US011847219B2

a2 United States Patent

a0y Patent No.: US 11,847,219 B2

Mayo 45) Date of Patent: Dec. 19, 2023
(54) DETERMINING A STATE OF A NETWORK (58) Field of Classification Search
USPC ittt s 726/24
(71) Applicant: 1E Limited, London (GB) See application file for complete search history.
(72) Inventor: Andrew Mayo, Maidenhead (GB) (56) References Cited
(73) Assignee: 1E Limited, London (GB) U.S. PATENT DOCUMENTS
6,847,982 B2 6/2005 Parker et al.
(*) Notice: Subject to any disclaimer, the term of this 7.305,383 Bl* 12/2007 Kz;rbssrhef GO5B 19/045
patent is extended or adjusted under 35 7,765410 B2* 7/2010 Costeacccoco.o... GO6F 21/56
U.S.C. 154(b) by 589 days. 726/28
(Continued)
(21) Appl. No.: 16/899,020
OTHER PUBLICATIONS
(22) Filed: Jun. 11, 2020
Waltermire, David “Software Asset Managemnt, Continuous Moni-
(65) Prior Publication Data toring” Sep. 16, 2015, V.2, Building Block.
US 2020/0401695 A1 Dec. 24, 2020 (Continued)
. . .. Primary Examiner — Sakinah White Taylor
(30) Foreign Application Priority Data (74) Attorney, Agent, or Firm — EIP US LLP
Jun. 20, 2019 (GB) e 1908863 (57) ABSTRACT
(51) Imt. CL A client computing device has a storage device storing a
GOG6F 21/56 2013.01 lurality of files and a system agent. The system agent
() plurality M g y 2
HO04L 41/0853 (2022.01) applies a hash function to binary data read from the plurality
GO6F 21/50 (2013.01) of files to generate a set of data signatures. A server
GO6F 21/57 (2013.01) computing device has a database interface to access a
GO6F 16/13 (2019.01) database representing a state of the network and storage for
GO6F 16/174 (201 9'01) a set of exemplar data signatures resulting from a scan of one
GO6F 21/64 (2013'01) or more exemplar computing devices, each data signature
GOGF 16/14 (201 9' o1) generated by applying a hash function to binary data repre-
HO3M 7/30 200 6. 01 senting a file. The client computing device is configured to
(01) receive and compare the set of exemplar data signatures with
(52) US. CL the generated set of data signatures, and to transmit data to
CPC ... GO6F 21/564 (2013.01); GO6F 16/137 the server computing device based on the comparison. The

(2019.01); GO6F 16/152 (2019.01); GO6F
16/1748 (2019.01); GOGF 21/50 (2013.01);

GO6F 21/565 (2013.01); GO6F 21/64
(2013.01); HO3M 7/3088 (2013.01); HO4L
41/0853 (2013.01); GO6F 21/57 (2013.01)

‘,’ 100

i

420 Server
) s s
i 121 First Interfac Radiad
122 Second Interface i

\ 125 f 120 e
Egm

@\ 135

E i

110a Client

B

server computing device is configured to obtain data
received from the client computing device and update
records in the database.

10 Claims, 14 Drawing Sheets

{/ 160

P or EGHR
120 Server e

(=]
iond 124

1160

110z Client

[
t12a 1i8a

US 11,847,219 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
8,086,627 B2 12/2011 Pastorelli et al.
8,677,480 B2* 3/2014 Yencccocennen. HO04L 63/1416
709/224
9,003,476 B2* 4/2015 Baumbhof GO6F 21/606
713/168
9,485,145 B1 11/2016 Bonczkowski et al.
9,629,928 Bl 4/2017 Olsen
9,646,284 Bl 5/2017 Lew et al.
9,690,746 Bl 6/2017 Hosea et al.
2005/0238011 A1* 10/2005 Panigrahy HO04L 63/0254
370/389
2005/0278395 Al 12/2005 Sandaire
2006/0195566 Al 8/2006 Hurley
2008/0049644 Al 2/2008 Halbert
2010/0122120 AL* 5/2010 Lin .cccocovvvvvvennnnne, HO04L 41/06
714/E11.178
2012/0255017 Al* 10/2012 Sallam GOGF 9/45558
726/24
2014/0006796 Al* 1/2014 Smithcc.cooeee. GOG6F 21/645
713/187
2014/0317255 Al 10/2014 Krishna
2015/0150006 Al* 5/2015 Fitzgerald GOGF 9/45537
718/1
2020/0266996 Al* 8/2020 Carrott HO04L 63/0838

OTHER PUBLICATIONS

Combined Search & Exam Report dated Dec. 4, 2019 for GB
Application GB1908863.2.

* cited by examiner

U.S. Patent Dec. 19, 2023 Sheet 1 of 14 US 11,847,219 B2

(100

120 Server

A

121 First Interface

4

122 Second interface

F O\ e

105
Network

110a Client

112a 1162 112b 116b

FIG. 1A

U.S. Patent Dec. 19, 2023 Sheet 2 of 14 US 11,847,219 B2

{ 150

105
Network

110a Client 1100 Client

o

114b

111a Storage

111b Storage

1162 112b 116b

FIG. 1B

U.S. Patent

Dec. 19, 2023

Sheet 3 of 14

US 11,847,219 B2

201 Power Supply

211 203
H Data Siqrage i BIOS 3 EIQ g
i i f E Devices |
E ig . 5202 A
i /‘j E
220 210
\ \ Network
Processor
interface
214 = BT

FIG. 2

U.S. Patent Dec. 19, 2023 Sheet 4 of 14 US 11,847,219 B2

(300

301 Power Suppl
340 T PP 303
g ! wo
g R ? Devices }
P N
] f”"j E
330 320 310
\ Database \ Brocassor \ Network
interface interface
oy 4N
Database

FIG. 3A

U.S. Patent

Dec. 19, 2023

Sheet 5 of 14

US 11,847,219 B2

FiG. 3B

303
Storage E He; E
/ interface 301 Power Supply 5 Devices g
mmmmﬁﬁmmmm
350 304 E
P -
315 Memory 320 355
\ \ Switch
Processor
interface
7, 3
300 Server
360 Switch h 4
370 365 ™, Server
364 Memory interface
-~] E
' : :
380 Database Network
Processor /” interface ,/ﬂ interface
330 h 310 4
vl S
235
rot 305
Daiﬁbafﬁe Neiwgrk

U.S. Patent Dec. 19, 2023 Sheet 6 of 14 US 11,847,219 B2

401 Power Suppl
430 - PP 403
e e . e
i 3 i i
i i O i
E Prepared Storage % f BIOS I Devices |
mmmmmm Emmmmmm; 402 mmwmgmmmm
B g
B i
[5
415 Memory
mmmmmmmmmmmm IE
i 416V Computer 1 Network
§ B Processor
| e m———— r E Interface
i 417
i i AL i
i 1 V. Storage o / /
I - 420 410
B o s o s s 50 s ot s B

FIG. 4

U.S. Patent Dec. 19, 2023 Sheet 7 of 14 US 11,847,219 B2

510 520
[£c64£854blbcbcad2fe377190110b0247 [0] O
[abccZ24a0627£25a8886051985¢c6eeabal] (1] B
[£0£601b8b8LBE53a77750e2abf349877a] (1] B
[1815db39641a48403¢c8bbledled36ddal [0] [
[3670f£bcB%ac265da73edafdadbe88L773] (1] B
[62d8c97dced29894953e757e1714b9cf] [0] [
[£8d0c220975310balesd4164ebb21003] [0] [
[52eab8fofdBcai33%acd48eatdtb77921ceb] [11] &
[decbbl3abflf{/chl34fat3e3d524a523%¢] [1] B
[0526cdbl15a09310k6e39f1led46llalbbal [1] B
[401£39d1ae3712fced91ldd300063044e] [1] B

/

oo FIG. 5A FIG. 5B

(102211011204 1]
530f . w
FIG. 5C

US 11,847,219 B2

Sheet 8 of 14

Dec. 19, 2023

U.S. Patent

1
i
H

o

] &
i

560
N

FIG. 5E

550

/ 500

\ 540

,,,,, - -
ol el @) =] o - - —4
< = = [= sl < ©d e - =

[N [0} - o) [0] R =i [

& < @ 0 o U 0 ™ i’

< [os} =< S} el o] [fs} (e Y4

o o @] ol & o < QO e}

a8}) o [WO o~ - o) <3

[os} o WO Ko @} <t 0 @ i3

I~ o~ U <! Lo [so 4 e e

T O [se} U @] ™ r~ 0] O

™~ 9] Gt G o] 1] | s ©

[@] ¢ Kol T 0 o] 0 e Gt

It =) o O el 9] = s =i

03 Kol ke < Ko} 10 o] ™ ¢}

i s =t [ip]) L [~ i)

© L0 < [N [s)} v v © o~

‘ ts] iU e} - Nel 0 kel 4] o

[¥s} Te! ol D W = o @] 5] r~ 0]
o [sM gt ol [os} 8} 0] [\ o] e o«
[+ < ™~ X} o — @ <t] W is]
e o oo 5] < 0} « — 9] o)) L
[ea} o O [o (] [~ ™~ <! o] 3
e} 3 — o5} — 0 0 (o) @ © r~
(i U O 1 [ea] ™~ ™~ &) IXs] - ie]
-~ 0} — s} < - 8] 8} Lo 7o) Ui
o o O 3} ~~ <fi e e (58] 4 [«
L o e 8} o™ 8} o) 0 LD L0 U
™~ r~ ™~ ~ ™ @) 3 < ~~ Q <
(& il o G [o) 4 U | [is]) L
~ L0 0 Uy o] &} [0l ™M Uy Q <
o e} (o] o] Gt 0] — ™~ ke ol o
< [s0] ol Te) sy} i 0] 0] Yoy e} -4
is} — is} [s)} O ~N 58} @ Rej © o
o] @] 1] o —i [} 3 <] s 0]
et i — e — e e s s -

Uy It © 58 [¥a) Y 0 o) [<

FiG. 5D

U.S. Patent

610

Dec. 19, 2023

Key Device
i 1EINDVW1024

2 1EUKDE

4 1EUKDEVW

51354

Sheet 9 of 14

US 11,847,219 B2

Key 3sh ‘\\
i Fctdf£854blbcbcad2fel3771901100247
2 Abcc24ad627£95a8886051885¢c6eeabas

3 e0f601b8hib8653a77750eZabt349

—
17a

& 1TEINDEWVKS1041 4 1815db396c41a48403¢8bbledles30dda
7 1EINDVWO 186 5 3670£5c%ac265da’3edafdadse881773
8 1EINDEWVKS1025 & 6adB8c?7dced28894953757e1714b8ct
9 1EUKDVL1 390 7 £8d0c22b875310baletd
10 1EUKDEWVES1348 8 5Z2eab8f6fd8caf33%acd

11 IETHNWW100S 9 decib3abfliTch34£a6323d524a5239%¢
iz 1EINWWl0e6Z i0

Hash ID

3, 7

w

-
ot
o

4

-
b

6 2, 5, 6

7 1, 2, 3, 4, 5, €

9 7, 9

10 5, 6, 7, 8, 9, 10, 11, 12

U.S. Patent

Dec. 19, 2023

Sheet 10 of 14

US 11,847,219 B2

FIG. 7A

— L 120 130
701
<
702
<
>
703 704
L
705
=
706
»

U.S. Patent

Dec. 19, 2023

Sheet 11 of 14

US 11,847,219 B2

10 120
701
w
702
w
703 g
704
w
705
I
i‘ﬁi‘
B
705b
7086
P
707
o
708
.
709
w
N
710
711
B
712
»
.
713
714
B

FIG. 7B

U.S. Patent Dec. 19, 2023 Sheet 12 of 14 US 11,847,219 B2

(800

801 1 Obtain data signatures for a plurality of files that are
\\ stored on at least one volume of data storage
accessible to the computing device, including
applying a hash function to binary data read from the
plurality of files to generate the data signatures

802 i

‘\"'\« Receive, at the computing device over the network,
a set of exemplar data signatures

803 i

\ Generate, at the computing device, a state bitmap by
comparing the generated data signatures with the
set of exemplar data signatures

804 h 4

\ Transmit, from the computing device over the
network, state data generated from the state bitmap

FiG. 8

U.S. Patent Dec. 19, 2023 Sheet 13 of 14 US 11,847,219 B2

% 800

Obtain a set of exemplar data signatures resulting
801 from a scan of one or more exemplar computing
\ devices, each data signature in the set of exemplar
data signatures being generated by applying a hash
function to binary data from a file in a set of files
accessible {o the one or more exemplar computing
devices

802 %

\ Transmit the set of exemplar data signatures to the
computing devices over the network

903 %

\ Receive state data from the computing devices over
the network in response o the state request

v
904

Process the stale data to extract state bitmaps for
\\ the computing devices, the state bitmaps indicating a
presence or absence of each data signatures in the
set of exemplar data signatures

805 @
Use the state bitmaps to update a database
\ representing the state of the network, the database

comprising data records indicating which files are
present in each of the computing devices

FIG. 9

U.S. Patent Dec. 19, 2023 Sheet 14 of 14 US 11,847,219 B2

(1000

1001

\ Initiate an installation of a predefined operating
system on a virtual computing device

1002 i

\\ Determine, during the installation, whether a set of
primary files for the operating system have been
extracted

1003 A 4

\ Pause the installation, responsive to the exiraction of
the set of primary files

1004 i

\ Copy data stored on a virtual storage device for the
virtual computing device to a prepared volume of
data storage

1005 i

\ Generate the set of exemplar data signatures by

parsing a file-system data file for the prepared
volume of data storage o obtain data locations for a
plurality of files and applying a hash function to
binary data read from the obtained data locations

FiG. 10

US 11,847,219 B2

1
DETERMINING A STATE OF A NETWORK

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority to GB Application No.
GB 1908863.2, filed Jun. 20, 2019, under 35 US.C. §
119(a). The above-referenced patent application is incorpo-
rated by reference in its entirety.

