
US 20200118322A1
| MALL IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2020/0118322 A1

Kunz et al . (43) Pub . Date : Apr. 16 , 2020

(54) SPATIAL AND HIERARCHICAL
PLACEMENT OF IMAGES AT RUNTIME

(52) U.S. CI .
CPC G06T 11/60 (2013.01) ; G06T 2200/24

(2013.01) ; G06F 3/04845 (2013.01) ; G06F
11/00 (2013.01) (71) Applicant : International Business Machines

Corporation , Armonk , NY (US)

(72) (57) ABSTRACT Inventors : James R. Kunz , Maine , NY (US) ;
Virginia L. Li , Wappingers Falls , NY
(US) ; William F. Phillips , Endicott , NY
(US)

(21) Appl . No .: 16 / 715,790
(22) Filed : Dec. 16 , 2019

(63)
Related U.S. Application Data

Continuation of application No. 16 / 390,886 , filed on
Apr. 22 , 2019 , now Pat . No. 10,553,008 , which is a
continuation of application No. 15 / 272,723 , filed on
Sep. 22 , 2016 , now Pat . No. 10,319,127 .

A method , computer program product , and system for auto
matic placement and layering of images at runtime include
a processor (s) obtaining images that represent components
of an object , including a first image and a second image . The
processor (s) annotates the first image with data indicating
one or more locations on the first image where the second
image can be placed . The processor (s) determines , during
runtime , a position or orientation of the one or more loca
tions on the first image , based on the annotated first image .
The processor (s) compares each location to data in a system
file to determine a first location that is a placement for the
second image on the first image . The processor (s) layers the
second image over the first image at the first location . The
processor (s) renders the two dimensional model of the
object , including the layered images , displays it in the
graphical user interface .

Publication Classification
(51) Int . Cl .

G06T 11/60
G06F 11/00
GO6F 3/0484

(2006.01)
(2006.01)
(2006.01)

OS

Shoice ok..xoxoxox :

ws

Patent Application Publication Apr. 16 , 2020 Sheet 1 of 9 US 2020/0118322 A1

FIG . 1 (PRIOR ART)

$

VES
BEWS ce

Patent Application Publication Apr. 16 , 2020 Sheet 2 of 9 US 2020/0118322 A1

*

* File Format
* VPDLoc : IMGFilename : IMGBounds : IMGTranslate : IMGRotation : LayerIndex : Container
* VPDLOC - Location from VPD file
* IMGFilename - Filename of example SVG file , this is only used in View Editor .
* IMGBounds - Bounds of image in 2D space (x , y , W ,
* IMGTranslation - Translation of image in 2D space (x , y)
* IMGRotation - Rotation of image in 2D space (degrees)
LayerIndex - Layer index in 2D space , 1 is the top layer

* Container - Part which contains this part
Z_FRAME : Frame.svg : 0.0,0.0,133.4288,359.4463 : 0.0,0.0 : 0.0 : 1 : Machine Parts
Z41BIBF5 : Ibf.svg : 11.6,5.12,109.47,16.3361 : 11.6,5.12 : 0.0 : 2 : Z FRAME
Z39BIBF3 : Ibf.svg : 11.6,21,4,109.47,16.3361 : 11.6,21.4 : 0.0 : 2 : Z_FRAME
Z29BBPEA : BpeFront.svg : -0.05,37.86,125.0287,80.4585 : -0.05,37.86 : 0.0 : 2 : Z_FRAME
Z29BPS 11 : Bph.svg : 120.87,37.76,7.7049,56.1683 : 120.87,37.76 : 0.0 : 3 : Z29BBPEA
Z29BPS01 : Bpr.svg : 12.29,39.45,93.0348,10.4112 : 12.29,39.45 : 0.0 : 3 : Z29BBPEA
Z29BPS02 : Bpr.svg : 12.29,50.02,93.0348,10.4112 : 12.29,50.02 : 0.0 : 3 : Z29BBPEA
Z29BPS03 : Bpr.svg : 12.3,61.0,93.0348,10.4112 : 12.3,61.0 : 0.0 : 3 : Z29BBPEA
Z29BPS04 : Bpr.svg : 12.3,71.59,93.0348,10.4112 : 12.3,71.59 : 0.0 : 3 : Z29BBPEA
Z29BPS05 : Bpr.svg : 12.3,81.87,93.0348,10.4112 : 12.3,81.87 : 0.0 : 3 : Z29BBPEA
Z29BPS06 : Bpr.svg : 12.37,92.81,93.0348,10.4112 : 12.37,92.81 : 0.0 : 3 : Z29BBPEA
Z29BPS07 : Bpc.svg : 12.22,103.02,93.0155,5.0646 : 12.22,103.02 : 0.0 : 3 : Z29BBPEA
Z29BPS08 : Bpd.svg : 12.28,108.41,93.0129,5.0658 : 12.28,108.41 : 0.0 : 3 : Z29BBPE

FIG . 2

Patent Application Publication Apr. 16 , 2020 Sheet 3 of 9 US 2020/0118322 A1

c

288

>

2363

*** ******** Omer V

3

8998

V208

SIX With the
+

Patent Application Publication Apr. 16 , 2020 Sheet 4 of 9 US 2020/0118322 A1

430
42C

1.1.3 2 ***

FIG . 4

Patent Application Publication Apr. 16 , 2020 Sheet 5 of 9 US 2020/0118322 A1

500

One or more programs obtain a first image and a second image , where the first
510 image and the second image comprise representations of two components that

comprise an object .

520 One or more programs annotate the first image with data indicating one or
more locations on the first image where the second image can be placed .

At runtime , the one or more programs obtain the annotated first image and
530 determine the position and orientation of the one or more locations of the first

image based on the annotation (s) .

One or more programs compares each location of the one or more locations to
data in a system file to determine , for each location , whether the second image 540 should be placed at that location , in order to place the second image in a
location that is a correct placement for the second image on the first image .

One or more programs superimpose the second image over the first image at
550 the correct placement , positioning the second image on a location of the one or

more locations .

One or more programs render and display in a graphical user interface , the two
560 dimensional model of the object comprising the second image superimposed

on the first image .

FIG . 5

Patent Application Publication Apr. 16 , 2020 Sheet 6 of 9 US 2020/0118322 A1

D

UD

23

HUNT
En ...

9 . *** .

w
* XXX X *** XXX w

ma gol
*

200 24

Eron Views

FIG . 6

Patent Application Publication Apr. 16 , 2020 Sheet 7 of 9 US 2020/0118322 A1

COMPUTE 28

VORY

22

INTERFACE (S)

EXTERNAL
DEVICE (S)

...

FIG . 7

.

Patent Application Publication Apr. 16 , 2020 Sheet 8 of 9 US 2020/0118322 A1

540 SAN

50

?

548

54A

TEC 000

FIG . 8

Patent Application Publication Apr. 16 , 2020 Sheet 9 of 9 US 2020 / 0118322A1

????

