a2 United States Patent

US011768783B2

ao) Patent No.: US 11,768,783 B2

Makhervaks et al. 45) Date of Patent: *Sep. 26, 2023
(54) LOCAL NON-VOLATILE MEMORY (52) US. CL
EXPRESS VIRTUALIZATION DEVICE CPC ... GO6F 13/1673 (2013.01); GOGF 9/45558
(2013.01); GO6F 12/0284 (2013.01); GO6F
(71) Applicant: Microsoft Technology Licensing, LLC, 1374022 (2013.01); GOGF 2009/45583
Redmond, WA (US) (2013.01); GO6F 2213/0026 (2013.01)
’ (58) Field of Classification Search
(72) Inventors: Vadim Makhervaks, Bellevue, WA CPCccue. GOG6F 9/45558; GO6F 12/0284; GO6F
(US); Aaron William Ogus 13/1673; GO6F 13/4022; GO6F
}&Vg:i(jnilrll\]i\}\llz,ogi/i(llli S)\;st(([);ls)]) avid See application file for2 22191/1;15;235;532121611:11125%33}{,0 -
| | (56) References Cited
(73) Assignee: Microsoft Technology Licensing, LLC,
Redmond, WA (US) U.S. PATENT DOCUMENTS
2013/0086336 Al* 4/2013 Canepa GOGF 3/067
(*) Notice: Subject to any disclaimer, the term of this aneps 711/154
patent is extended or adjusted under 35 2015/0254088 Al* 9/2015 Choucc.cc.... HO041L. 67/1097
U.S.C. 154(b) by 0 days. 718/1
2015/0319243 Al* 112015 Hussain GOG6F 3/0689
This patent is subject to a terminal dis- 709/217
claimer. (Continued)
Primary Examiner — Eric T Oberly
(21) Appl. No.: 17/750,523
57 ABSTRACT
(22) Filed: May 23, 2022 A server system is provided that includes one or more
compute nodes that include at least one processor and a host
(65) Prior Publication Data memory device. The server system further includes a plu-
rality of solid-state drive (SSD) devices, a local non-volatile
US 2022/0283967 Al Sep. 8, 2022 memory express virtualization (LNV) device, and a non-
transparent (NT) switch for a peripheral component inter-
L connect express (PCle) bus that interconnects the plurality
Related U.S. Application Data of SSD devices and the LNV device to the at least one
(63) Continuation of application No. 16/868,285, filed on ~ Processor of each compute node. The LNV device is con-
May 6, 2020, now Pat. No. 11,372,785. figured to virtualize hardware resources of the plurality of
’ ’ T SSD devices. The plurality of SSD devices are configured to
(51) Int. CL directly access data buffers of the host memory device. The
GO6F 13/16 (2006.01) NT switch is configured to hide the plurality of SSD devices
GO6F 9/455 (2018.01) such that the plurality of SSD devices are not visible to the
GO6F 12/02 (2006.01) at least one processor of each compute node.
GO6F 13/40 (2006.01) 20 Claims, 20 Drawing Sheets
COMPUTE NODE 860
CLIENT PROCESSOR
MEMORY 812 802
s RCB14 i
NT SWiTCH 810
614
R f

3CC
Mtl“f; (ﬁ)R‘f’ BAGKEND
&35 MEMORY

618

F2BAR
o
& i
3 i
I(T?
e
L

!
LR

US 11,768,783 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2018/0191721 Al* 7/2018 Freyensee HOA4L 9/0866
2019/0146684 Al* 5/2019 Benisty GOGF 13/4282
711/102
2020/0042246 Al* 2/2020 Maharana GOG6F 3/0604

* cited by examiner

US 11,768,783 B2

Sheet 1 of 20

Sep. 26, 2023

U.S. Patent

0L HOING0N
FWAN JaHOVLLY ATIVOOT eee

0L Z0IAZ0
ANAN JZHOYLLY ATIVOOT

BOT 30IATA (AN 1

OILYZITYNLHIA ZWAN TY00T

4]

oG
7 ANIHOVI TV LEIA

ANIHOYA 19N LA o

L Ol

801 HOIAAT ANAN QUVONYLS

O1 MOVLS JOVHO LS JWAN CQUVUNYLS

.4) eoo | (¥ x { o) .4 T

O €2 Q [9p) O €2 O €2

/10 Y1y VL0 NIAGY
BECE L OVASTAVN |

U.S. Patent Sep. 26, 2023 Sheet 2 of 20 US 11,768,783 B2

O wl CQ
: &
& L 5Q ¢
o o
i =
- C .
S =
8Q =
(9]
[an]
0N
(-]
o
Q o
& SQ
Lid
z 8
=5 s5q
[on]
%: N
= 5Q
cQ
.
g
L SQ
o
<T
=
- CQ o
e
SQ =
O]
oy
N
(-]
[dp)]
& o *
& ol
Lid
f; SQ Al Q
[on]
% 5Q
<L, (\
=X ’[b
|
8 [aN|
X ~
o \ Cx '
O Id
[9p]
@
& =
= N
L= N
& =
[RE]
-
=
=

US 11,768,783 B2

Sheet 3 of 20

Sep. 26, 2023

U.S. Patent

€ 9l

028 4 ANT

9ee GQ FNAN

8Le AN ANAN

0¥ 301730

AWNAN CHYANYLS
J2AM30d234

J
9i€ DO AWAN

T_lmcmi

Q.

743

802 MOVLS JRAN

30E AHOWZIN INZIMO

J
0LE DS SNAN

LSOH =0 INIHDYA 19N

U.S. Patent Sep. 26, 2023 Sheet 4 of 20 US 11,768,783 B2

v 400

NETWORK — 416

INFRASTRUCTURE 408

[TOR\ [TQR\ \TORHT@R]
AN\

/ NI/ AN\

/! /k \ /11 /7
NN AN N e f AN
NN N e
N N N
NN HARDWARE
NN Teee N BLANE 402

HYPERVISOR PLANE 406

VM VM UM VMV e e e YW
VW VM VWM VNN

VM VM VM VM VM
VM VMY VM VM

VIRTUAL

‘)\M VM VM NM VM. e NN MACHINE PLANE
404
\412

FIG. 4

U.S. Patent

Sep. 26, 2023

Sheet 5 of 20

US 11,768,783 B2

,/ TOP-OF-RACK {TOR) NETWORK
SWITCH 504
COMPUTE NODE 500
LOCALLY
PROCESSOR ATTACHED
508 NVME DEVICE
VIRTUAL S
MACHINE
812 INTERNAL
|, DATABUS LNV 518
PROCESSOR
508 l NETWORK
— INTERFACE
CONTROLLER
(NiC) 516
COMPUTE NODE 500 ’
COMPUTE NODE 500
BACKPLANE 506

FIG. 5

U.S. Patent Sep. 26, 2023 Sheet 6 of 20 US 11,768,783 B2

ilj

~F|
O

[9p)]

&2
(o]
S
=
1 v
= o
2 O
L 9 I
=2 el |©
@] O | O
= O o Walk AT
Lo i JakZRVS JakdSl
- o
) @ 23 >
Q. b =z
= e L &S g
&2 = S5 =D
(@) = b [
—d o~ ==
o
(<o)
= >
R L,
o) Hoe
S5 == = X
© T

FIG. 6

US 11,768,783 B2

Sheet 7 of 20

Sep. 26, 2023

U.S. Patent

95/ YeH __
ENelE 907 AN
767 308 :
_ m T
yes_ dud i 7 Yo ANT SN | |
: 1 ass .
- m | 1 03 g
o bsamn MO : _ 717 059
0EL _ UN3MIVY ONTNOYE ‘ 004 —\{
w HOLIMS
! N

YdiH ONISN JM/OY 7

QR ANT € 0d 0SS
_ L Yol ONISM SN
QRIANT
L ,
M44NE VLV
T7 FvMLA0S LSOH
— | FO AHONIW OS SWAN
707 HOSSI00Hd L o0H vzs_ LSOH

US 11,768,783 B2

Sheet 8 of 20

Sep. 26, 2023

U.S. Patent

708 SANIHOVIA TWNLMIA

¥d AN %,amﬂﬁ
aMass (o

g Ol

B 005
ok 718 AN
ANENOYE
WD i U (YaH e vdo+ad aan)| T
ﬁ . | VISNYHL
@ d¥d m 31 MY g g
o —" __ i 73 |
OS IWAN ¢ts “ HOLIMS N
0 SAAN AHOWIW | L
Ny ey e !
ANZHOVE aNBYOVE | |

¢e8 NININOI

Yot kfeaztile

YdH YO+l

YdH hfshastite
Vil YO+

Yot ONISH MY

] 4

YO ONIST MY
aid SAANT

¢08 SH0EEHD0Hd

L i 4d AN € Qi €ISS v
9
d o f/fwom
_ 108
e — e e e ————d———— .v QN@ I@ww
MEHANE VY
— S 3WAN
g " i
AHORIN WA ANFFIO

U.S. Patent Sep. 26, 2023 Sheet 9 of 20 US 11,768,783 B2

/-9'()0
FIG. 9

N
o
o NG
P
o 0
OO
™=
{1
o~ =
o
&>
~r o
o
(] O R
T o il_‘
i <«
=
o=
o | Sy
P <
0 [
@
& I L “
= ts-l L]
<t Sk 3)4
=) HYe' 04
Zar
o
=
0
L]
L. T (o]
o~
-
-
=
o
1 b
=
8
Sl | =
=
ON
N
(<2, =
o X
0 1
—T (e
[aw]
N el
X D)
Bl
o~ =k
g P —
A
O\
~ > -
[N
I =
{4
[N
T
[y
— >
fg o >
T o= 8 5o
o O =
= 2R

US 11,768,783 B2

Sheet 10 of 20

Sep. 26, 2023

U.S. Patent

vi0l HONVY
554400Y w8010 ZL50H

vill 2ONvY
8800V WHOTO LIECH

¢i0L FONYY §84400Y TWO0T CLSOH

Yi0) HONVY
SERAGAY Y8010 0L5CH

AU 7707 39NV S5

HOAY VOO0 LLS0OH

A4442X0 00002X0 00004X0 00000X0 clal SONH 853eaAV OO 01.50H
BT0T 30¥dS SSTAAY TWECTO ANT A3X0 000X
IIIIII \\\\\\\ g
AHONIN
. 01SOH

|

| HOOY H+ 140d

Haay o+ g

e 04

|

| N0Y H+ 160d

HOAY ©

a || N

| MO0Y H+ [N0d

|| yoov e+ ai

-

8101 218V L ONIddYINTY S53400Y
[

2001

Hvd'04

AHCNERN

10} HOLIMS LN

& {D0S) 0LS0H

N
S

<
=~
-
.
ol
),
I

HOWEN

00 Ax

0L 9l

US 11,768,783 B2

Sheet 11 of 20

Sep. 26, 2023

U.S. Patent

| COVL+QMZIANT | | 0DVL+QMEass | | EOVLFCQMIAANT || 09VL+QReass |
Vi QMZAANT | | oovieaMIass | Vi OMIAANT | | ovieonizass |
| lOvi+QNZdANT | | oovi+aMlass | | OVL+ QM IdANT | | (OVL+OMiass |
ZT07 316Y1 ONIddYHZY 9L ONY Ol ZTOT T19¥.L ONIdAYAZN DL ONY Ol
ZLS0H ¥O _ | ISOH HO4 _ —
FOTT
AUOWIN
01SOH
<
BITOSS |
A
|
|
TTTT HOLIMS N
1o o f
FOLT AUOWIN S T a0 YOI AMORaW
7150H SOV 21S0OH Z0LL LLSOH L 1SOH

o’ Ll Ol

U.S. Patent Sep. 26, 2023 Sheet 12 of 20 US 11,768,783 B2

@)
O
@)
)
=2
o~
o
o2
>
= o e o
!) &S
&N N 4
e X~ ==
L L L
o
[
N
X
&
=
=
v
i....
= (¥
A
<t e Se] O Te)
] =) O &
=3 N o N N
¥ © =] e ><
L L. L (o
o B s B e IR P

LNV 1200

US 11,768,783 B2

Sheet 13 of 20

Sep. 26, 2023

U.S. Patent

¢LEL JONYY SS24COY WOOTWA LLSOH

o

PIET JONYY SSTUOMY FIET 30NV FTET SONVY — SRR “
TYECTE WAL ISOH SSIHAAY WHOD LISOH | | SSRIAAY T8OTD 01S0H clel JONYY S8:40QV YOO L LSOH
L0 | 00002%0 L oo0oixo | 0000x0 ¢lEl 3ONVY 88340QY YOO 0150H
| TET30VdS SSIHAQY jVEOTD AN | A3 0000X0
i e 1 FOET
b T ALOWIN
! " 01SOH
e (S
geLass ,m P m moi
- = m ! Slo0s) aLsok
| ORUAANT+NOOY H+(MOd | | HaQY D+ QR e i
| QR4 ANT+ YOOV H* 1H0d | | HAOY O+ O e o

_ QY dd ANT+ HOAY H+ 140d

R R T

bl 21V ONIddYildd «mmmw.}q

Ll HOLIMS

YOST AHCWAN
¢LE0H

¢l 9l

0El AMONN
b LSOH

US 11,768,783 B2

Sheet 14 of 20

Sep. 26, 2023

U.S. Patent

VdD
\mZ. OV

{

8wl

308

SEEN
sy’ ONINOVE

0zvl_

oer_s°
4]
RIONN
ONEHOVE

and

AANT+HAAY H+ 1H0d

|| HOaY OOl

QI dd ANT+ HOQY

|| woav o+ a

7ﬁ§w§%+%§£+ﬁﬁuim&< apd

SEVL 21HY1 ONIddVINER 583900y

00wl

yO¥L SENIHOWIA TVRLLMIA

Pl "Old

ZI5T AN
H
W Vd AN HAVGH
. s a8 m
VET) 7597 (1SS
HoLMS Y
IN
(0 vao ONIS HWa
4Mw&&>>sz;mmwmmm
(VdO ONIST EW/aY
_QMEAANT
99 —gop1
308
e . o1y
Vi -
M40 VLY YD |
giy|_ddd _
e D3 IWAN
RO HiA PN

