US011893676B2

a2 United States Patent

Seiler

US 11,893,676 B2
Feb. 6, 2024

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(63)

(60)

(1)

(52)

(58)

PARALLEL TEXTURE SAMPLING

Applicant: META PLATFORMS
TECHNOLOGIES, LLC, Menlo Park,
CA (US)

Inventor: Larry Seiler, Redmond, WA (US)

Assignee: Meta Platforms Technologies, LL.C,
Menlo Park, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 108 days.

Appl. No.: 17/562,723

Filed: Dec. 27, 2021

Prior Publication Data

US 2022/0180590 Al Jun. 9, 2022

Related U.S. Application Data

Continuation of application No. 16/591,520, filed on
Oct. 2, 2019, now Pat. No. 11,244,492.

Provisional application No. 62/755,281, filed on Nov.
2, 2018.

Int. CL.

GO6T 15/04 (2011.01)

GO6T 15/08 (2011.01)

U.S. CL

CPC GO6T 15/04 (2013.01); GO6T 15/08

(2013.01)
Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,563,507 B1* 5/2003 Ito ..ccocevvvvncnnenenn GO6T 15/005
345/569

2003/0169265 Al* 9/2003 Emberling GO6T 15/04
345/582

2003/0174136 Al* 9/2003 Emberling GO6T 11/40
345/531

2006/0125834 Al* 6/2006 Chung GO6T 1/60
345/552

2006/0164429 Al* 7/2006 Mantor GO6T 1/60
345/582

2006/0290707 Al* 12/2006 Pallister GO6T 15/005
345/582

2009/0289949 Al* 11/2009 Buchner GO6T 11/001
345/582

(Continued)

FOREIGN PATENT DOCUMENTS

Jp 2015200915 A 11/2015
Primary Examiner — Andrew G Yang
(74) Attorney, Agent, or Firm — Baker Botts L.L.P.

(57) ABSTRACT

In one embodiment, a computing system may store, by first
buffer blocks, texels organized into a texel array including a
number of NxN texel sub-arrays. Each texel may fall within
a corresponding NxN texel sub-array and may be associated
with a two-dimensional sub-array coordinate indicating a
position of that texel within the corresponding NxN texel
sub-array. Each first buffer block of may be assigned a
particular two-dimensional sub-array coordinate and stores a
texel subset having the particular two-dimensional sub-array
coordinate. The system may receive, by filter blocks, texels
from the first buffer blocks. Each filter block may receive a
texel from each first buffer block to form a corresponding
NxN texel sub-array. The system may perform, by filter
blocks, sampling operations parallelly on their respective
NxN texel sub-arrays.

20 Claims, 26 Drawing Sheets

1100
from Cache Controller
%
_ | Texel Mem Sample Opague pixel data from Tile Bufffer
256! Read Data Stepper
1101
Texels Array $
J_ 1110 z i
H %
o 1 o0 g u o M 64y, | 4. 64
Quad Buffer Quad Buffer Quad Buffer Quad Buffer
0 | Al BLIAZ B2 Block A Block B Block C Block D
‘ (u0,v0) (ul,v0) (uQv1) (ul vl
[R e 1102 1103 1104 1103
0 | A3| B3| A4 B4 m @ }z mi i v ; mié é, 10 @‘54 -
%
1 1C3| D3| cd|Da | Sample Filter Block (x0,y0) 1106 r«m.,.
; ! l
v g 11 w1l 4 91 wl] |
] Sample Filter Block (x1,y0) 1107 sy Tile
Buffer
10 g 10 i 10 § 104 ; Block
| ; ; 44 f 12
i Sample Filter Black (x0.y1) 1108 ?et» »»»»» B
10 10] 10 10
. ! b
i Sample Filter Block (x1,y1) 1109

E:

¥
o Display Block

US 11,893,676 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2012/0281915 Al* 11/2012 Strom HO4N 19/182
382/233
2016/0078666 Al* 3/2016 Park GO6T 15/005
345/426

* cited by examiner

US 11,893,676 B2

Sheet 1 of 26

Feb. 6, 2024

U.S. Patent

(zH 008 ~ ZH 007)
p11 sng veq

g91 71 wasig
Kerdsi(ohg

V911 Wwaiskg
Kerdsig 247

(ZH 008~ZH 007)
¥11 sng ereg

41

— ouiSuy | gL
Aerdsiq

Hl 011 WwosAS 19speay

1] UOTIOAUUO) SSAAIIM

qal "OIAd
ocT $ST
feidsig pdng | IOALI(]
VI "OIA

wasAs Sunndwo)
J[qrIBd M Apog

741

1 uonoauuo)) SSIJAM

<
-

V911 washg
Kerdsiq o4

(43!

wsAS
OET ProLD unndwo)) pnop)

U.S. Patent Feb. 6, 2024 Sheet 2 of 26 US 11,893,676 B2

1x1

Edge 220
-
2x2

o™
(]
[q\]
=i
o
o=
&’
~

4x4

Mipmap Chain
2

230
8x8

7,

.

/
16x16

FIG. 2

™,
Nk
SN,
NN

AR,

O
(]
[
k SIS SN,

32x32

SANNNANIESNENNNNNNS,
.

.,
R Ay
O INNSNNNNNN, .
k .

Y b
MRy
, ., SN
A
. ~,
NN, ~, ~, SO
i
.
NSO SO ONNN,
OSSOSO S NN,
\Q\\.\\\Q\\\\\'\\\\.\

Y

Edge 210
64x64

200

US 11,893,676 B2

Sheet 3 of 26

Feb. 6, 2024

U.S. Patent

¢ 93pd

£ OId

I I I
I I I
_d] _ 1

L __L__L I_III_III_IIIH

0ce
ooejIng padiem-o1g

ove
PHD S[OXIL,

US 11,893,676 B2

Sheet 4 of 26

Feb. 6, 2024

U.S. Patent

v "OIA

ocy
Q0RJING
padrem-o1q
pouwLIOJSUBIL],

——— _———

——— -
—
-
-

0Ty
oorJINg
padrem-o1q

L

197
ooedg ¢

US 11,893,676 B2

Sheet 5 of 26

Feb. 6, 2024

U.S. Patent

S OIA

TEG eISWED) [RNMIA

0€¢ utod Mt UO

7eS skey paise)

18 (028
utod

/ 00¢
Q0RJING

0vs SILL

US 11,893,676 B2

Sheet 6 of 26

Feb. 6, 2024

U.S. Patent

-

16

19)

N

799 od
Surdureg

¢

q9 "DIA
$99 uoIoy 60 uoIBoy
J1I12UWO0N) \' J11}oUI0A0) 49 U104
Surpdwes
A A \l \
é o 0] > .
F o\I © |1 o—Ho 1
0 0 i} _ i .
0 n ¢ 3 0 0 z | 0
769 utod .V pp9 uoIgoy
Surdureg JLIJ3WON)
V9 "ODIA

CI9 21D l/ \l 119 191000

XD
209 PXOL —~y [Jd1 109 [9X3L,
{/ <

019 1utod I 979 uordoy
Surpdureg / oo

€09 [9X3L, l\‘ T 709 [9%aL,

€19 IUA) |\ /I 719 IAU)

—O
O

€9 urod
Surpdwesg

-

/0

€9 uoI3oy
OLIAWO3N)

US 11,893,676 B2

Sheet 7 of 26

Feb. 6, 2024

V. "OIA

T0L uor3oy
Surdweg R
PaYIYS

Q)

G

n ¢ 4

U.S. Patent

1\ |
10L uor3oy Surdweg V00L uoIgoy
[9X9L ¥Xv

US 11,893,676 B2

Sheet 8 of 26

Feb. 6, 2024

U.S. Patent

qa. "OId
TiL A
jutod ordures
|l o—t9 | ¢—T9 | =
|||||| T b L1l T1L
A .l.._| ' / jutod ordures
[
_ [
_ [
8IL G “ D G D 4
Joue)sIq ["
i |
[!
y (p— S @ Q -
|||||| | _ L R I N "]
\lLlr .| / o ordureg
€IL 1\ “ |
o ordwres O _) O ") 0
[
| “
n €1 T I 10
a >
01L uo13ay _ o1, “
[9X2L vXv : ourISI(I !

US 11,893,676 B2

Sheet 9 of 26

Feb. 6, 2024

U.S. Patent

IL "OIA
IeL
jurod orduwreg A
-
jurod orduwreg
Ul e ® | o ,
i
! _
! [
_
9cL G——0 G——19 O :
ouRISI(] _ _
i |
_
v G SV, @ P O ¢ el
|||||| .||ir|||||||||| T~ Jui0g ojdweg
eeL \\ _ _ .
1uted adures o+l o | 6+ | O
_
| _
0L uorsoy l\ " |
XL 'l o | oll o | oo
i |
|
n 1% " € [4 " I 0
_A Pt
_
8L
ouRISI(]

US 11,893,676 B2

Sheet 10 of 26

Feb. 6, 2024

U.S. Patent

acl "Old

n 3 4 I 0
A
(475
jurod orduwreg
O @ P @) €
-\\// IvL
jurod orduwreg
/o ——P—1—0 | ¢
/- L
— < N\ jurod orduwreg
7) NS I
PR D O
g _ R
\\ / N\ //
7/ / N\ \
/7 \\ // //
\\ O h.\ O N O O //
/ // N\
’ s \ N
s v N N
\\ // //
vSL e evL AN .
QouBISI(] /7 uod opdureg AN SL
il N oueIsI(]

0L UoI3oy
[9X9], pX¥

US 11,893,676 B2

Sheet 11 of 26

Feb. 6, 2024

U.S. Patent

V8 "DIA
0d za ¥4 od gd 019 cId ¥Id o9rg 819 ozd Ccd ved 924 gzg ogd
1d ¢d ¢ L4 6d 114 ¢1g S1d L1d 61d T2d ¢zd czd L9 6zd 154
oDl D|oa | e alte o ||| |2 |c®e |(2]|(e
A G18 Yoorg AToun
(8119 967) sahg 7€
718 ¢
104 ofdueg P ® | P 9 | 118
1O 219HIBs I TN\ Jurog opduieg
o o | © o ¢
cI8 o——0 | o—o Loyt
L/ \] i \J ﬁm
o odweg —" — WHOd PITWES
© o | & d 0
n ¢ z 1 0 A
018 Keary l\
[OX9], pXpr

US 11,893,676 B2

Sheet 12 of 26

Feb. 6, 2024

U.S. Patent

% .
$eg ARIry £eg Aerry a8 ‘DId zc8 Keiry €8 Aerry
[OXOL pxi [9X9L, X¥ [PX3L vXy [PXa, $X¥
4 A o =
v
91d |s1d EQ/ €1d 91D |SID VIO | €1D ord |14 |vId | €14 o1V | STV [VIV | €1V
zialitaloral ea zio 110 {01 | 6 crayrig |ord | ed CIV |11V [OIV | 6V
sal taleal sa el ol | o sd | Ld |94 | <4 SV | LV |9V | SV
T 011 €011 (€]
(1D aorg (1°0) D ¥oo1d (0D g o1d (0 °0) V o1g
: Jopng pend) Iopmng pend
g pend Igyng pen) Jjug p
1A 91D |STA|SID pIA [vID | 1| 1D
o1d |91V |14 |S1V 19 [PIV |c1d | €TV
A C1d |ZIO [TIA IO pId [oID | 6d | 6O
¢78 Aerry
PXOL TXT 1l cld IV L1d [TTV pId [0IV | 64] 6V
gliv | o 8 8D [LA LD |9 |9O | sd] SO
n I 0 8d [8V |Ld [LV |99 {9V | ¢H]| SV
pa |vo | €d| €0 |zd [0 | 1] 1o /lo%@g
[9X9L 8%8
v | PV €] | eV |Td TV | 14| IV

US 11,893,676 B2

Sheet 13 of 26

Feb. 6, 2024

U.S. Patent

I8 DIA
arzil o1d | v1d
(1 ‘1) Yoo1g R
Rpng [oxa], 8 9d
aszit sid|era
(1 ‘0) 0019 |H
wng [9¥9], La fsd
azell cidjord
(0 ‘1) YooIg R
opng [xa], vd |
arcii Hda f ea
(0 ‘0) oo1g R
wpng [9xa], ¢d | 1d
91a |S1a |{¥1a | €1a
zialiialfora | ea
ga | taloa | sa
vd | ca |za | 1a
SOTT

OFTIT oL | ¥1O areii I | yid VrzIl 91V | p1v
(1 1) ¥ord (1°7) Yoig g (1 “1) oorg
Rpng [oxa L, 89199 Rpug [PXeL 8€ |94 Iyyng [9x9], 8V |9V
ogTll §10 1 €10 szl sid | e1d vezIl IV | €1v
(1 ‘0) ¥oo1d (1 “0) 3o01g (1 ‘0) oorg
pjmd [9xaL Ih L1590 g [°xa L, L e IoJng [9X9L, lh LV [V
oTell ¢ 1o1d qeell cd ford vZzIl e [ot
(0 1) o019 (0 °1) ¥oo1d L\ (0 ‘1) Yoorg
png [exaL, R O yng [ox3], e | wyng [oxa], vV | v
DITI o1 60 g1l e | 64 VIZIl 1v | 6v
(0 °0) 019 (0 °0) o019 1%\ (0 ‘0) Yoorg
nyng [oxa, % £ | 1D Iojng [oXa, ¢d | 14 opyng [9¥XaL, eV 11V
91D |SID [¥ID | €1D ord |sid |v1d | €14 9TV |SIV [PIV | €1V
IO | 11D (01D | 6D agl|udgjoid | 64 V|11V |01V | 6V
80| L[99] © ga | La |99 | sq gv | v | 9v | sv
POl €D |20 | 10 v | ed |7 | 19 PV lev [V | 1V
POTT €011 011

(1 ‘1) d Yoorg oyng pend (1 ‘0) D oo1g 13y pend

|

(0 ‘1) g oo1g wjyng penQ

|

(0 °0) V ool Joyng pend

§

US 11,893,676 B2

Sheet 14 of 26

Feb. 6, 2024

U.S. Patent

aLes IN
91d |S1d |v1a TE
zialiajoial ea
ga | tajoa | sa
Palealzal 1a
SOTT
(1 ‘1) @sorg
Iayyng pend)
678 Aerry
POLTXT e~
n

ILC8 IV
91D ISID |¥ID | €1D
CIDYTID(OID) 6D
8O LD |90 (%0
YOl €D | 2O D
7011
‘0) D Yoorg
Jopng pend
A
afo | !
141V 0
I 0

ord |14 |v1a |[c1a orv [stvflviv | c1v
g | 1afora | eg avliv|ov] ev
ga | raloa | sa svll v lov] ov
v | ca [za | 14 wlev |ov | 1v
€011 2011
(0 ‘1) 9 Yoord (0 ‘0) v Yo01g
Ryjng pend) wyyng pen)
o1a |o1o|s1alsio bra [p1o | c1al c10
o1d |o1v fcrg [s1v pra |pv |c1a | erv
z1a [oio [rrabiio bra foio | sal 6o
219 kv g v big lorv | egll ov
£
sa (80 |zal o lea oo | sal o 9c8 Avlv
~— ﬁ@%@rﬁ .VX.W
sa [sv |ca | ov log |ov | sal sv
va |10 | eal| o lea | | 1a] 1o /no%ba%
[OX3L, §X8
va |vv |ca | eviea [ov | 1g]| v

US 11,893,676 B2

Sheet 15 of 26

Feb. 6, 2024

U.S. Patent

H8 "OIA
91 | v1d
areil
(I D) Yoord R sd |oa
Iojng [9XaL,
SId {¢1a
aseli
(1 °0) oo1g R ra bea
Iajyng [9%al,
cidjora
acenl
(0 D oI RE 2
Jojng 1ox9],
11ay ea
aicii
(0 “0) oo1g R ¢a | 1a
Ioyyng [9xal,
o1a {s1d [¥1a | €1d
cialiajora| ed
8a | Lajod | sa
A | ed |Td | 1d
So11

91D | ¥1D 9ld | y1d 9LV | p1V
41! qyell Vel
(1 1) Yoorg R 3y oo (1 1) org L\ sq fog (1‘1) Yoord |\ av lov
pny X9, opnyg [PX9L Iopng [9%a],
SID | €10 sid [erd SIV [e1v
oeTll qaecil VETIT
(1 ‘0) o019 R o 1o (1°0) eo1g lh L4 | sd (1 °0) o019 Ly | sv
wyng 1ox3], rpng [oX9], Japjng [°xal, \%
LD 101D cldjorda IV ol
0Tl qceil VZTll A
(0 ‘1) Yoorg R o (0 ‘1) o019 \ﬁ vd | zd (0 ‘1) Y001 vy | TV
yjng [9x9], Jojyng [9x2], Iopng [9%9, %
110§ 62 14) 69 v | 6v
D1CIT qIC11 VICll
(0 “0) o1d |%. ¢ 1o (0 “0) >o1d Iw\ eq |19 (0 “0) o1 v | 1v
ng X9, ojng [OX9L Ipyng [PxXaL, 1_\
910|510 Iv10 | €10 ord |s1d |v1d | €14 oIV |STV |PIV | €1V
zinfio o] 6o crg | rrajord | ed avjiv [orv | ev
ololol o g | La | od | s4 sv]Lv|ov | sv
P01 |w €011 .w 2011 R
(0 ‘1) g Yoord eygng pend (0 °0) v Yoo1g Joyng penQy

