
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2012/0230210 A1

US 20120230210A1

REED (43) Pub. Date: Sep. 13, 2012

(54) PACKETSNIFFING WITH PACKET Publication Classification
FILTERING HOOKS (51) Int. Cl.

H04L 2/26 (2006.01)
(75) Inventor: Darren REED, Melbourne (AU) (52) U.S. Cl. .. 370/252

(73) Assignee: ORACLE INTERNATIONAL (57) ABSTRACT

Sprote, REDWOOD Systems, methods, and other embodiments associated with
s packet Sniffing using packet filter hooks are described. In one

embodiment, a method includes re-directing a network
(21) Appl. No.: 13/041,626 packet at a filter hook point in an Internet Protocol processing

stack. The example method may also include re-directing the
(22) Filed: Mar. 7, 2011 network packet to a packet Sniffer.

Selectively passing network packet
to a filter upon determining that at least one

filter hook is registered

Selectively re-direct the network packet
to a packet sniffer

100

M
110

120

Patent Application Publication Sep. 13, 2012 Sheet 1 of 7 US 2012/0230210 A1

100

M
110

Selectively passing a network packet
to a filter upon determining that at least one

filter hook is registered
120

Selectively re-direct the network packet
to a packet sniffer

Figure 1

Patent Application Publication Sep. 13, 2012 Sheet 2 of 7 US 2012/0230210 A1

2OO

M
210

Receive the packet
for layer 3 IP processing

220

NO
O O Pass the packet?

O Re-direct

the packet?

Yes 240

Copy the packet into a buffer
to store a duplicate copy of the packet

250

Release the packet for additional
processing

6 O 260

Resume layer 3 IP processing of the
packet

Figure 2

Patent Application Publication Sep. 13, 2012 Sheet 3 of 7 US 2012/0230210 A1

300

A
31 O

Receive topdump command

Register filter hook

Receive the packet
for layer 3 IP processing

32O

330

Figure 3

Patent Application Publication Sep. 13, 2012 Sheet 4 of 7 US 2012/0230210 A1

System

425

Figure 4

Patent Application Publication Sep. 13, 2012 Sheet 5 of 7 US 2012/0230210 A1

555 libpcap
Applications

Kernel
545A 545B

TCP UDP
Logic Logic

Registration
Logic
525

Filter
Logic

410

IP Logic
405 Pfilter

560

NC NC
System

540A 54OB 500

Figure 5

Patent Application Publication Sep. 13, 2012 Sheet 6 of 7 US 2012/0230210 A1

process?

Forward the packet to a filter

Re-direct the
packet?

Store a duplicate of the packet

Release the packet

650

Figure 6

Patent Application Publication

714.

Process

/O

Controllers 740

I/O
Interfaces 718
I/O Ports 710

Processor 702

Sep. 13, 2012 Sheet 7 of 7

Computer 700

Packet Sniffing
logic 730

Memory 704

US 2012/0230210 A1

Network
Devices 720 Disk 706

Figure 7

US 2012/0230210 A1

PACKETSNIFFING WITH PACKET
FILTERING HOOKS

BACKGROUND

0001 Packet sniffing is the capturing of data packets to log
and analyze those data packets. Packet Sniffing is also known
as packet analysis, packet capture and network analysis.
Packet sniffing is useful for troubleshooting network prob
lems, performing statistical analysis of network traffic and so
O.

0002 Capturing packets for the purpose of packet sniffing
conventionally occurs at a low level of packet processing in a
computer system. The common low-level point of capture for
packet sniffing is the network interface card (NIC). When
packet sniffing is performed, the NIC passes all traffic to a
packet Sniffing function in the computer system. Packet Sniff
ing in this way is specific to the particular NIC and occurs by
placing the NIC in a special promiscuous mode. Placing the
NIC in promiscuous mode forwards every packet seen by the
NIC on the network to the computer system's central process
ing unit rather than just frames addressed to the central pro
cessing unit. As a result of handling all traffic from the MC,
the computer system experiences an increase in processor
demand. This can have a negative impact on other processes
in the computer system. Collecting all of the traffic also
results in more data than what is necessary to efficiently
perform the packet Sniffing function.
0003. Additionally, packet sniffing at the NIC captures
packets at layer 2 Media Access Control (MAC) processing of
the packets. Capturing packets from a layer 2 process limits
information about other processes that affect packets.

BRIEF DESCRIPTION OF THE DRAWINGS

0004 The accompanying drawings, which are incorpo
rated in and constitute a part of the specification, illustrate
various systems, methods, and other embodiments of the
disclosure. It will be appreciated that the illustrated element
boundaries (e.g., boxes, groups of boxes, or other shapes) in
the figures represent one embodiment of the boundaries. One
of ordinary skill in the art will appreciate that in some
embodiments one element may be designed as multiple ele
ments or that multiple elements may be designed as one
element. In some embodiments, an element shown as an
internal component of another element may be implemented
as an external component and vice versa. Furthermore, ele
ments may not be drawn to scale.
0005 FIG.1 illustrates one embodiment of a method asso
ciated with packet Sniffing using packet filtering hooks.
0006 FIG. 2 illustrates another embodiment of a method
associated with packet Sniffing using packet filtering hooks.
0007 FIG.3 illustrates one embodiment of a method asso
ciated with registering a packet filter hook for packet Sniffing.
0008 FIG. 4 illustrates an embodiment of a system asso
ciated with packet Sniffing using packet filter hooks.
0009 FIG. 5 illustrates another embodiment of a system
associated with packet Sniffing using packet filter hooks.
0010 FIG. 6 illustrates one embodiment of a method asso
ciated with emulating packet Sniffing using packet filtering
hooks.

Sep. 13, 2012

0011 FIG. 7 illustrates another embodiment of a system
associated with an embodiment of a computing system in
which example systems and methods, and equivalents, may
operate.

