
US 20210392016A1
MONT IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2021/0392016 A1 .

BOUTROS et al . (43) Pub . Date : Dec. 16 , 2021

(54) UPLINK - AWARE MONITORING OF
LOGICAL OVERLAY TUNNELS

(52) U.S. CI .
CPC H04L 12/4633 (2013.01) ; H04L 45/64

(2013.01) ; H04L 43/106 (2013.01) ; H04L
2212/00 (2013.01) ; H04L 43/08 (2013.01) ;

H04L 45/28 (2013.01) ; H04L 43/50 (2013.01)
(71) Applicant : VMWARE , INC . , Palo Alto , CA (US)

(57) ABSTRACT

(72) Inventors : SAMI BOUTROS , Union City , CA
(US) ; JEROME CATROUILLET ,
Palo Alto , CA (US) ; SANTOSH
PALLAGATTI KOTRABASAPPA ,
Bangalore (IN) ; JIA YU , Palo Alto , CA
(US)

(21) Appl . No .: 16 / 944,205

(22) Filed : Jul . 31 , 2020

(30) Foreign Application Priority Data

Example methods and systems for uplink - aware logical
overlay tunnel monitoring are described . In one example , a
first computer system may establish a logical overlay tunnel
with a second computer system . The first computer system
may generate and send , over the logical overlay tunnel via
the first uplink , a first encapsulated monitoring packet iden
tifying the first uplink . Based on a first reply , first perfor
mance metric information associated with the first uplink
may be determined . The first computer system may generate
and send , over the logical overlay tunnel via the second
uplink , a second encapsulated monitoring packet identifying
the second uplink . Based on a second reply , second perfor
mance metric information associated with the second uplink
may be determined . Based on the first performance metric
information and the second performance metric information ,
the first uplink or the second uplink may be selected to send
encapsulated data packet (s) over the logical overlay tunnel .

Jun . 15 , 2020 (IN) 202041025118

Publication Classification

(51) Int . Ci .
H04L 12/46 (2006.01)
H04L 12/715 (2006.01)
H04L 12/26 (2006.01)
H04L 12/703 (2006.01)

400

First Computer System Second Computer System

Establish ogical overlay tumat
between VTEPS

Establish BFD session (s) for
monitoring logical overlay tuma

Estabish BFO Session (s) for
monitoring logical overisy tunnel

Generate BACASI to be seni over
logical overlay tunnet via

Configure ifnier pkl (HOL)
identifying UPLINKI 431

Configure outer trader rol

Encapsulate onoi : With

Send INCARI over logical overlay

that loopback is required }

encapsulating xoxot with

Detect RASIYO ?

3

ENCARI was seni

Deterinine / update
(UPLINKI ; MENNICD) based on
PUYT (or absence thereof) 460

Select uplnk for forwarding logical
overlay network traffic based on

Patent Application Publication Dec. 16 , 2021 Sheet 1 of 7 US 2021/0392016 A1

SON Manager 184
Management Plane

Module 186

SON Controller 180
Control - plane

Module 182

Host A 110A Host - B 110B

VM2 132 VM3 133 VM4 134
APP4

142

Guest OS Guest OS Guest os
162

Hypervisor A 114A Hypervisor 8 114B
VNIC1 VNICS VNIC2

162 164

LSP
165 DO LSP2 66 JO 168

Virtual Switch 115A
Forwarding Table

Virtual Switch 1158
Forwarding Table

119B

Hardware 112A Hardware 1128

CPU (s)
120A

CPU (s)
120B

Memory
122B 122A

Controller Storage
1264

Storage
1268 1248

PNIC3 PNIC1
171

PNIC2
172

PNIC4
174

11 H
1881RSARI

Fig . 1

Patent Application Publication Dec. 16 , 2021 Sheet 2 of 7 US 2021/0392016 A1

Host - A

VM4
134

VM1
131

VM3
133

Data

210

LSP ? LSPI
165

LSPOO
168 167

o be
LS1 201 LS2 202 LSP ? LSP8

selected based on

LRP2 LRPI
207 Collectively

implemented
by hosts
10A - B and

w

SR 209

Volink - aware performance metrio infomnation (host - A)

Fig . 2

Patent Application Publication Dec. 16 , 2021 Sheet 3 of 7 US 2021/0392016 A1

300

Second Computer System First Computer System
(2.9 . 110A)

Establish logical overlay tunnel with
second computer system

310

Generate and send first encapsulated
monitoring packet (ENCAP1) via

320

Determine first performance metric
information (UPLINKI , METRICI)
based on first reply (REPLY)

380

Generate and send second encapsulated
monitoring packet (ENCAP2) via

second uplink (UPLINK2)
340

??

.
Determine second performance metric

information (UPGINKZ , MEIRIOZ)
based on second reply (REPIX2)

350
}
{

?? Select UPLINKI OT UPLINK2 for sending
encapsulated data packets) over o DF

?
??

?

Fig . 3

Patent Application Publication Dec. 16 , 2021 Sheet 4 of 7 US 2021/0392016 A1

400

Second Computer System First Computer System
(e.g. 110A)

Establish logical overlay tumet Establish logical overlay tunnel

Establish BFD session (s) for
monitoring logical overlay tunnel

420

Establish BFD session (s) for
fionitoring logical overlay turner

425

}

logical overlay tunnel via

} Configure inner pkt (BCHON)
identifying UPLINKI 431

} Configure outer header (o
432

Encapsulate cuoi with
outer header (0) 433 }

??

Send ENCAP over logical overlay

encapsulating choi With

450 }

Identity UPLINKI , via which
}

} Determine / update
(UPLINKI , VETRICI) based on
REPIYI (or absence thereof) 460

}

Select uplink for forwarding logical
overlay network traffic based on .

Fig . 4

Patent Application Publication Dec. 16 , 2021 Sheet 5 of 7 US 2021/0392016 A1

C
Hypervisor - A 114A Hypervisor 8 114B

167

Virtual Switch
158

VTEP - A
119A

Logical overlay tunnel
501

502

$ 10

520)

511

PL : interaca mano UPLINKI INFO , de 21 , sec_10-31

*

* LL
*

$

Rainer header infomation , 1/2 = payload information

Fig . 5

Patent Application Publication Dec. 16. 2021 Sheet 6 of 7 US 2021/0392016 A1

Host - A 10A Host - B 110B
VM1 VM3

Hypervisor - A 114A Hypervisor - B 114B

165

1158

Logical overlay tunner
119A 1198

502

5107
?? ?? ?? ?? ? ?? ? ?? ?? ?? ?? ?? ?? ???? ? ??? ??? ?? ? ?? ??????? ??

| 03 | 04

Plz interface nameWUPLINKI INFO , OS T1.se 0-31 *

Aimer header infomation , P1 * payload information

Fig . 6

Patent Application Publication Dec. 16 , 2021 Sheet 7 of 7 US 2021/0392016 A1

Hypervisor - A 114A Hypervisor - B 1143
LSP1

Virtual Switch
158

}
VTEP.A
119A

Logical overlay tunnel VTERB
4198

Pertormance ?
}

710

UPLINK2
503 502

1
Before detecting performance issue of UPLINK

w Switching to UPLINK2 after detecting performance issue of UPLINKI

Uplink - aware performance metric information X10

METRICI : CONNECTIVITY STATUS OP DOWN X

Fig . 7

US 2021/0392016 Al Dec. 16 , 2021
1

UPLINK - AWARE MONITORING OF
LOGICAL OVERLAY TUNNELS

RELATED APPLICATIONS

[0001] Benefit is claimed under 35 U.S.C. 119 (a) - (d) to
Foreign Application Serial No. 202041025118 filed in India
entitled “ UPLINK - AWARE MONITORING OF LOGICAL
OVERLAY TUNNELS ” , on Jun . 15 , 2020 , by VMware ,
Inc. , which is herein incorporated in its entirety by reference
for all purposes .