(1 ‘1) @ Yord teyng pendd (1 °0) D Yoorg teyyng pen)

US 11,893,676 B2

Sheet 16 of 26

Feb. 6, 2024

U.S. Patent

H8 ‘DIH
91d |s1d {v1d | €1 91D |SID |VID | €1D ord |s1d IV |SIV |FIV | €IV
aaliajora| sa ziofro (o] 6D crda|iid 487 R18 / 6V
ga | La ol o}) 8d | Ld svl v |ov] sv
valealza | 1a POleOo |20 | 1D vd| ¢d |za | 14 PV]lev oV | 1V
oIl Y011 €011 011
(1) d yooid [URRESE (0°1) g o1 (0°0) vV Yoord
woyng pend) Jopng pend) ng pend nyng pend

OTA [91O|STA|SIO 1A [¥ID | €1d] €1D

o1d |91V |14 |S1V 14 VIV |E1d [€IV

1A [TIO |T1AagIin

LT8 Keiry
[~ [9X91 TXT

cld gIv tid griv
8d |8D | LAY LD

%
sa |sv |ea v 9C8 ABLY

0z8 Aviry ~— [PX3L pxp
[9X9], §X8 A VO | €df €O |Td [TO | 1Al 1O

v | PV | ed | eV |Td TV | 14} IV

US 11,893,676 B2

Sheet 17 of 26

Feb. 6, 2024

U.S. Patent

08 "DIA
91a | ¥1a 91 | v10
arvzil OVTI1
(1 1) yoorg ea loa (1 1) >o1g |R 39
Ioqng 19%9 Ryng [ex9],
¢1a $ID | €10
aszein e LTl
(1 ‘0) ooIg d (T°0)org u% o |
Iopng [oxa], ojng [exa],
a (4198 Kilte)
azein ciajoia J¢ctl
(0“1 woIg vq lzq | @ DwoIE R ¥ |20
g [PXaL opng [exa],
a 1o 6o
darzil H 6d OITIT
(0 “0) YooIg cq lig | ©0word Lx e |
Iopng [oX9L Byng [exo],
91 |S1A (v1A | €1d 91D |SID |PID | €1D
1ajriagora | ed CIDYTIDO (01D) 6D
8a | LA od 801 LO 59)
vdfed |Ta | 1d PO1ED|1TO | 1D
SOT1 YOT1

(1°1) @ ¥org wyng pend

(1 0) O ¥ooId Jopyng penp

|

914 | v1d
aveil
(11 Yooid L\ gaq | og
Iopng 19X9],
STd | €14
qecil
(1 ‘0) o019 ca lcqg
Iopyng 1ox9],
cldjolg
qeein
(0 ‘1) Po1g ..h. vg | za
JaJIng 9%,
q1211
(0 “0) MPo1g lb\
Ioyng [9X%a],
919 |s1d V14 Qm._
zrgrrgajord fag
sq | L9 | 94
v | ¢cd |cd | 14
€011

(0 1) d oo1d wyyng pendy

i

IV [y1V
V¥l
(1 1) »ord sv lov
Jopng [9X9al,
SIV | e1v
VTl
(1 “0) oord u% v lev
Ioyjng 1o¥9],
vTTll
(0 ‘1) Wo1d IW v |y
Japng 19x9],
11V | 6V
VIZII
(0°0) ¥oo1d L. ev | 1v
Ryng [¢9X9],
91V |SIV [PIV | €1V
TIVETIVE 6V
A WA cv
PYlEv [TV | 1V
2011

(0 “0) V Yooiq 1eyjng penQ)

I

US 11,893,676 B2

Sheet 18 of 26

Feb. 6, 2024

U.S. Patent

6 ‘DIA
d0v6 oRTr
Cerd YOro
Ao01d Aefdsi(] yoorg Aerdsiq
q£06 SI°XId av06 V€06 S[°X1d
ok 1SRy sngng osg V06 ok o1
| sug g 96T
q0%6 uﬂ o
. - . VOto6
A201d [oxid Yoo1d [0X1d
d206 sited
9OBLING/O[L],
> o6 [
q0¢6 Io[[oNU0)) AIOWDJA —
O0[¢ WIOJSURL], D > YO0cC6
0 YO0[{ ULIOJSURI],
¥16
AIOWRN [9X2L
I—
816 Snq vie(q I\ — L—T""N\— L6 Snq vieq
[40)
IS[JOIUOD)OIOA
076 oo1g *o[[0nuo)
\/
106
eR(f weans jndug mdingnduy
(411

US 11,893,676 B2

Sheet 19 of 26

Feb. 6, 2024

U.S. Patent

0l "OIAd

yoorq sporg Aerdsi(q 01 100y yoorg Aerdsiq o1 100D 20[g Aedsiq 01 10[0)

Kerdsiq 03
woped 119-3 onfg Jo spaxid ¢ X¢ U33ID) JO S[oXId T XT Py JO S[oXId T XT
&
0T e — 8001
Y001 €001 00T
Yoord 1L dnyg ¥o0Ig 1L UaID) YooId L poy SNq BIEP $9 96T
3 3 Y y «
6001 9¢7 ocz - H
snq ssoIppe $)q § .
9001 &re
A peay ATOWIA [OX3L
\ 4
1001
IoZeueRp »
o G001 ssaIppy
M peoy AIOWSA [oX3],
0001
spuewIwIo)) J[L], LOOT

snq ssalppe S11q §

Y0¢to

US 11,893,676 B2

Sheet 20 of 26

Feb. 6, 2024

U.S. Patent

Moom Kerdsiq 01 VII ‘OId
ki " # 60T T (TA°1%) yoorg 114 spdures
Tor T T T Tor
o B O L 01T (14°0x) yoog 11 o[dweg
LI+
o0 m ﬂ: m w: w w ﬂ: m ﬂ:
g e
AL ¥ LOTT (0A‘TX) Yoorqg 114 ojdwres
T T s T Tk
90TT (0£°0%) Yoorg 111 o[dwes pd | $O | €a | €D
3 S A
R A R M O L O O O pe | vy | €4 | v
COT1 YOIl ¢Oll 011 a (o || 1o
(1A°I0) (T2°0n) (L) (0r‘on)
d Idvo1d D Ao1d g 3°01d V Ad01d
1opmg pend) Iopng pend) 1yng pend) Jong peng) d jev|1d |1V
% 00 % Mﬂ@ B L 39 n 1. o0 I 0
h %
z ; 7 ¥ OIT1
k4 ARIIy SJOXO]
1011
1addag eIR(] Peoy ooz
Joypyng o], woiy viep [oxid onbedp ordweg WA [OXL

T

IS[[ONUO)) SYOB)) WOIJ

0011

US 11,893,676 B2

Sheet 21 of 26

Feb. 6, 2024

U.S. Patent

T ! T
&Ses XA hoffprccconoecocon, % 7 7 Wv XN .xasav
O‘H e " Y i # N
s 8
U 2 s > S, i el JCTT T m
- @ -4 R
R R 4 el XN BT
o 01 3 . % e AL
ey 4
= @
g e I A X aoTIT 3
M?xﬁz % f A ;) ; ; 7 ! W XN ,..sww
8 01 e, : % G T 5
23 s
g =
& & & % VTIIT
ACTT i ’ ’ B VST
S DS T\ L —— % @ s wgpeeel XU —
01 > J J) % % B C
01 01 01 01
z (I
(4 (4 (4
1oddyg
. T R ordweg
Toddag peer i Wl corri (€€TTijzzmr) iCElliiterr) (TEIT woxy
ordwreg o 2OUL ot 10U gt U] nuy
woIy (D {pendii (oD pendi (o) £ pendii 0'0) [penld)
Folg yoorg Foorg Foorg
Jojng sﬁnﬂw‘ Jojing cﬂﬂh Ta]Ing A\g@ Jslng T
IPPV peoy
Pexal, § . PYaL PxaL i, PYXaLf
oy N IPPY LM
SQOIpU] So3IpUf
o1t o o orF v9 BraRxel
qgll "OIAd oTTT

91V | v1v
\a74n!
(1 1) Yoord |\ v | ov
Jojng [9%a],
SIV | €1V
Y4N!
(1 “0) 3do1d .u\ v | sv
1yIng [9%9],
v o1V
r44n!
(0 ‘1) ¥oo1g lv\. v | zv
1yng [9Xa],
LIV | 6V
IC11
(0 ‘0) Yoord L\. cv | 1v
1eyng [9%a],
91V |SIV VIV | €IV
(4uy av|uv|oiv| ev
V I201d
Jojjag SV | LV | 9V vV
penQ
YV | ev | TV 1V
n 1 0 1 0

US 11,893,676 B2

Sheet 22 of 26

Feb. 6, 2024

U.S. Patent

vl "OIA

zeTt Iecl

mding (’ mding
Jvi 9 Rddog odueg

WoIj/0)
LOTIT »
1030908 -
4
o M ¢
60TI
S SSOr BO
| SO0 i

Kero(q

¢0cCl c0¢l

ury nup

yng oygng 071
0IXTIS CXTISE ssaIppy QILIM
% £ ——
3 %
01 (4
No/UI Xopu| —e
p [V 4!
, IR ULIO) -0y
3
91 BIR(] [OX9L
00<1

US 11,893,676 B2

Sheet 23 of 26

Feb. 6, 2024

U.S. Patent

qacl DIA
Hyeydry IH9I0[0D) X
oyeydly 071910[0D) SpoN
I ¢ € v S 9 L 8 01 II
geydry PO
I ¢ € v S 9 L 8 01 II
0110100 SpON
I ¢ € v S 9 L 8 01 II
yeydly 910[0D) SpoN
I ¢ € v S 9 L 8 01 II
yXopu| SERlIA G| S i L
I T € v S 9 L 8 01 II

AIOWRJA IoJjng UI SJRULIO BIR(]

7T

14¥4!
JRWLIO [9X9L

4!
JRWLIO [9X9L

[4y4!
JRWLIO [9X9L

[RE4!
JRWLIO [9X9L

01¢I
JRWLIO [9X9L

US 11,893,676 B2

Sheet 24 of 26

Feb. 6, 2024

U.S. Patent

Jcl "OIA

eydly eyd[y SPON PO J0[0) I0[0D)
mo 180 mo 18] mo 18

S I O N T

44
(I91y0g 9L], 01 $1OUUO]Y) YOO Iopulg

P11

Xopu[

- VT <

_I.IIV J10199[9§ 10[0D) J
xapu ﬂ + Xapuy

[x441
Joyerodroyuy A
A A
(4448 [5441
Joyefodryuy 1) Joyefodropuy 0N

b p b

41

(1D (190 wddaas (‘D 0 ‘0)

ayoe) yde) ordweg ayoe) agoe)

eS| RN | woy RIS | RENNE |
(1441

U.S. Patent Feb. 6, 2024 Sheet 25 of 26 US 11,893,676 B2

Receive a pre-warped surface from a computing
1310 "\ system, the pre-warped surface being represented
by a single texture resolution

Determine whether the pre-warped surface is
1320 ~ / visible to a region on the screen, the region being
represented by a bounding box

l

Determine sampling points based on the region on
1330 ™/ the surface intersected by the bounding box

l

1340 1 Identify a group of texels in the pre-warped surface
associated with a group of sampling points

l

Retrieve, from texel memory using one read-out

1350 1 operation, all texels that are needed for

determining the pixels associated with the group of
sampling points

'

1360 \/ Determine pixel values by performing bilinear
interpolation on corresponding group of texels

FIG. 13

U.S. Patent Feb. 6, 2024 Sheet 26 of 26 US 11,893,676 B2

| COMPUTER SYSTEM |
| !
1412 4 |
1402
—> PROCESSOR |
|
|
_—+— 1404
—> MEMORY | 0
|
| 06
—> STORAGE — 1

|
|
| 11408
«—» O INTERFACE |
|
|

COMMUNICATION | _—+—1410
INTERFACE

FIG. 14

US 11,893,676 B2

1
PARALLEL TEXTURE SAMPLING

PRIORITY

This application is a continuation under 35 U.S.C. § 120
of U.S. patent application Ser. No. 16/591,520, filed 2 Oct.
2019, which claims the benefit under 35 U.S.C. § 119(e) of
U.S. Provisional Patent Application No. 62/755,281, filed 2
Nov. 2018, which is incorporated herein by reference.

TECHNICAL FIELD

This disclosure generally relates to artificial reality, such
as virtual reality and augmented reality.

BACKGROUND

Artificial reality is a form of reality that has been adjusted
in some manner before presentation to a user, which may
include, e.g., a virtual reality (VR), an augmented reality
(AR), a mixed reality (MR), a hybrid reality, or some
combination and/or derivatives thereof. Artificial reality
content may include completely generated content or gen-
erated content combined with captured content (e.g., real-
world photographs). The artificial reality content may
include video, audio, haptic feedback, or some combination
thereof, and any of which may be presented in a single
channel or in multiple channels (such as stereo video that
produces a three-dimensional effect to the viewer). Artificial
reality may be associated with applications, products, acces-
sories, services, or some combination thereof, that are, e.g.,
used to create content in an artificial reality and/or used in
(e.g., perform activities in) an artificial reality. The artificial
reality system that provides the artificial reality content may
be implemented on various platforms, including a head-
mounted display (HMD) connected to a host computer
system, a standalone HMD, a mobile device or computing
system, or any other hardware platform capable of providing
artificial reality content to one or more viewers.

SUMMARY OF PARTICULAR EMBODIMENTS

Particular embodiments described herein relate to a
method of rendering artificial reality objects using pre-
warped surfaces as the rendering primitives, and parallelly
retrieving all the texels that are needed to determine the
properties (e.g., colors or distance fields) of a set of pixel
samples (e.g., a 2x2 set of pixels) within a tile (e.g., a
collection of pixels, such as 16x16 pixels, defined by its four
corners) in one operation. The system may generate pre-
warped surfaces on one or more CPUs/GPUs associated
with a computing system (e.g., a body wearable computing
system, such as a mobile phone, or a laptop, desktop, etc.).
The pre-warped surfaces may be generated based on the
rendering results of the CPU(s)/GPU(s), such as a 2D image
that visually take into account the 3D contour of the under-
lying object. The pre-warped surfaces may be generated
with particular shape, size, orientation based on a viewpoint
(e.g., view distance, view angle) of a viewer. The 2D image
may be stored as the texture data of the surface. The surface
may be considered as a flat planar canvas for the 2D texture
and is positioned in 3D view space facing the viewer (e.g.,
with a normal vector substantially pointing towards the
viewer). As a result, the pre-warped texture data of the
surface may be represented by a single mipmap level instead
of multiple texture mipmap levels.

10

15

20

25

30

35

40

45

50

55

60

65

2

A headset system may receive the pre-warped surfaces
from the body wearable computing system and render the
surfaces on a head mounted display by transforming the
pre-warped surfaces. Visibility of pre-warped surfaces may
be tested by projecting rays from a viewer’s screen. In
particular embodiments, the rays may be cast from a number
of tiles (e.g., an aligned block of 16x16 pixels), each of
which may be defined by its four corner positions in screen
space. Once it is determined that a particular surface is
visible from a tile, colors for pixels within the tile may be
sampled from the texture of the surface. In particular
embodiments, pixel sampling may be performed concur-
rently for four aligned 2x2 pixels. The system may restrict
minification by zooming out operations to be within a
two-time range. With this constraint, the 2x2 sampling
points may always fall within a 4x4 texels region. In
particular embodiments, the system may use a multi-level
memory architecture including 16 independent texel buffer
blocks for texel buffer. The system may use a pre-deter-
mined texel storage pattern to store 4x4 texels regions in the
16 independent quad buffer blocks that can be addressed
separately and can be readout parallelly (e.g., in one opera-
tion). Therefore, the system may access the 4x4 texels
region in one read operation and parallelly sample all the
texels that are needed to determine the four pixels values
(rather than sequentially access four quads). Since the pre-
warped surfaces are generated based on one texture mipmap
level, the headset system may only need to access single
texture mipmap and use bilinear interpolation instead of
trilinear interpolation, which would require reading another
set of texel data from a different mipmap level, to determine
the pixels values.

In an embodiment, a method may comprise, by a com-
puting system:

receiving a plurality of texels organized into a texel array

comprising a plurality of sub-arrays;

determining a plurality of texel subsets, wherein the texels

in each subset have a same position within their respec-
tive sub-arrays;

storing the plurality of texel subsets into a plurality of

buffer blocks, respectively, wherein each buffer block
stores one texel subset of the plurality of texel subsets;
and

retrieving a sampling texel array from the plurality of

buffer blocks for parallelly determining pixel values of
aplurality of sampling points, wherein each texel of the
sampling texel array is retrieved from a different buffer
block of the plurality of buffer blocks.

The plurality of sub-arrays may form a repeated pattern
within the texel array.

Each of the plurality of buffer blocks may be addressed
separately and accessed parallelly.

The plurality of buffer blocks may be grouped into a
plurality of groups, and each texel used for determining a
pixel value of a sampling point may be retrieved from a
different group of the plurality of groups.