BACKGROUND OF THE INVENTION

Technical Field

The present invention relates to determining a state of a
network having one or more computing devices connected
to the network and having access to a set of files.

Background

Ensuring that a network of computing devices is secure is
a challenge. Modern computer networks may comprise
multiple interconnected networks, each network having a
changeable set of coupled computing devices. The networks
may be distributed geographically, e.g. in sites all over the
world. The computing devices may come in a variety of
forms, from blades in a large-scale data warchouse to mobile
computing devices to embedded nodes within a sensor
network. The proliferation of computing devices has also
seen a rise in “bring your own device” behaviour, where
users of a network regularly attach their own personal
computing devices to the network, as opposed to computing
devices that are centrally managed and controlled.

To manage and control a network, it is often desired to
obtain an inventory of files that are stored on computing
devices within the network. For example, knowing what
executable code is present on a coupled computing device
may help locate and neutralise security threats with respect
to the network, such as malicious code and/or unauthorised
access. An inventory may also help with operating system
versioning and patching, e.g. help identify computing
devices that are susceptible to a particular exploit. A large
network may have a huge range of executable code, and
exploits may be discovered at a daily or weekly rate. When
an exploit is discovered, holes in the security of the network
are to be patched as quickly as possible.

However, determining and maintaining an inventory for a
computer network at scale is difficult. For example, in the
real-world, a large enterprise network may have 500,000
endpoint devices, where the average number of executable
files per device may be between 20,000 and 40,000. The
number of files that include non-executable files may be
much higher. Some devices can have significantly more than
this number of files, e.g. local servers may have around
150,000 (or “150 k) files. In this case, an inventory data-
base accounting for 500 k devices and having 40 k rows of
data for each device, would result in 20 k million, or 2x10'°,
rows of data in a database. Accounting for an average row
length of approximately 300 bytes per entry, the storage
requirements become 6x10'? bytes or 6,000 gigabytes.
Hence, the task quickly becomes intractable, and the scales
become larger year-on-year.

Notwithstanding data storage issues, there are also sig-
nificant network challenges. For example, the state of any
network is dynamic, and so data is often collected on a
regular basis. However, transferring inventory information
from each computing device, e.g. from each of 500 k

10

15

20

25

30

35

40

45

50

55

60

65

2

endpoints coupled to networks of varying size and speed,
leads to significant network traffic.

It is therefore desirable to address both the storage and
network traffic challenges when attempting to determine a
state of a network.

SUMMARY

Aspects of the present invention are set out in the
appended claims.

Further features and advantages of the invention will
become apparent from the following description of preferred
embodiments of the invention, given by way of example
only, which is made with reference to the accompanying
drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A and 1B are schematic diagrams showing the
components of a network computer system according to
examples;

FIG. 2 is a schematic diagram showing the components of
a client computing device according to an example;

FIGS. 3A and 3B are schematic diagrams showing the
components of a server computing device according to
examples;

FIG. 4 is a schematic diagram showing the components of
a computing device according to an example;

FIGS. 5A and 5D are schematic diagrams showing sets of
exemplar data signatures according to examples;

FIGS. 5B and 5E are schematic diagrams showing state
bitmaps according to examples;

FIG. 5C is a schematic diagram showing a compressed
version of a state bitmap according to an example;

FIG. 6 is a schematic diagram showing database records
according to an example;

FIGS. 7A and 7B are schematic diagrams showing net-
work traffic travelling between components of a network
system according to examples;

FIG. 8 is a flow diagram showing a method of determin-
ing a state of a computing device coupled to a network
according to an example;

FIG. 9 is a flow diagram showing a method of determin-
ing a state of a network of computing devices according to
an example; and

FIG. 10 is a flow diagram showing a method of generating
a set of exemplar data signatures according to an example.

DETAILED DESCRIPTION

Certain examples described herein relate to efficiently
determining a state of a network of computing devices.

A computing device may be, for example, a server com-
puting device, a personal computer, a handheld computer, a
communications device such as a mobile telephone or
smartphone, a node in a data storage network, a sensor or
measurement device such as an embedded Internet-of-
Things controller, or another form of information device
with computing functionality. Computing devices may
include both physical “bare metal” devices and virtual
computing devices that are executed within a virtualisation
platform upon a physical device. For example, a computer
network may have hundreds of computing devices that
comprise an operating system that are run as virtual devices
within a single server computing device, wherein each
virtual computing device has an Internet Protocol address
and appears as a separable device upon the network. Mix-

US 11,847,219 B2

3

tures of computing device types are common, e.g. “thin”
client terminals may be used to remotely access a server that
runs a virtualised client device instance.

A network of computing devices may be connected, as
so-called “client” computing devices, to one or more server
computing devices in a network computer system. The
server computing device may provide services, such as
electronic mail, file storage, and application functions. Col-
loquial reference to electronic services being provided “in
the cloud”, typically refers to the access of a server com-
puting device by one or more client computing devices over
one or more networks. A server computing device, acting as
a server for one set of services, may comprise a client
computing device for another set of services. For example,
the term “client computing device” as used with reference to
the examples herein, refers to clients with respect to an
inventory service; as such, a client computing device for the
inventory service may comprise a server computing device
for a different service, e.g. comprise a file or web server.

Certain examples described herein relate to an inventory
of files across a network. The extent of the “network™ may
be flexibly defined, e.g. as a set of Internet Protocol
addresses that are assigned to a particular entity or organi-
sation. The network may comprise a heterogenous set of
network equipment installed at different geographical sites.
The term “file” refers to a discrete collection of electronic
data. In modern computer systems, “files” are presented as
discrete items using a file system, which may be imple-
mented by an operating system of the client computing
device. In many operating systems, data deemed to be within
a file is stored as a one-dimensional array of binary data,
typically bytes (e.g. 8 bits). A file may be stored within
persistent data storage that is communicatively coupled to a
client computing device.

In certain examples, an inventory of at least files com-
prising executable code may be determined. A file compris-
ing executable code may comprise an executable file, e.g. a
file comprising encoded instructions that cause a processor
of an executing client computing device to perform a task
according to the instructions. The instructions may be
“machine code” for processing by a central processing unit
(CPU) of a computer and are typically in binary or a related
form. In other forms, the instructions may be in a computer
script language for interpreting by software. Different oper-
ating systems may give executable program files different
formats. For example, on Microsoft Windows® systems the
Portable Executable (PE) format is used. This format is a
data structure that is compatible with the Windows® oper-
ating system (OS) for executing the instructions comprised
in an executable file. On OS X® and iOS® systems, the
Mach-O format is used. Another example is the Executable
and Linkable Format (ELF). Different operating systems
may also label executable program files with a particular
filename extension, for example on the Windows® OS
executable program files are typically denoted by the .exe
extension. In certain cases, an operating system may use a
file that comprises executable code that is arranged to be
shared by different executing processes. These are referred
to as shared libraries, and within the Windows® OS these
are known as dynamic link library (DLL) files. A non-
executable file may be seen as a file that is parsed by a
separate executable program, e.g. a data file whose contents
are accessible via the separate executable program. Certain
examples described herein may be applied to both execut-
able and non-executable files.

In certain cases, an inventory of executable software may
be constructed. Executable software may form part of sys-

10

15

20

25

30

35

40

45

50

55

60

65

4

tem software, e.g. an operating system, and/or one or more
application programs. Executable software may comprise a
collection of files comprising executable code. Modern
computing systems typically have installed on them a vari-
ety of executable software. Operating systems may vary by
manufacturer, version and level of patching. Application
programs may have been chosen by a user or system
manager to provide given functionality, e.g. locally or over
the network. Executable software is typically stored on, or is
accessible by, a computing device for running when desired,
to provide its functionality. This software will generally
originate from wide variety of sources, i.e. different devel-
opers and producers, and may be obtained by different
means e.g. downloaded, or installed from disk or drive. In
certain cases, an inventory of executable software may be
expanded to non-executable files.

Certain examples described herein provide adaptations to
a client computing device to obtain data associated with a
state of the client computing device, such as data indicating
a set of files stored on the client computing device. These
files may comprise executable code and/or may comprise
data files. Certain examples described herein also provide
adaptations to a server computing device to send data to,
and/or receive data from, the client computing device to
construct an inventory. The inventory may comprise a
database populated under the control of the server comput-
ing device, where records in the database indicate a state of
the client computing device. In this case, the state of the
client computing device may comprise an indication of files
present on, or accessible to, the client computing device. The
server computing device may communicate with a plurality
of client computing devices to build up a state of the
network, e.g. to determine metadata associated with soft-
ware and files that are present on the network. The inventory
may be used to identify client computing devices that
require security patches and/or that contain executable code
that may comprise a security risk. The inventory may have
many uses, ¢.g. may enable users of the network to locate
multiple copies of a particular file that are spread across the
network. The inventory may be used to support versioning,
compliance, data storage control, network routing (e.g.
peer-to-peer file access), etc.

FIG. 1A shows an example of a network computer system
100 according to an example. The network computer system
100 comprises a plurality of client computing devices 110a,
1105 and a server computing device 120 communicatively
coupled to the plurality of client computing devices over one
or more networks 105. For example, the one or more
networks 105 may include one or more of: a local area
network (LAN); a wide area network (WAN); and/or wire-
less equivalents thereof.

Each client computing device 110a, 1105 includes a data
storage device 111a, 1115, which comprises a plurality of
files 112a, 1125. The data storage device 111a, 1115 may
comprise, for example, an electro-mechanical data storage
device, such as a hard disk drive, and/or a solid state data
storage device. Each client computing device 110a, 1105
may comprise a plurality of data storage devices and the data
storage devices may be of different types. The one or more
data storage devices may be used to implement a physical
storage layer, where one or more logical data volumes may
be implemented using the physical storage layer.

Each client computing device 110a, 1105 also includes a
system agent 114a, 1145. The system agent 114a, 1145 may
comprise computer program code that is processed by one or
more processors of the client computing device 110a, 1105.
The system agent may operate at a kernel level. The kernel

US 11,847,219 B2

5

level may be a privileged level of operation, e.g. a similar
level to that used by functions of an operating system of the
client computing device 110a, 1105. The operating system
may control the execution of one or more application
programs as well as hardware resources of the computing
device. Although, in FIG. 1A the client computing devices
1104, 1105 are shown as physical entities, in certain cases
they may comprise virtual devices that are running on a
physical computing device. In this case, the operating sys-
tem may not have knowledge of the virtualisation, e.g. it
may operate as if it is installed upon a physical device rather
than upon a virtualisation of the physical device.