BACKGROUND

[0002] Virtualization allows the abstraction and pooling of
hardware resources to support virtual machines in a soft
ware - defined data center (SDDC) . For example , through
server virtualization , virtualized computing instances such
as virtual machines (VMs) running different operating sys
tems may be supported by the same physical machine (e.g. ,
referred to as a “ host ”) . Each VM is generally provisioned
with virtual resources to run a guest operating system and
applications . The virtual resources may include central pro
cessing unit (CPU) resources , memory resources , storage
resources , network resources , etc. In practice , VMs sup
ported by different hosts may be deployed on the same
logical overlay network . However , logical overlay networks
may be susceptible to various performance issues , which
affect communication among VMs .

BRIEF DESCRIPTION OF DRAWINGS
[0003] FIG . 1 is a schematic diagram illustrating an
example software - defined networking (SDN) environment
in which uplink - aware logical overlay tunnel monitoring
may be performed ;
[0004] FIG . 2 is a schematic diagram illustrating an
example of uplink - aware logical overlay tunnel monitoring
in an SDN environment ;
[0005] FIG . 3 is a flowchart of an example process for a
computer system to perform uplink - aware logical overlay
tunnel monitoring in an SDN environment ;
[0006] FIG . 4 is a flowchart of an example detailed
process for a computer system to perform uplink - aware
logical overlay tunnel monitoring in an SDN environment ;
[0007] FIG . 5 is a schematic diagram illustrating a first
example of uplink - aware logical overlay tunnel monitoring
in an SDN environment ;
[0008] FIG . 6 is a schematic diagram illustrating a second
example of uplink - aware logical overlay tunnel monitoring
in an SDN environment ; and
[0009] FIG . 7 is a schematic diagram illustrating an
example traffic handling based on uplink - aware logical
overlay tunnel monitoring in an SDN environment .

described herein , and illustrated in the drawings , can be
arranged , substituted , combined , and designed in a wide
variety of different configurations , all of which are explicitly
contemplated herein .
[0011] Challenges relating to logical overlay networks
will now be explained in more detail using FIG . 1 , which is
a schematic diagram illustrating example software - defined
networking (SDN) environment 100 in which uplink - aware
logical overlay tunnel monitoring may be performed . It
should be understood that , depending on the desired imple
mentation , SDN environment 100 may include additional
and / or alternative components than that shown in FIG . 1 .
Although the terms “ first ” and “ second ” are used to describe
various elements , these elements should not be limited by
these terms . These terms are used to distinguish one element
from another . For example , a first element may be referred
to as a second element , and vice versa .
[0012] SDN environment 100 includes multiple hosts
110A - B that are inter - connected via physical network 105 .
Each host 110A / 110B may include suitable hardware 112A /
112B and virtualization software (e.g. , hypervisor - A 114A ,
hypervisor - B 114B) to support various VMs . For example ,
hosts 110A - B may support respective VMs 131-134 . Hard
ware 112A / 112B includes suitable physical components ,
such as central processing unit (s) (CPU ()) or processor (s)
120A / 120B ; memory 122A / 122B ; physical network inter
face controllers (PNICs) 171-174 ; and storage disk (s) 126A /
126B , etc. In practice , SDN environment 100 may include
any number of hosts (also known as a “ host computers ” ,
" host devices ” , “ physical servers ” , “ server systems ” , “ trans
port nodes , ” etc.) , where each host may be supporting tens
or hundreds of virtual machines (VMs) .
[0013] Hypervisor 114A / 114B maintains a mapping
between underlying hardware 112A / 112B and virtual
resources allocated to respective VMs . Virtual resources are
allocated to respective VMs 131-134 to support a guest
operating system (OS ; not shown for simplicity) and appli
cation (s) 141-144 . For example , the virtual resources may
include virtual CPU , guest physical memory , virtual disk ,
virtual network interface controller (VNIC) , etc. Hardware
resources may be emulated using virtual machine monitors
(VMMs) . For example in FIG . 1 , VNICs 161-164 are virtual
network adapters for VMs 131-134 , respectively , and are
emulated by corresponding VMMs (not shown for simplic
ity) instantiated by their respective hypervisor at respective
host - A 110A and host - B 110B . The VMMs may be consid
ered as part of respective VMs , or alternatively , separated
from the VMs . Although one - to - one relationships are
shown , one VM may be associated with multiple VNICS
(each VNIC having its own network address) .
[0014] Although examples of the present disclosure refer
to VMs , it should be understood that a “ virtual machine "
running on a host is merely one example of a “ virtualized
computing instance ” or “ workload . ” A virtualized comput
ing instance may represent an addressable data compute
node (DCN) or isolated user space instance . In practice , any
suitable technology may be used to provide isolated user
space instances , not just hardware virtualization . Other
virtualized computing instances may include containers
(e.g. , running within a VM or on top of a host operating
system without the need for a hypervisor or separate oper
ating system or implemented as an operating system level
virtualization) , virtual private servers , client computers , etc.
Such container technology is available from , among others ,

DETAILED DESCRIPTION

[0010] In the following detailed description , reference is
made to the accompanying drawings , which form a part
hereof . In the drawings , similar symbols typically identify
similar components , unless context dictates otherwise . The
illustrative embodiments described in the detailed descrip
tion , drawings , and claims are not meant to be limiting .
Other embodiments may be utilized , and other changes may
be made , without departing from the spirit or scope of the
subject matter presented here . It will be readily understood
that the aspects of the present disclosure , as generally