In one embodiment, the plurality of texel subsets may be
determined by:

determining a reference texel having a first coordinate (u,

v) indicating a position of the reference texel within the
texel array;

determining a plurality of intermediate texel groups com-

prising texels having least significant bits of binary
representations of first coordinates (u, v) equal to (0, 0),
(1, 0), (0, 1), and (1, 1), respectively;

determining a second coordinate (X, y) for each texel of

each intermediate texel group; and

US 11,893,676 B2

3

determining the plurality of texel subsets each comprising
texels having least significant bits of binary represen-
tations of second coordinates (X, y) equal to (0, 0), (1,
0), (0, 1), and (1, 1) with respect to a corresponding
intermediate texel group.

The plurality of texel subsets may comprise 16 texel
subsets, and the plurality of buffer blocks may comprise 16
buffer blocks.

The 16 texel subsets may be organized into four texel
groups. The plurality of sampling points may comprise four
sampling points, and the four texel groups may be used for
parallelly determining the pixels values of the four sampling
points, respectively.

Each pixel value may be determined based on a 2x2 texel
sub-array of the sampling texel array, and each texel of the
2x2 texel sub-array may be selected from one of the four
texel groups.

The plurality of sampling points may be associated with
an intersection area of a display region to a two-dimensional
representation of a portion of a scene.

The two-dimensional representation may comprise three-
dimensional information of the portion of the scene, and the
two-dimensional representation of the portion of the scene
may be visible in the display region.

The two-dimensional representation of the portion of the
scene may be represented with a single texture resolution,
and the texel array may comprise texels having the single
texture resolution.

The sampling texel array may be associated with an
aligned texel region or an unaligned texel region.

In one embodiment, one or more computer-readable non-
transitory storage media may embody software that is oper-
able when executed to:

receive a plurality of texels organized into a texel array

comprising a plurality of sub-arrays;

determine a plurality of texel subsets, wherein the texels

in each subset have a same position within their respec-
tive sub-arrays;
store the plurality of texel subsets into a plurality of buffer
blocks, respectively, wherein each buffer block stores
one texel subset of the plurality of texel subsets; and

retrieve a sampling texel array from the plurality of buffer
blocks for parallelly determining pixel values of a
plurality of sampling points, wherein each texel of the
sampling texel array is retrieved from a different buffer
block of the plurality of buffer blocks.

The plurality of sub-arrays may form a repeated pattern
within the texel array.

Each of the plurality of buffer blocks is addressed sepa-
rately and accessed parallelly.

The plurality of buffer blocks may be grouped into a
plurality of groups, and each texel used for determining a
pixel value of a sampling point may be retrieved from a
different group of the plurality of groups.

In one embodiment, a system may comprise: one or more
processors; and one or more computer-readable non-transi-
tory storage media coupled to one or more of the processors
and comprising instructions operable when executed by one
or more of the processors to cause the system to:

receive a plurality of texels organized into a texel array

comprising a plurality of sub-arrays;

determine a plurality of texel subsets, wherein the texels

in each subset have a same position within their respec-
tive sub-arrays;

store the plurality of texel subsets into a plurality of buffer

blocks, respectively, wherein each buffer block stores
one texel subset of the plurality of texel subsets; and

5

10

15

20

25

30

35

40

45

50

55

60

65

4

retrieve a sampling texel array from the plurality of buffer
blocks for parallelly determining pixel values of a
plurality of sampling points, wherein each texel of the
sampling texel array is retrieved from a different buffer
block of the plurality of buffer blocks.

The plurality of sub-arrays may form a repeated pattern
within the texel array.

Each of the plurality of buffer blocks may be addressed
separately and accessed parallelly.

The plurality of buffer blocks may be grouped into a
plurality of groups, and each texel used for determining a
pixel value of a sampling point may be retrieved from a
different group of the plurality of groups.

In an embodiment, one or more computer-readable non-
transitory storage media may embody software that is oper-
able when executed to perform a method according to or
within any of the above mentioned embodiments.

In an embodiment, a system may comprise: one or more
processors; and at least one memory coupled to the proces-
sors and comprising instructions executable by the proces-
sors, the processors operable when executing the instruc-
tions to perform a method according to or within any of the
above mentioned embodiments.

In an embodiment, a computer program product, prefer-
ably comprising a computer-readable non-transitory storage
media, may be operable when executed on a data processing
system to perform a method according to or within any of
the above mentioned embodiments

The embodiments disclosed herein are only examples,
and the scope of this disclosure is not limited to them.
Particular embodiments may include all, some, or none of
the components, elements, features, functions, operations, or
steps of the embodiments disclosed above. Embodiments
according to the invention are in particular disclosed in the
attached claims directed to a method, a storage medium, a
system and a computer program product, wherein any fea-
ture mentioned in one claim category, e.g. method, can be
claimed in another claim category, e.g. system, as well. The
dependencies or references back in the attached claims are
chosen for formal reasons only. However, any subject matter
resulting from a deliberate reference back to any previous
claims (in particular multiple dependencies) can be claimed
as well, so that any combination of claims and the features
thereof are disclosed and can be claimed regardless of the
dependencies chosen in the attached claims. The subject-
matter which can be claimed comprises not only the com-
binations of features as set out in the attached claims but also
any other combination of features in the claims, wherein
each feature mentioned in the claims can be combined with
any other feature or combination of other features in the
claims. Furthermore, any of the embodiments and features
described or depicted herein can be claimed in a separate
claim and/or in any combination with any embodiment or
feature described or depicted herein or with any of the
features of the attached claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A illustrates an example artificial reality system.

FIG. 1B illustrates an example eye display system of the
headset system.

FIG. 2 illustrates an example 3D object.

FIG. 3 illustrates an example pre-warped surface gener-
ated on a body wearable computing system.

FIG. 4 illustrates an example pre-warped surface which
appears transformed by the headset system for rendering on
eye display systems.

US 11,893,676 B2

5

FIG. 5 illustrates an example pre-warped surface that is
visible through an example tile.

FIGS. 6 A-B illustrate an example process for determining
the texels that are needed for determining the color or
distance field of a sampling point.

FIG. 7A illustrates an example 4x4 texel region and an
example sampling region that represents a set of 2x2
orthogonal sampling points located at the four corners of the
sampling region.

FIG. 7B illustrates example 2x2 orthogonal sampling
points within an aligned 4x4 texel region.

FIG. 7C illustrates example 2x2 orthogonal sampling
points within an unaligned 4x4 texel region.

FIG. 7D illustrates example 2x2 non-orthogonal sampling
points within a 4x4 texel region.

FIG. 8A illustrates an example 4x4 texel array stored in
a 32 bytes texel memory of control block with an interleaved
pattern.

FIGS. 8B-C illustrate an example 8x8 texel array stored
in 16 independent texel buffer blocks to allow any 4x4 texel
array to be read in one read operation.

FIGS. 8D-E illustrate an example 4x4 texel array selected
from an 8x8 texel array stored in 16 independent texel buffer
blocks.

FIGS. 8F-G illustrate an example 2x2 texel array which
is selected from an 8x8 texel array stored in 16 independent
texel buffer blocks and can be read from the texel buffer with
reduced multiplexing operations.

FIG. 9 illustrates a system diagram for a display engine.

FIG. 10 illustrates an example diagram for pixel block.

FIG. 11A illustrates an example diagram for filter block
including four quad buffer blocks.

FIG. 11B illustrates an example diagram for quad buffer
block including four texel buffer blocks.

FIG. 12A illustrates an example diagram for texel buffer
block.

FIG. 12B illustrates example data formats for texel data
stored in texel buffer blocks.

FIG. 12C illustrates an example diagram for sample filter
block.

FIG. 13 illustrates an example method of parallelly sam-
pling multiple groups of texels to determine multiple pixel
values using bilinear interpolation.

FIG. 14 illustrates an example computer system.

DESCRIPTION OF EXAMPLE EMBODIMENTS

Traditional graphics rendering systems may need to per-
form separate read operations to obtain the necessary texel
data from a texture to determine the color (for images) or
distance field (for labels, such as fonts, characters, glyphs,
etc.) for a single pixel. During a sampling process, tradi-
tional rendering pipelines implemented on traditional GPUs
access texel buffer memory in quads when performing
bilinear interpolation to determine the pixel value (e.g.,
color/distance field). For example, traditional GPUs may
need to perform four separate read operations to retrieve the
four closest texels, relative to the sample location, that are
needed to perform filtering (e.g., via bilinear interpolation).
Such memory-access operations are slow and consume more
power. In addition, if multiple pixel samples are being
filtered concurrently, different sampling locations may
require texels from different texture mipmap levels, further
adding to memory-access time. For example, if a virtual box
is drastically slanted relative to the viewer, the portion of the
box that is closer to the viewer may use a high-resolution
mipmap texture than the portion of the box that is farer away

10

15

20

25

30

35

40

45

50

55

60

65

6

from the viewer. Similarly, if the viewer zooms out from the
box, more texels may need to be retrieved or the system may
need to switch to a coarser mipmap level. Such operations,
especially when performed in large volume, significantly
adds to the overall rendering time, power consumption, and
complexity of the system.

The problems described above may be largely eliminated
by particular embodiments of a display engine that is
designed to process or adjust pre-warped surfaces. These
surfaces may be the primitives on which the display engine
operates, rather than 3D model polygons from which tradi-
tional computer graphics are rendered. A “surface” may
comprise 2D texture data, made up of texels, and 3D
position data (e.g., distance, angle, or/and coordinates as
specified in the viewer’s view-space coordinates). In par-
ticular embodiments, a surface may be represented as a flat,
planar canvas, placed in a viewer’s view space, on which the
texture is mapped. Visibility of a surface may be computed
using the 3D position data of the surface, and color or
distance field determination for each pixel may be sampled
from the texture data of the surface. The texture of a surface
may be generated based on the 2D image rendered by a GPU
(e.g., from a 3D model defined by polygons). As such, even
if a surface appears to show a 3D object, the surface is, in
fact, a flat surface. A surface, therefore, can be considered as
having been pre-warped based on the viewer’s viewpoint
when the surface is generated. Moreover, the normal vector
of the surface may substantially point towards the viewer,
even if the viewer moved slightly since the time when the
surface was generated (e.g., the viewer is unlikely to have
moved significantly between frames or Yo of a second).
Since a surface is pre-warped and facing the viewer, when
the surface is being processed by the display engine to make
inter-frame adjustments, the surface can be sampled using a
single texture mipmap level (e.g., instead of multiple texture
mipmap levels). In addition, particular embodiments of the
system may restrict minification caused by zoom-out opera-
tions to be within a two-time range, which allows the four
sampling points to always fall within a 4x4 texel region.
Particular embodiments of the system may take advantage of
this feature and configure a texel storage pattern in the texel
buffer memory (e.g., quad buffer blocks including texel
buffer blocks) to allow the 4x4 texel region to be stored in
a manner so that it can be read out in one read operation.
Particular embodiments of the system may use a memory
structure including a pre-determined number of memory
blocks, which can be accessed parallelly with reduced
multiplexing and bandwidth requirements.

Particular embodiments of the system provide faster and
fewer memory reading to retrieve the texels that are need for
determining pixel values, and reduce power consumption
and operation logic that are needed to retrieve texels from
texel buffer memory (e.g., quad buffer blocks including texel
buffer blocks). Particular embodiments of the system reduce
the amount of computation by the headset system for
adjusting or transforming (e.g., conceptually, adjustments in
position, orientation, and/or scale) a pre-warped surface to
accommodate a viewer’s changing viewpoints between
frames. Particular embodiments of the system reduce the
amount of computation and power consumption that are
needed for reading the texels needed for filtering multiple
pixel samples (e.g., 2x2 pixels), since the system confines
any such group of samples to fall within a 4x4 texel region.
Particular embodiments of the system provide a texel buffer
hardware structure and texel data storage pattern that reduce
the multiplexing operations on the headset system and

US 11,893,676 B2

7

reduce the bandwidth usage on data bus when accessing the
texel buffer memory (e.g., quad buffer blocks including texel
buffer blocks).

FIG. 1A illustrates an example artificial reality system
100. In particular embodiments, the artificial reality system
100 may include a headset system 110, a body wearable
computing system 120, a cloud computing system 132 in a
cloud 130, etc. In particular embodiments, the headset
system 110 may include a display engine 112 which is
connected to two eye display systems 116A and 116B
through a data bus 114. The headset system 110 may be a
system including a head-mounted display (HMD) which
may be mounted on a user’s head to provide artificial reality
to the user. The headset system 110 may have limited
amount of power available in its power sources (e.g., bat-
teries). The display engine 112 may provide display data to
the eye display systems 116 A and 116B though the data bus
114 with relative high data rates (e.g., 200 Hz-800 Hz). As
will be discussed later, the display engine 112 may include
one or more controller blocks, texel memories, transform
blocks, pixel blocks, etc. The texels stored in the texel
memories may be accessed by pixel blocks and may be
provided to the eye display systems 116A and 116B for
display.

In particular embodiments, the body wearable computing
system 120 may be worn on the body of a user. In particular
embodiments, the body wearable computing system 120
may be a computing system (e.g., a laptop, a desktop, a
mobile computing system) that is not worn on a user body.
The body wearable computing system 120 may include one
or more GPUs, one or more smart video decoders, memo-
ries, processors, and other modules. The body wearable
computing system 120 may have more computational
resources than the display engine 112 but may still have
limited amount power in its power sources (e.g., batteries).
The body wearable computing system 120 may be coupled
with the headset system 110 through a wireless connection
144. The cloud computing system 132 may be high perfor-
mance computers (e.g., servers) and may communicate with
the body wearable computing system 120 through a wireless
connection 142. FIG. 1B illustrates an example eye display
system (e.g., 116 A or 116B) of the headset system 110. In
particular embodiments, the eye display system 116 A may
include a driver 154, a pupil display 156, etc. The display
engine 112 may provide display data to the pupil display 156
the data bus 114 and the driver 154 at high data rates (e.g.,
200 Hz-800 Hz).

In traditional graphics-rendering systems, depending on
how a 3D object(s) is oriented relative to a viewer, certain
regions of the 3D objects would be closer to the viewer than
others. The distance discrepancy may lead to pixel sampling
locations in different regions to require different mipmap
levels for texture sampling. As an example, FIG. 2 illustrates
an example 3D object 200. The object 200 may be oriented
in a slanted orientation relative to the viewer, with edge 210
of the object 200 being relatively closer to the viewer than
edge 220. As a result, sampling the color of a pixel that falls
in the region 212 on the edge 210 may require a finer texture
mipmap level relative to the coarser mipmap level that may
be used to sample a pixel that falls in region 222 on the edge
220. For example, if the GPUs has access to multiple texture
levels 231, 232, 233, 234, 235, 236, 237 in a mipmap chain
230, the GPU may use mipmap level 237 for pixels falling
within region 212 and mipmap level 236 for pixels falling
within region 222.

In addition, mipmap levels may need to change due to
minification caused by zoom-out operations. In general, if a

10

15

20

25

30

35

40

45

55

60

65

8

zoom-out operation results in more than two-time zoom out
on an object, the mipmap used for sampling may need to
change in order to render a new scene. For example, if the
viewer were to zoom out, resulting in the size of each texel
in those mipmap levels 237, 236 to become smaller relative
to the pixel sample size, the GPU may change the mipmap
levels used. For example, after zooming out, the GPU may
use mipmap level 236 for pixel samples falling in region 212
and mipmap level 235 for pixel samples falling in region
222.

Unfortunately, reading texture data out of texel buffer
memory takes time and power. As such, the aforementioned
scenarios where mipmap switching can be costly and unsuit-
able in applications where frames are expected to be output
at a very high rate, such as 200-800 frames per second. In
particular embodiments where a display engine resides on an
AR/VR headset system, computational resources and avail-
able power (e.g., powered by one or more batteries) may be
especially limited. These limitations on computational
resources and available power may become prohibitive for
a headset system to meet the demands of the application
(e.g., rendering AR/VR scenes that are responsive to user
movements).

Particular embodiments of the system address the afore-
mentioned problems by generating (e.g., at 60 hertz frame
rate) pre-warped surfaces on the GPUs of body wearable
computing system and allow the headset system to post-
warp or re-sample the pre-warped surfaces (e.g., at 200 or
more hertz) to adjust for changes in the viewer’s perspective
between frames. In addition to generating pre-warped sur-
faces, particular embodiments may further limit zoom-out
operations to no more than 2x zoom out. As will be
explained in further detail below, doing so would ensure that
the texels needed for sampling four 2x2 pixels are confined
to a 4x4 texel region. This enables the display engine to
configure how texels are written and read so that a 4x4 texel
region can be access using a single read operation.

FIG. 3 illustrates an example pre-warped surface 330
generated on a body wearable computing system. In par-
ticular embodiments, the body wearable computing system
may include one or more GPUs or/and smart video decoders.
In particular embodiments, the pre-warped surfaces may be
generated one or more GPUs on the body wearable com-
puting system. In particular embodiments, the pre-warped
surfaces may be generated by one or more video decoders on
the body wearable computing system. For example, the
GPUs on the body wearable computing system may render
a 2D view of the 3D object 200 shown in FIG. 2. The 2D
object 200 may be defined using a large number of polygons
or triangles (e.g., hundreds or thousands of polygons), and
the body wearable computing system may render the 2D
view using a traditional graphics-rendering pipeline (e.g.,
using ray tracing and shading). Although this rendering
process could be very expensive computationally, the body
wearable computing system may have more computational
resources (e.g., more powerful processors, more memory
space) and more available power (e.g., larger battery capac-
ity, direct plugin to a power outlet, etc.) than the headset
system. As such, the 2D view of the 3D object 200 may be
rendered at the rate of, for example, 30-60 hertz.