US 11,768,783 B2

Sheet 15 of 20

Sep. 26, 2023

U.S. Patent

ON
od

()

£G1 Ya44Nd YAV ANT

5~

DS FWAN

¢Lsh_ ONIZAMOVY

1251
AHCHNZN
Wl

005}

8ehl HOLIMS

LN

Gl Ol

1G4 ANT

9

Yol & Vd AN
YdH ONISH dM/CY

YdH ONISH MY

Qg ANT »

QI ANT €& GId 388

¢0GL AMON=N
L1S0H

851
0051

U.S. Patent Sep. 26, 2023 Sheet 16 of 20 US 11,768,783 B2

1800
(STARTMETHOD 1800) J
i}

RUNNING HOST SOFTWARE ON ONE OR MORE COMPUTE NODES, EACH COMPUTE
NODE INCLUDING AT LEAST ONE PROCESSOR AND A HOST MEMORY DEVICE 1602

VIRTUALIZING HARDWARE RESOQURCES OF A PLURALITY OF SOLE-STATE DRIVE
(50 DEVICES 1604

PRESENTING A VIRTUAL 88D DEVICE TO THE HOST SOFTWARE OF THE ONE OR
MORE COMPUTE NODES USING A LOCAL NON-VOLATILE MEMORY EXPRESS
VIRTUALIZATION (LNV) DEVICE 1606

DIRECT L‘f ACCESSING DATA BUFFERS OF THE HOST MEMORY DEVICE OF EACH
OMPUTE NODE USING THE PLURALITY OF SSB DEVICES 1608

HIDING THE PLURALITY OF 8D DEVICES SUCH THAT THE PLURALITY OF 85D
DEVICES ARE NOT VISIBLE TO THE AT LEAST ONE PROCESSOR OF EACH COMFUTE
NODE USING A NON-TRANSPARENT (NT) SWITCH FOR A PERIPHERAL COMPONENT

INTERCONNECT EXFRESS {PCIE) BUS THAT INTERCONNECTS THE PLURALITY OF
SSD DEVICES AND THE LNV DEVICE TO THE AT LEAST ONE PROCESSOR OF EACH
COMPUTE NODE 1810

FIG. 16

U.S. Patent Sep. 26, 2023 Sheet 17 of 20 US 11,768,783 B2

1700

(STARTMETHOD 1700) J
i}

ACCESSING A NON-VOLATILE MEMORY EXPRESS (NVME} COMMAND AND A
PHYSICAL REGION PAGE ENTRY (PRP) STORED IN THE HOST MEMORY DEVICE OF
ONE OF THE COMPUTE NCDES 1702

GENERATING AT LEAST ONE BACKEND NVME COMMAND AND AT LEAST ONE:
BACKEND PRP BASED ON THE ACCESSED NVME COMMAND AND PRP FROM THE
HOST MEMORY DEVICE OF THE ONE OF THE COMPUTE NODES 1704

)

[STORING THE AT LEAST ONE BACKEND NYME COMMAND AND THE AT LEAST ONE]
BACKEND PRF IN A BACKEND MEMORY DEVICE THAT IS SEPARATE FROM THE HOST
MEMORY DEVICES OF THE ONE OR MORE COMPUTE NODES 1708

CAUSING AT LEAST ONE S50 DEVICE TO ACCESS THE AT LEAST ONE BAC M"\l"‘
NVME COMMAND AND THE AT LEAST ON BACKEND PRP IN THE BACKEND MEMORY
DEVICE 1708

DIRECTLY ACCESSING DATA BUFFERS OF THE HOST MEMORY DEVICE BASED ON
THE AT LEAST ONE BACKEND NVME COMMAND AND THE AT LEAST ON BACKEND
PRP USING THE AT LEAST ONE SSD DEVICE 1710

IDENTIFYING A PCIE TRANSACTION FOR AN §8D DEVICE ACCESSING DATA
BUFFERS OF A HOST MEMORY DEVICE 1712

REMAPPING A REQUESTER IDENTIFIER (RID) OF THE PCIE TRANGACTION FROM AN
RID OF THE 88D DEVICE TC AN RID OF THE LNV DEVICE 1714

FIG. 17

U.S. Patent Sep. 26, 2023 Sheet 18 of 20 US 11,768,783 B2

1800
(STARTMETHOD 1800) J

J

s "\

HOSTING VIRTUAL MACHINES (VM) ON THE ONE OR MORE COMPUTE NODES, EACH
VM HAVING ASSOCIATED VM MEMORY 1802

{ '

ACCESSING A NON-VOLATILE MEMORY EXPRESS (NVME) AND A PHYSICAL REGION
PAGE ENTRY (PRP) STORED IN THE VM MEMORY OF ONE OF THE YMS 1804

GENERATING AT LEAST ONE BACKEND NVME COMMAND AND AT LEAST ONE
BACKEND PRP BASED ON THE ACCESSED NVME COMMAND AND PRP FROM THE VM
MEMORY OF THE ONE OF THE VMS 1808

7

TRANSLATING A GUEST PHYSICAL ADDRESS {GPA} OF THE PRP FROM THE VM
MEMORY TO A CORRESPONDING HPA IN A HOST MEMORY DEVICE THAT HOSTS THE
VM MEMORY 1808

\. S

GENERATING THE AT LEAST ONE BACKEND PRP TO INDICATE THE
CORRESFPONDING HPA FOR DATA BUFFERS OF THE HOST MEMORY DEVICE 1810

\. J

STORING THE AT LEAST ONE BACKEND NVME COMMAND AND THE AT LEAST ONE
BACKEND PRP IN A BACKEND MEMORY DEVICE THAT IS SEPARATE FROM THE HOST
MEMORY DEVICES OF THE ONE OR MORE COMPUTE NODES 1812

CAUSING AT LEAST ONE S8D DEVICE TO ACCESS THE AT LEAST ONE BACKEND
NVME COMMAND AND THE AT LEAST ON BACKEND PRP IN THE BACKEND MEMORY
DEVICE 1814

DIRECTLY ACCESSING DATA BUFFERS OF THE HOST MEMORY DEVICE HOSTING
THE VM MEMORY BASED ON THE AT LEAST ONE BACKEND NVME COMMAND AND
THE AT LEAST ON BACKEND PRP USING THE TRANSLATED CORRESPONDING HPA

USING THE AT LEAST ONE 58D DEVICE 1816

FIG. 18

U.S. Patent Sep. 26, 2023 Sheet 19 of 20 US 11,768,783 B2

1500
(STARTMETHOD1900) J
i}

MANAGING A GLOBAL ADDRESS SPACE AND MAPPING THE RESPECTIVE LOCAL
ADDRESS RANGES TO RESPECTIVE GLOBAL ADDRESS RANGES IN THE GLOBAL
ADDRESS SPACE SUCH THAT THE RESPECTIVE LOCAL ADDRESS RANGES DO NOT
OVERLAP IN THE GLOBAL ADDRESS SPACE 1902

MAPPING A GPA INDICATED BY THE ACCESSED PRP FROM THE LOCAL ADDRESS
RANGE OF THE ONE OF THE VMS TO CORRESPONDING A GPA OF THE
CORRESPONDING GLOBAL ADDRESS RANGE IN THE GLOBAL ADDRESS SPACE 1804

GENERATING THE AT LEAST ONE BACKEND PRP TO INDICATE THE
CORRESPONDING GFA OF THE GLOBAL ADDRESS RANGE 1806

MAPPING EACH GLOBAL ADDRESS RANGE TO BOTH AN EGRESS PORT OF THE NT
SWITCH THAT ROUTES TO A COMPUTE NODE ASSOCIATED WITH THAT GLOBAL
ADDRESS RANGE, AND A LOCAL ADDREGS RANGE THAT CORRESFONDS TO THAT
GLOBAL ADDRESS RANGE 18908

FIG. 19

U.S. Patent Sep. 26, 2023 Sheet 20 of 20 US 11,768,783 B2

(COMPUTING SYSTEM 2000)
4 \
LOGIC PROCESSOR 2002
_ J
4 N\
VOLATILE MEMORY 200
_ J
4 N\
NON-VOLATILE STORAGE DEVICE 2008
\ J

N
[DISPLAY SUBSYSTEM 2008
J
4 N
INPUT SUBSYSTEM 2010
\. J
4 ™
COMMUNICATION SUBSYSTEM 2012
\. J
g J

FIG. 20

US 11,768,783 B2

1
LOCAL NON-VOLATILE MEMORY
EXPRESS VIRTUALIZATION DEVICE

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation application of U.S.
patent application Ser. No. 16/868,285, filed on May 6,
2020, the entire disclosure of which is hereby incorporated
by reference in its entirety.

BACKGROUND

Non-volatile memory express (NVMe) solid-state drives
are a useful storage medium. Input/output tasks performed
using NVMe drivers typically begin faster, transfer more
data, and finish faster than older storage models using older
drivers. For example, NVMe solid-state drivers typically
perform these input/output tasks faster than older drivers
such as Advanced Host Controller Interface (AHCI), a
feature of Serial Advanced Technology Attachment (SATA)
solid-state drives. NVMe solid-state drives are increasingly
becoming an industry standard for servers in datacenters.

SUMMARY

A server system is provided. The server system may
comprise one or more compute nodes configured to run host
software. Each compute node may include at least one
processor and a host memory device. The server system may
further comprise a plurality of solid-state drive (SSD)
devices, a local non-volatile memory express virtualization
(LNV) device, and a non-transparent (NT) switch for a
peripheral component interconnect express (PCle) bus that
interconnects the plurality of SSD devices and the LNV
device to the at least one processor of each compute node.
The LNV device may be configured to virtualize hardware
resources of the plurality of SSD devices and present a
virtual SSD device to the host software of the one or more
compute nodes. The plurality of SSD devices may be
configured to directly access data buffers of the host memory
device. The NT switch may be configured to hide the
plurality of SSD devices such that the plurality of SSD
devices are not visible to the at least one processor of each
compute node.

This Summary is provided to introduce a selection of
concepts in a simplified form that are further described
below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used to limit
the scope of the claimed subject matter. Furthermore, the
claimed subject matter is not limited to implementations that
solve any or all disadvantages noted in any part of this
disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an example system architecture of a server
system that implemented solid-state drive virtualization
techniques, according to one embodiment of the present
disclosure.

FIG. 2 shows a schematic view of an operation model of
peer-direct communication between a local non-volatile
memory express virtualization device and a plurality of
solid-state drive devices operating using non-volatile
memory express interfaces that is implemented by the server
system of FIG. 1.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 3 shows an input/output control flow between a
virtual machine, a local non-volatile memory express virtu-
alization device, and a plurality of solid-state drive devices
for the server system of FIG. 1.

FIG. 4 shows a schematic view of an example datacenter
for the server system of FIG. 1.

FIG. 5 shows an example compute node cluster for the
example datacenter of FIG. 4.

FIG. 6 shows a system architecture for a compute node
that may be deployed in both virtualized and bare-metal
environments, for the server system of FIG. 1.

FIG. 7 shows an example system architecture and input/
output control flow for performing solid-state drive virtual-
ization that may be used for bare-metal platform configu-
rations of the server system of FIG. 1.

FIG. 8 shows an example system architecture and input/
output control flow for performing solid-state drive virtual-
ization that may be used for virtualized platform configu-
rations of the server system of FIG. 1.

FIG. 9 shows a multi-host configuration that shares a
same set of solid-state drive devices among a plurality of
compute nodes for a plurality of hosts using the server
system of FIG. 1.

FIG. 10 shows an example multi-host configuration that
uses an address remapping table to overlap host memory
address spaces using the server system of FIG. 1.

FIG. 11 shows an example of RID and tag remapping
performed by the NT switch of the server system of FIG. 1.

FIG. 12 shows an example of mapping virtual functions
to physical functions for the local non-volatile memory
express virtualization device for the server system of FIG. 1.

FIG. 13 shows an example multi-host configuration that
uses an address remapping table to overlap host memory
address spaces that is extended to further include virtual
machines for the server system of FIG. 1.

FIG. 14 shows an example system architecture and input/
output control flow that includes address remapping, RID
remapping, and tag remapping for the server system of FIG.

FIG. 15 shows an example system architecture where the
local non-volatile memory express virtualization device
accesses client data buffers on behalf of the solid-state drive
devices for the server system of FIG. 1.

FIG. 16 shows a flow chart for a computer-implemented
method for performing SSD device virtualization that may
be implemented by the server system of FIG. 1.

FIG. 17 shows a flowchart for a computer-implemented
method for performing SSD device virtualization and hiding
the SSD devices from a host that is optimized for bare-metal
environment configurations of the server system of FIG. 1.

FIG. 18 shows a flowchart for a computer-implemented
method for performing SSD device virtualization and hiding
the SSD devices from a host that is optimized for virtualized
environment configurations of the server system of FIG. 1.

FIG. 19 shows a flowchart for a computer-implemented
method for mapping local address ranges to a global address
range in a global address space that is optimized for a
virtualized environment configuration of the server system
of FIG. 1.

FIG. 20 shows a schematic view of an example computing
environment in which the server system of FIG. 1 may be
enacted.

DETAILED DESCRIPTION

FIG. 1 illustrates a system architecture for the SSD
virtualization techniques in the context of a server system

US 11,768,783 B2

3

100. One or more virtual machines (VM) 102 may be run on
the compute nodes of the server system 100, and are exposed
to standard non-volatile memory express (NVMe) interfaces
such as a standard NVMe storage stack 104. From the
perspective of each VM 102, those VMs are communicating
with standard NVMe devices 106 using standard NVMe
interfaces. However, as illustrated in FIG. 1, a local NVMe
virtualization (LNV) device 108 operates logically under-
neath the VMs 102 and virtualizes one or more locally
attached NVMe devices 110 for the VMs 102. That is, there
may not be a direct mapping between the standard NVMe
device 106 perceived by the VM 102 and the actual physical
locally attached NVMe device 110 of the compute node 100.
For example, the functions of the standard NVMe device
106 used by a VM 102 may in fact be performed by multiple
different locally attached NVMe devices 110 being virtual-
ized by the LNV device 108. As another example, the LNV
device 108 may present a portion of a locally attached
NVMe device 110 as the entire standard NVMe device 106
used by a VM 102.