a

US 2021/0392016 A1 Dec. 16 , 2021
2

2

2

Docker , Inc. The VMs may also be complete computational
environments , containing virtual equivalents of the hard
ware and software components of a physical computing
system .
[0015] The term “ hypervisor ” may refer generally to a
software layer or component that supports the execution of
multiple virtualized computing instances , including system
level software in guest VMs that supports namespace con
tainers such as Docker , etc. Hypervisors 114A - B may each
implement any suitable virtualization technology , such as
VMware ESX® or ESXiTM (available from VMware , Inc.) ,
Kernel - based Virtual Machine (KVM) , etc. The term
" packet ” may refer generally to a group of bits that can be
transported together , and may be in another form , such as
“ frame , ” “ message , ” “ segment , ” etc. The term “ traffic ” or
“ flow ” may refer generally to multiple packets . The term
“ layer - 2 ” may refer generally to a link layer or media access
control (MAC) layer ; “ layer - 3 ” to a network or Internet
Protocol (IP) layer ; and “ layer - 4 ” to a transport layer (e.g. ,
using Transmission Control Protocol (TCP) , User Datagram
Protocol (UDP) , etc.) , in the Open System Interconnection
(OSI) model , although the concepts described herein may be
used with other networking models .
[0016] Hypervisor 114A / 114B implements virtual switch
115A / 115B and logical distributed router (DR) instance
1171 / 117B to handle egress packets from , and ingress
packets to , corresponding VMs . In SDN environment 100 ,
logical switches and logical DRs may be implemented in a
distributed manner and can span multiple hosts . For
example , logical switches that provide logical layer - 2 con
nectivity , i.e. , an overlay network , may be implemented
collectively by virtual switches 115A - B and represented
internally using forwarding tables 116A - B at respective
virtual switches 115A - B . Forwarding tables 116A - B may
each include entries that collectively implement the respec
tive logical switches . Further , logical DRs that provide
logical layer - 3 connectivity may be implemented collec
tively by DR instances 117A - B and represented internally
using routing tables (not shown) at respective DR instances
117A - B . The routing tables may each include entries that
collectively implement the respective logical DRs .
[0017] Packets may be received from , or sent to , each VM
via an associated logical port . For example , logical switch
ports 165-168 (labelled “ LSP1 ” to “ LSP4 ”) are associated
with respective VMs 131-134 . Here , the term “ logical port ”
or “ logical switch port ” may refer generally to a port on a
logical switch to which a virtualized computing instance is
connected . A “ logical switch ” may refer generally to a
software - defined networking (SDN) construct that is collec
tively implemented by virtual switches 115A - B in FIG . 1 ,
whereas a “ virtual switch ” may refer generally to a software
switch or software implementation of a physical switch . In
practice , there is usually a one - to - one mapping between a
logical port on a logical switch and a virtual port on virtual
switch 115A / 115B . However , the mapping may change in
some scenarios , such as when the logical port is mapped to
a different virtual port on a different virtual switch after
migration of the corresponding virtualized computing
instance (e.g. , when the source host and destination host do
not have a distributed virtual switch spanning them) .
[0018] Through virtualization of networking services in
SDN environment 100 , logical networks (also referred to as
overlay networks or logical overlay networks) may be
provisioned , changed , stored , deleted and restored program

matically without having to reconfigure the underlying
physical hardware architecture . SDN controller 180 and
SDN manager 184 are example network management enti
ties in SDN environment 100. One example of an SDN
controller is the NSX controller component of VMware
NSX® (available from VMware , Inc.) that operates on a
central control plane . SDN controller 180 may be a member
of a controller cluster (not shown for simplicity) that is
configurable using SDN manager 184 operating on a man
agement plane . Network management entity 180/184 may
be implemented using physical machine (s) , VM (s) , or both .
Logical switches , logical routers , and logical overlay net
works may be configured using SDN controller 180 , SDN
manager 184 , etc. To send or receive control information , a
local control plane (LCP) agent (not shown) on host 110A /
110B may interact with central control plane (CCP) module
182 at SDN controller 180 via control - plane channel 101 /
102 .
[0019] A logical overlay network may be formed using
any suitable tunneling protocol , such as Virtual eXtensible
Local Area Network (VXLAN) , Stateless Transport Tunnel
ing (STT) , Generic Network Virtualization Encapsulation
(GENEVE) , etc. For example , VXLAN is a layer - 2 overlay
scheme on a layer - 3 network that uses tunnel encapsulation
to extend layer - 2 segments across multiple hosts which may
reside on different layer 2 physical networks . In the example
in FIG . 1 , VM1 131 on host - A 110A and VM3 133 on host - B
110B may be connected to the same logical switch and
located on the same logical layer - 2 segment , such as a
segment with VXLAN network identifier (VNI) = 6000 .
[0020] To facilitate communication among VMs 131-134
deployed on various logical overlay networks , hypervisor
114A / 114B may implement a virtual tunnel endpoint
(VTEP) to encapsulate and decapsulate packets with an
outer header (also known as a tunnel header) identifying a
logical overlay network . For example , hypervisor - A 114A
implements first VTEP - A 119A associated with (IP
address = IP - A , MAC address = MAC - A , VTEP label = VTEP
A) and hypervisor - B 114B implements second VTEP - B
119B with (IP - B , MAC - B , VTEP - B) . Encapsulated packets
may be sent via a logical overlay tunnel established between
a pair of VTEPs over physical network 105 , over which
respective hosts 110A - B are in layer - 3 connectivity with one
another .
[0021] Some example logical overlay networks are shown
in FIG . 2 , which is a schematic diagram illustrating example
management plane view 200 of SDN environment 100 in
FIG . 1. Here , VM1 131 and VM4 134 are located on a first
logical layer - 2 segment associated with virtual network
identifier (VNI) = 5000 and connected to a first logical switch
(see “ LS1 ” 201) . VM2 132 and VM3 133 are located on a
second logical layer - 2 segment associated with VNI = 6000
and connected to a second logical switch (see " LS2 ” 202) .
With the growth of infrastructure - as - a - service (IaaS) , logical
overlay networks may be deployed to support multiple
tenants . In this case , each logical overlay network may be
designed to be an abstract representation of a tenant's
network in SDN environment 100. Depending on the desired
implementation , a multi - tier topology may be used to isolate
multiple tenants .
[0022] A logical DR (see " DR ” 205) connects logical
switches 201-202 to facilitate communication among VMs
131-134 on different segments . See also logical switch ports
“ LSP7 ” 203 and “ LSP8 ” 204 , and logical router ports

