US011853340B2

a2 United States Patent

Kumaresan et al.

ao) Patent No.: US 11,853,340 B2
45) Date of Patent: Dec. 26, 2023

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(60)

(1)

(52)

CLUSTERING USING NATURAL
LANGUAGE PROCESSING

Applicant: Oracle International Corporation,
Redwood Shores, CA (US)

Inventors: Dhileeban Kumaresan, Foster City,
CA (US); Sreeji Krishnan Das,
Fremont, CA (US); Adrienne Wong,
Redwood City, CA (US)

Assignee: QOracle International Corporation,
Redwood Shores, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 194 days.

Appl. No.: 17/183,746

Filed: Feb. 24, 2021

Prior Publication Data

US 2022/0171800 Al Jun. 2, 2022

Related U.S. Application Data

Provisional application No. 63/119,500, filed on Nov.
30, 2020.

Int. CL.

GO6F 40/284 (2020.01)

GO6F 40/242 (2020.01)
(Continued)

U.S. CL

CPC GO6F 16/355 (2019.01); GOGF 11/32

(2013.01); GO6F 11/3476 (2013.01);

(Continued)

(58) Field of Classification Search
CPC GO6F 16/355; GO6F 11/32; GOGF 11/3476;
GO6F 16/217; GO6F 16/285;

(Continued)
(56) References Cited
U.S. PATENT DOCUMENTS

10,203,847 Bl 2/2019 Haitani et al.
2006/0129447 Al* 6/2006 Dockery G06Q 30/0204
705/7.29

(Continued)

OTHER PUBLICATIONS

Nagappan, Meiyappan, et al. “Abstracting log lines to log event
types for mining software system logs.” 2010 7th IEEE Working
Conference on Mining Software Repositories (MSR 2010). IEEE,
2010, pp. 114-117 (Year: 2010).*

(Continued)

Primary Examiner — Jesse S Pullias
Assistant Examiner — Michael C. Lee
(74) Attorney, Agent, or Firm — Invoke

(57) ABSTRACT

In one aspect, a system receives a request to cluster a set of
log records. Responsive to receiving the request, the system
identifies at least one dictionary that defines a set of tokens
and corresponding token weights and generates, based at
least in part on the set of tokens and corresponding token
weights, a set of clusters such that each cluster in the set of
clusters represents a unique combination of two or more
tokens from the dictionary and groups a subset of log records
mapped to the unique combination of two or more tokens.
The system may then perform one or more automated
actions based on at least one cluster in the set of clusters.

20 Claims, 10 Drawing Sheets

v/mo

CLIENTAPPLICATION 102

1

LOG ANALYTICS SYSTEM 104

CLUSTERING ENGINE
108

CLIENT INTERFACE

I

ANALYTICS ENGINE
118

—

RAW LOG DATA
14

PROCESSED LOG DATA

DATA REPOSITORY 11

LOG SOURCE 1183

LOG SOURCE 118

US 11,853,340 B2
Page 2

(51) Int. CL
GOGF 16/35 (2019.01)
GOGF 11/34 (2006.01)
GOGF 16/21 (2019.01)
GOGF 16/28 (2019.01)
GOGF 11/32 (2006.01)
GOGF 16/2455 (2019.01)
GOGF 16/2457 (2019.01)
(52) US.CL
CPC ... GOGF 16/217 (2019.01); GOGF 16/2455

(2019.01); GOG6F 16/24575 (2019.01); GO6F
16/285 (2019.01); GO6F 16/287 (2019.01);
GO6F 40/242 (2020.01); GOGF 40/284
(2020.01); GOG6F 2201/80 (2013.01)
(58) Field of Classification Search

CPC .. GO6F 40/242; GOG6F 40/284; GO6F 2201/80;
GOG6F 11/3006; GO6F 11/321; GO6F
11/3409; GOG6F 11/3447; GO6F 16/358;
GOG6F 40/30; GO6F 16/353

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2009/0100339 Al* 4/2009 Wharton-Ali G11B 27/322
715/838
2015/0066814 Al* 3/2015 Allencccoeveneee. GOG6F 40/30
706/11
2016/0255236 Al* 9/2016 Roche HO4N 1/2032
358/401
2017/0060837 Al* 3/2017 Dusberger GO6F 16/313
2017/0169080 Al* 6/2017 Parthasarathy GO6F 16/248
2017/0251003 Al* 8/2017 Rostami-Hesarsorkh
GO6N 5/01

2017/0277582 Al 9/2017 Chen et al.
2018/0060211 Al1* 3/2018 Allenccceee. GOG6F 40/247

2019/0065343 Al* 22019 Li .civinnnne. GO6F 11/3608
2019/0336767 Al* 11/2019 Klepfer A61IN 1/36564
2020/0311414 A1* 10/2020 Enuka GO6F 16/353
2020/0349225 Al* 11/2020 Agrahari GO6F 40/284

2021/0089377 Al* 3/2021 Wang GO6F 11/0709
2021/0117232 A1* 4/2021 Sriharsha GO6F 16/256
2021/0133622 Al* 5/2021 Nidd ..o GOG6F 16/258
2021/0142124 Al1* 5/2021 Ollikainen G06Q 30/0282

OTHER PUBLICATIONS

Tang, Liang, Tao Li, et al. “LogSig: Generating system events from
raw textual logs.” Proceedings of the 20th ACM international
conference on Information and knowledge management. 2011, pp.
785-794 (Year: 2011).*

Shima, Keiichi. “Length matters: Clustering system log messages
using length of words.” arXiv preprint arXiv:1611.03213 (2016),
pp. 1-10 (Year: 2016).*

Du, Min, et al. “Deeplog: Anomaly detection and diagnosis from
system logs through deep learning.” Proceedings of the 2017 ACM
SIGSAC conference on computer and communications security.
2017, pp. 1285-1298 (Year: 2017).*

Liu, Kui, et al. “Mining fix patterns for findbugs violations.” IEEE
Transactions on Software Engineering 47.1 (2018): pp. 165-188
(Year: 2018).*

Dai, Hetong, et al. “Logram: Efficient Log Parsing Using n-Gram
Dictionaries.” arXiv preprint arXiv:2001.03038 (Jan. 7, 2020). pp.
1-13 (Year: 2020).*

Dwaraki, Abhishek, et al. “Automated event identification from
system logs using natural language processing.” 2020 International
Conference on Computing, Networking and Communications (ICNC).
(Mar. 30, 2020), pp. 209-215 (Year: 2020).*

Huang, Shaohan, et al. “Paddy: An event log parsing approach using
dynamic dictionary.” NOMS 2020-2020 IEEE/IFIP Network Opera-
tions and Management Symposium. IEEE, (Jun. 8, 2020), pp. 1-8
(Year: 2020).*

* cited by examiner

U.S. Patent Dec. 26, 2023 Sheet 1 of 10 US 11,853,340 B2

/100

CLIENT APPLICATION 102
LOG ANALYTICS SYSTEM 104
CLUSTERING ENGINE
108
"l
CLIENT INTERFACE
106
¥-al
ANALYTICS ENGINE
110
RAW LOG DATA PROCESSED LOG DATA
114 116
DATA REPOSITORY 112
LOG SOURCE 1184 LOG SOURCE 118b

FIG. 1

U.S. Patent Dec. 26, 2023

Sheet 2 of 10

/ 200

C START

D

US 11,853,340 B2

ADD TOKEN TO DICTIONARY?

YES
v

4
IDENTIFY LOG RECORDS > 202
4
TOKENIZE DATA > 204
4
SELECT TOKEN > 206
208

DETERMINE TOKEN WEIGHT

l

STORE TOKEN AND CORRESPONDING WEIGHT IN
DICTIONARY

N

0

REMAINING TOKENS

C D

D

FIG. 2

214

U.S. Patent Dec. 26, 2023 Sheet 3 of 10 US 11,853,340 B2

/ 300
C START D)

A 4

RECEIVE REQUEST TO GROUP LOG RECORDS > 302

304

CLUSTER PARAMETER(S)
SPECIFIED?

NO

SELECT DEFAULT CLUSTERING PARAMETERS > 306

A 4

—> GENERATE SYNTACTIC CLUSTER SIGNATURES > 308

A 4
DENTIFY DICTIONARY TOKENS IN SELECTED
> SIGNATURE > 310

312

REMAINING SIGNATURES?

NO

CLUSTER SIGNATURES/LOG RECORDS WITH
MATCHING TOKENS (UP TO THRESHOLD NUMBER)
SUCH THAT EACH CLUSTER REPRESENTS A UNIQUE

SET OF TOKENS

I

STORE AND/OR PRESENT CLUSTERS TO CLIENT ks> 316

I
C END D)

> 314

FIG. 3

US 11,853,340 B2

Sheet 4 of 10

Dec. 26, 2023

U.S. Patent

Yy Oild
S Wd IpeiLL WY 9081 T e licens v LI UOABBIO | Xyde,
LR mmmsmmw VIORGLBIOV s dy ‘gzoz oady OEE %,mmwgwcmmwmﬁ%% Juinspuwis aseydziLsugns sepis
‘ . s - duosen gsn BaXe . .
Buipes: '‘Buissiu W LY 6F L WY S08LEL N WIS UDASIDRIO L Xuyde!
; : e DLBLGLE6L- ; ﬁ » oge Buipeal usym osuo punog . g
BAMS 08D ‘DUnog pe0e 'L iy ‘orpz e ady BuiSSIu 691 07-8 | 0-6A9 sjumepws sseydzBiLsugns seps
e - Buiuooyeq Aoumul X “
OIAIES Wd L8P LT WY OUELEL : e WD UDASIoRID L Myde)
iowiour teep WEOBSIPL nozgpt iy qzogigudy HEE TONHIENER T HiAopueoseldzhil jeuans sepis
. 588 ocanvesy LS LL Y G06LEL oce dwnpysen @mﬁmmwmwm WD UDABIDRID" Lxyde
Buipeo) ‘jpuiey 'UseD geoz L ady ‘oroz s idy OIBIEBBL Ul USEID [BUIRY Juinapuie eseydzBiLsuans seps ;wmw
e s 18108} SlmIsuY LB , _ ®
‘ : . Rdivshil WY el6ldl "y WOy usABRID Lxude) | =
PI0E} ‘901008 TBIBD BBLIELOCH ot VY tpor o ity 966 0016) 80i08-§0-R1UBp juinepuse BseydzBI Jougns Seps || &
LEYEL-6L0Z-0A0 -
SPIOMASH (HEE LY sun] pug UL LELG o JNOQ uonduosac] WAy Ay |
o . o)
adnoIS 89 10 005 Bumoys @ e « MOUS Na - suondp € |- ozABuy [m
2
spiosey B0 Me05¢
g @ pS = B1Ba0o Anssen | spiomiay s (LUORTUISS(JURAT,ISRIOMARY § = JUNOORIOM ADR ‘[DB 'gisa ‘unoy = AsBees diu
| 1 sesniy, s {uondunssg wsaz eisno diu | uonduosag jueas, "Anug 'swig yui | soudsy T sepis uiWpesIuS = sueN peodn,
L cBIOW D usd(/| -%ABg
UOZ0Z ‘Pl Ay - Wd 268 ZE190°80 8102 g D8
UOISNY
L UBRUPESIWS