DETAILED DESCRIPTION

0012 Systems and methods are described herein that pro
vide packet filter hooks for packet sniffing. In one embodi
ment, packet filter hooks provide greater versatility for cap
turing packets during packet Sniffing than conventional
methods. Instead of capturing packets directly at a NIC or
during layer 2 processing of a packet, the present systems and
methods implement packet filter hooks for capturing a packet
at various points in the layer 3 Internet Protocol processing of
the packet.
0013. In one embodiment, a packet filter hook is a function
call interposed between layer 3 processing functions. Placing
the function call in the layer 3 processing stack between other
layer 3 functions facilitates isolating various layer 3 pro
cesses. In this way, a packet Snifferuses the packet filter hooks
to divert and log packets. For example, two different types of
packet filter hooks may be registered, one that places a packet
filter hook before and one that places a packet filter hook after
a layer 3 process in the layer 3 processing stack. The packet
Sniffer then receives and logs packets before and after pro
cessing by the layer 3 process based on these packet filter
hooks. The packet Sniffer then compares the packets from
before processing and after processing to facilitate diagnos
ing errors relating to the layer 3 process.
0014. In one embodiment, various points in the layer 3
Internet Protocol processing of a packet are specified accord
ing to different types of packet filter hooks. Some types of
packet filter hooks include a PHYSICAL IN hook, a PHYSI
CAL OUT hook, a LOOPBACK IN hook, a LOOPBACK
OUT hook, and a FORWARDING hook.
(0015 The PHYSICAL IN hook provides for calling a
packet filter hook at a point in the layer 3 processing stack
during processing of inbound network packets by the Internet
Protocol kernel module.
(0016. The PHYSICAL OUT hook provides for calling a
packet filter hook at a point in the layer 3 processing stack
during processing of outbound network packets by the Inter
net Protocol kernel module.
(0017. The FORWARDING hook provides for calling a
packet filter hook at a point in the layer 3 processing stack
during processing of a network packet being forwarded
through the computer to a destination computer.
(0018. The LOOPBACK IN hook provides for calling a
packet filter hook in the layer 3 processing stack during pro
cessing of inbound network packets on a logical interface by
the Internet Protocol kernel module.
(0019. The LOOPBACK OUT hook provides for calling a
filterhook in the layer3 processing stack during processing of
outbound network packets on a logical interface by the Inter
net Protocol kernel module.
0020. In one embodiment, the layer 3 processing stack
includes a plurality of predetermined packet filter hook
points. Each of the predetermined packet filter hook points
corresponds to one of the types of packet filter hooks. In one
embodiment, packet filter hooks are registered at the prede
termined packet filter hook points in the layer 3 processing
stack. At each predetermined packet filter hook point a plu
rality of packet filter hooks may be registered for packet
sniffing. Packet filter hooks may be set at each packet filter

US 2012/0230210 A1

hook point to perform additional/different functions includ
ing firewalling, Network Address Translation (NAT), and so
O

0021. In one embodiment, the packet sniffer is present in
the same system as a firewall and/or a NAT function. The
packet sniffer, firewall, and NAT use packet filter hooks to
divert packets from layer3 Internet Protocol processing to the
packet sniffer, to the firewall, or to the NAT, respectively. In
addition to using packet filter hooks at various points in the
layer 3 processing stack, arranging packet filter hooks relative
to each other is possible at the same filter hook point in the
layer 3 processing stack.
0022. For example, a packet filter hook(s) for packet sniff
ing may be arranged to occur prior to a firewall/NAT packet
filter hook and/or after a firewall/NAT packet filter hook. In
one example, a computer system receives a packet on a NIC
and performs layer 1 and layer 2 processing of the packet. The
layer 2 processing service passes the packet to a layer 3
processing service. The layer 3 processing service processes
the packet using the layer 3 processing stack. The layer 3
processing Stack is implemented according to a layer 3 Inter
net Protocol.
0023. In one embodiment, the layer 3 processing service
begins processing the packet by checking for the presence of
a packet filter hook. If a packet filter hook is set at this point
in the layer 3 processing stack, then the layer 3 processing
service provides the packet to a filtering process. In this
example, the checking involves determining whether at least
one packet filter hook is registered for the packet filter hook
point. In other embodiments, the layer 3 processing service
may check what type of packet filter hook is set or how many
packet filter hooks are set.
0024. The filtering process receives the packet and applies
the packet filter hook to the packet. If more than one packet
filter hook is present, the packet is processed according to the
packet filter hooks in the order they have been arranged. In the
case where a packet filter hook for packet Sniffing is set as the
first packet filter hook, the filtering process then determines
whether the packet satisfies any conditions specified by the
packet filter hook. If the packet satisfies the conditions of the
packet filter hook, then the filtering process forwards the
packet to a packet Sniffer.
0025. The packet sniffer performs a packet sniffing routine
and then releases the packet to the filtering process. If Subse
quent packet filter hooks are present, the filtering process
performs processing of the packet according to the next
packet filter hook and so on. As described previously, a packet
filter hook may be a firewall packet filter hook, a NAT packet
filter hook, or a packet sniffing packet filter hook. The packet
is forwarded to a firewall by the filtering process if the packet
filter hook is a firewall packet filter hook. The firewall will
provide the packet back to the filtering process to continue
applying any Subsequent packet filter hooks after performing
firewall processing on the packet. If no Subsequent packet
filter hooks are present, the filtering process sends the packet
to the layer 3 processing service. The layer 3 processing
service continues processing from the point in the layer 3
processing stack where it left offbefore forwarding the packet
to the filtering process.
0026. In one embodiment, the packet sniffer performs one
or more packet Sniffing routines with the packet. The packet
Sniffer may log, decode, and/or analyze each packet. The
packet Sniffing routines may include copying a predetermined
part of the packet to a data storage device for later analysis,

Sep. 13, 2012

copying the whole packet to a data storage device, logging
one or more attributes of the packet to a log file, detecting
errors in the packet, comparing the packet to previously cap
tured packet(s), displaying the packet to a user, and so on. The
packet Sniffer may also use attributes of the packet to perform
statistical analysis of network traffic, and so on. The packet
Sniffer may use one or more of these routines to analyze
packets according to a computer security or analysis plan.
0027. With reference to FIG. 1, one embodiment of a
method 100 associated with packet sniffing using packet filter
hooks is illustrated. Method 100 is interposed between func
tions in a stack of functions for performing layer 3 processing
of a network packet.
0028. Layer 3 processing of a network packet occurs in
devices involved in sending and receiving data across a net
work. For example, these devices may include routers, serv
ers, firewalls, desktop computers, laptops, personal electronic
devices and so on. Layer 3 processing generally refers to
processing of a network packet that occurs according to the
third layer of protocols in the 7-layer OpenSystems Intercon
nection (OSI) model. In the OSI model, a layer is a collection
of conceptually similar functions that provide services to the
layer above it and receives services from the layer below it.
These functions are specified according to protocols that
define each layer.
(0029. Layer 1 of the OSI model is the physical layer. The
physical layer is the first layer and defines the manner for
transmitting raw bits over a physical link connecting nodes in
a network. Examples of layer 1 protocols include IEEE 802.3,
IEEE 802.11, and so on.
0030. Layer 2 of the OSI model is the Data Link Layer.
The Data Link Layer delivers frames between devices on the
same Local Area Network (LAN). Examples of layer 2 pro
tocols include the Point-to-Point Protocol (PPP), Asynchro
nous Transfer Mode (ATM) protocol, Frame Relay, Serial
Line Internet Protocol (SLIP), and so on. The Data Link
Layer may also be referred to as the Media Access Control
(MAC) layer.
0031 Layer 3 of the OSI model is the network layer. The
network layer provides the functionality to route packets
across intermediate devices between networks. Layer 3 pro
vides for delivery of packets between a source and destination
via one or more networks. Examples of layer 3 protocols
include the Internet Protocol (IP), Internet Protocol Security
(IPSec), and so on.
0032 Layers 4 through 7 include the transport layer (4),
the session layer (5), the presentation layer (6), and the appli
cation layer (7). For purposes of this discussion, packet filter
hooks are discussed in relation to the Internet Protocol that
operates at layer 3 in the 7-layer OSI model. However, packet
filter hooks may be implemented in the Internet Protocol as it
occurs in network communication models other than the
7-layer OSI model. Other network communication models
may define the Internet Protocol as operating in a different
layer. In these communication models, packet filter hooks
operate in the same layer as the Internet Protocol.
0033 Method 100 includes, at 110, selectively passing a
network packet from an Internet Protocol kernel module to a
filter in response to determining that at least one filter hook is
registered in the filter. In one embodiment, the Internet Pro
tocol kernel module and the filter are modules in a system
kernel of a computing system. In one example, the system
kernel is part of the Solaris operating system but other oper
ating systems can be used.