a

a

a

US 2021/0392016 A1 Dec. 16 , 2021
3

a

“ LRP1 ” 207 and “ LRP2 ” 208 connecting DR 205 with
logical switches 201-202 . Logical switch 201/202 may be
implemented collectively by multiple hosts 110A - B , such as
using virtual switches 115A - B and represented internally
using forwarding tables 116A - B . DR 205 may be imple
mented collectively by multiple transport nodes , such as
using edge node 206 and hosts 110A - B . For example , DR
205 may be implemented using DR instances 117A - B and
represented internally using routing tables (not shown) at
respective hosts 110A - B .
[0023] Edge node 206 (labelled “ EDGE ") may implement
one or more logical DRs and logical service routers (SRs) ,
such as DR 205 and SR 209 in FIG . 2. SR 209 may represent
a centralized routing component that provides centralized
stateful services to VMs 131-134 , such as IP address assign
ment using dynamic host configuration protocol (DHCP) ,
load balancing , network address translation (NAT) , etc.
EDGE 206 may be implemented using VM (s) and / or physi
cal machines (“ bare metal machines ”) , and capable of per
forming functionalities of a switch , router (e.g. , logical
service router) , bridge , gateway , edge appliance , or any
combination thereof . In practice , EDGE 206 may be
deployed at the edge of a geographical site to facilitate
north - south traffic to an external network , such as another
data center at a different geographical site .
[0024] In the example in FIG . 1 , hosts 110A - B are con
figured to be “ multi - homed ” computer systems . Here , the
term “ multi - homed ” may refer generally to a computer
system that is configured with multiple interfaces (e.g. ,
multiple PNICs) to provide multiple uplink connections
(“ uplinks ”) to physical network 105. In the case of two
uplinks (dual homed) , host - A 110A is configured with inter
faces PNIC1 171 and PNIC2 172 for VTEP - A 119 A to reach
VTEP - B 119B via separate uplinks . Similarly , VTEP - B
119B on host - B 110B may send logical overlay network
traffic via PNIC3 173 and PNIC4 174. In practice , multi
homing may be implemented to provide redundancy to
protect hosts 110A - B from single - point failures , facilitate
load sharing , and improve performance . Note that host
110A / B may be configured with any suitable number of
interfaces to provide any suitable number off connections to
physical network 105 .
[0025] Using a leaf - and - spine architecture , underlying
physical network 105 supporting various logical overlay
tunnels may include multiple leaf switches that are inter
connected with multiple spine switches . A leaf switch is also
referred to as a top - of - rack (ToR) switch because it provides
network access to hosts 110A - B located at a particular rack .
Using host - A 110A as an example , a first uplink may be
connected with a first leaf switch , and a second uplink with
a second leaf switch . A spine switch extends the physical
network fabric of leaf switches to provide connectivity
between racks . Using a full - mesh topology , each leaf switch
is connected to each one of the spine switches such that
east - west traffic from one rack to another is equidistant with
a deterministic number of hops . Ports on a spine switch may
connect to leaf switches using layer - 2 switching and / or
layer - 3 routing technologies .
[0026] One of the challenges in SDN environment 100 is
to maintain connectivity between VTEPs 119A - B over a
logical overlay tunnel to facilitate communication among
VMs 131-134 . To achieve this , one approach is to establish
a monitoring session to monitor such logical overlay tunnel ,
such as using bidirectional forwarding detection (BFD) ,

connectivity fault management (CFM) or any other conti
nuity check protocol , etc. Conventionally , however , not all
uplinks supporting a logical overlay tunnel may be moni
tored using this approach . For example in FIG . 1 , when
running a BFD session between hypervisors 114A - B , BFD
packets from host - A 11A to host - B 110B may only be sent
using one uplink , which leaves the remaining uplinks
unmonitored .
[0027] Logical Overlay Tunnel Monitoring
[0028] According to examples of the present disclosure ,
an “ uplink - aware " approach for logical overlay tunnel moni
toring may be implemented to improve logical overlay
network performance . In particular , host 110A / 110B may
monitor a logical overlay tunnel by generating and sending
encapsulated monitoring packets via each of multiple
uplinks . This way , multiple uplinks supporting the logical
overlay tunnel may be monitored and their performance
metric determined to facilitate logical overlay network traf
fic forwarding .
[0029] As used herein , the terms “ uplink ” and “ downlink ”
are relative terms that describe connections between com
puter systems , but do not imply any particular physical
location of the computer systems . For example , from the
perspective of host 110A / B , the term “ uplink ” may refer
generally to a network connection from host 110A / B to a
physical network device (e.g. , TOR switch , spine switch ,
router) in physical network 105. The term downlink , on the
other hand , may refer to a connection from physical network
105 to host 110A / B . Depending on the desired implemen
tation , an “ uplink ” may represent a logical construct for a
connection via a PNIC . In one example , the mapping
between uplink and PNIC (s) may be one - to - one (i.e. , one
PNIC per uplink) . In another example , a one - to - many map
ping may be implemented using a NIC teaming policy to
map multiple PNICs to one uplink . Here , the term “ NIC
teaming " may refer generally the grouping of multiple
physical NICs into one logical NIC . Throughout the present
disclosure , various examples will be described using a “ first
uplink ” that is mapped to PNIC1 171 and a “ second uplink ”
to PNIC2 172. Each uplink may be assigned with a MAC
address for sending out packets , such as MAC - UPLINK1
for the first uplink and MAC - UPLINK2 for the second
uplink .
[0030] In more detail , FIG . 3 is a flowchart of example
process 300 for a computer system to perform uplink - aware
logical overlay tunnel monitoring in SDN environment 100 .
Example process 300 may include one or more operations ,
functions , or actions illustrated by one or more blocks , such
as 310 to 360. The various blocks may be combined into
fewer blocks , divided into additional blocks , and / or elimi
nated depending on the desired implementation . In the
following , various examples will be explained using host - A
110A as an example “ first computer system , ” host - B 110B as
an example “ second computer system , ” and BFD an
example protocol for uplink - aware logical overlay tunnel
monitoring
[0031] At 310 in FIG . 3 , a logical overlay tunnel may be
established between host - A 110A and host - B 110B , which is
reachable from host - A 110A via a first uplink and a second
uplink . At 320 , host - A 110A may generate and send , via the
first uplink and over the logical overlay tunnel , a first
encapsulated monitoring packet identifying the first uplink .
At 330 , based on a first reply identifying the first uplink from
host - B 110B , host - A 110A may determine first performance

a

US 2021/0392016 A1 Dec. 16 , 2021
4

9

a

metric information (METRIC1) associated with the first
uplink . See “ ENCAP1 ” 191 and “ REPLY1 ” 192 , both
identifying the first uplink (see " UPLINK1_INFO ") in FIG .
1 and FIG . 3 .
[0032] At 340 in FIG . 3 , host - A 110A may generate and
send , via the second uplink and over the logical overlay
tunnel , a second encapsulated monitoring packet identifying
the second uplink . At 350 , host - A 110A may determine
second performance metric information (METRIC2) asso
ciated with the second uplink based on a second reply
identifying the second uplink from host - B 110B . See
“ ENCAP2 ” 193 and “ REPLY2 ” 194 , both identifying the
second uplink (see “ UPLINK2_INFO ”) in FIG . 1 and FIG .
3 .
[0033] As will be explained using FIG . 4 and FIG . 5 ,
ENCAP1 191 may be generated at block 320 by encapsu
lating a first inner packet with a first outer header . The first
inner packet may be an echo packet that causes host - B 110B
to loop back or return the first inner packet , being first reply
(REPLY1) 192. Similarly , second encapsulated monitoring
packet (ENCAP2) 193 may be generated by encapsulating a
second inner packet with a second outer header . The second
inner packet may be an echo packet that causes host - B 110B
to loop back the second inner packet , being second reply
(REPLY2) 194. In these examples , ENCAP1 191 may
specify interface name = " UPLINK1_INFO ” to identify the
first uplink , and ENCAP2 192 may specify “ UPLINK2_
INFO ” to identify the second uplink . The information (e.g. ,
“ UPLINK1_INFO ” and “ UPLINK2_INFO ”) identifying a
particular uplink may be an ID , MAC address or internal tag
that is uniquely assigned to the uplink .
[0034] At 360 in FIG . 3 , host - A 110A may handle logical
overlay network traffic based on the first performance metric
information (METRIC1) and the second performance metric
information (METRIC2) to select the first uplink or the
second uplink to send one or more encapsulated data pack
ets . An example logical overlay network traffic handling is
shown in FIG . 2 , where VM1 131 attached to LS1 201 sends
a data packet (see “ DP ” 210) to VM3 133 on LS2 202. Since
VM1 131 and VM3 133 are located on different hosts
110A - B , source VTEP - A 119A may generate an encapsu
lated data packet (see 220 in FIG . 2) by encapsulating data
packet 210 with an outer header . Based on “ uplink - aware ”
performance metric information 240-250 , encapsulated data
packet 220 may be sent via the first uplink or the second
uplink to reach destination VTEP - B 119B where decapsu
lation is performed (see also 230) .
[0035] Examples of the present disclosure may be imple
mented to support uplink failure detection and handling . For
example , the failure on an uplink may be detected based on
replies , or the absence of replies , from host - B 110B . In this
case , a failover may be performed to direct logical overlay
network traffic from the failed uplink to an operating uplink .
Various examples will be discussed below .
[0036] Logical Overlay Tunnel Establishment
[0037] FIG . 4 is a flowchart of example detailed process
400 for uplink - aware logical overlay tunnel monitoring in
SDN environment 100. Example process 400 may include
one or more operations , functions , or actions illustrated at
410 to 465. The various operations , functions or actions may
be combined into fewer blocks , divided into additional
blocks , and / or eliminated depending on the desired imple
mentation . The example in FIG . 4 will be explained using
FIG . 5 , which is a schematic diagram illustrating first