US 11,853,340 B2

Sheet 5 of 10

Dec. 26, 2023

U.S. Patent

g Ol

sdnossy 289 jo 00s Bumoug (D

sisul0 ity O
- ‘Buduses
‘per0idul 'e1Bp O
N umooimes

iy

S| 1Eg

@ o MOUS

Ge0s e

¢ 0L 8 9 9 2180 L2SCEEIEBLAGLELIL 8 L § ¢

‘eoinep ‘eluep (O

sones ‘Bugod
‘oifio] ‘eep O
UAOLY

‘yoidue ‘uogosiep O
aoepoRy
‘sAcIdW ‘82081 ()

ssey
Jasiey ‘peacidun O

» spiomiey

w005 (D)

- ganoi

s71s (D)

N

& - suondo & - szABUY

-
e
g

Eou.%\,wﬁmauxm%@
uepus sseydebi L isugns Biompe
OO usARBIC YydRy
umspuig-aseudzBipieugns peuihio
LI00 UsASRBIO XudRIASIUS
‘geeydeBiziougns saiBwmp

WO UoASBIo XYdey
waspueydepe L IRUGns uooAse]

— W00 USABIDRIO' LXudel

ASPLIS aseUdZB LIsUgns SepIS

~ 3 giskieuy SIS UNed

Visualize|

spioosy 5o Mg 08¢

sdnolsy 89

SInAImi N IO LMD L SR envnasdend f o inaeny

[TOE0Z v Iy - N 288 LEP0R0 6L0Z '8 08
OIS

o UIUDRSOLIS

,853,340 B2

Sheet 6 of 10 US 11

Dec. 26, 2023

U.S. Patent

¥ Old

(eae uep
¥ 2

e 62 L2 %€ tE

810¢ 98
2/ 1 A 1 A 7 T 2 2 T A" B SR

B UOISTY S|DEI0

gy LOISNY S{0BI0
8 udishy 3ppRIo
B uoisn} sioeIo

5 UsisSnl 3pRIo

Y UOISHY BIoBID
31 UCISTY Si0BIC
d UCIENg 8i0BIO
g UGSy S1neio

1ONPOLd

USY UGIEN] 8IDBIO

g OIS S108I0

A UOISHE S108I0

AR UOISNRY 80RO
P11V e =T I=Trel = o)

{88} sisuiQ v O
{9} pavizosiy- O
{8} 5405008161 O
{9} sogBpZLESL O
{(zi)sie0162Z2r D
{1} £89880082 O
(g op ON O
{15} 168602519 O
(i de18nD

{col}sisio iy O
TRE S0iAes pno wiswebeusl soussye uoisy spric O

{2¢) soruas pnow wswebeusw ol uoisn spric O

o} aonies pnop wswabeusw Bulues) uoisny speic O {(LygzL O
{e4) soinies pnop Bupnical speio O {(Livs O

T @oiakes pnoo wswebeuew sausuuoued uoisny speic O {132y O
{8/} sonles pnop oiAed eooib uoisny sporic O Rige -2z O

T GoIALSS DNOD Ssninosal uswiny egoB uoisny apeis O pogige-1 O
ONR0L sUnoJsy

4
x!
w®

=5
R
S

~{slowey Lpus Budiy ueis

sapdiewy 8o GNOTD INSRIDYNYR o

US 11,853,340 B2

Sheet 7 of 10

Dec. 26, 2023

U.S. Patent

(penunuon) O O

» spsomiay SO0 @

- gdnotsy SZIQ @

iy epg]
sbumes »oIng

8L ¥ €1 0L 8 @

{gi0) sisi0 IV O

{9} 189q ‘yssyal O

{2} sepdn O

{gyious O

{01881 O

{Lihsenbas O

{gp) anjepa oN O

{15) peise wsoo O
SRIOMADY

020 'SL UBP - NG 000 00200 6L0Z L 08(

JAIOISNT

[>

IR S IS

,853,340 B2

Sheet 8 of 10 US 11

Dec. 26, 2023

U.S. Patent

L7

{88} sisuiQ v O
{9} pavizosiy- O
{8} 5405008161 O
{9} sogBPZLESL O
{zi)sieoLe2ey O
{1} £89880082 O
(g op ON O
{15} 168602510 ©
(i Je18nD

{gi}sieuio iy O
“8o0iales pnoo wswebeuew soustiouad uoisny spric O

{#) sodas priop wswebeusw siyosd uoisny spric O
“rE0IALES PNOD uonesusdiuod STIoPUoM Uosn aoeis O
{¢) somues pnop josded rgoib voisny speio O

G asnies pnop wawsbeuesw Bunwies) uoisny speic O
{¢) SOIAIBS DNOD JOUE] DUB SUH] Uoisn spBie O

{g} ssiues prois wswebeusw aoussge ucisny apeis O
IONP0

“UURNISAS BI0RIO

{11821 O
{1}y2 O
{112z O

{(arioe-1 O
sdnois

ay "oid
SULL HEIS
e0e uer gL0Z 380
§ & 4 0t 8 9 ¥2 €72 0F 8L 9L ¥ 2 O 8 9 ¥ 2
O O O 012 uoisny 8pBIo
O Q7 (] UOISH] 8I08I0
— O . . ”“”mm UISTY S0BIO
JUBIIOT JO POYIASe) AlBUILING o mm mmmmm.w mmwmmm
DRIOLISS! WBIIOS SpIOMASY 7 O Y USISNE BI0RI0 W
JSBBOZELE Ol D8N0 O : g1 uoisty apBID §
BOIAIDS PO SAIN0SE UBWINY (200D LOISTY SI0BIO 10MP0Id | 0 O d uoisny sppRIc &
Y B % id uoisny sjogio &
w M o v onste O 5] USISH] S[DRIO
“““““““““““““““““““““ @ BL0C 02990 G INY 0012°2L 6102 € 08(] s pelg %, S UOISTY 810810
: {%1>) 621 sdnoigo—0 AR UGISHY BI0BI0

~{slowey Lpus Budiy ueis

sapdiewy 8o GNOTD INSRIDYNYR o

US 11,853,340 B2

Sheet 9 of 10

Dec. 26, 2023

U.S. Patent

(penunuon) ay oid

» spsomiay SO0 @

- gdnotsy SZIQ @

iy epg]
sbumes »oIng

L €L L 86 £

{15) peise wsoo O
SRIOMADY

L0202 'SL UBP - Nd 000 00200 6L0Z L 08(

JAIOISNT

[>

IR S IS

U.S. Patent Dec. 26, 2023 Sheet 10 of 10 US 11,853,340 B2

Fe.S INPUT CURSOR
DISPLAY DEVICE CONTROL
312 514 516
|
MAIN ROM STORAGE
MEMORY DEVICE
506 508 510
BUS
202
PROCESSOR COMMUNICATION
INTERFACE
504 518
900

528 NETWORK

SERVER
530

NETWORK
922

526

US 11,853,340 B2

1
CLUSTERING USING NATURAL
LANGUAGE PROCESSING

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Patent Application 63/119,500, which is hereby incorporated
by reference.

Each of the following applications are hereby incorpo-
rated by reference as if set forth in their entirety: U.S.
application Ser. No. 16/185,588, filed Nov. 13, 2020; U.S.
application Ser. No. 14/863,994 filed on Sep. 24, 2015; and
U.S. Provisional Patent Application 62/056,073 filed on Sep.
26, 2014.

TECHNICAL FIELD

The present disclosure relates to techniques for processing
log files. In particular, the present disclosure relates to
clustering log files using natural language processing to
provide analytic insights into the behavior of computing
resources and to trigger downstream automated actions.

BACKGROUND

Many types of computing systems and applications gen-
erate vast amounts of data pertaining to or resulting from the
operation of that computing system or application. These
vast amounts of data are stored into collected locations, such
as log records, which may be subsequently accessed by
applications to review the contents contained therein. For
example, an application may open a log file that contains
various performance metrics for a hardware or software
resource.

Server administrators and application administrators may
benefit by analyzing the contents of system log records to
diagnose system or application behavior. However, mining
knowledge from log files can be a very challenging task for
many reasons. One challenge is that the size of the log data
may be very large, making it inefficient and difficult to
analyze the large number of records for the specific items of
interest. This may be particularly the case if the interesting
entries in the log data are relatively sparse within the larger
set of data, which is often the situation since severe prob-
lems are usually rare. Moreover, interesting insights may be
hidden in sequences of events. The raw evidence to discover
these insights may exist in the log files but combining the
individual pieces of information together from among the
vast set of log data to draw a meaningful conclusion can be
a particularly non-trivial task.

The aforementioned problems become even more pro-
nounced in large and complex ecosystems, such as complex
enterprise-class database management systems and cloud
environments. Such systems may produce very large vol-
umes of data stored in hardware logs, operating system logs,
application logs, application server logs, database server
logs, and any other type of log that monitors the behavior of
a large production system. Furthermore, a similar situation
will also exist in a cloud environment, where multiple
customers are sharing the same physical resources in a
virtualized fashion. Mining knowledge from such log files
may be comparable to looking for a needle in a haystack.

The approaches described in this section are approaches
that could be pursued, but not necessarily approaches that
have been previously conceived or pursued. Therefore,
unless otherwise indicated, it should not be assumed that any

10

15

20

25

30

35

40

45

50

55

60

65

2

of the approaches described in this section qualify as prior
art merely by virtue of their inclusion in this section.

BRIEF DESCRIPTION OF THE DRAWINGS

The embodiments are illustrated by way of example and
not by way of limitation in the figures of the accompanying
drawings. It should be noted that references to “an” or “one”
embodiment in this disclosure are not necessarily to the
same embodiment, and they mean at least one. In the
drawings:

FIG. 1 illustrates an example system for analyzing and
classifying sets of data according to an embodiment.

FIG. 2 illustrates an example process for building a
dictionary according to an embodiment.

FIG. 3 illustrates an example process for performing
dictionary-based clustering of log records according to an
embodiment.

FIG. 4A illustrates an example interactive interface for
viewing and navigating between different layers of data
extracted from log records according to an embodiment.

FIG. 4B illustrates an example interactive interface for
visualizing and navigating between different clusters of log
records in accordance with an embodiment.

FIG. 4C illustrates an example interactive interface for
filtering the clusters that are presented in accordance with an
embodiment.

FIG. 4D illustrates an example interactive interface for
drilling down into individual clusters in a filtered set of
clusters in accordance with an embodiment.

FIG. 5 shows a block diagram that illustrates a computer
system in accordance with an embodiment.

DETAILED DESCRIPTION

In the following description, for the purposes of expla-
nation, numerous specific details are set forth in order to
provide a thorough understanding. One or more embodi-
ments may be practiced without these specific details. Fea-
tures described in one embodiment may be combined with
features described in a different embodiment. In some
examples, well-known structures and devices are described
with reference to a block diagram form in order to avoid
unnecessarily obscuring the present invention.

1.0 General Overview

As noted above, many types of computing systems and
applications generate vast amounts of data pertaining to or
resulting from operation of the computing system or appli-
cation. The data may be stored in collected locations, such
as log records (also referred to herein as log files), which
may be reviewed at a later time period to analyze the
behavior or operation of the system or application. Embodi-
ments herein provide techniques for efficiently analyzing
and performing analytics on large datasets including log
records collected over a period of time.