These abstraction and virtualization processes are pro-
cessed and handled by the LNV device 108. Thus, from the
perspectives of the VMs 102 and the locally attached NVMe
device 110, they are performing standard functions using
standard NVMe interfaces. For example, each locally
attached NVMe device 110 may be unaware that multiple
different VMs 102 and reading/writing data to that locally
attached NVMe device 110. The system architecture and
LNV device 108 of FIG. 1 provides several potential ben-
efits. Using the LNV device 108 described herein, quality of
service, security and performance isolation, and serviceabil-
ity of the physical NVMe devices may be improved. For
example, each solid state drive (SSD) operating as the
NVMe devices has a certain number of p-cycles before the
SSD device reaches end of life. The LNV device 108 may
be configured to manage read/write requests for the locally
attached NVMe devices 110 to ensure that a particular
NVMe device will not be burned by excessive write requests
from a single VM 102. As another example, the LNV device
108 may provide data isolation to improve data security for
multiple VMs that are sharing a single NVMe device. That
is, the LNV device 108 may prevent a first VM from
accessing data stored on a shared NVMe device by a second
VM.

As illustrated in FIG. 1, the standard NVMe interface
defines a set of submission queues (SQ) 112 and a set of
completion queues (CQ) 114. New disk read/write requests
for the standard NVMe device 106 may be submitted by the
standard NVMe storage stack of a VM 102 to a SQ 112. The
standard NVMe device 106, whose functions are performed
by the LNV 108 and the virtualized locally attached NVMe
devices 110, will perform read the request in the SQ 112,
execute the request, and report completion of the request to
the CQ 114 to inform the standard NVMe storage stack 104
of the VM 102 that the request has been completed. Using
this architecture, NVMe commands (Admin and Data
In/Out) from each VM 102 are processed by the LNV 108,
which in turn will generate new NVMe commands for the
locally attached NVMe devices 110. On the other hand, VM
102 data may be accessed by the LNV and passed to the
NVMe device, or directly accessed by the NVMe device to
complete the request. In this manner, both the VMs 102 and
the locally attached NVMe devices 110 may operate accord-
ing to standard NVMe interfaces and processes, and virtu-
alization of the locally attached NVMe devices 110 is
handled by the LNV device 108.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 2 illustrates an operation model of peer-direct com-
munication between the LNV device 200 and the SSD
devices 202 operating using NVMe interfaces. The LNV
device 200 is configured to utilize standard NVME inter-
faces for communication with the local NVMe devices (e.g.
SSD devices 202). In one example, the NVMe queues of the
local NVMe devices designated for communication with the
LNV device 200 may be separate from the NVMe queues
designated for communication with the software stack 204
such that the local NVME device may be concurrently used
by the software stack 204 and the LNV device 200. Thus, in
the configuration of FIG. 2, the NVMe software stack 204 is
modified to allocate a subset of NVMe queues of the local
NVMe devices (e.g. SSD devices 202) to be controlled by
the LNV 200. In the illustrated example, the NVMe sub-
mission queues (SQ) 206 allocated to the LNV 200 are
shown as the hardware interface 208. The operation model
of FIG. 2 does not require software 204 to hardware 208
coordination after the NVMe SQs 206 have been created.
The NVMe SQs for the hardware and software interfaces are
both located in host memory.

The LNV device 200 is configured to generate NVMe
commands 210 and place those commands into the submis-
sion queues (SQ) of respective SSDs 202 (e.g. NVMe
devices) that are allocated to the LNV device 200 and
offloaded onto hardware 208. The NVMe completion queues
(CQ) 212 of respective NVMe SSDs 202 that are associated
with the SQs allocated to the LNV 200 are mapped to the
address space of the LNV device 200. The LNV device 200
may detect NVMe completion queue element (CQE) writes
to the CQs by decoding peripheral component interconnect
express (PCle) transactions to the address space for the CQ.

For example, after the LNV device 200 has placed an
NVMe command 210 into the SQ of an SSD 202 allocated
to the LNV device 200, the LNV 200 may be configured to
ring the doorbell (DB) of the associated SSD 202, by writing
to a register of the SSD 202. It will be appreciated that PCle
devices, such as the SSD devices 202 and the LNV device
200 described herein, include special registers referred to as
“doorbells”. Other devices may write to I/O space of a target
PCle device at these special registers to “ring the doorbell”
of that device. In response, the SSD 202 will consume the
NVMe command 204 from the associated SQ, process the
command, and write back a completion queue element
(CQE) to the completion queue 212 at the address space of
the LNV device 200. As illustrated in FIG. 2, typical
software implementations have pairs of SQs and CQs. In
contrast, the hardware interface 208 only has SQs, and the
CQs are instead implemented by the LNV device 200.

FIG. 3 illustrates an input/output control flow between the
VM 300, the LNV device 302, and the SSD (e.g. NVMe
Device) 304. An NVMe stack 308 is included as a software
component of the VM 300. Using client memory 306, the
VM 300 may store an NVMe SQ 310, physical region page
entries (PRP) 312 which point to data buffers for the data
314 that the VM 300 intends to read/write, and the NVMe
CQ 316. The LNV device 302 has NVMe functions or
virtual functions 318 and LNV function 320 that are PCle
functions. In a virtualized deployment model, the LNV
device 302 exposes a virtual NVMe controller to the VM
300 using a virtual function. This virtual NVMe Controller
presents the VM 300 with NVMe queue pair (QP), and
Namespaces assigned to the VM 300 by a management
stack. On the other hand, in a physical deployment model,
such as a bare metal deployment model, or to expose the

US 11,768,783 B2

5

NVMe controller to a host in a virtualized environment, the
LNV device 302 exposes a NVMe controller using a PCle
function.

The backend memory 322 is a separate memory subsys-
tem from the client memory 306. The backend memory 322
includes an NVMe SQ 324 and PRP 326 that are allocated
to the LNV device 302 for communication with the SSD
304, as described above with reference to FIG. 2.

In the input/output control flow, the virtual machine 300
uses a standard NVMe stack and writes data 314 to the data
buffer. The virtual machine 300 may then update the PRP
312 to point to the data 314 to indicate that the data 314 is
located at a specific data buffer. The virtual machine 300
may then write an NVMe command to the NVMe SQ 310
as a submission queue element (SQE) 328 in client memory
306. The SQE 328 directly or indirectly, using PRPs, refers
to data buffers located in client memory 306. At (A), the
NVMe stack 308 of the virtual machine 300 will ring the
doorbell 330 of the LNV device 302 by writing to memory
mapped PCle address space of the LNV device 302.

The LNV device 302 detects and processes the write (e.g.
doorbell ring) to the 10 DB 330, which indicates that a new
NVMe command has been placed into the NVMe SQ 310 in
client memory 306. At (B), the LNV device 302 will then
read the SQE 328 from the next location in the NVMe SQ
310 in client memory 306. At (C), for indirect data access
examples, the LNV device 302 may also read PRPs from the
client memory 306. Next, the LNV device 302 queues the
NVMe command (e.g. SQE 328) internally and schedules
for further processing based on a quality of service (QoS)
configuration of the NVMe Controller namespace.

In one example, based on the namespace configuration, a
single NVMe command (e.g. SQE 328) from the client
memory 306 may result in multiple backend NVMe com-
mands generated by the LNV device 302. For example, slice
crossing or striping configurations may result in multiple
backend NVMe commands. Backend NVMe commands are
queued and processed separately by the LNV device 302,
which may provide the potential benefit of avoiding stalling
of the pipeline if a specific SSD 304 slower than the other
SSDs.

At (D), the LNV device 302 builds and writes backend
NVMe commands that are placed into the NVMe SQ 324 of
backend memory 322 as SQE 332. The LNV device 302
may also write NVMe PRPs 326 to the backend memory
322. At (E), the LNV device 302 rings the doorbell 334 of
the SSD 304 by writing to memory-mapped input/output
(MMIO) space of the SSD 304.

The SSD 304 detects the write to its MMIO space (e.g.
doorbell ring) that indicates that a new SQE 332 has been
placed in the NVMe SQ 324 of backend memory 322. At
(F), the SSD 304 may then read the SQE 332 and the PRP
326 from backend memory 322. The SSD 304 may then
execute the NVMe command of the SQE 332, and accesses
the data 314 in client memory 306 of the VM 300 indicated
by the PRP 326. The SSD 304 reads or writes data to the
addresses provided within NVMe command from the SQE
332 and PRPs 326. After executing the command, at (G), the
SSD 304 may write to the NVMe CQ 336 inside of LNV
MMIO space for the LNV device 302.

The LNV device 302 detects and processes the write to
the NVMe CQ area inside of MMIO space for the LNV
device 302. The LNV device 302 may then write CQ
doorbell (DB) of the corresponding SSD CQ register to
indicate completion of a single backend NVMe command.
In one example, these writes may be batched. After all
backend NVMe commands corresponding to the client

10

15

20

25

30

35

40

45

50

55

60

65

6

NVMe command have been completed, the LNV device 302
may then generate and write NVMe completion to the
NVMe CQ 316 located in client memory 306. The client
NVMe stack 308 of the virtual machine 300 may then read
and process the NVMe completion indicated by the comple-
tion queue element (CQE) 338 placed in the NVMe CQ 316
in client memory 306.

An important aspect of the I/O control flow described
above is that the LNV device 302 controls the SQE 332 in
the NVME SQ 324 and PRP 326 that are accessed by the one
or more SSD devices 304. That is, the virtual machine or
host software 300 that originates a read or write request does
not ultimately control how that read or write request affects
the one or more SSD devices 304. Rather, the NVMe stack
308 of the virtual machine or host software 300 generates an
NVMe command and places that command into the NVMe
SQ 310 in client memory 306 as SQE 328. The NVMe
command is directed at the LNV device 302, which is
exposing itself to the NVMe stack 308 of the virtual
machine/host software 300 as a perceived standard NVMe
device 340. Thus, from the perspective of the NVMe stack
308 of the virtual machine/host software 300, it is interacting
with a standard NVMe device using standard protocols and
I/O control flows. However, the LNV device 302 controls
how that NVMe command will be translated into one or
more new NVMe commands that may be directed to the one
or more SSD devices 304.

As a specific example, the SSD device 304 may be shared
between two different virtual machines. The LNV device
302 may be configured to assign a first portion of the SSD
device 304 to a first VM and a second portion of the SSD
device 304 to a second VM. From the perspectives of the
two VMs, they are interacting with their own standard
NVMe device. Thus, the NVMe stacks 308 of both VMs
generate NVMe commands directed to the perceived stan-
dard NVMe device 340, which is the LNV device 302 being
exposed to both VMs. Using internal mapping tables, the
LNV device 302 may then determine how the NVMe
commands from both VMs should be mapped to the SSD
device 304. That is, the LNV device 302 may determine that
NVMe commands originating from the first VM should be
directed to the first portion of the SSD device 304, and
NVMe commands originating from the second VM should
be directed to the second portion of the SSD device 304.

Accordingly, the LNV device 302 may generate backend
SQEs 332 that are placed into the backend NVME SQ 324
of backend memory 322 based on the internal mapping
table. That is, read/write commands from the first VM will
be translated into backend commands that are directed to the
first portion of the SSD device 304, and read/write com-
mands from the second VM will be translated into backend
commands that are directed to the second portion of the SSD
device 304. In this manner, the physical SSD device 304
may be shared among multiple VMs without the VMs being
aware. Rather, each VM perceives itself as interacting with
a standard NVMe device. In a similar manner, a read/write
commands from a single VM may be spread among a
plurality of SSD devices 304 using striping. That is, slices of
a plurality of different SSD device 304 may be assigned to
a particular VM 300. In this example, a single NVMe
command for that VM may result in a plurality of backend
NVMe commands being generated by the LNV device 302
for the different SSD devices 304 that have been assigned to
that VM. Further, it should be appreciated that using the I/O
control flows described above, SSD devices 304 may be
allocated or deallocated to VMs 300 by the LNV device 302
without the VMs 300 being aware of the allocation.

US 11,768,783 B2

7

The system architectures and I/O control flows described
above may be implemented on each of a plurality of com-
pute nodes of a datacenter. For example, FIG. 4 illustrates a
datacenter 400 that includes a hardware plane 402, a virtual
machine plane 404, a hypervisor plane 406, and network
infrastructure 408 that are collectively configured to operate
the datacenter 400, which, for example, make take the form
of a cloud platform. The example datacenter of FIG. 4
illustrates a virtualized platform. However, it will be appre-
ciated that the NVMe device virtualization techniques
described herein may also be applied to bare-metal plat-
forms.

The hardware plane 402 includes a collection of compute
nodes 410 (each denoted by the symbol “N” in FIG. 4) that
may include processors, graphics processing units (GPU),
volatile memory, SSDs operating as NVMe devices, LNV
device, and other computer components. In a virtualized
environment, the compute nodes 410 may be configured to
execute host server instances configured to communicate
with one or more hypervisors of the hypervisor plane 406.
The one or more hypervisors of the hypervisor plane 406
may create, handle, and monitor a plurality of virtual
machines 412 (each denoted by the symbol “VM” in FIG. 4)
of the virtual machine plane 404. Through the hypervisor
plane 406, each virtual machine 412 of the virtual machine
plane 404 may be hosted and run by the hardware compo-
nents of one or more nodes 410 of the hardware plane 402.
In this manner, the plurality of virtual machines 412 of the
virtual machine plane 404 may share virtualized hardware
resources managed by the hypervisor plane 406. Each vir-
tual machine 412 provides a simulated computer environ-
ment within which guest software may be executed.