example 500 of uplink - aware logical overlay tunnel moni
toring in SDN environment 100 .
[0038] At 410-415 in FIG . 4 , host - A 110A and host - B
110B may establish a logical overlay tunnel (see 501 in FIG .
5) may be established between VTEP - A 119A and VTEP - B
119B to facilitate communication among VMs 131-134 . One
example tunneling protocol for establishing logical overlay
tunnel 501 is GENEVE , in which case packets forwarded
over logical overlay tunnel 501 are each encapsulated with
an outer GENEVE header that is addressed from one VTEP
to another . In practice , logical overlay tunnels may be
established over physical network 105 using any suitable
transport protocol , such as UDP , etc.
[0039] At 420-425 in FIG . 4 , host - A 110A and host - B
110B may establish a monitoring session to monitor logical
overlay tunnel 501. Any fault detection or continuity check
protocol suitable for monitoring purposes may be used , such
as BFD that is defined in the Internet Engineering Task
Force (IETF) Request for Comments (RFC) 5880 , etc. In
general , BFD provides a low - overhead , short - duration
detection of forwarding path failures . Using an asynchro
nous mode , for example , BFD control packets are sent over
a BFD session periodically . BFD is intended as an Opera
tions , Administration and Maintenance (OAM) mechanism
for connectivity check and connection verification .
[0040] Depending on the desired implementation , blocks
420-425 may involve enabling an echo function for the
monitoring session over logical overlay tunnel 501. Once an
asynchronous BFD (A - BFD) session is established , for
example , echo packets transmitted by one host - A 110A via
logical overlay tunnel 501 will be “ looped back ” or
" switched back ” by recipient host - B 110B to sender host - A
110A . In other words , in response to receiving an echo
packet from host - A 110A , host - B 110B will return the echo
packet to host - A 110A to facilitate logical overlay tunnel
monitoring and performance metric measurement .
[0041] In another example , the monitoring session may be
established according to a seamless BFD (S - BFD) protocol ,
which is defined in IETF RFC 7880. In general , S - BFD is a
simplified mechanism for using BFD with a large proportion
of negotiation aspects eliminated , thus providing benefits
such as quick provisioning , as well as improved control and
flexibility for hosts 110A - B initiating path monitoring . The
concept of S - BFD function is similar to the asynchronous
BFD echo function . S - BFD echo packets have the destina
tion of " self . ” As such , S - BFD echo packets are also
self - generated and self - terminating after being sent via an
uplink
[0042] Encapsulated Echo Packets
[0043] At 430-435 in FIG . 4 , VTEP - A 119A supported by
source host - A 110A may generate and send multiple (N)
encapsulated monitoring packets (ENCAPi) over logical
overlay tunnel 501 via respective uplinks (UPLINKi) , where
using index i = 1 , N. For simplicity , a particular uplink
(UPLINKi) may be identified based on its associated inter
face name (“ UPLINKI_INFO ") . Each encapsulated moni
toring packet may be configured to cause a destination
VTEP to loop back an inner packet to a source VTEP . In
practice , host - A 110A may alternate the transmission of
encapsulated monitoring packets among the multiple (N)
uplinks . Block 430 may be performed according to any
suitable protocol such as BFD for IPv4 and IPv6 (single hop)
defined in IETF RFC 5881. Some examples are discussed
below .

9

US 2021/0392016 A1 Dec. 16 , 2021
5

name =

a

source

[0044] In the example in FIG . 5 , multihoming may be
implemented on host - A 110A by configuring VTEP - A 119A
with VTEP IP address = IP - A , which is a loopback IP address
that is reachable via multiple uplinks (see 502-503) . In this
case , the loopback VTEP IP address may float on two uplink
ports that are mapped to respective PNIC1 171 and PNIC2
172. When PNIC1 171 is mapped to the first uplink (i = 1) , an
egress packet sent via PNIC1 171 may specify source MAC
address = MAC - UPLINK1 of the first uplink . When PNIC2
172 is mapped to the second uplink (i = 2) , an egress packet
sent via PNIC2 172 may specify MAC
address = MAC - UPLINK2 of the second uplink . A router or
switch connected to host - A 110A on the uplink may have a
static route to the loopback with its nexthop set to the
uplink's IP address . Using this example configuration , it is
generally not necessary to implement link aggregation con
trol protocol (LACP) , or configure one VTEP per PNIC .
[0045] Using the dual - homed example in FIG . 5 (N = 2) ,
block 430 may involve generating (a) first encapsulated
monitoring packet 510 (ENCAPI) for monitoring a first
uplink denoted as UPLINK1 502 and (b) second encapsu
lated monitoring packet 520 (ENCAP2) for monitoring a
second uplink denoted as UPLINK2 503. To monitor a
particular uplink , encapsulated monitoring packets 510-520
may be configured with payload information to identify a
particular uplink via which encapsulated monitoring packets
510-520 are sent . Using BFD for example , an encapsulated
monitoring packet may be generated by encapsulating an
inner BFD echo packet with outer header information .
[0046] The outer header information may include outer
MAC addresses , outer IP addresses and an outer UDP port
number , etc. The inner encapsulated monitoring packet may
include inner header information (e.g. , inner MAC
addresses , inner IP addresses , inner port numbers) and
payload information , which includes an interface name (e.g. ,
32 - bit value) identifying an uplink (UPLINKi) , a sequence
number (e.g. , 64 bits) and a timestamp (e.g. , 64 bits) . The
sequence number may be a monotonically increasing num
ber to facilitate packet loss measurement . The timestamp
may be used for delay measurement . See 431 , 432 and 433
in FIG . 4 .
[0047] In the example in FIG . 5 , first encapsulated moni
toring packet (ENCAP1) 510 , may be generated by encap
sulating a first inner echo packet (ECHO1) 512 with a first
outer header (01) 511. In particular , first outer header
information (01) specifying source VTEP IP address = IP - A
associated with VTEP - A 119A , destination VTEP IP
address = IP - B associated with VTEP - B 119B and outer UDP
port number = 6081 . In the case of GENEVE encapsulation ,
“ O ” bit may be set to indicate that first encapsulated moni
toring packet 510 is an Operations , Administration and
Maintenance (OAM) packet . Depending on the desired
implementation , VNI = 0 may be set in outer header 511 .
[0048] Referring to ECHO1 512 , inner header information
(11) may specify source MAC address = MAC - A associated
with VTEP - A 119A , source VTEP IP address = IP - A and
inner UDP port number = 3785 and time to live (TTL) = 1 . The
inner header information may specify a destination IP
address associated with source host - A 110A to trigger a
loopback by destination host - B 110. One example destina
tion IP address associated with host - A 110A is source VTEP
IP address = IP - A assigned to VTEP - A 119A (shown in FIG .
5) . Another example destination IP address = IP - VM1
assigned to VM1 131 , IP - VM1 being an IP address that is