In an embodiment, a log analytics system uses natural
language processing (NLP) to generate clusters of similar
log records. The NLP techniques may classify the set of log
records in a manner that is cohesive and informative to an
end user. The NLP techniques may further provide analytic
insights into system behavior that would not be feasible for
administrators to determine from the vast amounts of raw
data. In addition, cluster-based operations may be performed
over the groups of log data, allowing for more efficient and
effective execution of various operations, such as applying
patches and adjusting system configurations and/or other
settings.

US 11,853,340 B2

3

In an embodiment, the NLP techniques use a dictionary to
determine the meaning of text. The dictionary may specify
relative weights for certain text (or “tokens”) that is more
meaningful for clustering purposes than other text. The
content of a log file may include human-generated text
and/or machine-generated text. All or a portion of the
content may be exposed to an NLP analytic, which may
parse the text to identify tokens in the dictionary and
corresponding token weights. The system may then cluster
the log records based on the dictionary tokens and corre-
sponding weights. Each cluster may represent a combination
of tokens (e.g., a set of one or more keywords or other text)
that is unique relative to other clusters in the set. Thus, the
set of tokens for a given cluster distinguishes the cluster
from other clusters and provides insights, in a natural
language format, into what is unique about the log records
grouped in the cluster.

In an embodiment, the NLP analytic assigns weights to
textual tokens based, in whole or in part, on sentiment
associated with the text. The NLP analytic may weight
negative sentiment as more meaningful than positive senti-
ment. In the context of log analytics, negative sentiment is
generally more meaningful as it may indicate an underlying
problem that should be addressed. Proper system operation
is generally not as interesting to system administrators.
Thus, keywords expressing a positive sentiment may be
weighted less heavily or ignored. Additionally or alterna-
tively, tokens may be weighted based on one or more other
weighting factors, such as domain-specific aspects. For
example, a particular keyword may reflect a highly negative
sentiment for one application but may not reflect as much
negativity or may even be positive in the context of another
domain. The weighting factors and manner in which they are
applied to tokens may vary depending on the particular
implementation and be configurable by an end user.

In an embodiment, dictionaries may include or otherwise
be associated with rules that affect clustering operations. As
an example, a rule may map a set of one or more keywords
or other tokens present in records to a dictionary token. As
another example, a rule may define a function for prioritiz-
ing or weighting keywords. During clustering, a rule engine
may evaluate the rules associated with a dictionary to
determine how to group records.

In an embodiment, the system provides a multilayered
interactive interface that allows users to drill down into
specific clusters to view aggregate information for the
cluster. The aggregate information may include a summary
that maps to the unique combination of keywords repre-
sented by the cluster. Additionally or alternatively, the
aggregate information may include attributes that are cor-
related with the unique combination of keywords repre-
sented by the cluster. The multilayered interface may further
allow a user to drill down to view individual log records
and/or log record metadata. Additionally or alternatively, the
multilayered interface may allow a user to trigger automated
downstream actions, such as remedies for outliers among the
clusters.

While several examples herein are described by way of
illustration with respect to “log™ data, the techniques are not
limited in scope only to the analysis of log data and may be
applied to a wide range of data types. The following
description may interchangeably refer to the data being
processed as “records” or “messages”, without intent to limit
the scope to any particular format of data.

One or more embodiments described in this Specification
and/or recited in the claims may not be included in this
General Overview section.

20

40

45

55

4

2.0 System Overview

FIG. 1 illustrates an example system for analyzing and
classifying sets of data according to an embodiment. The
components illustrated in FIG. 1 may be local to or remote
from each other. The components illustrated in FIG. 1 may
be implemented in software and/or hardware. Each compo-
nent may be distributed over multiple applications and/or
machines. Multiple components may be combined into one
application and/or machine. Operations described with
respect to one component may instead be performed by
another component.

System 100 includes components for interacting with one
or more users. In an embodiment, users interact with log
analytics system 104 via client applications, such as client
application 102. Client application 102 may comprise soft-
ware and/or hardware that may be used to operate or
interface with log analytics system 104. Client application
102 may execute on one or more digital devices, examples
of which include workstations, personal computers, mobile
devices, and remote computing terminals. A digital device
may comprise a display, such as a monitor or touchscreen,
for displaying a user interface to users of client application
102. A digital device may also comprise one or more input
devices that allows users to provide operational control over
the activities of system 100, such as a mouse or keyboard to
manipulate a pointing object in a graphical user interface
(GUI) to generate user inputs.

Log analytics system 104 comprises functionality that is
accessible to users of client application 102. Log analytics
system 104 may be implemented as or include a set of
engines or modules to perform clustering and/or analytics.
In an embodiment, log analytics system 104 includes client
interface 106, clustering engine 108, and analytics engine
110. Clustering engine 108 may perform classification
operations to cluster/group raw log data 114. Analytics
engine 110 may be used to analyze the grouped log data and
trigger automated actions. Examples of such analytics
include anomaly detection, diagnostics, sequence analysis,
and forecasting.

Client interface 106 is configured to facilitate communi-
cation with users via client application 102. In an embodi-
ment, client interface 106 renders user interface elements
and receives input via user interface elements. Example
interfaces include a GUI, a command line interface (CLI), a
haptic interface, and a voice command interface. Examples
of user interface elements include checkboxes, radio but-
tons, dropdown lists, list boxes, buttons, toggles, text fields,
date and time selectors, command lines, sliders, pages, and
forms.

In an embodiment, data repository 112 stores raw log data
114 and processed log data 116. Data repository 112 may be
any type of storage unit and/or device (e.g., a file system,
database, collection of tables, or any other storage mecha-
nism) for storing data. Further, data repository 112 may
include multiple different storage units and/or devices. The
multiple different storage units and/or devices may or may
not be of the same type or located at the same physical site.
Further, data repository 112 may be implemented or may
execute on the same computing system as one or more other
components of system 100. Alternatively or additionally,
data repository 112 may be implemented or executed on a
computing system separate from one or more components of
system 100. Data repository 112 may be communicatively
coupled to log analytics system 104 via a direct connection
or via a network.

In an embodiment, raw log data 114 is processed by log
analytics system 104 to generate processed log data 116.

US 11,853,340 B2

5

Raw log data 114 may originate from any log-producing
source location, such as log source 118a and log source
1185. For example, raw log data 114 may originate from a
database management system (DBMS), database application
(DB App), middleware application, web server, or any other
log-producing application or system.

Log analytics system 104 may receive instructions or
requests from one or more client applications, including
client application 102. For example, log analytics system
104 may receive a request from client application 102 to
cluster and analyze raw log data 114 within data repository
112. In response, clustering engine 108 may generate a set
of clusters, and analytics engine 110 may analyze the data to
generate an analytic output. The analytic output may provide
insights into the data that are determined through machine-
learning, NLP, and/or other analytic techniques. Addition-
ally or alternatively, log analytics system 104 may trigger
one or more automated actions responsive to a request
received from client application 102, such as remedying
outliers among the set of generated clusters.

In an embodiment, log analytics system 104 is imple-
mented as a cloud service or microservice application.
Additional embodiments and examples relating to cloud
services are described below in Section 6.0, titled “Com-
puter Networks and Cloud Networks.” Additional embodi-
ments and examples relating to microservice applications
are described below in Section 7.0, titled “Microservice
Applications.”

3.0 Dictionary-Based Clustering

3.1 Building a Dictionary

In an embodiment, the NLP techniques described herein
use a dictionary to cluster records. A dictionary may be any
data object that stores a set of tokens and/or rules. In the
context of a log record, a dictionary token may be or map to
a string of text, such as a keyword or set of keywords, that
are contained within the log record. The dictionary may be
configured to store only tokens that are meaningful for
clustering purposes. Tokens that are not meaningful may be
ignored or discarded from the dictionary. However, the
dictionary may also be configured to store all tokens
extracted from a set of records, depending on the particular
implementation.

In an embodiment, the dictionary associates weights with
each dictionary token. A token’s weight may indicate how
meaningful the token is for clustering and analytic opera-
tions. Weights may be assigned on a normalized scale, such
as from 1 to O, where 1 indicates a significant weight, O
indicates no weight. Non-integer values closer to 1 may be
weighted more heavily than values closer to 0. However, the
weight values, scale, and units may vary depending on the
particular implementation.

Additionally or alternatively, the dictionary may define or
otherwise be associated with a set of one or more rules.
Example dictionary rules are described further below in
Section 3.4, titled “Dictionary Rules.”

FIG. 2 illustrates example process 200 for building a
dictionary according to an embodiment. One or more opera-
tions illustrated in FIG. 2 may be modified, rearranged, or
omitted all together. Accordingly, the particular sequence of
operations illustrated in FIG. 2 should not be construed as
limiting the scope of one or more embodiments.

Referring to FIG. 2, process 200 identifies a set of log
records (operation 202). The set of log records may originate
from one or more log-producing source locations, such as
log source 118a and log source 1185. Example log-produc-
ing source locations include a DBMS, a DB app, a middle-
ware application, a web server, hardware logs, operating

20

30

40

45

55

6

system logs, application logs, application server logs, data-
base server logs, and any other type of log that monitors the
behavior or a system or application.

Process 200 further tokenizes the data within the log
record (operation 204). Tokenization may include demar-
cating and classifying a string of input characters contained
within a log record. In an embodiment, tokenization uses
lexical analysis to extract keywords from a log record. For
example, the log message “Server FOO is down” may
extract four tokens as follows <record><keyword>Server</
keyword><keyword>FOO</keyword><keyword>is</
keyword><keyword>down</keyword></record>. The
number and token values that are extracted may vary from
one message to the next.

Process 200 may further select an extracted token for
further processing (operation 206). Process 200 may iterate
through the tokens in any predetermined or arbitrary order.

Process 200 determines whether to add the selected token
to the dictionary (operation 208). Process 200 may make the
determination based on predefined rules, machine learning,
domain-specific parameters, and/or some combination
thereof. In an embodiment, process 200 may exclude tokens
that frequently occur within log records. For example, if a
token occurs in all log records (or more than a threshold,
which may be configurable), then it is indicative that the
token does not convey much meaning for purposes of
distinguishing clusters of log records. Thus, such tokens
may be excluded from the dictionary. Additionally or alter-
natively, process 200 may exclude tokens that occur on a
predetermined list of tokens and/or based on part of speech.
For instance, a user may define a list of tokens that should
be excluded from the dictionary. As another example, pro-
cess 200 may exclude articles (e.g., a, the, an) and/or
conjunctions (e.g., or, and) as these parts of speech may not
be meaningful for clustering in some applications.

If the token is to be added to the dictionary, then process
200 determines a weight for the token (operation 210). As
previously mentioned, the token weight may reflect and be
assigned based on how meaningful the token is for cluster-
ing. Process 200 may determine the weights based on a
sentiment reflected by the token, uniqueness of the token,
token context, predefined rules, patterns automatically deter-
mined through machine-learning, and/or domain knowledge
injected into the system. Additionally or alternatively, other
factors may influence the weight, such as attributes associ-
ated with the log records or log metadata.

In other embodiments, process 200 may determine the
weight for the token before determining whether to add a
selected token to the dictionary. Process 200 may then retain
the top n tokens in the dictionary or only tokens with weights
satisfying a threshold. Other tokens may be discarded or
otherwise not stored in the dictionary.

If the selected token satisfies the criteria for being incor-
porated into the dictionary, then process 200 stores the
selected token and corresponding weight in the dictionary
(operation 212).

Process 200 next determines whether there are any
remaining tokens (operation 214). If so, then process 200
returns to operation 206 and repeats the analysis for the
remaining tokens. Once complete, the process stores the
dictionary, which may be used for clustering operations as
discussed further herein.