US 2012/0230210 A1

0034. In one embodiment, when the network packet is
passed at 110 from the Internet Protocol kernel module to the
filter, a function is called and the network packet is passed as
a data structure to the function. In another embodiment, when
the network packet is passed, the method generates an elec
trical signal and transmits the electrical signal between two
devices. For example, the network packet may be passed
between a router and a second device that is a dedicated
firewall or packet sniffing device. The dedicated firewall or
packet Sniffing device may be connected to the router via a
network connection, a direct bus link, and so on.
0035. In one embodiment, the method determines that at
least one filter hook is registered in the filter as a function call
in a stack of functions for performing layer 3 processing of the
network packet. In other embodiments, the method can deter
mine that at least one filter hook is registered by reading a
register to check if a flag is set, by detecting a packet filter
hook in a stack, and so on. The determining occurs at prede
termined filter hook points in the stack of functions. Each
predetermined filter hook point is associated with a different
type of filter hook.
0036. At 120, the filter selectively re-directs the network
packet to a packet Sniffer upon determining that the packet is
a member of a class of packets specified by the registered filter
hook. In one embodiment, the packet Sniffer is a module in a
system kernel of the computer system. In an alternative
embodiment, the packet Sniffer may be a separate hardware
device and so on.

0037. The filter hook may be, for example, a rule that
specifies the class of packets by denoting a specific attribute
to qualify as a member of the class. In another embodiment,
the filter hook specifies that the class of packets includes all
possible packets and thus operates as a simple forwarding
mechanism. The filter hook may also include, for example, a
logical expression that defines the class of packets, a Subrou
tine with multiple logical expressions for defining the class of
packets, and so on.
0038 FIG. 2 illustrates one embodiment of a method 200
associated with a packet Sniffer that uses packet filter hooks to
capture network packets.
0039. At 210, the network packet is received in an Internet
Protocol kernel module to perform layer 3 Internet Protocol
processing of the network packet in a protocol stack. In one
embodiment, receiving the network packet in the Internet
Protocol kernel module includes receiving an inbound net
work packet from a layer 2 processing service. In an alterna
tive embodiment, receiving the network packet includes
receiving an outbound network packet from a layer 4 process
ing service, a firewall/NAT function, and so on.
0040. At 220, the method 200 determines whether at least
one filter hook is registered in the filter. If a filter hook is
registered, then the network packet is selectively passed from
the Internet Protocol kernel module to a filter. In one embodi
ment, the filter is a set of filter hooks that correspond to a type
of filter hook associated with the current point in the layer3
processing stack. In an alternate embodiment, the filter is a
kernel module that includes the set of filter hooks. At 220, if
no filter hooks are registered in the filter for the filter hook
point, then the method 200 continues to block 260 where
layer 3 processing of the packet resumes.
0041) If at 220 a filter hook is registered and the packet is

to be passed, then the method continues to 230 where the
network packet is redirected to a packet Sniffer on determin
ing that the packet is a member of a class specified by a filter

Sep. 13, 2012

hook. In one embodiment, selectively re-directing the net
work packet to the packet Sniffer occurs without configuring
a Network Interface Card (NIC) to use a promiscuous mode
and during layer3 Internet Protocol processing of the network
packet. Placing the NIC in a promiscuous mode automatically
directs all network packets to the packet sniffer. By not plac
ing the NIC in a promiscuous mode and capturing packets
during layer 3 processing, the packet Sniffer is configured to
more selectively capture packets. This occurs, for example,
by specifying a class of packets to be captured using the filter
hook.
0042. The network packet being re-directed to the packet
Sniffer may also include passing the network packet to the
packet Sniffer as a data structure in a function call, providing
a memory location to the packet Sniffer, and so on. Determin
ing the network packet is a member of a class specified by a
filter hook may include applying a rule specified by the filter
hook, and so on. The rule may denote certain attributes of the
packet that must be met to be a member of the class of packets.
0043. At 230, if the packet is not a member of the class of
packets specified by the filter hook, then the filter checks for
additional filter hooks in the set offilter hooks. The filter will
apply any additional filter hooks to the network packet. If no
additional filter hooks are registered, the filter then passes the
network packet to the Internet Protocol kernel module to
resume processing.
0044. At 240, the packet sniffer copies the network packet
into a buffer to store a duplicate copy of the network packet.
Copying the networkpacket into the buffer may include copy
ing the whole network packet, copying only the header of the
network packet, copying only a portion of a header of the
network packet, copying pieces of the packet specified by the
packet Sniffer, and so on. The packet Sniffer may be config
ured to copy only the data necessary to perform analysis on
the network packet. The buffer may be, for example, a data
base, a log file, a data storage device and so on.
0045. The packet sniffer may be, for example, the
PF Packet packet sniffer, the STREAMS packet sniffer, or a
Berkeley Software Distribution (BSD) Packet Filter (BPF)
packet sniffer. The packet sniffer is configured to receive the
network packet during layer 3 Internet Protocol processing of
the network packet. The packet sniffer may be embodied as
part of a system kernel, as an individual module separate from
the system kernel, and so on.
0046. At 250, the network packet is released for additional
processing. Releasing the network packet for additional pro
cessing may include the packet Sniffer sending the network
packet to the filter. In an alternative method, the releasing may
include sending the network packet to the Internet Protocol
kernel module. As explained with step 230, in one embodi
ment, the filter will apply any additional filter hooks that
registered for the filter hook point to the network packet. If no
additional filter hooks are registered the filter will pass the
network packet to the Internet Protocol kernel module to
resume processing. Applying additional packet filter hooks
may include applying a firewall, NAT, and/or packet Sniffing
filter hook to the network packet.
0047. At 260, the filter selectively provides the network
packet to the Internet Protocol kernel module to resume pro
cessing upon determining there are no additional filter hooks.
In one embodiment, the filter checks a flag to determine if
additional filter hooks are set and perform additional process
ing based on any additional filter hooks before sending the
network packet to the Internet Protocol kernel module. The

US 2012/0230210 A1

filter may be configured to send the network packet to the
Internet Protocol kernel module only after all filter hooks are
applied for a particular filter hook point in the processing
stack.

0048 FIG. 3 illustrates one embodiment of a method 300
associated with registering filter hooks in a computer system.
At 310, the computer system receives an input from a user
command that specifies the filter hook. In one embodiment,
the user command is a tepdump user command, which is a
command line interface function in the Solaris operating sys
tem. The tcpdump user command specifies the filter hook by
receiving input from a command line interface according to a
Syntax. The syntax includes a filter hook type and additional
conditions as follows:

0049 <name>=<family>: <hookname>/<hints:<hint
data logical argument
0050 name The “name' attribute is the name of an exist
ing network interface that is recognized by the Internet Pro
tocol kernel module. If “name' is not specified or the option
“-i' is used then all packets in the system are applied to that
filter hook regardless of the network interface on which the
system receives or sends the packets.
0051 family. The “family’ attribute specifies one of
“inet” for Internet Protocol version 4 packets only, “ineto' for
Internet Protocol version 6 packets only, or “ip' for all Inter
net Protocol versions. This attribute limits the filter hook to
packets that are formatted according to the protocol version of
the attribute.