routable or reachable via VTEP - A 119A . Payload informa
tion (P1) of ECHO1 512 may specify interface

e = UPLINK1_INFO " identifying the first uplink (i.e. ,
UPLINK1 502) , a timestamp = T1 and sequence
number = S1 that is incremented monotonically . See 510 , 511
and 512 in FIG . 5 .
[0049] Second encapsulated monitoring packet (EN
CAP2) 520 may be generated by encapsulating a second
inner echo packet (ECHO2) 522 with second outer header
information (02) 521. In particular , second outer header
information (02) and inner header information (12) of
ECHO2 522 may have similar layer - 2 (e.g. , MAC
addresses) , layer - 3 (e.g. , IP addresses) and layer - 4 informa
tion (e.g. , UDP port numbers) to trigger a loopback at host - B
110B . Unlike ECHO1 512 , the payload information (P2) of
ECHO2 522 may specify a different uplink associated with
interface name = " UPLINK2_INFO ” identifying the second
uplink (i.e. , UPLINK2 503) . Similarly , ENCAP2 520 may
include a timestamp = T2 and a sequence number = S2 . See
520 , 521 and 522 in FIG . 5 .
[0050] At 440-445 , in response to receiving encapsulated
monitoring packet 510/520 , destination VTEP - B 119B sup
ported by host - B 110B may respond with respective first
reply (REPLY1) 530 and second reply (REPLY2) 540 .
Using the echo function discussed above , REPLY1 530 may
be generated by encapsulating ECHO1 512 from host - A
110A with third outer header information (O3) . Similarly ,
REPLY2 540 may be generated by encapsulating ECHO2
522 received by host - B 110B with different outer header
information (04) on the return path .
[0051] In both cases , outer header information (03/04)
may specify source address = IP - B associated with VTEP - B
119B on host - A 110A and destination IP - A associated with
VTEP - A 119A on host - A 110A . See 531 and 541 in FIG . 5 .
To track a particular uplink , REPLY1 530 may include first
payload information (P1) identifying UPLINK1 502 used
for sending ENCAP1 510 ; see interface name = " UPLINK1_
INFO ” of ECHO1 512. Similarly , REPLY2 540 may include
second payload information (P2) identifying UPLINK2 503
used for sending ENCAP2 520 ; interface
name = " UPLINK2_INFO ” of ECHO2 522 .
[0052] In practice , REPLY1 530 is not necessarily
received via UPLINK1 502 , which is used by host - A 110A
to send corresponding ENCAP1 510. An example is shown
in FIG . 6 , which is a schematic diagram illustrating second
example 600 of uplink - aware logical overlay tunnel moni
toring in SDN environment 100. Here , ENCAP1 510 may be
sent by host - A 110A using UPLINK1 502. On the return
path where ECHO1 512 is looped back , REPLY1 530 sent
by host - B 110B may be received by host - A 110A using
UPLINK2 503. In the examples in both FIG . 5 and FIG . 6 ,
host - A 110A may determine that REPLY1 530 is a response
to ENCAP1 510 based on interface name = " UPLINK1
INFO ” in the payload of ECHO1 512 .
[0053] The ease of uplink identification may be observed
for logical overlay tunnel monitoring using ENCAP2 520 .
Although ENCAP2 520 was sent using UPLINK2 503 ,
REPLY2 540 may be received via UPLINK1 502. As such ,
by configuring REPLY2 540 to identify the second uplink
based on interface name = " UPLINK2_INFO " , host - A 110A
may determine performance metric information associated
with that uplink . Examples of the present disclosure are
scalable to any suitable number of uplinks supported by each
host 110A / 110B .

see

a

US 2021/0392016 A1 Dec. 16 , 2021
6

2

9

a

[0054] Performance Metric Information
[0055] At 450-455 in FIG . 4 , in response to receiving
REPLY1 530 , host - A 110A may identify the first uplink by
parsing first payload information (P1) that specifies interface
name = " UPLINK1 INFO . ” Similarly , in response to receiv
ing REPLY2 520 , host - A 110A may identify second uplink
based on interface name = " UPLINK2_INFO ” in REPLY2
520. At 460 in FIG . 4 , host - A 110A may determine first
performance metric information (METRIC1) associated
with the first uplink based on REPLY1 530 , and second
performance metric information (METRIC2) associated
with the second uplink based on REPLY2 540 .
[0056] Some examples are shown in FIG . 7 , which is a
schematic diagram illustrating example traffic handling 700
based on uplink - aware logical overlay tunnel monitoring in
SDN environment 100. In this example , block 460 may
involve determining METRIC1 711 associated with the first
uplink (i.e. , UPLINK1 502) and METRIC2 712 associated
with the second uplink (i.e. , UPLINK2 503) . Any suitable
uplink - based performance metric information 711/712 may
be determined , such as connectivity status (e.g. , UP or
DOWN) , packet latency or delay , packet loss , etc.
[0057] In practice , packet latency may refer generally to
the time required to transmit a packet belonging to the flow
from a source to a destination , such as round - trip time
(RTT) , etc. Latency (e.g. , RTT) or delay may be calculated
based on a difference between a received timestamp and a
sent timestamp , such as T1 in REPLY1 530 and T2 in
REPLY2 540. Packet loss may refer generally to the number
of packets lost per a fixed number (e.g. , 100) of packets sent ,
such as based on monotonically increasing sequence
number = S1 in REPLY1 530 and sequence number = S2 in
REPLY2 540 .
[0058] Note that , if connectivity via a particular uplink is
lost , host - A 110A may not receive any reply from host - B
110B . For example , in response to detecting no reply to
ENCAP2 520 after a period of time , host - A 110A may
determine that ENCAP2 520 (or REPLY2 540) is lost . In this
case , second performance metric information (METRIC2)
associated with second uplink may be updated to indicate
the connectivity issue . See . In practice , host - A 110A may
continue sending encapsulated monitoring packets via
PNIC2 172 for a period of time . If no reply is received after
a timeout period , a connectivity status associated with the
second uplink may be updated from UP to DOWN .
[0059] At 465 in FIG . 4 , logical overlay network traffic
handling may be performed based on METRIC1 711 asso
ciated with UPLINK1 502 and METRIC2 712 associated
with UPLINK2 503. In particular , in response to detecting
an egress data packet (DP1) from VM1 131 to VM3 133 ,
VTEP - A 119A may perform encapsulation to generate an
encapsulated data packet (see 720) . Outer header informa
tion (05) may be configured to specify VTEP IP address
information (source = IP - A , destination = IP - B) , while the
inner data packet (DP1) may specify VM IP address infor
mation (source = IP - VM1 , destination = IP - VM3) . In one sce nario where the first uplink is healthy (e.g. , connectivity
status = UP and RTT < threshold) , encapsulated data packet
720 may be sent using UPLINK1 502 .
[0060] In another scenario where a failure or performance
degradation of the first uplink is detected , the second uplink
may be selected over the first uplink . In this case , in response
to detecting a subsequent egress data packet (DP2) from
VM1 131 to VM3 133 , VTEP - A 119A may perform encap