In particular embodiments, the 2D view of the 3D object
200 may be used to generate the pre-warped surface 330.
Although the pre-warped surface 330 is represented in 2D,
it may appear 3D from the viewpoint of the viewer when the
2D view of rendered. For example, the edge 342 of the
surface 330 may appear closer to the viewpoint, and the edge
344 may appear to be farer from the viewpoint. Despite its

US 11,893,676 B2

9

3D appearance, the texture of the pre-warped surface 330 is
2D, as if the surface is a flat canvas on which the 2D image
is mapped. The pre-warped surface 330 may have a defined
position within 3D view space relative to a viewpoint.
Different regions of the pre-warped surface 330 may be
substantially equal distance from the viewpoint. For
example, the regions corresponding to texels 332 and 334
may be substantially equal distance from the viewpoint in
3D view space, yet the corresponding regions 212 and 222
on the 3D model 200 are different distances away from the
viewpoint when the 2D view of the 3D object 200 was
rendered.

In particular embodiments, the 2D appearance of the
pre-warped surface 330 may be stored as a texture with a
uniform texel grid 340. Unlike the corresponding 3D model
200, the pre-warped surface 330 is substantially equal dis-
tance from the viewpoint, even though the relative depth of
regions such as 332 and 334 may appear to be different. As
such, any pixel sampling on the pre-warped surface 330 may
be performed using the same mipmap level texture, rather
than different mipmap levels for different portions of the
surface. For example, although the edge 342 may appear
closer to the viewer than the edge 344, the texels corre-
sponding to regions 332 and 334 may correspond to the
same texture level or texture resolution.

The headset system may receive the pre-warped surface
from the body wearable computing system through a wire-
less or wired communication connection. In particular
embodiments, the headset system may receive the pre-
warped surface at the start of a frame. Between then and the
next frame (e.g., in Y60 second intervals), the headset system
may warp or re-sample the pre-warped surface based on the
current head position or eye gaze of the user (as determined
based on the inertial measurement unit and/or eye tracking
device of the headset) at a much higher frame rate (e.g., 200
or more hertz). In this manner, the headset system may avoid
the expensive computation that is needed in generating the
pre-warped surfaces from the 3D model defined using
polygons, and instead be tasked with providing dynamic,
real-time updates to the pre-warped surface, which may be
significantly fewer in number than the polygons.

FIG. 4 illustrates an example pre-warped surface 410
which appears transformed by the headset system for ren-
dering on eye display systems. In particular embodiments,
the headset system may receive pre-warped surfaces from
the body wearable computing system. The per-warped sur-
face may be generated based on the rendering results on the
GPUs associated with the body wearable computing system
and may visually take into account the 3D contour of the
underlying object. In particular embodiments, the surface
may include texture data as well as position data within the
viewer’s view space. Based on changes in the viewer’s
current perspective (e.g., head orientation and/or eye gaze),
the display engine of the headset system may perform
visibility tests (e.g., using ray casting) from the updated
viewpoint of the viewer. For example, the display engine
may cast rays from each tile in screen space, positioned and
oriented in accordance with the viewer’s current perspec-
tive, and see if the rays intersect any surfaces in view space.
Based on the visibility determination, the display engine
may then re-sample the appropriate color information for
each pixel using the texture data of the surfaces that intersect
the projected rays. The result of this post-warping process
may be an updated 2D frame after the body computing
system rendered the initial 2D frame (which was used to
generate the pre-warped surface). The updated 2D frame
may appear as if the headset system generated a transformed

25

30

35

40

45

10

pre-warped surface 420 by moving and/or warping the initial
pre-warped surface 410 along one or more dimensions in the
3D space 430. As another example, the headset system may
rotate the pre-warped surface 410 along one or more axis in
the 3D space 430. As another example, the headset system
may increase or reduce the size of the pre-warped surface
410 for zoom in or out operations. As another example, the
headset system may combine one or more transformations or
adjustments as described above to transform or adjust the
received pre-warped surface into a new surface (e.g., 420)
for rendering on eye display systems.

In particular embodiments, the headset system may trans-
form or adjust the received pre-warped surfaces according to
one or more conditions of the viewers. In particular embodi-
ment, the headset system may transform or adjust the
received pre-warped surfaces according to one or more
conditions which cause the pre-warped surface to change its
position (e.g., distance, orientation, angle) with respect to
the viewer in relative high speed but within relative small
ranges. For example, the headset system may adjust the
orientation or position of the pre-warped surface 410 based
on a viewpoint change (e.g., head motion, eye motion) of the
viewer. As another example, the headset system may adjust
the size, orientation, or/and position of the pre-warped
surface 410 based on a zooming operation (e.g., zoom in or
out) of the viewer. In particular embodiments, the conditions
of the viewers (e.g., viewpoint change, view distance
change, user operations) may be determined based on one or
more sensors or sensing systems associated with the artifi-
cial reality system, for example, accelerometers, vergence
tracking systems, eye tracking systems, head motion sen-
sors, body motion sensors, controllers, etc. In particular
embodiments, the headset system may transform or adjust
the received pre-warped surfaces according to one or more
conditions including, for example, but not limited to, a view
point, a view distance, a view angle, a moving speed, a
moving direction, an acceleration metric, a head motion, an
eye motion, an head posture, an eye status, an user zooming
operation, a gazing point, a gazing distance, a vergence
distance, an user input, a controller status, etc.

In particular embodiments, the system may limit the
minification effect of zoom out operations to be within a
two-time zoom out range. The two-time zoom-out limitation
may ensure that the changes in texel size relative to sample
pixel size, as caused by the user’s zooming operations, will
be within an acceptable range for using the current texture
mipmap level. Furthermore, as will be discussed later, the
two-time zoom-out constraint may allow the four sampling
points associated with one tile to fall within an aligned or
unaligned 4x4 texel region, and therefore allow the system
to parallelly retrieve all the texels that are needed to deter-
mine the colors or distance fields of the sampling points with
higher speed and better computational efficiency. In addi-
tion, by bounding the number of texels that are needed for
a block of 2x2 sampling positions, this limitation simplifies
the logic of the display engine while allowing the headset
system to provide updated frames faster with improved
efficiency.

FIG. 5 illustrates an example pre-warped surface 500 that
is visible through an example tile 540. In particular embodi-
ments, the system may use a ray casting algorithm to
determine whether a pre-warped surface 500 is visible
through a region on a screen. In particular embodiments, the
region on the screen may be represented by a tile (e.g., a
block of pixels, such as 16x16 pixels). The ray casting
algorithm may firstly determine the viewpoint 530 of the
viewer (e.g., a center point of the viewer’s eye). Then, the

US 11,893,676 B2

11

ray casting algorithm may position a conceptual or virtual
camera 532 at the viewer’s viewpoint and cast a number of
rays 534 from the virtual camera 532. In particular embodi-
ments, four rays may be cast from the four corners of a tile
positioned within the screen of the virtual camera 532. The
group of four casted rays 534 may intersect with the pre-
warped surface 500 at four respective intersecting points
(e.g., 540A, 540B, 540C, 540D). The sampling points 540A,
540B, 540C, and 540D may form and be associated with a
tile 540, which is paired with the surface 500. In particular
embodiments, the system may generate a number of tile/
surface pairs in this manner.

Once the display engine determines that a tile intersects
with a surface, it may then sample each pixel within the tile
using the texture data of the surface. In particular embodi-
ments, if a tile contains 16x16 pixels, the display engine
(e.g., its pixel block) may use interpolation to determine the
texture coordinates (e.g., in (U, V)) of each of the pixel
sample locations using the four texture coordinates of the
four corners of the projected tile (after the points of inter-
section in 3D view space have been converted into texture
coordinates). Then, the display engine may compute (e.g.,
using bilinear or bicubic interpolation) the color or distance
field properties of each sampling point using the four closest
texels.

FIGS. 6A-B illustrate an example process for determining
the texels that are needed for determining the color or
distance field of a sampling point. FIG. 6A illustrate an
example sampling point 610 and the corresponding texels
(e.g., 601, 602, 603, 604) that are needed to determine the
pixel value at the sampling point 610. In particular embodi-
ments, the system may determine a pixel value using inter-
polation based on the four closest texels. For example, the
pixel value corresponding to the sampling point 610 may be
determined by interpolating the four closets texels of 601,
602, 603, and 604. To help visualize the texels used for
determining the pixel value for the sampling point 610, the
figures shown illustrate a geometric region 626 formed by
connecting the respective center points 611, 612, 613, 614 of
the texels 601, 602, 603, 604. The pixel value of the
sampling point 610 is determined by the texels 601, 602,
603, and 604 forming the surrounding the geometric region
626.

FIG. 6B illustrates example sampling points (e.g., 632,
642, 652, 662) and the associated texels for determining the
corresponding pixels values. The sampling point 632, 642,
652, 662 may all fall into the same texel as indicated by (U,
V) coordinate of (1,1), but may be associated with different
groups of texels based on the relative position of the
sampling points with respect to the texel (1,1) and its
neighboring texels. For example, the sampling point 632
may be within the geometric region 634 determined by the
center points of the texels (0, 0), (1, 0), (0, 1), and (1, 1), and
therefore the texels (0, 0), (1, 0), (0, 1), and (1, 1) may be
identified as the texels needed for the interpolation to
determine the pixel value corresponding to the sampling
point 632. As another example, the sampling point 642 may
be within the geometric region 644 determined by the center
points of the texels (1, 0), (2, 0), (1, 1), and (2, 1), and
therefore the texels (1, 0), (2, 0), (1, 1), and (2, 1) may be
identified as the texels needed for the interpolation to
determine the pixel value corresponding to the sampling
point 642. As another example, the sampling point 652 may
be within the geometric region 654 determined by the center
points of the texels (0, 1), (1, 1), (0, 2), and (1, 2), and
therefore the texels (0, 1), (1, 1), (0, 2), and (1, 2) may be
identified as the texels needed for the interpolation to

20

25

30

35

40

45

50

55

60

65

12

determine the pixel value corresponding to the sampling
point 652. As another example, the sampling point 662 may
be within the geometric region 664 determined by the center
points of the texels (1, 1), (2, 1), (1, 2), and (2, 2), and
therefore the texels (1, 1), (2, 1), (1, 2), and (2, 2) may be
identified as the texels needed for the interpolation to
determine the pixel value corresponding to the sampling
point 662.

In particular embodiments, the system may sample the
surface using sampling points that correspond to pixel
positions (e.g., each point represents the center of a pixel) to
determine the color values of the pixels. In particular
embodiments, the pixel size of a sampling point may be
substantial the same as the size of the texel. When the viewer
zooms out, a surface associated with a rendered object may
become smaller in size because of the minification effect.
When the minified surface is sampled without changing the
texture resolution (i.e., using the same mipmap level), the
same pixel size would now be larger than the size of a tile
and, consequently, a pixel may cover multiple texels on the
minified surface. Therefore, the display engine may need to
access and interpolate more texels (e.g., beyond 4x4 texels)
in order to determine the colors of 2x2 sampling points.
Therefore, sampling a minified surface by zooming out
beyond a two-times range introduces uncertainty in terms of
the amount and range of texels that may be needed. In
particular embodiments, the system may restrict the mini-
fication effect of zoom-out operations to be within a two-
time range, thereby ensuring that the four sampling points
always fall within a 4x4 texel region which could be readout
in one read operation and could be sampled parallelly.

In particular embodiments, the 2x2 sampling points
would fall within a 4x4 texel region as long as the positions
of the adjacent sampling points are no more than 2 texels
apart. In particular embodiments, the distance between two
sampling points may be measured by Manhattan distance.
For example, the constraint may be described by satisfying
both of the following two equations:

du dv) (69)
—|+]|=|=

dx

du dv @)
—|+|=|=2

dyl ldy

where the u and v correspond to sampling point coordinates
in the (U, V) coordinate space for the texels; x and y
correspond to the two-dimensional (X, Y) coordinate space
for display pixels. In particular embodiments, the distance
between two sampling points may be measured by geomet-
ric distance rather than Manhattan distance. In particular
embodiments, the size of a texel may be defined by the
length of an edge of the texel square.

As previously described, in particular embodiments, tex-
ture sampling may be concurrently performed for 2x2 pixels
sampling points. FIG. 7A illustrates an example 4x4 texel
region 700A and an example sampling region 701 that
represents a set of 2x2 orthogonal sampling points located at
the four corners of the sampling region 701. The size of each
side of the sampling region 701 may be less than or equal to
two times of texel size. The sampling region 701 in FIG. 7A
is aligned with the texels along the two dimensions in the 2D
space of the texels. When the sampling region 701 is
projected on the texels, the associated texels that are needed
for interpolation to determine the pixel values at each
sampling point (i.e., each of the four corners of the sampling

US 11,893,676 B2

13

region 701) may be determined using the method as
described in FIGS. 6 A-B. Each group of four texel centers
connected by thin lines represents the four closest texel
centers that would be used to filter the sampling point (e.g.,
a corner of the sampling region 701) located within the
thin-line box. For the sampling region 701, the texels that are
needed for filtering the four 2x2 sampling points fall within
the 4x4 texel region 701. When the sampling region 701 is
moved along one or more dimensions of the 2D space, the
texels that are needed to filter the four sampling points
would always fall within a 4x4 texel region. For example, if
the sampling region 701 is shifted to the position shown by
sampling region 702, the associated texels for determine the
four sampling points (the four corners of the sampling
region 702) will continue to fall within the same aligned 4x4
texel region 700A. As another example, when the sampling
region 702 is shifted for a larger distance (e.g., more than a
half-texel size along one or two dimensions of the 2D space)
with respect to the sampling region 701, the sampling region
702 may have its associated texels to fall within an
unaligned 4x4 texel region.

FIG. 7B illustrates example 2x2 orthogonal sampling
points within an aligned 4x4 texel region. The sampling
points 711, 712, 713, and 714 may be the four corner points
of a sampling region which is aligned with texels along the
two dimensions of the 2D texels space. When the distance
716 between the sampling point 714 and 713 is less than or
equal to 2 texels, the corresponding 8 texels that are needed
to determine the pixels 714 and 713 may fall within a 2x4
texel region including texels (0, 0), (1, 0), (2, 0) (3, 0), (O,
D, (1, 1), (2, 1), and (3, 1). When the distance 718 between
the sampling points 712 and 713 is less than or equal to 2
texels, the corresponding 8 texels of that are needed to
determine the pixels for 714 and 713 may fall within a 4x2
texel region. Similarly, when the distance 716 between the
sampling point 711 and 712 is less than or equal to 2 texels,
the corresponding 8 texels of that are needed to determine
the pixels for 711 and 712 may fall within a 2x4 texel region.
When the distance 718 between the sampling point 711 and
714 is less than or equal to 2 texels, the corresponding 8
texels of that are needed to determine the pixels for 711 and
714 may fall within a 4x2 texel region. Therefore, when the
distances between any two neighboring sampling points are
less than or equal to two times of a texel edge length, all the
texels that are needed for the interpolation to determine the
four pixels values corresponding to the four corners may
always be included in a 4x4 texel region regardless how
where the sampling region is positioned.

FIG. 7C illustrates example 2x2 orthogonal sampling
points within an unaligned 4x4 texel region 730. As dis-
cussed above, as along as the distances between any two
sampling points are less than or equal to two times of a texel
edge length, the texels that are needed to determine the four
pixels values may always fit within a 4x4 texel region no
matter how the 2x2 sampling points are positioned. How-
ever, when the sampling points are shifted by more than half
the texel size, the four sample points may fall within a
different, unaligned texel region, but the dimensions of that
texel region would continue to be 4x4. For example, the
sampling points of 731, 732, 733, 734 may fall within an
unaligned texel regions 730 when the sampling points
positions are changed from the position as illustrated in FIG.
7B to the positions as illustrated in FIG. 7C.

FIG. 7D illustrates example 2x2 non-orthogonal sampling
points (e.g., 741, 742, 743, 744) within a 4x4 texel region
740. In particular embodiments, the system may use non-
orthogonal sampling points to sample the surfaces. For the

20

40

45

55

14

non-orthogonal sampling points, as long as the distances
between any two neighboring sampling points are less than
or equal to 2 times of texel size, the texels that are needed
to determine the four pixels values may always fit within a
4x4 texel region. As an example and not by way of limita-
tion, the sampling points 741, 742, 743, 744 may be posi-
tioned at a 45 degrees position relative to the (U, V)
coordinate space for the texels in the texel region 740. The
distance 752 between the sampling point 744 and 743 and
the distance 754 between the sampling point 743 and 742
may equal to V2 times of a texel’s edge length (correspond-
ing to a smaller sampling region than the sampling regions
701 and 702 in FIGS. 7A-B) which is less than two times of
texel size. Each group of four texel centers connected by thin
lines indicate the four closest texel centers that are used to
filter the sample point (741, 742, 743, or 744) falling within
the bounded box. As can be seen from FIG. 7D, even when
the sampling points 741, 742, 743, and 744 have been
rotated, the texel regions needed to filter the four sampling
points 741, 742, 743, and 744 would continue to fit in a 4x4
texel region 740, which can read out with one read operation
when the distances between adjacent sampling points (e.g.,
744 and 743, 744 and 742) are less than two times of texel
edge length.