0.052 hookname The “hookname' attribute is the name
of one of the packet filter hooks. The packet filter hooks are
PHYSICAL IN, PHYSICAL OUT, LOOPBACK IN,
LOOPBACK OUT, and FORWARDING.
0053 hint The “hint” attribute specifies the relative
placement among other filter hooks at the same filter hook
point. The hint may be, for example, “first”, “last”, “before,
or “after. The “hint allows the tcpdump command to
specify where in a set of filter hooks a filter hook being
registered is to be placed.
0054 hint-data The "hint-data' attribute is for use with
“before and “after from the hint attribute. The hint-data
allows a filter hook being registered to be placed directly
before or after a filter hook specified by the hint-data.
0055 logical argument. The “logical argument' attribute

is where logical operators are specified to define conditions
for further filtering packets. The logical argument may be
used to specify a class of packets for a packet filter hook that
is being registered.
0056. With continued reference to FIG. 3, at 320, the
method includes registering the filter hook. The filter hook
may be registered by placing a function callback of the filter
hook in the filter. In another embodiment, the filter hook may
be registered by setting a flag that denotes that at least one
filter hook is registered for a filter hook point associated with
the filter hook. The filter hooks are selected from a variety of
different types of hooks, for example, a PHYSICAL IN
hook, a PHYSICAL OUT hook, a FORWARDING hook, a
LOOPBACK IN hook, and a LOOPBACK OUT hook.
Each filter hook is associated with a specific filter hook point
in a layer 3 processing stack. In an alternative embodiment,
when the filter hook is registered, the method may include
providing conditions specified by the filter hook to the filter.
In this instance, the filter logs the conditions and applies them
to packets it receives.

Sep. 13, 2012

0057 Example descriptions of the various filter hooks are
as follows. The PHYSICAL IN hook provides for selectively
re-directing an inbound network packet during processing of
the inbound network packet by the Internet Protocol kernel
module. To perform the selective re-directing in this way
when a PHYSICAL IN hook is registered it is linked to an
associated filter hook point in the layer 3 processing stack. In
one embodiment, the associated filter hook point is located in
the layer 3 processing stack at a point that allows the PHYSI
CAL IN hook to capture an inbound packet during process
ing of the inbound packet by the Internet Protocol kernel
module. In one embodiment, this filter hook point is located in
the layer 3 processing stack after a function that checks to
Verify that the packet length matches an associated in-buffer
length and before verification of the network packet's check
sum. In one example, the filter hook point for a PHYSICAL
IN hook is a function call in the layer 3 processing stack.
Whena PHYSICAL IN hook is registered the function callis
activated. When the function call is reached during process
ing of an inbound packet the function call then calls a filtering
function that includes the PHYSICAL IN hook.
0058. In one embodiment, the layer 3 processing stack for
an inbound packet includes performing functions in the fol
lowing order: (1) Carrier Grade Transport Protocol (CGTP)
processing, (2) DHCP packet inspection, (3) In-buffer length
verification, (4) Loopback check, (5) PHYSICAL IN hook
function check, (6) Packet checksum verification, (7) local or
remote destination delivery check, and so on. Of course, in
other embodiments, the order of these functions may be
altered. For example, the PHYSICAL IN hook function
check may occur between (2) and (3), (6) and (7), and so on.
Additionally, the order of the other functions may also vary.
0059. The PHYSICAL OUT hook provides for selec
tively re-directing the network packet before the Internet
Protocol kernel module performs outbound packet process
ing of the network packet. The PHYSICAL OUT hook oper
ates in a similar manner as the PHYSICAL IN hook. When
the PHYSICAL OUT hook is registered it is linked to an
associated filter hook point in the layer 3 processing stack.
The filter hook point for the PHYSICAL OUT hook is
located at a different point in the layer 3 processing Stack than
the filter hook point for the PHSYICAL IN hook. The filter
hook point for the PHYSICAL OUT hook is located in the
layer 3 processing stack at a point that allows for the capture
of outbound packets during processing by the Internet Proto
col kernel module.

0060. In one embodiment, the layer 3 processing stack for
an outbound packet includes performing functions in the
following order: (1) Check which NIC is to send the network
packet, (2) Fragment the packet according to system rules, (3)
PHYSICAL OUT hook function check, (4) Attach link layer
header, and so on. Of course, in other embodiments, the order
of these functions may be altered. For example, the PHYSI
CAL OUT hook function check may occur between (1) and
(2), and so on. Additionally, the order of the other functions
may also vary.
0061. The FORWARDING hook provides for selectively
re-directing a network packet being forwarded through the
computer to a destination computer. The FORWARDING
hook operates in a similar manner as the PHYSICAL OUT
and PHYSICAL IN hook. The FORWARDING hook is
associated with a filter hook point that is located in the pro
cessing stack at a point that allows for the capture of packets
that are to be forwarded by the computer system. In this way,

US 2012/0230210 A1

the FORWARDING hook can capture request and reply pack
ets sent between two endpoint devices.
0062. In one embodiment, the layer 3 processing stack for
a packet that being forwarded includes performing functions
in the following order: (1) Verify NIC is set to route packets,
(2) Address lookup for NIC, (3) FORWARDING hook func
tion check, (4) Packet integrity check, and so on. Of course, in
other embodiments, the order of these functions may be
altered. For example, the FORWARDING hook function
check may occur between (1) and (2), and so on. Additionally,
the order of the other functions may also vary.
0063. The LOOPBACK IN hook provides for selectively
re-directing the network packet on a logical interface during
processing by the Internet Protocol kernel module for
inbound packets. The LOOPBACK OUT hook provides for
selectively re-directing the network packet on a logical inter
face during processing by the Internet Protocol kernel module
for outbound packets. These hooks operate in a similar man
ner as the PHYSICAL IN hook and the PHYSICAL OUT
hook except they operate on logical interfaces for local packet
delivery instead of actual network interfaces.
0064. With reference again to FIG.3, at 330, after the filter
hook is registered, packets received for layer 3 processing in
the computer system may then be filtered according to the
filter hook as specified, for example, in method 200.
0065. In one embodiment, example uses of the tcpdump
user command and associated syntax is as follows:

EXAMPLE1

0066 #tcpdump-i net6:PHYSICAL OUT/before:ipfilter
0067. This example command provides for registering a
packet filter hook that captures all Internet Protocol version 6
packets that are being sent out of the computer system. The
packet filter hook captures the packets directly before they are
sent to the ipfilter firewall/NAT packet filter hook. The packet
filter hook captures the specified class of packets during layer
3 processing.