3.2 Weighting Tokens Based on Sentiment and Other
Factors

In log analytics, negative sentiment is often more mean-
ingful to detect and remedy underlying problems within a
computing system. For example, if a DBMS, server, or other

US 11,853,340 B2

7

computing resource is experiencing problems, the log
records generally include keywords that reflect a negative
sentiment, such as “outage”, “error”, “down”, etc. During
proper system operation, the occurrence of negative key-
words within log records is much less frequent. Thus,
weighting tokens based on sentiment may facilitate quick
isolation and identification of performance degradation and/
or other problems within a system.

In an embodiment, sentiment weights are assigned
according to predefined rules. A rule may map one or more
keywords to a corresponding weight indicative of sentiment
associated with the one or more keywords. The rules may be
specified by a user or domain expert. In other embodiments,
the rules may be generated through machine learning algo-
rithms. For example, a machine learning process may train
a model, such as a neural network or support vector
machine, based on a set of example log records that have
been labeled negative and/or positive. The model weights
assigned during the training process may be normalized and
incorporated into the dictionary as token weights for use
during clustering operations as described further herein.

In an embodiment, sentiment weights account for context
associated with the log records. For example, negative
sentiment may influence a weight more significantly for
lower-level log-producing sources (e.g., DBMS, hardware
logs, operating system logs) within a multitier application
than higher-level log-producing sources (e.g., social media
applications, presentation tier applications). A negative sen-
timent at a lower tier of an application stack is oftentimes
more consistently indicative of a problem than at a higher
level within the application stack. For instance, a negative
keyword in a social media record may not be indicative of
problems within the application stack whereas certain nega-
tive keyword in a DBMS log may consistently be associated
with an underlying issue. Thus, log analytics system 104
may be configured to account for the context, through rules
and/or machine-learning, when assigning weights.

Additionally or alternatively, dictionary tokens may be
assigned weights based on one or more factors other than
sentiment. As an example, different categories of tokens may
be weighted different. For instance, certain parts of speech
may be weighted more heavily than other parts of speech.
Example token categories are described in Section 3.3, titled
“Token Categories.” As another example, tokens may be
weighted based on the log-producing source. Tokens
extracted from log data generated by one trace provider may
be given more weight than tokens extracted from log data
generated by another trace provider.

In an embodiment, a token weight may be computed by
aggregating weight values associated with different factors.
For example, an aggregate weight may be computed by
averaging or otherwise aggregating a sentiment weight and
token category weight for an extracted token. Additionally
or alternatively, other weight values may be factored into the
aggregate weight.

In an embodiment, dictionary tokens are automatically
sorted by weight. The sorted tokens may be presented to an
end user to show which tokens are most heavily weighted
and associated with a negative sentiment. Additionally or
alternatively, the sorted tokens may be used to optimize
clustering operations as described further below.

3.3 Token Categories

In addition or as an alternative to token weights, a
dictionary may associate a token with one or more token
categories. Token categories may be used for clustering
and/or filtering operations. For example, a user may request
clustering using only keywords from a dictionary that

25

30

40

45

55

8

belong to a particular category or combination of categories.
Dictionary keywords that do not match the specified cat-
egory conditions may be given little or no weight during
clustering. As another example, a user may filter clusters to
highlight groupings of records that map to a particular
category or combination of categories.

In an embodiment, the token categories include semantic
and/or syntactic categories. A semantic category may clas-
sify tokens based on the meaning of keywords or sequences
of' keywords within a corpus of records. For instance, certain
keywords that are associated with a unifying concept may be
mapped to a classifier for the concept. As an example,
keywords related to a particular type of operation, such as a
backup or migration operation, may be assigned a corre-
sponding classifier (e.g., “backup”, “migration”) that iden-
tifies the operation.

A syntactic category may include categories relating to
natural language rules or grammar. For example, a syntactic
category may include the part-of-speech of the token, such
as a noun, verb, adjective, or adverb. As another example, a
syntactic category may correspond to the position of the
token within a record or sentence.

Additionally or alternatively, a keyword may be classified
into one or more other categories. As an example, a category
may include a field name that identifies what field the token
value was extracted from in the log data. As another
example, a category may identify the source generating the
token, such as an operating system, server, or other com-
puting resource. Additionally or alternatively, one or more
token categories may be specified as clustering parameters
as discussed further herein. As another example, tokens may
be assigned weights based on which source generated the
log data.

In an embodiment, user-defined categories may be added
to the dictionary. For example, a user may select, via a user
interface (UI) or API, “add category” or “remove category”
for a selected dictionary. Thus, the user may use the Ul or
run an API to fine tune the categories of the tokens in
existing dictionaries.

3.4 Dictionary Rules

As previously mentioned, a dictionary may define or
otherwise be associated with a set of one or more rules. In
an embodiment, a rule comprises logic that affects clustering
operations when the associated dictionary is used by the
clustering process. For example, a rule may be evaluated to
(a) map record content to dictionary tokens, (b) compute
weights, (c¢) determine record similarity and/or (d) assign
records to groups. Rules may be customizable through
machine-learning and/or user specified logic to tailor clus-
tering operations to a specific domain.

In an embodiment, a rule may assign disparate keywords
to the same token. For example, a rule may map synonyms,
homonyms, and/or roots with the same dictionary token. The
rule may cause the dictionary to store links between key-
words that have substantially identical meaning (e.g.,
“stopped” and “halted”) or that share the same roots (e.g.,
“request”, “requests”, “requesting”, ‘“requested”). As
another example, the keyword “spoon” is a hyponym of
“cutlery”. A rule may create a link in the dictionary indi-
cating how the two keywords are related. The clustering
process may use the links to consider similar words when
forming clusters.

In an embodiment, the synonyms, homonyms, and/or
roots that are linked in a dictionary may be exposed to and
configurable by an end user. For example, a user may
remove a link between keywords so that the keywords are

US 11,853,340 B2

9

not treated similarly. Additionally or alternatively, a user
may add links to indicate similarity between keywords.

Additionally or alternatively, complex rules may be
defined to compute token weights, similarity scores, and/or
group records as a function of several different factors. The
rules may account for semantics, syntax, sentiment, and/or
other factors to compute token weights or similarity scores.
The rules may be evaluated and applied to the corpus of
documents at cluster runtime to dynamically assign weights
or similarity scores. For instance, a rule that factors in the
frequency of a given keyword may assign the token
“stopped” a high weight in one corpus of log records if
relatively uncommon but a lower score for another corpus of
log records if it is relatively common. Thus, the scores for
a given dictionary token may vary from one corpus of
records to the next depending on the record attributes.

In an embodiment, system 100 may use machine learning
to learn similarities between keywords. Based on the learned
similarities, the machine learning engine may automatically
recommend and/or add rules and/or links to the dictionary.
The machine learning engine may be configured using
training data specific to a particular domain to learn domain-
specific patterns. For example, rules for a database diction-
ary in a production environment may be different from rules
for a database dictionary in a test environment or a different
production environment. Machine learning models, such as
neural networks and support vector machines, may learn
domain-specific patterns without requiring the rules to be
hard-coded into the system.

3.5 Generating Clusters

Once built, a dictionary (or set of dictionaries) may be
used to perform clustering operations to group records based
on keyword similarities. FIG. 3 illustrates example process
300 for performing dictionary-based clustering of log
records in accordance with an embodiment. One or more
operations illustrated in FIG. 3 may be modified, rearranged,
or omitted all together. Accordingly, the particular sequence
of operations illustrated in FIG. 3 should not be construed as
limiting the scope of one or more embodiments.

Process 300 receives a request to group log records
(operation 302). For example, the request may be submitted
by client application 102.

Responsive to the request, process 300 determines
whether the request specifies any cluster parameters (opera-
tion 304). For example, process 300 may parse the request
to determine whether it specifies the number of tokens, token
categories, and/or other token parameters to use for cluster-
ing. Additionally or alternatively, process 300 may check for
other clustering parameters, such as a range of time, log
source, and dictionary to use for clustering.

If the request does not specify a cluster parameter, then
process 300 selects a default value for the cluster parameter
(operation 306). For example, a default number of tokens to
use for clustering may be predefined. If a token category is
not specified, then clustering may be performed across all
categories. Additionally or alternatively, a default time
range, log source (or set of log sources), and/or dictionary
(or set of dictionaries) may be selected. However, the default
values may vary depending on the particular implementation
and may be configurable by an end user.

Process 300 further generates syntactic cluster signatures
for log records subject to the request (operation 308). The
generation of syntactic cluster signatures may be viewed as
a form of log reduction to expedite the overall clustering
process. A signature may be generated as a function of word
positions and exact word matches. For example, a system
may generate the following six log records:

20

30

40

45

50

60

10

Authenticating user ul
Authenticating user u2
Authenticating user u3
User authentication successful for user ul

Log 5: User authentication successful for user u2

Log 6: User authentication successful for user u3
The following two syntactic cluster signatures may be
generated for the above six log records:

Sig. 1: Authenticating user <var>

Sig. 2: User authentication successful for user <var>
In this example, the above two signatures may be passed as
candidates for the dictionary-based clustering rather than all
six log records, which reduces processing overhead and
speeds up the NLP clustering process. However, in other
embodiments, the NLP clustering process may operate
directly over all six log records.

In an embodiment, process 300 identifies records subject
to the request based on the cluster parameters. For example,
process 300 may identify which log records fall within a
specified range of time, originate from a particular log-
producing source (or set of sources) and/or otherwise satisfy
specified criteria. The source and/or log records used to
build/tune a dictionary may differ from the source and/or log
records subject to the clustering operations. In other cases,
the log records may be the same or overlap.

Process 300 further identifies/extracts the dictionary
tokens from a selected cluster signature, which may repre-
sent one or more log records, or a selected log record
(operation 310). During this operation, process 300 may
parse the signature or log record to search the text for
keywords contained within one or more dictionaries. Pro-
cess 300 may further search for synonyms, hyponyms, roots,
and/or other relationships between the dictionary tokens.

Additionally or alternatively, process 300 may evaluate
the rules defined for the dictionary. For example, process
300 may apply a rule to map a keyword (or combination of
keywords) within a record to a dictionary token. As another
example, process 300 may apply a rule to compute token
weights from the extracted tokens or similarity scores for the
records.

In an embodiment, process 300 determines whether there
are any remaining signatures/log records subject to the
request to process (operation 312). If so, then the process
returns to operation 308 and iterates through the remaining
signatures or log records to identify the dictionary tokens
associated with each signature or record.

Once the dictionary tokens have been identified, process
300 clusters the signatures/log records, grouping signature/
records with matching tokens such that each cluster repre-
sents a unique set of one or more tokens that distinguishes
the cluster from other clusters in the set (operation 314). In
an embodiment, process 300 uses up to a threshold number
of tokens to perform the clustering. For example, if three
tokens are specified, then each cluster may represent a
unique combination of up to three tokens.

In an embodiment, a signature and/or log record may be
assigned to more than one cluster. For example, if a log
record includes the unique combination of keywords repre-
sented by different clusters, the log record may be assigned
to each of those clusters. In other embodiments, the log
record may be assigned only to one cluster, which may be
selected based on which tokens are most highly weighted. In
this case, the log record may be assigned to a first cluster
where the overall or average weight of the unique combi-
nation of tokens represented by the cluster is greater than a
second cluster even though the log record may include the
combination of tokens from both clusters.

