout it may output a circuit layout definition to the 1C generation
system 1308. A circuit layout definition may be, for example, a circuit layout description.

[0147] The {C generation system 1306 generates an IC according to the circuit layout definition,
as is known in the arl. For example, the IC generation system 1306 may implement a
semiconductor device fabrication process to generate the 1C, which may involve a multiple-step
sequence of photo lithographic and chemical processing steps during which electronic circuils
are gradually created on a wafer made of semiconducting material. The circuit layout definition
may be in the form of a mask which can be used in a lithographic process for generating an IC
according to the circuit definition. Alternatively, the circuit layout definition provided to the IC
generation system 1306 may be in the form of computer-readable code which the 1C generation
system 1306 can use {o form a suitable mask for use in generating an IC.

[0148] The different processes performed by the IC manufacturing system 1302 may be
implemented all in one location, e.g. by one party. Alternatively, the IC manufacturing system
1302 may be a distributed system such thal some of the processes may be performed at
different locations, and may be performed by different parties. For example, some of the stages
of. (i} synthesising RTL code representing the IC definition dataset to form a gate level
representation of a circuit to be generated, (i) generating a circuit layout based on the gate level
representation, (ili} forming a mask in accordance with the circuif layout, and (iv) fabricating an
integrated circuit using the mask, may be performed in different locations and/or by different
parties.

10148] In other examples, processing of the integrated circuit definition dataset at an integrated
circuit manufacturing system may configure the system to manufacture a processor comprising
hardware logic configured to perform one of the methods as described herein without the IC
definition dataset being processed so as to determine a circuit layout. For instance, an
integrated circuit definition dataset may define the configuration of a reconfigurable processor,
such as an FPGA, and the processing of that dataset may configure an 1C manufacturing
system to generate a reconfigurable processor having that defined configuration {e.g. by loading
configuration data {o the FPGA).

{0150} In some embodiments, an integrated circuit manufacturing definition dataset, when
processed in an integrated circuil manufacturing sysiem, may cause an integrated circuit
manufacturing system to generale a device as described herein. For example, the configuration
of an integrated circuit manufacturing system in the manner described above with respect to

27

FiG. 13 by an integrated circuit manufacturing definition datasel may cause a device as
described hersin o be manufactured.

[0151] In some examples, an integrated circuit definition dataset could include software which
runs on hardware defined at the dataset or in combination with hardware defined at the dataset.
In the example shown in FIG. 13, the IC generation system may further be configured by an
integrated circuit definition dataset to, on manufacturing an integrated circuit, load firmware onto
that integrated circuit in accordance with program code defined at the integrated circuit
definition dataset or otherwise provide program code with the integrated circuit for use with the
integrated circuit.

{0152} Those skilled in the art will realize that storage devices ulilized fo store program
instructions can be disiributed across a network. For example, a remote computer may store an
example of the process described as sofiware. A local or terminal computer may access the
remote computer and download a part or all of the software to run the program. Alternatively,
the local computer may download pisces of the software as needed, or execute some sofiware
instructions at the local terminal and some at the remote computer (or computer network).
Those skilled in the art will also realize that by utilizing conventional techniguss known to those
skilled in the art that all, or a portion of the sofiware instructions may be carried out by a
dedicated circuit, such as a DSP, programmabile logic array, or the like.

{01563} The methods described herein may be performed by a computer configured with
software in machine readable form stored on a tangible storage medium e.g. in the form of a
computer program comprising compuier readable program code for configuring a computer to
perform the constituent portions of described methods or in the form of a computer program
comprising computer program code means adapied to perform all the steps of any of the
methods described herein when the program is run on a computer and where the computer
program may be embodied on a computer readable storage medium. Examples of tangible {or
non-transitory} storage media include disks, thumb drives, memory cards etc. and do not
include propagated signals. The software can be suitable for execution on a parallel processor
or a serial processor such that the method steps may be carried out in any suitable order, or
simultaneously.