Hardware and Software

FIG . 9

US 2020/0118322 Al Apr. 16 , 2020
1

SPATIAL AND HIERARCHICAL
PLACEMENT OF IMAGES AT RUNTIME

BACKGROUND

(0001] In computer machine maintenance , a Repair and
Verify (R & V) process involves generating a two dimen
sional (2D) representation of a mainframe computer at
runtime by placing Scalable Vector Graphics (SVG) images
of the individual parts in their proper locations . This com
puter - implemented process can be cumbersome in several
ways . First , to create an accurate representation , the parts
that comprise the physical machine must first be placed in
the correct location , which is recorded in a separate file
using a proprietary visual editor . One or more programs
executing on a processing resource of a computer will utilize
the file of locations at runtime to place the parts . Second , the
layering of the parts (e.g. , drawers placed in frames and I / O
cards placed in drawers) must also be recorded to prevent
parts in the back of the machine from being drawn over the
parts in the front and any rotation of the parts must also be
recorded . Finally , any changes to the part locations require
loading the entire machine in the editor and moving the part
or adding new locations for new parts . Thus , the process of
creating a 2D representation of a mainframe computer , is
both labor intensive and highly customized .
[0002] The end result of the R & V process is a detailed and
voluminous file , which contains some type of identifier for
each possible part location and the related 2D coordinates ,
layering , and rotation information . But for a machine with a
large number of parts , this file can be become quite large and
unwieldy . Additionally , the information in the file is not
human readable and requires loading it into the proprietary
editor to make any additions or adjustments .

image superimposed on the first image ; and displaying , by
the one or more processors , the two dimensional model in
the graphical user interface .
[0004] Shortcomings of the prior art are overcome and
additional advantages are provided through the provision of
a method for automatic placement and layering of images at
runtime . The method includes , for instance : obtaining , by
one or more processors , images comprising representations
of components that comprise an object , wherein the images
comprise a first image and a second image ; annotating , by
the one or more processors , the first image , with data
indicating one or more locations on the first image where the
second image can be placed , wherein a display in a graphical
user interface including the first image and the second image
comprises a two dimensional model of the object ; determin
ing , by the one or more processors , during runtime , a
position or orientation of the one or more locations on the
first image , based on the annotated first image ; comparing ,
by the one or more processors , each location of the one or
more locations on the first image to data in a system file to
determine a first location of the one or more locations that
comprises a placement for the second image on the first
image ; based on the determining , superimposing , by the one
or more processors , the second image over the first image at
the first location ; rendering , by the one or more processors ,
the two dimensional model of the object comprising the
second image superimposed on the first image ; and display
ing , by the one or more processors , the two dimensional
model in the graphical user interface .
[0005] Shortcomings of the prior art are overcome and
additional advantages are provided through the provision of
a system for automatic placement and layering of images at
runtime . The system comprises a memory , a processor in
communication with the memory , and program instructions
executable by the processor via the memory to perform a
method . The method includes , for instance : obtaining , by
one or more processors , images comprising representations
of components that comprise an object , wherein the images
comprise a first image and a second image ; annotating , by
the one or more processors , the first image , with data
indicating one or more locations on the first image where the
second image can be placed , wherein a display in a graphical
user interface including the first image and the second image
comprises a two dimensional model of the object ; determin
ing , by the one or more processors , during runtime , a
position or orientation of the one or more locations on the
first image , based on the annotated first image ; comparing ,
by the one or more processors , each location of the one or
more locations on the first image to data in a system file to
determine a first location of the one or more locations that
comprises a placement for the second image on the first
image ; based on the determining , superimposing , by the one
or more processors , the second image over the first image at
the first location ; rendering , by the one or more processors ,
the two dimensional model of the object comprising the
second image superimposed on the first image ; and display
ing , by the one or more processors , the two dimensional
model in the graphical user interface .
[0006] Methods and systems relating to one or more
aspects are also described and claimed herein . Further ,
services relating to one or more aspects are also described
and may be claimed herein .
[0007] Additional features and advantages are realized
through the techniques described herein . Other embodi

SUMMARY

[0003] Shortcomings of the prior art are overcome and
additional advantages are provided through the provision of
a computer program product for automatic placement and
layering of images at runtime . The computer program prod
uct comprises a storage medium readable by a processing
circuit and storing instructions for execution by the process
ing circuit for performing a method . The method includes ,
for instance : obtaining , by one or more processors , images
comprising representations of components that comprise an
object , wherein the images comprise a first image and a
second image ; annotating , by the one or more processors ,
the first image , with data indicating one or more locations on
the first image where the second image can be placed ,
wherein a display in a graphical user interface including the
first image and the second image comprises a two dimen
sional model of the object ; determining , by the one or more
processors , during runtime , a position or orientation of the
one or more locations on the first image , based on the
annotated first image ; comparing , by the one or more
processors , each location of the one or more locations on the
first image to data in a system file to determine a first
location of the one or more locations that comprises a
placement for the second image on the first image ; based on
the determining , superimposing , by the one or more proces
sors , the second image over the first image at the first
location ; rendering , by the one or more processors , the two
dimensional model of the object comprising the second

US 2020/0118322 A1 Apr. 16 , 2020
2

ments and aspects are described in detail herein and are
considered a part of the claimed aspects .

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] One or more aspects are particularly pointed out
and distinctly claimed as examples in the claims at the
conclusion of the specification . The foregoing and objects ,
features , and advantages of one or more aspects are apparent
from the following detailed description taken in conjunction
with the accompanying drawings in which :
[0009] FIG . 1 depicts aspects of an existing method of
providing a two dimensional model of a computing system ;
[0010] FIG . 2 depicts aspects of an existing method of
providing a two dimensional model of a computing system ;
[0011] FIG . 3 depicts certain aspects of an embodiment of
the present invention ;
[0012] FIG . 4 depicts certain aspects of an embodiment of
the present invention ;
[0013] FIG . 5 depicts a workflow illustrating certain
aspects of an embodiment of the present invention ;
[0014] FIG . 6 depicts a graphical user interface generated
by aspects of an embodiment of the present invention ;
[0015] FIG . 7 depicts one embodiment of a computing
node that can be utilized in a cloud computing environment ;
[0016] FIG . 8 depicts a cloud computing environment
according to an embodiment of the present invention ; and
[0017] FIG . 9 depicts abstraction model layers according
to an embodiment of the present invention .

DETAILED DESCRIPTION

[0018] The accompanying figures , in which like reference
numerals refer to identical or functionally similar elements
throughout the separate views and which are incorporated in
and form a part of the specification , further illustrate the
present invention and , together with the detailed description
of the invention , serve to explain the principles of the
present invention . As understood by one of skill in the art ,
the accompanying figures are provided for ease of under
standing and illustrate aspects of certain embodiments of the
present invention . The invention is not limited to the
embodiments depicted in the figures .
[0019] As understood by one of skill in the art , program
code , as referred to throughout this application , includes
both software and hardware . For example , program code in
certain embodiments of the present invention includes fixed
function hardware , while other embodiments utilized a soft
ware - based implementation of the functionality described .
Certain embodiments combine both types of program code .
One example of program code , also referred to as one or
more programs , is depicted in FIG . 7 as program / utility 40 ,
having a set (at least one) of program modules 42 , may be
stored in memory 28 .
[0020) Embodiments of the present invention include a
computer system , computer program product , and computer
implemented method for spatial and hierarchical placement
of images and sub - images at runtime , based on annotated
elements embedded in the images themselves . Aspects of
embodiments of the present invention utilize one or more
programs executing on one or more processors to annotating
image elements , process images , read the annotations , and
place the sub - images in accordance with the annotations .
Embodiments of the present invention enable the program
code to automatically place , rotate , and layer sub - images , by