Log 1:
Log 2:
Log 3:
Log 4:

US 11,853,340 B2

11

In an embodiment, process 300 analyzes log records to
search for synonyms, hyponyms, and/or roots when per-
forming clustering operations. In one aspect, process 300
may assign a record to a cluster even if it does not exactly
match the unique combination of keywords associated with
the cluster if the record includes synonyms, hyponyms,
and/or roots for each keyword missing from the log record.
For instance, a cluster may represent the unique combination
of keywords <request, denied, fault>. A log record contain-
ing the keywords “denied” and “fault” may still be assigned
to the cluster if it includes the keyword “requesting” as it is
similar to “request”. Process 300 may determine which
keywords are similar based on links in the dictionary, as
previously described. In other embodiments, process may
assign a record to a cluster if and only if the record contains
an exact match of all keywords.

Additionally or alternatively, process 300 may consider
token categories when performing clustering operations. As
an example, a user may request the clustering be performed
only using nouns and verbs. In response, process 300 may
use only dictionary tokens that are classified as nouns and
verbs to generate the clusters. Thus, the unique combination
of keyword represented by each cluster may exclude other
parts-of-speech, such as adverbs. Additionally or alterna-
tively, process 300 may use only dictionary tokens that are
classified into other categories, which may include user-
specified categories. This allows clustering to be controlled
by token categories, which may present different insights
into the data based on which subset or combination of token
categories are selected.

Additionally or alternatively, process 300 may apply rules
when performing clustering operations. For example, a
dictionary may specity domain-specific rules for computing
similarity between log records. Process 300 may then group
the log records such that log records are more likely to be
grouped with similar log records than dissimilar log records,
as reflected by the similarity scores.

In an embodiment, process 300 may apply rules to deter-
mine how to map dictionary tokens extracted from the
corpus of log records to dictionary tokens. The rules may
control which disparate keywords, if any, are mapped to the
same dictionary token. As previously mentioned, the rules
may be generated by a machine learning model. In this case,
the machine learning model may be trained, using a labeled
or unlabeled training dataset, to determine which tokens
have similar meaning within a particular domain. The
machine learning model may then establish links in the
dictionary for disparate tokens that are estimated to have a
threshold level of similarity.

Additionally or alternatively, process 300 may apply rules
to compute token weights. For example, a rule may define a
weight computation by averaging or otherwise aggregating
a sentiment score (e.g., 1 is highly negative and 0 is highly
positive), a log source score (e.g., 1 is a highly prioritized
source and 0 is a low priority source), and/or other normal-
ized weighting factor scores. The computed weights may be
used to select which dictionary tokens to use for the clus-
tering process, as previously described.

In an embodiment, process 300 assigns a cluster identifier
to each log record assigned to a cluster. The cluster identifier
may be a string or other value that uniquely identifies the
cluster relative to other clusters. The cluster identifier may
be used for filtering, presentation, and other operations. For
example, filtering and/or other operations may be executed
with respect to all records that have a given cluster identifier.

Once the clusters have been generated, process 300 stores
and/or presents the clusters to the user (operation 316).

5

10

15

20

25

30

35

40

45

50

55

60

65

12

Example interfaces for presenting and interacting with the
clustered records are described further below.

3.6 Clustering Based on Word Embeddings

The clustering operations described above may operate on
string values for the tokens and/or word embeddings,
depending on the particular implementation. When operat-
ing on string values, records may be assigned to a cluster
only if the records include a matching string value or a
similar string value, such as a synonym or hyponym, if it is
linked via rules associated with the dictionary. Word embed-
dings allow a degree of contextual similarity or meaning
between different words to be factored into the grouping of
records.

In an embodiment, a dictionary may comprise a set of
word embeddings where a word embedding is a numeric
representation, such as a real-valued vector, of a word in a
given context. With word embeddings, the same keyword
may be mapped to different embeddings depending on
context. For example, the keyword “outage” may be mapped
to a different embedding depending on its position in a log
record, what other words surround the keyword (e.g.,
whether “network”, “database”, or another word precede or
succeed the keyword), and/or other factors indicative of the
semantic meaning of the keyword. Word embeddings may
be assigned such that a vector for a dictionary token may
have a smaller Euclidean distance and/or greater cosine
similarity to another vector in the vector space for a token
that has a more similar semantic meaning than for a token
that is not as similar. Example word embedding models
include continuous bag-of-words and continuous skip-gram
models, which are designed to map words to real-valued
vectors based on linguistic context determined through
natural language processing. However, other NLP and/or
ML models may be applied to generate the word embed-
dings.

During clustering operations, the dictionary of word
embeddings may assign records to the same group even
though the keywords may not exactly match if the semantic
meanings of the keywords are similar. As previously indi-
cated, similarity may be determined based on the Euclidean
distance or cosine similarity between different embeddings.
As aresult, the set of one or more keywords represented by
a cluster may not exactly match the keywords of the records
assigned to the group. However, the semantic meaning
conveyed by the keywords may be substantially similar
(e.g., within a threshold Euclidean distance or cosine simi-
larity) of the word embeddings included in the matched
records.

3.7 Cluster-Based Analytics and Operations

Analytics engine 110 may be configured to perform
various operations on clustered log data. In one embodi-
ment, analytics engine 110 may be configured to generate
summaries for one or more clusters based on the unique set
of one or more keywords in each cluster. The summary may
comprise one or more sentences and/or sub-sentences that
describe a behavior represented by the pattern. For example,
a particular pattern of keywords may represent a high
likelihood of a known problem in an application. A summary
may be mapped to these keywords. If the clustering opera-
tions above produce a cluster representing the keywords,
then the summary may be presented to the user to identify
the problem.

Additionally or alternatively, one or more actions may be
mapped to combinations of keywords or cluster summaries.
Different combinations of keywords and/or different cluster
summaries may be mapped to different actions. For
example, a cluster representing the keywords network,

US 11,853,340 B2

13

latency, outage may be mapped to an action for adjusting
network settings and/or applying a patch. As another
example, a cluster representing the keywords active, session,
exceeded may be mapped to an action for migrating tenants
to rebalance resource allocation within a cloud environment.
The actions that are mapped may vary depending on the
particular implementation.

In an embodiment, the actions that are mapped to a
particular set of keywords or cluster summary may be
automatically recommended to an end user, such as a system
administrator. System 100 may generate a link to present to
the user based on which action has been selected for a
particular cluster. The user may select the link, via a Ul or
API, to execute the recommended action. System 100 may
determine which resources are affected based on the log
records in the cluster. For example, system 100 may identify
a set of resources to patch based on which sources generated
the log records or which resources are identified within the
log records.

In an embodiment, users may configure actions to auto-
matically trigger based on certain keyword combinations.
The user may map a set of one or more keywords to a
corresponding action. The user may specify whether the
action should trigger automatically or should be presented to
a user for further review before execution. If the clustering
operation produces a cluster representing the keyword com-
bination, then the automated action may be triggered or
presented to the user for further review, depending on the
user specification. Example actions that may be triggered
include bringing a resource offline, patching the resource,
migrating data, backing up data, and adjusting configuration
settings.

In an embodiment, actions may be set to trigger based in
part on token weights. For example, if the clustering opera-
tions yield a cluster associated with highly negative-
weighted keywords, then the resource may be brought
offline and/or patched to mitigate potential issues such as
performance degradation and security flaws.

Additionally or alternatively, analytics engine 110 may
recommend or trigger actions based on which clusters are
outliers. Outliers clusters may be determined based on (a)
distance from other clusters and/or (b) the number of records
in the cluster. In many instances, outlier clusters may be
indicative that one or more resources have departed from
expected behavior. Thus, the outlier clusters may be high-
lighted, along with summaries and recommended actions, to
quickly isolate potential problems and bring them to the
attention of a user.

The clustering techniques may further be applied to
sources other than log data. For example, log analytics
system 104 may ingest the text of Service Requests (SRs) or
tickets filed by end users. The clustering process may then
be applied to the SRs to group “similar” or “same” issues
even though the text written by the users in the SRs may not
be exactly identical. Thus, the clusters provide the ability to
automatically identify similar issues and the unique varieties
of issues filed by the users in a given time period.

In an embodiment, the clustering process may further be
performed over multiple sources, and analytics engine 110
may find connections between the two sources for further
analysis. For example, the clustering process may be applied
to SRs and the log records pertinent to the environments
mentioned in the SRs. Analytics engine 110 may then link
the problems indicated in the SRs to corresponding envi-
ronments. The clusters of log data associated with the
environment may then be used to debug any underlying
issues. Additionally or alternatively, analytics engine 110

10

15

20

25

30

35

40

45

50

55

60

65

14

may identify other environments where the same or similar
issues exist but for which the end users have not yet filed
SRs or tickets. Analytics engine 110 may then proactively
trigger patches or other remedies to address the similar
issues before the end user submits a service ticket.

4.0 Additional Natural Language Processing Techniques

4.1 Dictionary Variance and Tuning

In an embodiment, domain-specific knowledge may be
injected into the construction and tuning of a dictionary. In
one aspect, domain-specific dictionaries may be built for
different sources of log data. For example, one dictionary
may be built for a DBMS, another for a middleware appli-
cation, another for a web server, etc. Each domain-specific
dictionary may define different keywords/tokens, weights,
rules, and/or links (e.g., which keywords are similar). Thus,
the keywords and associated weights that are used to cluster
records from one layer of a multitier application may differ
from another layer in the multitier application.

Additionally or alternatively, dictionaries may vary based
on various domain-specific attributes, such as the environ-
ment where the records are generated and a role of a user
requesting the clustering. For example, a database adminis-
trator may have access to use a different dictionary then a
network administrator. The database administrator may
define different dictionaries for different database hosts
based on the DBMS version, operating system, hardware
platform, and/or other resource attributes.

Additionally or alternatively, different dictionaries may be
built to address different problem spaces. For example, a
dictionary may include and/or weight tokens differently to
analyze log records for a particular type of network problem.
Different dictionaries may be used to search for other
problems, such as 1/O throughput and latency issues.

In an embodiment, users may tune dictionaries, weights
and/or links. For example, a user may submit, via a Ul or
API, a request to add or remove a dictionary token from a
dictionary. The Ul may allow the user to view individual log
messages and select keywords contained therein to add to
the dictionary. Additionally or alternatively, the user may
adjust how the tokens in the dictionary are weighted and/or
define relationships between the tokens. The user may
further be given control to create new dictionaries, import
dictionaries from another source, and delete the dictionaries
that are used for clustering.

In an embodiment, log analytics system 104 may use
machine learning to tune a dictionary based on user prefer-
ences. For example, log analytics system 104 may present
the user with the text of a log message, an indication of
which keywords were extracted as tokens, and a reason why
the tokens were extracted. The user may be presented with
an option to confirm or override the reason/rule for adding
tokens. The rules may be field-specific (e.g., for a field
within a log record, the user may add or stop rules for adding
keywords to the dictionary) and/or context-specific (e.g., for
a particular log-producing source, the user may add or stop
rules for adding keywords to the dictionary).

4.2 Hierarchical Cross-Dictionary Clustering

In an embodiment, dictionaries may be defined that link
disparate dictionaries together for clustering operations. For
example, different dictionaries may be specified for a DBMS
and a middleware application. A “parent” dictionary may
control how tokens in the DBMS dictionary are related to
tokens in the middleware dictionary. When clustering opera-
tions are run across both DBMS logs and middleware logs,
the parent dictionary may be used to group logs originating

US 11,853,340 B2

15

across the different sources/domains. The “child” dictionar-
ies may be used to cluster logs from the same source or
domain.

