US 20240045727A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2024/0045727 A1l

Cieslak et al.

43) Pub. Date: Feb. 8, 2024

(54)

(71)

(72)

@
(22)

(63)

CORE TARGETING IN HETEROGENEOUS
MULTIPROCESSOR SYSTEMS

Applicants:Michael Cieslak, Los Angeles, CA
(US); Jiayao Yu, Venice, CA (US); Kai
Chen, Manhattan Beach, CA (US);
Farnaz Azmoodeh, Venice, CA (US);
Michael David Marr, Monroe, WA
(US); Jun Huang, Beverly Hills, CA
(US); Zahra Ferdowsi, Marina del Rey,
CA (US)
Inventors: Michael Cieslak, Los Angeles, CA
(US); Jiayao Yu, Venice, CA (US); Kai
Chen, Manhattan Beach, CA (US);
Farnaz Azmoodeh, Venice, CA (US);
Michael David Marr, Monroe, WA
(US); Jun Huang, Beverly Hills, CA
(US); Zahra Ferdowsi, Marina del Rey,
CA (US)

Appl. No.: 18/382,893

Filed: Oct. 23, 2023

Related U.S. Application Data

Continuation of application No. 17/565,776, filed on
Dec. 30, 2021, now Pat. No. 11,816,506, which is a
continuation of application No. 16/427,285, filed on
May 30, 2019, now Pat. No. 11,275,623.

100~

128~
Third Party Server(s)

130~
Third Party Application(s)|

Publication Classification

(51) Int. CL
GOGF 9/50 (2006.01)
GOGF 11/34 (2006.01)
GOGF 11/30 (2006.01)
(52) US.CL
CPC ... GOGF 9/505 (2013.01); GOGF 9/5094
(2013.01); GOGF 11/3433 (2013.01); GO6F
11/3024 (2013.01); GO6F 2209/501 (2013.01);
GOGF 2209/508 (2013.01)
(57) ABSTRACT

Systems, devices, media, and methods are presented for
throttling (i.e., adjusting) the workload of an application
(e.g., number of task requests) in order to improve processor
core usage within a heterogeneous multiprocessor system.
When high-performance processing is beneficial to the
application, the number of task requests may be increased in
order to have high-performance processor cores within the
heterogeneous multiprocessor system core processor per-
form the tasks. On the other hand, when high-performance
processing is not beneficial, the number of task requests may
be decreased in order to have low-performance processor
cores within the heterogeneous multiprocessor system per-
form the tasks. Processor core usage is monitored, and the
number of tasks being performed are adjusted to match the
processor core usage to a target processor core usage for
functions the application is performing.

-

Client Device
12~
| WebClent |
114~
| Client Application(s) |
116~
| Core Target Framework |

~ 110

20~

Application Server

| AP! Server |

122~

| Web Server |

124~

| Workload Development System ‘

8325310

<
DataBase(s)

126

Patent Application Publication Feb. 8, 2024 Sheet 1 of 8 US 2024/0045727 A1

100\
128~ ~110
Third Party Server(s) Client Device
112~
130~ _ Web Client
Third Party Application(s) T
S
T Client Application(s)
116~
Core Target Framework

A

Application Server
120~

API Server

122~

Web Server

124~
Workload Development System

3
DataBase(s)™-12¢

00|i[00
00)I[00
CliiiiiBP

00
iI
|
|
|
|
|
|
i
|
|
|
|
|
|
|
|
|
|
|
|
|

00)i[00|||00|{|c0
00){{00})100[{|00

00)i00

00
00

Patent Application Publication Feb. 8, 2024 Sheet 2 of 8 US 2024/0045727 A1

114~

Applications
202~
Core Analyzer
204~
Core Monitor

206~
Core Mapper

208~
Workload Manager

FIG. 2

US 2024/0045727 Al

Feb. 8,2024 Sheet 3 of 8

Patent Application Publication

€ 9l
upLe q0lL€ B0LE
Vi Vi Vi
4 4 4
N) 0
onany) |« « o [BNANY | [BNBND
yse| yse| yse|
}lomaweli4 uoindaxy
1 \-80¢
Pa34 JUsjU0] - 1BA0JSI(J - i ”.eoo botised - N oInjea-
UoIIBal?) JUBJUOY) - BJBWEY) « @_m_. :9103 Jualing - yiomawel Uyl
SNISUSJU| NdD - sdepy « [7] P84 XL .\.Gmon_ JBUNY + <= yopebineN [.
JOJE30TTY PEOPIION poa4 spusli{ :ebed jusainy e Z¢ :
5057 — hkmcmcms_ Jmo_fo>> .
uyQg aqr0e ev0e | aInjea
g ¢ z a— apiE
I9-¢ N ! 0
T - L "aj0n " [[200]" *"[e100] [s:00]| L [games3
OIT- 0 <107 108S990.d ByLE
Jaddepy alo) —\70¢
90z~
"-gll

Patent Application Publication

400~
402~

Feb. 8,2024 Sheet 4 of 8

Analyze cores

404~

Y

y

Y

Determine workload type

406~

A

y

Monitor core usage

408~

A

y

|dentify target core usage for
workload type

410~ v

Adjust workload to match core
usage to target

FIG. 4

402~

202~
Obtain processor information

504~ v

Determine processor core
statistics (e.g., frequency
range and cache size)

506~ v

Compare processor core
statistics to predetermined
values to identify a match

508~ v

Assign a core type (e.g.,
big/little to each core

FIG.5

US 2024/0045727 Al

Patent Application Publication

404/408~

Feb. 8,2024 Sheet 5 of 8

602~

Monitor feature activity

604~ v

Identify functions associated
with the monitored feature
activity

606~ !

Determine workload type
from the identified functions

608~ |

Compare determined
workload type to predefined
targets for core usage

610~ !

|dentify target core usage
from predefined targets
matching the determined

workload type

FIG. 6

702~

Compare the target core use

to the current core use

US 2024/0045727 Al

704

Yes Current

core use
?

706~

Increase/decrease workload

FIG.7

Patent Application Publication Feb. 8, 2024 Sheet 6 of 8 US 2024/0045727 A1

Mobile
Device
890\4
ST e TR
| p / ‘|
: Touch h l
I |Driver Screen Ctrr [
I Display :
| A / |
! |
: I | [
820~ 810 :
| [Short Range WWAN !
|| XCVRs XCVRs |
|
| 840B~, - |
|
| RAM = !
| CPU !
. ! 208~
| ! Other | ! _-~""| Core Analyzer
|} Memory | [B40A !
T Flash | .-~ !
: Memory N 210~
O RS Workload
' N Manager
| < g

| 7 |
‘\ 870 /

« Camera(s) 7

— e e e e e e e e e s e e e e e -

Patent Application Publication Feb. 8, 2024 Sheet 7 of 8 US 2024/0045727 A1

902~ 904~ y 90
I Draracenmre N_l _____________ i
! Processors ! u emory .
| 906~ 1912~ 914~ i
i Processor | E Main Memory ||Static Memory E
| 908~ < > 908~ 908~]
E Instructions : ' | Unstructions| || [Instructions]|!
| (|
i . i | 916~ !
1 910y ! i Storage Unit !
I
E Processor E J[RALAY : : !
' | 908~ | E Machine-Readable Medium| |1
| [__Instructions ||] 908~ }
| | } Instructions !
S A :
Bus | || "7 '
944
< / A 4 Yy Vv Y Y »
92~ ___ v ,
: I/l0 Components :
| 928~ 930~ 932~ !
: Output Input Biometric :
‘ |
| 934~ 936~ 938~ !
: Motion Environment Position :
' |
|
940~ :
: Communication :
|
e 1
%926
9221 Devices

FIG. 9

Patent Application Publication Feb. 8, 2024 Sheet 8 of 8 US 2024/0045727 A1
1000~
API Calls Messages
1 A
1090 1052
1004~ AN
1006~ Software Architecture
Applications
1036~ 1042~
Home Location
1030~ 1044~
Contacts Media 10?:_3 -~
ird-Party
1032~ 1046~ Application
Browser Messaging
1034~ 1048~
Book Reader Game
1008~
Frameworks
1010~
Libraries
1018~ 1024~ 1028~
System API Other
1012~
Operating System
1014~ 1016~ 1022~
Kernel Services Drivers
\ 4
A
1002~ v
Machine
1020~ 1026~ 1038~
Processors Memory I/O Components

FIG. 10

US 2024/0045727 Al

CORE TARGETING IN HETEROGENEOUS
MULTIPROCESSOR SYSTEMS

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a Continuation of U.S. patent
application Ser. No. 17/565,776 filed on Dec. 30, 2021,
which is a Continuation of U.S. patent application Ser. No.
16/427,285 filed on May 30, 2019, now U.S. Pat. No.
11,275,623, the contents of all of which are incorporated
fully herein by reference.