utilizing the placement and orientation of the annotated
elements . This aspect represents an improvement to com
puting technology by increasing the ease with which a
sub - image can be added or removed by altering the image
elements . Given that aspects of the invention address a
particular challenge in computing , i.e. , accurately imaging a
computer , such as a mainframe , during runtime , and provide
a method of addressing this challenge automatically , the
present invention is inherently tied to computing .
[0021] Embodiments of the present invention represent an
improvement in computing technology related to spatial and
hierarchical placement of images at runtime , for example ,
for purposes of R & V , because these embodiments advanta
geously eliminate the need for a separate file for coordinates ,
layering , and rotation information , which were required by
program code during an R & V process to render an image of
a machine . Given that these files , and the process of creating
these files , were complex and cumbersome , embodiments of
the present invention improve the process by eliminating
these files in favor of annotating the image elements that
comprise parts of the layered model of the physical machine ,
when accessed by one or more programs during runtime .
Specifically , embodiments of the present invention include
one or more programs that add annotated elements within an
image which one or more programs executed during runtime
utilize to draw any sub - images , process the elements , and
place the sub - images . Another advantage of embodiments of
the present invention is that they eliminate the existing
requirement for a proprietary visual editor , as any publicly
available editor which can edit the image or object can be
utilized in conjunction with aspects of the present invention
to add the elements to a model of a physical machine .
[0022] Aspects of the present invention provide advan
tages over attempted solutions to this known issue in com
puting . For example , certain methods include program code
that executes a color histogram analysis on an existing
image of a mainframe in order to identify and segment the
image into sub - images so that the program code can replace
the sub - images to create a new image (i.e. , replacing parts in
the machine and ge ate an image that reflects the new
technical architecture) . However , this approach relies upon
an already - existing image that accurately reflects the sub
images (sub - parts) that comprise the imaged machine .
Unlike this approach , in embodiments of the present inven
tion , program code builds the image from elements that
provide intelligence about sub - elements that enables the
program code to generate automatically new images and
implements changes to parts and sub - parts without analysis .
In embodiments of the present invention , as will be dis
cussed in greater detail herein , utilizing an interface gener
ated by program code , the user places annotated elements in
a main image at to indicate prospective locations for sub
parts . Based on the user - configuration of the elements , the
program code , at runtime , places sub - images on top of the
main image at these defined locations . This process is
iterative sub - images themselves can have annotated ele
ments , which in turn can have elements , and so on .
[0023] Certain technologies communicate configuration
changes of 2D images to groups of individuals in real - time .
One such technology broadcasts user changes to an image in
real - time . However , embodiments of the present invention
benefit from utilizing automatic processes to implement , as
well as communicate (e.g. , via a graphical user interface)
changes that affect the 2D image of the mainframe gener

US 2020/0118322 A1 Apr. 16 , 2020
3

ated . For example , in embodiments of the present invention ,
the program code does not make changes in real - time based
on user input . Rather , the program code places annotated
elements in the main image and then , at runtime , places
sub - images are placed on the main image , based on , for
example , rotation of the annotated elements . Thus , at run
time , embodiments of the present invention do not provide
functionality to enable users to alter an image via user input .
The role of the user may be limited to utilizing a graphical
user interface aspect of an embodiment of the present
invention to annotate images to define potential locations
and orientations for sub - images (sub - parts) . The program
code , in an embodiment of the present invention , utilizes the
annotations at runtime to place sub - images at those locations
automatically . Embodiments of the present invention do not
provide real - time analysis of any image comprising the 2D
model generated because in embodiments of the present
invention , the program code overlays the main image with
sub - images , based on user and / or automatically defined
annotated elements .
[0024] Other technologies have been developed that gen
erate and change images in ways that differ from those
implemented in embodiments of the present invention and
are not relevant or useable in the context of imaging com
puters , as they do not address the complexities of this task
or provide solutions . For example , technologies exist that
generate an image collages in which the images can be
rotated , scaled , etc. , but these technologies , unlike embodi
ments of the present invention , do not allow a sub - image
(e.g. , drawer) placement anywhere on a main image (e.g. ,
frame) , based on the location of defined regions for place
ment of the sub - image in the annotated image . Instead of
adding this intelligence , or any intelligence , to the images
themselves , all information related to the placement , rota
tion , etc. , of the sub - image is contained in a main image
itself template , which means that the images and sub - images
do not accommodate the iterative process of embodiments of
the present invention . In another technology , dimensions of
a text block are adjusted at runtime to accommodate a target
layout objects , but embodiments of the present invention do
not adjust the size of the elements at runtime and so not
require a template the sub - images are defined by elements in
the main image because information regarding possible
sub - image placement is annotated on each image . Embodi
ments of the present invention do not merely annotate an
existing system file with additional metadata , such as adding
global positioning system (GPS) data as metadata , rather ,
embodiments of the present invention include program code
that places sub - images at user defined locations .
[0025] To understand the advantages provided by embodi
ments of the present invention , FIG . 1 is included herein to
illustrate the complexities and manual efforts required to
achieve spatial and hierarchical placement of images at
runtime , for example , as associated with an R & V process .
[0026] FIG . 1 depicts a prior method of generating a 2D
model to represent a mainframe computer and editing the
model to reflect changes . Referring to FIG . 1 a screenshot
100 of a graphical user interface (GUI) rendered by a
proprietary editor is pictured . At the left of the screen is a
closed folder tree 110 that includes a folder with the machine
parts of a given computing device . Clicking on the machine
parts folder will open the tree such that all components of the
machines are listed and can be individually oriented by a
user . A user may also utilize the folder tree to add a new

component to the physical machine being modeled . In the
center of the screen is a diagram 120 of a server that a user
it utilizing the GUI of this proprietary editor to create as a
2D representation . As seen in FIG . 1 , the diagram 120 is of
a machine that includes a frame , I / O drawers , and several
I / O cards . As discussed above , the user of the GUI must set
the parameters and place each item separately . At the left are
various controls 130 that the user may utilize in the GUI to
place and orient each element of the machine on the diagram
120. The number of components pictured is fairly large and
the amount of effort required to place each object using the
controls 130 individually , is labor intensive . For example ,
each component is placed by hand , by the user , utilizing the
controls 130 , for each of a front and a back view of the
machine displayed in the diagram 120 .
[0027] Once the mappings are completed by a user , one or
more programs in this system may save the parts and
orientations in a file , which can be read by one or more
programs executing during runtime to render the diagram
120. Should the user change any component in the diagram
120 , the user would utilize the controls 130 to make changes
to the component being changed and to any component
affected by this change , each separately , and each manually ,
for example , through the proprietary editor of FIG . 1. To
highlight the complexity of a file generated by the program
code in this work - intensive system as well as the granularity
and complexity of the files generated to capture the manipu
lations of the user , FIG . 2 is provided as an example of
portion of a locations map generated by this traditional
system , which is retained in a system file .
[0028] Rather than subject a user to a manual process that
results in a complex file (e.g. , FIG . 2) that is difficult to
manipulate , as illustrated in FIG . 2 , embodiments of the
present invention utilize a file and annotated objects to
create a 2D model . In an embodiment of the present inven
tion , a virtual product data (VPD) file is created by one or
more programs when rendering a 2D model and read by one
or more programs during runtime to reproduce the model .
[0029] Embodiments of the present invention benefit from
the configuration of a physical machine being a hierarchical
collection of components . By following this hierarchy ,
embodiments of the present invention generalize the gen
eration of certain components of a 2D mode of a physical
machine that were previously custom and generated through
the manual process explained in conjunction with FIG . 1 .
For example , a given server may be comprised of a frame
with locations for a given number of I / O drawers , the I / O
drawers each having potential locations for 1/0 cards .
Machines can differ greatly from each other because in
different servers , for example , different components are
placed at various potential locations in the frame and in the
drawers , and certain potential locations are left empty .
However , the machines are consistent in that the building
blocks share potential locations for additional components .
[0030] Taking advantage of this hierarchy of components ,
also referred to as layering , for ease of understanding , in
embodiments of the present invention , one or more pro
grams , executed by at least one processor , render a 2D model
of each layer (i.e. , frame , drawer , and card) of a machine by
annotating , on objects representing each component , poten
tial locations and orientations for one or more subsequent
components of that component . Thus , in an embodiment of
the present invention , the one or more programs render a
frame with at least one defined location and orientation for