In an embodiment, a “parent” dictionary may also be a
child of another dictionary. For example, the “parent” dic-
tionary that links the DBMS and middleware application
may be a child to another dictionary that links it to a
dictionary definition tokens for a web server. Thus, the
hierarchy of dictionaries may run several layers deep.

In an embodiment, clustering operations may group
records based on differences and/or commonalities between
the dictionaries. For example, client application 102 may
request log records be grouped only using tokens found in
one dictionary but not the other or tokens only found in both
dictionaries.

5.0 Multilayered Interactive Interfaces

In an embodiment, the set of clusters are presented via an
interactive interface to a user. The interactive interface may
allow a user to view and drill down into different layers of
varying granularity. For example, an upper layer may pres-
ent all or a subset of clusters with reference to one or more
dimensions, such as the time range and native source of the
log data. Additionally or alternatively, the upper layer may
allow a user to filter and isolate clusters based on one or
more dictionary keywords. Clusters that do not match the
filter set of keywords may be removed from view to isolate
clusters of interest in the presentation user interface.

In an embodiment, the user may click on, hover over, or
otherwise select a cluster to view another layer of the
interface that presents more detailed aggregate information
about the cluster. According to one aspect, the user may
select a cluster to view a combination of dictionary key-
words for a cluster, which may be presented responsive to
the selection. Additionally or alternatively, the combination
of dictionary keywords may be encoded into one or more
visual aspects of the cluster at the upper layer, such as the
cluster color. The combination of keywords may be selected
to be a unique combination that distinguishes the cluster
from other clusters. Additionally or alternatively, the user
may drill down to other layers to view other aggregate
cluster information. For example, the user may drill down to
view if the system identified any attributes that were corre-
lated with the unique combination of keywords for a given
cluster. A combination of keywords may be associated with
a given timeframe, source of log data, domain, computing
resource, and/or some other cluster attribute. Additionally or
alternatively, the user may drill down to trigger automated
downstream actions on all or a subset of targets in a cluster.
For instance, the interactive interface may trigger the appli-
cation of patches and/or other remedies for outliers among
the clusters.

FIG. 4A illustrates example interactive interface 402 for
viewing and navigating between different layers of data
extracted from log records according to an embodiment.
Interactive interface 402 indicates that over 350,000 log
records have been clustered into 687 groups. A list of
clusters is presented with the users with various fields,
including an entity name, event description, count of log
records in the cluster, start time corresponding to the first
chronological log message in the cluster, end time corre-
sponding to the last chronological log message in the cluster,
cluster identifier, and the unique combination of keywords
mapped to the cluster.

FIG. 4B illustrates example interactive interface 404 for
visualizing and navigating between different clusters of log
records in accordance with an embodiment. Interactive
interface 404 presents a patch cluster analysis that indicates

15

20

25

30

35

40

45

50

16

recommended patches to apply based on the set of clusters.
The y-axis corresponds to the entity (application name/
version) and the x-axis corresponds to the cluster start-time.
The size of clusters is configurable based on one or more
cluster attributes, such as the number of records in the
cluster. The color of the cluster corresponds to one or more
keywords represented by the cluster.

FIG. 4C illustrates example interactive interface 406 for
filtering the clusters that are presented in accordance with an
embodiment. Interactive interface 406 presents a set of
options for filtering the set of clusters. The filters attributes
include group attribute, product attributes, the cluster iden-
tifier, and keywords/tokens. The user may select the filter
criteria to control which clusters are visible via the Ul. For
example, the user may specify a set of one or more keywords
to use for filtering. In response, the Ul may remove clusters
that do not include the set of one or more filter keywords.
Thus, only clusters that include the keywords and satisty the
filter criteria remain visible via the display, which may be
helpful to reduce the amount of information presented to the
user and streamline further operations.

FIG. 4D illustrates example interactive interface 408 for
drilling down into individual clusters in a filtered set of
clusters in accordance with an embodiment. In the example,
the user has selected a particular cluster identifier. Eleven
sub-clusters map to the same cluster identifier representing
different discrete groups across time/products that share the
same unique combination of keywords. Upon hovering over
one of the sub-clusters, information about the cluster is
presented including a summary, start time for the sub-
cluster, and summary. If the user clicks on a sub-cluster,
interactive interface 408 may present additional informa-
tion/options. For example, the interactive interface may
present an option to trigger a patching operation on the
corresponding product (depicted in the y-axis). Additionally
or alternatively, the user may drill-down to view/analyze the
individual log records. The user may further be presented
with an option to add/remove dictionary tokens through the
interactive interface.

In an embodiment, the interactive interface may be used
to automatically isolate and/or debug issues. For example,
the interactive interface may present links between different
sets of clusters, such as between SRs and underlying log
records. The interactive interface may further identify simi-
lar environments for end users that have not yet submitted a
service ticket. An administrator may then select actions to
execute in the similar environments, such as patching opera-
tions or other remedies, to proactively address issues in the
similar environment before the end user submits a service
ticket. In other embodiments, a patching operation applied in
one environment may be set to automatically trigger in
similar environments.

In an embodiment, the interactive interface may allow the
user to analyze sets of data using different dictionaries. For
example, the user may analyze a set of log data using a
dictionary tailored to network problems, another dictionary
tailored to database problems, and another dictionary tai-
lored to application problems. As previously mentioned,
different dictionaries may have different tokens, weights,
and/or associated rules. Thus, the clusters that are presented
to the user may vary depending on the selected dictionary
and allow the user to quickly identify varying domain-
specific issues. Recommended and/or automated actions to
address problems may also vary depending on the selected
dictionary. For instance, varying remedies for solving net-
work problems may be mapped to different combinations of
tokens in the network dictionary and varying remedies for

US 11,853,340 B2

17

solving database problems may be mapped to different
combinations of tokens in the database dictionary.

6.0 Computer Networks and Cloud Networks

In an embodiment, a computer network provides connec-
tivity among a set of nodes. The nodes may be local to
and/or remote from each other. The nodes are connected by
a set of links. Examples of links include a coaxial cable, an
unshielded twisted cable, a copper cable, an optical fiber,
and a virtual link.

A subset of nodes implements the computer network.
Examples of such nodes include a switch, a router, a firewall,
and a network address translator (NAT). Another subset of
nodes uses the computer network. Such nodes (also referred
to as “hosts”) may execute a client process and/or a server
process. A client process makes a request for a computing
service (such as, execution of a particular application, and/or
storage of a particular amount of data). A server process
responds by executing the requested service and/or returning
corresponding data.

A computer network may be a physical network, includ-
ing physical nodes connected by physical links. A physical
node is any digital device. A physical node may be a
function-specific hardware device, such as a hardware
switch, a hardware router, a hardware firewall, and a hard-
ware NAT. Additionally or alternatively, a physical node
may be a generic machine that is configured to execute
various virtual machines and/or applications performing
respective functions. A physical link is a physical medium
connecting two or more physical nodes. Examples of links
include a coaxial cable, an unshielded twisted cable, a
copper cable, and an optical fiber.

A computer network may be an overlay network. An
overlay network is a logical network implemented on top of
another network (such as, a physical network). Each node in
an overlay network corresponds to a respective node in the
underlying network. Hence, each node in an overlay net-
work is associated with both an overlay address (to address
to the overlay node) and an underlay address (to address the
underlay node that implements the overlay node). An over-
lay node may be a digital device and/or a software process
(such as, a virtual machine, an application instance, or a
thread) A link that connects overlay nodes is implemented as
a tunnel through the underlying network. The overlay nodes
at either end of the tunnel treat the underlying multi-hop path
between them as a single logical link. Tunneling is per-
formed through encapsulation and decapsulation.

In an embodiment, a client may be local to and/or remote
from a computer network. The client may access the com-
puter network over other computer networks, such as a
private network or the Internet. The client may communicate
requests to the computer network using a communications
protocol, such as Hypertext Transfer Protocol (HTTP). The
requests are communicated through an interface, such as a
client interface (such as a web browser), a program interface,
or an application programming interface (API).

In an embodiment, a computer network provides connec-
tivity between clients and network resources. Network
resources include hardware and/or software configured to
execute server processes. Examples of network resources
include a processor, a data storage, a virtual machine, a
container, and/or a software application. Network resources
are shared amongst multiple clients. Clients request com-
puting services from a computer network independently of
each other. Network resources are dynamically assigned to
the requests and/or clients on an on-demand basis. Network
resources assigned to each request and/or client may be
scaled up or down based on, for example, (a) the computing

10

15

20

25

30

35

40

45

50

55

60

65

18

services requested by a particular client, (b) the aggregated
computing services requested by a particular tenant, and/or
(c) the aggregated computing services requested of the
computer network. Such a computer network may be
referred to as a “cloud network.”

In an embodiment, a service provider provides a cloud
network to one or more end users. Various service models
may be implemented by the cloud network, including but not
limited to Software-as-a-Service (SaaS), Platform-as-a-Ser-
vice (PaaS), and Infrastructure-as-a-Service (IaaS). In SaaS,
a service provider provides end users the capability to use
the service provider’s applications, which are executing on
the network resources. In PaaS, the service provider pro-
vides end users the capability to deploy custom applications
onto the network resources. The custom applications may be
created using programming languages, libraries, services,
and tools supported by the service provider. In laaS, the
service provider provides end users the capability to provi-
sion processing, storage, networks, and other fundamental
computing resources provided by the network resources.
Any arbitrary applications, including an operating system,
may be deployed on the network resources.

In an embodiment, various deployment models may be
implemented by a computer network, including but not
limited to a private cloud, a public cloud, and a hybrid cloud.
In a private cloud, network resources are provisioned for
exclusive use by a particular group of one or more entities
(the term “entity” as used herein refers to a corporation,
organization, person, or other entity). The network resources
may be local to and/or remote from the premises of the
particular group of entities. In a public cloud, cloud
resources are provisioned for multiple entities that are
independent from each other (also referred to as “tenants” or
“customers”). The computer network and the network
resources thereof are accessed by clients corresponding to
different tenants. Such a computer network may be referred
to as a “multi-tenant computer network.” Several tenants
may use a same particular network resource at different
times and/or at the same time. The network resources may
be local to and/or remote from the premises of the tenants.
In a hybrid cloud, a computer network comprises a private
cloud and a public cloud. An interface between the private
cloud and the public cloud allows for data and application
portability. Data stored at the private cloud and data stored
at the public cloud may be exchanged through the interface.
Applications implemented at the private cloud and applica-
tions implemented at the public cloud may have dependen-
cies on each other. A call from an application at the private
cloud to an application at the public cloud (and vice versa)
may be executed through the interface.

In an embodiment, tenants of a multi-tenant computer
network are independent of each other. For example, a
business or operation of one tenant may be separate from a
business or operation of another tenant. Different tenants
may demand different network requirements for the com-
puter network. Examples of network requirements include
processing speed, amount of data storage, security require-
ments, performance requirements, throughput requirements,
latency requirements, resiliency requirements, Quality of
Service (QoS) requirements, tenant isolation, and/or consis-
tency. The same computer network may need to implement
different network requirements demanded by different ten-
ants.