In particular embodiments, the system may provide a
number of fallback solutions when the two-time zoom out
rule is violated. For example, a surface corresponding to a
label which is normally magnified may cause aliasing when
it is minified more than two times. In this case, the system
may generate a small image from the label and may render
the small image (rather than performing the minification) to
avoid aliasing. In particular embodiments, the system may
implement foveated images. A foveated image may have
different resolutions at different portions of the image and
may be associated with a mipmap chain having multiple
texture levels. When the two-time zoom out rule is violated
on an foveated image, the system may select a coarser
resolution texture as a fallback solution to avoid the excess
texels needed if finer resolutions are used. By switching to
a coarser texture, the texels needed for filtering 2x2 sam-
pling points would continue to fall within 4x4 texels. In
particular embodiments, when the two-time zoom out rule is
violated, the system may regenerate the pre-warped surfaces
on the GPUs or smart video decoders associated with the
body wearable computing system and resend the new pre-
warped surfaces to the headset system.

As discussed earlier in this disclosure, traditional GPUs
access texel buffer memory in quads and need sequential and
separate operations to retrieve the texels that are needed to
determine multiple sampling points. For example, four sam-
pling points projected onto a 3D model may have arbitrary
position and distances based on the shape of the model. To
determine the pixel value for each of the four sampling
points, traditional GPUs need to access the texel buffer
memory in four separate and sequential read operations in
order to obtain the four groups of texels needed, which is
slow and inefficient. Particular embodiments of the display
engine may use the two-time zoom out rule to allow all
texels that are needed to filter a set of 2x2 sampling points
to always fall within a 4x4 texel region. The 4x4 texel region
stored in the texel buffer memory could be retrieved using
one read operation, as will be described later. Therefore,
particular embodiments of the system reduce the bandwidth
usage for reading texels from texel buffer memory and
provide better efficiency by accessing the 16 texels in
parallel rather than in separate sequential read operations.

US 11,893,676 B2

15

FIG. 8A illustrates an example 4x4 texel array 810 stored
in a 32 bytes memory block 815 with an interleaved pattern.
In particular embodiments, the system may store a 2D texel
array in a memory block with an interleaved swizzle pattern
to allow all the texels in the 2D texel array to be retrieved
parallelly from memory. As an example and not by way of
limitation, the 4x4 texel array 810 may include 16 texels as
indicated by the (U, V) coordinates and each texel may have
16 bits data. Using the method as described in FIGS. 6A-B,
the 16 texels may be identified as the texels that are needed
for interpolation to determine the pixel values for the four
sampling points 811, 812, 813, and 814. The 16 texels may
be stored in the same memory block, for example, a 32 bytes
(256 bits) memory 815 with an interleaved pattern as
illustrated in FIG. 8A. When the 4x4 texel array 810 is
needed, the system may access the 32 Bytes (256 bits)
memory 815 in one read operation and retrieve all the 16
texels in parallel. Then, the system may perform interpola-
tion using the retrieved texels for the four sampling points
811, 812, 813, and 814.

FIGS. 8B-C illustrate an example 8x8 texel array stored
in 16 independent texel buffer blocks to allow any 4x4 texel
array to be read in one read operation. In particular embodi-
ments, the display engine may include texel buffer memory
in the filter blocks (e.g., 1002, 1003, 1004 in FIG. 10) of the
pixel blocks (e.g., 930A, 930B in FIG. 9). In particular
embodiments, the texel buffer memory may be organized in
multiple memory block levels including quad buffer block,
texel buffer block, and sub-level buffer units. A pixel block
of the display engine may include three filter blocks each
including four quad buffer blocks (e.g., 1102, 1103, 1104,
1105 in FIG. 11A). Each quad buffer block may include four
texel buffer blocks (e.g., 1121, 1122, 1123, 1124 in FIG.
11B). Each texel buffer block may include two sub-level
buffer units (e.g., 512x2 buffer unit 1201A and 512x10
buffer unit 1202B in FIG. 12A). As a result, the pixel block
of'the display engine of particular embodiments may include
16 texel buffer blocks which could be addressed separately
and accessed parallelly, and therefore the display engine
may read one texel from each of the 16 texel buffer block at
the same time and retrieve 16 texels parallelly.

In particular embodiments, the display engine may load a
32x32 texel array from texel memory of the control block
into the texel buffer memory of the pixel block. The display
engine may store/organize the 32x32 texel array with a
pattern so that any 4x4 texel array (either aligned or
unaligned array) may have its 16 texels being stored in 16
separate text buffer blocks with one texel in each texel buffer
block to allow any array with 4x4 texels to be read with one
read operation. For description simplicity purpose, an
example 8x8 texel array 820, as shown in FIG. 8B, is used
to illustrate the process, principle, and pattern for storing and
organizing the 32x32 texel array in the texel buffer memory
to allow parallel retrieving any aligned or unaligned array
with 4x4 texels in one read operation. The 8x8 texel array
820 may include 16 sub-arrays each having 2x2 texels (e.g.,
2x2 texel array 825). For description simplicity purpose,
four texels in each 2x2 texel array (e.g., array 825) may be
represented by four characters A, B, C and D corresponding
to the (U, V) coordinates of (0, 0), (1, 0), (0, 1), and (1, 1),
respectively. For example, in the 2x2 texel array 825, the
texel (0, 0), texel (1, 0), texel (0, 1), and texel (1, 1) may be
represented by Al, B1, C1, and D1, respectively.

In particular embodiments, the four quad buffer blocks
(e.g., 1102, 1103, 1104, 1105 in FIG. 11A) may each include
the texels at the same position as indicated by (U, V)
coordinates in the respective 2x2 texel arrays. For example,

5

10

15

20

25

30

35

40

45

50

55

60

65

16

the quad buffer block 1102 may include the texel at the
position of (0, 0) in each 2x2 texel array. For the example
8x8 texel array 820, the quad block 1102 may include the
texels from A1l to A16 each of which is at the position (0, 0)
in its corresponding 2x2 texel array. The texels A1-16 in the
quad buffer block 1102 may conceptually form a 4x4 texel
array 831 as shown in FIG. 8B. As another example, the
quad buffer block 1103 may include the texel at the position
of (1, 0) in each 2x2 texel array. For the example 8x8 texel
array 820, the quad block 1103 may include the texels from
B1 to B16 each of which is at the position (1, 0) in its
corresponding 2x2 texel array. The texels B1-16 in the quad
buffer block 1103 may conceptually form a 4x4 texel array
832 as shown in FIG. 8B. As another example, the quad
buffer block 1104 may include the texel at the position of (0,
1) in each 2x2 texel array. For the example 8x8 texel array
820, the quad block 1104 may include the texels from C1 to
C16 each of which is at the position (1, 0) in its correspond-
ing 2x2 texel array. The texels C1-16 in the quad buffer
block C 1104 may conceptually form a 4x4 texel array 833
as shown in FIG. 8B. As another example, the quad buffer
block 1105 may include the texel at the position of (1, 1) in
each 2x2 texel array. For the example 8x8 texel array 820,
the quad block 1105 may include the texels from D1 to D16
each of which is at the position (1, 1) in its corresponding
2x2 texel array. The texels D1-16 in the quad buffer block
1105 may conceptually form a 4x4 texel array 834 as shown
in FIG. 8B.

FIG. 8C illustrates example patterns that are used for
storing texels in texel buffer blocks. In particular embodi-
ments, a quad buffer block (e.g., 1102, 1103, 1104, 1105 in
FIG. 11A) may include four texel buffer blocks (e.g., 1121,
1122, 1123, 1124 in FIG. 11B). The texels stored in each
quad buffer block may conceptually form a 4x4 texel array
(e.g., Al1-16) including four 2x2 texel arrays. For example,
the A1-16 stored in the quad buffer block 1102 may form a
4x4 texel array including four 2x2 texel arrays of (Al, A2,
A3, A6), (A3, A4, A7, AB), (A9, A10, Al13, Al4), and (All,
Al2, A15, A16). Each texel in a 2x2 texel array may have
its local (U, V) coordinates. For example, the texel Al, A2,
AS, A6 may have the local (U, V) coordinates of (0, 0), (1,
0), (0, 1), and (1, 1) in the texel array of (Al, A2, A5, A6),
respectively. In particular embodiments, each texel buffer
block of a quad buffer block may include texels at the same
local (U, V) coordinate. For example, the texel buffer block
1121 A may include A1, A3, A9, and A1l each of which is
at the position of (0, 0) in respective 2x2 texel arrays of (Al,
A2, A5, A6), (A3, Ad, A7, AB), (A9, A10, A13, Al4), and
(All, A12, A15, A16). As another example, the texel buffer
block 1122A may include A2, A4, A10, and A12 each of
which is at the position of (1, 0) in respective 2x2 texel
arrays of (Al, A2, AS, A6), (A3, A4, A7, AB), (A9, Al0,
Al3, Al14), and (Al1, A12, A15, A16). As another example,
the texel buffer block 1123 A may include AS, A7, A13, and
A15 each of which is at the position of (0, 1) in respective
2x2 texel arrays of (A1, A2, AS, A6), (A3, Ad, A7, AB), (A9,
A10, Al13, Al4), and (All, Al12, Al15, Al6). As another
example, the texel buffer block 1124 A may include A6, A8,
Al4, and A16 each of which is at the position of (1, 1) in
respective 2x2 texel arrays of (Al, A2, A5, A6), (A3, A4,
A7, AB), (A9, A10, A13, Al4), and (All, Al12, A15, A16).
Similarly, the texels buffer blocks of other quad buffer
blocks may store the texels of the corresponding quad buffer
block in similar patterns, as shown in FIG. 8C. The texels
stored in a texel buffer block may form a two-dimensional
array in that texel buffer. For example, the texel array stored
in the texel buffer block 1121 A may include texels Al, A3,

US 11,893,676 B2

17

A9, and A11 corresponding to a local (U, V) coordinates of
(0,0), (1,0), (0, 1), and (1, 1), respectively. As a result, the
64 texels in the 8x8 texel array may be stored in the 16 texel
buffer blocks (e.g., 1121A-D, 1122A-D, 1123A-D, 1124A-
D) in such a pattern that allows any sub-array with 4x4
texels to have its 16 texels being stored in the 16 texel buffer
blocks separately (with one texel in each texel buffer block),
as will be discussed later.

FIGS. 8D-E illustrate an example 4x4 texel array selected
from an 8x8 texel array stored in 16 independent texel buffer
blocks. In particular embodiments, the sampling points (e.g.,
16x16 pixels) associated with a tile may fall within an
aligned 4x4 texel array (e.g., from Al to D6 in texel array
820) or an unaligned 4x4 texel array (e.g., from B5 to C11
in texel array 820). The patterns, as descripted earlier, that
are used for storing and organizing the texels in the quad
buffer blocks and texel buffer blocks may allow any aligned
or unaligned 4x4 texel array to have its 16 texels being
stored in the 16 independent texel buffer blocks, and there-
fore allow the 16 texels in the 4x4 texel array to be read out
using one read operation. As an example and not by way of
limitation, the sampling points may fall within a region
corresponding to an unaligned 4x4 texel array 826 (as
marked by the square in solid thick line). The 4x4 texel array
826 may be divided into four groups of texels corresponding
to the texel positions in respective 2x2 texel arrays. For
example, a first group of texels may include BS, B6, B9, and
B10 corresponding to the texel position (0, 0) in respective
2x2 texel arrays of (BS, A6, D5, C6), (B6, A7, D6, C7), (B9,
A10, D9, C10), and (B10, Al1l, D10, C11). The second
group of texels may include A6, A7, A10, and All corre-
sponding to the texel position (1, 0) in respective 2x2 texel
arrays of (B5, A6, D3, C6), (B6, A7, D6, C7), (B9, A10, D9,
C10) and (B10, A11, D10, C11). The third group of texels
may include C6, C7, C10, and C11 corresponding to the
texel position (0, 1) in respective 2x2 texel arrays of (BS,
A6, D3, C6), (B6, A7, D6, C7), (B9, A10, D9, C10) and
(B10, A11, D10, C11). The fourth group of texels may
include D5, D6, D9, and D10 corresponding to the texel
position (1, 1) in respective 2x2 texel arrays of (BS, A6, DS,
C6), (B6, A7, D6, C7), (B9, A10, D9, C10) and (B10, All,
D10, C11). As shown in FIG. 8D, the first, second, third, and
four groups of texels as descripted above are stored in
respective quad buffer blocks of 1102, 1103, 1104, and 1105,
as marked by the squares (e.g., 827 A, 827B, 827C, 827D) in
solid thick lines. FIG. 8E illustrates how the texels in the
first, second, third, and fourth group of texels are stored in
separate texel buffer blocks. For example, the texels of A6,
A7, A10, and A1l of the first group may be stored in the
texel buffer blocks of 1124A, 1123A, 1122A, and 1121A,
respectively. The texels of B5, B6, B9, and B10 in the
second group may be stored in the texel buffer blocks of
1123B, 1124B, 1121B, and 1122B, respectively. The texels
of C6, C7, C10, and C11 of the third group may be stored
in the texel buffer blocks of 1124C, 1123C, 1122C, and
1121C, respectively. The texels of D5, D6, D9, and D10 of
the fourth group may be stored in the texel buffer blocks of
1123D, 1124D, 1121D, and 1122D, respectively. Similar to
unaligned 4x4 texel array, any aligned 4x4 texel array (e.g.,
from Al to D6) selected from the 8x8 texel array 820 may
have its 16 texels being stored in the 16 independent texel
buffer blocks, respectively. Therefore, any 4x4 texel array
(aligned or unaligned) selected from the 8x8 texel array 820
may have its 16 texels being stored in 16 independent/
separate texel buffer blocks which can be addressed and
accessed at the same time. As a result, any 4x4 texel array
(aligned or unaligned) selected from the 8x8 texel array 820

25

40

45

18

may be read in one read operation, which significantly
improves the memory access efficiency for retrieving texels
from texel buffers.

FIGS. 8F-G illustrate an example 2x2 texel array which
is selected from an 8x8 texel array stored in 16 independent
texel buffer blocks and can be read from the texel buffer with
reduced multiplexing operations. In particular embodiments,
a 4x4 texel array may be used to determine a number of
pixels (e.g., 16x16 pixels) associated with a sampling tile
which falls within the 4x4 texel region. Each pixel may be
determined based on four texels based on the position of the
corresponding sampling point. For example, the four texels
needed for determining a pixel at a sampling position may
be determined using the methods as descripted in FIGS.
6A-B. As an example and not by way of limitation, the four
texels in the 2x2 texel array 827 may be determined as the
texels needed for determining a pixel value and may be
selected from the 4x4 texel array 826. The 2x2 texel array
827 may include D5, C6, B9, and A10 as marked by the
shaded square. Since the texels are stored in the quad buffer
blocks and texel buffer blocks in a pattern as descripted
above, the four texels of D5, C6, B9, and A10 are stored in
four quad buffer blocks of 1102, 1103, 1104, and 1105,
respectively (as marked by the shaded square in each quad
buffer block in FIG. 8F).

FIG. 8G shows that the four texels D5, C6, B9, and A10
are stored in four texel buffer blocks of 1123D, 1124C,
1121B, and 1122A, respectively, as marked by the shaded
square in each texel buffer block. In particular embodiments,
any 2x2 texel array selected from the 4x4 texel array 826
may have its 4 texels being stored in four separate quad
buffer blocks and four separate texel buffer blocks. There-
fore, selecting any 2x2 texel array (aligned or unaligned)
from a 4x4 texel array (aligned or unaligned) may require
selecting one out of four texel buffer blocks in each of the
quad buffer blocks. As a result, each sampling position
processed by a sample filter block (e.g., 1106, 1107, 1108,
1109 in FIG. 11A) may only need four 4:1 multiplexors (e.g.,
1125E, 1125F, 1125G, 1125H in FIG. 11B). Therefore,
selecting any unaligned 2x2 block of texels in the unaligned
4x4 block of texels may require selecting one out of four
selected entries in each of the quad buffer block, which
significantly reduces the multiplexing operations that are
needed for accessing and sampling the texels in the quad
buffer blocks.

In particular embodiments, the display engine may access
a 4x4 texel array (aligned or unaligned) and extract four 2x2
texel arrays (aligned or unaligned) within the 4x4 texel array
for sampling process. Each 2x2 texel array (e.g., for one
sampling point) may only needed four 4:1 multiplexors to be
selected and retrieved from 4 texel buffer blocks. The four
2x2 texel array may be extracted parallelly from the 4x4
texel array which may be accessed and retrieved parallelly
(e.g., using one read operation) from the quad buffer blocks
and texel buffer blocks. This allows four time as many texels
to be processed per memory access and allows the memory
access to be four times wider than as traditional graphic
rendering systems, and therefore significantly improves the
memory access efficiency of the headset system and reduces
the multiplexing operations and power consumption that are
needed for memory access.

FIG. 9 illustrates a system diagram for a display engine
112. In particular embodiments, the display engine 112 may
include a control block 910, transform blocks 920A and
920B, pixel blocks 930 A and 930B, display blocks 940A and
940B, etc. One or more of the components of the display
engine 112 may be configured to communicate via a high-

US 11,893,676 B2

19

speed bus, shared memory, or any other suitable method. As
shown in FIG. 9, the control block 910 of display engine 112
may be configured to communicate with the transform
blocks 920A and 920B, pixel blocks 930A and 930B, and
display blocks 940A and 940B. As explained in further detail
herein, this communication may include data as well as
control signals, interrupts and other instructions.