In the present example, each system agent 114a, 1145 is
configured to apply a hash function to binary data read from
the plurality of files 1124, 12256 to generate a set of data
signatures. Each data signature in the set of data signatures
may comprise a characterisation of the binary data, e.g. a
representation of the binary data having a size that is less
than the size of the binary data. The hash function may
comprise a one-way function that generates a code for each
particular set of binary data, e.g. a code that is dependent on
the bit values of the binary data. The code may comprise a
fixed-length binary integer that may be represented as an
alpha-numeric string, e.g. representing a hexadecimal num-
ber. The code may be unique for each particular set of binary
data, and/or a particular threshold level of collisions may be
defined.

Returning to FIG. 1A, in the present example, the server
computing device 120 comprises a first data interface 121
and a second data interface 122. These interfaces may
comprise one or more communication interfaces, e.g. com-
puter program code that manages communications over one
or more physical connections. The first data interface 121 is
configured to access a set of exemplar data signatures 125.
The set of exemplar data signatures 125 may result from a
scan of one or more exemplar computing devices, e.g. each
data signature in the set of exemplar data signatures 125 may
be generated by applying a hash function in a similar manner
to the system agent 114a, 1145. The one or more exemplar
computing devices may comprise a test device, e.g. an
example master computing device that is deemed represen-
tative of a particular client computing device configuration.
The exemplar computing device may be based on a given
“master” disk image file, e.g. a disk image file used to
perform a “clean” installation to create and/or configure a
new client computing device. In one case, an exemplar
computing device may be generated as a virtual computing
device by the server computing device 120. The set of
exemplar data signatures 125 may be seen to represent an
expected or “typical” set of files for a client computing
device, e.g. for at least one predefined client computing
device type and/or configuration.

The second data interface 122 is configured to access a
state database 130. In one case, each record in a set of state
records 135 in the state database 130 identifies one of the
plurality of client computing devices 110a, 1105 and a data
signature. Hence, the state records 135 may be seen to
indicate the presence of one or more files across the network
computer system 100. For example, a record in the state
database 130 may comprise a unique identifier for a client
computing device and an alpha-numeric code representing
the data signature. The unique identifier may comprise one
or more of an Internet Protocol (IP) address (e.g. either
version 4 or 6), a Media Access Control (MAC) address, and
a Basic Input-Output System (BIOS) identifier (e.g. a num-
ber or alpha-numeric code stored within solid state memory
on a motherboard of the client computing device). The

10

15

20

25

30

35

40

45

50

55

60

65

6

alpha-numeric code may comprise a fixed-length file hash.
In other cases, the state database 130 may alternatively store
primary key values associated with the client computing
devices and the data signatures, e.g. where actual values for
the respective identifiers may be determined based on a
look-up operation. In these cases, a list of files stored upon
a client computing device may be obtained from the state
database 130 by filtering records based on a particular
device identifier in one column of the database.

In the example of FIG. 1A, each client computing device
1104, 1105 is configured to receive the set of exemplar data
signatures 125 and compare this set with the set of data
signatures generated by the system agent 114a, 1145. The
comparison may comprise determining whether an alpha-
numeric code for each of the set of exemplar data signatures
125 is present in a list of generated codes. The data signa-
tures may be represented as numbers or strings and may be
compared using known number and/or string comparison
functions. The comparison may be optimised such that two
one-dimensional arrays may be compared and entries that
are present in both arrays indicated by a binary value (e.g.
using logical AND to indicate presence within both arrays).
Each client computing device 110a, 1105 then transmits data
to the server computing device 120 based on the compari-
son. The data transmitted from each client computing device
110a, 1105 may comprise a state bitmap that indicates
matches between the set of exemplar data signatures 125 and
the set of data signatures generated by the system agent
1144, 1145 on the respective client computing device 110a,
1105. The state bitmap is so-called as it comprises a set of
bits having a value of 0 or 1 indicating a match. The state
bitmap may comprise a one- or multi-dimensional bitmap.
In one case, the state bitmap may comprise a sequence of
bits based on the order of the set of exemplar data signatures
125, where a value of 1 indicates that a file associated with
a particular data signature is deemed to be present on the
client computing device since a matching data signature has
also been locally generated. The data signatures themselves
may not form part of the state bitmap to reduce the amount
of data transferred between the client computing devices
1104, 11056 and the server computing device 120. The state
bitmap may be compressed to further reduce the size of the
transmitted data.

The server computing device 120 is configured to obtain
a set of state bitmaps from data received from the plurality
of client computing devices 110a, 1105. For example, the
server computing device 120 may receive the data transmit-
ted from each client computing device 110q, 1105 over the
network 105. In one case, the server computing device 120
may receive several compressed state bitmaps, correspond-
ing respectively to the plurality of client computing devices
1104, 1105, and decompress these to obtain the set of state
bitmaps. The server computing device 120 can then use the
set of state bitmaps to update the set of state records 135 in
the state database 130. For example, if an nth data signature
in the set of exemplar data signatures is matched with a
generated data signature on a client computing device, the
nth bit of the state bitmap may have a value of 1, and this
value can be used to add a record to the state database 130,
e.g. by adding the identifier of the client computing device
and an identifier corresponding to the nth data signature.

Hence, in the example of FIG. 1A, an inventory of the
network 105, i.e. files stored within client computing
devices 110qa, 1105, is obtained by the server computing
device 120. The amount of storage for the inventory is
reduced by using an efficient record data structure. The
amount of data that is transmitted over the network 105 is

US 11,847,219 B2

7

also reduced, e.g. down to a set of fixed length data
signatures and a compressible binary array.

In certain examples, the system agent 114a, 11456 may be
adapted to use a file-system data file 1164, 1165 to determine
a location of the binary data that is used to generate the data
signatures. This may provide further advantages for particu-
lar configurations. For example, the system agent 114a, 1145
may use a file-system data file 1164, 1165 when running in
conjunction with certain operating systems. In FIG. 1A, the
data storage device 111a, 1115 also stores the file-system
data file 116a, 1165. The file-system data file 116a, 1165
may comprise a database that stores information about files
and directories on a file system volume, the file system
volume being implemented upon the data storage device
111a, 1115. The file-system data file 1164, 1166 may be
unique to the file system that is implemented upon the data
storage device 111a, 1115, e.g. by an operating system or
another system level module. There may be at least one
record for each file and directory on the file system volume.
Each record in the file-system data file may contain attri-
butes that instruct the operating system on how to handle the
file or directory associated with the record. For example,
detailed information about a file or directory such as the
type, size, date/time of creation, date/time of most recent
modification, and author identity may either be stored
directly in one or more entries of the file-system data file
1164, 11654, or externally to the file-system data file 1164,
1165 but described or “pointed to” by the one or more entries
of said file. An example of a file-system data file may be the
master file table (MFT) in a New Technology File System
(NTES) e.g. for a Microsoft Windows® OS. In such cases,
the MFT may contain records for each file and directory on
the NTFS logical volume. For a hierarchical file system,
such as HFS or HFS Plus, and/or Apple File Systems
(APFS), e.g. as used by Macintosh® operating systems such
as Mac OS X® and macOS®, the catalogue file may
correspond to the file-system data file.

Where a file-system data file 116a, 1165 is used, the
system agent 114a, 1145 may be configured to parse the
file-system data file 1164, 1165 to obtain data locations for
the plurality of files 112a, 1125. For example, the plurality
of files 112a, 1125 may be stored at respective data locations
of the data storage device 111a, 1115. The data locations
may be represented, e.g. as addresses, in the file-system data
file 1164, 1165, for example. The system agent 114q, 1145
is configured to generate a set of data signatures from binary
data located at the obtained data locations. This may be
quicker than scanning a data volume for files and then
retrieving data locations based on information stored within
the file (e.g. within a file header or the like).

In examples where the file-system data file comprises an
MEFT, e.g. on an NTFS volume of storage, a fast_file find
function may be implemented to collect metadata directly by
parsing the MFT and traversing data runs by block reading
the at least one storage volume directly. Parsing the file-
system data file 1164, 1165 to obtain data locations for the
plurality of files 1124, 1125 may reduce the overall time
required to retrieve and store the data associated with the
plurality of files 112a, 1125 on the client computing devices
1104, 1105, e.g. may increase the speed at which a set of data
signatures may be generated on a client computing device.
Using this method may additionally reduce any noticeable
adverse effects in performance of the client computing
devices 110qa, 1105. For example, processor usage at the
client computing devices 110a, 1105 may not be signifi-
cantly increased and normal system usage may be negligibly
affected by the increase in data storage read rates.

10

15

20

25

30

35

40

45

50

55

60

65

8

In certain examples, the set of exemplar data signatures
may be split into a plurality of sets (or subsets) of data
signatures. In these cases, different sets of exemplar data
signatures may relate to different expected device configu-
rations. For example, each operating system family may
have its own set of exemplar data signatures. Each set of
exemplar data signatures may be selectively communicated
to the client computing devices, e.g. based on a known build
of the client computing device. Alternatively, multiple sets
of exemplar data signatures may be sent to a given client
computing device; e.g. if a client computing device does not
have an operating system that belongs to a particular oper-
ating system family, the state bitmap may be mostly or
wholly ‘0’ entries, which can be efficiently compressed, e.g.
using run-length encoding.

In examples, different approaches may be applied to
communicate the set of exemplar data signatures 125 to the
client computing devices 110a, 1105. In certain implemen-
tations, the set of exemplar data signatures 125 may be
communicated using peer-to-peer approaches. For example,
the set of exemplar data signatures 125 may be transmitted
to a selected one of the plurality of client computing devices
1104, 1105 and other ones of the plurality of client comput-
ing devices 110a, 1105 may obtain the set of exemplar data
signatures 125 from the selected one of the plurality of client
computing devices 110a, 1105. This process may be
repeated, or performed independently, for each set of exem-
plar data signatures.

For example, system agent 114a, 1145 or another system
agent may be used to designate one or more of the client
computing devices 110a, 1105, e.g. in a subnet of the
network 105, to act as a “download master”, e.g. as a
peer-to-peer hub for download of the set of exemplar data
signatures 125. The designated one or more client comput-
ing devices 110a, 1105 may obtain and store the set of
exemplar data signatures 125 (e.g. and other packages such
as software packages) for supply to other computing devices
in the respective subnet. This can avoid downloading the set
of exemplar data signatures 125 across the network 105 to
each of the client computing devices 110a, 1105 in each
subnet, thereby reducing network traffic.

In the above peer-to-peer approaches, a client computing
device 110a, 1106 requesting the set of exemplar data
signatures 125 (e.g. or another package) may initiate an
election, e.g. within a network and/or subnet, to determine
which other client computing device 110a, 1105 can provide
the set of exemplar data signatures 125. A client computing
device 110a, 1105 having the set of exemplar data signatures
125 may be elected as the download master and the request-
ing client computing device 110q, 1105 may download the
package therefrom. In one case, NOMAD® from 1E Lim-
ited may be used to implement the peer-to-peer functional-
ity.

FIG. 1B shows another example of a network computer
system 150. The network computer system 150 may be seen
as a variation of the network computer system 100 of FIG.
1A, where similar components are referenced using corre-
sponding reference numerals.

In the network computer system 150 of FIG. 1B, the
server computing device 120 is connected to a network
switch 123. The switch 123 may connect network devices
together, electrically and logically, by using data packet
switching to receive, process and forward data over the
computer network to the intended network device(s). In one
case, the switch 123 may comprise a transport layer switch
for forming persistent or long-term transport protocol con-
nections with the client computing devices 110a, 1105. The

US 11,847,219 B2

9

switch 123 may forward data only to a specific network
device (or specific multiple network devices) e.g. in contrast
to a network hub (connected to the server computing device
120 in an alternative example) which broadcasts the same
data to each connected network device. Each network device
connected to the switch 123 may be identified using a Media
Access Control (MAC) address, a unique identifier allowing
the switch 123 to regulate and direct the flow of network
traffic. In one case, the switch 123 may control a number of
Transport Control Protocol (TCP) or User Datagram Proto-
col (UDP) connections between the switch 123 and each of
a set of client computing devices 110a, 1105, e.g. each client
computing device 110a, 1105 may have a transport protocol
socket for the receipt of data and commands from the switch
123, and the switch 123 may have a corresponding transport
protocol socket for the receipt of data and commands from
each of the client computing device 110q, 1105. In certain
cases, the switch 123 may be configured to exchange packets
of data over the transport layer connections.