TECHNICAL FIELD

[0002] Examples set forth in this disclosure relate gener-
ally to applications running on client devices. More particu-
larly, but not by way of limitation, this disclosure addresses
systems and methods for targeting which cores in a hetero-
geneous multiprocessor system are performing tasks of an
application, e.g., to limit how much work the application
performs to ensure power efficiency for the users of the
application.

BACKGROUND

[0003] Heterogeneous multiprocessor systems are proces-
sor systems that include at least two different types of
processor cores. For example, a heterogeneous multiproces-
sor system may include two cores having relatively high-
performance characteristics for use when intensive process-
ing tasks are being performed and two cores having
relatively low-performance characteristics for use when
non-intensive processing is being performed.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] The disclosed subject matter is best understood
from the following detailed description when read in con-
nection with the accompanying drawings, with like elements
having the same reference numerals. When a plurality of
similar elements is present, a single reference numeral may
be assigned to the plurality of similar elements with a small
letter designation referring to specific elements. When refer-
ring to the elements collectively or to a non-specific one or
more of the elements, the small letter designation may be
dropped. This emphasizes that according to common prac-
tice, the various features of the drawings are not drawn to
scale unless otherwise indicated. On the contrary, the dimen-
sions of the various features may be expanded or reduced for
clarity. Included in the drawings are the following figures:
[0005] FIG. 1 is a block diagram of an example processor
core targeting system in an online client-server system.
[0006] FIG. 2 is a block diagram illustrating an example
application for processor core targeting in a device.

[0007] FIG. 3 is a block diagram illustrating a core target
framework including applications and components for
implementing processor core targeting.

[0008] FIG. 4 is a flow diagram illustrating an example
method for implementing processor core targeting.

[0009] FIG. 5 is a flow diagram illustrating an example
method for analyzing processor cores in the example method
of FIG. 4.

[0010] FIG. 6 is a flow diagram illustrating an example
method for determining workload and identifying target
processor core usage in the example method of FIG. 4.

Feb. 8, 2024

[0011] FIG. 7 is a flow diagram illustrating an example
method for adjusting application workload to match core
usage to the target core usage in the example method of FIG.
4.

[0012] FIG. 8 is a diagrammatic representation of an
example hardware configuration for a client device embod-
ied as a mobile device.

[0013] FIG. 9 is a diagrammatic representation of a
machine in the form of a computer system within which a set
of instructions may be executed for causing the machine to
perform any one or more of the methodologies described
herein, in accordance with some examples.

[0014] FIG. 10 is a block diagram showing a software
architecture within which aspects of the present disclosure
may be implemented, in accordance with some examples.

DETAILED DESCRIPTION

[0015] Aspects of the subject matter disclosed herein are
directed to systems/applications for throttling (i.e., adjust-
ing) the workload of an application (e.g., number/rate of task
requests) in order to improve processor core usage within a
heterogeneous multiprocessor system. For example, when
high-performance processing is beneficial to the application,
the system/application may increase the number of task
requests in order to have high-performance cores within the
heterogeneous multiprocessor system perform those tasks.
On the other hand, when high-performance processing is not
beneficial, the system may reduce/limit the number of task
requests in order to have low-performance cores within the
heterogeneous multiprocessor system perform the tasks. As
used herein, the term heterogeneous multiprocessor system
is meant to include a multi-core processor, system on a chip
(SoC) that has multiple processing cores, or other type of
device having multiple processing cores including multiple
types of processors/cores (e.g., processors/cores that are not
symmetric and/or have different processing capabilities) or
including processors/cores of the same type than can be
adjusted up and down in terms of processing performance/
throughput using dynamic frequency scaling (e.g., as a
function of clock frequency of the processors/cores).
[0016] The application/system may monitor current pro-
cessor core usage and adjust the number of tasks being
performed to match the processor core usage to a target
processor core usage for functions the application/system is
performing in order to, for example, conserve power or
improve speed. In one example, the application/system
reduces the number of tasks being performed for an appli-
cation when speed is not beneficial (e.g., when a user is
viewing text) in order to influence the heterogeneous mul-
tiprocessor system to use a relatively low-performance core
(s) in order to conserve battery power, and increase the
number of tasks being performed when speed is beneficial
(e.g., during real-time processing of video) in order to
influence the heterogeneous multiprocessor system to use a
relatively high-performance core(s) in order to improve
speed.

[0017] The description that follows includes systems,
methods, techniques, instruction sequences, and computing
machine program products illustrative of examples of the
disclosure. In the following description, for the purposes of
explanation, numerous specific details are set forth in order
to provide an understanding of various examples of the
disclosed subject matter. It will be evident, however, to those
skilled in the art, that examples of the disclosed subject

US 2024/0045727 Al

matter may be practiced without these specific details. In
general, well-known instruction instances, protocols, struc-
tures, and techniques are not necessarily shown in detail.
[0018] In accordance with one example, a method is
provided for influencing processor core usage in a hetero-
geneous multiprocessor system of a device. The method
includes determining a workload type for an application
running on the heterogeneous multiprocessor system of the
device, monitoring the heterogeneous multiprocessor sys-
tem core usage to identify a first subset of one or more cores
within the heterogeneous multiprocessor system performing
the workload type, identifying a target core usage for the
workload type, the target core usage including a second
subset of one or more cores within the heterogeneous
multiprocessor system, and adjusting a workload of the
application to match the first subset of one or more cores to
the second subset of one or more cores.

[0019] In accordance with another example, a system is
provided for influencing processor core usage in a hetero-
geneous multiprocessor system of a device. The system
includes a memory that stores instructions for execution by
the heterogeneous multiprocessor system. The instructions
configure the heterogeneous multiprocessor system to deter-
mine a workload type for an application running on the
heterogeneous multiprocessor system of the device, monitor
the heterogeneous multiprocessor system core usage to
identify a first subset of one or more cores within the
heterogeneous multiprocessor system performing the work-
load type, identify a target core usage for the workload type,
the target core usage including a second subset of one or
more cores within the heterogeneous multiprocessor system,
and adjust a workload of the application to match the first
subset of one or more cores to the second subset of one or
more cores.

[0020] In accordance with another example, a non-transi-
tory processor-readable storage medium is provided that
stores processor-executable instructions for influencing pro-
cessor core usage in a heterogeneous multiprocessor system
of a device that, when executed by a processor of a machine,
cause the machine to perform operations. The operations
performed by the machine include determining a workload
type for an application running on the heterogeneous mul-
tiprocessor system of the device, monitoring the heteroge-
neous multiprocessor system core usage to identify a first
subset of one or more cores within the heterogeneous
multiprocessor system performing the workload type, iden-
tifying a target core usage for the workload type, the target
core usage including a second subset of one or more cores
within the heterogeneous multiprocessor system, and adjust-
ing a workload of the application to match the first subset of
one or more cores to the second subset of one or more cores.