In an embodiment, in a multi-tenant computer network,
tenant isolation is implemented to ensure that the applica-
tions and/or data of different tenants are not shared with each
other. Various tenant isolation approaches may be used.

US 11,853,340 B2

19

In an embodiment, each tenant is associated with a tenant
ID. Each network resource of the multi-tenant computer
network is tagged with a tenant ID. A tenant is permitted
access to a particular network resource only if the tenant and
the particular network resources are associated with a same
tenant ID.

In an embodiment, each tenant is associated with a tenant
ID. Each application, implemented by the computer net-
work, is tagged with a tenant ID. Additionally or alterna-
tively, each data structure and/or dataset, stored by the
computer network, is tagged with a tenant ID. A tenant is
permitted access to a particular application, data structure,
and/or dataset only if the tenant and the particular applica-
tion, data structure, and/or dataset are associated with a same
tenant ID.

As an example, each database implemented by a multi-
tenant computer network may be tagged with a tenant ID.
Only a tenant associated with the corresponding tenant 1D
may access data of a particular database. As another
example, each entry in a database implemented by a multi-
tenant computer network may be tagged with a tenant ID.
Only a tenant associated with the corresponding tenant 1D
may access data of a particular entry. However, the database
may be shared by multiple tenants.

In an embodiment, a subscription list indicates which
tenants have authorization to access which applications. For
each application, a list of tenant IDs of tenants authorized to
access the application is stored. A tenant is permitted access
to a particular application only if the tenant ID of the tenant
is included in the subscription list corresponding to the
particular application.

In an embodiment, network resources (such as digital
devices, virtual machines, application instances, and
threads) corresponding to different tenants are isolated to
tenant-specific overlay networks maintained by the multi-
tenant computer network. As an example, packets from any
source device in a tenant overlay network may only be
transmitted to other devices within the same tenant overlay
network. Encapsulation tunnels are used to prohibit any
transmissions from a source device on a tenant overlay
network to devices in other tenant overlay networks. Spe-
cifically, the packets, received from the source device, are
encapsulated within an outer packet. The outer packet is
transmitted from a first encapsulation tunnel endpoint (in
communication with the source device in the tenant overlay
network) to a second encapsulation tunnel endpoint (in
communication with the destination device in the tenant
overlay network). The second encapsulation tunnel endpoint
decapsulates the outer packet to obtain the original packet
transmitted by the source device. The original packet is
transmitted from the second encapsulation tunnel endpoint
to the destination device in the same particular overlay
network.

7.0 Microservice Applications

According to an embodiment, the techniques described
herein are implemented in a microservice architecture. A
microservice in this context refers to software logic designed
to be independently deployable, having endpoints that may
be logically coupled to other microservices to build a variety
of applications. Applications built using microservices are
distinct from monolithic applications, which are designed as
a single fixed unit and generally comprise a single logical
executable. With microservice applications, different micro-
services are independently deployable as separate
executables. Microservices may communicate using Hyper-
text Transfer Protocol (HTTP) messages and/or according to
other communication protocols via API endpoints. Micros-

10

15

20

25

30

35

40

45

50

55

60

65

20

ervices may be managed and updated separately, written in
different languages, and be executed independently from
other microservices.

Microservices provide flexibility in managing and build-
ing applications. Different applications may be built by
connecting different sets of microservices without changing
the source code of the microservices. Thus, the microser-
vices act as logical building blocks that may be arranged in
a variety of ways to build different applications. Microser-
vices may provide monitoring services that notify a micro-
services manager (such as If-This-Then-That (IFTTT),
Zapier, or Oracle Self-Service Automation (OSSA)) when
trigger events from a set of trigger events exposed to the
microservices manager occur. Microservices exposed for an
application may alternatively or additionally provide action
services that perform an action in the application (control-
lable and configurable via the microservices manager by
passing in values, connecting the actions to other triggers
and/or data passed along from other actions in the micros-
ervices manager) based on data received from the micros-
ervices manager. The microservice triggers and/or actions
may be chained together to form recipes of actions that occur
in optionally different applications that are otherwise
unaware of or have no control or dependency on each other.
These managed applications may be authenticated or
plugged in to the microservices manager, for example, with
user-supplied application credentials to the manager, with-
out requiring reauthentication each time the managed appli-
cation is used alone or in combination with other applica-
tions.

In an embodiment, microservices may be connected via a
GUI. For example, microservices may be displayed as
logical blocks within a window, frame, other element of a
GUI. A user may drag and drop microservices into an area
of the GUI used to build an application. The user may
connect the output of one microservice into the input of
another microservice using directed arrows or any other GUI
element. The application builder may run verification tests to
confirm that the output and inputs are compatible (e.g., by
checking the datatypes, size restrictions, etc.)

Triggers

The techniques described above may be encapsulated into
a microservice, according to an embodiment. In other words,
a microservice may trigger a notification (into the micros-
ervices manager for optional use by other plugged in appli-
cations, herein referred to as the “target” microservice)
based on the above techniques and/or may be represented as
a GUI block and connected to one or more other microser-
vices. The trigger condition may include absolute or relative
thresholds for values, and/or absolute or relative thresholds
for the amount or duration of data to analyze, such that the
trigger to the microservices manager occurs whenever a
plugged-in microservice application detects that a threshold
is crossed. For example, a user may request a trigger into the
microservices manager when the microservice application
detects a value has crossed a triggering threshold.

In one embodiment, the trigger, when satisfied, might
output data for consumption by the target microservice. In
another embodiment, the trigger, when satisfied, outputs a
binary value indicating the trigger has been satisfied, or
outputs the name of the field or other context information for
which the trigger condition was satisfied. Additionally or
alternatively, the target microservice may be connected to
one or more other microservices such that an alert is input
to the other microservices. Other microservices may per-
form responsive actions based on the above techniques,

US 11,853,340 B2

21

including, but not limited to, deploying additional resources,
adjusting system configurations, and/or generating GUIs.

Actions

In an embodiment, a plugged-in microservice application
may expose actions to the microservices manager. The
exposed actions may receive, as input, data or an identifi-
cation of a data object or location of data, that causes data
to be moved into a data cloud.

In an embodiment, the exposed actions may receive, as
input, a request to increase or decrease existing alert thresh-
olds. The input might identify existing in-application alert
thresholds and whether to increase or decrease, or delete the
threshold. Additionally or alternatively, the input might
request the microservice application to create new in-appli-
cation alert thresholds. The in-application alerts may trigger
alerts to the user while logged into the application, or may
trigger alerts to the user using default or user-selected alert
mechanisms available within the microservice application
itself, rather than through other applications plugged into the
microservices manager.

In an embodiment, the microservice application may
generate and provide an output based on input that identifies,
locates, or provides historical data, and defines the extent or
scope of the requested output. The action, when triggered,
causes the microservice application to provide, store, or
display the output, for example, as a data model or as
aggregate data that describes a data model.

8.0 Hardware Overview

According to one embodiment, the techniques described
herein are implemented by one or more special-purpose
computing devices. The special-purpose computing devices
may be hard-wired to perform the techniques, or may
include digital electronic devices such as one or more
application-specific integrated circuits (ASICs), field pro-
grammable gate arrays (FPGAs), or network processing
units (NPUs) that are persistently programmed to perform
the techniques, or may include one or more general purpose
hardware processors programmed to perform the techniques
pursuant to program instructions in firmware, memory, other
storage, or a combination. Such special-purpose computing
devices may also combine custom hard-wired logic, ASICs,
FPGAs, or NPUs with custom programming to accomplish
the techniques. The special-purpose computing devices may
be desktop computer systems, portable computer systems,
handheld devices, networking devices or any other device
that incorporates hard-wired and/or program logic to imple-
ment the techniques.

For example, FIG. 5 is a block diagram that illustrates
computer system 500 upon which an embodiment of the
invention may be implemented. Computer system 500
includes bus 502 or other communication mechanism for
communicating information, and a hardware processor 504
coupled with bus 502 for processing information. Hardware
processor 504 may be, for example, a general purpose
Microprocessor.

Computer system 500 also includes main memory 506,
such as a random access memory (RAM) or other dynamic
storage device, coupled to bus 502 for storing information
and instructions to be executed by processor 504. Main
memory 506 also may be used for storing temporary vari-
ables or other intermediate information during execution of
instructions to be executed by processor 504. Such instruc-
tions, when stored in non-transitory storage media acces-
sible to processor 504, render computer system 500 into a
special-purpose machine that is customized to perform the
operations specified in the instructions.

10

15

20

25

30

35

40

45

50

55

60

65

22

Computer system 500 further includes read only memory
(ROM) 508 or other static storage device coupled to bus 502
for storing static information and instructions for processor
504. Storage device 510, such as a magnetic disk or optical
disk, is provided and coupled to bus 502 for storing infor-
mation and instructions.

Computer system 500 may be coupled via bus 502 to
display 512, such as a cathode ray tube (CRT) or light
emitting diode (LED) monitor, for displaying information to
a computer user. Input device 514, which may include
alphanumeric and other keys, is coupled to bus 502 for
communicating information and command selections to
processor 504. Another type of user input device is cursor
control 516, such as a mouse, a trackball, touchscreen, or
cursor direction keys for communicating direction informa-
tion and command selections to processor 504 and for
controlling cursor movement on display 512. Input device
514 typically has two degrees of freedom in two axes, a first
axis (e.g., x) and a second axis (e.g., y), that allows the
device to specify positions in a plane.

Computer system 500 may implement the techniques
described herein using customized hard-wired logic, one or
more ASICs or FPGAs, firmware and/or program logic
which in combination with the computer system causes or
programs computer system 500 to be a special-purpose
machine. According to one embodiment, the techniques
herein are performed by computer system 500 in response to
processor 504 executing one or more sequences of one or
more instructions contained in main memory 506. Such
instructions may be read into main memory 506 from
another storage medium, such as storage device 510. Execu-
tion of the sequences of instructions contained in main
memory 506 causes processor 504 to perform the process
steps described herein. In alternative embodiments, hard-
wired circuitry may be used in place of or in combination
with software instructions.

The term “storage media” as used herein refers to any
non-transitory media that store data and/or instructions that
cause a machine to operate in a specific fashion. Such
storage media may comprise non-volatile media and/or
volatile media. Non-volatile media includes, for example,
optical or magnetic disks, such as storage device 510.
Volatile media includes dynamic memory, such as main
memory 506. Common forms of storage media include, for
example, a floppy disk, a flexible disk, hard disk, solid state
drive, magnetic tape, or any other magnetic data storage
medium, a CD-ROM, any other optical data storage
medium, any physical medium with patterns of holes, a
RAM, a PROM, and EPROM, a FLASH-EPROM,
NVRAM, any other memory chip or cartridge, content-
addressable memory (CAM), and ternary content-address-
able memory (TCAM).

Storage media is distinct from but may be used in con-
junction with transmission media. Transmission media par-
ticipates in transferring information between storage media.
For example, transmission media includes coaxial cables,
copper wire and fiber optics, including the wires that com-
prise bus 502. Transmission media can also take the form of
acoustic or light waves, such as those generated during
radio-wave and infra-red data communications.