US 2020/0118322 A1 Apr. 16 , 2020
4

the potential placement of at least one I / O drawer . In turn , in
an embodiment of the present invention , once the one or
more programs place one or more drawers in the frame , the
one or more programs render each drawer to include defined
potential locations and orientations for one or more I / O
cards . In an embodiment of the present invention , the one or
more programs render the locations for layering of addi
tional components as rectangles in a GUI . Utilizing the
simplistic rectangle shape simplifies the formerly complex
process of rendering each component in a customized man
ner , as seen in FIG . 1 .
[0031] In an embodiment of the present invention , in the
image for the frame , the program code executed by at least
one processing circuit places at least one annotated shape
(e.g. , rectangle) at a possible location for I / O drawers in the
image representing the component . In an embodiment of the
present invention , the program code names the shape in a
manner that corresponds to the physical locations of the
potential location of the at least one drawer , relative to the
frame . The program code places at least one annotated shape
(e.g. , rectangle) one each of the at least one the I / O drawers ;
each shape is a potential location and orientation for an 1/0
cards . In an embodiment of the present invention , each
annotated shape that the program code configures on an I / O
drawer model again , the program code names utilizing a
scheme indicating a location of a cards relative to the
drawer . In an embodiment of the present invention , the
program code renders each layer such that the annotated
shapes on the component (s) of each later are not visible to
a user in a GUI .
[0032] FIG . 3 is an example of an annotated shape 310 , in
this example , a shape 320 , e.g. , a rectangle , as viewed
through a Scalable Vector Graphics (SVG) editor 300. As
aforementioned , unlike is older systems , where each com
ponent must be edited through a proprietary editor , aspects
of certain embodiments of the present invention enable
components comprising the machine model to be edited
using third party , standard , editing programs . As illustrated
by FIG . 3 , the user may select a shape by identification
number from a list 330 , which the program code generated
based on the location of the shape 320. The user may then
review and revise the attributes of the shape 320 , including
the height and width . Initially , the user may utilize an editor ,
such as the editor of FIG . 3 , to place the shapes for
sub - components on each shape . As illustrated in this figure ,
in an embodiment of the present invention , changes to the
placement of the sub - images involve loading the image that
with the placement in an image editor and moving the
annotated rectangle to a desired location for a new place
ment . The program code can verify these changes immedi
ately as because the program code annotates the new place
ment on the object itself , rather than in a file , there is no
intermediate location file to generate . In an embodiment of
the present invention , any rotation of components (sub
images) can be accomplished after the program code places
them . In an embodiment of the present invention , the
placement shapes are not visible to the user .
[0033] FIG . 4 is a depiction of a 2D model 400 generated
by program code in an embodiment of the present invention .
When generating a model , the program code ascertains
where sub - components may be located on components ,
based on the annotations in the images of the components .
The program code then references a configuration file to
determine at which locations sub - component are located , for

the given machine being imaged . In further embodiments of
the present invention , the annotations on the images repre
senting the layers of the machine also indicate the specific
components located on that image in the given machine .
[0034] Referring to the example model 400 in FIG . 4 , a
specific machine is comprised of a frame 410 , an I / O drawer
420 , and several I / O cards , like an example I / O card 430. As
explained above , before the program code generates the 2D
model 400 , a user has utilized an editor to notate shapes on
images representing the various components such that the
annotations in the images representing these components
indicate where sub - components can be potentially placed ,
for each component . The program code may also enable the
user to make these indications by providing a GUI that
enables a user to place shapes on the images representing the
components , including frames and I / O drawers , indicating
locations and orientations for prospective sub - components
(e.g. , sub - images) . However , regardless of the editor utilized
by the user , the program code may save each image utilizing
a naming convention indicating the placement of the shapes
on the image . Thus , after annotation by the user , the image
for the I / O drawer 420 has annotated shapes (e.g. , rect
angles) placed at all the possible locations for I / O cards ,
again , with the naming of the rectangles corresponding to
the locations of the cards relative to the placed .
[0035] During runtime , program code executing on at least
one processing circuit of a computing resource , including
the machine being imaged , accesses the images and the
annotated data associated with each image . In an embodi
ment of the present invention , at runtime , the program code
accesses an image representing the frame 410 of the com
puter system being imaged . In an embodiment of the present
invention , the program code may recognize the frame image
based on the file name . Based on drawing the frame , the
program code locates each of the shapes on the frame image
indicated by the annotations and checks each of the shapes
in a system file , including but not limited to , a hardware
map , to determine if a part exists at the shape in the
computer system . In an embodiment of the present inven
tion , the program code may locate the shapes based on the
file name of the image . If the hardware map indicates that a
part exists at the location indicated by an annotation of a
shape on the frame image , the program code obtains an
image of the part indicated in the hardware map and renders
the part at the location indicated by the annotations in the
frame image . In FIG . 4 , the indicated part would be I / O
drawer 420 , which the program code renders as a sub - part to
frame 410 , as illustrated in the 2D model 400. In this
example , even if the frame 410 includes more shapes (e.g. ,
rectangles) , because the example machine includes one I / O
drawer 420 , a system file , such as the hardware map , would
not include data indicating any additional I / O drawers .
Having placed and rendered the I / O drawer 420 , the program
code would repeat the same process to determine placements
for the several I / O cards .
[0036] In the manner described with reference to FIG . 4 ,
in an embodiment of the present invention , the program code
builds a 2D model 400 of the machine from the lowest level
(e.g. , the frame 410) to the highest level (e.g. , the I / O cards
430) based in part on the information contained within the
images .
[0037] The program code layers the images representing
the various components automatically because the lower
level parts which iteratively tell include information that

US 2020/0118322 A1 Apr. 16 , 2020
5

indicate the placement of the higher level parts . In an
embodiment of the present invention , the program code
accounts for any rotation of parts by rotating the image to be
placed to match the rotation of the annotated shape (e.g. ,
rectangle) . Thus , changes to the placement of the sub
images involve loading the containing image in an image
editor and moving the annotated rectangle to the desired
location .
[0038] FIG . 5 is a workflow 500 that illustrates one or
more programs rendering a model of a computing device ,
including spatial and hierarchical placement of images and
sub - images at runtime , in accordance with certain embodi
ments of the present invention . In an embodiment of the
present invention , the program code obtains a first image and
a second image , where the first image and the second image
comprise representations of two components that comprise
an object (510) . The program code annotates the first image
with data indicating one or more locations on the first image
where the second image can be placed , where a combined
view including the first image and the second image com
prises a two dimensional model of the object (520) . At
runtime , the program code obtains the annotated first image
and determines the position and orientation of the one or
more locations of the first image (530) . The program code
compares each location of the one or more locations to data
in a system file to determine , for each location , whether the
second image should be placed at that location , in order to
place the second image in a location that is a correct
placement for the second image on the first image (540) . As
discussed earlier , if the system file indicates that a part exists
at the location , indicated by an annotation of a shape on the
frame image (e.g. , the first image) , the program code obtains
an image of the part indicated in the hardware map (e.g. , the
second image) and renders the part at the location indicated
by the annotations in the frame image . Based on determining
the correct placement , the program code superimposes (i.e. ,
layers) the second image over the first image at the correct
placement , positioning the second image on a location of the
one or more locations (550) . The program code renders and
displays in a graphical user interface , the two dimensional
model of the object comprising the second image superim
posed on the first image (560) .
[0039] Although FIG . 5 describes aspects of the present
invention in terms of a first image and a second image , in
order to illustrate certain aspects of an embodiment of the
present invention . However , as explained herein , the process
is iterative process and can be utilized for any number of
images . The program code ceases placing images when it
has reached a topmost image that does not have any rect
angles embedded , or parts to place .
[0040] An example of a completed model , as displayed in
a GUI in an embodiment of the present invention , is pro
vided as FIG . 6. Utilizing the viewer 600 of FIG . 6 , a user
can highlight portions of the model 610 rendered by the
program code and edit selected images and sub - images in an
editor . Any changes will be realized by the program at
runtime , when the program code re - builds the model 610. As
in FIG . 1 , the GUI in an embodiment of the present
invention also affords a user of both a front and rear view of
the modeled machine .
[0041] As illustrated by FIG . 3-6 , some embodiments of
the present invention include a computer system , a computer
program product and a computer - implemented method that
includes one or more programs executing on one or more