In particular embodiments, the control block 910 may
receive input from the body wearable computing system
(e.g., 114 in FIG. 1) and initialize a pipeline in the display
engine to finalize the rendering for display. In particular
embodiments, the control block 910 may receive data and
control packets from the body wearable computing system.
The data and control packets may include information such
as one or more surfaces comprising texture data and position
data and additional rendering instructions. The control block
910 may distribute data as needed to one or more other
blocks of the display engine 112. The control block 910 may
initiate pipeline processing for one or more frames to be
displayed. In particular embodiments, the eye display sys-
tems 116A and 116B may each comprise its own control
block 910. In particular embodiments, one or more of the
eye display systems 116A and 116B may share a control
block 910.

In particular embodiments, the transform blocks 920A
and 920B may determine initial visibility information for
surfaces to be displayed in the artificial reality scene. In
general, the transform blocks 920A and 920B may cast rays
from pixel locations on the screen and produce filter com-
mands (e.g., filtering based on bilinear or other types of
interpolation techniques) to send to the pixel blocks 930A
and 930B. The transform blocks 920A and 920B may
perform ray casting from the current viewpoint of the user
(e.g., determined using the headset’s inertial measurement
units, eye trackers, and/or any suitable tracking/localization
algorithms, such as simultaneous localization and mapping
(SLAM)) into the artificial scene where surfaces are posi-
tioned and may produce results to send to the pixel blocks
930A and 930B.

In general, the transform blocks 920A and 920B may each
comprise a four-stage pipeline, in accordance with particular
embodiments. The stages of a transform block 920A or 920B
may proceed as follows. A ray caster may issue ray bundles
corresponding to arrays of one or more aligned pixels,
referred to as tiles (e.g., each tile may include 16x16 aligned
pixels). The ray bundles may be warped, before entering the
artificial reality scene, according to one or more distortion
meshes. The distortion meshes may be configured to correct
geometric distortion effects stemming from, at least, the eye
display systems 116 A and 116B of the headset system 110.
The transform blocks 920A and 920B may determine
whether each ray bundle intersects with surfaces in the scene
by comparing a bounding box of each tile to bounding boxes
for the surfaces. If a ray bundle does not intersect with an
object, it may be discarded. Tile-surface intersections are
detected, and the corresponding tile-surface pair is passed to
the pixel blocks 930A and 930B.

In general, the pixel blocks 930A and 930B may deter-
mine color values from the tile-surface pairs to produce
pixel color values, in accordance with particular embodi-
ments. The color values for each pixel may be sampled from
the texture data of surfaces received and stored by the
control block 910. The pixel blocks 930A and 930B may
receive tile-surface pairs from the transform blocks 920A
and 920B and may schedule bilinear filtering. For each
tile-surface pair, the pixel blocks 930A and 930B may
sample color information for the pixels within the tile using

10

15

20

25

30

35

40

45

50

55

60

65

20

color values corresponding to where the projected tile inter-
sects the surface. In particular embodiments, the pixel
blocks 930A and 930B may process the red, green, and blue
color components separately for each pixel. In particular
embodiments, the pixel block 930A of the display engine
112 of the first eye display system 116A may proceed
independently, and in parallel with, the pixel block 930B of
the display engine 112 of the second eye display system
116B. The pixel block may then output its color determina-
tions to the display block.

In general, the display blocks 940A and 940B may receive
pixel color values from the pixel blocks 930A and 930B,
coverts the format of the data to be more suitable for the
scanline output of the display, apply one or more brightness
corrections to the pixel color values, and prepare the pixel
color values for output to the display. The display blocks
940A and 940B may convert tile-order pixel color values
generated by the pixel blocks 930A and 930B into scanline
or row-order data, which may be required by the physical
displays. The brightness corrections may include any
required brightness correction, gamma mapping, and dith-
ering. The display blocks 940A and 940B may output the
corrected pixel color values directly to the physical display
(e.g., pupil display 156 in FIG. 1 via the driver 154) or may
output the pixel values to a block external to the display
engine 112 in a variety of formats. For example, the eye
display systems 116A and 116B or headset system 110 may
comprise additional hardware or software to further custom-
ize backend color processing, to support a wider interface to
the display, or to optimize display speed or fidelity.

In particular embodiments, the controller block 910 may
include a microcontroller 912, a texel memory 914, a
memory controller 916, a data bus 917 for I/O communi-
cation, a data bus 918 for input stream data 905, etc. The
memory controller 916 and the microcontroller 912 may be
coupled through the data bus 917 for /O communication
with other modules of the system. The microcontroller 912
may receive control packages such as position data and
surface information though the data bus 917. The input
stream data 905 may be input to controller blocks 910 from
the body wearable computing system after being set up by
the microcontroller 912. The input stream data 905 may be
converted to the required texel format and stored into the
texture memory 914 by the memory controller 916. In
particular embodiments, the texel memory 914 may be static
random-access memory (SRAM).

In particular embodiments, the body wearable computing
system may send input stream data 905 to the memory
controller 916, which may convert the input stream data into
texels with required formats and store the texels with
swizzle patterns in the texel memory 914. The texel memory
organized in these swizzle patterns may allow the texels
(e.g., in 4x4 texel blocks) that are needed for determining at
least one color component (e.g., red, green, and/or blue) of
every pixel associated with a tile (e.g., “tile” refers to an
aligned block of pixels, such as a block of 16x16 pixels) to
be retrieved by the pixel bocks 930A and 930B in 265-bit
units, which are suitable to be stored in the texel buffer
memory read operation. As a result, the headset could avoid
the excess multiplexing operations that are needed for
reading and assembling texel array if the texel array is not
stored in such patterns, and therefore reduces computational
resource requirement and power consumption of the headset
system.

In particular embodiments, the pixel blocks 920A and
920B may generate pixel data for display based on retrieved
texels from the texel memory 912. The memory controller

US 11,893,676 B2

21

916 may be coupled to pixel blocks 930A and 930B through
two 256 bits data buses 904A and 904B, respectively. The
pixel bocks 930A and 930B may receive the tile/surface pair
from the respective transform blocks 920A and 920B and
may identify the texels that are needed to determine all the
pixels associated with the tile using the method as described
in FIGS. 6A-B. The pixel blocks 930A and 930B may
parallelly retrieve the identified texels (e.g., a 4x4 texel
array) from the texel memory 914 through the memory
controller 916 and the 256 bits data buses 904A and 904B.
For example, the 4x4 texel array that are needed to deter-
mine all the pixels associated with a tile may be stored in one
memory block and may be retrieved using one memory read
operation. The pixel blocks 930A and 930B may use mul-
tiple sample filter blocks to parallelly perform interpolation
on different groups of texels to determine the corresponding
pixels. The pixels values may be sent to the display blocks
940A and 940B for later displaying processes.

In particular embodiments, the system may use one tex-
ture memory to store the texture data which is used by the
rendering pipelines of both eyes. In particular embodiments,
the two pixel blocks 930A and 930B may processes data for
the two eyes in parallel and may have independent states
because the two displays may be not synced. Typically,
labels and images may be rendered to both eyes, so do the
GPU-generated images that are far away enough from a
viewer’s perspective so that the stereo separation is minimal.
Since most label and video image surface data that is needed
for one eye is needed for the other eye as well, processing
both eyes in the same chip allows that data to be stored once
instead of twice. As a result, it is beneficial to use a single
texture memory to store the texture data for both eye
pipelines. Even for GPU-generated images, separate stereo-
scopic images may be required only for near objects. If the
background is rendered separately, for example, to allow
foreground objects to move relative to the background, a
stereo background image may not be required in general. In
particular embodiments, the system may render an object
that requires stereo view using a separate texel array for each
eye. In particular embodiments, the system may use a shared
texel array for both eye pipelines and each eye pipeline (e.g.,
pixel block) may access the shared texel array separately
since there may be no reliable correlation about where the
object may appear in each eye’s field of view.

FIG. 10 illustrates an example diagram for pixel block
930A. The buffer manager 1001 may receive tile commands
1000 from other modules of the headset system. Before
scheduling the samples for interpolation, the buffer manager
1001 may load the necessary surface data into buffers within
the filter blocks 1002, 1003, and 1004. The pixel block 930A
may receive tile/surface pairs from transform block which
may send all the tile/surface pairs at each tile location in the
row before moving to another tile. The buffer manager 1001
may schedule bilinear filtering at the pixel positions within
the tiles and may perform the bilinear filtering at sample
positions based on the schedule. The buffer manager 1001
may send out the texel memory read address 1005 through
the 8 bits address bus 1007 to the controller block which
includes the texel memory. The pixel block 930A may
receive the texel memory read data 1006 through the 256
bits data bus 1008. In particular embodiments, the buffer
manager 1001 may load all the required texels data for a tile
before processing the samples in that tile/surface pair. In
particular embodiments, the buffer manager may allow data
to be reused from one tile to the next texel. In particular
embodiments, each filter block (e.g., 1001, 1002, 1003) may
output a 2x2 pixel array of corresponding color to display

5

10

20

25

30

35

40

45

50

55

60

22

block for later displaying process. In particular embodi-
ments, the buffer manager 1001 may output an 8-bit pattern
to display block through the 8-bit address bus 1009. In
particular embodiments, the system may support foveated
rendering and the filter blocks may also write a pattern value
per tile that specifies the kind of foveated rendering to use
on the tile.

In particular embodiments, the pixel block 930A may
process the red, green, and blue color components separately
due to chromatic aberration. Chromatic aberration may
cause the red, green and blue components of a single display
pixel to require different rays, and consequently different
sample positions. In particular embodiments, the buffer
manager 1001 may compute the bounding boxes of the red,
green, and blue tiles and read all texels from texel memory
that are needed by any of the three colors. If data retrieved
through one texel read operation is needed by more than one
color components, the buffer manager 1001 may load the
data into multiple color components in parallel. When there
is little or no chromatic aberration, the buffer manager 1001
may use one read operation to read from texture memory to
load data into all three filter blocks 1002, 1003, and 1004. If
the chromatic aberration exceeds 16 pixels, each of the red,
green and blue filter blocks may require separate reads from
texture memory.

In particular embodiments, the system may use a tile
processing order which interleaves tiles from two halves of
the tile row. In particular embodiments, edge tiles may likely
have high chromatic aberration alternate and center tiles
may likely have low chromatic aberration. Depending on
chromatic aberration, a single 256-bit texel memory word
may be required by one filter block or by multiple filter
blocks. In the latter case, a single texel memory read may
load the same data into all filter blocks that require the data.
Therefore, chromatic aberration may cause up to a three-to-
one variance in the read bandwidth that is required to access
the texel memory. By using the processing order which
interleaves tiles form two halves of the tile row, the system
may even out the bandwidth required from the texture
memory. For example, a center tile may have little or no
chromatic aberration and a single access may be used to load
all three filter blocks for a given eye. As another example, an
edge tile may have high chromatic aberration and may
require separate reads for each of the filter blocks for a given
eye. As a result, the system may need no more than four
reads in most situations, and therefore reduces the band-
width that is required to access the texel memory and to keep
the pixel blocks busy.

In particular embodiments, the buffer manger 1001 may
receive a tile/surface pair for a given position from the
transform block. The buffer manager 1001 may compute the
4-texel-aligned conservative bounding box of all three col-
ors and may wait until space is available in all three (double
buffered) filter block buffers. The buffer manager 1001 may
issue a read for each 4x4 block in the bounding box that is
needed by one or more filter blocks and may load the data
into a 32x32 texel region within each relevant filter block.
When the sampling is finished with a 32x32 texel region, the
buffer manager may free the space for further use. In
particular embodiments, the texels may be loaded into
32x32 regions in the buffer memory (e.g., quad buffer blocks
including texel buffer blocks) or smaller regions to use the
buffer more efficiently. For example, the texels may be
loaded to regions with any power of two for width and
height that is sufficient to store the required texels. In
particular embodiments, the buffer manager 1001 may free
up texels during sample stepping, after the texels are no

US 11,893,676 B2

23

longer needed. In particular embodiments, the buffer man-
ager 1001 may discard any tile where one or more ofthe red,
green and blue channels require loading a texel array larger
than 32x32 texel array.

FIG. 11A illustrates an example diagram 1100 for filter
block. In particular embodiments, a filter block may include
a sample stepper 1101, four quad buffer blocks (e.g., 1102,
1103, 1104, 1105), four sample filter blocks (e.g., 1106,
1107, 1108, 1109), a tile buffer block 1112, data buses, etc.
In particular embodiments, the filter blocks (e.g., 1002,
1003, 1004 in FIG. 10) may perform bilinear filtering on
data stored in a set of internal buffers including the quad
buffer blocks (e.g., 1102, 1103, 1104, and 1105). Four groups
of texels for four sampling positions may be sampled in
parallel in the sample filter blocks 1106, 1107, 1108, and
1109, respectively. The results may be blended with data
previously written to those pixel positions by the tile buffer
block 1112. Finally, the tile buffer block 1112 may return
information (e.g., opaque pixel data) to the sample stepper
1101 to allow optimizing subsequent accesses to the same
tile. Texels in texel memory (e.g., 914 in FIG. 9) of the
control block may be organized and accessed in 256-bit units
so that each quad buffer block may input its own 64-bit
sub-word out of the 256-bit texel memory access. Each
16-bits of a 256-bit texel memory read may contain texels
for a different position within an aligned 4x4 of texels. Texel
memory of the control block may be organized in multiple
banks so that a 256-bit access may read an aligned 4x4 block
of texels, or half a 4x4 block for 32-bit texels.

In particular embodiments, each quad buffer block may
input, through the 64-bit data bus, four 16-bit sub-words that
are at the same position in an aligned 2x2 texels region. For
example, the quad buffer block 1102 may get the texels (e.g.,
Al, A2 A3 and A4 in texel array 1110) where the local (U,
V) coordinates within corresponding 2x2 texel array are
zero (0, 0). Similarly, the quad buffer block 1103 may get the
texels (e.g., B 1, B2, B3, B4 in texel array 1110) where the
local (U, V) coordinates with corresponding 2x2 texel array
are (1, 0). The quad buffer block 1104 may get the texels
(e.g., C1, C2, C3, C4 in texel array 1110) where the local (U,
V) coordinates within corresponding 2x2 texel array are (0,
1). The quad buffer block 1105 may get the texels (e.g., D1,
D2, D3, D4 in texel array 1110) where the local (U, V)
coordinates within corresponding 2x2 texel array are (1, 1).
The 4x4 texels array 1110 may have each texel showing the
corresponding the local (U, V) coordinates and each texel
may be stored in respective quad buffer blocks as indicated
by the letters within the texels (e.g., Ax in quad buffer block
1102, Bx in quad buffer block 1103, Cx in quad buffer block
1104, Dx in quad buffer block 1105). As a result, the four
quad buffer blocks 1102, 1103, 1104, and 1105 may provide
arbitrarily aligned 2x2 texels for interpolation. For example,
the quad buffer blocks 1102, 1103, 1104, and 1105 may each
send a texel contained within a 2x2 texel array to each
sample filter block (e.g., 1106, 1107, 1108, 1109). Conse-
quently, each sample filter blocks may receive the four texels
corresponding a 2x2 texel array and perform interpolation
on the texels.

In particular embodiments, the filter block may contain
four sample filter blocks (e.g., 1106, 1107, 1108, 1109) each
of which may get data input from four quad buffer blocks
(e.g., 1102, 1103, 1104, 1105), as well as from the sample
stepper 1101. The four sample filter blocks may compute a
2x2 block of sample positions in texture (U, V) space, which
correspond to an aligned 2x2 block of integer pixel positions
on the display. In particular embodiments, the sample filter
blocks may output the results to display blocks through the

10

15

20

25

30

35

40

45

50

55

60

65

24

tile buffer block 1112. In particular embodiments, the sample
stepper 1101 may sequence sample positions through the
quad buffer blocks and the sample filter blocks. The sample
stepper 1101 may send the quad buffer blocks the addresses
of'texels for read operations and may specify the data format
for the data being sent to the sample filter blocks. The
sample stepper 1101 may provide filter weights and other
control to the sample filter blocks. In particular embodi-
ments, the system may support multiple types of surface
data, some of which may require multiple cycles of inter-
polation operations per pixel in the sample filter blocks.

FIG. 11B illustrates an example diagram 1110 for quad
buffer block (e.g., 1102, 1103, 1104, 1105 in FIG. 11A). In
particular embodiments, a quad buffer block may include
four texel buffer blocks (e.g., 1121, 1122, 1123, 1124), four
quad increment blocks (e.g., 1131, 1132, 1133, 1134), eight
multiplexors (e.g., 1125A-H), data bus, address bus, etc. In
aggregate, the 16 texel buffer blocks of the four quad buffer
blocks may buffer texels for each position in a 4x4 texel
array. In particular embodiments, each texel buffer block
may store texels that have the same local (U, V) coordinates
and are stored in the same quad buffer block. As an example
and not by way of limitation, an 4x4 texel array stored in the
quad buffer block 1102 may be stored in the corresponding
four texel buffer blocks of 1121, 1122, 1123, and 1124 in a
pattern as shown in FIG. 11B. The texel buffer block 1121
may store the texels of Al, A3, A9, All each of which has
the local (U, V) coordinates of (0, 0). The texel buffer block
1122 may store the texels of A2, A4, A10, A12 each of which
has the local (U, V) coordinates of (1, 0). The texel buffer
block 1123 may store the texels of A5, A7, A13, A15 each
of which has the local (U, V) coordinates of (0, 1). The texel
buffer block 1124 may store the texels of A6, A8, Al4, Al16
each of which has the local (U, V) coordinates of (1, 1). As
discussed earlier, storing texels in such patterns may allow
the 4x4 texel array to have its 16 texels to be stored in 16
separate texel buffer blocks, and therefore to be retrieved
from the texel buffer memories in one read operation.