EXAMPLE 2

0068 #tcpdump-i p:PHYSICAL IN, ip:PHYSICAL
OUT
0069. This example registers two packet filter hooks for
packet Sniffing that capture Internet Protocol version 4 and
version 6 packets. These example packet filter hooks use the
"-i" option to capture packets on all interfaces in the system.
The PHYSICAL IN hook is for capturing inbound packets
and the PHYSICAL OUT hook is for capturing outbound
packets.

EXAMPLE 3

0070 #tcpdump-i net:FORWARDING
0071. This example registers a packet filter hook for
packet sniffing that captures all Internet Protocol version 4
packets that are being forwarded through the computer sys
tem on any interface.

EXAMPLE 4

0072 #tcpdump-nvei inet:PHYSICAL IN/first, inet:
PHYSICAL IN/last port 25 or port 2500
0073. In this example, the tcpdump user command speci

fies two separate packet filter hooks. The packet filter hooks
specified here capture the packet twice at the same packet
filter hook point. For example, if an IPfilter function is con

Sep. 13, 2012

figured in a computer system where this command is received
a packet will be captured before and after being processed by
the IPfilter function. Specifying that one packet filter hook is
to occur “first and the other is to be “last’ provides for other
packet filter hooks to operate on packets between these two
packet filter hooks. This command is an example of how the
packet filter hooks may be used to diagnose processing errors
in a function such as IPfilter that also uses packet filter hooks.
0074 This example also specifies a logical argument,
"port 25 or port 2500'. This logical argument defines a class
of packets that specify either port 25 or port 2500. Thus, the
packet filter hooks from this command will only re-direct
packets to the packet sniffer that satisfy the port 25 or port
2500 requirement. If the IPfilter function is set to translate
inbound packets sent to port 25 to port 2500 then the packet
filter hooks will capture a packet sent to port 25 before it
reaches the IPfilter and after the IPfilter when it has been
translated to port 2500.
0075. In one embodiment, an example output from a
packet captured using this example command is as follows:
(0076 Output for a packet from the “first packet filter
hook before IPfilter: 21:55:06.472705 Physical Inbge0, -2d
2, family IPv4 (2), length96: (tos 0x0, ttl 57, id 60360, offset
0, flags DFI, proto TCP (6), length 64)
10.132.148.70.39924-10.5.233.119.25: Flags (S), cksum
Oxd7cd (correct), seq 746969011, win 64240, options mss
1460.nop.nop.TS val 218899368 ecr 0.nop,wscale 1..nop,
nop, sackOK, length 0
(0077 Output for the packet from the “last” packet filter
hook after IPfilter: 21:55:06.472842 Physicallnbge0,-2>-2,
family IPv4 (2), length96: (tos 0x0, ttl 57, id 60360, offset 0,
flags DF), proto TCP (6), length 64)
10.132.148.70.39924-127.0.0.1.2500: Flags S. cksum
0x429e (correct), seq 746969011, win 64240, options mss
1460.nop.nop.TS val 218899368 ecr 0.nop,wscale 1..nop,
nop, sackOK, length 0
0078 Comparing the data from before and after the IPfil
ter function shows that the IPfilter function has performed
NAT processing on the packet to change the destination
address. The differences in the packet from before and after
processing by the IPfilter are underlined.

EXAMPLE 5

(0079 #tcpdump-nei inet:FORWARDING
0080 Example 5 is one example of how a packet filter
hook may be used in a router. This example registers a packet
filter hook that captures both an inbound request packet and
an outbound reply packet that are being forwarded by the
rOuter.
I0081. The following is an example output from the packet
sniffer using this packet filter hook.
I0082 Example request packet:
I0083) 09:53:26.923765 Forwarding e1000g1->igb0,
–2>-2, family IPv4 (2), length 116: 10.100.47.47>10.100.
48.48: ICMP echo request, id 41969, seq3621, length 64
I0084 Example reply packet:
I0085 09:53:26.923.802 Forwarding igb0->e1000g1,
–2>-2, family IPv4 (2), length 116: 10.100.48.48>10.100.
47.47: ICMP echo reply, id 41969, seq3621, length 64
I0086. The output from example 5 shows a log entry for a
request packet sent from a device at address 10.100.47.47 to
a device at address 10.100.48.48 and a log entry for a reply
packet from 10.100.48.48 sent to 10.100.47.47. Use of the
tcpdump command with the FORWARDING hook captures

US 2012/0230210 A1

both of these packets as they pass through the computer
system and may correlate their entries in a log for ease of
comparison.
I0087 FIG. 4 illustrates one embodiment of a system 400
involved with packet sniffing using filter hooks. System 400
includes IP logic 405. In one embodiment, the IP logic 405
processes a packet according to a layer 3 Internet Protocol of
a protocol stack. The IP logic 405 processes both inbound and
outbound packets in system 400. The IP logic 405 receives
outbound packets on I/O paths 420. The outbound packets are
packets received from higher layers in the protocol stack. One
example of a higher layer in the protocol stack that may send
outbound packets to the IP logic 405 is the transport layer. The
IP logic 405 receives inbound packets on I/O paths 425. The
inbound packets are packets received from lower layers in the
protocol stack. One example of a lower layer in the protocol
stack that may send inbound packets to the IP logic 405 is the
MAC layer.
I0088. The IP logic 405 may also forward the packet to
filter logic 410. The IP logic 405 forwards the packet to the
filter logic 410 if it determines that at least one filter hook is
registered in the filter logic 410. The IP logic 405 determines
whether to forward the packet at predetermined hook points
during layer 3 Internet Protocol processing of the packet. For
example, at a predetermined hook point, the IP logic checks a
flag to determine whether any filter hooks associated with the
predetermined hook point are registered in the filter logic 410.
If the flag is set, then the IP logic 405 forwards the packet to
the filter logic 410.
I0089. The filter logic 410 receives packets from the IP
logic 405 and selectively sends the packets to a packet sniffer
415 based, at least in part, on a filter hook that is found in a set
of filter hooks. The set of filter hooks are associated with an
individual predetermined filter hook point. The set of filter
hooks may include a plurality of filter hooks of different
types. One or more of the plurality of filter hooks may be a
packet sniffing filter hook. The plurality of filter hooks may
also include filter hooks for a firewall function, a NAT func
tion, or other network function. The filter logic 410 differen
tiates between packet sniffing hooks, firewall hooks, NAT
hooks, and other network function hooks when applying the
hooks to a packet. In this way, the filter logic 410 determines
where to send a packet based on the type of hook.
0090 FIG. 5 illustrates one embodiment of a system 500
that uses filter hooks to capture packets for packet Sniffing.
FIG. 5 illustrates an embodiment where tcpdump 550 and
libpcap 555 are embodied as application layer services. In one
embodiment, the libpcap 555 is a library of functions that
provide access to a packet capture Application Program Inter
face (API). FIG.5 further illustrates a system kernel configu
ration. Elements of the system kernel are illustrated between
the two dashed lines. These boxes and their connecting lines
are illustrative of functions, subroutines, and other elements
that perform the stated functions. Elements 540A and 540B
are hardware layer elements involved in system 500.
0091 System 500 includes an IP logic 405that is similar to
IP logic 405 in system 400. System 500 also includes filter
logic 410 and packet sniffer 415 that are similar to the logics
410 and 415 of system 400. The IP logic 405 determines
whether at least one filter hook is registered at a set of hook
points during the processing of the packet. Each hook point in
the set of hook points corresponds to a set of filter hooks. The
IP logic 405 is configured to forward the packet to the filter
logic 410 if the set offilter hooks associated with a hook point