{0154] The hardware components described herein may be generated by a non-transitory
computer readable storage medium having encoded thereon computer readable program code.

{0155] Memories storing machine executable data for use in implementing disclosed aspecis
can be non-transitory media. Non-transitory media can be volatile or non-volatile. Examples of
volatile non-transitory media include semiconductor-based memory, such as SRAM or DRAM.
Examples of technologies that can be used o implement non-volatile memory include optical
and magnetic memory technologies, flash memory, phase change memory, resistive RAM.

{01568] A particular reference 1o “logic” refers to structure that performs a function or functions.
An example of logic includes circuitry that is arranged to perform those function(s). For
example, such circuitry may include transistors and/or other hardware slements available in a
manufacturing process. Such fransistors and/or other elements may be used to form circuitry or
structures that implement and/or contain memory, such as registers, flip flops, or latches, logical
operators, such as Boolean operations, mathematical operators, such as adders, multipliers, or

28

shifters, and interconnect, by way of example. Such elements may be provided as custom
circuits or standard cell libraries, macros, or at other levels of abstraction. Such elements may
be interconnected in a specific arrangement. Logic may include circuitry that is fixed function
and circuitry can be programmed to perform a function or functions; such programming may be
provided from a firmware or software update or control mechanism. Logic identified to perform
one function may also include logic that implements a constituent function or sub-process. In
an example, hardware logic has circuitry that implements a fixed function operation, or
operations, state machine or process.

[0157] The implementation of concepts set forth in this application in devices, apparatus,
modules, and/or systems {(as well as in methods implemented herein) may give rise to
performance improvements when compared with known implementations. The performance
improverments may include one or more of increased computational performance, reduced
latency, increased throughput, and/or reduced power consumption. Buring manufacture of such
devices, apparatus, modules, and systems (e.g. in inlegrated circuits) performance
improvements can be traded-off against the physical implementation, thereby improving the
method of manufacture. For example, a performance improvemant may be ifraded against
fayoul area, thereby matching the performance of a known implementation but using less
sificon. This may be done, for example, by reusing functional blocks in a serialised fashion or
sharing functional blocks between elements of the devices, apparatus, modules and/or systems.
Conversely, concepts set forth in this application that give rise to improvements in the physical
implementation of the devices, apparatus, modules, and systems (such as reduced silicon area)
may be traded for improved performance. This may be done, for example, by manufacturing
mutiple instances of a module within a predefined area budget.”

{0158} Any range or device value given herein may be extended or altered without losing the
effect sought, as will be apparent to the skilled person.

{0158] It will be understood that the benefits and advantages described above may relate to
one embodiment or may relate to several embodiments. The embodiments are not limited to
those that solve any or all of the stated problems or those that have any or all of the stated
benefils and advantagss.

[0160] Any reference {o ‘an’ Hem refers to one or more of those items. The term ‘comprising' is
used herein 1o mean including the method blocks or slements identified, but that such blocks or
glements do not comprise an exclusive list and an apparatus may contain additional blocks or
glements and a method may contain additional operations or elements. Furthermore, the
blocks, elements and operations are themselves not impliedly closed,

[0161] The steps of the methods described herein may be carried out in any suitable order, or
simultaneously where appropriate. The arrows between boxes in the figures show one example
sequence of method steps but are not intended to exclude other sequences or the performance
of multiple steps in parallel. Additionally, individual blocks may be deleted from any of the
methods without departing from the spirit and scope of the subject matter described herein.
Aspects of any of the examples described above may be combined with aspecis of any of the
other examples described to Torm further examples without losing the effect sought. Where
elements of the figures are shown connected by arrows, it will be appreciated that these arrows

29

show just one example flow of communications (including data and control messages) between
elements. The flow between elements may be in either direction or in both directions.