Various forms of media may be involved in carrying one
or more sequences of one or more instructions to processor
504 for execution. For example, the instructions may ini-
tially be carried on a magnetic disk or solid state drive of a
remote computer. The remote computer can load the instruc-
tions into its dynamic memory and send the instructions over
a network line, such as a telephone line, a fiber optic cable,

US 11,853,340 B2

23

or a coaxial cable, using a modem. A modem local to
computer system 500 can receive the data on the network
line and use an infra-red transmitter to convert the data to an
infra-red signal. An infra-red detector can receive the data
carried in the infra-red signal and appropriate circuitry can
place the data on bus 502. Bus 502 carries the data to main
memory 506, from which processor 504 retrieves and
executes the instructions. The instructions received by main
memory 506 may optionally be stored on storage device 510
either before or after execution by processor 504.

Computer system 500 also includes a communication
interface 518 coupled to bus 502. Communication interface
518 provides a two-way data communication coupling to a
network link 520 that is connected to a local network 522.
For example, communication interface 518 may be an
integrated services digital network (ISDN) card, cable
modem, satellite modem, or a modem to provide a data
communication connection to a corresponding type of tele-
phone line. As another example, communication interface
518 may be a local area network (LAN) card to provide a
data communication connection to a compatible LAN. Wire-
less links may also be implemented. In any such implemen-
tation, communication interface 518 sends and receives
electrical, electromagnetic or optical signals that carry digi-
tal data streams representing various types of information.

Network link 520 typically provides data communication
through one or more networks to other data devices. For
example, network link 520 may provide a connection
through local network 522 to a host computer 524 or to data
equipment operated by an Internet Service Provider (ISP)
526. ISP 526 in turn provides data communication services
through the world wide packet data communication network
now commonly referred to as the “Internet” 528. Local
network 522 and Internet 528 both use electrical, electro-
magnetic or optical signals that carry digital data streams.
The signals through the various networks and the signals on
network link 520 and through communication interface 518,
which carry the digital data to and from computer system
500, are example forms of transmission media.

Computer system 500 can send messages and receive
data, including program code, through the network(s), net-
work link 520 and communication interface 518. In the
Internet example, a server 530 might transmit a requested
code for an application program through Internet 528, ISP
526, local network 522 and communication interface 518.

The received code may be executed by processor 504 as
it is received, and/or stored in storage device 510, or other
non-volatile storage for later execution.

9.0 Miscellaneous; Extensions

Embodiments are directed to a system with one or more
devices that include a hardware processor and that are
configured to perform any of the operations described herein
and/or recited in any of the claims below.

In an embodiment, a non-transitory computer readable
storage medium comprises instructions which, when
executed by one or more hardware processors, causes per-
formance of any of the operations described herein and/or
recited in any of the claims.

Any combination of the features and functionalities
described herein may be used in accordance with one or
more embodiments. In the foregoing specification, embodi-
ments have been described with reference to numerous
specific details that may vary from implementation to imple-
mentation. The specification and drawings are, accordingly,
to be regarded in an illustrative rather than a restrictive
sense. The sole and exclusive indicator of the scope of the
invention, and what is intended by the applicants to be the

5

10

20

25

30

35

40

45

50

55

60

65

24

scope of the invention, is the literal and equivalent scope of
the set of claims that issue from this application, in the
specific form in which such claims issue, including any
subsequent correction.
What is claimed is:
1. A method comprising:
receiving a request to cluster a set of log records that track
performance of at least one computing resource;

responsive to receiving the request to cluster the set of log
records, identifying at least one dictionary that is asso-
ciated with a set of one or more tokens;

determining a set of one or more token weights for each

token in the set of one or more tokens, wherein the set
of one or more token weights are determined based at
least in part on an association with performance of the
at least one computing resource;

generating, based at least in part on the set of one or more

tokens and at least one of the set of one or more token
weights, a set of one or more clusters, wherein each
cluster in the set of one or more clusters represents a
unique subset of one or more tokens associated with the
at least one dictionary and groups, from the set of log
records, a subset of one or more log records mapped to
the unique subset of one or more tokens associated with
the at least one dictionary, wherein at least a first cluster
maps a first subset of the log records to two or more
different keyword tokens in the dictionary that are
selected to represent the first cluster based at least in
part on occurrences of different keywords correspond-
ing to the two or more different keyword tokens in the
first subset of the log records and the associated ion
with the performance of the at least one computing
resource of the different keywords corresponding to the
two or more different keyword tokens;

determining at least one action associated with addressing

at least one performance issue of the at least one
computing resource based at least in part on the two or
more different keyword tokens mapped to the first
subset of log records for the first cluster, wherein the at
least one action is mapped to the two or more different
keyword tokens; and

performing the at least one action associated with address-

ing the performance issue of the at least one computing
resource based on at least the first cluster in the set of
one or more clusters.

2. The method of claim 1, wherein a token weight for a
given token is generated, at least in part, on a sentiment
associated with a corresponding token, wherein a negative
sentiment associated with the performance of the at least one
computing resource increases a weight given to the given
token.

3. The method of claim 1, wherein the at least one
dictionary includes a domain-specific dictionary generated
for a particular domain, wherein a token weight associated
with a corresponding token is determined, at least in part, by
a meaning of the corresponding token in the particular
domain.

4. The method of claim 1, wherein the at least one
dictionary includes a first domain-specific dictionary gener-
ated for a first domain and a second domain-specific dic-
tionary generated for a second domain; wherein generating
the set of one or more clusters comprises generating a first
set of clusters for log records associated with the first
domain using the first domain-specific dictionary and gen-
erating a second set of clusters for log records associated
with the second domain using the second domain-specific
dictionary.

US 11,853,340 B2

25

5. The method of claim 1, wherein the set of one or more
clusters is generated using a first dictionary; wherein the
method further comprises: generating a second set of clus-
ters using a second dictionary that includes at least one token
that is not in the first dictionary, wherein each cluster in the
second set of clusters represents a unique combination of
tokens from the second dictionary; wherein at least one
cluster in the second set of clusters groups log records based
on the at least one token that is not in the first dictionary.
6. The method of claim 1, wherein generating the set of
one or more clusters comprises: selecting a first subset of
tokens from the at least one dictionary based at least in part
on token weights associated with tokens from the at least one
dictionary; and clustering the set of log records using the
first subset of tokens; wherein a second subset of tokens that
have not been selected are not used to cluster the set of log
records.
7. The method of claim 1, further comprising: presenting,
via a first layer of an interactive interface, the set of one or
more clusters; receiving, through the interactive interface,
selection of a particular cluster in the set of one or more
clusters; responsive to the selection, presenting, via a second
layer of the interactive interface, aggregate information
associated with log records mapped to the subset of one or
more tokens represented by the selected cluster.
8. The method of claim 1, further comprising: receiving,
from a user, a second request to add at least one token
extracted from a log record to the at least one dictionary;
responsive to the request, adding the token to the at least one
dictionary.
9. The method of claim 1, further comprising: mapping
the two or more different keyword tokens representing the
first cluster to at least one descriptive label that describes at
least one behavior represented by the particular cluster.
10. The method of claim 1, wherein the at least one action
comprises at least one of presenting a recommended remedy
to address behavior represented by the first cluster, applying
a patch to one or more resources associated with the first
cluster, or adjusting one or more configuration settings
associated with the one or more resources associated with
the first cluster.
11. The method of claim 1, wherein at least one record in
the subset of log records does not include an exact match to
the two or more different keyword tokens representing the
first cluster; wherein the at least one record is included in the
subset of log records based on a similarity between an
extracted keyword and at least one keyword of the two or
more different keyword tokens.
12. A non-transitory computer-readable medium storing
instructions which, when executed by one or more hardware
processors, cause:
receiving a request to cluster a set of log records that track
performance of at least one computing resource;

responsive to receiving the request to cluster the set of log
records, identifying at least one dictionary that is asso-
ciated with a set of one or more tokens;

determining a set of one or more token weights for each

token in the set of one or more tokens, wherein the set
of one or more token weights are determined based at
least in part on an association with performance of the
at least one computing resource;

generating, based at least in part on the set of one or more

tokens and at least one of the set of one or more token
weights, a set of one or more clusters, wherein each
cluster in the set of one or more clusters represents a
unique subset of one or more tokens associated with the
at least one dictionary and groups, from the set of log

10

15

20

25

30

35

40

45

50

55

60

65

26

records, a subset of one or more log records mapped to
the unique subset of one or more tokens associated with
the at least one dictionary, wherein at least a first cluster
maps a first subset of the log records to two or more
different keyword tokens in the dictionary that are
selected to represent the first cluster based at least in
part on occurrences of different keywords correspond-
ing to the two or more different keyword tokens in the
first subset of the log records and the association with
the performance of the at least one computing resource
of the different keywords corresponding to the two or
more different keyword tokens;

determining at least one action associated with addressing

at least one performance issue of the at least one
computing resource based at least in part on the two or
more different keyword tokens mapped to the first
subset of log records for the first cluster, wherein the at
least one action is mapped to the two or more different
keyword tokens; and

performing the at least one action associated with address-

ing the performance issue of the at least one computing
resource based on at least the first cluster in the set of
one or more clusters.

13. The non-transitory computer-readable medium of
claim 12, wherein a token weight for a given token is
generated, at least in part, on a sentiment associated with a
corresponding token, wherein a negative sentiment associ-
ated with the performance of the at least one computing
resource increases a weight given to the given token.

14. The non-transitory computer-readable medium of
claim 12, wherein the at least one dictionary includes a
domain-specific dictionary generated for a particular
domain, wherein a token weight associated with a corre-
sponding token is determined, at least in part, by a meaning
of the corresponding token in the particular domain.

15. The non-transitory computer-readable medium of
claim 12, wherein the at least one dictionary includes a first
domain-specific dictionary generated for a first domain and
a second domain-specific dictionary generated for a second
domain; wherein generating the set of one or more clusters
comprises generating a first set of clusters for log records
associated with the first domain using the first domain-
specific dictionary and generating a second set of clusters for
log records associated with the second domain using the
second domain-specific dictionary.

16. The non-transitory computer-readable medium of
claim 12, wherein the set of one or more clusters is generated
using a first dictionary; wherein the method further com-
prises: generating a second set of clusters using a second
dictionary that includes at least one token that is not in the
first dictionary, wherein each cluster in the second set of
clusters represents a unique combination of tokens from the
second dictionary; wherein at least one cluster in the second
set of clusters groups log records based on the at least one
token that is not in the first dictionary.

17. The non-transitory computer-readable medium of
claim 12, wherein generating the set of one or more clusters
comprises: selecting a first subset of tokens from the at least
one dictionary based at least in part on token weights
associated with tokens from the at least one dictionary; and
clustering the set of log records using the first subset of
tokens; wherein a second subset of tokens that have not been
selected are not used to cluster the set of log records.

18. The non-transitory computer-readable medium of
claim 12, further comprising: presenting, via a first layer of
an interactive interface, the set of one or more clusters;
receiving, through the interactive interface, selection of a

US 11,853,340 B2

27

particular cluster in the set of one or more clusters; respon-
sive to the selection, presenting, via a second layer of the
interactive interface, aggregate information associated with
log records mapped to the subset of one or more tokens
represented by the selected cluster.

19. The non-transitory computer-readable medium of
claim 12, further comprising: receiving, from a user, a
second request to add at least one token extracted from a log
record to the at least one dictionary; responsive to the
request, adding the token to the at least one dictionary.

20. The non-transitory computer-readable medium of
claim 12, further comprising: mapping the two or more
different keyword tokens representing the first to at least one
descriptive label that describes at least one behavior repre-
sented by the particular cluster.

#* #* #* #* #*

10

15

28