In a bare-metal environment, each client entity may be
allocated specific hardware resources of the compute nodes
410 of the hardware plane 402. For example, each client
entity may be allocated a processor, storage, etc., of a
compute node, and may execute software using those hard-
ware resources of the allocated compute node.

In one example, the datacenter 400 communicatively
couples the plurality of computer nodes 410 via standard
network infrastructure 408. The network infrastructure 408
may include typical network infrastructure to couple com-
pute nodes 410 within a node cluster together, such as server
racks including top of rack (TOR) network switches 414.
The datacenter 400 may include a plurality of node clusters
that each have an associated TOR network switch 414.
Network infrastructure 408 may further include higher-level
switching infrastructure 416 (I.1) and (I.2) that connects the
TOR network switches 414 together. The higher-level
switching infrastructure 416 may take the form of any
suitable networking architecture, and may be driven by any
suitable routing protocol(s). In the illustrated example, the
higher-level infrastructure 416 includes a collection of
aggregation switches L1 and core switches [.2. However, it
will be appreciated that the higher-level switching infra-
structure may include any suitable number of levels of
switches.

In a virtualized environment for datacenter 400, each host
server instance executed via the computer nodes 410 may
communicate with other host server instances through the
network infrastructure 408. The collective host server
instances may manage the collective hardware resources of
the hardware plane 402, which may be utilized to run the
virtual machines 412 of the virtual machine plane 404
through the hypervisor plane 406. In one example, the
virtual machines 412 utilization of the hardware resources of
host compute nodes the hardware plane 402 is controlled by

40

45

50

55

8

the hypervisor plane 406, and the virtual machines 412 may
not directly access the nodes 410 themselves. The virtual
machines 412 of the virtual machine plane 404 provide a
virtual computing environment within which client entities
may execute software. The hypervisor plane 406 may allo-
cate the hardware resources of the compute nodes 410 in a
changeable and scalable manner, such that additional com-
pute nodes 410 may be allocated to a particular virtual
machine 412, and already allocated compute nodes 410 may
be reduced, transferred, or otherwise changed for that par-
ticular virtual machine 412. It should be appreciated that the
datacenter 400 infrastructure described above and illustrated
in FIG. 4 is merely exemplary, and that other networking
infrastructures and organization methods not specifically
described herein may also be utilized. For example, the
datacenter 400 may instead take the form of a bare-metal
datacenter environment.

Turning to FIG. 5, the plurality of compute nodes 500
may be organized into a plurality of compute node clusters
502. Each compute node cluster 502 may include a top of
rack (TOR) network switch 504, two or more nodes of the
plurality of compute nodes 500, and a backplane 506 com-
municatively coupling the top of rack network switch 504
and compute nodes 500. For example, each node cluster 502
may correspond to a server rack that provides physical
structure, ventilation, etc., for a TOR switch 504 and a
plurality of compute nodes 500 that are located physically
proximate to each other in the same server rack. The
backplane 506 communicatively coupling each node in the
server rack may facilitate a low latency and high bandwidth
exchange of network packets between nodes in the same
server rack.

As illustrated in FIG. 5, each compute node 500 in the
node cluster 502 includes at least one processor 508 com-
municatively coupled to other hardware components by an
internal data bus 510. The at least one processor 508 may
execute software to host virtual machines 512. As shown,
each compute node 500 may include more than one proces-
sor 508 that may each execute separate virtual machines
512, or may collectively execute a single virtual machine. In
one example, the internal data bus 510 may take the form of
a Peripheral Component Interconnect Express (PCle) link,
for example. Data buses of other formats may alternatively
be used. It should be appreciated that “internal” as used in
the term “internal data bus” refers to the fact that at least a
portion of the data bus is typically housed in the same
housing (which serves as a Faraday cage) as the processor
508 of the node 500, and should be understood to encompass
a data bus that connects a processor of a node in a housing
with internally mounted hardware components and/or to
externally coupled hardware components plugged into, e.g.,
a port on an external surface of the housing of the node.

As illustrated, each compute node 500 may include other
suitable hardware components, such as, for example, one or
more locally attached NVMe devices 514 (e.g. SSD devices
coupled to PCle data bus), a network interface controller
(NIC) 516, an LNV device 518, etc. It should be appreciated
that the compute nodes 500 are not limited to the illustrated
hardware components, but may include any suitable con-
figuration of hardware components configured for operating
a datacenter. Additionally, it should be appreciated that
while the compute nodes 500 are illustrated as being clus-
tered in a server rack configuration, other types of network
infrastructure and housing configurations may be utilized to
couple the plurality of compute nodes 500 and operate the
datacenter.

US 11,768,783 B2

9

FIG. 6 illustrates a system architecture for a compute node
600 that may be deployed in both virtualized and bare-metal
environments. The compute node 600 includes one or more
processors 602, one or more SSD devices 604, an LNV
device 606, a system-on-chip (SoC) 608, and a non-trans-
parent (NT) switch 610. These components are communi-
catively coupled via a PCle system. Each processor 602 and
associated client memory 612 and the SoC 608 and associ-
ated SoC memory 616 may be connected to the PCle switch
fabric of the PCle system via root complexes (RC) 614. The
RC 614 generates transaction requests on behalf of the
processor 602 or SoC 608, which is interconnected through
a local bus. In one example, each RC 614 may contain more
than one PCle port.

The NT switch 610 is a physical PCle switch included in
the PCle system that includes functions for hiding the
plurality of SSD devices 604 that are connected to the NT
switch 610 from the connected one or more processors 602,
such that the SSD devices 604 are not visible to software
within the VM context being run on the processor 602 of the
compute node 600. The SSD devices 604 may access NVMe
commands generated by the LNV device 606 and access
host data buffers directly via an upstream port of a PCle
switch, which may take the form of the NT switch 610.

In the example illustrated in FIG. 6, processors may
enumerate and discover PCle functions, such as FO, F1, F2,
etc. Each of those PCle functions has base address registers
(BAR) which contain sets of registers that can be mapped to
processor MMIO address space, such as, for example, the
NVME DBs. Additionally, the NT switch 610 is configured
such that the one or more processors 602 may discover and
enumerate the PCle function FO, and the SoC 608 may
discover and enumerate the PCle functions F1 and F2 shown
in FIG. 6. Additionally, the NT switch 610 is configured such
that the processors 602 are able to see and access the PCle
function FO for the LNV device 606, but are not able to see
and access the PCle function F2 for the SSD devices 604. On
the other than, the SoC 608 is able to see and access both the
PCle functions F1 and F2.

Additionally, the LNV device 606 is able access the
F2.BAR of the SSD devices 604 using F1 requester identi-
fier (RID), the processor’s 602 client memory 612 using the
FO RID, and the SoC memory 616 using the F1 RID. The
SSD devices 604 are able to access the F1.BAR of the LNV
device 606 using the F2 RID, the SoC memory 616 using the
F2 RID, and the client memory 612 of the processor 602
using the FO RID.

To achieve these functions, the NT switch 610 is config-
ured for at least two isolated domains. A first domain
includes the one or more processors 602 and FO of the LNV
device 606. The second domain includes the SoC 608, F1 of
the LNV device 606, and F2 of the SSD devices 604. In one
example, the NT switch 610 is configured to allow the F2 of
the SSD devices 604 to access both domains, and uses
address range to forward PCle transactions initiated by the
SSD devices 604 to each domain. Further, in order to hide
the SSD devices 604 from the one or more processors 602,
the NT switch 610 is configured to cause all PCle transac-
tions initiated by the SSD devices 604 that target the one or
more processors 602 to have the F2.RID of the SSD to be
replaced with the FO.RID of the LNV device 606. In this
manner, transactions from the SSD devices 604 to the
processor 602 will appear to the processor 602 to originate
from the LNV device 606, thus hiding the SSD devices 604
from the view of the processor 602.

FIG. 7 illustrates an example system architecture that may
be used for bare-metal platforms. In a bare-metal configu-

25

30

35

40

45

50

55

60

65

10

ration of a datacenter where the client entities are allowed
direct control of software executed by the processor rather
than a virtualized environment, the processor of the compute
node cannot be trusted by the datacenter. In the example of
FIG. 7, the compute node 700 includes one or more pro-
cessors 702, host memory 704, an NT switch 706, an LNV
708, backend memory 710, an SoC 712, one or more SSD
devices 714, and other suitable computing components. As
the example compute node 700 is part of a bare-metal
platform, client entities may run host software 716 that
directly uses host memory 704 to perform the functions of
the host software 716. As the host software 716 is being run
within a bare-metal environment rather than a virtualized
environment, the host software 716 uses host physical
addresses (HPA) 718 of the host memory 704 directly, rather
than global physical addresses (GPA) that are translated to
HPAs in a virtualized environment.

Using the I/O control flow described above with reference
to FIG. 3, the NVMe stack executed by the host software
716 writes data to a data buffer 720 of the host memory 704.
The NVMe stack may then update the PRP 722 to point to
the data to indicate that the data is located at a specific data
buffer. As the example compute node 700 is a bare-metal
platform, the PRP 722 may use HPA 718 to point to the data.
The NVMe stack may then write an NVMe command to the
host NVMe SQ 724 as a SQE 726 in host memory 704. The
SQE 726 directly, using PRPs, refers to data buffers located
in host memory 704 using HPA 718. The NVMe stack may
then ring the doorbell of the LNV device 708. The LNV
device 708 detects and processes the doorbell ring, and then
initiates a PCle transaction at (A) to read the SQE 726 from
the next location in the host NVMe SQ 724 in host memory
704. In this example, the LNV device 708 is exposed to the
host software 716 as an NVMe device.

The LNV device 708 is a trusted component of the
datacenter that is designed to be resistant to attacks from the
host software 716 that is controlled by an untrusted entity.
Thus, the LNV device 708 may be exposed to the untrusted
host software 716. On the other hand, the one or more SSD
devices 714 may be standard SSD devices that may poten-
tially store private data. Thus, as the host software 716 is an
untrusted entity, the SSD devices 714 are not exposed to the
host software 716, but are rather hidden behind the LNV
device 708 according to the techniques described herein.
Specifically, SSD devices 714 are hidden from the host
software 716, and are enumerated and managed by the SoC
712 and the NVMe stack 728 running on SoC 712. Accesses
to the NVMe control plane (NVMe 10 Qs, commands,
completions) are mastered by LNV device 708. In the data
access model of FIG. 7, the LNV device 708 is responsible
to access both the host NVMe commands and completions.
The SSD devices 714 are responsible to access host data in
host address space via PCle transactions. In this manner,
accesses to the data buffers 720 of the host memory 704 are
mastered by the SSD devices, and do not consume LNV
device 708 uplink bandwidth. In order to hide the fact that
the SSD devices 714 are accessing the data buffers 720 from
the host software 716, the NT switch 706 is configured to
perform retagging techniques, which will be described in
more detail below.

Returning to the I/O control flow of FIG. 7, the LNV
device 708 builds and writes backend NVMe commands that
are placed into the backend NVMe SQ 730 of backend
memory 710 as SQE 732. The LNV device 708 also writes
a PRPs 734 to the backend memory 710. The SQE 732 in the
backend NVMe SQ 730 may point to the PRP 734 using
backend HPA 736 of the backend memory 710. On the other

US 11,768,783 B2

11

hand, the PRP 734 references the HPA 718 of the host
memory 704 to point to the specific data buffers 720 that
store the relevant data. The LNV device 708 may then ring
the doorbell of the SSD device 714.

The SSD device 714 detects the doorbell ring that indi-
cates that a new SQE 732 has been placed in the backend
NVMe SQ 730 of backend memory 710. Thus, at (B), the
SSD device 714 may initiate a PCle transaction to read the
SQE 732 and the PRP 734 from backend memory 710. It
should be appreciated that in this data access model, the
LNV device 708 is a trusted hardware component, and the
SSD devices 714 and the LNV device 708 are aware and
visible to each other over the PCle data bus. Thus, the PCle
transaction at (B) may use the SSD device 714 RID, and uses
physical address space of the LNV device 708 and backend
memory 710.

The SSD 714 may then execute the NVMe command of
the SQE 732, and accesses the data in host memory 704
indicated by the PRP 734. To access the data, the SSD device
714 initiates a PCle transaction at (C) to read or write data
to the addresses indicated by the HPA 718 of the host
memory 704 indicated in the PRP 734. As discussed above,
in this data access model, the SSD device 714, and therefore
any PCle transactions from the SSD device 714 are hidden
from the host software 716. In one example, to hide the SSD
devices 714, the SSD devices 714 may instead access the
data of the host memory 704 through the LNV device 708.
That is, the SSD device 714 may request the LNV device
708 to access the data in the data buffer 720 of host memory
704, and the LNV device 708 may access and send that data
to the requesting SSD device 714. In this manner, the host
software 716 only interacts with the LNV device 708.
However, in this example, data transfer may be limited by
the uplink of the LNV device 708.

In another example, the SSD device 714 may initiate the
PCle transaction at (C) to access the data of the data buffer
720 of host memory 704 itself. However, PCle transactions
typically include an RID which indicates an identifier for the
device that initiated the transaction. In order to hide the
existence of the SSD device 714 from the host software 716,
the NT switch 706 is configured to perform tag remapping
to change an RID of the PCle transaction at (C) from the
SSD device 714 RID to the LNV device 708 RID. Thus,
from the perspective of the host software 716, the PCle
transaction at (C) to access the data buffer 720 of host
memory 704 originated from the LNV device 708. In this
manner, the SSD devices 714 may directly access data of the
data buffer 720 of host memory 704 while still remaining
hidden from the host software 716. Specifically, the NT
switch 706 may be configured to allow controlled upstream
access of SSD devices 714 to the data buffers 720 in the host
memory 704, and further prohibit downstream access by the
host software 716 to SSD device 714 BAR.