(0162} The applicant hereby discloses in isolation each individual feature described herein and
any combination of two or more such fealures, o the extent that such features or combinations
are capable of being carried out based on the present specification as a whole in the light of the
common general knowledge of a person skilled in the ar, irrespective of whether such features
or combinations of features solve any problems disclosed herein. In view of the foregoing
description it will be evident to a person skilled in the art that various modifications may be
made within the scope of the invention.

30

Claims

1. A method of selecling, in hardware logic, a number from a set of n m-bit numbers,
whersin the selected number is either an ¥ largest or a p® smallest number from the set of n m-
bit numbers, where |, p, m and n are integers, the method comprising a plurality of iterations and
each of the iterations comprising:

summing a bit from each of the m-bit numbers to generate a summation result, wherein
all the bits being summed occupy an identical bit position within their respective number;

comparing the summation result to a threshold valus {302, 303), wherein the threshold
value is calculated based onior p;

setting, based on an oulcome of the comparison, a bit of the selected number (305,
307}, and

for each of the m-bit numbers, based on the outcome of the comparison and a value of
the bit from the m-bit number, selectively updating a bit in the m-bit number occupying a next bit
position (308),

whersin in a first iteration, a most significant bit from each of the m-bit numbers is
summed and a most significant bit of the selected number is set and each subsequent iteration
sums bits occupying successive bit positions in their respective numbers and sets a next bit of
the selected number, and

wherein the method comprises outputling data indicative of the selected number.

2. The method according to claim 1, wherein oulputting data indicative of the selected
number comprises either:

outputting the selected number; or

outputiing an indication of the position, within the n m-bit numbers, of the selecied
number.

3. The method according to claim 1 or 2, wherein setting, based on an ouicome of the
comparison, a bit of the selected number comprises:

in response to delermining that the summation resulf exceeds the threshold value,
setting the bit of the selected number to one (305); and

in response o determining that the summation result is less than the threshold value,
setling the bit of the selected number to zero (307).

4. The method according fo any of claims 1-3, wherein, in a ™" iteration, summing a bit from
each of the m-bit numbers to generate a summation result, comprises summing a bit having a
bit index m-r from each of the m-bit numbers to generate a summation resull, wherein each bit
is either an original bit from one of the m-bit numbers or an updated bit from a previous iteration.

5. The method according o any of claims 1-4, wherein the selected number is the i
largest number from the set of n m-bit numbers and the threshold value is equal fo i.

3

8. The method according to any of claims 1-4, wherein the selected number is the p*
smallest number from the set of n m-bit numbers and the threshold value is equal to {(n-p) or (n-

p+i).

7. The method according to any of claims 1-6, wherein selectively updating a bit in the m-
bit number occupying & next bit position based on the outcome of the comparison and a value
of the bit from the m-bit number comprises:

selectively setling a flag associated with the m-bit number based on the outcome of the
comparison and a value of the bit from the m-bit number (304, 308, 804, 806); and

selectively updating a bit in the m-bit number ocoupying a next bit position based on
values of one or more flags associated with the m-bit number {308, 908).

g. The method according to claim 7, wherein selectively setting a flag associated with the
m-bit number based on the oulcome of the comparison and a value of the bit from the m-bit
number comprises:

in response {o determining that the summation result exceeds the threshold value and
that the vaiue of the bit is zero, setting a min flag associated with the m-bit number (304); and

in response {o determining that the summation result is less than the threshold value and
that the value of the bit is one, setling a max flag associated with the m-bit number (3086),

and wherein selectively updating a bit in the m-bit number occupying a next bit position based
on values of one or more flags associated with the m-bif number comprises:

in response to determining that the max flag associated with the m-bit number is set,
setting the bit in the m-bit number occupying the next bit position to one (312);

in response to determining that the min flag associated with the m-bit number is set,
setting the bit in the m-bit number ccoupying the next bif position to zero (316); and

in response to determining that neither the max flag nor the min flag associated with the
m-bit number is sel, leaving the bit in the m-bit number occupying the next bit position
unchanged {318).