[0021] FIG.1 is a block diagram illustrating a system 100,
according to some examples, configured to influence pro-
cessor core usage in heterogeneous multiprocessor system
devices. The system 100 includes one or more client devices
such as client device 110. The client device 110 includes, but
is not limited to, a mobile phone, desktop computer, laptop,
portable digital assistants (PDA), smart phone, tablet, net-
book, laptop, multi-processor system, microprocessor-based
or programmable consumer electronic, game console, set-
top box, computer in a vehicle, or any other communication
device that a user may utilize to access the system 100. In
some examples, the client device 110 includes a display
module (not shown) to display information (e.g., in the form

Feb. 8, 2024

of'user interfaces). In further examples, the client device 110
includes one or more of touch screens, accelerometers,
gyroscopes, cameras, microphones, global positioning sys-
tem (GPS) devices, and so forth. The client device 110 may
be a device of a user that is used to access and utilize an
online social platform. For example, the client device 110
may be used to input information to create an account,
exchange information over a network 102, and so forth.
[0022] For example, client device 110 may be a device of
a user who is using a social media application on the device.
Client device 110 may call a server for a social platform
(e.g., hosted by server system 108) via the social media
application directly or through one or more third-party
servers 128 (e.g., utilizing one or more third-party applica-
tions 130). Application server 104 tracks information
regarding client device (e.g., make, model number, central
processing unit (CPU) type, graphics processing unit (GPU)
type, associated performance metrics, etc.) as a dataset in
database 126.

[0023] One or more users may be a person, a machine, or
other means of interacting with the client device 110. In
examples, the user may not be part of the system 100 but
may interact with the system 100 via the client device 110
or other means. For instance, the user may provide input
(e.g., touch screen input or alphanumeric input) to the client
device 110 and the input may be communicated to other
entities in the system 100 (e.g., third-party servers 130,
server system 108, etc.) via the network 102. In this instance,
the other entities in the system 100, in response to receiving
the input from the user, may communicate information to the
client device 110 via the network 102 to be presented to the
user. In this way, the user interacts with the various entities
in the system 100 using the client device 110.

[0024] The system 100 further includes a network 102.
One or more portions of the network 102 may be an ad hoc
network, an intranet, an extranet, a virtual private network
(VPN), a local area network (LAN), a wireless LAN
(WLAN), a wide area network (WAN), a wireless WAN
(WWAN), a metropolitan area network (MAN), a portion of
the Internet, a portion of the public switched telephone
network (PSTN), a cellular telephone network, a wireless
network, a WiFi network, another type of network, or a
combination of two or more such networks.

[0025] The client device 110 may access the various data
and applications provided by other entities in the system 100
via web client 112 (e.g., a browser) and/or one or more client
applications 114. The client device 110 may include one or
more client application(s) 114 (also referred to as “apps”™)
such as, but not limited to, a processor core targeting
application, a web browser, messaging application, elec-
tronic mail (email) application, an e-commerce site appli-
cation, a mapping or location application, and the like. The
client device 110 may additionally include a core target
framework 116 that monitors which processor cores of a
heterogeneous multiprocessor system within the client
device 110 are in use and adjusts task requests for functions
being performed by the client device 110 to influence which
cores are performing the functions.

[0026] In some examples, one or more client application
(s) 114 are included in a given one of the client device 110,
and configured to locally provide the user interface and at
least some of the functionalities, with the client application
(s) 114 configured to communicate with other entities in the
system 100 (e.g., third-party server(s) 128, server system

US 2024/0045727 Al

108, etc.), on an as-needed basis, for data processing capa-
bilities not locally available (e.g., to access location infor-
mation, to authenticate a user, etc.). Conversely, one or more
client application(s) 114 may not be included in the client
device 110, and then the client device 110 may use its web
browser to access the one or more applications hosted on
other entities in the system 100 (e.g., third-party server(s)
128, server system 108, etc.).

[0027] A server system 108 provides server-side function-
ality via the network 102 (e.g., the Internet or wide area
network (WAN)) to one or more third party server(s) 128,
and one or more client devices 110. The server system 108
includes an application program interface (API) server 120,
a web server 122, and a workload development system 124
(e.g., for developing core targeting applications for use by
client device 110), that may be communicatively coupled
with one or more database(s) 126. The one or more database
(s) 126 may be storage devices that store data (e.g., in a
dataset) related to users of the server system 108, applica-
tions associated with the server system 108, cloud services,
and so forth. The one or more database(s) 126 may further
store information related to third party server(s) 128, third-
party application(s) 130, client device 110, client application
(s) 114, users, and so forth. In one example, the one or more
database(s) 126 may be cloud-based storage.

[0028] The server system 108 may be a cloud computing
environment, according to some examples. The server sys-
tem 108, and any servers associated with the server system
108, may be associated with a cloud-based application. In
one example the server system 108 includes a workload
development system 124. The workload development sys-
tem 124 may include one or more servers and may be
associated with a cloud-based application. The workload
development system 124 may develop and distribute core
targeting applications (e.g., as part of a social media appli-
cation or update thereto) to client devices 110.

[0029] The system 100 further includes one or more
third-party server(s) 128. The one or more third-party server
(s) 128 may include one or more third-party application(s)
130. The one or more third-party application(s) 130, execut-
ing on third party server(s) 128 may interact with the server
system 108 via API server 120 via a programmatic interface
provided by the API server 120. For example, one or more
of the third-party applications 130 may request and utilize
information from the server system 108 via the API server
120 to support one or more features or functions on a
website hosted by the third party or an application hosted by
the third party.

[0030] FIG. 2 is a block diagram illustrating example
client applications 114 including a core analyzer 202 and a
workload manager 208. The illustrated core analyzer 202
includes a core monitor 204 and a core mapper 206. Other
suitable applications for use in client device 110 will be
understood from the description herein.

[0031] The core monitor 204 configures the client device
110 to monitor aspects of a heterogeneous multiprocessor
system (see, for example, processor 302 depicted in FIG. 3
and the related description). Aspects of the heterogeneous
multiprocessor system may include processor core statistics
such as frequency range and/or cache size of each core
within the heterogeneous multiprocessor system.

[0032] From the processor core statistics, the core mapper
206 determines a processor core type (e.g., high-perfor-
mance/big or low-performance/little) for each processor

Feb. 8, 2024

core within the heterogeneous multiprocessor system. In one
example, the core mapper 206 determines if a processor core
has a relatively high level of processing capability (i.e., a
“big” processor core type) or a relatively low level of
processing capability (i.e., a “little” processor core type). In
another example, the core mapper 206 determines if a
processor core is capable of operating at two different levels
of performance (e.g., a relatively high level/“big” processor
core type associated with a relatively high core clock
frequency and a relatively low level/“little” processor core
type associated with a relatively low core clock frequency.
The core mapper 206 stores the determined type of each
processor core (e.g., in a look-up table in memory).

[0033] The workload manager 208 communicates with the
core analyzer 202 to determine which processor cores are
currently in use (e.g., big or little). The workload manager
208 additionally monitors features of an application running
on the device 110 and controls application tasks to influence
which processor cores are performing the features in order
to improve one or more operational characteristics of the
device 110 (e.g., power use or speed).

[0034] FIG. 3 depicts an example core target framework
116 for influencing processor core usage. The illustrated
system 116 includes a heterogeneous multiprocessor system
302. The heterogeneous multiprocessor system 302 includes
a plurality of processor cores 304a-n. The heterogeneous
multiprocessor system 302 includes at least two types of
processor cores or processor cores capable of operating at
two different capability levels. In an example, cores 0 and 1
304q and 3045 may be relatively low-performance cores and
the remaining cores may be relatively high-performance
cores. In another example, cores 0-N may be capable of
operating at different levels of performance. The heteroge-
neous multiprocessor system 302 may determine which
processor cores to use based on tasks it receives from
applications running on the device 110. An example of a
heterogeneous multiprocessor system is the Qualcomm
Snapdragon 845 System on a Chip (SoC), used in the
Samsung Galaxy S8 available from Samsung of Seoul,
South Korea (which includes a 2.35-2.45 GHz Quad-core
Kryo having 4 “big” processor cores and a 1.8-1.9 GHz
Quad-core Kryo having 4 “little” processor cores). Although
heterogeneous multiprocessor systems with two types of
processor cores are described herein, the present disclosure
is applicable to heterogeneous multiprocessor systems with
additional types of cores, e.g., cores capable of operating a
different level of performance.