FIG. 8 illustrates an example system architecture that may
be used for virtualized platforms. In a virtualized configu-
ration of a datacenter, multiple entities may be running
software within a plurality of virtual machines that share
hardware resources. For example, the compute node 800
may include one or more processors 802 running multiple
VMs 804. Each VM 804 may be assigned VM memory 806
by the hypervisor that maps guest physical addresses (GPA)
808 for the VM 804 to HPAs 810 of the host memory of the
compute node 800 that stores the data. Using the I/O control
flow described with reference to FIG. 3, the NVMe stack of
the VM 804 will use the GPAs 808 assigned to that VM 804
when generating NVMe commands.

30

35

40

45

55

12

In the virtualized configuration of FIG. 8, the LNV device
812 may be configured to include both physical PCI func-
tions and virtual PCI functions. As a specific example, the
LNV device 812 may be configured to use single root
input/output virtualization (SR-IOV) that allows the isola-
tion of PCle resources. Using SR-IOV, a single physical
PCle bus may be shared in a virtual environment using the
SR-IOV specification. Physical functions (PF) are fully
featured PCle functions that may be discovered, managed,
and manipulated as described herein, and may be used to
configure and control a PCle device. On the other hand,
virtual functions (VF) are PCle functions that are associated
with a PF. A VF is a lightweight PCle function that shares
one or more physical resources with the PF and with VFs
that are associated with that PF.

In the SR-IOV enabled PF of the LNV 812, the PCI
configuration space of each VF can be accessed by the bus,
device, and function number of the PF. Each VF has a PCI
memory space, which is used to map its register set. The VF
device drivers operate on the register set to enable its
functionality and the VF may be assigned to an /O domain.
This capability enables VF to perform I/O.

In the I/O control flow for FIG. 8, the LNV device 812 is
configured to expose a virtual NVMe device to the VMs 804.
The virtual NVMe device has a VF as described above, and
an RID for that VF. The VMs 804 may be configured to
communicate with the virtual NVMe device using the VF.
Similarly to the control flow of FIG. 3, the LNV device 812
is configured to process the client NVMe commands gen-
erated by the VMs 804, and deliver client NVMe comple-
tions to those VMs 804. As illustrated in FIG. 8, client
NVMe commands generated by the NVMe stack for a VM
804 are placed into a client NVMe SQ 814 as SQE 816. The
SQE 816 and PRPs 818 refer to the data buffers 820 using
GPAs.

To translate between GPAs 808 of the VMs 804 and HPAs
810 of the host memory of the compute node 800, the
compute node 800 may be further configured to implement
an input-output memory management unit (IOMMU) 822.
The IOMMU 822 is a memory management unit (MMU)
that connects a direct-memory-access—capable (DMA-ca-
pable) I/O bus to the main memory. The IOMMU 822
translates processor-visible virtual addresses to physical
addresses, and maps device-visible virtual addresses to
physical addresses. In one example, the IOMMU 822 is a
graphics address remapping table (GART) used by PCle
devices.

The IOMMU 822 is configured to allow the LNV device
812 to access VM GPA space in VM memory 806 using the
VF RID of the LNV device 812. After the SQE 816 and
PRPs 818 have been generated by the NVMe stack of the
VM 804, the LNV device 812 may initiate a PCle transac-
tion at (A) to access the SQE 816 and PRP 818 using the VF
RID of the LNV device 812. As discussed above, the SQE
816 and PRP 818 retrieved from VM memory 806 use GPAs
808 to refer to the stored data. However, the SSD devices
824 typically do not support SR-IOV or multiple functions,
and thus are typically not granted access to the GPA space
of VM memory 806 by the IOMMU 822. Thus, the LNV
device 812 is configured to perform functions to get the GPA
808 referenced by the SQE 816 and PRP 818 translated into
corresponding HPAs 810, which would allow the SSD
devices 824 to directly access the data buffers 820 of VM
address space in the host memory of compute node 800.

To allow typical SSD device 824 to access to the data
buffers 20 within VM address space, LNV device 812 is
configured to use address translation services (ATS) to

US 11,768,783 B2

13
translate GPAs from client NVMe commands such as SQE
816 and PRPs 818 to HPAs 810. The LNV device 810 may
then populate backend NVMe commands and PRPs with
HPAs 810. As shown in FIG. 8, the LNV device 812 may
generate SQEs 826 that are placed into the backend NVME
SQ 828 and PRPs 830 that stored in backend memory 832.

As illustrated in FIG. 8, to translate GPAs from client
NVMe commands and PRPs to corresponding HPAs, the
LNV device 812 is configured to, at (B), send an ATS
translate request to the IOMMU 822. The LNV device 812
may send an ATS translate request for each GPA 808 address
referring to the data buffer 820. The ATS translate request at
(B) may be sent using the VF RID of the LNV device 812
and further includes the GPA 808 to be translated. The
IOMMU 822 is configured to allow the VF RID access to the
ATS, and translates the GPA 808 into the corresponding
HPA 810 based on internal mapping tables. The IOMMU
822 sends a response to the LNV device 812 that includes
the corresponding HPA for that ATS translate request. The
LNV device 812 may then update the backend NVMe
command that was placed into the backend NVMe SQ 828
and/or PRP 830 with the translated HPA 810. In this manner,
each GPA 808 of the SQEs 816 and PRPs 818 may be
translated into corresponding HPAs 810, which allows the
SSD devices 824 to then use HPAs and SSD PCle function
reads to access VM data buffers 820.

For example, the SSD devices 824 may initiate a PCle
transaction, at (C), to retrieve the SQE 826 placed in
backend NVMe SQ 828 and PRP 830 from backend memory
832. Next, the SSD device 824 may initiate a PCle trans-
action, at (D), to access the VM data buffers 820 using the
HPAs 810. Similarly to the process described with reference
to FIG. 7, in order to hide the SSD devices 824 from the
VMs 804, the NT switch 834 may be configured to remap
the SSD RID for the PCle transaction at (D) to the LNV PF
RID, such that the VMs 804 perceive that they are interact-
ing with the LNV device 812. Further, as the LNV PF RID
is a physical function rather than a virtual PCle function, the
IOMMU 822 may be configured to allow the use of HPAs
810. It should be appreciated that this process is transparent
to the SSD devices 824 as the SSD devices 824 are using
translated HPAs to access data buffers 820 in VM memory
806.

FIG. 9 illustrates a multi-host configuration 900 that
shares a same set of LNV device 902 and SSD devices 904
among a plurality of compute nodes for a plurality of hosts
906. Each host may include separate host memory devices
912. The plurality of hosts 906, the LNV device 902, and the
SSD devices 904 are interconnected via a PCle bus and the
NT switch 908 and the RCs 914. The NT switch 908 is
configured to create multiple PCI domains. For example, the
NT switch 908 may be configured to create separate PCI
domains for HOST1, HOST2, HOST3, HOST4, etc. Each of
these domains will not be visible to each other. Each PCI
domain will see one PCI function of the LNV device 902.
For example, HOST 1 may see the function F1.BAR, HOST
2 may see the function FO.BAR, HOST3 may see the
function F3.BAR, and HOST4 may see the function
F4.BAR. Similarly the SoC 910 may be an infrastructure
host that includes SoC memory 916, and is part of an
infrastructure PCI domain that includes the SoC 916, the
LNV device 902, and the plurality of SSD devices 904. The
SoC 910 may see the function FO.BAR. Each PCI domain
may communicate with the LNV device 902 via the respec-
tive functions exposed to their PCI domain.

In this configuration, each separate host 912 will see a
single NVMe device, which is the LNV device 902. The

10

15

20

25

30

35

40

45

50

55

60

65

14

LNV device 902 is configured to pool the plurality of SSD
devices 904, and virtualize the resources of the plurality of
SSD devices 904 to be used by the plurality of hosts 912.
Each host 912 is unaware that other hosts 912 exist that are
using the same set of SSD devices 904. The 1/O control
flows and techniques described above with reference to
FIGS. 3, 7, and 8 may be used to virtualize the resources of
the plurality of SSD devices 904 to be shared among the
plurality of hosts 912.

FIG. 10 illustrates an example multi-host configuration
1000 that uses an address remapping table to overlap host
memory address spaces. The multi-host configuration
includes a plurality of hosts 1002 that include host memory
1004. The plurality of hosts 1002, an LNV device 1006, and
a plurality of SSD devices 1008 are interconnected via a
PCle bus and the NT switch 1010. Each of the plurality of
hosts 1002 will reference memory using a local address
range 1012, such as, for example, a range from 0x0000 to
Oxftff. However, it should be appreciated that this address
range is merely exemplary, and that the plurality of hosts
1002 may reference memory using any suitable memory
ranges. Further, it should be appreciated that the local
address ranges 1012 for each host 1002 will overlap. That is,
for example, if the LNV device 1006 attempts to access data
from a memory address ‘0’, that address exists for each host
1002. To address this issue, the LNV device 1006 and NT
switch 1010 are configured to translate between local
address ranges 1012 and global address ranges 1014 man-
aged by the LNV device 1006.

As illustrated in FIG. 10, the LNV device 1006 is con-
figured to manage a global address space 1016. The LNV
device 1006 is configured to stack the local address ranges
1012 of the plurality of hosts 1002, such that there are not
overlapping addresses. For example, the local address range
1012 for host0 may be mapped to a global address range
1014 that starts at address 0x00000. The local address range
1012 for host1 may then be stacked within the global address
space, and mapped to a global address range 1014 that starts
at 0x10000. Similarly, the local address range 1012 for host2
may be stacked within the global address space, and mapped
to a global address range 1014 that starts at 0x20000 and
ends at Ox2ffff. It should be appreciated that the address
ranges described herein are merely exemplary, and that any
size of address ranges may be used for the local and global
address ranges. In this manner, the LNV device 1006 will
manage the global address space 1016 that includes all of the
local address ranges of the plurality of hosts 1002 in the
multi-host configuration 1000.

Additionally, the N'T switch 1010 is configured to manage
an address remapping table 1018 that maps addresses from
the global address space 1016 back to specific hosts 1002
and a local address range 1012 of that host. For example,
when an SSD device 1008 initiates a PCle transaction for the
I/O control flow described herein, the SSD device 1008 will
send both a RID of the SSD device 1008 and a global
address (G_ADDR).

The NT switch 1010 will process the PCle transaction and
consult the internal address remapping table 1018. Based on
the G_ADDR, the NT switch 1010 will identify the local
address range 1012 of a host that is associated with that
G_ADDR during the process described above. The NT
switch 1010 will then map the G_ADDR to an egress port
of the NT switch 1010 that routes to the host 1002 that is
associated with that G_ADDR, and remaps the G_ADDR to
a host address (H_ADDR) in the local address range 1012 of
that host 1002. In this manner, the LNV device 1006 shifts

US 11,768,783 B2

15
local addresses to a global address space, and the NT switch
1010 shifts a global address back to a local address of a
specific host.

FIG. 11 illustrates an example of RID and tag remapping
performed by the NT switch. As discussed above, the SSD
devices 1108 are hidden from view of the hosts 1102. When
one of the SSD devices 1108 initiates a read/write request to
one of the hosts 1102, that request includes a RID of that
SSD device (e.g. SSD1 RID, SSD2 RID, SSD3 RID), in
addition to a memory address for the request. Read requests
may also include a tag, such as tag0, to tag the data that will
be sent back to the SSD device. To hide the existence of the
SSD device 1108 from the hosts 1102, the NT switch 1110
is configured to perform RID remapping.

As illustrated, using a RID and TAG remapping table
1012, the NT switch 1110 may be configured to remap the
SSD RID used in the request to the LNV RID. Specifically,
the NT switch 1110 will remap the RID to the LNV function
RID for the PCle domain of the target host 1102 of that
request. For example, if the first SSD device is making a
request to hostl, then the NT switch 1110 may be configured
to remap the SSD1 RID in the request to the LNV F1 RID
to route the request to the hostl. As another example, if the
second SSD device is making a request to host2, then the NT
switch 1110 may be configured to remap the SSD2 RID in
the request to the LNV F2 RID to route the request to the
host2. In this manner, each host 1102 will see that the request
was initiated from the LNV device 1106, and the SSD device
1108 will not be visible.

As discussed above, read requests will also include a tag,
such as tag0, tagl, tag2, etc. Each SSD device 1108 will
keep track of its own tags. Thus, there will be overlapping
tags between the plurality of SSD devices 1108. To address
this issue, the NT switch 1110 is also configured to perform
tag remapping. For example, the NT switch 1110 may
further keep track of tag remapping using the RID and tag
remapping table 1012. For example, the NT switch 1012
may remap tag0 for a request from the first SSD device to
tagl, remap tagO for a request from the second SSD device
to tag2, and remap tagO for a request from the third SSD
device to tag3. Completion of the read request will also
include a corresponding tag that was sent to the host for the
request, and the NT switch 1110 may remap those tags back
to the local tag of the respective SSD device 1108 using the
table 1012. In this manner, the local tags used in the context
of each SSD device 1108 may be stacked into a global tag
system managed by the NT switch 1110.

FIG. 12 illustrates an example of mapping virtual func-
tions (VF) to physical functions (PF) for the LNV device. In
some examples, the LNV device 1200 may be configured to
include a single PF 1204. However, to have additional PCI
domains for a plurality of hosts, additional PCI functions for
the LNV device 1200 may be required. In the example of
FIG. 12, the LNV device 1200 includes a single PF 1204, but
also supports a plurality of VFs 1206 such as VF0, VF1,
VF2, etc. In this example, the NT switch 1202 may be
configured to map those VFs 1206 to PFs 1208 of the NT
switch 1202, and to present those VFs 1206 as the PFs 1208.
In this manner, VFs 1206 such as VF0, VF1, etc., of the LNV
device 1200 may be presented to other devices intercon-
nected by the PCle bus as physical functions 1208 PFO, PF1,
PF2, etc., even though the LNV device 1200 only supports
a single PF 1204. Thus, the example configuration of FIG.
12 may allow an LNV device 1200 to support a number of
hosts based on the number of VFs supported by the LNV
device 1200.