8. The method according fo claim 7, wherein selectively setting a flag associated with the
m-bit number based on the ouicome of the comparison and a value of the bit from the m-bit
number comprises:

in response io determining that the summation result exceeds the threshold value and
that the value of the bit is zero, setling a particular flag associated with the m-bit number (804);
and

in response to delermining that the summation result is less than the threshold value and
that the value of the bit is one, setling the particular flag associated with the m-bit number (806)
and updating the threshold value by an amount equal to the summation result (707),

and wherein selectively updating a bit in the m-bit number ocoupying a next bit position based
on values of oene or more flags associated with the m-bit number comprises:

in response to determining that the particular flag is set, seiting the bit in the m-bit
number occupying the next bit position to a predefined value; and

32

in response to determining that the particular flag associated with the m-bit number is
not set, leaving the bit in the m-bit number occupying the next bit position unchanged (808).

10. The method according to any of claims 7-8, wherein the methed further comprises:
determining how many of the m-bit numbers have an associated fiag that is set; and

in response to determining that n-1 of the m-bit numbers have an associated flag set,
outputting data indicative of the m-bit number without an associated flag set.

11. The method according to any of claims 1-8, wherein selectively updating a bit in the m-
bit number occupying a next bit position based on the outcome of the comparison and a value
of the bit from the m-bit number comprises:

in response to determining that the summation result exceeds the thresheold value and
that the value of the bit is zero, updating all bits in the m-bit number to zerc (504); and

in response to determining that the summation result does not exceed the threshold
vaiue and that the value of the bit is one, updating all bits in the m-bit number to one (506).

12. The method according to any of claims 1-8, wherein sslectively updating a bit in the m-
bit number occupying a next bit position based on the outcome of the comparison and a value
of the bit from the m-bit number comprises:

in response to determining that the summation result exceeds the threshold value and
that the value of the bit is zero, updating all bits in the m-bit number to zero (504); and

in response to determining that the summation result does not exceed the threshold
valug and that the value of the bit is one, updating all bits in the m-bit number to zero (708) and
reducing the threshold value by an amount equal to the summation result (707, 717).

13. The method according to any of claims 1-9, 11 and 12, wherein the method comprises m
iterations and in the m® iteration, a least significant bit from each of the m-bit numbers is
summed and a least significant bii of the selected number is set.

14. A hardware logic unit (1230) arranged to select an i largest or p™ smallest number from
a set of n m-bit numbers, where |, p, m and n are integers, the hardware logic unit being
arranged to operate iteratively and comprising:

summation logic (1232, 328) arranged o, in each iteration, sum a bit from each of the m-
bit numbers fo generate a summation result, wherein all the bits being summed occupy an
identical bit position within their respective number such that in a first iteration, a most
significant bit from each of the m-bif numbers is summed and sach subsequent iteration sums
bits cccupying successive bit positions in their respective numbers;

comparison logic {(1234) arranged io, in each iteration, compare the summation result
generated by the summation logic in that iteration to a threshold value and set a bit of the
selected number based on an ouicome of the comparison, wherein the threshold value is
calculated based oniorp;

updating logic {1236, 320, 340) arranged to, in each iteration and for each of the m-bit
numbers, selectively update a bit in the m-bit number occupying a next bit position based on the
outcome of the comparison in that iteration and a value of the bit from the m-bit number; and

33

an output (1238} arranged to oulput data indicative of the selected number.
15, The hardware logic unit according to claim 14, further comprising:

flag control logic (1235, 336, 338) arranged to seleclively set a flag associated with the
m-bit number based on the outcome of the comparison and a value of the bit from the m-bit
number,;

and wherein the updating logic (340) is arranged to selectively update a bit in the m-bit
number occupying a next bit position based on values of one or more flags associated with the
m-bit number.