[0035] The core monitor 204 is in communication with the
heterogeneous multiprocessor system 302 and core mapper
206. The core monitor 204 is configured to monitor char-
acteristics of the processor cores 304 and report the moni-
tored characteristics (e.g., cache size and/or frequency
range) to the core mapper 206. The core monitor 204 may
poll a central processing unit (CPU) statistics directory (e.g.,
maintained in and/or by processor 302) to retrieve frequency
range (roughly the number of calculations executed by the
processor core per second) and/or cache size for each
processor core. The frequency range and/or cache size for
each processor core may be stored in the CPU statistics
directory by a Linux kernel running on the heterogeneous
multiprocessor system 302. The frequency rage and/or cache
size may be determined for a particular mobile device or a
particular heterogeneous multiprocessor system and com-
municated by the core monitor 204 to a server (e.g., server

US 2024/0045727 Al

system 108) for storage and subsequent configuration of
other device of the same or similar type or having the same
or similar heterogeneous multiprocessor system.

[0036] The core mapper 206 determines the processor core
type of each processor core 304 based on the characteristics
from the core monitor 204 and stores the determined type in
memory (e.g., in a look-up table). The core mapper 206 may
compare one or more of the characteristics to known values
(e.g., frequency range and/or cache size) indicative of a
particular type of processor core. For example, in a four-core
(quad-core) processor 302, two of the processor cores 304
(e.g., processor core 0 and processor core 1) may be rela-
tively low-performance processor cores with a relatively low
frequency range and/or small amount of cache and two of
the processor cores 304 (e.g., core 2 and core 3) may be
relatively high-performance processor cores with a rela-
tively high frequency range and/or large amount of cache.
By comparing the frequency ranges and/or cache values of
the processor cores to known frequency ranges and/or cache
values (single values or ranges of value) for the types of
processor cores being monitored, the core mapper 206 can
map each processor core to a particular processor core type.
The core mapper 206 stores the processor core type. Addi-
tionally, or alternatively, the core mapper 206 may commu-
nicate the processor core type to a server (e.g., server system
108) for storage and subsequent configuration of other
device of the same or similar type or having the same or
similar heterogeneous multiprocessor system.

[0037] The core monitor 204 is additionally configured to
determine which type of processor core is currently in use by
processor 302. The core monitor 204 may retrieve current
processor core statistics and determine which type of pro-
cessor core is in use by comparing the processor core
statistics for each of the processor cores to known values for
high-level processor cores and low-level processor cores to
identify a match. The core monitor 204 can then assign a
processor core type to each of the processor cores of the
heterogeneous multiprocessor system responsive to the
identified match for storage by core mapper 206.

[0038] The core monitor 204 is additionally configured to
monitor which processor core type is currently in use (e.g.,
little processor cores 0/1 or big processor cores 2/3). The
core monitor 204 may periodically poll threads running by
the processor 302 to determine which processor core 304 is
processing that thread. Using processor core type informa-
tion retrieved from the core mapper 206, the core monitor
204 determines the particular type of processor core that
processed the thread and reports that information to a
workload manager 208.

[0039] The workload manager 208 monitors the currently
running features of an application (e.g., a social media
application) and influences which processor cores are
executing instructions for those offerings, e.g., to improve
battery life without negatively impacting a user’s experience
with the application. The illustrated workload manager 208
maintains a table including information regarding current
aspects of the application, a policy associated with the
current aspects of the application, information regarding the
current processor core(s) 304 in use, and information regard-
ing the desired processor core(s) 304 to use.

[0040] If there is a discrepancy between the processor
core(s) 304 in use and the desired processor core(s) 304, the
workload manager 208 will change (throttle) performance of
task being assigned by the application to the task queues

Feb. 8, 2024

(task queues 310a-7) within the execution framework 308.
For example, if the current processor core(s) 304 in use are
relatively high-performance processor cores (“Big”) and the
desired processor core(s) 304 are relatively low-perfor-
mance processor core(s) 304 (“Little”), the workload man-
ager will reduce the number/rate of tasks being assigned to
the task queues 310 in order to have the heterogeneous
multiprocessor system 302 move processing to the relatively
low-performance processor core(s) 304. On the other hand,
if the current processor core(s) 304 in use are relatively
low-performance processor cores (“Little”) and the desired
core(s) 304 are relatively high-performance processor core
(s) 304 (“Big”), the workload manager 208 will increase the
number/rate of tasks being assigned to the task queues 310
in order to have the heterogeneous multiprocessor system
302 move processing to the relatively high-performance
processor core(s) 304 or change the performance level of a
processor (e.g., by adjusting its clock frequency).

[0041] The illustrated workload manager 208 determines
the current feature offerings of an application and policies
associated with those feature offerings based on a navigation
framework 312 that monitors features (e.g., features 314a-
314n) of an application. For example, Feature 0 314a may
be an information feed received from a friend of a user of a
social media application. The navigation framework 312
may determine current feature offering (e.g., a current
“page” of the social media application) and a currently
policy (text feed) based on one or more of the Features 314
currently being provided by the social media application.

[0042] The workload manager 208 determines a current
processor core type based on information received from the
core monitor 204 and determines a desired processor core
type for the current policy by querying a workload allocator
306. The workload allocator 306 stores policy information
associated with the current feature offerings, e.g., in a
look-up table within memory. For example, a text feed from
a friend may be associated in the workload allocator 306
with a relatively low-performance processor core. The
workload manager 208 retrieves the desired processor core
type from the workload allocator 306 for use in determining
whether to increase/decrease the number/rate of tasks to
schedule within the execution framework 308.

[0043] FIG. 4 is a flow diagram illustrating an example
method 400 for influencing processor core usage in a
heterogeneous multiprocessor system, FIG. 5 is a flow
diagram illustrating an example method 402 for analyzing
processor cores in the processing block of FIG. 4, FIG. 6 is
a flow diagram illustrating an example methods 404/408 for
determining workload type and identifying target core usage
in the processing blocks of FIG. 4, and FIG. 7 is a flow
diagram illustrating an example method 410 for adjusting
workload in the processing block of FIG. 4. Although the
below description of the methods refers to the core target
framework 116, other systems for monitoring and managing
core usage based on application usage will be understood
from the description herein. The flowcharts may describe the
operations as a sequential process, however, many of the
operations can be performed in parallel or concurrently. In
addition, the order of the operations may be re-arranged. A
process is terminated when its operations are completed. A
process may correspond to a method, a procedure, etc. The
steps of a method may be performed in whole or in part, may
be performed in conjunction with some or all of the steps in

US 2024/0045727 Al

other methods, and/or may be performed by any number of
different systems, such as the systems described in FIGS. 1,
2, 3, and 8-10.

[0044] At block 402, the core monitor 204 analyzes the
processor cores 304 of the heterogeneous multiprocessor
system 302. The core monitor 204 may analyze the proces-
sor cores as illustrated in FIG. 5. The core monitor 204
obtains (block 502) processor information from the hetero-
geneous multiprocessor system 302 (block 502), e.g., by
querying a CPU statistics directory generated by a Linux
kernel running on the heterogeneous multiprocessor system.
The core monitor 204 determines (block 504) processor core
statistics (e.g., frequency range and cache size) from the
obtained processor information. The core mapper 206 com-
pares (block 506) the processor core statistics, which it
receives from the core monitor 204, to predetermined values
to identify a processor core type. The core mapper 206
assigns (block 508) a core type (e.g., big/little/adjustable)
responsive to the identified match, e.g., by recording in a
look-up table in memory accessible to the core monitor 204.