processing circuits , obtaining images that include represen
tations of components that comprise an object , where the
images include a first image and a second image . The one or
more programs annotate the first image , with data indicating
one or more locations on the first image where the second
image can be placed , where a display in a graphical user
interface including the first image and the second image is
a two dimensional model of the object . The one or more
programs determine , during runtime , a position or orienta
tion of the one or more locations on the first image , based on
the annotated first image . The one or more programs com
pare each location of the one or more locations on the first
image to data in a system file to determine a first location of
the one or more locations that comprises a placement for the
second image on the first image . Based on making this
determination , the one or more programs layer the second
image over the first image at the first location . The one or
more programs render the two dimensional model of the
object , including the second image layered on the first
image . The one or more programs display the two dimen
sional model in the graphical user interface .
[0042] In an embodiment of the present invention , the one
or more programs also obtain a third image and the one or
more programs annotate the second image , with data indi
cating one or more locations on the second image where the
third image can be placed , where the display in a graphical
user interface comprising a two dimensional model of the
object further comprises the third image . The one or more
programs determine , during runtime , a position or orienta
tion of the one or more locations on the second image , based
on the annotated second image . The one or more programs
compare each location of the one or more locations on the
third image , to other data in the system file , to determine a
second location of the one or more locations on the second
image that comprises a placement for the third image on the
second image . Based in making this determination , the one
or more programs layer the third image over the second
image at the second location . The one or more programs
update the two dimensional model of the object comprising
the second image layered on the first image to include the
third image layered on the second image . The one or more
programs display the updated two dimensional model in the
graphical user interface .
[0043] In an embodiment of the present invention , the one
or more locations on the first image are one or more
rectangular areas on the first image defined by a user editing
the first image in an image editor . In this embodiment the
one or more programs annotate the first image by retaining
data describing the rectangular areas in the first image file .
[0044] In an embodiment of the present invention , the one
or more program rotate the second image in the two dimen
sional model , and the rotating includes the one or more
programs obtaining changes to the placement for the second
image on the first image , where the changes comprise
rotating the second image within the first location to a new
orientation . The one or more programs update , during run
time , the two dimensional model of the object comprising
the second image layered on the first image at the new
orientation . The one or more programs display the updated
model in the graphical user interface . In an embodiment of
the present invention , the changes to the placement for the
second image on the first image are defined by a user editing
the first image in an image editor .

US 2020/0118322 A1 Apr. 16 , 2020
6

[0045] In an embodiment of the present invention , the
object is a computing resource that includes the one or more
processors . This resource may comprise a mainframe com
puter . In an embodiment of the present invention , the first
image is an image of a frame or of an I / O drawer . In an
embodiment of the present invention , the first image is an
image of a frame and the second image is an image of an I / O
drawer . In an embodiment of the present invention , the first
image is an image of an I / O drawer and the second image is
an image of an I / O card .
[004] Referring now to FIG . 7 , a schematic of an
example of a computing node , which can be a cloud com
puting node 10. Cloud computing node 10 is only one
example of a suitable cloud computing node and is not
intended to suggest any limitation as to the scope of use or
functionality of embodiments of the invention described
herein . Regardless , cloud computing node 10 is capable of
being implemented and / or performing any of the function
ality set forth hereinabove . In an embodiment of the present
invention , the computer system which is imaged during
runtime by one or more programs in an embodiment of the
present invention can be understood as cloud computing
node 10 (FIG . 7) and if not a cloud computing node 10 , then
one or more general computing node that includes aspects of
the cloud computing node 10 .
[0047] In cloud computing node 10 there is a computer
system / server 12 , which is operational with numerous other
general purpose or special purpose computing system envi
ronments or configurations . Examples of well - known com
puting systems , environments , and / or configurations that
may be suitable for use with computer system / server 12
include , but are not limited to , personal computer systems ,
server computer systems , thin clients , thick clients , handheld
or laptop devices , multiprocessor systems , microprocessor
based systems , set top boxes , programmable consumer elec
tronics , network PCs , minicomputer systems , mainframe
computer systems , and distributed cloud computing envi
ronments that include any of the above systems or devices ,
and the like .
[0048] Computer system / server 12 may be described in
the general context of computer system - executable instruc
tions , such as program modules , being executed by a com
puter system . Generally , program modules may include
routines , programs , objects , components , logic , data struc
tures , and so on that perform particular tasks or implement
particular abstract data types . Computer system / server 12
may be practiced in distributed cloud computing environ
ments where tasks are performed by remote processing
devices that are linked through a communications network .
In a distributed cloud computing environment , program
modules may be located in both local and remote computer
system storage media including memory storage devices .
[0049] As shown in FIG . 7 , computer system / server 12
that can be utilized as cloud computing node 10 is shown in
the form of a general - purpose computing device . The com
ponents of computer system / server 12 may include , but are
not limited to , one or more processors or processing units 16 ,
a system memory 28 , and a bus 18 that couples various
system components including system memory 28 to proces

architectures . By way of example , and not limitation , such
architectures include Industry Standard Architecture (ISA)
bus , Micro Channel Architecture (MCA) bus , Enhanced ISA
(EISA) bus , Video Electronics Standards Association
(VESA) local bus , and Peripheral Component Interconnect
(PCI) bus .
[0051] Computer system / server 12 typically includes a
variety of computer system readable media . Such media
may be any available media that is accessible by computer
system / server 12 , and it includes both volatile and non
volatile media , removable and non - removable media .
[0052] System memory 28 can include computer system
readable media in the form of volatile memory , such as
random access memory (RAM) 30 and / or cache memory 32 .
Computer system / server 12 may further include other
removable / non - removable , volatile / non - volatile computer
system storage media . By way of example only , storage
system 34 can be provided for reading from and writing to
a non - removable , non - volatile magnetic media (not shown
and typically called a “ hard drive ”) . Although not shown , a
magnetic disk drive for reading from and writing to a
removable , non - volatile magnetic disk (e.g. , a “ floppy
disk ”) , and an optical disk drive for reading from or writing
to a removable , non - volatile optical disk such as a CD
ROM , DVD - ROM or other optical media can be provided .
In such instances , each can be connected to bus 18 by one
or more data media interfaces . As will be further depicted
and described below , memory 28 may include at least one
program product having a set (e.g. , at least one) of program
modules that are configured to carry out the functions of
embodiments of the invention .
[0053] Program / utility 40 , having a set (at least one) of
program modules 42 , may be stored in memory 28 by way
of example , and not limitation , as well as an operating
system , one or more application programs , other program
modules , and program data . Each of the operating system ,
one or more application programs , other program modules ,
and program data or some combination thereof , may include
an implementation of a networking environment . Program
modules 42 generally carry out the functions and / or meth
odologies of embodiments of the invention as described
herein .
[0054) Computer system / server 12 may also communicate
with one or more external devices 14 such as a keyboard , a
pointing device , a display 24 , etc .; one or more devices that
enable a user to interact with computer system / server 12 ;
and / or any devices (e.g. , network card , modem , etc.) that
enable computer system / server 12 to communicate with one
or more other computing devices . Such communication can
occur via Input / Output (I / O) interfaces 22. Still yet , com
puter system / server 12 can communicate with one or more
networks such as a local area network (LAN) , a general wide
area network (WAN) , and / or a public network (e.g. , the
Internet) via network adapter 20. As depicted , network
adapter 20 communicates with the other components of
computer system / server 12 via bus 18. It should be under
stood that although not shown , other hardware and / or soft
ware components could be used in conjunction with com
puter system / server 12. Examples include , but are not
limited to : microcode , device drivers , redundant processing
units , external disk drive arrays , RAID systems , tape drives ,
and data archival storage systems , etc.
[0055] It is to be understood that although this disclosure
includes a detailed description on cloud computing , imple

sor 16 .
[0050] Bus 18 represents one or more of any of several
types of bus structures , including a memory bus or memory
controller , a peripheral bus , an accelerated graphics port , and
a processor or local bus using any of a variety of bus