16. The hardware logic unit according to claim 15, wherein the flag control logic {1235)
comprises:

a min flag logic block (336) arranged to, in response fo delermining that the summation
result exceeds the threshold value and that the value of the bit is zero, set a min flag associated
with the m-bit number,; and

a max fiag logic block (338} arranged 1o, in response to determining that the summation
result is less than the threshold value and that the value of the bit is one, set a max flag
associaied with the m-bit number,

and wherein the updating logic (320} is arranged to: in response to determining that the max
flag associated with the m-bit number is sei, set the bit in the m-bit number occupying the next
bit position to one; in response {o determining that the min flag associated with the m-bit
number is set, set the bit in the m-bit number occupying the next bit position to zero; and in
response {o determining that neither the max flag nor the min flag associated with the m-bit
number is set, leave the bit in the m-bit number cccupying the next bit position unchanged.

17. The hardware logic unit according to claim 15, wherein the flag control logic (1235) is
arranged o in response to determining that the summation result exceeds the threshold value
and that the value of the bit is zero, set a particular flag associated with the m-bit number: and
in response {o determining that the summation result is less than the threshold value and that
the value of the bit is one, set the particular flag associated with the m-bit number and updating
the threshold value by an amount equal to the summation resuit,

and wherein the updating logic (340} is arranged to: in response to determining that the
particular flag is sei, set the bit in the m-bil number occupying the next bit position to a
predefined value; and in response to determining that the particular flag is not set, leave the bit
in the m-bit number occupying the next bit position unchanged.

18. The hardware logic unit according to any of claims 15-17, further comprising:

an early exit hardware logic block (1237} arranged to determine how many of the m-bit
numbers have an associated flag that is set; and in response to determining that n-1 of the m-bit
numbers have an associated flag set, o output the m-bit number without an associated flag set
as the selecied number.

19. The hardware logic unit according to claim 14, wherein the updating logic (1238, 320,
340} is arranged fo: in response to determining that the summation result exceeds the threshold
value and that the value of the bit is zerg, update all bits in the m-bit number to zero: and in

34

response {o determining that the summation result does not exceed the threshold value and that
the value of the bil is one, update all bits in the m-bit number {o one.

20. The hardware logic unit according to claim 14, wherein the updating logic (12386, 320,
340} is arranged to: in response to determining that the summation result exceeds the threshold
value and that the value of the bit is zero, update all bits in the m-bit number fo zero; and in
response to determining that the summation result does not exceed the threshold value and that
the value of the bit is one, update all bits in the m-bit number to zero (708) and reduce the
threshold value by an amount equal to the summation result (707, 717).

21. A hardware logic unit configured to perform the method of any of claims 1-13.

22. A method of manufacturing, using an integrated circuit manufacturing system, a
hardware logic unit as claimed in any of claims 14-21.

23. An integrated circuit definition dataset that, when processed in an integrated circuit
manufacturing system, configures the integrated circuit manufacturing system to manufacture a
hardware logic unit as claimed in any of claims 14-21.

24, A computer readable storage medium having stored thereon a computer readable
description of an integrated circuit thal, when processed in an integrated circuit manufacturing
system, causes the integrated circuit manufacturing system to manufacture a hardware logic
unit as claimed in any of claims 14-21.

25. An integrated circuit manufacturing system comprising:

a computer readable storage medium having stored thereon a compufer readable
description of an integrated circuit that describes a hardware logic unit as claimed in any of
claims 14-21;

a layout processing system configured {o process the integrated circuit description so as
to generate a circuit layout description of an integrated circuit embodying the hardware logic
unit: and

an integrated circuit generation system configured to manufacture the hardware logic
unit according to the circuit layout description.