In the network computer system 150, the switch 123 may
be used by the server computing device 120 to communicate
with the client computing devices 110a, 1105. For examples,
the switch 123 may be used to transmit the set of exemplar
data signatures 125 to the client computing devices 110a,
1105 as well as requests to obtain a state of the client
computing devices 110a, 11056. The switch 123 may also
then receive the state bitmaps from the client computing
devices 110a, 1104. In one case, the switch 123 may forward
data onto the server computing device 120; in another case,
the switch 123 may be controlled to execute certain func-
tions without passing data to the server computing device
120, e.g. the switch 123 may update the state database 130
directly under the control of the server computing device
120, e.g. by batching data received from the client comput-
ing devices 110a, 1105 and performing a data update opera-
tion on the state database 130.

In the network computer system 150 of FIG. 1B, the
server computing device 120 of FIG. 2 is also controllable
by a terminal 124, e.g. a user terminal, connected to the
server 120 by a communication channel. An end user may
thus command the server computing device 120, using the
terminal 124, to provide instructions to one or more com-
puting devices 110 connected to the network 105, via the
switch 123. Furthermore, response data from the networked
device 110 may be received at the terminal 124, via the
server computing device 120 and the switch 123. In other
examples, the server computing device 120 may be accessed
and operated by means other than a user terminal 124, such
as by another (remote) server over a network connection.

FIG. 2 shows an example of a client computing device
200, for example corresponding to one of the plurality of
computing devices 110a, 1106 in the network computer
system 100, 150 of FIGS. 1A, 1B. The client computing
device 200 comprises a network interface 210 to commu-
nicatively couple the client computing device 200 to at least
one network 205, e.g. the at least one network 105 described
in examples above with reference to FIGS. 1A, 1B. The
client computing device 200 also comprises at least one
volume of data storage 211, e.g. corresponding to the data
storage 111a, 1115 described in examples above with refer-
ence to FIGS. 1A, 1B. The at least one volume of data
storage 211 may be implemented upon an auxiliary storage
device such as a hard disk drive or solid-state drive. In one
case, the volume of data storage may comprise a logic
volume that is implemented upon one or more physical
volumes associated with one or more physical storage
devices. In some examples, the at least one volume of data

20

25

30

40

45

55

10

storage 211 may be implemented using an internal compo-
nent of the client computing device 200. In other examples,
the at least one volume of data storage 211 may be imple-
mented using an external storage device that is accessible to
the client computing device 200, for example removable
media such as a USB flash drive or external hard disk drive.
The at least one volume of data storage 211 comprises a
plurality of files 212, e.g. which correspond to the plurality
of files 1124, 1125 described in examples above.

The client computing device 200 also has a memory 215
comprising, in use, computer program code 214 for a system
agent, e.g. the system agent 114a, 1145 described in other
examples. The memory 215 may be a main memory of the
client computing device 200, for example. In examples, the
memory 215 comprises random access memory (RAM)
and/or read only memory (ROM). The client computing
device 200 also has at least one processor 220, e.g. a central
processing unit (CPU), configured to execute the computer
program code 214 for the system agent. In use, computer
program code 214 for the system agent may be retrieved
from a persistent data storage device, e.g. from the at least
one volume of data storage 211 or another logical volume
and loaded into memory for execution by the at least one
processor 220. In one case, the system agent may be
implemented as a thread upon the at least one processor 220.
The system agent may have authorisation from the operating
system to access restricted resources, e.g. to access binary
data associated with the at least one volume of data storage
211 and/or system files that are used to implement a file
system. The system agent may also be authorised to com-
municate over the network interface 210, e.g. with the server
computing device 120 or the switch 123 of FIGS. 1A and
1B. In certain cases, the system agent may be run by a
system user, e.g. representing the operating system and/or an
authorised system process.

In addition to the components described above, the com-
puting device 200 may include a power supply 201, a Basic
Input/Output System (BIOS) 202, one or more buses 204,
and input/output (I/O) devices 203. The I/O devices 203 may
include human interface devices such as a keyboard and a
pointing device. The BIOS 202 may comprise low-level
computer program code to boot the client computing device
that is stored in a Read Only Memory (ROM). The com-
puting device 200 may also have other components, for
example a display driver coupled to a display device. The
components may interact with each other via the bus(es)
204, BIOS 202, and I/O devices 203.

The components shown in FIG. 2 are for example only,
e.g. corresponding to a typical architecture for a client
computing device. However, client computing devices may
have a wide variety of forms, architectures and components.
Client computing devices may have different sets of hard-
ware components and operating systems. The example
methods described herein are adaptable to such a large array
of devices.

In use, e.g. during execution of the computer program
code 214, the system agent may be configured to receive, at
the network interface 210, a request to obtain a state of the
client computing device 200. The request may originate
from a server computing device that the client computing
device 200 is connected to over the network 205. This may
comprise the server computing device 120 or the switch 123
in FIGS. 1A and 1B. In the latter case, the network interface
210 may comprise a transport layer socket to send and
receive small packets of data over the network 205 (e.g. of
a size defined in bytes or kilobytes that may be less than 1
MB). The request to obtain the state of the client computing

US 11,847,219 B2

11

device 200 may relate to a request to determine which files
are present on the client computing device 200, for example.
The system agent is also configured to receive, at the
network interface 210 of the client computing device 200, a
set of exemplar data signatures. The set of exemplar data
signatures may be represented in a data structure, e.g. a hash
table. In certain examples, an explicit request to obtain a
state of the client computing device 200 may be received; in
other examples, the state of the client computing device 200
may be determined at periodic intervals, e.g. in response to
a scheduled process or scan of the client computing device
200.

On execution of the computer program code 214, and, for
example, in response to the request received at the network
interface 210, the system agent applies a hash function to
binary data read from the plurality of files 212 stored in the
at least one volume of data storage 211. As described above,
in certain cases, the at least one volume of data storage 211
may comprise a file-system data file, e.g. the file-system data
file 116a, 1165 according to previous examples, for use in
determining the locations of the binary data for each file. For
example, the hash function may map the binary data, which
may be of arbitrary size, onto data of a fixed size. In other
cases, the system agent may perform a scan of the at least
one volume of data storage 211 to locate a set of files and
access each file in term to determine a location of data
associated with the file, e.g. binary data representing the file
contents. The system agent applies the hash function to
generate a set of data signatures. The hash function may be
a fast (e.g. hardware accelerated) hash function available as
an operating system service and/or a custom hash function
implementation. Applying a hash function may comprise
computing a cryptographic function on a set of bit values
that represent a given file. The bit values may be provided
in a number of different formats, e.g. as hexadecimal data,
as a sequence of ‘0’ and ‘1’ values, as a sequence of bytes
etc. The data signatures may comprise respective file hashes
(or “hash values”, “hash codes”, “digests”). In some cases,
the data signatures may comprise derivatives of such file
hashes. Each data signature in the set of data signatures may
uniquely correspond to a respective file in the plurality of
files 212. For example, a given data signature in the set of
data signatures may uniquely identify a corresponding file in
the plurality of files 212. The generated data signatures and
the received exemplar data signatures may then be compared
as discussed above.

FIG. 5A shows an example set of exemplar data signa-
tures 500 that may be received at the client computing
device 200. In this example, the exemplar data signatures are
MDS hashes, however other hash functions may be used in
other cases to generate the exemplar data signatures. Each
data signature may be of a fixed length, e.g. 128-bit or
256-bit in length, depending on the number of different files
that are expected to be present on the network (e.g. 128 bits
would allow for over 3.40x10°® unique files across a net-
work). In FIG. 5A, each data signature is shown as an
alpha-numeric code, representing a hexadecimal value, the
hexadecimal value representing a 128-bit integer value. The
amount of data transmitted to the client computing devices
may be controlled by controlling the size of the data signa-
tures. The set of exemplar data signatures may be provided
as a one-dimensional array, which may be streamed as a bit
stream to the client computing device 200 and/or packaged
in one or more data packets. In certain examples, each
exemplar data signature in the set of exemplar data signa-
tures may contain additional data, e.g. additional metadata
associated with the data signature; however, this may be

10

15

20

25

30

35

40

45

50

55

60

65

12

minimised or avoided to reduce the amount of data that is
communicated over the one or more networks 105.

A set of exemplar data signatures may exploit a redun-
dancy in the number of files that are common to endpoints
in the network. In certain cases, multiple sets of exemplar
data signatures may be provided. In one case, a group of
client computing devices may share many common files,
e.g. such files may be components of a given operating
system and there may be many endpoints running the same
operating system, or the files may comprise shared libraries
for common application software which is used across the
network. Indeed, even different versions of an operating
system, or different operating systems, may share a common
set of files, e.g. representing common device drivers and/or
a widely used communications stack. These common files
may be represented within a given set of exemplar data
signatures.

FIG. 5B shows an example of a state bitmap 510 and a
visualisation 520 of the state bitmap. The state bitmap 510
(which may also be referred to as a “bit array” or “bitmap
index”) may be generated by a system agent by comparing
a set of generated data signatures with a received set of
exemplar data signatures. The state bitmap 510 indicates, for
each exemplar data signature in the set of exemplar data
signatures 500, whether the exemplar data signature is
present or absent in the set of generated data signatures. For
example, the first exemplar data signature
fc641854b1bc6ca92fe3 771901100247 in the set of exemplar
data signatures 500 shown in FIG. 5A is indicated to be
absent in the set of generated data signatures by a ‘zero’
entry in the state bitmap 510 shown in FIG. 5B. The second
exemplar data signature
abcee24a627195a8886051985c6eea5a8 in the set of exemplar
data signatures 500, however, is indicated to be present in
the set of generated data signatures by a ‘one’ entry in the
state bitmap 510. The visualisation 520 shows how the data
510 may be comparable to a binary “image” bitmap, where
each pixel is either white (0) or black (1). The state bitmap
may be seen to map from the domain of data signatures to
bits. It should be noted that a value of ‘1’ for presence and
0’ for absence is set by convention and that a value of ‘0’
for presence and ‘1° for absence could alternatively be used.
The format of the state bitmap may be determined based on
a statistical analysis of an exemplar computing device,
compression factors and/or the form of network communi-
cations across the network.

FIG. 5C shows state data 530 comprising a compressed
version of the state bitmap 510 shown in FIG. 5B. In this
example, the state bitmap is compressed using run-length
encoding; in other examples, different compression algo-
rithms or different varieties of run-length encoding may be
used. The state data 530 in the present example is in the form
[symbol_run_length, symbol, symbol_run_length, symbol .
. . |; hence, in FIG. 5C, the state data 530 denotes one ‘0’
value, two ‘1’ values, one ‘0’ value, one ‘1’ value, two ‘0’
values and four ‘1’ values. Run-length encoding and the like
may be particularly effective for large file sets that are part
of a common (i.e. shared) library, e.g. a common set of
display functions; in this case, there may be long sequences
of ‘I’s or ‘0’s indicating the presence or absence of the
common library, such that the presence of many files may be
indicated with just a few bytes.

In some cases, state data may comprise the state bitmap
as a payload and may also comprise metadata. The state data
may be transmitted over the network 205 via the network
interface 210 of FIG. 2. In examples, the state data file is
transmitted back to the origin of the initial request to obtain

US 11,847,219 B2

13

the state of the client computing device 200, e.g. the server
computing device that sent the request. The separate steps of
using state bitmaps to map from the data signature domain
to bits, and compressing the state bitmaps, can each con-
tribute to reducing the amount of data to be transmitted from
the client computing device 200 to the server over the
network 205, thus reducing network traffic.

FIG. 3A shows an example of a server computing device
300, which may, for example, correspond to an implemen-
tation of the server computing device 120 described in
examples above. The server computing device 300 of FIG.
3A may be used together with the client computing device
200 of FIG. 2, or with another form of computing device.
The server computing device 300 comprises certain com-
ponents that are similar to those of client computing device
200, e.g. the server computing device 300 comprises a
power supply 301, /O devices 303, one or more buses 304
via which the components of the server computing device
300 may interact, a network interface 310, memory 315, at
least one processor 320, a database interface 330 and data
storage 340.