sulation to generate an encapsulated data packet (see 730)
and send it using UPLINK2 503. Similarly , outer header
information (06) may be configured to specify VTEP IP
address information (source = IP - A , destination = IP - B) , and
the inner data packet (DP1) specifying VM IP address
information (source = IP - VM1 , destination = IP - VM3) .
[0061] The failure or performance degradation may be
detected according to blocks 450-460 , such as based on
multiple instances of REPLY1 530 (or absence thereof) .
Performance degradation may also be detected by compar
ing a particular performance metric with a predetermined
threshold for detecting , for example , that RTT has exceeded
a quality of service threshold . Using examples of the present
disclosure , logical overlay tunnel monitoring may be per
formed for multi - homed devices such as hosts 110A - B to
improve logical overlay network performance .
[0062] Container Implementation
[0063] Although explained using VMs , it should be under
stood that public cloud environment 100 may include other
virtual workloads , such as containers , etc. As used herein ,
the term “ container " (also known as “ container instance ”) is
used generally to describe an application that is encapsulated
with all its dependencies (e.g. , binaries , libraries , etc.) . In the
examples in FIG . 1 to FIG . 7 , container technologies may be
used to run various containers inside respective VMs 131
134. Containers are “ OS - less ” , meaning that they do not
include any OS that could weigh 10s of Gigabytes (GB) .
This makes containers more lightweight , portable , efficient
and suitable for delivery into an isolated OS environment .
Running containers inside a VM (known as “ containers - on
virtual - machine ” approach) not only leverages the benefits
of container technologies but also that of virtualization
technologies . The containers may be executed as isolated
processes inside respective VMs .
[0064] Computer System
[0065] The above examples can be implemented by hard
ware (including hardware logic circuitry) , software or firm
ware or a combination thereof . The above examples may be
implemented by any suitable computing device , computer
system , etc. The com er tem may include processor (s) ,
memory unit (s) and physical NIC (s) that may communicate
with each other via a communication bus , etc. The computer
system may include a non - transitory computer - readable
medium having stored thereon instructions or program code
that , when executed by the processor , cause the processor to
perform process (es) described herein with reference to FIG .
1 to FIG . 7. For example , the instructions or program code ,
when executed by the processor of the computer system ,
may cause the processor to implement a “ network device ” to
perform connectivity check according to examples of the
present disclosure .
[0066] The techniques introduced above can be imple
mented in special - purpose hardwired circuitry , in software
and / or firmware in conjunction with programmable cir
cuitry , or in a combination thereof . Special - purpose hard
wired circuitry may be in the form of , for example , one or
more application - specific integrated circuits (ASICs) , pro
grammable logic devices (PLDs) , field - programmable gate
arrays (FPGAs) , and others . The term “ processor ' is to be
interpreted broadly to include a processing unit , ASIC , logic
unit , or programmable gate array etc.
[0067] The foregoing detailed description has set forth
various embodiments of the devices and / or processes via the
use of block diagrams , flowcharts , and / or examples . Insofar

9

a

US 2021/0392016 A1 Dec. 16 , 2021
7

a

a

as such block diagrams , flowcharts , and / or examples contain
one or more functions and / or operations , it will be under
stood by those within the art that each function and / or
operation within such block diagrams , flowcharts , or
examples can be implemented , individually and / or collec
tively , by a wide range of hardware , software , firmware , or
any combination thereof .
[0068] Those skilled in the art will recognize that some
aspects of the embodiments disclosed herein , in whole or in
part , can be equivalently implemented in integrated circuits ,
as one or more computer programs running on one or more
computers (e.g. , as one or more programs running on one or
more computing systems) , as one or more programs running
on one or more processors (e.g. , as one or more programs
running on one or more microprocessors) , as firmware , or as
virtually any combination thereof , and that designing the
circuitry and / or writing the code for the software and or
firmware would be well within the skill of one of skill in the
art in light of this disclosure .
[0069] Software and / or to implement the techniques intro
duced here may be stored on a non - transitory computer
readable storage medium and may be executed by one or
more general - purpose or special - purpose programmable
microprocessors . A " computer - readable storage medium " ,
as the term is used herein , includes any mechanism that
provides (i.e. , stores and / or transmits) information in a form
accessible by a machine (e.g. , a computer , network device ,
personal digital assistant (PDA) , mobile device , manufac
turing tool , any device with a set of one or more processors ,
etc.) . A computer - readable storage medium may include
recordable / non recordable media (e.g. , read - only memory
(ROM) , random access memory (RAM) , magnetic disk or
optical storage media , flash memory devices , etc.) .
[0070] The drawings are only illustrations of an example ,
wherein the units or procedure shown in the drawings are not
necessarily essential for implementing the present disclo
sure . Those skilled in the art will understand that the units in
the device in the examples can be arranged in the device in
the examples as described , or can be alternatively located in
one or more devices different from that in the examples . The
units in the examples described can be combined into one
module or further divided into a plurality of sub - units .
What is claimed is :
1. A method for a first computer system to perform

uplink - aware logical overlay tunnel monitoring , wherein the
method comprises :

establishing a logical overlay tunnel with a second com
puter system that is reachable from the first computer
system via a first uplink and a second uplink ;

generating and sending , over the logical overlay tunnel
via the first uplink , a first encapsulated monitoring
packet identifying the first uplink ;

determining first performance metric information associ
ated with the first uplink based on a first reply identi
fying the first uplink from second computer system ;

generating and sending , over the logical overlay tunnel
via the second uplink , a second encapsulated monitor
ing packet identifying the second uplink ;

determining second performance metric information asso
ciated with the second uplink based on a second reply
identifying the second uplink from second computer
system ; and

based on the first performance metric information and the
second performance metric information , selecting the

first uplink or the second uplink to send one or more
encapsulated data packets over the logical overlay
tunnel .