3010 19

35

AMENDMENTS TO THE CLAIMS HAVE BEEN FILED AS FOLLOWS

Claims

1. A method of selecting, in hardware logic, a number from a set of n m-bit numbers,
wherein the selected number is either an it" largest or a pi" smallest number from the set of n m-
bit numbers, where i, p, m and n are integers, the method comprising a plurality of iterations and
each of the iterations comprising:

summing a bit from each of the m-bit numbers to generate a summation result, wherein
all the bits being summed occupy an identical bit position within their respective number;

comparing the summation result to a threshold value (302, 303), wherein the threshold
value is calculated based oni or p;

setting, based on an outcome of the comparison, a bit of the selected number (305,
307); and

for each of the m-bit numbers, based on the outcome of the comparison and a value of
the bit from the m-bit number, selectively updating a bit in the m-bit number occupying a next bit
position (308),

wherein in a first iteration, a most significant bit from each of the m-bit numbers is
summed and a most significant bit of the selected number is set and each subsequent iteration
sums bits occupying successive bit positions in their respective numbers and sets a next bit of
the selected number, and

wherein the method comprises outputting data indicative of the selected number.

2. The method according to claim 1, wherein outputting data indicative of the selected
number comprises either:

outputting the selected number; or

outputting an indication of the position, within the n m-bit numbers, of the selected
number.

3. The method according to claim 1 or 2, wherein setting, based on an outcome of the
comparison, a bit of the selected number comprises:

in response to determining that the summation result exceeds the threshold value,
setting the bit of the selected number to one (305); and

in response to determining that the summation result is less than the threshold value,
setting the bit of the selected number to zero (307).

4. The method according to any of claims 1-3, wherein, in a rt" iteration, summing a bit from
each of the m-bit numbers to generate a summation result, comprises summing a bit having a
bit index m-r from each of the m-bit numbers to generate a summation result, wherein each bit
is either an original bit from one of the m-bit numbers or an updated bit from a previous iteration.

5. The method according to any of claims 1-4, wherein the selected number is the it
largest number from the set of n m-bit numbers and the threshold value is equal to i.

3010 19

36

6. The method according to any of claims 1-4, wherein the selected number is the pt"
smallest number from the set of n m-bit numbers and the threshold value is equal to (n-p) or (n-

p+1).

7. The method according to any of claims 1-6, wherein selectively updating a bit in the m-
bit number occupying a next bit position based on the outcome of the comparison and a value
of the bit from the m-bit number comprises:

selectively setting a flag associated with the m-bit number based on the outcome of the
comparison and a value of the bit from the m-bit number (304, 306, 904, 906); and

selectively updating a bit in the m-bit number occupying a next bit position based on
values of one or more flags associated with the m-bit number (308, 908).

8. The method according to claim 7, wherein selectively setting a flag associated with the
m-bit number based on the outcome of the comparison and a value of the bit from the m-bit
number comprises:

in response to determining that the summation result exceeds the threshold value and
that the value of the bit is zero, setting a min flag associated with the m-bit number (304); and

in response to determining that the summation result is less than the threshold value and
that the value of the bit is one, setting a max flag associated with the m-bit number (306),

and wherein selectively updating a bit in the m-bit number occupying a next bit position based
on values of one or more flags associated with the m-bit number comprises:

in response to determining that the max flag associated with the m-bit number is set,
setting the bit in the m-bit number occupying the next bit position to one (312);

in response to determining that the min flag associated with the m-bit number is set,
setting the bit in the m-bit number occupying the next bit position to zero (316); and

in response to determining that neither the max flag nor the min flag associated with the
m-bit number is set, leaving the bit in the m-bit number occupying the next bit position
unchanged (318).

9. The method according to claim 7, wherein selectively setting a flag associated with the
m-bit number based on the outcome of the comparison and a value of the bit from the m-bit
number comprises:

in response to determining that the summation result exceeds the threshold value and
that the value of the bit is zero, setting a particular flag associated with the m-bit number (904);
and

in response to determining that the summation result is less than the threshold value and
that the value of the bit is one, setting the particular flag associated with the m-bit number (906)
and updating the threshold value by an amount equal to the summation result (707),

and wherein selectively updating a bit in the m-bit number occupying a next bit position based
on values of one or more flags associated with the m-bit number comprises:

in response to determining that the particular flag is set, setting the bit in the m-bit
number occupying the next bit position to a predefined value; and

3010 19

37

in response to determining that the particular flag associated with the m-bit number is
not set, leaving the bit in the m-bit number occupying the next bit position unchanged (908).