15

20

25

30

35

40

45

50

55

60

16

In another example, the N'T switch 1202 may be further
configured to present a subset of the VFs of the LNV device
1200 as VFs 1210 associated with one of the PFs 1208
represented by the NT switch 1202. In this manner, the NT
switch 1202 may be capable of performing this remapping
to expose ST-IOV capable PFs and VFs, even though the
LNV device 1200 may only be configured for a single PF.

FIG. 13 illustrates an example multi-host configuration
1300 that uses an address remapping table to overlap host
memory address spaces that is extended to further include
VMs. The multi-host configuration includes a plurality of
hosts 1302 that include host memory 1304. The plurality of
hosts 1302, an LNV device 1306, and a plurality of SSD
devices 1308 are interconnected via a PCle bus and the NT
switch 1310. The plurality of hosts 1302 may also be
configured for a virtualized environment, and may be con-
figured to run VMs 320. Each of the plurality of hosts 1002
and the plurality of VMs 1320 will reference memory using
a local address range 1312 from 0x0000 to Oxffff. Thus, the
local address ranges 1312 for each host 1302 and VM 1320
will overlap. To address this issue, the LNV device 1306 and
NT switch 1010 are configured to translate between local
address ranges 1312 and global address ranges 1314 man-
aged by the LNV device 1306.

As illustrated in FIG. 13, the LNV device 1306 is con-
figured to manage a global address space 1316. The LNV
device 1306 is configured to stack the local address ranges
1312 of the plurality of hosts 1302 and VMs 1320, such that
there are not overlapping addresses. For example, the local
address range 1312 for host0 may be mapped to a global
address range 1314 that starts at address 0x00000. The local
address range 1312 for host]l may then be stacked within the
global address space, and mapped to a global address range
1314 that starts at 0x10000. Further, the local address range
1312 for VM1 being run on hostl may be stacked within the
global address space, and mapped to a global address range
1314 that starts at 0x20000 and ends at Ox2fHff. It should be
appreciated that the address ranges described herein are
merely exemplary, and that any size of address ranges may
be used for the local and global address ranges. In this
manner, the LNV device 1306 will manage the global
address space 1316 that includes all of the local address
ranges of the plurality of hosts 1302 and VMs 1320 in the
multi-host configuration 1300.

Additionally, the N'T switch 1310 is configured to manage
an address remapping table 1318 that maps addresses from
the global address space 1316 back to specific hosts 1302 or
VMs 1320, and a local address range 1312 of that host/VM.
For example, when the SSD device 1308 initiates a PCle
transaction for the I/O control flow described herein, the
SSD device 1308 will send both an RID for the SSD device
1308 and a global address (G_ADDR).

The NT switch 1310 will process the PCle transaction and
consult the internal address remapping table 1318. Based on
the G_ADDR, the NT switch 1310 will identify an egress
port of the NT switch 1310 that routes to a host 1302
associated with that G_ADDR, and remaps the global
address to a host address (H_ADDR) in the local address
range 1312 of that host 1302. In this manner, the LNV
device 1306 shifts local addresses to a global address space,
and the NT switch 1310 shifts global address back to a local
address of a specific host.

Additionally, the NT switch 1318 may be further config-
ured to remap the RID based on whether the request is being
routed to a host 1302 or VM 1320. For example, the NT
switch 1318 may be configured to remap the RID for the

US 11,768,783 B2

17
SSD device to an LNV PF RID for hosts 1302, and remap
to an LNV VF RID for VMs 1320.

FIG. 14 illustrates an example system architecture 1400
that may be used for virtualized platforms by using the
address, RID, and tag remapping techniques described
above with reference to FIG. 13. Each compute node may
include one or more processors 1402 running multiple VMs
1404. Each VM 1404 may be assigned VM memory 1406 by
the hypervisor that maps GPAs 1408 for the VMs 1404 to
address of host memory. Using the /O control flow
described with reference to FIG. 3, the NVMe stack of the
VM 1404 will use the GPAs 1408 of VM memory 1406 for
the VM 1404 when generating NVMe commands.

In the virtualized configuration of FIG. 14, the LNV
device 1412 may be configured to include both physical PCI
functions and virtual PCI functions, as described above. In
the 1I/O control flow for FIG. 14, the LNV device 1412 is
configured to expose a virtual NVMe device to the VMs
1404. The virtual NVMe device has a VF as described
above, and an RID for that VF. The VMs 1404 may be
configured to communicate with the virtual NVMe device
using the VF. Similarly to the control flow of FIG. 3, the
LNV device 1412 is configured to process the client NVMe
commands generated by the VMs 1404, and deliver client
NVMe completions to those VMs 1404. As illustrated in
FIG. 14, client NVMe commands generated by the NVMe
stack for a VM 1404 are placed into a client NVMe SQ 1414
as SQE 1416. The SQE 1416 and PRPs 1418 refer to the data
buffers 1420 using GPAs. Further, the GPAs 1408 are in a
local address range for that VM 1404.

As discussed above, a plurality of VMs 1404 may be
running, each VM 1404 having separate local address ranges
that are overlapping. To address this issue, the LNV device
1412 is configured to stack the local address ranges of each
host and VM 1404 into a global address range, as shown in
FIG. 13. For example, after the SQE 1416 and PRPs 1418
have been generated with reference to GPAs 1408 in the
local address range by the NVMe stack of the VM 1404, the
LNV device 412 may initiate a PCle transaction at (A) to
access the SQE 1416 and PRP 1418 using the VF RID of'the
LNV device 1412. As discussed above, the SQE 1416 and
PRP 1418 retrieved from VM memory 1406 use GPAs 1408
to refer to local address space of the data buffers 1420 of VM
memory 1406. However, the local address spaces of multiple
hosts and VMs 1404 will overlap. Thus, the LNV device
1412 is configured to shift the GPAs 1408 from local address
space to GPAs 1420 of global address space managed by the
LNV device 1412 using the techniques described above with
reference to FIG. 13.

The LNV device 1412 may generate backend NVMe
commands and place those commands as SQEs 1422 in the
backend NVME SQ 1424 of backend memory 1426. The
SQE 1422 may use backend GPAs 1428 to point to location
in backend memory 1426 that have the PRPs 1430 that
include the GPAs 1420 in global address space managed by
the LNV 1412.

At (B), an SSD device 1432 may retrieve the SQE 1422
placed in backend NVMe SQ 1424 and PRP 1430 from
backend memory 1426. Next, the SSD device 1432 may
initiate a PCle transaction, at (C), to access the VM data
buffers 1420 using the GPAs 1420 in global address space
retrieved from backend memory 1426. Using the techniques
described above with reference to FIG. 13, the NT switch
1434 is configured to use an address remapping and RID
remapping table 1436 to remap the request from the SSD
device 1432. For example, the NT switch 1434 may be
configured to map the GPA 1420 in global address space to

5

10

15

20

25

30

40

45

50

55

60

65

18

a corresponding egress port on the NT switch 1434 that
routes to the corresponding host or VM 1404. The NT switch
1434 further shifts the GPA 1420 in global address space to
a GPA 1408 in the local address range of that host or VM
1404. The NT switch also remaps the RID of the request
from the SSD RID to the LNV RID. If the target destination
is a physical host, the RID may be remapped to the corre-
sponding LNV PF RID. If the target destination is a VM
1404, the RID may be remapped to the corresponding LNV
VF RID. The remapped request may be executed according
to the I/O control flow described herein. In this manner, the
SSD devices 1432 may be enabled to access VF data buffers
without requiring the LNV device 1412 to perform GPA to
HPA translation. Further, the SSD devices 1432 are hidden
from the view of the VMs 1404.

FIG. 15 illustrates an example system architecture 1500
where the LNV device accesses client data buffers on behalf
of the SSD devices. As illustrated, the NVMe stack of the
host, such as host software on a bare-metal platform ora VM
for a virtual environment, generates NVMe commands that
are placed into a host NVMe SQ 1504 as SQE 1506 and
PRPs 1508. Both the SQE 1506 and PRP 1508 use HPAs
1520 of the host memory 1502 in a bare-metal platform
example. However, it should be appreciated that in a virtual
platform, the SQE 1506 and PRP 1508 may use GPAs using
the techniques described herein.

The LNV device 1510 initiates a PCle transaction at (A)
to read the SQE 1506 from the next location in the host
NVMe SQ 1504 in host memory 1502. The LNV device
1510 builds and writes backend NVMe commands that are
placed into the backend NVMe SQ 1512 of LNV memory
1514 as SQE 1516. The LNV device 1510 also writes PRPs
1518 to the LNV memory 1514. The LNV device 1510
translates the HPAs 1520 of host memory 1502 to local
address space of the LNV device 1510, shown as LNV PA
1522.

In contrast to the architectures of FIGS. 7, 8, and 14, the
SSD devices 1524 are not configured to directly access the
data buffers 1526 of host memory 1502. Rather, the SSD
devices 1524 are configured to initiate a PCle transaction, at
(B), to the LNV device 1510. The LNV device 1510 may
include a logical NT switch 1528 that may perform the
functions and techniques of the N'T switch described herein.
The LNV 1510 is configured to access the data buffers 1526
ot host memory 1502 on behalf of the SSD device 1524. For
example, to complete a read request, the SSD device 1524
may be configured to process the SQE 1516 in backend
NVMe SQ 1512 and PRP 1518 in LNV memory 1514, and
may then write to an LNV data buffer 1530 indicated in the
PRP 1518. The LNV device 1510 may then initiate a PCle
transaction at (C) to access the data buffer 1526 of host
memory 1502 using the LNV RID, and translate from LNV
PA 1522 to HPA 1520 of host memory 1502 to write the data
in the LNV data buffer 1530 of LNV memory 1514 to the
data buffer 1526 of host memory 1502. In this manner, data
from the SSD 1524 may be sent to the host memory 1502 on
behalf of the SSD device 1524 such that the SSD device
remains hidden from the host.

For a write request, the LNV device 1502 may translate
from HPAs 1520 to LNV PA 1522, and write the data from
the data buffer 1526 to the LNV data buffer 1530 based on
the translated addresses. The SSD device 1524 may then
process the SQE 1516 and PRP 1518 and use the LNV PA
1522 to retrieve the data from the LNV data buffer 1530, and
write the data to the SSD device 1524. In this manner, both
read and write requests for the SSD device 1524 may be

US 11,768,783 B2

19
handled by the LNV device 1510 such that the SSD device
1524 does not send PCle transactions to the host.

In one example, as the data for the read and write requests
are handled by the LNV device 1510 before being sent to the
SSD device 1524, the LNV device 1510 may perform
processing on the data before it is passed to the SSD device
1524. For example, the LNV device 1510 may be configured
to use a client key of the host to encrypt/decrypt data that is
passed through the LNV device 1510. As the SSD devices
1524 may be virtualized and shared among multiple hosts or
VMs, the data from each host or VM may be separately
encrypted before being stored on the SSD devices. It should
be appreciated that in this model, the LNV device 1510
performs the encryption, and both the host/VM and SSD
devices 1524 may be unaware that the encryption is occur-
ring.

FIG. 16 shows a flowchart for a computer-implemented
method 1600. The method 1600 may be implemented by the
server system of FIG. 1 to perform SSD device virtualiza-
tion, or by other suitable hardware. At 1602, the method
1600 may include running host software on one or more
compute nodes, each compute node including at least one
processor and a host memory device. The compute nodes
may be part of a datacenter, such as the example datacenter
illustrated in FIG. 4. The datacenter may be configured as a
bare-metal configuration or a virtualized environment con-
figuration.

At 1604, the method 1600 may include virtualizing hard-
ware resources of a plurality of solid-state drive (SSD)
devices. An input/output control flow for virtualizing hard-
ware resources of the SSD devices is described above with
reference to FIG. 3.

At 1606, the method 1600 may include presenting a
virtual SSD device to the host software of the one or more
compute nodes using a local non-volatile memory express
virtualization (LNV) device. The virtual SSD device is
perceived by the host software as a standard NVMe device,
as shown in FIG. 3. Thus, the host software may interact
with the virtual SSD device using a standard NVMe stack
and standard protocols.

At 1608, the method 1600 may include directly accessing
data buffers of the host memory device of each compute
node using the plurality of SSD devices. The SSD device
itself may initiate a PCle transaction to access the data
buffers in the host memory, as shown in FIG. 7. By accessing
the data buffers directly, input/output flow to the SSD device
is not limited by the uplink of the LNV device.

At 1610, the method 1600 may include hiding the plu-
rality of SSD devices such that the plurality of SSD devices
are not visible to the at least one processor of each compute
node using a non-transparent (NT) switch for a peripheral
component interconnect express (PCle) bus that intercon-
nects the plurality of SSD devices and the LNV device to the
at least one processor of each compute node. For example,
the SSD devices are placed into a different PCle domain than
the hosts. Thus, the SSD devices will not be enumerated or
shown to the host devices. From the perspective of the hosts,
the SSD devices are not visible. The NT switch may perform
different functions to hide the SSD devices, such as RID
remapping.

FIG. 17 shows a flowchart for a computer-implemented
method 1700 for performing SSD device virtualization and
hiding the SSD devices from a host that is optimized for
bare-metal environments. At 1702, the method 1700 may
include accessing a non-volatile memory express (NVMe)
command and a physical region page entry (PRP) stored in
the host memory device of one of the compute nodes. The

10

15

20

25

30

35

40

45

50

55

60

65

20
NVMe command may be stored in an SQ in host memory,
as shown in FIG. 7. The LNV device may retrieve the NVMe
command via a PCle transaction with the host.

At 1704, the method 1700 may include generating at least
one backend NVMe command and at least one backend PRP
based on the accessed NVMe command and PRP from the
host memory device of the one of the compute nodes. The
LNV may potentially generate more than one backend
NVMe command and backend PRP for each accessed
NVMe command and PRP that was accessed from the host
memory device. For example, the LNV device may be
configured to write data to multiple different SSD devices,
and would thus generate multiple backend NVMe com-
mands for each of those devices. In this manner, the LNV
device may virtualize the hardware resources of the SSD
devices.