[0045] At block 404, the workload manager 208 deter-
mines a current workload type for an application (e.g., a
social media application). The workload manager 208 may
determine the current workload type as illustrated in blocks
602-606 of FIG. 6. The workload manager 208 monitors
(block 602) feature activity. The workload manager 208
identifies the functions (block 604) associated with each
activity. In one example, feature activity is determined based
on the page the user of the application is currently viewing
with each page providing different functions (e.g., text feed,
video editing, video capturing, etc.) that need different levels
of processing to render acceptable levels of performance to
the user. The workload manager 208 determines (block 606)
workload type from the determined feature activity using
information stored in workload allocator 306. In one
example, there are two workload types, a high-level pro-
cessing type and a low-level processing type. In accordance
with this example, feature activity involving a relatively
high level of processing (e.g., video editing) is determined
to be a high-level processing type and feature activity
involving a relatively low level of processing (e.g., reading
a text feed) is determined to be a low-level processing type.

[0046] At block 406, the core monitor 204 monitors core
usage within the heterogeneous multiprocessor system 302.
In one example, the core monitor 204 monitors which cores
are currently processing instructions. The core monitor 204
may monitor which processor cores 304 are currently pro-
cessing instructions by querying threads of instructions
being performed by the heterogeneous multiprocessor sys-
tem 302. In another example, where the processor cores are
adjustable, the core monitor 204 monitors the current pro-
cessing level of the processor cores 304.

[0047] At block 408, the workload manager 208 identifies
a target processor core usage for the workload type deter-
mined at block 404. The workload manager 208 may deter-
mine the target processor core usage as illustrated in blocks
608-610 of FIG. 6. The workload manager 208 compares
(block 608) the determined workload type as described
above with reference to block 404 to predefined targets for
processor core usage. The workload manager 208 then
identifies (block 610) target core usage from predefined
processor core targets (e.g., big or little) matching the
determined workload type.

Feb. 8, 2024

[0048] At block 410, the workload manager 208 adjusts
the workload of the heterogeneous multiprocessor system
302 in order to match the actual processor core usage to the
target processor core usage. The processing of blocks 404-
410 may repeat periodically while the application is in use.
[0049] The workload manager 208 may adjust the work-
load as illustrated in FIG. 7. The workload manager 208
compares (block 702) a target processor core use (e.g., a
subset of one or more processor cores associated with the
target processor core use or a processing level of adjustable
processor cores) to a current processor core use (e.g., a
subset of one or more processor cores associated with the
current processor core use or a processing level of adjustable
processor cores). The workload manager 208 then deter-
mines (block 704) whether the current and target processor
core(s) match. If the processor core(s) match, processing
proceeds at block 702 with the workload manager 208
periodically comparing the current processor cores in the use
to the target processor cores. If the processor core(s) do not
match, processing proceeds at block 706, with the workload
manager 208 adjusting the level of work (e.g., number of
threads being scheduled) in order to influence which core(s)
the heterogeneous multiprocessor system 302 is using for
processing. For example, if the current processor core(s) 304
in use is a relatively high-performance core (“Big”) and the
target/desired core(s) 304 is a relatively low-performance
core (“Little”), the workload manager 208 will reduce the
number/rate of tasks being assigned to the task queues 310
in order to have the heterogeneous multiprocessor system
302 move processing to the relatively low-performance core
304 or, in the case of adjustable processors, transition to a
relatively low performance level. On the other hand, if the
current core(s) 304 in use is a relatively low-performance
core (“Little”) and the desired core(s) 304 is a relatively
high-performance core 304 (“Big”), the workload manager
will increase the number/rate of tasks being assigned to the
task queues 310 in order to have the heterogeneous multi-
processor system 302 move processing to the relatively
high-performance core(s) 304 or, in the case of adjustable
processors, transition to a relatively high performance level.
[0050] FIG. 8 is a high-level functional block diagram of
an example client device 110 embodied as an example
mobile device 890 that includes the core analyzer 208 and
the workload manager 210. The mobile device 890 includes
a flash memory 840A which includes programming to
perform all or a subset of the functions described herein for
the core analyzer 208 and the workload manager 210. The
mobile device 890 can include a camera 870 that comprises
at least two visible light cameras (first and second visible
light cameras with overlapping fields of view) or at least on
visible light camera and a depth sensor with substantially
overlapping fields of view. A memory 840A may further
include multiple images or video, which are generated via
the camera 870.

[0051] As shown, the mobile device 890 includes an
image display 880, an image display driver 882 to control
the image display 880, and a controller 884. In the example
of FIG. 8, the image display 880 and a user input device are
integrated together into a touch screen display.

[0052] Examples of touch screen type mobile devices that
may be used include (but are not limited to) a smart phone,
a personal digital assistant (PDA), a tablet computer, a
laptop computer, or other portable device. However, the
structure and operation of the touch screen type devices is

US 2024/0045727 Al

provided by way of example; and the subject technology as
described herein is not intended to be limited thereto. For
purposes of this discussion, FIG. 8 therefore provides block
diagram illustrations of the example mobile device 890
having a touch screen display for displaying content and
receiving user input as (or as part of) the user interface.
[0053] As shown in FIG. 8, the mobile device 890
includes at least one digital transceiver (XCVR) 810, shown
as WWAN XCVRs, for digital wireless communications via
a wide area wireless mobile communication network. The
mobile device 890 also includes additional digital or analog
transceivers, such as short range XCVRs 820 for short-range
network communication, such as via NFC, VLC, DECT,
ZigBee, Bluetooth™, or WiFi. For example, short range
XCVRs 820 may take the form of any available two-way
wireless local area network (WLAN) transceiver of a type
that is compatible with one or more standard protocols of
communication implemented in wireless local area net-
works, such as one of the Wi-Fi standards under IEEE
802.11.

[0054] To generate location coordinates for positioning of
the mobile device 890, the mobile device 890 can include a
global positioning system (GPS) receiver. Alternatively, or
additionally, the mobile device 890 can utilize either or both
the short range XCVRs 820 and WWAN XCVRs 810 for
generating location coordinates for positioning. For
example, cellular network, WiFi, or Bluetooth™ based
positioning systems can generate very accurate location
coordinates, particularly when used in combination. Such
location coordinates can be transmitted to the eyewear
device over one or more network connections via XCVRs
810, 820.

[0055] The transceivers 810, 820 (network communica-
tion interface) conforms to one or more of the various digital
wireless communication standards utilized by modern
mobile networks. Examples of WWAN transceivers 810
include (but are not limited to) transceivers configured to
operate in accordance with Code Division Multiple Access
(CDMA) and 3rd Generation Partnership Project (3GPP)
network technologies including, for example and without
limitation, 3GPP type 2 (or 3GPP2) and LTE, at times
referred to as “4(G.” For example, the transceivers 810, 820
provide two-way wireless communication of information
including digitized audio signals, still image and video
signals, web page information for display as well as web
related inputs, and various types of mobile message com-
munications to/from the mobile device 890.

[0056] The mobile device 890 further includes a micro-
processor, shown as CPU 830, sometimes referred to herein
as the host controller. A processor is a circuit having
elements structured and arranged to perform one or more
processing functions, typically various data processing func-
tions. Although discrete logic components could be used, the
examples utilize components forming a programmable CPU.
A microprocessor for example includes one or more inte-
grated circuit (IC) chips incorporating the electronic ele-
ments to perform the functions of the CPU. The processor
830, for example, may be based on any known or available
microprocessor architecture, such as a Reduced Instruction
Set Computing (RISC) using an ARM architecture, as com-
monly used today in mobile devices and other portable
electronic devices. Of course, other processor circuitry may
be used to form the CPU 830 or processor hardware in
smartphone, laptop computer, and tablet.

Feb. 8, 2024

[0057] The microprocessor 830 serves as a programmable
host controller for the mobile device 890 by configuring the
mobile device 890 to perform various operations, for
example, in accordance with instructions or programming
executable by processor 830. For example, such operations
may include various general operations of the mobile
device, as well as operations related to the programming for
the core analyzer 208 and the workload manager 210.
Although a processor may be configured by use of hard-
wired logic, typical processors in mobile devices are general
processing circuits configured by execution of program-
ming.