10. The method according to any of claims 7-9, wherein the method further comprises:
determining how many of the m-bit numbers have an associated flag that is set; and

in response to determining that n-1 of the m-bit numbers have an associated flag set,
outputting data indicative of the m-bit number without an associated flag set.

11. The method according to any of claims 1-5, wherein selectively updating a bit in the m-
bit number occupying a next bit position based on the outcome of the comparison and a value
of the bit from the m-bit number comprises:

in response to determining that the summation result exceeds the threshold value and
that the value of the bit is zero, updating all bits in the m-bit number to zero (504); and

in response to determining that the summation result does not exceed the threshold
value and that the value of the bit is one, updating all bits in the m-bit number to one (506).

12. The method according to any of claims 1-6, wherein selectively updating a bit in the m-
bit number occupying a next bit position based on the outcome of the comparison and a value
of the bit from the m-bit number comprises:

in response to determining that the summation result exceeds the threshold value and
that the value of the bit is zero, updating all bits in the m-bit number to zero (504); and

in response to determining that the summation result does not exceed the threshold
value and that the value of the bit is one, updating all bits in the m-bit number to zero (706) and
reducing the threshold value by an amount equal to the summation result (707, 717).

13. The method according to any of claims 1-9, 11 and 12, wherein the method comprises m
iterations and in the m" iteration, a least significant bit from each of the m-bit numbers is
summed and a least significant bit of the selected number is set.

14. A hardware logic unit (1230) arranged to select an it" largest or pth smallest number from
a set of n m-bit numbers, where i, p, m and n are integers, the hardware logic unit being
arranged to operate iteratively and comprising:

summation logic (1232, 328) arranged to, in each iteration, sum a bit from each of the m-
bit numbers to generate a summation result, wherein all the bits being summed occupy an
identical bit position within their respective number such that in a first iteration, a most
significant bit from each of the m-bit numbers is summed and each subsequent iteration sums
bits occupying successive bit positions in their respective numbers;

comparison logic (1234) arranged to, in each iteration, compare the summation result
generated by the summation logic in that iteration to a threshold value and set a bit of the
selected number based on an outcome of the comparison, wherein the threshold value is
calculated based on i or p;

updating logic (1236, 320, 340) arranged to, in each iteration and for each of the m-bit
numbers, selectively update a bit in the m-bit number occupying a next bit position based on the
outcome of the comparison in that iteration and a value of the bit from the m-bit number; and

3010 19

38

an output (1238) arranged to output data indicative of the selected number.
15. The hardware logic unit according to claim 14, further comprising:

flag control logic (1235, 336, 338) arranged to selectively set a flag associated with the
m-bit number based on the outcome of the comparison and a value of the bit from the m-bit
number;

and wherein the updating logic (340) is arranged to selectively update a bit in the m-bit
number occupying a next bit position based on values of one or more flags associated with the
m-bit number.

16. The hardware logic unit according to claim 15, wherein the flag control logic (1235)
comprises:

a min flag logic block (336) arranged to, in response to determining that the summation
result exceeds the threshold value and that the value of the bit is zero, set a min flag associated
with the m-bit number; and

a max flag logic block (338) arranged to, in response to determining that the summation
result is less than the threshold value and that the value of the bit is one, set a max flag
associated with the m-bit number,

and wherein the updating logic (320) is arranged to: in response to determining that the max
flag associated with the m-bit number is set, set the bit in the m-bit number occupying the next
bit position to one; in response to determining that the min flag associated with the m-bit
number is set, set the bit in the m-bit number occupying the next bit position to zero; and in
response to determining that neither the max flag nor the min flag associated with the m-bit
number is set, leave the bit in the m-bit number occupying the next bit position unchanged.