The server computing device 300 uses the database inter-
face 330 to access a database 335 representing a state of the
network 305. The server 300 may be connected to the
network 305, for example, via a network interface 310. The
server computing device 300 has data storage 340 to store at
least one set of exemplar data signatures 345 resulting from
a scan of one or more exemplar computing devices. Each
data signature in the set of exemplar data signatures 345 is
generated by applying a hash function to binary data repre-
senting a file. For example, the MD5 message-digest func-
tion may be applied to the contents of the file in order to
generate the data signature. The data signature correspond-
ing to the file may comprise the output hash of the file
contents, e.g. a “file hash”. In some cases, the data signature
may also include metadata in addition to the file hash. Other
examples of hash functions include the Secure Hash Algo-
rithm family of standards, e.g. SHA-3, and the RIPEMD
(RIPE Message Digest) family of hash functions, e.g. RIP-
EMD-160.

In FIG. 3A, the memory 315, in use, comprises computer
program code 316 for a network server. The computer
program code 316 may be complementary to the computer
program code 214 for the system agent in FIG. 2. The
computer program code 316 may be persistently stored in
data storage 340 or another data storage device. The network
server may be considered to be an entity implemented in
computer program code that controls an inventory service
provided by the server computing device 300. In use, the at
least one processor 320 (e.g. a CPU having one or more
cores) is configured to execute the computer program code
316, stored in the memory 315, to implement the network
server, e.g. as a thread or daemon.

Execution of the computer program code 316 causes the
network server to instruct a transmission of the set of
exemplar data signatures 345, stored in the data storage 340,
to the computing devices over the network. This transmis-
sion may be performed as part of a state request or separate
to the state request. In one case, the network server may be
configured to instruct a transmission of a state request to one
or more client computing devices coupled to a network. In
one case, the set of exemplar data signatures 345 may be
communicated directly from the server computing device
300 to the client computing device 200. In other cases, the
set of exemplar data signatures 345 may be indirectly
communicated directly to the client computing device 200,
e.g. may be communicated by the switch 123 of FIG. 1B or

10

15

20

25

30

35

40

45

50

55

60

65

14

made accessible at a network location (e.g. from a network
accessible data storage device and/or a peer computing
device).

After the set of exemplar data signatures 345 have been
communicated to one or more client computing devices, the
network server obtains state data communicated from these
computing devices over the network. The state data may be
similar to the state data 530 shown in FIG. 5C. In one case,
the state data may be received in response to a state request
transmitted to the client computing device, e.g. the state
request may trigger the generation of the state data on the
client computing device as described above. In other cases,
the state data may be received asynchronously, e.g. once a
particular process has completed on each client computing
device. Transmission of the state data may be scheduled and
may differ for each client computing device, e.g. to minimise
network distribution. In one case, communication of state
data may be scheduled for outside office hours, e.g. over-
night at a particular geographic location. In the example of
FIG. 3A, the state data may be received at the network
interface 310 of the server computing device 300 from over
the network 305.

The network server, based on execution of the computer
program code 316, processes the state data files to extract
state bitmaps for the computing devices. This may comprise
decoding transmitted data, e.g. decoding any run-length
encoding applied to generate the state data. The state bit-
maps indicate a presence or absence of each of the set of
exemplar data signatures 345, e.g. on a particular computing
device of the one or more computing devices coupled to the
network 305. For example, a state bitmap associated with a
given computing device on the network 305 (e.g. a client
device of the server computing device 300) may be indica-
tive of a checklist of data signatures against the set of
exemplar data signatures 345, with indications of the data
signatures representative of files that are present on the
client device, and indications of the data signatures repre-
sentative of files that are absent on the client device.

The network server, based on execution of the computer
program code 316, then updates data records for the data-
base 335 using the state bitmaps. The data records indicate
which files are present in each of the computing devices
coupled to the network 305. The data records may thus
represent the state of the network 305.

FIG. 3B shows another example of the server computing
device 300 in which the database interface 330 and the
network interface 310 are located at a switch 360, e.g.
corresponding to the case described above with reference to
FIG. 1B. The server computing device 300 comprises a
switch interface 355 via which the server computing device
300 can communicate with the switch 360; the latter having
a corresponding server interface 365 for communication
with the server 300. The switch 360 may comprise its own
memory 370 and processor 380, and may correspond to the
switch 123 shown in FIG. 1B. The switch 360 may comprise
a general-purpose computing device suitably programmed
and/or dedicated network hardware where one or more
functions are implemented via dedicated electronic circuitry.
In FIG. 3B, the switch 360 includes its own bus 364 via
which the components of the switch 360 may interact.

In the example of FIG. 3B, the processor 320 of the server
computing device 300 can execute the computer program
code 316 stored in the memory 315 of the server 300, as
described above, to cause the network server to carry out its
functions. These functions can utilise the switch 360. For
example, the transmission of the state request to the client
computing devices over the network 305 can be made via the

US 11,847,219 B2

15

network interface 310 at the switch 360. Similarly, the state
data files may be received from the client computing devices
over the network 305 at the network interface 310 of the
switch 360.

In the example arrangement of the server computing
device 300 shown in FIG. 3B, the network server may
instruct the switch 360 to update the data records for the
database 335 using received data. The update of the data
records may be performed via the database interface 330
located at the switch 360. It should be noted that different
arrangements of distributed functions between one or more
server computing devices are also possible and FIGS. 3A
and 3B are provided as suitable examples.

In the example of FIG. 3B, the data storage 340 storing
the set of exemplar data signatures 345 is also external to the
server computing device 300. Instead, the server 300 com-
prises a storage interface 350 to communicate with the data
storage 340 and access the set of exemplar data signatures
345. In this case, the set of exemplar data signatures 345
may be obtained via, for example, an application program-
ming interface call to a network service arranged to supply
the set. As described, in other examples, the data storage 340
may be internal to the server device 300.

FIG. 7A shows an example of network traffic travelling
between the components of the network system 100 shown
in FIG. 1 and described individually above. In an example,
the server computing device 120 transmits (step 701) a state
request to the client computing device 110 over the network.
The server computing device 120 may transmit respective
requests to each client computing device 110 connected to
the network, for example, or may transmit a general state
request to all client computing devices 110 connected to the
network. The client computing device 110 is arranged to
receive (as part of step 701) the request to obtain the state of
the client computing device 110 transmitted over the net-
work. In other examples, the state request may be omitted
and replaced, for example, with a periodic process scheduled
at the client computing device 110.

The client computing device 110 obtains (steps 702, 703)
data signatures for a plurality of files that are stored on at
least one volume of data storage 111 accessible to the client
computing device 110. For example, the client computing
device 110 may access the at least one volume of storage 111
via one or more data access requests sent to the at least one
volume of data storage 111 (step 702) in order to obtain the
data signatures from the data storage 111 (step 703). Obtain-
ing the data signatures includes applying a hash function to
binary data read from the plurality of files. For example, the
binary data may be read from data storage locations in the
at least one volume of data storage 111 that correspond to the
plurality of files. Such reading of the binary data may be
done as part of, or in response to, the one or more data access
requests sent to the at least one volume of data storage 111.
After retrieving the stored binary data, the client computing
device 110 can apply the hash function thereto in order to
generate the data signatures. For example, as described
elsewhere, each data signature may comprise a file hash of
the corresponding file. In some cases, the data signature may
comprise other data, e.g. metadata, in addition to the actual
file hash. The metadata may be extracted from a header of
the file.

During a pre-processing operation, and/or while the client
computing device 110 is generating a set of data signatures,
the server computing device 120 obtains a set of exemplar
data signatures resulting from a scan of one or more exem-
plar computing devices. The scan of the one or more
exemplar computing devices may be performed during an

10

15

20

25

30

35

40

45

50

55

60

65

16

initial configuration phase, e.g. as described in more detail
below. Each data signature in the set of exemplar data
signatures is generated by applying a hash function to binary
data from a file in a set of files accessible to the one or more
exemplar computing devices. The set of exemplar data
signatures may thus be representative of the set of files
accessible to the one or more exemplar computing devices.

In FIG. 7A, the server computing device 120 transmits
(step 704) the set of exemplar data signatures to the client
computing devices 110 over the network. Although steps
710 and 704 are shown as separate operations in FIG. 7A, in
certain cases they may comprise a common network trans-
mission (e.g. a state request may contain the set of exemplar
data signatures within a request payload). The client com-
puting device 110 receives (as part of step 704) the set of
exemplar data signatures over the network.

A state bitmap is then generated at the client computing
device 110 by comparing the generated data signatures with
the set of exemplar data signatures. For example, the state
bitmap generated at the client computing device 110 indi-
cates a presence or absence of each data signature, in the set
of exemplar data signatures, in the set of generated data
signatures which represent the set of files accessible to the
client computing device 110. In this way, the set of files
accessible to the client computing device 110 on the network
can be compared to the (exemplar) set of files accessible to
an exemplar computing device, which may be configured in
a particular way. This process may be performed in response
to one or more of the request at step 701 and the set of
exemplar data signatures sent at step 704, or may be
performed asynchronously at a scheduled time, e.g. the data
signatures may be generated at the client computing device
110 while a CPU is idle.

State data generated from the state bitmap is then trans-
mitted (step 705) from the client computing device 110 over
the network. The state data may be a compressed, or
otherwise modified, version of the state bitmap generated at
the client computing device 110, for example. The server
computing device 120 receives (as part of step 705) the state
data from each client computing device 110 over the net-
work in response to the initial state request (step 701). The
state data is then processed at the server computing device
120 to extract state bitmaps for each of the client computing
devices 110. For example, such processing may be to reverse
the modification applied to the state bitmaps, e.g. decom-
pressing a compressed version of the set of state data files to
extract the individual state data files corresponding to the
client computing devices 110 on the network.

The server computing device 120 uses the state bitmaps to
update (step 706) a database 130 representing the state of the
network. The database 130 comprises data records indicat-
ing which files are present in each of the computing devices
100 on the network, as described elsewhere.

FIG. 6 shows an example of one form of database records
600 that may implement an inventory. It should be noted that
the records of FIG. 6 are provided for example only and may
differ in practical implementations.

In the example of FIG. 6, a set of computing devices are
indexed as a set of device records 610 and a set of data
signatures are indexed as a set of data signature records 620.
The device records 610 in the example of FIG. 6 comprises
a lookup table matching a device identifier (Device) to
indexes (Key), where the indexes may comprise a primary
key for the device records 610. The device records 610 may
comprise a link table where the device identifier is a primary
key in a larger device record, or each device record 610 itself
may comprise additional fields relating to a particular device

US 11,847,219 B2

17

(such as model, manufacturer, operating system, hardware
specifications, network addresses etc.). In the example of
FIG. 6, the data signatures comprise file hashes, and the data
signature records 620 comprise a hash table where each file
hash is assigned a Key index. Again, the data signature
records 620 may be used as a link table, where the hash or
the key field is used to identify a given file in a larger
metadata record, or the data signature records 620 may have
additional files associated with a file that are not shown in
FIG. 6.

In one case, the data signature records 620 may be used
to link to a record of metadata associated with each file.
These files may be executable and dynamic link library
(DLL) files. In certain cases, the metadata may be obtained
using a versioninfo resource block embedded in each file.
This may be obtained from a locally accessible exemplar
computing device, e.g. as opposed to having each client
computing device report this information over the network.
Not all files necessarily contain such resource data, but a
significant majority typically do. The metadata which can be
obtained from this source may comprise one or more of an
original file name, internal name, company name (e.g.
publisher), file description, product name, file version, and
product version associated with a given file. This metadata
may be augmented with other information about the file, e.g.
a file size and/or file name (including a path on the file
system).

Returning to FIG. 6, the database records 600 thus form
another type of link table by linking a particular index from
the device records 610 (stored in Device_ID) with one or
more indexes from the data signature records 620 (stored in
Hash_ID). For ease of explanation FIG. 6 shows multiple
hash indexes stored for each device index, but in practical
implementations the database records 600 may be limited to
a tuple of (Device_ID, Hash_ID)—e.g. row 1 may be
actually stored as (1, 3), (1, 7), (1, 8) and (1, 9). Using this
approach, it may be observed how a size of the inventory
may be reduced—the Device_ID column may have a bit
length to accommodate a possible number of devices (e.g. a
32-bit integer would easily cover 500 k devices) and the
Hash_ID column may have a bit length to accommodate a
possible number of files (e.g. a 32-bit or 64-bit integer would
allow for billions of files across the network). Hence, each
record may be reduced from ~300 bytes as per comparative
approaches to 1 or 2 bytes. This allows such an inventory to
be practically stored and to easily scale to very large-scale
networks (or put another way, to allow for very rapid
processing speeds for smaller networks).