In particular embodiments, texel data may be stored in the
texel buffers in wraparound form within each 32x32 texel
region. That is, incrementing texel U address from 31 to 32
may wrap around to texel address O within a given 32x32
texel block in texel buffers of the filter block. This may allow
the (U, V) address of the texel and the offset to the 32x32
texel region to be the same for all of the filter blocks and may
require loading only those texels that are required in a filter
block’s unaligned 32 texel-wide buffer region. In particular
embodiments, the display engine may use a more complex
algorithm including aligning reads to 2x2 texel boundaries
instead of 4x4, using variable size regions in the filter
buffers, or re-using texel data from one tile that is also
required by an adjacent tile. In particular embodiments, the
texel buffer blocks in a specific quad buffer block may buffer
texels that have the same low order bit for (U, V) coordi-
nates. For example, texel buffer block 1121 may store texels
where bit<1> of the U and V addresses are zero and bit<0>
of the U and V addresses are specified by their quad buffer
block. The read address for the texel buffer blocks may
specify the texel at the start of an arbitrarily aligned 4x4
block of texels. The quad increment blocks (e.g., 1131, 1132,
1133, 1134) may detect cases where bit<1> of the U or V
addresses stored in the block is zero but the corresponding
read address bit is 1. The remainder of the U or V address
may be incremented, wrapping around within a 32x32 texel
region. As a result, the texel buffers can address whatever
alignment of 4x4 texels covering the texels that are needed
by the sample filter blocks.

US 11,893,676 B2

25

In particular embodiments, the multiplexors (e.g., 1125E-
H) on the right in the quad buffer block diagram 1110 may
allow each sample filter block to select which texel buffer
block to access so that it can bilinearly interpolate each
sample in the corresponding 4x4 texel region. Within a
single quad buffer block, each sample filter block may select
whether bit<1> of the U and V address should be zero or
one. This choice may be made separately within each quad
filter block, resulting in each sample filter block getting the
2x2 of texels that it needs. The multiplexor may select bits
of the texel data coming from the sample stepper block. The
multiplexors (e.g., 1125A-E) on the left in the quad buffer
block diagram may perform a different function from the
multiplexors on the right, that is, sending information to the
sample stepper from the selected texel buffer block. This
allows the sample stepper to optimize sample filter sequenc-
ing.

FIG. 12A illustrates an example diagram 1200 for texel
buffer blocks (e.g., 1121, 1122, 1123, 1124 in FIG. 11B). In
particular embodiments, a texel buffer block may include a
re-formatter block 1201, a 512x2 buffer unit 1202, a 512x10
buffer unit 1203, a delay block 1205, a selector 1207, writing
address bus 1208, reading address bus 1209, other data/
address buses, etc. The re-formatter block 1201 may convert
texel data from formats as stored in the texel memory of the
control block to the data formats as required in the texel
buffer blocks. A buffer controller may select the writing
address, based on which texel data is written into each texel
buffer block. The sample stepper block (1101 in FIG. 11A)
may select the reading address, which may be customized by
the quad buffer block for each texel buffer block. The top
two bits of the buffer entry may be firstly read into the 512x2
buffer unit 1202 followed by reading the bottom ten bits into
the 512x10 buffer unit 1203 after a fixed delay (e.g., by the
day block 1205). The fixed delay may allow the sample
stepper to interpret the top two bits and determine the
sequence of interpolations that need to be performed.
Finally, the selector block 1207 may assemble two six-bit
values and may pass a distance, a color, or variable alpha
value to the interpolators through a 6-bit output bus 1231.
The other output bus 1232 may be used for a label index or
a constant that may not be interpolated.

FIG. 12B illustrates example texel data formats (e.g.,
1210, 1211, 1213, 1214) for texel buffer blocks. In particular
embodiments, the texel buffer blocks may support a number
of texel data formats for texel buffer entries and storage.
Each of the sixteen texel buffer blocks may store information
for a single position in a 4x4 texel array. Each texel buffer
block may contain buffer units for storing the information
required to interpolate one color channel. In particular
embodiments, texel data for image surfaces may include a
color component and an alpha. Texel data for label surfaces
may include a distance component and a color index
together with bits to select optimizations. As an example and
not by way of limitation, a 12-bit texel format 1210 may
include a 1-bit T component, a 1-bit S component, a 6-bit
distance component, and a 4-bit index component. As
another example, a 12-bit texel format 1211 may include a
2-bit Mode component, a 6-bit color component, and a 4-bit
alpha component. As another example, a 12-bit texel format
1211 may include a 2-bit Mode component and a 10-bit
color component. As another example, a 12-bit texel format
1213 may include a 2-bit Mode component, a 8-bit alpha
component, and a 2-bit X component. As another example,
a 24-bit texel format 1214 may include a 2-bit Mode
component, a 6-bit low-bit color component, and a 4-bit
low-bit alpha component in the low 12 bits and may include

5

10

15

20

25

30

35

40

45

55

60

65

26

a 2-bit X component, a 6-bit high-bit color component, a
4-bit high-bit alpha component in the high 12 bits. In
particular embodiments, the T and Mode components/fields
may be computed by the re-formatter (1201 in FIG. 12A)
and may be used by the sample stepper (1101 in FIG. 11A)
to optimize interpolation. In particular embodiments, the
image formats may be used based on what kind of surface
is being stored. For example, label surfaces may use the 6-bit
distance format (i.e., Distance6) with the color index stored
in the low order bits. As another example, mask surfaces
may use the 8-bit alpha format (i.e., Alpha8). As another
example, image surfaces may use one of the other formats
depending on the number precision selected for the image
surface.

FIG. 12C illustrates an example diagram 1220 for sample
filter blocks (e.g., 1106, 1107, 1108, 1109 in FIG. 11A). In
particular embodiments, a sample filter block may include a
first interpolator 1221, a second interpolator 1222, a V
interpolator 1223, a color selector 1224, a blender block
1225, etc. The sample filter block may perform interpolation
and post-interpolation processing for a single sampling
position. The interpolators 1221 and 1222 may receive from
filter cache the texel data corresponding to texel coordinates
of (0, 0), (1, 0), (0, 1), and (1, 1). The interpolators 1221,
1222, and 1223 may perform bilinear interpolation with 5x5
multipliers using weights provided by the sample stepper. In
particular embodiments, the display engine may perform
operation optimization on interpolating short or long data
formats (e.g., 6-bit data format, 12-bit data format) and
determine how many memory entries and cycles are needed
for sending data to interpolators. The output of each inter-
polator may provide interpolated result with full precision.
Rounding or other number conversions may be performed in
the color selector block 1224. The interpolators may use
6-bit filter weights that allow magnification to about 32x
before artifacts begin appearing. The color selector 1124
may perform two tasks depending whether the surface being
filtered is an image or a label. For images, it may route
interpolated color and alpha values to the correct outputs.
When processing labels, the color selector 1224 may convert
a signed distance interpolant into a color. When processing
images, the color selector 1224 may separate out color and
alpha interpolants. If there is no alpha interpolant, alpha may
be either zero or one as selected by control bits from the
sample stepper. The blender block 1225 may perform alpha
transparency blending when required. The blender block
1225 may combine a source color and source alpha with the
destination color and alpha that are accessed through the tile
buffer block. Two kinds of blending functions may be
performed: add-blend and over-blend, which can be per-
formed either front-to-back or back-to-front. In other words,
blending can treat the source as being either behind or in
front of the current value at that pixel position.

FIG. 13 illustrates an example method 1300 for parallelly
sampling multiple groups of texels to determine multiple
pixel values using bilinear interpolation. The method 1300
may begin at step 1310, where the headset system may
receive pre-warped surfaces from a body wearable comput-
ing system. Each pre-warped surface may have texture data
that is represented by a single texture resolution. In particu-
lar embodiments, the body wearable computing system may
include one or more GPUs and smart video decoders. In
particular embodiments, the pre-warped surfaces may be
generated by the GPUs or the smart video decoders associ-
ated with the body wearable computing system. The per-
warped surface may be generated based on the rendering
results on the GPUs associated with the body wearable

US 11,893,676 B2

27

computing system and may visually take into account the 3D
contour of the underlying object. The pre-warped surface
may have position data indicating the location of the surface
in a viewer’s view space. The pre-warped surface may be
represented as a planar region facing the viewer, and as such
pixel filtering may be performed using uniform texture
resolution all over the surface, even though different por-
tions of the surface may appear to have different depths
relative to a viewer.

At step 1320, the headset system may determine whether
the pre-warped surface is visible to a region on the screen
(e.g., a tile or a collection of pixels, such as 16x16 pixels).
In particular embodiments, the system may use a ray casting
algorithm to determine whether four casted rays, which
define a bounding box, intersect with the pre-warped sur-
face. The rays may be cast based on the current viewpoint of
the viewer, and the points of intersection may be used by the
display engine on the headset system to further warp the
pre-warped surface to accommodate any change in the
viewer’s viewpoint since the creation of the pre-warped
surface. If the bounding box intersects the surface, then the
tile corresponding to the bounding box and that surface may
be considered as a tile/surface pair (indicating that the
surface is visible to the tile). In particular embodiments, the
system may generate a number of tile/surface pairs in a
similar manner. In particular embodiments, zoom-out opera-
tions may be limited to no more than two-times zoom.

At step 1330, the system may determine, based on the
region on the surface intersected by the bounding box,
sampling points within a texture associated with the surface.
For example, if the bounding box corresponds to a tile made
up of 16x16 pixels, the system may determine the locations
of 16x16 sampling points. In particular embodiments, the
system may sequentially perform filtering based on groups
of 2x2 sampling points selected from the 16x16 sampling
points.

At step 1340, the system may determine, for each group
of sampling points, the associated texels that are needed for
determining the pixel values at those sampling points. The
needed texels may have a predetermined dimension (e.g.,
4x4). In particular embodiments, the relative locations of the
sampling points and the texel grid may be used to determine
which texels are needed. For example, for a group of 2x2
sampling points, the closest 4x4 texels may be selected. In
particular embodiments, the system may use a two-time
zoom out limitation to ensure that the texels needed for
filtering the 2x2 sampling points fall within a 4x4 texel
region. This condition may be satisfied as long as the
distances of adjacent sampling points are less than or equal
to two times the texel size (as indicated by the texel edge
length). In particular embodiments, texels may be stored in
a texel memory block in a manner that allows 4x4 texels to
be accessed with one read operation. For example, the 4x4
texel array may be stored in a 32 Bytes (256 bits) memory
block in an interleaved pattern and the content of the 32
Bytes memory block may be retrieved parallelly using one
read operation.

At step 1350, the system may retrieve the texels needed
for determining the pixel values for the sampling point
positions in a single read operation. For example, the system
may parallelly retrieve the 4x4 texel array from texel
memory using one read-out operation.

At step 1360, the system may determine the pixels values
for the sampling points by performing bilinear interpolation
(or any other suitable interpolation techniques, such as
bicubic interpolation) on the retrieved texels. In particular

10

15

20

25

30

35

40

45

50

55

60

65

28

embodiments, the interpolation process for the four 2x2
sampling points may be performed in parallel by four
sample filter blocks.

In particular embodiments, a computing system may
receive a number of texels organized into a texel array
including a number of sub-arrays. The system may deter-
mine a number of texel subsets with the texels in each subset
have a same position within their respective sub-arrays. The
system may store the texel subsets into a number of buffer
blocks, respectively, with each buffer block storing one texel
subset of the texel subsets. The system may retrieve a
sampling texel array from the buffer blocks for parallelly
determining pixel values of a number of sampling points
with each texel of the sampling texel array being retrieved
from a different buffer block of the buffer blocks. In par-
ticular embodiments, the sub-arrays of the texel array may
form a repeated pattern within the texel array. In particular
embodiments, the buffer blocks may be addressed separately
and accessed parallelly.

In particular embodiments, the buffer blocks may be
grouped into a number of groups. Each texel used for
determining a pixel value of a sampling point may be
retrieved from a different group of the texel groups. In
particular embodiments, the texel subsets may be deter-
mined by: determining a reference texel having a first
coordinate (u, v) indicating a position of the reference texel
within the texel array, determining a number of intermediate
texel groups comprising texels having least significant bits
of binary representations of first coordinates (u, v) equal to
(0, 0), (1, 0), (0, 1), and (1, 1), respectively, determining a
second coordinate (x, y) for each texel of each intermediate
texel group, and determining the texel subsets each includ-
ing texels having least significant bits of binary representa-
tions of second coordinates (x, y) equal to (0, 0), (1, 0), (0,
1), and (1, 1) with respect to a corresponding intermediate
texel group.

In particular embodiments, the texel subsets may include
as least 16 texel subsets and the buffer blocks may include
at least 16 buffer blocks. In particular embodiments, each of
the sub-arrays may include a 4x4 texel array. Each of the
texel subsets may include a 2x2 texel array. Each of the
intermediate texel groups may include a 4x4 texel array. In
particular embodiments, the 16 texel subsets may be orga-
nized into four texel groups and the sampling points may
include four sampling points. The four texel groups may be
used for parallelly determining the pixels values of the four
sampling points, respectively. In particular embodiments,
each pixel value may be determined based on a 2x2 texel
sub-array of the sampling texel array and each texel of the
2x2 texel sub-array may be selected from one of the four
texel groups. In particular embodiments, the pixel values of
the sampling points may be determined based on parallel
bilinear interpolations on texels of the sampling texel array.
Each pixel value of each sampling point may be determined
based on a 2x2 texel sub-array of the sampling texel array.
In particular embodiments, the sampling points may be
associated with an intersection area of a display region to a
two-dimensional representation of a portion of a scene. In
particular embodiments, the two-dimensional representation
may include three-dimensional information of the portion of
the scene and the two-dimensional representation of the
portion of the scene may be visible in the display region. In
particular embodiments, the two-dimensional representation
of the portion of the scene may be represented with a single
texture resolution. The texel array may include texels having
the single texture resolution. In particular embodiments, the

US 11,893,676 B2

29

sampling texel array may be associated with an aligned texel
region or an unaligned texel region.

Particular embodiments may repeat one or more steps of
the method of FIG. 13, where appropriate. Although this
disclosure describes and illustrates particular steps of the
method of FIG. 13 as occurring in a particular order, this
disclosure contemplates any suitable steps of the method of
FIG. 13 occurring in any suitable order. Moreover, although
this disclosure describes and illustrates an example method
for parallelly sampling multiple groups of texels to deter-
mine multiple pixel values using bilinear interpolation
including the particular steps of the method of FIG. 13, this
disclosure contemplates any suitable method for parallelly
sampling multiple groups of texels to determine multiple
pixel values using bilinear interpolation including any suit-
able steps, which may include all, some, or none of the steps
of the method of FIG. 13, where appropriate. Furthermore,
although this disclosure describes and illustrates particular
components, devices, or systems carrying out particular
steps of the method of FIG. 13, this disclosure contemplates
any suitable combination of any suitable components,
devices, or systems carrying out any suitable steps of the
method of FIG. 13.

FIG. 14 illustrates an example computer system 1400. In
particular embodiments, one or more computer systems
1400 perform one or more steps of one or more methods
described or illustrated herein. In particular embodiments,
one or more computer systems 1400 provide functionality
described or illustrated herein. In particular embodiments,
software running on one or more computer systems 1400
performs one or more steps of one or more methods
described or illustrated herein or provides functionality
described or illustrated herein. Particular embodiments
include one or more portions of one or more computer
systems 1400. Herein, reference to a computer system may
encompass a computing device, and vice versa, where
appropriate. Moreover, reference to a computer system may
encompass one or more computer systems, where appropri-
ate.

This disclosure contemplates any suitable number of
computer systems 1400. This disclosure contemplates com-
puter system 1400 taking any suitable physical form. As
example and not by way of limitation, computer system
1400 may be an embedded computer system, a system-on-
chip (SOC), a single-board computer system (SBC) (such as,
for example, a computer-on-module (COM) or system-on-
module (SOM)), a desktop computer system, a laptop or
notebook computer system, an interactive kiosk, a main-
frame, a mesh of computer systems, a mobile telephone, a
personal digital assistant (PDA), a server, a tablet computer
system, an augmented/virtual reality device, or a combina-
tion of two or more of these. Where appropriate, computer
system 1400 may include one or more computer systems
1400; be unitary or distributed; span multiple locations; span
multiple machines; span multiple data centers; or reside in a
cloud, which may include one or more cloud components in
one or more networks. Where appropriate, one or more
computer systems 1400 may perform without substantial
spatial or temporal limitation one or more steps of one or
more methods described or illustrated herein. As an example
and not by way of limitation, one or more computer systems
1400 may perform in real time or in batch mode one or more
steps of one or more methods described or illustrated herein.
One or more computer systems 1400 may perform at dif-
ferent times or at different locations one or more steps of one
or more methods described or illustrated herein, where
appropriate.