[0058] The mobile device 890 includes a memory or
storage device system, for storing data and programming. In
the example, the memory system may include a flash
memory 840A and a random access memory (RAM) 840B.
The RAM 840B serves as short term storage for instructions
and data being handled by the processor 830, e.g., as a
working data processing memory. The flash memory 840A
typically provides longer term storage.

[0059] Hence, in the example of mobile device 890, the
flash memory 840A is used to store programming or instruc-
tions for execution by the processor 830. Depending on the
type of device, the mobile device 890 stores and runs a
mobile operating system through which specific applica-
tions, including programming for the core analyzer 208 and
the workload manager 210 are executed. Applications, such
as programming for the core analyzer 208 and the workload
manager 210, may be a native application, a hybrid appli-
cation, or a web application (e.g., a dynamic web page
executed by a web browser) that runs on mobile device 890.
Examples of mobile operating systems include Google
Android, Apple iOS (I-Phone or iPad devices), Windows
Mobile, Amazon Fire OS, RIM BlackBerry operating sys-
tem, or the like.

[0060] FIG. 9 is a diagrammatic representation of a
machine 900 within which instructions 908 (e.g., software,
a program, an application, an applet, an app, or other
executable code) for causing the machine 900 to perform
any one or more of the methodologies discussed herein may
be executed. For example, the instructions 908 may cause
the machine 900 to execute any one or more of the methods
described herein. The instructions 908 transform the general,
non-programmed machine 900 into a particular machine 900
programmed to carry out the described and illustrated func-
tions in the manner described. The machine 900 may operate
as a standalone device or may be coupled (e.g., networked)
to other machines. In a networked deployment, the machine
900 may operate in the capacity of a server machine or a
client machine in a server-client network environment, or as
a peer machine in a peer-to-peer (or distributed) network
environment.

[0061] The machine 900 may comprise, but not be limited
to, a server computer, a client computer, a personal computer
(PC), a tablet computer, a laptop computer, a netbook, a
set-top box (STB), a PDA, an entertainment media system,
a cellular telephone, a smart phone, a mobile device, a
wearable device (e.g., a smart watch), a smart home device
(e.g., a smart appliance), other smart devices, a web appli-
ance, a network router, a network switch, a network bridge,
or any machine capable of executing the instructions 908,
sequentially or otherwise, that specify actions to be taken by
the machine 900. Further, while only a single machine 900
is illustrated, the term ‘“machine” shall also be taken to

US 2024/0045727 Al

include a collection of machines that individually or jointly
execute the instructions 908 to perform any one or more of
the methodologies discussed herein.

[0062] The machine 900 may include processors 902,
memory 904, and /O components 942, which may be
configured to communicate with each other via a bus 944. In
an example, the processors 902 (e.g., a Central Processing
Unit (CPU), a Reduced Instruction Set Computing (RISC)
processor, a Complex Instruction Set Computing (CISC)
processor, a Graphics Processing Unit (GPU), a Digital
Signal Processor (DSP), an ASIC, a Radio-Frequency Inte-
grated Circuit (RFIC), another processor, or any suitable
combination thereof) may include, for example, a processor
906 and a processor 910 that execute the instructions 908.
The term “processor” is intended to include heterogeneous
multiprocessor systems that may comprise two or more
independent processors (sometimes referred to as “cores™)
that may execute instructions contemporaneously. Although
FIG. 9 shows multiple processors 902, the machine 900 may
include a single processor with multiple cores (e.g., a
multi-core processor), multiple processors with a single
core, multiple processors with multiples cores, or any com-
bination thereof.

[0063] The memory 904 includes a main memory 912, a
static memory 914, and a storage unit 916, both accessible
to the processors 902 via the bus 944. The main memory
904, the static memory 914, and storage unit 916 store the
instructions 908 embodying any one or more of the meth-
odologies or functions described herein. The instructions
908 may also reside, completely or partially, within the main
memory 912, within the static memory 914, within machine-
readable medium 918 (e.g., a non-transitory machine-read-
able storage medium) within the storage unit 916, within at
least one of the processors 902 (e.g., within the processor’s
cache memory), or any suitable combination thereof, during
execution thereof by the machine 900.

[0064] Furthermore, the machine-readable medium 918 is
non-transitory (in other words, not having any transitory
signals) in that it does not embody a propagating signal.
However, labeling the machine-readable medium 918 “non-
transitory” should not be construed to mean that the medium
is incapable of movement; the medium should be considered
as being transportable from one physical location to another.
Additionally, since the machine-readable medium 918 is
tangible, the medium may be a machine-readable device.
[0065] The I/O components 942 may include a wide
variety of components to receive input, provide output,
produce output, transmit information, exchange informa-
tion, capture measurements, and so on. The specific I/O
components 942 that are included in a particular machine
will depend on the type of machine. For example, portable
machines such as mobile phones may include a touch input
device or other such input mechanisms, while a headless
server machine will likely not include such a touch input
device. It will be appreciated that the I/O components 942
may include many other components that are not shown in
FIG. 9. In various examples, the /O components 942 may
include output components 928 and input components 930.
The output components 928 may include visual components
(e.g., a display such as a plasma display panel (PDP), a light
emitting diode (LED) display, a liquid crystal display
(LCD), a projector, or a cathode ray tube (CRT)), acoustic
components (e.g., speakers), haptic components (e.g., a
vibratory motor, resistance mechanisms), other signal gen-

Feb. 8, 2024

erators, and so forth. The input components 930 may include
alphanumeric input components (e.g., a keyboard, a touch
screen configured to receive alphanumeric input, a photo-
optical keyboard, or other alphanumeric input components),
point-based input components (e.g., a mouse, a touchpad, a
trackball, a joystick, a motion sensor, or another pointing
instrument), tactile input components (e.g., a physical but-
ton, a touch screen that provides location, force of touches
or touch gestures, or other tactile input components), audio
input components (e.g., a microphone), and the like.

[0066] In further examples, the I/O components 942 may
include biometric components 932, motion components 934,
environmental components 936, or position components
938, among a wide array of other components. For example,
the biometric components 932 include components to detect
expressions (e.g., hand expressions, facial expressions,
vocal expressions, body gestures, or eye tracking), measure
biosignals (e.g., blood pressure, heart rate, body tempera-
ture, perspiration, or brain waves), identify a person (e.g.,
voice identification, retinal identification, facial identifica-
tion, fingerprint identification, or electroencephalogram-
based identification), and the like. The motion components
934 include acceleration sensor components (e.g., acceler-
ometer), gravitation sensor components, rotation sensor
components (e.g., gyroscope), and so forth. The environ-
mental components 936 include, for example, illumination
sensor components (e.g., photometer), temperature sensor
components (e.g., one or more thermometers that detect
ambient temperature), humidity sensor components, pres-
sure sensor components (e.g., barometer), acoustic sensor
components (e.g., one or more microphones that detect
background noise), proximity sensor components (e.g.,
infrared sensors that detect nearby objects), gas sensors
(e.g., gas detection sensors to detection concentrations of
hazardous gases for safety or to measure pollutants in the
atmosphere), or other components that may provide indica-
tions, measurements, or signals corresponding to a surround-
ing physical environment. The position components 938
include location sensor components (e.g., a GPS receiver
component), altitude sensor components (e.g., altimeters or
barometers that detect air pressure from which altitude may
be derived), orientation sensor components (e.g., magne-
tometers), and the like.

[0067] Communication may be implemented using a wide
variety of technologies. The /O components 942 further
include communication components 940 operable to couple
the machine 900 to a network 920 or devices 922 via a
coupling 924 and a coupling 926, respectively. For example,
the communication components 940 may include a network
interface component or another suitable device to interface
with the network 920. In further examples, the communi-
cation components 940 may include wired communication
components, wireless communication components, cellular
communication components, Near Field Communication
(NFC) components, Bluetooth® components (e.g., Blu-
etooth® Low Energy), Wi-Fi® components, and other com-
munication components to provide communication via other
modalities. The devices 922 may be another machine or any
of a wide variety of peripheral devices (e.g., a peripheral
device coupled via a USB).