FIG. 7B shows another example of network traffic trav-
elling between the components of the network system 100
shown in FIG. 1. Steps 701 to 704 and 706 correspond to
those in FIG. 7A. However, the present example shows a
number of additional steps that may be performed in certain
circumstances. FIG. 7B illustrates the communication of
state data at different time periods, the sending of additional
state data for non-matching data signatures and the use of
multiple sets of exemplar data signatures. These approaches
may be used independently, as well as together as shown in
the example.

In a first variation of FIG. 7A, in FIG. 7B the receipt of
state data from the client computing devices 110 (step 705)
is split into multiple sub-steps (705a, 7055). These multiple
sub-steps may be separated in time. In this example, the
server computing device 120 receives (step 705a) a first
subset of the state data, corresponding to a first subset of the
computing devices, at a first time. The server device 120
then receives (step 70556) a second subset of the state data,

10

15

20

25

30

35

40

45

50

55

60

65

18

corresponding to a second subset of the computing devices,
at a second time. The first and second times may be
separated by a predefined time period, shown by At in FIG.
7B. The first and second subsets of the state update data can
be processed at the server device 120 to extract state bitmaps
for each of the client computing devices 110 in the same way
as described above with reference to FIG. 7A. The server
computing device 120 can then use the state bitmaps to
update the database 130 representing the state of the network
(step 706) as described for FIG. 7A. In other examples, there
may be more than two subsets of the state update data,
corresponding to more than two subsets of computing
devices connected to the network. This approach may be
applied when different subsets of computing devices are
located in different geographic locations, e.g. one set of
devices may be within an office network in Sydney and
transmit state data at 12 am local time, and a second set of
devices may be within an office network in London and
transmit state data at 12 am local time (9 am local time in
Sydney). Alternatively, or additionally, the transmission of
state data may be staggered based on network subnets. This
approach may even out network utilisation to avoid spikes in
use.

In a second variation of FIG. 7A, in FIG. 7B the client
computing device 110 identifies, as a result of comparing the
generated data signatures with the set of exemplar data
signatures, one or more generated data signatures that are
not present in the set of exemplar data signatures. These one
or more data signatures may correspond to one or more files
accessible to the client computing device 110 that were not
accessible to the exemplar computing device when the set of
exemplar data signatures was generated. For example, they
may correspond to files that were created by a user of the
client computing device 110, additional system files for one
or more I/O devices, additional application software, system
data that is generated as part of the operation of the client
computing device 110 etc.

In FIG. 7B, the client computing device 110 transmits
(step 707) additional state data, indicative of the said one or
more generated data signatures to the server computing
device 120 over the network. The server computing device
120 thus receives (step 707) the additional state data from
the client computing device 110 over the network. The
server computing device 120 may receive additional state
data from one or more computing devices over the network
in response to the state request. The additional state data is
indicative of one or more data signatures which correspond,
respectively, to one or more files present on the one or more
computing devices that do not have a representative data
signature in the set of exemplar data signatures. The server
computing device 120 can then use the additional state data
to update (708) the state database 130 representing the state
of the network. For example, this may comprise extracting
a data signature from the additional state data and storing
this, together with an identifier for the client computing
device 110, as a record of the state database 130. Although
the data signatures of the additional state data are larger in
size than individual entries in the state bitmap (e.g. 128 bits
as compared to 1 bit), each client computing device 110 may
have a limited number of such data signatures, e.g. as a
majority of files may be covered by the set of exemplar data
signatures.

The example of FIG. 7B also shows several additional
steps of a third variation that may be performed in addition
to steps 707 and 708 to further reduce the amount of data
sent over the network. These steps are performed with

US 11,847,219 B2

19

reference to multiple sets of exemplar data signatures, which
are shown in FIGS. 5D to 5E. These Figures extend the
example of FIGS. 5A to 5C.

FIG. 5D shows an example of a first set of exemplar data
signatures 500 and a second set of exemplar data signatures
540. The first set of exemplar data signatures 500 is the same
as that shown in FIG. 5A and described in examples above.
The second set of exemplar data signatures 540 corresponds
to a different set of data signatures. For example, the first set
of exemplar data signatures may correspond to operating
system files which may be expected to be present on each
endpoint implementing the respective operating system
build. The second set of exemplar data signatures, however,
may correspond to common files which may be expected to
be present on each endpoint that is set up in a particular way,
e.g. according to particular use and/or hardware configura-
tions. For example, a pharmaceutical testing organisation
may have offices with a particular operating system build
and one or more laboratories with a set of computer-
controlled test equipment. In this case, the second set of
exemplar data signatures may comprise common device
driver files for the computer-controlled test equipment that
may be sent to the client computing devices located within
the one or more laboratories but not to the client computing
devices located within the office location. Similarly, certain
client computing devices may have a common set of word
processing and spreadsheet applications, while other client
computing devices may have integrated development envi-
ronments and compilers for software engineering.

When multiple differing sets of exemplar data signatures
are used, a further state bitmap may be generated, at a client
computing device, by comparing a set of generated data
signatures with the second set of exemplar data signatures.
These may be the same set of generated data signatures that
are compared to the first set of exemplar data signatures (e.g.
the generation may be performed once or periodically).
Respective comparisons may thus be carried out between the
data signatures generated at the computing device and the
separately received first and second sets of exemplar data
signatures 500, 540. The state bitmaps may thus further
indicate a presence or absence of each file hash in the second
set of exemplar file hashes.

FIG. 5E shows an example where the first and second
state bitmaps are combined into a single bitmap 550, with a
possible visualisation 560 of this combined state bitmap 550
indicated alongside. In FIG. 5E, the third line of the com-
bined bitmap 550 shows that the data signature
e0f601b8b8bR653a77750e2abf34977a in the first set of
exemplar data signatures 500 is present whereas the data
signature a5dae579b161b874daa7eac2d78320c2 in the sec-
ond set of exemplar data signatures 540 is absent. Compar-
ing against multiple sets of exemplar data signatures 500,
540 may be efficient for storage and network traffic since, if
the computing device has no matching data signatures in its
generated set of data signatures, the resulting bitmap com-
prises all zeroes and hence compresses to a small data size.
Although, the example of FIG. 5E shows a two-dimensional
array where each column of the array corresponds to a
different set of exemplar data signatures, it is also possible
to provide the same data as a one-dimensional array (e.g. by
arranging values for the two sets sequentially). Different
approaches may be applied depending on the statistics of file
presence, with approaches that minimise the data that is sent
over the network being preferred. The state data 550 may
further be compressed as described with respect to the
previous examples.

10

15

20

25

30

35

40

45

50

55

60

65

20

Returning to FIG. 7B, the server computing device 120
obtains a second set of exemplar data signatures associated
with a second set of files (as part of step 709). For example,
the set of exemplar data signatures transmitted separately (at
step 704) may comprise a first set of exemplar data signa-
tures associated with a first set of files. The server device 120
may therefore transmit (step 709) the second set of exemplar
data signatures to the client computing devices 110 over the
network. The second set of exemplar data signatures may
thus be received (as part of step 709) at the computing
device 110 over the network. In the example shown in FIG.
7B, state data, generated based on the further state bitmap,
is then transmitted from the client computing device 110 to
the server computing device 120 over the network (step
710). The server computing device 120 may receive and
process the state data (as previously described) to extract the
further state bitmap, for example decompressing a com-
pressed version of the further state bitmap. The further state
bitmap is then used by the server device 120 to update the
database 130 representing the state of the network (step
711).

In one example, the second set of exemplar data signa-
tures may be sent based on an earlier received set of state
data. This state data may comprise one or more of received
compressed state bitmaps and generated data signatures that
are present on a client computing device 110 but are not
present in the first set of exemplar data signatures. For
example, a client computing device may be characterised
based on a determined presence or absence of a set of files
relating to the first set of exemplar data signatures, and this
characterisation may be used to select one or more of a
plurality of additional sets of exemplar data signatures.
Alternatively, or additionally, this characterisation may be
performed based on one or more received generated data
signatures. In one case, non-matching generated data signa-
tures may be transmitted one-by-one until these signatures
are deemed (e.g. at the server computing device 120) to
relate to a particular pre-stored set of exemplar data signa-
tures, in which case the pre-stored set of exemplar data
signatures are sent to the client computing device 110. This
check may be based on a particular proportion of generated
data signatures that match a pre-stored set. For example, a
particular set of hundreds or thousands of exemplar data
signatures may be characterised based on a received handful
of generated data signatures; sending the additional set of
exemplar data signatures may significantly reduce the
amount of additional data that is to be transmitted across the
network. In a case where 100 128-bit data signatures need to
be transmitted and 50 of those data signatures are found
within a exemplar set of 1000 data signatures, transmitting
the data signatures as-is uses 1.6 Kbs (128*100 bits) but
using the exemplar set even without compression uses under
1 Kb (128%50+1000 bits). This incremental approach may
be repeated to reduce a number of generated data signatures
that are to be transmitted from a client computing device 110
to the server computing device 120.

FIG. 7B also shows the use of a fourth variation, which
may be used to reduce a size of transmitted data over time.
In FIG. 7B, a further state request is transmitted from the
server computing device 120, over the network, and is
received at the client computing device 110 (step 712). For
example, the server computing device 120 may poll the
client computing device 110 hourly, daily or weekly. In
response to the further state request, state bitmaps of a
plurality of state bitmaps are compared at the client com-
puting device 110. The plurality of state bitmaps may have
been generated at the computing device 110 in accordance

US 11,847,219 B2

21

with the separately received requests to obtain the state of
the computing device 110 (i.e. steps 701, 712 in this
example). For example, a first state bitmap may be generated
in response to the initial state request (per step 701) and a
second state bitmap may be generated, e.g. based on the
same set of exemplar data signatures, in response to the
further state request (per step 712). The first and second state
bitmaps may then be compared to each other in response to
the further state request. The result of the comparison may
be used to generate state update data that is sent to the server
computing device 120 to indicate any change in the files
stored at the client computing device 110.

For example, in one case, state update data may be
determined based on differences between the plurality of
state bitmaps. For example, a first state bitmap may indicate
that (a data signature corresponding to) a file is absent from
the computing device 110 whereas a second state bitmap
may indicate that the same (data signature corresponding to
the) file is now present at the computing device 110, e.g. at
a different time. Thus, the state update data may be deter-
mined based on this difference (or “delta) between the first
and second state bitmaps. If many of the files stay the same
over time (e.g. between polling intervals), then the state
update data may be of a reduced size compared to the second
state bitmap.

In FIG. 7B, the state update data, e.g. comprising an
indication of such differences or deltas, is transmitted (step
713) from the client computing device 110 over the network.
Transmitting such difference data may reduce network traffic
between the client computing device(s) 110 and the server
computing device 120 compared to transmitting the state
bitmaps, generated in response to the further state request,
over the network. The reduction in network traffic is even
greater when the network is scaled up to include many client
computing devices 110 served by the server device 120 (or
multiple server devices 120 in some examples). For
example, in one case, the state update data may comprise an
integer representing a data signature with a modified pres-
ence (e.g. a transmitted value of ‘n’ indicates that a value for
the nth data signature in the state bitmap has changed).

On the server-side in this variation, the server computing
device 120 receives (as part of step 713) the state update data
from the client computing device 110 over the network in
response to the further state request. As described, the state
update data comprises differences between a plurality of
state bitmaps generated at different times. The state update
data is used by the server computing device 120 to update
(step 714) the database 130 representing the state of the
network. For example, where the state update data indicates
that a file previously absent at a particular computing device
110 on the network is now present at the same computing
device 110, the database 130 holding the file records for the
computing devices 110 on the network can be updated to
reflect the change.

In examples, a software update may be distributed to the
endpoints on the network, which may be expected to perturb
the state update reporting, e.g. since thousands of file
changes may be detected at each endpoint. In such cases, a
new set of exemplar data signatures can be created and
distributed to the endpoints instead, with data signatures in
the new set of exemplar data signatures corresponding to the
software update. The increase in the network traffic in such
cases may be a one-time burden comparable to a typical day
of state update traffic.