10

15

20

25

30

35

40

45

50

55

60

65

30

In particular embodiments, computer system 1400
includes a processor 1402, memory 1404, storage 1406, an
input/output (I/0) interface 1408, a communication interface
1410, and a bus 1412. Although this disclosure describes and
illustrates a particular computer system having a particular
number of particular components in a particular arrange-
ment, this disclosure contemplates any suitable computer
system having any suitable number of any suitable compo-
nents in any suitable arrangement.

In particular embodiments, processor 1402 includes hard-
ware for executing instructions, such as those making up a
computer program. As an example and not by way of
limitation, to execute instructions, processor 1402 may
retrieve (or fetch) the instructions from an internal register,
an internal cache, memory 1404, or storage 1406; decode
and execute them; and then write one or more results to an
internal register, an internal cache, memory 1404, or storage
1406. In particular embodiments, processor 1402 may
include one or more internal caches for data, instructions, or
addresses. This disclosure contemplates processor 1402
including any suitable number of any suitable internal
caches, where appropriate. As an example and not by way of
limitation, processor 1402 may include one or more instruc-
tion caches, one or more data caches, and one or more
translation lookaside buffers (TLBs). Instructions in the
instruction caches may be copies of instructions in memory
1404 or storage 1406, and the instruction caches may speed
up retrieval of those instructions by processor 1402. Data in
the data caches may be copies of data in memory 1404 or
storage 1406 for instructions executing at processor 1402 to
operate on; the results of previous instructions executed at
processor 1402 for access by subsequent instructions execut-
ing at processor 1402 or for writing to memory 1404 or
storage 1406; or other suitable data. The data caches may
speed up read or write operations by processor 1402. The
TLBs may speed up virtual-address translation for processor
1402. In particular embodiments, processor 1402 may
include one or more internal registers for data, instructions,
or addresses. This disclosure contemplates processor 1402
including any suitable number of any suitable internal
registers, where appropriate. Where appropriate, processor
1402 may include one or more arithmetic logic units
(ALUs); be a multi-core processor; or include one or more
processors 1402. Although this disclosure describes and
illustrates a particular processor, this disclosure contem-
plates any suitable processor.

In particular embodiments, memory 1404 includes main
memory for storing instructions for processor 1402 to
execute or data for processor 1402 to operate on. As an
example and not by way of limitation, computer system
1400 may load instructions from storage 1406 or another
source (such as, for example, another computer system
1400) to memory 1404. Processor 1402 may then load the
instructions from memory 1404 to an internal register or
internal cache. To execute the instructions, processor 1402
may retrieve the instructions from the internal register or
internal cache and decode them. During or after execution of
the instructions, processor 1402 may write one or more
results (which may be intermediate or final results) to the
internal register or internal cache. Processor 1402 may then
write one or more of those results to memory 1404. In
particular embodiments, processor 1402 executes only
instructions in one or more internal registers or internal
caches or in memory 1404 (as opposed to storage 1406 or
elsewhere) and operates only on data in one or more internal
registers or internal caches or in memory 1404 (as opposed
to storage 1406 or elsewhere). One or more memory buses

US 11,893,676 B2

31

(which may each include an address bus and a data bus) may
couple processor 1402 to memory 1404. Bus 1412 may
include one or more memory buses, as described below. In
particular embodiments, one or more memory management
units (MMUSs) reside between processor 1402 and memory
1404 and facilitate accesses to memory 1404 requested by
processor 1402. In particular embodiments, memory 1404
includes random access memory (RAM). This RAM may be
volatile memory, where appropriate. Where appropriate, this
RAM may be dynamic RAM (DRAM) or static RAM
(SRAM). Moreover, where appropriate, this RAM may be
single-ported or multi-ported RAM. This disclosure contem-
plates any suitable RAM. Memory 1404 may include one or
more memories 1404, where appropriate. Although this
disclosure describes and illustrates particular memory, this
disclosure contemplates any suitable memory.

In particular embodiments, storage 1406 includes mass
storage for data or instructions. As an example and not by
way of limitation, storage 1406 may include a hard disk
drive (HDD), a floppy disk drive, flash memory, an optical
disc, a magneto-optical disc, magnetic tape, or a Universal
Serial Bus (USB) drive or a combination of two or more of
these. Storage 1406 may include removable or non-remov-
able (or fixed) media, where appropriate. Storage 1406 may
be internal or external to computer system 1400, where
appropriate. In particular embodiments, storage 1406 is
non-volatile, solid-state memory. In particular embodi-
ments, storage 1406 includes read-only memory (ROM).
Where appropriate, this ROM may be mask-programmed
ROM, programmable ROM (PROM), erasable PROM
(EPROM), electrically erasable PROM (EEPROM), electri-
cally alterable ROM (EAROM), or flash memory or a
combination of two or more of these. This disclosure con-
templates mass storage 1406 taking any suitable physical
form. Storage 1406 may include one or more storage control
units facilitating communication between processor 1402
and storage 1406, where appropriate. Where appropriate,
storage 1406 may include one or more storages 1406.
Although this disclosure describes and illustrates particular
storage, this disclosure contemplates any suitable storage.

In particular embodiments, I/O interface 1408 includes
hardware, software, or both, providing one or more inter-
faces for communication between computer system 1400
and one or more 1/O devices. Computer system 1400 may
include one or more of these /O devices, where appropriate.
One or more of these /O devices may enable communica-
tion between a person and computer system 1400. As an
example and not by way of limitation, an /O device may
include a keyboard, keypad, microphone, monitor, mouse,
printer, scanner, speaker, still camera, stylus, tablet, touch
screen, trackball, video camera, another suitable 1/O device
or a combination of two or more of these. An /O device may
include one or more sensors. This disclosure contemplates
any suitable /O devices and any suitable I/O interfaces 1408
for them. Where appropriate, 1/O interface 1408 may include
one or more device or software drivers enabling processor
1402 to drive one or more of these 1/O devices. I/O interface
1408 may include one or more I/O interfaces 1408, where
appropriate. Although this disclosure describes and illus-
trates a particular I/O interface, this disclosure contemplates
any suitable I/O interface.

In particular embodiments, communication interface
1410 includes hardware, software, or both providing one or
more interfaces for communication (such as, for example,
packet-based communication) between computer system
1400 and one or more other computer systems 1400 or one
or more networks. As an example and not by way of

30

40

45

32

limitation, communication interface 1410 may include a
network interface controller (NIC) or network adapter for
communicating with an Ethernet or other wire-based net-
work or a wireless NIC (WNIC) or wireless adapter for
communicating with a wireless network, such as a WI-FI
network. This disclosure contemplates any suitable network
and any suitable communication interface 1410 for it. As an
example and not by way of limitation, computer system
1400 may communicate with an ad hoc network, a personal
area network (PAN), a local area network (LAN), a wide
area network (WAN), a metropolitan area network (MAN),
or one or more portions of the Internet or a combination of
two or more of these. One or more portions of one or more
of these networks may be wired or wireless. As an example,
computer system 1400 may communicate with a wireless
PAN (WPAN) (such as, for example, a BLUETOOTH
WPAN), a WI-FI network, a WI-MAX network, a cellular
telephone network (such as, for example, a Global System
for Mobile Communications (GSM) network), or other
suitable wireless network or a combination of two or more
of these. Computer system 1400 may include any suitable
communication interface 1410 for any of these networks,
where appropriate. Communication interface 1410 may
include one or more communication interfaces 1410, where
appropriate. Although this disclosure describes and illus-
trates a particular communication interface, this disclosure
contemplates any suitable communication interface.

In particular embodiments, bus 1412 includes hardware,
software, or both coupling components of computer system
1400 to each other. As an example and not by way of
limitation, bus 1412 may include an Accelerated Graphics
Port (AGP) or other graphics bus, an Enhanced Industry
Standard Architecture (EISA) bus, a front-side bus (FSB), a
HYPERTRANSPORT (HT) interconnect, an Industry Stan-
dard Architecture (ISA) bus, an INFINIBAND interconnect,
a low-pin-count (LLPC) bus, a memory bus, a Micro Channel
Architecture (MCA) bus, a Peripheral Component Intercon-
nect (PCI) bus, a PCI-Express (PCle) bus, a serial advanced
technology attachment (SATA) bus, a Video Electronics
Standards Association local (VLB) bus, or another suitable
bus or a combination of two or more of these. Bus 1412 may
include one or more buses 1412, where appropriate.
Although this disclosure describes and illustrates a particular
bus, this disclosure contemplates any suitable bus or inter-
connect.

Herein, a computer-readable non-transitory storage
medium or media may include one or more semiconductor-
based or other integrated circuits (ICs) (such, as for
example, field-programmable gate arrays (FPGAs) or appli-
cation-specific ICs (ASICs)), hard disk drives (HDDs),
hybrid hard drives (HHDs), optical discs, optical disc drives
(ODDs), magneto-optical discs, magneto-optical drives,
floppy diskettes, floppy disk drives (FDDs), magnetic tapes,
solid-state drives (SSDs), RAM-drives, SECURE DIGITAL
cards or drives, any other suitable computer-readable non-
transitory storage media, or any suitable combination of two
or more of these, where appropriate. A computer-readable
non-transitory storage medium may be volatile, non-vola-
tile, or a combination of volatile and non-volatile, where
appropriate.

Herein, “or” is inclusive and not exclusive, unless
expressly indicated otherwise or indicated otherwise by
context. Therefore, herein, “A or B” means “A, B, or both,”
unless expressly indicated otherwise or indicated otherwise
by context. Moreover, “and” is both joint and several, unless
expressly indicated otherwise or indicated otherwise by
context. Therefore, herein, “A and B” means “A and B,

US 11,893,676 B2

33

jointly or severally,” unless expressly indicated otherwise or
indicated otherwise by context.
The scope of this disclosure encompasses all changes,
substitutions, variations, alterations, and modifications to the
example embodiments described or illustrated herein that a
person having ordinary skill in the art would comprehend.
The scope of this disclosure is not limited to the example
embodiments described or illustrated herein. Moreover,
although this disclosure describes and illustrates respective
embodiments herein as including particular components,
elements, feature, functions, operations, or steps, any of
these embodiments may include any combination or permu-
tation of any of the components, elements, features, func-
tions, operations, or steps described or illustrated anywhere
herein that a person having ordinary skill in the art would
comprehend. Furthermore, reference in the appended claims
to an apparatus or system or a component of an apparatus or
system being adapted to, arranged to, capable of, configured
to, enabled to, operable to, or operative to perform a
particular function encompasses that apparatus, system,
component, whether or not it or that particular function is
activated, turned on, or unlocked, as long as that apparatus,
system, or component is so adapted, arranged, capable,
configured, enabled, operable, or operative. Additionally,
although this disclosure describes or illustrates particular
embodiments as providing particular advantages, particular
embodiments may provide none, some, or all of these
advantages.
What is claimed is:
1. A system comprising:
a plurality of first buffer blocks configured to store a
plurality of texels organized into a texel array compris-
ing a plurality of NxN texel sub-arrays,
wherein each texel of the plurality of texels falls within
a corresponding NxN texel sub-array and is associ-
ated with a two-dimensional sub-array coordinate
indicating a position of that texel within the corre-
sponding NxN texel sub-array, and

wherein each first buffer block of the plurality of first
buffer blocks is assigned a particular two-dimen-
sional sub-array coordinate and configured to store a
texel subset of the plurality of texels having the
particular two-dimensional sub-array coordinate;
and

a plurality of filter blocks configured to receive the
plurality of texels from the plurality of first buffer
blocks, wherein the plurality of filter blocks comprise
a first filter block configured to receive a first texel from
each first buffer block of the plurality of first buffer
blocks, wherein the first texels received from the plu-
rality of first buffer blocks are adjacent texels in the
texel array comprising the plurality of NxN texel
sub-arrays, and wherein the plurality of filter blocks are
configured to parallelly receive and perform sampling
operations on respective NxN texel sub-arrays.

2. The system of claim 1, wherein the plurality of first
buffer blocks are configured to be accessed parallelly by the
plurality of filter blocks.

3. The system of claim 1, wherein the plurality of filter
blocks comprise a second filter block configured to receive
a second texel from each first buffer block of the plurality of
first buffer blocks parallelly.

4. The system of claim 3, wherein the second texels
received by the second filter block of the plurality filter
blocks from the plurality of first buffer blocks are adjacent
texels in the texel array comprising the plurality of NxN
texel sub-arrays.

20

40

45

50

55

34

5. The system of claim 1, wherein the plurality of filter
blocks are configured to perform bilinear interpolation
operations parallelly on the respective NxN texel sub-arrays.

6. The system of claim 1, wherein the system further
comprises a sample step controller configured to control the
plurality of first buffer blocks and the plurality of filter
blocks.

7. The system of claim 6, wherein the system further
comprises a second buffer block configured to provide
opaque pixel data to the sample step controller for optimiz-
ing subsequent accesses to data associated with a same tile.

8. The system of claim 1, wherein each first buffer block
comprises a plurality of sub-buffer blocks and a plurality of
increment blocks, and wherein each increment block of the
plurality of increment blocks is associated with a corre-
sponding sub-buffer block of the plurality of sub-buffer
blocks.

9. The system of claim 8, wherein each first buffer block
further comprises a plurality of multiplexors and a plurality
of data buses, and wherein the plurality of multiplexors are
configured to control the plurality of data buses for reading
texel data from the plurality of sub-buffer blocks.

10. The system of claim 9, wherein the plurality of
multiplexors are configured to coordinate the plurality of
filter blocks to select and access the plurality of sub-buffer
blocks for bilinear interpolation operations.

11. One or more computer-readable non-transitory storage
media embodying software that is operable when executed
to:

store, by a plurality of first buffer blocks, a plurality of

texels organized into a texel array comprising a plural-

ity of NxN texel sub-arrays,

wherein each texel of the plurality of texels falls within
a corresponding NxN texel sub-array and is associ-
ated with a two-dimensional sub-array coordinate
indicating a position of that texel within the corre-
sponding NxN texel sub-array, and

wherein each first buffer block of the plurality of first
buffer blocks is assigned a particular two-dimen-
sional sub-array coordinate and stores a texel subset
of the plurality of texels having the particular two-
dimensional sub-array coordinate;

receive, by a plurality of filter blocks, the plurality of

texels from the plurality of first buffer blocks, wherein
the plurality of filter blocks comprise a first filter block
configured to receive a first texel from each first buffer
block of the plurality of first buffer blocks, and wherein
the first texels received from the plurality of first buffer
blocks are adjacent texels in the texel array comprising
the plurality of NxN texel sub-arrays; and

perform, by the plurality of filter blocks, sampling opera-

tions parallelly on respective NxN texel sub-arrays.

12. The media of claim 11, wherein the plurality of first
buffer blocks are configured to be accessed parallelly by the
plurality of filter blocks.

13. The media of claim 11, wherein the plurality of filter
block comprise a second filter block configured to receive a
second texel from each first buffer block of the plurality of
first buffer blocks parallelly.

14. The media of claim 13, wherein the second texels
received by the second filter block of the plurality filter
blocks from the plurality of first buffer blocks are adjacent
texels in the texel array comprising the plurality of NxN
texel sub-arrays.

15. The media of claim 11, wherein the plurality of filter
blocks are configured to perform bilinear interpolation
operations parallelly on the respective NxN texel sub-arrays.

US 11,893,676 B2

35

16. A method comprising:
storing, by a plurality of first buffer blocks, a plurality of
texels organized into a texel array comprising a plural-
ity of NxN texel sub-arrays,
wherein each texel of the plurality of texels falls within
a corresponding NxN texel sub-array and is associ-
ated with a two-dimensional sub-array coordinate
indicating a position of that texel within the corre-
sponding NxN texel sub-array, and
wherein each first buffer block of the plurality of first
buffer blocks is assigned a particular two-dimen-
sional sub-array coordinate and stores a texel subset
of the plurality of texels having the particular two-
dimensional sub-array coordinate;
receiving, by a plurality of filter blocks, the plurality of
texels from the plurality of first buffer blocks, wherein
the plurality of filter blocks comprise a first filter block
configured to receive a first texel from each first buffer
block of the plurality of first buffer blocks, and wherein
the first texels received from the plurality of first buffer

15

36

blocks are adjacent texels in the texel array comprising
the plurality of NxN texel sub-arrays; and

performing, by the plurality of filter blocks, sampling
operations parallelly on respective NxN texel sub-
arrays.

17. The method of claim 16, wherein the plurality of first
buffer blocks are configured to be accessed parallelly by the
plurality of filter blocks.

18. The method of claim 16, wherein the plurality of filter
block comprise a second filter block configured to receive a
second texel from each first buffer block of the plurality of
first buffer blocks parallelly.

19. The method of claim 18, wherein the second texels
received by the second filter block of the plurality filter
blocks from the plurality of first buffer blocks are adjacent
texels in the texel array comprising the plurality of NxN
texel sub-arrays.

20. The method of claim 16, wherein the plurality of filter
blocks are configured to perform bilinear interpolation
operations parallelly on the respective NxN texel sub-arrays.

#* #* #* #* #*