[0068] Moreover, the communication components 940
may detect identifiers or include components operable to
detect identifiers. For example, the communication compo-
nents 940 may include Radio Frequency Identification

US 2024/0045727 Al

(RFID) tag reader components, NFC smart tag detection
components, optical reader components (e.g., an optical
sensor to detect one-dimensional bar codes such as Univer-
sal Product Code (UPC) bar code, multi-dimensional bar
codes such as Quick Response (QR) code, Aztec code, Data
Matrix, Dataglyph, MaxiCode, PDF417, Ultra Code, UCC
RSS-2D bar code, and other optical codes), or acoustic
detection components (e.g., microphones to identify tagged
audio signals). In addition, a variety of information may be
derived via the communication components 940, such as
location via Internet Protocol (IP) geolocation, location via
Wi-Fi® signal triangulation, location via detecting an NFC
beacon signal that may indicate a particular location, and so
forth.

[0069] The various memories (e.g., memory 904, main
memory 912, static memory 914, memory of the processors
902, and storage unit 916) may store one or more sets of
instructions and data structures (e.g., software) embodying
or used by any one or more of the methodologies or
functions described herein. These instructions (e.g., the
instructions 908), when executed by processors 902, cause
various operations to implement the disclosed examples.
[0070] The instructions 908 may be transmitted or
received over the network 920, using a transmission
medium, via a network interface device (e.g., a network
interface component included in the communication com-
ponents 940) and using any one of a number of well-known
transfer protocols (e.g., hypertext transfer protocol (HTTP)).
Similarly, the instructions 908 may be transmitted or
received using a transmission medium via the coupling 926
(e.g., a peer-to-peer coupling) to the devices 922.

[0071] FIG. 10 is a block diagram 1000 illustrating a
software architecture 1004, which can be installed on any
one or more of the devices described herein. The software
architecture 1004 is supported by hardware such as a
machine 1002 that includes processors 1020, memory 1026,
and /O components 1038. In this example, the software
architecture 1004 can be conceptualized as a stack of layers,
where each layer provides a particular functionality. The
software architecture 1004 includes layers such as an oper-
ating system 1012, libraries 1010, frameworks 1008, and
applications 1006. Operationally, the applications 1006
invoke API calls 1050 through the software stack and
receive messages 1052 in response to the API calls 1050.
[0072] The operating system 1012 manages hardware
resources and provides common services. The operating
system 1012 includes, for example, a kernel 1014, services
1016, and drivers 1022. The kernel 1014 acts as an abstrac-
tion layer between the hardware and the other software
layers. For example, the kernel 1014 provides memory
management, processor management (e.g., scheduling),
component management, networking, and security settings,
among other functionality. The services 1016 can provide
other common services for the other software layers. The
drivers 1022 are responsible for controlling or interfacing
with the underlying hardware. For instance, the drivers 1022
can include display drivers, camera drivers, BLU-
ETOOTH® or BLUETOOTH® Low Energy drivers, flash
memory drivers, serial communication drivers (e.g., Uni-
versal Serial Bus (USB) drivers), WI-FI® drivers, audio
drivers, power management drivers, and so forth.

[0073] The libraries 1010 provide a low-level common
infrastructure used by the applications 1006. The libraries
1010 can include system libraries 1018 (e.g., C standard

Feb. 8, 2024

library) that provide functions such as memory allocation
functions, string manipulation functions, mathematic func-
tions, and the like. In addition, the libraries 1010 can include
API libraries 1024 such as media libraries (e.g., libraries to
support presentation and manipulation of various media
formats such as Moving Picture Experts Group-4 (MPEG4),
Advanced Video Coding (H.264 or AVC), Moving Picture
Experts Group Layer-3 (MP3), Advanced Audio Coding
(AAQC), Adaptive Multi-Rate (AMR) audio codec, Joint
Photographic Experts Group (JPEG or JPG), or Portable
Network Graphics (PNG)), graphics libraries (e.g., an
OpenGL framework used to render in two dimensions (2D)
and three dimensions (3D) in a graphic content on a display),
database libraries (e.g., SQLite to provide various relational
database functions), web libraries (e.g., WebKit to provide
web browsing functionality), and the like. The libraries 1010
can also include a wide variety of other libraries 1028 to
provide many other APIs to the applications 1006.

[0074] The frameworks 1008 provide a high-level com-
mon infrastructure that is used by the applications 1006. For
example, the frameworks 1008 provide various graphical
user interface (GUI) functions, high-level resource manage-
ment, and high-level location services. The frameworks
1008 can provide a broad spectrum of other APIs that can be
used by the applications 1006, some of which may be
specific to a particular operating system or platform.

[0075] In an example, the applications 1006 may include
a home application 1036, a contacts application 1030, a
browser application 1032, a book reader application 1034, a
location application 1042, a media application 1044, a
messaging application 1046, a game application 1048, and a
broad assortment of other applications such as a third-party
application 1040. The applications 1006 are programs that
execute functions defined in the programs. Various program-
ming languages can be employed to create one or more of
the applications 1006, structured in a variety of manners,
such as object-oriented programming languages (e.g.,
Objective-C, Java, or C++) or procedural programming
languages (e.g., C or assembly language). In a specific
example, the third-party application 1040 (e.g., an applica-
tion developed using the ANDROID™ or IOS™ software
development kit (SDK) by an entity other than the vendor of
the particular platform) may be mobile software running on
a mobile operating system such as I0OS™, ANDROID™,
WINDOWS® Phone, or another mobile operating system.
In this example, the third-party application 1040 can invoke
the API calls 1050 provided by the operating system 1012 to
facilitate functionality described herein.

[0076] It will be understood that the terms and expressions
used herein have the ordinary meaning as is accorded to such
terms and expressions with respect to their corresponding
respective areas of inquiry and study except where specific
meanings have otherwise been set forth herein. Relational
terms such as first and second and the like may be used
solely to distinguish one entity or action from another
without necessarily requiring or implying any actual such
relationship or order between such entities or actions. The
terms “comprises,” “comprising,” “includes,” “including,”
or any other variation thereof, are intended to cover a
non-exclusive inclusion, such that a process, method, article,
or apparatus that comprises or includes a list of elements or
steps does not include only those elements or steps but may
include other elements or steps not expressly listed or
inherent to such process, method, article, or apparatus. An

US 2024/0045727 Al

[Tt}

element preceded by “a” or “an” does not, without further
constraints, preclude the existence of additional identical
elements in the process, method, article, or apparatus that
comprises the element.

[0077] Unless otherwise stated, any and all measurements,
values, ratings, positions, magnitudes, sizes, and other speci-
fications that are set forth in this specification, including in
the claims that follow, are approximate, not exact. Such
amounts are intended to have a reasonable range that is
consistent with the functions to which they relate and with
what is customary in the art to which they pertain. For
example, unless expressly stated otherwise, a parameter
value or the like, whether or not qualified by a term of degree
(e.g., approximate, substantially or about), may vary by as
much as +10% from the recited amount.

[0078] The examples illustrated herein are described in
sufficient detail to enable those skilled in the art to practice
the teachings disclosed. Other examples may be used and
derived therefrom, such that structural and logical substitu-
tions and changes may be made without departing from the
scope of this disclosure. The Detailed Description, therefore,
is not to be taken in a limiting sense, and the scope of various
examples is defined only by the appended claims, along with
the full range of equivalents to which such claims are
entitled.

What is claimed is:

1. A method for adjusting workload of an application to
improve processor core usage within a heterogeneous mul-
tiprocessor system of a device, the heterogeneous multipro-
cessor system comprising a first processor core having a first
performance level and a second processor core having a
second performance level lower than the first performance
level, the method comprising:

analyzing the first processor core and the second proces-

sor core to obtain processor core statistics to identify
processor core type of the first processor core and the
second processor core;

monitoring a feature activity of an application executed

by the heterogeneous multiprocessor system to identity
functions associated with the monitored feature activity
of the application to determine a workload type of the
application from the identified functions;

comparing the determined workload type to predefined

targets for processor core usage to identify target pro-
cessor core usage from predefined targets matching the
determined workload type;

comparing the identified target processor core usage to

current processor core usage; and

adjusting a workload of the first processor core and the

second processor core to match the current processor
core usage of the first processor core and the second
processor core with the identified target processor core
usage for the first processor core and the second
processor core,

wherein adjusting the workload comprises assigning tasks

of the application based on a performance level
required by the task and whether a workload for the first
processor core and the second processor core is to be
increased or decreased to match the identified target
processor core usage.