Certain methods of determining a state of a computing
device coupled to a network will now be described. The
steps of such methods may correspond with the processes,

25

35

40

45

22

routines etc. described herein with reference to the example
network computing systems 100 and their components.

FIG. 8 shows a flowchart of a method 800 of determining
a state of a computing device coupled to a network. The
computing device may comprise a client computing device
such as the client computing device 110 described in
examples above with reference to FIGS. 7A, 7B. The
method 800 may be performed at the client computing
device.

At block 801, the method comprises obtaining data sig-
natures for a plurality of files that are stored on at least one
volume of data storage accessible to the computing device.
In certain cases, this may be performed in response to the
receipt, at the computing device, of a request sent over the
network to obtain a state of the computing device. In other
cases, this may be performed as a periodic or continuous
process on the computing device. Block 801 includes apply-
ing a hash function to binary data read from the plurality of
files to generate the data signatures. In some examples,
obtaining the data signatures includes parsing, at the com-
puting device, a file-system data file to obtain data locations
for the plurality of files. As described herein, the file-system
data file may comprise a master file table (MFT) as used in
NTFS, or a catalogue file in an APFS or HFS Plus file
system. Other types of file-system data file, e.g. for different
types of file system and/or OS, may be implemented in other
examples.

The data locations for the plurality of files may be storage
locations at which respective files of the plurality of files are
stored in the at least one volume of data storage accessible
by the computing device, for example. The hash function
may thus be applied to binary data read from these data
locations. For example, the hash function may be applied to
bit values read from the data locations, or to bytes read
therefrom in hexadecimal format. In certain examples, each
of the plurality of files comprises executable code. For
example, the plurality of files may comprise executable
program files which have encoded instructions and can
cause a computer to perform indicated tasks according to the
encoded instructions when the file is executed on the com-
puter. Example formats of such executable program files are
described elsewhere in this detailed description.

At block 802, the method includes receiving, at the
computing device over the network, a set of exemplar data
signatures. As described herein, the set of exemplar data
signatures may be a result of a scan of a particular comput-
ing device, taken to be an exemplar computing device. For
example, the computing device may have a particular con-
figuration, and thus have access to a preconfigured selection
of files. Although block 802 is shown following block 801,
in certain cases this may be reversed, e.g. block 801 may be
triggered by the receipt of a set of exemplar data signatures
in block 802.

At block 803, the method also involves generating, at the
computing device, a state bitmap by comparing the gener-
ated data signatures with the set of exemplar data signatures.
This may comprise generating data structures similar to
those shown in FIGS. 5B and 5E.

At block 804, the method also includes transmitting, from
the computing device over the network, state data generated
from the state bitmap. The state data may be transmitted in
a file format over the network, e.g. as one or more files, for
example. In other examples, the state data may be directly
streamed over the network, e.g. in (compressed) network
packets. In certain cases, the state data may be transmitted
in a form similar to that shown in FIG. 5C. In certain cases,
the state data may comprise state update data, e.g. deltas, as

US 11,847,219 B2

23

described above. The transmission may be directed at a
server computing device or switch as set out in FIG. 1A or
1B.

In some examples, the method 800 also includes identi-
fying, as a result of comparing the generated data signatures
with the set of exemplar data signatures, one or more
generated data signatures that are not present in the set of
exemplar data signatures. For example, this may indicate
that the computing device has access to one or more files,
corresponding to the one or more generated data signatures,
that are not accounted for in the set of exemplar data
signatures. In such cases, additional state data, indicative of
the said one or more generated data signatures absent in the
set of exemplar data signatures, may be transmitted from the
computing device over the network. In certain cases, this
may be transmitted together with the state bitmap in the state
data. The additional state data may be encoded and/or
compressed as desired (although any reduction in size for
compression of the additional state data will be limited,
given the high entropy of this data).

In some examples, the set of exemplar data signatures
comprises a first set of exemplar data signatures and the
method 800 involves receiving, at the computing device
over the network, a second set of exemplar data signatures.
For example, the second set of exemplar data signatures may
be associated with a different exemplar computing device,
and/or a different configuration of the same exemplar com-
puting device, compared to the first set of exemplar data
signatures. A further state bitmap may be generated, at the
computing device, by comparing the (previously) generated
data signatures with the second set of exemplar data signa-
tures. The computing device may then transmit, over the
network, state data generated based on the further state
bitmap. For example, the state data may be a compressed or
otherwise processed version of the further state bitmap. In
some cases, the second set of exemplar data signatures may
be combined with the first set of exemplar data signatures to
provide a superset of exemplar data signatures.

In some examples, the method 800 involves receiving, at
the computing device over the network, a further state
request. For example, the further state request may be
received at the computing device separately to an earlier
state request that precedes block 801. In response to the
further state request, a plurality of state bitmaps generated at
the computing device, in accordance with the separately
received requests to obtain the state of the computing device,
may be compared. State update data may be determined
based on differences between the plurality of state bitmaps.
The state update data may then be transmitted from the
computing device over the network. As described herein,
transmitting such difference data may reduce network traffic
between the computing device and the server device com-
pared to transmitting the state bitmaps, generated in
response to the further state request, directly over the
network.

FIG. 9 shows a complimentary method 900 of determin-
ing a state of a network of computing devices that may be
performed at a server computing device or switch. The steps
of such a method may also correspond with the processes,
routines etc. described herein with reference to the example
network computing systems 100 and their components.

At block 901, a set of exemplar data signatures, resulting
from a scan of one or more exemplar computing devices, is
obtained. In certain examples, this block may be performed
following transmission of an (initial) state request to one or
more computing devices over the network. Each data sig-
nature in the set of exemplar data signatures is generated by

10

15

20

25

30

35

40

45

50

55

60

65

24

applying a hash function to binary data from a file in a set
of files accessible to the one or more exemplar computing
devices. For example, each data signature in the set of
exemplar data signatures may represent a corresponding file
that is accessible to the one or more exemplar computing
devices.

At block 902, the set of exemplar data signatures is
transmitted to the computing devices over the network. The
set may be transmitted by the server computing device or the
switch. In certain cases, the computing devices may access
the exemplar data signatures from a network accessible
storage location (e.g. using an API call). In certain cases, the
set of exemplar data signatures may be distributed to the
computing devices using peer-to-peer approaches, e.g. to
distribute traffic more evenly over the network.

At block 903, state data is received from the computing
devices over the network. For example, this may be received
in response to a state request and/or in response to a
computing device receiving the set of exemplar data signa-
tures transmitted at block 902. The state data may be
extracted from the payload of one or more data packets sent
over the network and/or received as part of a data stream
sent over a persistent data coupling created over the net-
work. The state data may comprise compressed and/or
encoded data that has been generated by the one or more
client computing devices.

At block 904, the method 900 includes processing the
state data to extract at least state bitmaps for the computing
devices. The state bitmaps indicate a presence or absence of
each data signature in the set of exemplar data signatures.
For example, a given state bitmap returned from a given
computing device may indicate which files are accessible to
the given computing device versus the set of files, repre-
sented by the set of exemplar data structures, that are
accessible to the one or more exemplar computing devices.
The state bitmaps can thus be used to update a database
representing the state of the network, which is shown at
block 905. The database comprises data records indicating
which files are present in each of the computing devices. The
database may have a form similar to that described with
respect to FIG. 6. Thus, the database may represent a state
of'the network, e.g. providing an inventory of which files are
present in each of the computing devices across the network.

In some examples, the set of exemplar data signatures
may comprise a first set of exemplar data signatures asso-
ciated with a first set of files, and the method 900 may
involve obtaining a second set of exemplar data signatures
associated with a second set of files. For example, the second
set of files may correspond with another configuration of the
one or more exemplar computing devices, as described. In
such cases, the second set of exemplar data signatures may
be transmitted to the computing devices over the network
and the state bitmaps, extracted from the state data files
received from the computing devices, further indicate a
presence or absence of each data signature in the second set
of exemplar data signatures.

In some examples, the method 900 includes receiving
additional state data from one or more computing devices
over the network, e.g. in response to a state request. The
additional state data may be indicative of one or more data
signatures which correspond, respectively, to one or more
files present on the one or more computing devices that do
not have a representative data signature in the set of exem-
plar data signatures. The additional state data may thus
comprise residual data signatures, e.g. those data signatures
in the generated set that are left over from the comparison
made with the exemplar set. The additional state data, once

US 11,847,219 B2

25

received at the server device, can be used to update the
database representing the state of the network. For example,
the one or more files represented in the additional state data
may be added to the database records with an indication of
the one or more computing devices that have access to these
files. For example, the generated data signatures from one or
more computing devices may be added to the data signature
records 620 as shown in FIG. 6 and a new key value
generated. In certain cases, the database may be processed to
determine new or revised sets of exemplar data signatures.
For example, sets of exemplar data signatures may be
determined based on correlation matrices generated with
respect to certain groups of computing devices. In another
case, data signatures that do not form part of an existing set
of exemplar data signatures but that have a frequency of
occurrence above a given threshold may be selected from
the database and used to generate a new set of exemplar data
signatures. In this manner, the sets of exemplar data signa-
tures may be configured based on obtained data.

In some cases, additional state data is received from a
plurality of computing devices and the method 900 includes
determining, based on the received additional state data, that
a file not having a representative data signature in the set of
exemplar data signatures is present on a number of the
plurality of computing devices, the number exceeding a
predetermined threshold. For example, it may be determined
that a particular file is accessible to multiple computing
devices on the network but is not accounted for in the set of
exemplar data signatures. If this is determined to be a large
enough number of computing devices, e.g. larger than the
predetermined threshold, the data signature representing the
file may be added to the set of exemplar data signatures for
subsequently transmitting to the computing devices over the
network. This may occur for a plurality of files in some
examples, and can allow for the set of exemplar data
signatures to adapt over time to the network and which files
are prevalent across the computing devices on the network
and thus may be considered to be part of an exemplar, e.g.
standard, configuration for a computing device on the net-
work

In some examples, a further state request is transmitted to
the computing devices over the network and state update
data is received from the computing devices over the net-
work in response to the further state request. The state
update data comprises differences, e.g. deltas, between a
plurality of state bitmaps generated at different times. For
example, a first state bitmap generated at a given computing
device based on a given set of exemplar data signatures can
be compared to a second state bitmap generated at the same
given computing device based on the same given set of
exemplar data signatures, and the differences between the
first and second state bitmaps can be transmitted as state
update data. This transmitting of difference data rather than
complete state data files can save network traffic between the
computing devices and the server device. The state update
data can be used in the same way to update the database
representing the state of the network. For example, any
differences encoded in the state update data can be applied
to the database to update the databased based on the latest
information on the state of the computing devices across the
network.

In some cases, receiving state update data from the
computing devices over the network comprises receiving
subsets of the state update data at different times. For
example, a first subset of the state update data, correspond-
ing to a first subset of the computing devices, may be
received at a first time. A second subset of the state update

20

25

40

45

26

data, corresponding to a second subset of the computing
devices, may then be received at a second time that is
separated from the first time by a predefined time period.
The predefined time period may be different to any network
delay, e.g. queuing delay when network packets spend time
in routing queues, transmission delay of the packets, or
propagation delay of a signal over the network.

In some examples, the further state request includes a
count request, e.g. a request for an indication of how many
differences will be transmitted as part of the state update
data. The method 900 may thus involve, before receiving the
state update data, receiving count data from the computing
devices over the network. The count data may indicate a
number of differences to be sent in the state update data, e.g.
corresponding to a number of data signatures that have
changed in presence or absence at a given computing device
on the network. For example, the count data may indicate
how many differences are to be transmitted as part of the
state update data. The method 900 may involve determining
that the number of differences for one or more of the
computing devices exceeds a predetermined threshold. In
response to such a determination, the set of exemplar data
signatures may be retransmitted to the said one or more of
the computing devices. For example, a threshold of ten
differences may be set such that, if it is determined that more
than ten differences are to be transmitted as part of the state
update data for a given computing device, the original set of
exemplar data signatures may be retransmitted to the given
computing device. In this way, if the previously transmitted
set of exemplar data signatures becomes corrupted, lost, etc.
then instead of reporting a high number of differences in the
state update data each time (since the set of exemplar data
signatures cannot be compared against) the set of exemplar
data signatures is resent to the computing device(s) in
question, so that comparison to the exemplar set can resume.