Sep. 13, 2012

is not empty. For example, the IP logic 405 determines
whether the set of filter hooks is empty based on checking a
null flag for the set of filter hooks, a register value, and so on.
Each hook point in the set of hook points corresponds to a
type offilter hook. For example, the types of filter hooks may
include PHYSICAL IN, PHYSICAL OUT, LOOPBACK
IN, LOOPBACK OUT, and FORWARDING.
0092. In system 500, MAC logic 530 operably connects to
IP logic 405. IP logic 405 receives inbound packets from the
MAC logic 530 and provides outbound packets to the MAC
logic 530. The MAC logic 530 performs layer 2 processing of
the packets. The MAC logic 530 receives inbound packets
from and provides outbound packets to Drivers 535A and
535B. Network Interface Card (NIC) 540A and NIC540B in
combination with Drivers 535A and 535B perform layer 1
processing of inbound and outbound packets.
(0093 System 500 further includes TCP logic 545A for
performing layer 4 processing of inbound and outbound TCP
packets. UDP logic 545B performs layer 4 processing of
inbound and outbound UDP packets.
(0094. Filter logic 410 operably connects to IP logic 405,
packet sniffer 415, and IPfilter 560. Filter logic 410 selec
tively sends the packet to the packet sniffer 415 based on a
filter hook. The filter logic 410 sends the packet to the packet
sniffer 415 if the packet is a member of a class of packets
specified by the filter hook. The filter logic 410 releases the
packet to the IP logic 405 for additional processing if the
packet is not a member of the class specified by the filter hook.
In an alternate embodiment, a second filter hook may be
present in the filter logic for a hook point and thus the filter
logic 410 applies the second filter hook before releasing the
packet to the IP logic 405. Applying the second filter hook
may include sending the packet to an IPfilter 560 instead of
the packet sniffer 415. Alternatively, applying the second
filter hook may include, for example, sending the packet to
the packet sniffer 415 again if it is a member of a class of
packets specified by the second filter hook.
(0095. The packet sniffer 415 receives the packet from the
filter logic 410 if the filter hook is a packet sniffing filter hook.
If the filter hook is an IPfilter-type filter hook, the filter logic
provides the packet to the IPfilter 560.
0096. In one embodiment, IPfilter 560 is a Network
Address Translation (NAT) and firewall module. IPfilter 560
receives packets through filter hooks similar to those used for
packet sniffing. IPfilter 560 performs NAT and/or firewall
processing of the packets it receives. IPfilter 560 provides
processed packets back to the IP logic 405 via filter logic 410.
(0097. System 500 also includes a packet sniffer 415. In
one embodiment, packet sniffer 415 is configured to filter the
packet according to an attribute of the packet. Filtering per
formed by the packet sniffer 415 on packets received from the
filter logic 410 may occur to organize the packets according to
a type or other feature of the packets. The packet sniffer 415
stores a duplicate copy of the packet by copying the packet
into a buffer 520. Packet sniffer 415 sends the packet to the
filter logic 410 for additional processing after copying the
packet into the buffer 520. The packet sniffer 415 performs
packet Sniffing on the duplicate copy of the packet. The packet
sniffing performed by packet sniffer 415 is a passive opera
tion that does not modify the packet. In an alternate embodi
ment, packet sniffer 415 may alter the packet if it determines
that the packet is flawed. In one embodiment, packet sniffer

US 2012/0230210 A1

415 is a Berkeley packet filter (BPF) packet sniffer that is
configured to receive packets during layer 3 Internet Protocol
processing of the packets.
0098 System 500 includes registration logic 525. Regis
tration logic 525 operably connects to filter logic 410 and
packet sniffer 415. In one embodiment, the registration logic
525 is a netinfo module in the Solaris operating system ker
nel. Registration logic 525 provides for registering the filter
hook by creating a function callback to the filter hook in filter
logic 410. Registering the filter hook places the filter hook in
a set of filter hooks associated with a predetermined hook
point. In one embodiment, the set of filter hooks are function
callbacks and are stored in the filter logic 410.
0099 Creating a callback is based, at least in part, on a
topdump command from atcpdump application layer service
550. The tcpdump application layer service 550 provides a
command line interface functionality. The tcpdump applica
tion layer service uses a libpcap 555 to register a filter hook.
In one embodiment, the libpcap 555 is a library of functions
that provide access to a packet capture Application Program
Interface (API). In an alternate embodiment, the libpcap 555
may be, for example, a Winpcap library API. Using the libp
cap 555 tepdump 550 access an I/O control. The I/O control
may be, for example, a BIOCSHOOK I/O control. The tcp
dump 550 uses the Iibpcap 555 to access the BIOCSHOOK
I/O control. Accessing the BIOCSHOOK I/O control the
tcpdump 550 directs the packet sniffer 415, registration logic
525, and filter logic 410 to register the filter hook.
0100. The predetermined hook point is selected based, at
least in part, on a type of the filter hook. The type of the filter
hook is selected from a PHYSICAL IN hook, a PHYSICAL
OUT hook, a FORWARDING hook, a LOOPBACK IN
hook, and a LOOPBACK OUT hook.
0101 FIG. 6 illustrates one embodiment of a method 600
associated with emulating packet Sniffing using filter hooks in
a computer system.
0102 At 610, the method includes interrupting a layer 3
processing service at a filter hook point in a processing stack
while processing a packet if at least one packet filter hook is
registered for the filter hook point. In one embodiment, the
method operates as a background process and monitors the
layer 3 processing service. In this embodiment, the interrupt
ing functionality is aware of whether a packet filter hook is
registered. Monitoring the layer 3 processing allows the
method to interrupt the service at the filter hook point ifa filter
hook is registered. The filter hook point may be one of several
filter hook points in a layer 3 processing stack. Each filter
hook point in the processing stack corresponds to a different
type of packet filter hook.
0103) At 620, the method includes forwarding the packet
to a filter in response to interrupting the layer 3 processing
service. The filter includes a function callback for each of the
at least one packet filter hooks that are registered. On receiv
ing the packet, the filter provides the packet to each function
callback in the order in which they are arranged in the filter.
0104. At 630, the method includes re-directing the packet

to a packet sniffer if the packet is a member of a class of
packets specified by the at least one packet filter hook. To
determine if the packet is a member of the class, the filter
provides the packet to the function callback for the packet
filter hook. The function callback provides the packet to a
subroutine that determines if the packet satisfies one or more
conditions to be a member of the class. If the packet is a
member of the class, then the subroutine re-directs the packet

Sep. 13, 2012

to the packet sniffer. If the packet is not a member of the class,
the filter may apply additional filters or send the packet to the
layer 3 processing service to continue processing.
0105. At 640, the method includes storing a duplicate of
the packet in the packet Sniffer for packet Sniffing. Storing a
duplicate of the packet may include, for example, storing a
copy in a data store, storing a copy in a buffer, storing a copy
in a memory, storing a copy in a database, and so on.
0106. At 650, the method includes releasing the packet
from the packet Sniffer. In one embodiment, releasing the
packet from the packet Sniffer includes sending the packet
back to the layer 3 processing service. In an alternative
embodiment, releasing the packet may include, for example,
sending the packet to the filter, sending the packet to a firewall
function or NAT function, sending the packet to a queue, and
so on. In an alternate embodiment, storing a duplicate may
include storing only a portion of the packet.
0107. After 650, the method 600 may restart by monitor
ing for the layer3 process to reach a different filterhook point.
0108. In one or more embodiments, the methods or func
tions described herein and/or their equivalents can be per
formed by computer-executable instructions that are stored in
a non-transitory computer-readable medium such that when
the instructions are executed cause a computer to perform the
associated method.