US 2020/0118322 A1 Apr. 16 , 2020
7

mentation of the teachings recited herein are not limited to
a cloud computing environment . Rather , embodiments of the
present invention are capable of being implemented in
conjunction with any other type of computing environment
now known or later developed .
[0056] Cloud computing is a model of service delivery for
enabling convenient , on - demand network access to a shared
pool of configurable computing resources (e.g. , networks ,
network bandwidth , servers , processing , memory , storage ,
applications , virtual machines , and services) that can be
rapidly provisioned and released with minimal management
effort or interaction with a provider of the service . This cloud
model may include at least five characteristics , at least three
service models , and at least four deployment models .
[0057] Characteristics are as follows :
[0058] On - demand self - service : a cloud consumer can
unilaterally provision computing capabilities , such as server
time and network storage , as needed automatically without
requiring human interaction with the service's provider .
[0059] Broad network access : capabilities are available
over a network and accessed through standard mechanisms
that promote use by heterogeneous thin or thick client
platforms (e.g. , mobile phones , laptops , and PDAs) .
Resource pooling : the provider's computing resources are
pooled to serve multiple consumers using a multi - tenant
model , with different physical and virtual resources dynami
cally assigned and reassigned according to demand . There is
a sense of location independence in that the consumer
generally has no control or knowledge over the exact
location of the provided resources but may be able to specify
location at a higher level of abstraction (e.g. , country , state ,
or datacenter) . Rapid elasticity : capabilities can be rapidly
and elastically provisioned , in some cases automatically , to
quickly scale out and rapidly released to quickly scale in . To
the consumer , the capabilities available for provisioning
often appear to be unlimited and can be purchased in any
quantity at any time .
[0060] Measured service : cloud systems automatically
control and optimize resource use by leveraging a metering
capability at some level of abstraction appropriate to the
type of service (e.g. , storage , processing , bandwidth , and
active user accounts) . Resource usage can be monitored ,
controlled , and reported , providing transparency for both the
provider and consumer of the utilized service .
[0061] Service Models are as follows :
[0062] Software as a Service (SaaS) : the capability pro
vided to the consumer is to use the provider's applications
running on a cloud infrastructure . The applications are
accessible from various client devices through a thin client
interface such as a web browser (e.g. , web - based e - mail) .
The consumer does not manage or control the underlying
cloud infrastructure including network , servers , operating
systems , storage , or even individual application capabilities ,
with the possible exception of limited user specific applica
tion configuration settings .
[0063] Platform as a Service (PaaS) : the capability pro
vided to the consumer is to deploy onto the cloud infra
structure consumer - created or acquired applications created
using programming languages and tools supported by the
provider . The consumer does not manage or control the
underlying cloud infrastructure including networks , servers ,
operating systems , or storage , but has control over the
deployed applications and possibly application hosting envi
ronment configurations .

[0064] Infrastructure as a Service (IaaS) : the capability
provided to the consumer is to provision processing , storage ,
networks , and other fundamental computing resources
where the consumer is able to deploy and run arbitrary
software , which can include operating systems and applica
tions . The consumer does not manage or control the under
lying cloud infrastructure but has control over operating
systems , storage , deployed applications , and possibly lim
ited control of select networking components (e.g. , host
firewalls) .
[0065] Deployment Models are as follows :
[0066] Private cloud : the cloud infrastructure is operated
solely for an organization . It may be managed by the
organization or a third party and may exist on - premises or
off premises .
[0067] Community cloud : the cloud infrastructure is
shared by several organizations and supports a specific
community that has shared concerns (e.g. , mission , security
requirements , policy , and compliance considerations) . It
may be managed by the organizations or a third party and
may exist on - premises or off - premises .
[0068] Public cloud : the cloud infrastructure is made
available to the general public or a large industry group and
is owned by an organization selling cloud services .
[0069] Hybrid cloud : the cloud infrastructure is a compo
sition of two or more clouds (private , community , or public)
that remain unique entities but are bound together by stan
dardized or proprietary technology that enables data and
application portability (e.g. , cloud bursting for load - balanc
ing between clouds) .
[0070] A cloud computing environment is service oriented
with a focus on statelessness , low coupling , modularity , and
semantic interoperability . At the heart of cloud computing is
an infrastructure that includes a network of interconnected
nodes .
[0071] Referring now to FIG . 8 , illustrative cloud com
puting environment 50 is depicted . As shown , cloud com
puting environment 50 includes one or more cloud comput
ing nodes 10 with which local computing devices used by
cloud consumers , such as , for example , personal digital
assistant (PDA) or cellular telephone 54A , desktop com
puter 54B , laptop computer 54C , and / or automobile com
puter system 54N may communicate . Nodes 10 may com
municate with one another . They may be grouped (not
shown) physically or virtually , in one or more networks ,
such as Private , Community , Public , or Hybrid clouds as
described hereinabove , or a combination thereof . This
allows cloud computing environment 50 to offer infrastruc
ture , platforms and / or software as services for which a cloud
consumer does not need to maintain resources on a local
computing device . It is understood that the types of com
puting devices 54A - N shown in FIG . 8 are intended to be
illustrative only and that computing nodes 10 and cloud
computing environment 50 can communicate with any type
of computerized device over any type of network and / or
network addressable connection (e.g. , using a web browser) .
[0072] Referring now to FIG . 9 , a set of functional
abstraction layers provided by cloud computing environ
ment 50 (FIG . 8) is shown . It should be understood in
advance that the components , layers , and functions shown in
FIG . I are intended to be illustrative only and embodiments
of the invention are not limited thereto . As depicted , the
following layers and corresponding functions are provided :