FIGS. 4 and 10 show how a set of exemplar data signa-
tures may be generated according to one approach. It should
be noted that multiple approaches may be used to generate
the sets of exemplar data signatures, including those
described above. FIGS. 4 and 10 will be referenced to
described how virtual machines may be used to efficiently
generate a set of exemplar data signatures

FIG. 4 shows an example computing device 400 which
may be utilised to carry out a method 1000 as shown in FIG.
10. The computing device 400 shown in FIG. 4 is similar to
the client computing device 200 shown in FIG. 2 and the
server computing device 300 shown in FIG. 3A. In one case,
the method 1000 may be performed on the server computing
device 300 of FIG. 3A using a configuration similar to that
shown in FIG. 4. The example computing device 400 of FIG.
4 comprises a power supply 401, BIOS 402, network
interface 410, processor 420 and memory 415. Similarly, the
computing device 400 may have access to one or more /O
devices 403 and at least one volume of prepared storage 430.

The example computing device 400 additionally imple-
ments a virtual computing device 416, e.g. acts as a host
device. The virtual computing device 416 may be run on the
memory 415 of the computing device 400. The virtual
computing device 416 may use a virtual storage device 417,
which may be a data volume that is stored as a virtual disk
drive or disk image on the example computing device 400.
The virtual computing device 416 and the virtual storage
device 417 may be used to generate a set of exemplar data
signatures. This is described with reference to FIG. 10.

FIG. 10 shows a flowchart of a method 1000 of generating
a set of exemplar data signatures for use in determining a
state of a network of computing devices.

US 11,847,219 B2

27

The method 1000 involves initiating, at block 1001, an
installation of a predefined operating system on a virtual
computing device 416. For example, this may comprise
accessing an ISO file for the operating system, e.g. “insert-
ing” a virtual optical disk. During the installation, it is
determined whether a set of primary files for the operating
system have been extracted at block 1002. For example, the
primary files may relate to a set of core system files needed
to boot the operating system within the virtual computing
device and/or comprise a set of operating system files prior
to configuration of a particular computing device (e.g.
during later parts of an installation). The primary files may
comprise a set of files that is larger in number than a set of
files present when the installation completes, as, during
configuration of the operating system, files that are deemed
not to relate to a current configuration of the virtual com-
puting device 416 may be deleted. In response to the
extraction of the set of primary files, the installation is
paused at block 1003. This may comprise pausing the
operation of the virtual computing device 416 based on a
trigger condition, such as a particular set of files or folder
structure being present in a given location. In other cases,
this may comprise not confirming a subsequent installation
step (e.g. “clicking” on a “Continue with Installation” but-
ton). The installation may be paused at the point when it is
determined that the primary files of the operating system
have been extracted. At this point, the full file set for the
operating system may be present in a pair of temporary
directories which can be deleted at the conclusion of the
installation. The contents of these files may be useful since
otherwise, when the operating system is installed, many
roles and features of the operating system may not be
enabled, and the files associated with those roles and fea-
tures may not be captured.

Following the pausing of the installation at block 1003, at
block 1004, data stored on a virtual storage device 417 for
the virtual computing device 415, e.g. within the memory
415 of the computing device 400, is copied to a prepared
volume of data storage 430. For example, the prepared
volume of data storage 430 may be a removable storage
media, such as a USB drive, and/or an internal storage
location of the computing device 400.

The set of exemplar data signatures is generated at block
1005 by parsing a file-system data file for the prepared
volume of data storage 430 to obtain data locations for a
plurality of files and applying a hash function to binary data
read from the obtained data locations. For example, the data
locations may comprise storage locations, within the pre-
pared volume of data storage 430, at which the plurality of
files are stored, e.g. with each storage location correspond-
ing to a file of the plurality of files. Parsing the (file-system
data file for the) prepared volume of data storage 430 may
thus provide a set of exemplar data signatures for the full
operating system build. For example, a scan from a Win-
dows® 10 Enterprise installation may provide approxi-
mately 10,000 file hashes.

In some examples, the set of exemplar data signatures
comprises a first set of exemplar data signatures, and the
method 1000 involves generating a second set of exemplar
data signatures. This may include scanning a computing
device, having a predetermined configuration, to obtain a
superset of data signatures for a plurality of files that are
stored on at least one volume of data storage accessible by
the computing device. For example, the predetermined con-
figuration may correspond to the running of a specific
version of an operating system, e.g. Windows® 10 build
1803. The computing device being scanned may be real or

10

15

20

25

30

35

40

45

50

55

60

65

28

virtual, e.g. corresponding to the virtual computing device
416 run in memory 415. The method may also include
removing data signatures which are present in the first set of
exemplar data signatures from the superset of data signa-
tures to obtain the second set of exemplar data signatures.
For example, the superset of data signatures may comprise
the union of the exemplar data signatures from the first and
second sets of exemplar data signatures, which may each be
resultant from a respective scan of a computing device. The
data signatures in the superset which are already accounted
for in the first set of exemplar data signatures can thus be
removed to leave the second set of exemplar data signatures.

Certain examples described herein enable a state of a
network to be efficiently determined. In certain cases, the
state of the network may comprise an indication of a set of
files accessible over the network, e.g. stored in relation to
each device coupled to the network. These files may com-
prise executable code, e.g. that poses a certain security risk,
and/or may comprise data files. The systems and methods
described herein enable an inventory of these files to be
efficiently generated at scale, e.g. even with hundreds of
thousands of devices storing hundreds of thousands of files.
An efficient inventory format is described in the form of a
state database, which may be updated based on data
exchanged over the network. The state database is efficiently
constructed such that it is practically implementable within
common storage sizes and may be accessed and updated
rapidly. The data that is exchanged over the network is also
optimised to reduce network traffic and distribution. Use of
a highly compressible state bitmap format for the data
exchange enables reporting to be limited to a few bytes or
kilobytes of data for each network device. This may be
further reduced in variations by making use of bitmap
differences or deltas. The state bitmaps are generated based
on exchanged sets of data signatures. These data signatures
may be used to uniquely describe files while having a small
fixed size, e.g. in relation to the file—typically a hundred
bits or so. Data signatures may be grouped into sets based on
different configurations to limit the number of “unmatched”
data signatures that are transmitted from the client comput-
ing devices to a centralised server computing device. The
methods and systems described herein may be implemented
on large-scale enterprise networks with minimal disruption
and so maybe distinguished from comparative approaches
that quickly overload both the network bandwidth and
inventory server resources. Certain examples therefore
enable inventory at a scale that was not previously possible.

Examples as described herein may be implemented by a
suite of computer programs which are run on one or more
computing devices of the network. Software provides an
efficient technical implementation that is easy to reconfig-
ure; however, other implementations may comprise a hard-
ware-only solution or a mixture of hardware devices and
computer programs. One or more computer programs that
are supplied to implement the embodiments described herein
may be stored on one or more carriers, which may also be
non-transitory. Examples of non-transitory carriers include a
computer readable medium for example a hard disk, solid
state main memory of a computer, an optical disc, a mag-
neto-optical disk, a compact disc, a magnetic tape, electronic
memory including Flash memory, ROM, RAM, a RAID or
any other suitable computer readable storage device.

The above embodiments are to be understood as illustra-
tive examples of the invention. It is to be understood that any
feature described in relation to any one embodiment may be
used alone, or in combination with other features described,
and may also be used in combination with one or more

US 11,847,219 B2

29

features of any other of the embodiments, or any combina-
tion of any other of the embodiments. Furthermore, equiva-
lents and modifications not described above may also be
employed without departing from the scope of the invention,
which is defined in the accompanying claims.
The invention claimed is:
1. A method of determining a state of a network of
computing devices, the method comprising:
obtaining a set of exemplar data signatures resulting from
a scan of one or more exemplar computing devices,
each data signature in the set of exemplar data signa-
tures being generated by applying a hash function to
binary data from a file in a set of files accessible to the
one or more exemplar computing devices;

transmitting the set of exemplar data signatures to the
computing devices over the network;

receiving state data from the computing devices over the

network;

processing the state data to extract state bitmaps for the

computing devices, the state bitmaps indicating a pres-
ence or absence of each data signatures in the set of
exemplar data signatures; and

using the state bitmaps to update a database representing

the state of the network, the database comprising data
records indicating which files are present in each of the
computing devices.

2. A method according to claim 1, wherein the set of
exemplar data signatures comprises a first set of exemplar
data signatures associated with a first set of files, and
wherein the method comprises:

obtaining a second set of exemplar data signatures asso-

ciated with a second set of files; and

transmitting the second set of exemplar data signatures to

the computing devices over the network;

wherein the state bitmaps further indicate a presence or

absence of each data signature in the second set of
exemplar data signatures.

3. A method according to claim 1, comprising:

transmitting a first state request to the computing devices

over the network and receiving the state data in
response to the first state request;

transmitting a further state request to the computing

devices over the network;

receiving state update data from the computing devices

over the network in response to the further state
request,

wherein the state update data comprises differences

between a plurality of state bitmaps generated at dif-
ferent times; and

using the state update data to update the database repre-

senting the state of the network.
4. A method according to claim 3, wherein receiving state
update data from the computing devices over the network
comprises:
receiving a first subset of the state update data, corre-
sponding to a first subset of the computing devices, at
a first time;

receiving a second subset of the state update data, corre-
sponding to a second subset of the computing devices,
at a second time that is separated from the first time by
a predefined time period.

5. A method according to claim 3, wherein the update
request comprises a count request, the method comprising,
before receiving the state update data:

receiving count data from the computing devices over the

network, the count data indicating a number of differ-
ences to be sent in the state update data;

10

15

20

25

35

40

45

50

55

60

65

30

determining that the number of differences for one or
more of the computing devices exceeds a predeter-
mined threshold; and

in response to the determining, retransmitting the set of

exemplar data signatures to the said one or more of the
computing devices.

6. A method according to claim 1, comprising:

receiving, from one or more computing devices over the

network, additional state data indicative of one or more
data signatures which correspond, respectively, to one
or more files present on the one or more computing
devices that do not have a representative data signature
in the set of exemplar data signatures; and

using the additional state data to update the database

representing the state of the network.
7. A method according to claim 6, comprising receiving
additional state data from a plurality of computing devices;
determining, based on the received additional state data,
that a file not having a representative data signature in
the set of exemplar data signatures is present on a
number of the plurality of computing devices, the
number exceeding a predetermined threshold; and

adding the data signature representing the file to the set of
exemplar data signatures for subsequently transmitting
to the computing devices over the network.

8. A method of generating a set of exemplar data signa-
tures for use in determining a state of a network of com-
puting devices, the method comprising:

initiating an installation of a predefined operating system

on a virtual computing device;

during the installation, determining whether a set of

primary files for the operating system have been
extracted;

responsive to the extraction of the set of primary files,

pausing the installation;

copying data stored on a virtual storage device for the

virtual computing device to a prepared volume of data
storage;

generating the set of exemplar data signatures by parsing

a file-system data file for the prepared volume of data
storage to obtain data locations for a plurality of files
and applying a hash function to binary data read from
the obtained data locations.

9. A method according to claim 8, wherein the set of
exemplar data signatures comprises a first set of exemplar
data signatures, and wherein the method comprises:

generating a second set of exemplar data signatures,

including:

scanning a computing device, having a predetermined

configuration, to obtain a superset of data signatures for
a plurality of files that are stored on at least one volume
of data storage accessible by the computing device;
removing data signatures present in the first set of exem-
plar data signatures from the superset of data signatures
to obtain the second set of exemplar data signatures.

10. A server computing device comprising:

a database interface to access a database representing a

state of a network;

data storage to store a set of exemplar data signatures

resulting from a scan of one or more exemplar com-
puting devices, each data signature being generated by
applying a hash function to binary data representing a
file;

a memory comprising computer program code for a

network server;,

at least one processor configured to execute the computer

program code for the network server to:

US 11,847,219 B2

31

instruct a transmission of the set of exemplar data
signatures to one or more computing devices coupled
to the network;

obtain state data communicated from the computing
devices over the network;

process the state data to extract state bitmaps for the
computing devices, the state bitmaps indicating a
presence or absence of each of the set of exemplar
data signatures; and

update data records for the database using the state
bitmaps, the data records indicating which files are
present in each of the computing devices coupled to
the network.

10

32