0109 FIG. 7 illustrates an example computing device in
which example systems and methods described herein, and
equivalents, may operate. The example computing device
may be a computer 700 that includes a processor 702, a
memory 704, and input/output ports 710 operably connected
by a bus 708. In one example, the computer 700 includes a
packet Sniffing logic 730 configured to facilitate capturing
packets for packet Sniffing using filter hooks in a layer 3
packet processing service. In different examples, the logic
730 may be implemented in hardware, a non-transitory com
puter-readable medium with stored instructions, firmware,
and/or combinations thereof. While the packet sniffing logic
730 is illustrated as a hardware component attached to the bus
708, it is to be appreciated that in one example, the packet
sniffing logic 730 could be implemented in the processor 702.
0110. In one embodiment, packet sniffing logic 730 is a
means (e.g., hardware, non-transitory computer-readable
medium, firmware) for capturing packets being processed in
computer 700 and performing packet Sniffing functions on
those packets.
0111. The means may be implemented, for example, as an
ASIC programmed to packet Sniffusing packet filter hooks.
The means may also be implemented as stored computer
executable instructions that are presented to computer 700 as
data 716 that are temporarily stored in memory 704 and then
executed by processor 702.
0112 Logic 730 may also provide means (e.g., hardware,
non-transitory computer-readable medium that stores execut
able instructions, firmware) for performing packet Sniffing
using packet filter hooks.
0113 Generally describing an example configuration of
the computer 700, the processor 702 may be a variety of
various processors including dual microprocessor and other
multi-processor architectures. A memory 704 may include
volatile memory and/or non-volatile memory. Non-volatile
memory may include, for example, ROM, PROM, and so on.
Volatile memory may include, for example, RAM, SRAM,
DRAM, and so on.

US 2012/0230210 A1

0114. A disk 706 may be operably connected to the com
puter 700 via, for example, an input/output interface (e.g.,
card, device) 718 and an input/output port 710. The disk 706
may be, for example, a magnetic disk drive, a solid state disk
drive, a floppy disk drive, a tape drive, a Zip drive, a flash
memory card, a memory Stick, and so on. Furthermore, the
disk 706 may be a CD-ROM drive, a CD-R drive, a CD-RW
drive, a DVD ROM, and so on. The memory 704 can store a
process 714 and/or a data 716, for example. The disk 706
and/or the memory 704 can store an operating system that
controls and allocates resources of the computer 700.
0115 The bus 708 may be a single internal bus intercon
nect architecture and/or other bus or mesh architectures.
While a single bus is illustrated, it is to be appreciated that the
computer 700 may communicate with various devices, logics,
and peripherals using other busses (e.g., PCIE, 1394, USB,
Ethernet). The bus 708 can be types including, for example, a
memory bus, a memory controller, a peripheral bus, an exter
nal bus, a crossbar Switch, and/or a local bus.
0116. The computer 700 may interact with input/output
devices via the i/o interfaces 718 and the input/output ports
710. Input/output devices may be, for example, a keyboard, a
microphone, a pointing and selection device, cameras, video
cards, displays, the disk 706, the network devices 720, and so
on. The input/output ports 710 may include, for example,
serial ports, parallel ports, and USB ports.
0117 The computer 700 can operate in a network envi
ronment and thus may be connected to the network devices
720 via the I/O interfaces 718, and/or the I/O ports 710.
Through the network devices 720, the computer 700 may
interact with a network. Through the network, the computer
700 may be logically connected to remote computers. Net
works with which the computer 700 may interact include, but
are not limited to, a LAN, a WAN, and other networks.
0118. In another embodiment, the described methods and/
or their equivalents may be implemented with computer
executable instructions. Thus, in one embodiment, a non
transitory computer-readable medium is configured with
stored computer executable instructions that when executed
by a machine (e.g., processor, computer, and so on) cause the
machine (and/or associated components) to perform the
method.
0119 While for purposes of simplicity of explanation, the
illustrated methodologies in the figures are shown and
described as a series of blocks, it is to be appreciated that the
methodologies are not limited by the order of the blocks, as
Some blocks can occur in different orders and/or concurrently
with other blocks from that shown and described. Moreover,
less than all the illustrated blocks may be used to implement
an example methodology. Blocks may be combined or sepa
rated into multiple components. Furthermore, additional and/
or alternative methodologies can employ additional blocks
that are not illustrated.

Definitions

0120. The following includes definitions of selected terms
employed herein. The definitions include various examples
and/or forms of components that fall within the scope of a
term and that may be used for implementation. The examples
are not intended to be limiting. Both singular and plural forms
of terms may be within the definitions.
0121 References to “one embodiment”, “an embodi
ment”, “one example”, “an example, and so on, indicate that
the embodiment(s) or example(s) so described may include a

Sep. 13, 2012

particular feature, structure, characteristic, property, element,
or limitation, but that not every embodiment or example nec
essarily includes that particular feature, structure, character
istic, property, element or limitation. Furthermore, repeated
use of the phrase “in one embodiment” does not necessarily
refer to the same embodiment, though it may.
0.122 “Computer-readable medium', as used herein,
refers to a non-transitory medium that stores instructions
and/or data. A computer-readable medium may take forms,
including, but not limited to, non-volatile media, and Volatile
media. Non-volatile media may include, for example, optical
disks, magnetic disks, and so on. Volatile media may include,
for example, semiconductor memories, dynamic memory,
and so on. Common forms of a computer-readable medium
may include, but are not limited to, a floppy disk, a flexible
disk, a hard disk, a magnetic tape, other magnetic medium, an
ASIC, a CD, other optical medium, a RAM, a ROM, a
memory chip or card, a memory stick, and other media from
which a computer, a processor or other electronic device can
read.