US 2020/0118322 A1 Apr. 16 , 2020
8

[0073] Hardware and software layer 60 includes hardware
and software components . Examples of hardware compo
nents include : mainframes 61 ; RISC (Reduced Instruction
Set Computer) architecture based servers 62 ; servers 63 ;
blade servers 64 ; storage devices 65 ; and networks and
networking components 66. In some embodiments , software
components include network application server software 67
and database software 68 .
[0074] Virtualization layer 70 provides an abstraction
layer from which the following examples of virtual entities
may be provided : virtual servers 71 ; virtual storage 72 ;
virtual networks 73 , including virtual private networks ;
virtual applications and operating systems 74 ; and virtual
clients 75 .
[0075] In one example , management layer 80 may provide
the functions described below . Resource provisioning 81
provides dynamic procurement of computing resources and
other resources that are utilized to perform tasks within the
cloud computing environment . Metering and Pricing 82
provide cost tracking as resources are utilized within the
cloud computing environment , and billing or invoicing for
consumption of these resources . In one example , these
resources may include application software licenses . Secu
rity provides identity verification for cloud consumers and
tasks , as well as protection for data and other resources . User
portal 83 provides access to the cloud computing environ
ment for consumers and system administrators . Service level
management 84 provides cloud computing resource alloca
tion and management such that required service levels are
met . Service Level Agreement (SLA) planning and fulfill
ment 85 provide pre - arrangement for , and procurement of ,
cloud computing resources for which a future requirement is
anticipated in accordance with an SLA .
[0076] Workloads layer 90 provides examples of function
ality for which the cloud computing environment may be
utilized . Examples of workloads and functions which may
be provided from this layer include : mapping and navigation
91 ; software development and lifecycle management 92 ;
virtual classroom education delivery 93 ; data analytics pro
cessing 94 ; transaction processing 95 ; and constructing an
image of a computing system 96 .
[0077] The present invention may be a system , a method ,
and / or a computer program product at any possible technical
detail level of integration . The computer program product
may include a computer readable storage medium (or media)
having computer readable program instructions thereon for
causing a processor to carry out aspects of the present
invention .
[0078] The computer readable storage medium can be a
tangible device that can retain and store instructions for use
by an instruction execution device . The computer readable
storage medium may be , for example , but is not limited to ,
an electronic storage device , a magnetic storage device , an
optical storage device , an electromagnetic storage device , a
semiconductor storage device , or any suitable combination
of the foregoing . A non - exhaustive list of more specific
examples of the computer readable storage medium includes
the following : a portable computer diskette , a hard disk , a
random access memory (RAM) , a read - only memory
(ROM) , an erasable programmable read - only memory
(EPROM or Flash memory) , a static random access memory
(SRAM) , a portable compact disc read - only memory (CD
ROM) , a digital versatile disk (DVD) , a memory stick , a
floppy disk , a mechanically encoded device such as punch

cards or raised structures in a groove having instructions
recorded thereon , and any suitable combination of the fore
going . A computer readable storage medium , as used herein ,
is not to be construed as being transitory signals per se , such
as radio waves or other freely propagating electromagnetic
waves , electromagnetic waves propagating through a wave
guide or other transmission media (e.g. , light pulses passing
through a fiber - optic cable) , or electrical signals transmitted
through a wire .
[0079] Computer readable program instructions described
herein can be downloaded to respective computing / process
ing devices from a computer readable storage medium or to
an external computer or external storage device via a net
work , for example , the Internet , a local area network , a wide
area network and / or a wireless network . The network may
comprise copper transmission cables , optical transmission
fibers , wireless transmission , routers , firewalls , switches ,
gateway computers and / or edge servers . A network adapter
card or network interface in each computing / processing
device receives computer readable program instructions
from the network and forwards the computer readable
program instructions for storage in a computer readable
storage medium within the respective computing / processing
device .
[0080] Computer readable program instructions for carry
ing out operations of the present invention may be assembler
instructions , instruction - set - architecture (ISA) instructions ,
machine instructions , machine dependent instructions ,
microcode , firmware instructions , state - setting data , con
figuration data for integrated circuitry , or either source code
or object code written in any combination of one or more
programming languages , including an object oriented pro
gramming language such as Smalltalk , C ++ , or the like , and
procedural programming languages , such as the “ C ” pro
gramming language or similar programming languages . The
computer readable program instructions may execute
entirely on the user's computer , partly on the user's com
puter , as a stand - alone software package , partly on the user's
computer and partly on a remote computer or entirely on the
remote computer or server . In the latter scenario , the remote
computer may be connected to the user's computer through
any type of network , including a local area network (LAN)
or a wide area network (WAN) , or the connection may be
made to an external computer (for example , through the
Internet using an Internet Service Provider) . In some
embodiments , electronic circuitry including , for example ,
programmable logic circuitry , field - programmable gate
arrays (FPGA) , or programmable logic arrays (PLA) may
execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry , in order to
perform aspects of the present invention .
[0081] Aspects of the present invention are described
herein with reference to flowchart illustrations and / or block
diagrams of methods , apparatus (systems) , and computer
program products according to embodiments of the inven
tion . It will be understood that each block of the flowchart
illustrations and / or block diagrams , and combinations of
blocks in the flowchart illustrations and / or block diagrams ,
can be implemented by computer readable program instruc
tions .
[0082] These computer readable program instructions may
be provided to a processor of a general purpose computer ,
special purpose computer , or other programmable data pro

US 2020/0118322 A1 Apr. 16 , 2020
9

of ordinary skill in the art . The embodiment was chosen and
described in order to best explain various aspects and the
practical application , and to enable others of ordinary skill
in the art to understand various embodiments with various
modifications as are suited to the particular use contem
plated

1. A computer - implemented method , comprising :
obtaining , by one or more processors , images comprising

representations of components that comprise an object
in space , wherein the images comprise a first image and
a second image , wherein the first image comprises an
image of a first portion of the object and the second
image comprises an image of a second portion of the
object ;

annotating , by the one or more processors , the first image ,
with data indicating one or more locations on the first
image where the second image can be placed , wherein
a display in a graphical user interface including the first
image and the second image comprises a model of the
object , wherein one location of the one or more loca
tions comprises an actual location of the first portion of
the object relative to the second portion of the object in
the space ;

cessing apparatus to produce a machine , such that the
instructions , which execute via the processor of the com
puter or other programmable data processing apparatus ,
create means for implementing the functions / acts specified
in the flowchart and / or block diagram block or blocks . These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer , a programmable data processing apparatus , and /
or other devices to function in a particular manner , such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function / act
specified in the flowchart and / or block diagram block or
blocks .
[0083] The computer readable program instructions may
also be loaded onto a computer , other programmable data
processing apparatus , or other device to cause a series of
operational steps to be performed on the computer , other
programmable apparatus or other device to produce a com
puter implemented process , such that the instructions which
execute on the computer , other programmable apparatus , or
other device implement the functions / acts specified in the
flowchart and / or block diagram block or blocks .
[0084] The flowchart and block diagrams in the Figures
illustrate the architecture , functionality , and operation of
possible implementations of systems , methods , and com
puter program products according to various embodiments
of the present invention . In this regard , each block in the
flowchart or block diagrams may represent a module , seg
ment , or portion of instructions , which comprises one or
more executable instructions for implementing the specified
logical function (s) . In some alternative implementations , the
functions noted in the blocks may occur out of the order
noted in the Figures . For example , two blocks shown in
succession may , in fact , be executed substantially concur
rently , or the blocks may sometimes be executed in the
reverse order , depending upon the functionality involved . It
will also be noted that each block of the block diagrams
and / or flowchart illustration , and combinations of blocks in
the block diagrams and / or flowchart illustration , can be
implemented by special purpose hardware - based systems
that perform the specified functions or acts or carry out
combinations of special purpose hardware and computer
instructions .
[0085] The terminology used herein is for the purpose of
describing particular embodiments only and is not intended
to be limiting . As used herein , the singular forms “ a ” , “ an ”
and “ the ” are intended to include the plural forms as well ,
unless the context clearly indicates otherwise . It will be
further understood that the terms “ comprises ” and / or “ com
prising " , when used in this specification , specify the pres
ence of stated features , integers , steps , operations , elements ,
and / or components , but do not preclude the presence or
addition of one or more other features , integers , steps ,
operations , elements , components and / or groups thereof .
[0086] The corresponding structures , materials , acts , and
equivalents of all means or step plus function elements in the
claims below , if any , are intended to include any structure ,
material , or act for performing the function in combination
with other claimed elements as specifically claimed . The
description of one or more embodiments has been presented
for purposes of illustration and description , but is not
intended to be exhaustive or limited to in the form disclosed .
Many modifications and variations will be apparent to those

determining , by the one or more processors , during run
time , a position or orientation of the one or more
locations on the first image , based on the annotated first
image ;

comparing , by the one or more processors , each location
of the one or more locations on the first image to data
in a system file to determine one or more designated
locations of the one or more locations , wherein each
designated location comprises a placement for the
second image on the first image ;

based on the determining , layering , by the one or more
processors , the second image over the first image at the
one or more designated locations ; and

rendering , by the one or more processors , a runtime
generated model of the object comprising the second
image layered on the first image at the one or more
designated locations .