2. The method of claim 1 , wherein generating and sending
the first encapsulated monitoring packet comprises :

generating a first inner packet that causes the second
computer system to loop back the first inner packet ,
being the first reply , to the first computer system ; and

encapsulating a first inner packet with a first outer header
that is addressed from a first virtual tunnel endpoint
(VTEP) supported by the first computer system to a
second VTEP supported by the second computer sys
tem .

3. The method of claim 2 , wherein generating and sending
the first encapsulated monitoring packet comprises :

generating the first inner packet in the form of an echo
packet that specifies a destination address associated
with the first computer system .

4. The method of claim wherein generating and sending
the first encapsulated monitoring packet comprises :

generating the first inner packet to specify one or more of
the following : an interface name identifying the first
uplink , a sequence number and a timestamp .

5. The method of claim 1 , wherein the method further
comprises :

establishing a monitoring session between the first com
puter system and the second computer system accord
ing to a continuity check protocol for sending the first
encapsulated monitoring packet and the second encap
sulated monitoring packet .

6. The method of claim 1 , wherein determining the first
performance metric information comprises :

based on the first reply , determining the first performance
metric information specifying one or more of the
following : connectivity status , round trip time (RTT) ,
packet loss and delay associated with the first uplink .

7. The method of claim 1 , wherein the method further
comprises :

in response to detecting a failure or performance degra
dation associated with the first uplink based on the first
performance metric information , selecting the second
uplink over the first uplink to send the one or more
encapsulated data packets .

8. A non - transitory computer - readable storage medium
that includes a set of instructions which , in response to
execution by a processor of a first computer system , cause
the processor to perform uplink - aware logical overlay tunnel
monitoring , wherein the method comprises :

establishing a logical overlay tunnel with a second com
puter system that is reachable from the first computer
system via a first uplink and a second uplink ;

generating and sending , over the logical overlay tunnel
via the first uplink , a first encapsulated monitoring
packet identifying the first uplink ;

determining first performance metric information associ
ated with the first uplink based on a first reply identi
fying the first uplink from second computer system ;

generating and sending , over the logical overlay tunnel , a
second encapsulated monitoring packet identifying the
second uplink ;

determining second performance metric information asso
ciated with the second uplink based on a second reply
identifying the second uplink from second computer
system ; and

US 2021/0392016 A1 Dec. 16 , 2021
8

9

based on the first performance metric information and the
second performance metric information , selecting the
first uplink or the second uplink to send one or more
encapsulated data packets over the logical overlay
tunnel .

9. The non - transitory computer - readable storage medium
of claim 8 , wherein generating and sending the first encap
sulated monitoring packet comprises :

generating a first inner packet that causes the second
computer system to loop back the first inner packet ,
being the first reply , to the first computer system ; and

encapsulating a first inner packet with a first outer header
that is addressed from a first virtual tunnel endpoint
(VTEP) supported by the first computer system to a
second VTEP supported by the second computer sys
tem .

10. The non - transitory computer - readable storage
medium of claim 9 , wherein generating and sending the first
encapsulated monitoring packet comprises :

generating the first inner packet in the form of an echo
packet that specifies a destination address associated
with the first computer system .

11. The non - transitory computer - readable storage
medium of claim 9 , wherein generating and sending the first
encapsulated monitoring packet comprises :

generating the first inner packet to specify one or more of
the following : an interface name identifying the first
uplink , a sequence number and a timestamp .

12. The non - transitory computer - readable storage
medium of claim 8 , wherein the method further comprises :

establishing a monitoring session between the first com
puter system and the second computer system accord
ing to a continuity check protocol for sending the first
encapsulated monitoring packet and the second encap
sulated monitoring packet .

13. The non - transitory computer - readable storage
medium of claim 8 , wherein determining the first perfor
mance metric information comprises :

based on the first reply , determining the first performance
metric information specifying one or more of the
following : connectivity status , round trip time (RTT) ,
packet loss and delay associated with the first uplink .

14. The non - transitory computer - readable storage
medium of claim 8 , wherein the method further comprises :

in response to detecting a failure or performance degra
dation associated with the first uplink based on the first
performance metric information , selecting the second
uplink over the first uplink to send the one or more
encapsulated data packets .

15. A computer system , being a first computer system ,
comprising :

a processor ;
a first physical network interface controller (PNIC) asso

ciated with a first uplink ;
a second PNIC associated with a second uplink ; and
a non - transitory computer - readable medium having

stored thereon instructions that , when executed by the
processor , cause the processor to perform the follow
ing :
establish a logical overlay tunnel with a second com

puter system that is reachable from the first computer
system via the first uplink and the second uplink ;

generate and send , over the logical overlay tunnel via
the first uplink , a first encapsulated monitoring
packet identifying the first uplink ;

determine first performance metric information associ
ated with the first uplink based on a first reply
identifying the first uplink from second computer
system ;

generate and send , over the logical overlay tunnel via
the second uplink , a second encapsulated monitoring
packet identifying the second uplink ;

determine second performance metric information
associated with the second uplink based on a second
reply identifying the second uplink from second
computer system ; and

based on the first performance metric information and
the second performance metric information , select
the first uplink or the second uplink to send one or
more encapsulated data packets over the logical
overlay tunnel .

16. The computer system of claim 15 , wherein the instruc
tions for generating and sending the first encapsulated
monitoring packet cause the processor to :

generate a first inner packet that causes the second com
puter system to loop back the first inner packet , being
the first reply , to the first computer system ; and

encapsulate a first inner packet with a first outer header
that is addressed from a first virtual tunnel endpoint
(VTEP) supported by the first computer system to a
second VTEP supported by the second computer sys
tem .

17. The computer system of claim 16 , wherein the instruc
tions for generating and sending the first encapsulated
monitoring packet cause the processor to :

generate the first inner packet in the form of an echo
packet that specifies a destination address associated
with the first computer system .

18. The computer system of claim 16 , wherein the instruc
tions for generating and sending the first encapsulated
monitoring packet cause the processor to :

generate the first inner packet to specify one or more of
the following : an interface name identifying the first
uplink , a sequence number and a timestamp .

19. The computer system of claim 15 , wherein the instruc
tions further cause the processor to :

establish a monitoring session between the first computer
system and the second computer system according to a
continuity check protocol for sending the first encap
sulated monitoring packet and the second encapsulated
monitoring packet .

20. The computer system of claim 15 , wherein the instruc
tions for determining the first performance metric informa
tion cause the processor to :

based on the first reply , determine the first performance
metric information specifying one or more of the
following : connectivity status , round trip time (RTT) ,
packet loss and delay associated with the first uplink .

21. The computer system of claim 15 , wherein the instruc
tions further cause the processor to :

in response to detecting a failure or performance degra
dation associated with the first uplink based on the first
performance metric information , select the second
uplink over the first uplink to send the one or more
encapsulated data packets .