At 1706, the method 1700 may include storing the at least
one backend NVMe command and the at least one backend
PRP in a backend memory device that is separate from the
host memory devices of the one or more compute nodes. The
backend memory device is separate from the host memory
device of the compute nodes, and is thus not visible or
accessible to the hosts.

At 1708, the method 1700 may include causing at least
one SSD device to access the at least one backend NVMe
command and the at least on backend PRP in the backend
memory device. The LNV device may ring the doorbell of
the target SSD device to cause that SSD device to access the
backend SQ in backend memory.

At 1710, the method 1700 may include directly accessing
data buffers of the host memory device based on the at least
one backend NVMe command and the at least on backend
PRP using the at least one SSD device. The SSD devices
may then access the data buffer in host memory indicated by
the backend PRP, as described above with reference to FIG.
7

At 1712, the method 1700 may include identifying a PCle
transaction for an SSD device accessing data buffers of a
host memory device. The NT switch may be configured to
identify the PCle transaction.

At 1714, the method 1700 may include remapping a
requester identifier (RID) of the PCle transaction from an
RID of the SSD device to an RID of the LNV device. RID
remapping may be performed by the N'T switch using RID
remapping tables described above with reference to FIG. 11.

FIG. 18 shows a flowchart for a computer-implemented
method 1800 for performing SSD device virtualization and
hiding the SSD devices from a host that is optimized for
virtualized environments. At 1802, the method 1800 may
include hosting virtual machines (VM) on the one or more
compute nodes, each VM having associated VM memory.

At 1804, the method 1800 may include accessing a
non-volatile memory express (NVMe) and a physical region
page entry (PRP) stored in the VM memory of one of the
VMs. An example virtual machine and associated virtual
machine memory are shown in FIG. 8. An example virtu-
alized environment configuration of a datacenter is
described above with reference to FIG. 4.

At 1806, the method 1800 may include generating at least
one backend NVMe command and at least one backend PRP
based on the accessed NVMe command and PRP from the
VM memory of the one of the VMs. VM memory may be
run using the hardware resources of the physical host
memory device.

At 1808, the method 1800 may include translating a guest
physical address (GPA) of the PRP from the VM memory to
a corresponding HPA in a host memory device that hosts the

US 11,768,783 B2

21

VM memory. The LNV device may be configured to send an
address translation services request to an IOMMU to per-
form the translation from GPAs to HPAs, as described above
with reference to FIG. 8.

At 1810, the method 1800 may include generating the at
least one backend PRP to indicate the corresponding HPA
for data buffers of the host memory device. The backend
PRP may be populated with the corresponding HPA and
stored in backend memory.

At 1812, the method 1800 may include storing the at least
one backend NVMe command and the at least one backend
PRP in a backend memory device that is separate from the
host memory devices of the one or more compute nodes. The
backend memory is separate from the host memory, as
described above with reference to FIG. 8.

At 1814, the method 1800 may include causing at least
one SSD device to access the at least one backend NVMe
command and the at least on backend PRP in the backend
memory device. The LNV may ring the doorbell of the target
SSD device to cause the SSD device to access the backend
SQ in backend memory.

At 1816, the method 1800 may include directly accessing
data buffers of the host memory device hosting the VM
memory based on the at least one backend NVMe command
and the at least on backend PRP using the translated corre-
sponding HPA using the at least one SSD device. The
accessed PRP indicates an HPA of the host memory device.
Thus, the SSD device may directly access the data buffers of
the host memory device using the indicated HPAs.

FIG. 19 shows a flowchart for a computer-implemented
method 1900 for mapping local address ranges to a global
address range in a global address space that is optimized for
a virtualized environment configuration. At 1902, the
method 1900 may include managing a global address space
and mapping the respective local address ranges to respec-
tive global address ranges in the global address space such
that the respective local address ranges do not overlap in the
global address space. An example global address space that
includes stacked local address ranges is described above
with reference to FIG. 13.

At 1904, the method 1900 may include mapping a GPA
indicated by the accessed PRP from the local address range
of the one of the VMs to corresponding a GPA of the
corresponding global address range in the global address
space. The global address space may be managed by the
LNV device, which is configured to map the accessed PRPs
from the local address range of a particular host to the
corresponding global address range in global address space.

At 1906, the method 1900 may include generating the at
least one backend PRP to indicate the corresponding GPA of
the global address range. The backend PRP may be popu-
lated with the corresponding GPA of the global address.

At 1908, the method 1900 may include mapping each
global address range to both an egress port of the NT switch
that routes to a compute node associated with that global
address range, and a local address range that corresponds to
that global address range. Based on the global address range,
the NT switch may have a mapping table that maps that
global address range to the associated host, and the route to
that host including the egress port on the NT switch, as
described above with reference to FIG. 13.

The systems and methods described above may be used to
virtualize the hardware resources of NVMe SSD devices to
be shared among different hosts. Virtualization of basic local
NVMe devices using the techniques described herein
enables quality of service, security and performance isola-
tion, flexible resource allocation and management, service-

10

15

20

25

30

35

40

45

50

55

60

65

22
ability, thin provisioning, without requiring any special
capabilities from basic NVMe SSDs, and allowing to use
cost efficient commodity SSDs.

In some embodiments, the methods and processes
described herein may be tied to a computing system of one
or more computing devices. In particular, such methods and
processes may be implemented as a computer-application
program or service, an application-programming interface
(API), a library, and/or other computer-program product.

FIG. 20 schematically shows a non-limiting embodiment
of' a computing system 2000 that can enact one or more of
the methods and processes described above. Computing
system 2000 is shown in simplified form. Computing system
2000 may embody the server system 100 described above
and illustrated in FIG. 1. Computing system 2000 may take
the form of one or more personal computers, server com-
puters, tablet computers, home-entertainment computers,
network computing devices, gaming devices, mobile com-
puting devices, mobile communication devices (e.g., smart
phone), and/or other computing devices, and wearable com-
puting devices such as smart wristwatches and head
mounted augmented reality devices.

Computing system 2000 includes a logic processor 2002
volatile memory 2004, and a non-volatile storage device
2006. Computing system 2000 may optionally include a
display subsystem 2008, input subsystem 2010, communi-
cation subsystem 2012, and/or other components not shown
in FIG. 20.

Logic processor 2002 includes one or more physical
devices configured to execute instructions. For example, the
logic processor may be configured to execute instructions
that are part of one or more applications, programs, routines,
libraries, objects, components, data structures, or other logi-
cal constructs. Such instructions may be implemented to
perform a task, implement a data type, transform the state of
one or more components, achieve a technical effect, or
otherwise arrive at a desired result.

The logic processor may include one or more physical
processors (hardware) configured to execute software
instructions. Additionally or alternatively, the logic proces-
sor may include one or more hardware logic circuits or
firmware devices configured to execute hardware-imple-
mented logic or firmware instructions. Processors of the
logic processor 2002 may be single-core or multi-core, and
the instructions executed thereon may be configured for
sequential, parallel, and/or distributed processing. Indi-
vidual components of the logic processor optionally may be
distributed among two or more separate devices, which may
be remotely located and/or configured for coordinated pro-
cessing. Aspects of the logic processor may be virtualized
and executed by remotely accessible, networked computing
devices configured in a cloud-computing configuration. In
such a case, these virtualized aspects are run on different
physical logic processors of various different machines, it
will be understood.

Non-volatile storage device 2006 includes one or more
physical devices configured to hold instructions executable
by the logic processors to implement the methods and
processes described herein. When such methods and pro-
cesses are implemented, the state of non-volatile storage
device 2006 may be transformed—e.g., to hold different
data.

Non-volatile storage device 2006 may include physical
devices that are removable and/or built in. Non-volatile
storage device 2006 may include optical memory (e.g., CD,
DVD, HD-DVD, Blu-Ray Disc, etc.), semiconductor
memory (e.g., ROM, EPROM, EEPROM, FLLASH memory,

US 11,768,783 B2

23

etc.), and/or magnetic memory (e.g., hard-disk drive, floppy-
disk drive, tape drive, MRAM, etc.), or other mass storage
device technology. Non-volatile storage device 2006 may
include nonvolatile, dynamic, static, read/write, read-only,
sequential-access, location-addressable, file-addressable,
and/or content-addressable devices. It will be appreciated
that non-volatile storage device 2006 is configured to hold
instructions even when power is cut to the non-volatile
storage device 2006.

Volatile memory 2004 may include physical devices that
include random access memory. Volatile memory 2004 is
typically utilized by logic processor 2002 to temporarily
store information during processing of software instructions.
It will be appreciated that volatile memory 2004 typically
does not continue to store instructions when power is cut to
the volatile memory 2004.

Aspects of logic processor 2002, volatile memory 2004,
and non-volatile storage device 2006 may be integrated
together into one or more hardware-logic components. Such
hardware-logic components may include field-program-
mable gate arrays (FPGAs), program- and application-spe-
cific integrated circuits (PASIC/ASICs), program- and appli-
cation-specific standard products (PSSP/ASSPs), system-
on-a-chip (SOC), and complex programmable logic devices
(CPLDs), for example.

The terms “module,” “program,” and “engine” may be
used to describe an aspect of computing system 2000
typically implemented in software by a processor to perform
a particular function using portions of volatile memory,
which function involves transformative processing that spe-
cially configures the processor to perform the function.
Thus, a module, program, or engine may be instantiated via
logic processor 2002 executing instructions held by non-
volatile storage device 2006, using portions of volatile
memory 2004. It will be understood that different modules,
programs, and/or engines may be instantiated from the same
application, service, code block, object, library, routine, API,
function, etc. Likewise, the same module, program, and/or
engine may be instantiated by different applications, ser-
vices, code blocks, objects, routines, APIs, functions, etc.
The terms “module,” “program,” and “engine” may encom-
pass individual or groups of executable files, data files,
libraries, drivers, scripts, database records, etc.

When included, display subsystem 2008 may be used to
present a visual representation of data held by non-volatile
storage device 2006. The visual representation may take the
form of a graphical user interface (GUI). As the herein
described methods and processes change the data held by the
non-volatile storage device, and thus transform the state of
the non-volatile storage device, the state of display subsys-
tem 2008 may likewise be transformed to visually represent
changes in the underlying data. Display subsystem 2008
may include one or more display devices utilizing virtually
any type of technology. Such display devices may be com-
bined with logic processor 2002, volatile memory 2004,
and/or non-volatile storage device 2006 in a shared enclo-
sure, or such display devices may be peripheral display
devices.

When included, input subsystem 2010 may comprise or
interface with one or more user-input devices such as a
keyboard, mouse, touch screen, or game controller. In some
embodiments, the input subsystem may comprise or inter-
face with selected natural user input (NUI) componentry.
Such componentry may be integrated or peripheral, and the
transduction and/or processing of input actions may be
handled on- or off-board. Example NUI componentry may
include a microphone for speech and/or voice recognition;

2 <

10

15

20

25

30

35

40

45

50

55

60

65

24

an infrared, color, stereoscopic, and/or depth camera for
machine vision and/or gesture recognition; a head tracker,
eye tracker, accelerometer, and/or gyroscope for motion
detection and/or intent recognition; as well as electric-field
sensing componentry for assessing brain activity; and/or any
other suitable sensor.

When included, communication subsystem 2012 may be
configured to communicatively couple various computing
devices described herein with each other, and with other
devices. Communication subsystem 2012 may include wired
and/or wireless communication devices compatible with one
or more different communication protocols. As non-limiting
examples, the communication subsystem may be configured
for communication via a wireless telephone network, or a
wired or wireless local- or wide-area network, such as a
HDMI over Wi-Fi connection. In some embodiments, the
communication subsystem may allow computing system
2000 to send and/or receive messages to and/or from other
devices via a network such as the Internet.

The following paragraphs provide additional support for
the claims of the subject application. One aspect provides a
server system comprising one or more compute nodes
configured to run host software. Each compute node
includes at least one processor and a host memory device.
The server system further comprises a plurality of solid-state
drive (SSD) devices, a local non-volatile memory express
virtualization (LNV) device, and a non-transparent (NT)
switch for a peripheral component interconnect express
(PCle) bus that interconnects the plurality of SSD devices
and the LNV device to the at least one processor of each
compute node. The LNV device is configured to virtualize
hardware resources of the plurality of SSD devices and
present a virtual SSD device to the host software of the one
or more compute nodes. The plurality of SSD devices are
configured to directly access data buffers of the host memory
device. The NT switch is configured to hide the plurality of
SSD devices such that the plurality of SSD devices are not
visible to the at least one processor of each compute node.
In this aspect, additionally or alternatively, the LNV device
may be configured to access a non-volatile memory express
(NVMe) command and a physical region page entry (PRP)
stored in the host memory device of one of the compute
nodes, generate at least one backend NVMe command and
at least one backend PRP based on the accessed NVMe
command and PRP from the host memory device of the one
of the compute nodes, and store the at least one backend
NVMe command and the at least one backend PRP in a
backend memory device that is separate from the host
memory devices of the one or more compute nodes. In this
aspect, additionally or alternatively, the LNV device may be
configured to cause at least one SSD device to access the at
least one backend NVMe command and the at least on
backend PRP in the backend memory device, and the at least
one SSD device may be configured to directly access data
buffers of the host memory device based on the at least one
backend NVMe command and the at least on backend PRP.
In this aspect, additionally or alternatively, the NT switch
may be configured to identify a PCle transaction for an SSD
device accessing data buffers of a host memory device, and
remap a requester identifier (RID) of the PCle transaction
from an RID of the SSD device to an RID of the LNV
device. In this aspect, additionally or alternatively, the one
or more compute nodes may be configured to host virtual
machines (VM), each VM having associated VM memory.
The LNV device may be configured to access a non-volatile
memory express (NVMe) and a physical region page entry
(PRP) stored in the VM memory of one of the VMs, generate

US 11,768,783 B2

25

at least one backend NVMe command and at least one
backend PRP based on the accessed NVMe command and
PRP from the VM memory of the one of the VMs, and store
the at least one backend NVMe command and the at least
one backend PRP in a backend memory device that is
separate from the host memory devices of the one or more
compute nodes. In this aspect, additionally or alternatively,
the LNV device may be configured to translate a guest
physical address (GPA) of the PRP from the VM memory to
a corresponding HPA in a host memory device that hosts the
VM memory, and generate the at least one backend PRP to
indicate the corresponding HPA for data buffers of the host
memory device. In this aspect, additionally or alternatively,
the LNV device may be configured to cause at least one SSD
device to access the at least one backend NVMe command
and the at least on backend PRP in the backend memory
device, and the at least one SSD device may be configured
to directly access data buffers of the host memory device
hosting the VM memory based on the at least one backend
NVMe command and the at least on backend PRP using the
translated corresponding HPA. In this aspect, additionally or
alternatively, the host software of each compute node and
each VM may have respective local address ranges. The
LNV device may be configured to manage a global address
space and map the respective local address ranges to respec-
tive global address ranges in the global address space such
that the respective local address ranges do not overlap in the
global address space. The LNV device may be configured to
map a GPA indicated by the accessed PRP from the local
address range of the one of the VMs to corresponding a GPA
of the corresponding global address range in the global
address space, and generate the at least one backend PRP to
indicate the corresponding GPA of the global address range.
In this aspect, additionally or alternatively, the NT switch
may be configured to map each global address range to both
an egress port of the NT switch that routes to a compute node
associated with that global address range, and a local address
range that corresponds to that global address range.