2. The computer - implemented method of claim 1 , further
comprising :

displaying , by the one or more processors , the runtime
generated model in the graphical user interface .

3. The computer - implemented method of claim 1 ,
wherein the images further comprise a third image , the
computer - implemented method further comprising :

annotating , by the one or more processors , the second
image , with data indicating one or more locations on
the second image where the third image can be placed ,
wherein the display in a graphical user interface com
prising a model of the object further comprises the third
image ;

determining , by the one or more processors , during run
time , a position or orientation of the one or more
locations on the second image , based on the annotated
second image ;

comparing , by the one or more processors , each location
of the one or more locations on the second image , to
other data in the system file , to determine a second
location of the one or more locations on the second
image that comprises a placement for the third image
on the second image ;

US 2020/0118322 A1 Apr. 16 , 2020
10

based on the determining , layering , by the one or more
processors , the third image over the second image at the
second location ; and

updating , by the one or more processors , the runtime
generated model of the object comprising the second
image layered on the first image to include the third
image layered on the second image .

4. The computer - implemented method of claim 3 , further comprising :
displaying , by the one or more processors , the updated

runtime generated model in the graphical user inter
face .

5. The computer implemented method of claim 1 , wherein
the one or more locations on the first image comprise one or
more rectangular areas on the first image defined by a user
editing the first image in an image editor and the annotating
comprises retaining data describing the rectangular areas in
the first image file .

6. The computer implemented method of claim 1 , further
comprising :

rotating , by the one or more processors , the second image
in the model , the rotating comprising :

obtaining , by the one or more processors , changes to a
selected placement at a location of the one or more
designated locations for the second image on the first
image , wherein the changes comprise rotating the sec
ond image within the location to a new orientation ;
updated , by the one or more processors , during run
time , the model of the object comprising the second
image layered on the first image at the new orienta
tion ; and

displaying , by the one or more processors , the updated
runtime generated model in the graphical user inter
face .

7. The computer implemented method of claim 6 , wherein
the changes to the selected placement for the second image
on the first image are defined by a user editing the first image
in an image editor .

8. The computer implemented method of claim 1 , wherein
the object comprises a computing resource comprising the
one or more processors .

9. The computer implemented method of claim 8 , wherein
the computing resource comprises a mainframe computer .

10. The computer implemented method of claim 1 ,
wherein the first image comprises an image of a component
selected from the group consisting of : a frame and an I / O
drawer .

11. The computer implemented method of claim 1 ,
wherein the first image comprises an image of a frame and
the second image comprises an image of an I / O drawer .

12. The computer implemented method of claim 1 ,
wherein the first image comprises an image of an I / O drawer
and the second image comprises an image of an I / O card .

13. A computer program product comprising :
a computer readable storage medium readable by one or
more processors and storing instructions for execution
by the one or more processors for performing a method
comprising :
obtaining , by the one or more processors , images

comprising representations of components that com
prise an object in space , wherein the images com
prise a first image and a second image , wherein the
first image comprises an image of a first portion of

the object and the second image comprises an image
of a second portion of the object ;

annotating , by the one or more processors , the first
image , with data indicating one or more locations on
the first image where the second image can be
placed , wherein a display in a graphical user inter
face including the first image and the second image
comprises a model of the object , wherein one loca
tion of the one or more locations comprises an actual
location of the first portion of the object relative to
the second portion of the object in the space ;

determining , by the one or more processors , during
runtime , a position or orientation of the one or more
locations on the first image , based on the annotated
first image ;

comparing , by the one or more processors , each loca
tion of the one or more locations on the first image
to data in a system file to determine one or more
designated locations of the one or more locations ,
wherein each designated location comprises a place
ment for the second image on the first image ;

based on the determining , layering , by the one or more
processors , the second image over the first image at
the one or more designated locations ; and

rendering , by the one or more processors , a runtime
generated model of the object comprising the second
image layered on the first image at the one or more
designated locations .

14. The computer program product of claim 13 , the
method further comprising :

displaying , by the one or more processors , the runtime
generated model in the graphical user interface .

15. The computer program product of claim 13 , wherein
the images further comprise a third image , the computer
implemented method further comprising :

annotating , by the one or more processors , the second
image , with data indicating one or more locations on
the second image where the third image can be placed ,
wherein the display in a graphical user interface com
prising a model of the object further comprises the third
image ;

determining , by the one or more processors , during run
time , a position or orientation of the one or more
locations on the second image , based on the annotated
second image ;

comparing , by the one or more processors , each location
of the one or more locations on the second image , to
other data in the system file , to determine a second
location of the one or more locations on the second
image that comprises a placement for the third image
on the second image ;

based on the determining , layering , by the one or more
processors , the third image over the second image at the
second location ; and

updating , by the one or more processors , the runtime
generated model of the object comprising the second
image layered on the first image to include the third
image layered on the second image .

16. The computer program product of claim 15 , the
method further comprising :

displaying , by the one or more processors , the updated
runtime generated model in the graphical user inter
face .

US 2020/0118322 A1 Apr. 16 , 2020
11

17. The computer program product of claim 13 , wherein
the one or more locations on the first image comprise one or
more rectangular areas on the first image defined by a user
editing the first image in an image editor and the annotating
comprises retaining data describing the rectangular areas in
the first image file .

18. The computer program product of claim 13 , further
comprising :

rotating , by the one or more processors , the second image
in the model , the rotating comprising :
obtaining , by the one or more processors , changes to a

selected placement at a location of the one or more
designated locations for the second image on the first
image , wherein the changes comprise rotating the
second image within the location to a new orienta
tion ;

updated , by the one or more processors , during run
time , the model of the object comprising the second
image layered on the first image at the new orienta
tion ; and

displaying , by the one or more processors , the updated
runtime generated model in the graphical user inter
face .

19. The computer program product of claim 13 , wherein
the object comprises a computing resource comprising the
one or more processors , and wherein the computing resource
comprises a mainframe computer .

20. A system comprising :
a memory ;
one or more processors in communication with the
memory ; and

program instructions executable by the one or more
processors via the memory to perform a method , the
method comprising :

obtaining , by the one or more processors , images
comprising representations of components that com
prise an object in space , wherein the images com
prise a first image and a second image , wherein the
first image comprises an image of a first portion of
the object and the second image comprises an image
of a second portion of the object ;

annotating , by the one or more processors , the first
image , with data indicating one or more locations on
the first image where the second image can be
placed , wherein a display in a graphical user inter
face including the first image and the second image
comprises a model of the object , wherein one loca
tion of the one or more locations comprises an actual
location of the first portion of the object relative to
the second portion of the object in the space ;

determining , by the one or more processors , during
runtime , a position or orientation of the one or more
locations on the first image , based on the annotated
first image ;

comparing , by the one or more processors , each loca
tion of the one or more locations on the first image
to data in a system file to determine one or more
designated locations of the one or more locations ,
wherein each designated location comprises a place
ment for the second image on the first image ;

based on the determining , layering , by the one or more
processors , the second image over the first image at
the one or more designated locations , and

rendering , by the one or more processors , a runtime
generated model of the object comprising the second
image layered on the first image at the one or more
designated locations .