17. The hardware logic unit according to claim 15, wherein the flag control logic (1235) is
arranged to: in response to determining that the summation result exceeds the threshold value
and that the value of the bit is zero, set a particular flag associated with the m-bit number; and
in response to determining that the summation result is less than the threshold value and that
the value of the bit is one, set the particular flag associated with the m-bit number and updating
the threshold value by an amount equal to the summation result,

and wherein the updating logic (340) is arranged to: in response to determining that the
particular flag is set, set the bit in the m-bit number occupying the next bit position to a
predefined value; and in response to determining that the particular flag is not set, leave the bit
in the m-bit number occupying the next bit position unchanged.

18. The hardware logic unit according to any of claims 15-17, further comprising:

an early exit hardware logic block (1237) arranged to determine how many of the m-bit
numbers have an associated flag that is set; and in response to determining that n-1 of the m-bit
numbers have an associated flag set, to output the m-bit number without an associated flag set
as the selected number.

19. The hardware logic unit according to claim 14, wherein the updating logic (1236, 320,
340) is arranged to: in response to determining that the summation result exceeds the threshold
value and that the value of the bit is zero, update all bits in the m-bit number to zero; and in

3010 19

39

response to determining that the summation result does not exceed the threshold value and that
the value of the bit is one, update all bits in the m-bit number to one.

20. The hardware logic unit according to claim 14, wherein the updating logic (1236, 320,
340) is arranged to: in response to determining that the summation result exceeds the threshold
value and that the value of the bit is zero, update all bits in the m-bit number to zero; and in
response to determining that the summation result does not exceed the threshold value and that
the value of the bit is one, update all bits in the m-bit number to zero (706) and reduce the
threshold value by an amount equal to the summation result (707, 717).

21. A method of manufacturing, using an integrated circuit manufacturing system, a
hardware logic unit as claimed in any of claims 14-20.

22. An integrated circuit definition dataset that, when processed in an integrated circuit
manufacturing system, configures the integrated circuit manufacturing system to manufacture a
hardware logic unit as claimed in any of claims 14-20.

23. A computer readable storage medium having stored thereon a computer readable
description of an integrated circuit that, when processed in an integrated circuit manufacturing
system, causes the integrated circuit manufacturing system to manufacture a hardware logic
unit as claimed in any of claims 14-20.

24. An integrated circuit manufacturing system comprising:

a computer readable storage medium having stored thereon a computer readable
description of an integrated circuit that describes a hardware logic unit as claimed in any of
claims 14-20;

a layout processing system configured to process the integrated circuit description so as
to generate a circuit layout description of an integrated circuit embodying the hardware logic
unit; and

an integrated circuit generation system configured to manufacture the hardware logic
unit according to the circuit layout description.

"'; 3 40
Intellectual
Property

Office

%

Application No: GB1817759.2 Examiner: Mr David Maskery
Claims searched: 1-25 Date of search: 25 April 2019

Patents Act 1977: Search Report under Section 17

Documents considered to be relevant:

Category |Relevant | Identity of document and passage or figure of particular relevance
to claims
A - US 2013/0007419 A
(BAJENARU et AL) whole document.
A - US 2008/0288565 A
(LIN) See whole document.
Categories:
X Document indicating lack of novelty or inventive =~ A Document indicating technological background and/or state
step of the art.
Y Document indicating lack of inventive step if P Document published on or after the declared priority date but
combined with one or more other documents of betore the filing date of this invention.
same category.
& Member of the same patent tamily E Patent document published on or after, but with priority date
earlier than, the filing date of this application.

Field of Search:
Search of GB, EP, WO & US patent documents classified in the following areas of the UKCX :

Worldwide search of patent documents classified in the following areas of the IPC
[GOGF |
The following online and other databases have been used in the preparation of this search report

[EPODOC, WPI, Patent Fulltext |

International Classification:

Subclass Subgroup Valid From
GO6F 0007/02 01/01/2006
GO6F 0007/24 01/01/2006

Intellectual Property Office is an operating name of the Patent Office www.gov.uk/ipo

http://www.gov.uk/ipo