Another aspect provides a method comprising running
host software on one or more compute nodes. Each compute
node include sat least one processor and a host memory
device. The method further comprises virtualizing hardware
resources of a plurality of solid-state drive (SSD) devices,
presenting a virtual SSD device to the host software of the
one or more compute nodes using a local non-volatile
memory express virtualization (LNV) device, directly
accessing data buffers of the host memory device of each
compute node using the plurality of SSD devices, and hiding
the plurality of SSD devices such that the plurality of SSD
devices are not visible to the at least one processor of each
compute node using a non-transparent (NT) switch for a
peripheral component interconnect express (PCle) bus that
interconnects the plurality of SSD devices and the LNV
device to the at least one processor of each compute node.
In this aspect, additionally or alternatively, the method may
further comprise accessing a non-volatile memory express
(NVMe) command and a physical region page entry (PRP)
stored in the host memory device of one of the compute
nodes, generating at least one backend NVMe command and
at least one backend PRP based on the accessed NVMe
command and PRP from the host memory device of the one
of the compute nodes, and storing the at least one backend
NVMe command and the at least one backend PRP in a
backend memory device that is separate from the host
memory devices of the one or more compute nodes. In this
aspect, additionally or alternatively, the method may further
comprise causing at least one SSD device to access the at

10

20

25

30

40

45

55

60

65

26

least one backend NVMe command and the at least on
backend PRP in the backend memory device, and directly
accessing data buffers of the host memory device based on
the at least one backend NVMe command and the at least on
backend PRP using the at least one SSD device. In this
aspect, additionally or alternatively, the method may further
comprise identifying a PCle transaction for an SSD device
accessing data buffers of a host memory device, and remap-
ping a requester identifier (RID) of the PCle transaction
from an RID of the SSD device to an RID of the LNV
device. In this aspect, additionally or alternatively, the
method may further comprise hosting virtual machines
(VM) on the one or more compute nodes, each VM having
associated VM memory. The method may further comprise
accessing a non-volatile memory express (NVMe) and a
physical region page entry (PRP) stored in the VM memory
of one of the VMs, generating at least one backend NVMe
command and at least one backend PRP based on the
accessed NVMe command and PRP from the VM memory
of the one of the VMs, and storing the at least one backend
NVMe command and the at least one backend PRP in a
backend memory device that is separate from the host
memory devices of the one or more compute nodes. In this
aspect, additionally or alternatively, the method may further
comprise translating a guest physical address (GPA) of the
PRP from the VM memory to a corresponding HPA in a host
memory device that hosts the VM memory, and generating
the at least one backend PRP to indicate the corresponding
HPA for data buffers of the host memory device. In this
aspect, additionally or alternatively, the method may further
comprise causing at least one SSD device to access the at
least one backend NVMe command and the at least on
backend PRP in the backend memory device, and directly
accessing data buffers of the host memory device hosting the
VM memory based on the at least one backend NVMe
command and the at least on backend PRP using the
translated corresponding HPA using the at least one SSD
device. In this aspect, additionally or alternatively, the host
software of each compute node and each VM may have
respective local address ranges, and the method may further
comprise managing a global address space and mapping the
respective local address ranges to respective global address
ranges in the global address space such that the respective
local address ranges do not overlap in the global address
space, mapping a GPA indicated by the accessed PRP from
the local address range of the one of the VMs to correspond-
ing a GPA of the corresponding global address range in the
global address space, and generating the at least one backend
PRP to indicate the corresponding GPA of the global address
range. In this aspect, additionally or alternatively, the
method may further comprise mapping each global address
range to both an egress port of the NT switch that routes to
a compute node associated with that global address range,
and a local address range that corresponds to that global
address range.

Another aspect provides a server system comprising one
or more compute nodes configured to run host software.
Each compute node includes at least one processor and a
host memory device. The server system further comprises a
plurality of solid-state drive (SSD) devices, and a local
non-volatile memory express virtualization (LNV) device
that includes a logical non-transparent (NT) switch that
interconnects the LNV device to the plurality of SSD
devices and the at least one processor of each compute node.
The LNV device is configured to virtualize hardware
resources of the plurality of SSD devices and present a
virtual SSD device to the host software of the one or more

US 11,768,783 B2

27

compute nodes. The LNV device is configured to access data
buffers of the host memory device of each compute node on
behalf of the plurality of SSD devices. The logical NT
switch is configured to hide the plurality of SSD devices
such that the plurality of SSD devices are not visible to the
at least one processor of each compute node. In this aspect,
additionally or alternatively, the LNV device may be con-
figured to encrypt data accessed from data buffers of the host
memory device of each compute node.

It will be understood that the configurations and/or
approaches described herein are exemplary in nature, and
that these specific embodiments or examples are not to be
considered in a limiting sense, because numerous variations
are possible. The specific routines or methods described
herein may represent one or more of any number of pro-
cessing strategies. As such, various acts illustrated and/or
described may be performed in the sequence illustrated
and/or described, in other sequences, in parallel, or omitted.
Likewise, the order of the above-described processes may be
changed.

The subject matter of the present disclosure includes all
novel and non-obvious combinations and sub-combinations
of the various processes, systems and configurations, and
other features, functions, acts, and/or properties disclosed
herein, as well as any and all equivalents thereof.

The invention claimed is:

1. A server system comprising:

a compute node configured to run host software, the
compute node including a processor and a host memory
device;

a local non-volatile memory express virtualization (LNV)
device configured to virtualize one or more solid-state
drive (SSD) devices and present a virtual SSD device
to the compute node; and

a non-transparent (N'T) switch for a peripheral component
interconnect express (PCle) bus, the NT switch con-
figured to:
interconnect the one or more SSD devices and the LNV

device to the at least one processor of each compute
node;
permit access, by the one or more SSD devices, to a
data buffer of the host memory device through the
NT switch, thereby bypassing the LNV device; and
hide the one or more SSD devices from the processor
of the compute node.

2. The server system of claim 1, wherein the LNV device
is configured to:

access a non-volatile memory express (NVMe) command
and a physical region page entry (PRP) stored in the
host memory device of the compute node;

generate a backend NVMe command and a backend PRP
based on the accessed NVMe command and PRP from
the host memory device of the compute node; and

store the backend NVMe command and the backend PRP
in a backend memory device that is separate from the
host memory device of the compute node.

3. The server system of claim 2, wherein

the LNV device is configured to cause a target SSD device
of the one or more SSD devices to access the at least
one backend NVMe command and the backend PRP in
the backend memory device; and

the target SSD device is configured to bypass the LNV
device to access a data buffer of the host memory
device through the NT switch based on the backend
NVMe command and the backend PRP.

4. The server system of claim 3, wherein the NT switch

is configured to:

5

20

30

35

40

45

50

55

60

65

28
identify a PCle transaction for the target SSD device
accessing data buffers of the host memory device; and
remap a requester identifier (RID) of the PCle transaction
from an RID of the target SSD device to an RID of the
LNV device.

5. The server system of claim 1, wherein the compute
node is configured to host virtual machines (VM), each VM
having associated VM memory; and

wherein the LNV device is configured to:

access a non-volatile memory express (NVMe) and a
physical region page entry (PRP) stored in the VM
memory of one of the VMs;

generate a backend NVMe command and a backend
PRP based on the accessed NVMe command and
PRP from the VM memory of the one of the VMs;
and

store the backend NVMe command and the backend
PRP in a backend memory device that is separate
from the host memory device of the compute node.

6. The server system of claim 5, wherein the LNV device
is configured to:

translate a guest physical address (GPA) of the PRP from

the VM memory to a corresponding host physical

address (HPA) in the host memory device that hosts the

VM memory; and

generate the backend PRP to indicate the corresponding

HPA for data buffers of the host memory device.

7. The server system of claim 6, wherein

the LNV device is configured to cause the target SSD

device to access the backend NVMe command and the

backend PRP in the backend memory device, and

the target SSD device is configured to bypass the LNV

device to access data buffers of the host memory device

hosting the VM memory through the NT switch based
on the backend NVMe command and the backend PRP
using the translated corresponding HPA.

8. The server system of claim 5, wherein:

the host software of the compute node and each VM have

respective local address ranges,

the LNV device is configured to manage a global address

space and map the respective local address ranges to

respective global address ranges in the global address
space such that the respective local address ranges do
not overlap in the global address space, and

the LNV device is configured to map a GPA indicated by

the accessed PRP from the local address range of the
one of the VMs to a corresponding GPA of the corre-
sponding global address range in the global address
space, and generate the at least one backend PRP to
indicate the corresponding GPA of the global address
range.

9. The server system of claim 8, wherein the NT switch
is configured to map each global address range to both an
egress port of the NT switch that routes to a compute node
associated with that global address range, and a local address
range that corresponds to that global address range.

10. A method comprising:

virtualizing one or more solid-state drive (SSD) devices;

presenting a virtual SSD device to host software of a

compute node using a local non-volatile memory

express virtualization (LNV) device;

permitting access, by the one or more SSD devices, to a

data buffer of a host memory device of the compute

node through a non-transparent (NT) switch for a

peripheral component interconnect express (PCle) bus,
thereby bypassing the LNV device; and

US 11,768,783 B2

29

hiding the one or more SSD devices from a processor of
the compute node.

11. The method of claim 10, further comprising:

accessing a non-volatile memory express (NVMe) com-
mand and a physical region page entry (PRP) stored in
the host memory device of the compute node;

generating a backend NVMe command and a backend
PRP based on the accessed NVMe command and PRP
from the host memory device of the compute node; and

storing the backend NVMe command and the backend
PRP in a backend memory device that is separate from
the host memory device of the compute node.

12. The method of claim 11, further comprising:

causing a target SSD device to access the backend NVMe
command and the backend PRP in the backend memory
device; and

bypassing, by the target SSD, the LNV device to access
data buffer of the host memory device based on the
backend NVMe command and the backend PRP.

13. The method of claim 12, further comprising:

identifying a PCle transaction for the target SSD device
accessing data buffers of the host memory device; and

remapping a requester identifier (RID) of the PCle trans-
action from an RID of the target SSD device to an RID
of the LNV device.

14. The method of claim 10, further comprising:

hosting virtual machines (VM) on the compute node, each
VM having associated VM memory;

accessing a non-volatile memory express (NVMe) and a
physical region page entry (PRP) stored in the VM
memory of one of the VMs;

generating a backend NVMe command and a backend
PRP based on the accessed NVMe command and PRP
from the VM memory of the one of the VMs; and

storing the backend NVMe command and the backend
PRP in a backend memory device that is separate from
the host memory device of the compute node.

15. The method of claim 14, further comprising:

translating a guest physical address (GPA) of the PRP
from the VM memory to a corresponding host physical
address (HPA) in the host memory device that hosts the
VM memory; and

generating the backend PRP to indicate the corresponding
HPA for data buffers of the host memory device.

16. The method of claim 15, further comprising:

causing the target SSD device to access the backend
NVMe command and the backend PRP in the backend
memory device; and

30

35

40

30

bypassing, by the target SSD, the LNV device to access
data buffers of the host memory device hosting the VM
memory through the NT switch based on the backend
NVMe command and the backend PRP using the
translated corresponding HPA.

17. The method of claim 14, wherein the host software of

the compute node and each VM have respective local
address ranges, and the method further comprises:

managing a global address space and mapping the respec-
tive local address ranges to respective global address
ranges in the global address space such that the respec-
tive local address ranges do not overlap in the global
address space;

mapping a GPA indicated by the accessed PRP from the
local address range of the one of the VMs to a corre-
sponding GPA of the corresponding global address
range in the global address space; and

generating the at least one backend PRP to indicate the
corresponding GPA of the global address range.

18. The method of claim 17, further comprising mapping

each global address range to both an egress port of the NT
switch that routes to a compute node associated with that
global address range, and a local address range that corre-
sponds to that global address range.

19. A server system comprising:

one or more compute nodes configured to run host soft-
ware, each compute node including at least one pro-
cessor and a host memory device;

a local non-volatile memory express virtualization (LNV)
device that includes a logical non-transparent (NT)
switch that interconnects the LNV device to one or
more SSD devices and the at least one processor of
each compute node; wherein

the LNV device is configured to virtualize the one or more
SSD devices and present a virtual SSD device to the
host software of the one or more compute nodes;
wherein

the logical NT switch is configured to permit access, by
the one or more SSD devices, to a data buffer of the
host memory device, thereby bypassing the LNV
device; and wherein

the logical NT switch is configured to hide the one or
more SSD devices from a processor of a compute node.

20. The server system of claim 19, wherein the LNV

45 device is configured to encrypt data accessed from data

buffers of the host memory device of each compute node.

#* #* #* #* #*