I0123 “Logic', as used herein, includes but is not limited
to hardware, firmware, a non-transitory computer readable
medium that stores instructions, instructions in execution on
a machine, and/or combinations of each to perform a function
(s) or an action(s), and/or to cause a function or action from
another logic, method, and/or system. Logic may include a
microprocessor, a discrete logic (e.g., ASIC), an analog cir
cuit, a digital circuit, a programmed logic device, a memory
device containing instructions, and so on. Logic may include
one or more gates, combinations of gates, or other circuit
components. Where multiple logics are described, it may be
possible to incorporate the multiple logics into one physical
logic. Similarly, where a single logic is described, it may be
possible to distribute that single logic between multiple
physical logics.
0.124 While example systems, methods, and so on have
been illustrated by describing examples, and while the
examples have been described in considerable detail, it is not
the intention of the applicants to restrict or in any way limit
the scope of the appended claims to Such detail. It is, of
course, not possible to describe every conceivable combina
tion of components or methodologies for purposes of describ
ing the systems, methods, and so on described herein. There
fore, the disclosure is not limited to the specific details, the
representative apparatus, and illustrative examples shown
and described. Thus, this application is intended to embrace
alterations, modifications, and variations that fall within the
Scope of the appended claims.
(0.125 To the extent that the term “includes” or “including”
is employed in the detailed description or the claims, it is
intended to be inclusive in a manner similar to the term
“comprising as that term is interpreted when employed as a
transitional word in a claim.

0.126 To the extent that the term 'or' is used in the detailed
description or claims (e.g., A or B) it is intended to mean "A
or B or both'. When the applicants intend to indicate “only A
or B but not both then the phrase “only A or B but not both
will be used. Thus, use of the term “or”herein is the inclusive,
and not the exclusive use. See, Bryan A. Garner, A Dictionary
of Modern Legal Usage 624 (2d. Ed. 1995).

US 2012/0230210 A1

What is claimed is:
1. A non-transitory computer-readable medium storing

computer-executable instructions that when executed by a
computer cause the computer to perform a method, the
method comprising:

Selectively passing a network packet from an Internet Pro
tocol kernel module to a filter upon determining that at
least one filter hook is registered in the filter; and

Selectively re-directing the network packet to a packet
Sniffer on determining the packet is a member of a class
of packets specified by the filter hook.

2. The non-transitory computer-readable medium of claim
1, wherein after the selectively re-directing the method fur
ther comprising:

copying the network packet into a buffer by the packet
Sniffer to store a duplicate copy of the network packet;
and

releasing the network packet for additional processing.
3. The non-transitory computer-readable medium of claim

2, wherein the releasing includes sending the packet to the
filter; and

selectively providing the network packet to the Internet
Protocol kernel module to resume processing upon
determining there are no additional filter hooks.

4. The non-transitory computer-readable medium of claim
1, wherein prior to the selectively passing the method further
comprising:

receiving the networkpacket in the Internet Protocol kernel
module to perform layer 3 Internet Protocol processing
of the network packet in a protocol stack.

5. The non-transitory computer-readable medium of claim
4, wherein the protocol stack is a 7-layer Open Systems
Interconnection (OSI) model protocol stack.

6. The non-transitory computer-readable medium of claim
1, further comprising:

registering the filter hook prior to selectively passing the
network packet.

7. The non-transitory computer-readable medium of claim
6, wherein the registering includes receiving an input from a
topdump user command that specifies the filter hook.

8. The non-transitory computer-readable medium of claim
6, wherein the registering includes adding a callback of the
filter hook to the filter, the filter hook being selected from a
PHYSICAL IN hook, a PHYSICAL OUT hook, a FOR
WARDING hook, a LOOPBACK IN hook, or a LOOP
BACK OUT hook.

9. The non-transitory computer-readable medium of claim
8, wherein the PHYSICAL IN hook provides for selectively
re-directing the network packet during inbound packet pro
cessing of the network packet by the Internet Protocol kernel
module; and

wherein the PHYSICAL OUT hook provides for selec
tively re-directing the network packet during outbound
packet processing of the network packet by the Internet
Protocol kernel module.

10. The non-transitory computer-readable medium of
claim 8, wherein the FORWARDING hook provides for
selectively re-directing the network packet being forwarded
through the computer to a destination computer.

11. The non-transitory computer-readable medium of
claim 8, wherein the LOOPBACK IN hook provides for
selectively re-directing the network packet on a logical inter
face during inbound packet processing of the network packet
by the Internet Protocol kernel module; and

Sep. 13, 2012

the LOOPBACK OUT hook provides for selectively re
directing the network packet on a logical interface dur
ing outbound packet processing of the network packet
by the Internet Protocol kernel module.

12. The non-transitory computer-readable medium of
claim 1, wherein the selectively re-directing the network
packet to the packet Sniffer occurs without configuring a
Network Interface Card (NIC) to use a promiscuous mode
and during layer3 Internet Protocol processing of the network
packet.

13. The non-transitory computer-readable medium of
claim 1, wherein the packet sniffer is a Berkeley Software
Distribution (BSD) Packet Filter (BPF) that is configured to
receive the network packet during layer 3 Internet Protocol
processing of the network packet.

14. A computing system, comprising:
an Internet Protocol (IP) logic configured to process a

packet according to a layer 3 Internet Protocol of a
protocol stack and for forwarding the packet to a filter
logic if the IP logic determines that at least one filter
hook is registered in the filter logic, wherein the for
warding occurs during layer 3 Internet Protocol process
ing of the packet; and

wherein the filter logic is configured to selectively send the
packet to a packet sniffer based on a filter hook in a set of
filter hooks.

15. The system of claim 14, wherein selectively sending
the packet to a packet sniffer based on the filter hook includes
sending the packet to the packet Sniffer if the packet is a
member of a class of packets specified by the filter hook and
releasing the packet to the IP logic for additional processing
if the packet is not a member of the class specified by the filter
hook, and wherein the filter hook is a packet sniffing filter
hook.

16. The system of claim 14, wherein the packet sniffer is
configured to filter the packet according to an attribute of the
packet, to store a duplicate copy of the packet by copying the
packet into a buffer and to send the packet to the filter logic for
additional processing after copying the packet into the buffer.

17. The system of claim 14, wherein the IP logic deter
mines whether at least one filter hook is registered at a set of
hook points during the processing of the packet, wherein each
hook point in the set of hook points corresponds to a set of
filter hooks.

18. The system of claim 17, comprising:
a registration logic for registering the filter hook by creat

ing a callback to the filter hook in a set of filter hooks
associated with a predetermined hook point,

wherein the predetermined hook point is selected based, at
least in part, on a type of the filter hook.

19. The system of claim 18, wherein the type of the filter
hook is selected from a PHYSICAL IN hook, a PHYSICAL
OUT hook, a FORWARDING hook, a LOOPBACK IN
hook, and a LOOPBACK OUT hook, and

wherein creating the callback is based, at least in part, on a
topdump command from an application layer service.

20. A non-transitory computer-readable medium storing
computer-executable instructions that when executed by a
computer cause the computer to perform a method, the
method comprising:

US 2012/0230210 A1 Sep. 13, 2012
10

emulating a packet Sniffing function by: re-directing the packet to a packet Sniffer if the packet is
interrupting a layer 3 processing service at a filter hook a member of a class ofpackets specified by the at least

point in a processing Stack while processing a packet one packet filter hook; storing a duplicate of the packet in the packet Sniffer for if at least one packet filter hook is registered for the - 4. packet Sniffing; and
filter hook point: releasing the packet from the packet Sniffer.

forwarding the packet to a filter in response to interrupt
ing the layer 3 processing service; ck