2. The method of claim 1, wherein analyzing the first
processor core and the second processor core comprises
obtaining processor information for the first processor core
and the second processor core, configuring the device to

Feb. 8, 2024

monitor processor core statistics including at least one of
frequency range or cache size of at least the first and second
processor cores within the heterogeneous multiprocessor
system of the device, comparing the processor core statistics
to predetermined values to identify a match, and assigning
a processor core type based on the match with the prede-
termined values to the first and second processor cores.
3. The method of claim 2, wherein assigning the processor
core type based on the match with the predetermined values
comprises assigning a first determined processor core type to
the first processor core and a second determined processor
core type to the second processor core, wherein the first
processor core is used for tasks requiring the first perfor-
mance level and the second processor core is used for tasks
that may perform at the second performance level.
4. The method of claim 1, further comprising storing the
processor core statistics for the first and second processor
cores in a memory of the heterogeneous multiprocessor
system.
5. The method of claim 4, wherein comparing the deter-
mined workload type to predefined targets for processor core
usage comprises comparing the stored processor core sta-
tistics to known values of known processor core types to
determine a known processor core type for the first proces-
sor core and the second processor core in use at a given time.
6. The method of claim 1, further comprising monitoring
usage of the first processor core and the second processor
core by determining which processor cores of the multipro-
cessor system are in use at a given time and monitoring
features of the application running on the device to deter-
mine which processor core is processing the features of the
application running on the device.
7. The method of claim 6, wherein determining which
processor core is in use at the given time comprises moni-
toring which processor core is currently processing instruc-
tions by querying threads of instructions being performed by
the heterogeneous multiprocessor system.
8. The method of claim 6, wherein determining which
processor core is in use at the given time comprises moni-
toring a current processing level of the first and second
processor cores.
9. A system for adjusting workload of an application to
improve processor core usage within a heterogeneous mul-
tiprocessor system of a device, comprising:
a memory that stores instructions; and
the heterogeneous multiprocessor system comprising a
first processor core having a first performance level and
a second processor core having a second performance
level lower than the first performance level, the het-
erogeneous multiprocessor system configured by the
instructions to perform operations comprising:

analyzing the first processor core and the second proces-
sor core to obtain processor core statistics to identify
processor core type of the first processor core and the
second processor core;

monitoring a feature activity of an application executed

by the heterogeneous multiprocessor system to identify
functions associated with the monitored feature activity
of the application to determine a workload type of the
application from the identified functions;

comparing the determined workload type to predefined

targets for processor core usage to identify target pro-
cessor core usage from predefined targets matching the
determined workload type;

US 2024/0045727 Al

comparing the identified target processor core usage to
current processor core usage; and

adjusting a workload of the first processor core and the
second processor core to match the current processor
core usage of the first processor core and the second
processor core with the identified target processor core
usage for the first processor core and the second
processor core,

wherein adjusting the workload comprises assigning tasks
of the application based on a performance level
required by the task and whether a workload for the first
processor core and the second processor core is to be
increased or decreased to match the identified target
processor core usage.

10. The system of claim 9, wherein the heterogeneous
multiprocessor system is further configured by the instruc-
tions to analyze the first processor core and the second
processor core by obtaining processor information for the
first processor core and the second processor core, config-
uring the device to monitor processor core statistics includ-
ing at least one of frequency range or cache size of at least
the first and second processor cores within the heteroge-
neous multiprocessor system of the device, comparing the
processor core statistics to predetermined values to identify
a match, and assigning a processor core type based on the
match with the predetermined values to the first and second
processor cores.

11. The system of claim 10, wherein the heterogeneous
multiprocessor system is further configured to assign the
processor core type based on the match with the predeter-
mined values by assigning a first determined processor core
type to the first processor core and a second determined
processor core type to the second processor core, wherein
the first processor core is used for tasks requiring the first
performance level and the second processor core is used for
tasks that may perform at the second performance level.

12. The system of claim 9, wherein the memory stores the
processor core statistics for the first and second processor
cores.

13. The system of claim 12, wherein the heterogeneous
multiprocessor system is further configured to compare the
determined workload type to predefined targets for proces-
sor core usage by comparing the stored processor core
statistics to known values of known processor core types to
determine a known processor core type for the first proces-
sor core and the second processor core in use at a given time.

14. The system of claim 9, wherein the heterogeneous
multiprocessor system is further configured to monitor usage
of the first processor core and the second processor core by
determining which processor cores of the multiprocessor
system are in use at a given time and monitoring features of
the application running on the device to determine which
processor core is processing the features of the application
running on the device.

15. The system of claim 14, wherein the heterogeneous
multiprocessor system is further configured to determine
which processor core is in use at the given time by moni-
toring which processor core is currently processing instruc-
tions by querying threads of instructions being performed by
the heterogeneous multiprocessor system.

16. The system of claim 14, wherein the heterogeneous
multiprocessor system is further configured to determine

10

Feb. 8, 2024

which processor core is in use at the given time by moni-
toring a current processing level of the first and second
processor cores.

17. A non-transitory processor-readable storage medium
storing processor-executable instructions for adjusting
workload of an application to improve processor core usage
within a heterogeneous multiprocessor system of a device,
the heterogeneous multiprocessor system comprising a first
processor core having a first performance level and a second
processor core having a second performance level lower
than the first performance level, the instructions, when
executed by a processor of a machine, causing the machine
to perform operations comprising:

analyzing the first processor core and the second proces-

sor core to obtain processor core statistics to identify
processor core type of the first processor core and the
second processor core;

monitoring a feature activity of an application executed

by the heterogeneous multiprocessor system to identify
functions associated with the monitored feature activity
of the application to determine a workload type of the
application from the identified functions;

comparing the determined workload type to predefined

targets for processor core usage to identify target pro-
cessor core usage from predefined targets matching the
determined workload type;

comparing the identified target processor core usage to

current processor core usage; and

adjusting a workload of the first processor core and the

second processor core to match the current processor
core usage of the first processor core and the second
processor core with the identified target processor core
usage for the first processor core and the second
processor core,

wherein adjusting the workload comprises assigning tasks

of the application based on a performance level
required by the task and whether a workload for the first
processor core and the second processor core is to be
increased or decreased to match the identified target
processor core usage.

18. The medium of claim 17, further comprising instruc-
tions that, when executed by the processor of the machine,
cause the machine to perform operations comprising ana-
lyzing the first processor core and the second processor core
by obtaining processor information for the first processor
core and the second processor core, configuring the device
to monitor processor core statistics including at least one of
frequency range or cache size of at least the first and second
processor cores within the heterogeneous multiprocessor
system of the device, comparing the processor core statistics
to predetermined values to identify a match, and assigning
a processor core type based on the match with the prede-
termined values to the first and second processor cores.

19. The medium of claim 18, further comprising instruc-
tions that, when executed by the processor of the machine,
cause the machine to perform operations comprising assign-
ing the processor core type based on the match with the
predetermined values by assigning a first determined pro-
cessor core type to the first processor core and a second
determined processor core type to the second processor core,
wherein the first processor core is used for tasks requiring
the first performance level and the second processor core is
used for tasks that may perform at the second performance
level.

US 2024/0045727 Al Feb. 8, 2024
11

20. The medium of claim 17, further comprising instruc-
tions that, when executed by the processor of the machine,
cause the machine to perform operations comprising moni-
toring usage of the first processor core and the second
processor core by determining which processor cores of the
multiprocessor system are in use at a given time and
monitoring features of the application running on the device
to determine which processor core is processing the features
of the application running on the device.

#* #* #* #* #*

