wo 2017/074583 A1 I} 1] A0 0000 OO O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

4 May 2017 (04.05.2017)

WIPOIPCT

(10) International Publication Number

WO 2017/074583 Al

(51

eay)

(22)

(25)
(26)
(30)

1

(72

International Patent Classification:
GO6F 3/06 (2006.01) GO6F 13/16 (2006.01)

International Application Number:
PCT/US2016/051674

International Filing Date:
14 September 2016 (14.09.2016)

Filing Language: English
Publication Language: English
Priority Data:

62/248,072 29 October 2015 (29.10.2015) US
15/169,117 31 May 2016 (31.05.2016) US
Applicant: SANDISK TECHNOLOGIES LLC

[US/US]; 6900 Dallas Parkway Suite 325, Plano, TX
75024 (US).

Inventors: KELNER, Vered; 3 Harimon St., 4491000
Moshav Ganhaim (IL). DESHE, Noga; Hanesher 59/17,
449100 Moshav Gan Haim (IL). BANIN, Alon; 55,
Jonathan Ben Uziel St., 4082047 Elad (IL). VISHNE,
Gadi; 23 Ha-rav Meshorer Yesha'ayahu St, 4931924
Petach-tikva (IL). ZAGALSKY, Yevgeny; 83 Hatayasim
St., 4427912 Kfar (IL). GUSEYV, Ilya; Derech Eretz 6b,

(74

(8D

(84)

Gedera (IL). ABOU, Eran Ben; Mishol Susya 12, apt 42,
Beer Sheva, 8477255 (IL).

Agent: GENIN, Kent, E.; Brinks Gilson & Lione, P.O.
Box 10087, Chicago, IL 60610 (US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, T™M,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

[Continued on next page]

(54) Title: MULTI-PROCESSOR NON-VOLATILE MEMORY SYSTEM HAVING A LOCKLESS FLOW DATA PATH

508

500 T~y

508

PS
pointer

&«

FIG. 5

(57) Abstract: A system and method is disclosed for man-
aging a non-volatile memory system having a multi-pro-
cessor controller. The controller may be configured with a
plurality of processors and a shared data queue in a cyclic
data buffer. Each of the plurality of processors may manage
a separate pointer pointing to a different entry of the shared
data queue and multiple ones of the processors may concur-
rently access or update entries in the shared data queue.

WO 2017/074583 A1 WAL 000V 00 0TS 0 AU

SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, Published:

GW, KM, ML, MR, NE, SN, TD, TG). — with international search report (Art. 21(3))

WO 2017/074583 PCT/US2016/051674

10

15

20

25

30

MULTI-PROCESSOR NON-VOLATILE MEMORY SYSTEM HAVING A
LOCKLESS FLOW DATA PATH

CROSS-REFERENCE TO RELATED APPLICATION

[0001] This application claims the benefit of U.S. Patent Application
No. 15/169,117, filed May 31, 2016, and U.S. Provisional Application Serial
No. 62/248,072, filed October 29, 2015, the entirety of each of which is

hereby incorporated herein by reference.

BACKGROUND

[0002] Non-volatile memory systems, such as solid state drives (SSDs)
including NAND flash memory, are commonly used in electronic systems
ranging from consumer products to enterprise-level computer systems.
Controllers in some SSDs often manage high throughput data traffic
between one or more hosts and the multiple non-volatile memory die in the
SSD. The high throughput combined with larger numbers of non-volatile
memory die can result in processing demands in the SSD that lead to the
need for a multi-processor controller. However, some host controller
interface standards, such as non-volatile memory express (NVMe), allow a
large number of tasks to be performed out of order by a multi-processor
controller and may present a challenging problem of managing multiple
processors in a SSD concurrently. Another challenge that may arise in a
multi-controller SSD is the need to prevent data conflicts, such as one
processor reading invalid data before a request was completed by another
processor in the SSD.

[0003] Some prior multi-processor SSD architectures utilized two data
path processors, each with a respective command queue, where
commands were copied between the two different command queues. In
order to copy commands between queues, a shared memory buffer was
used. To protect a shared data resource, a software tool called mutual
exclusion (mutex) is often used. A mutex is meant to be taken and

released, always in that order, by each task that uses the shared resource

-1-

WO 2017/074583 PCT/US2016/051674

10

15

20

25

30

it protects. However, locking of a processor in a multi-processor SSD by a
mutex may occur in a multi—-processor architecture. This is because the
mutex operates such that only one processor can access the shared
resource at a time and other processors are forced to wait until the

resource is released by the first processor.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] FIG. 1A is a block diagram of an example non-volatile memory
system.

[0005] FIG. 1B is a block diagram illustrating an exemplary storage
module.

[0006] FIG. 1C is a block diagram illustrating a hierarchical storage
system.

[0007] FIG. 2Ais a block diagram illustrating exemplary components of
a controller of a non-volatile memory system.

[0008] FIG. 2B is a block diagram illustrating exemplary components of
a non-volatile memory of a non-volatile memory storage system.

[0009] FIG. 3is a simplified illustration of the system of FIGS. 2A and
2B.

[0010] FIG. 4 illustrates an example multi-processor and command
queue architecture using the system of FIG. 2A.

[0011] FIG. 5illustrates a shared data path queue in a cyclic data buffer
having pointers for each of a plurality of processors

[0012] FIG. 6 is a flow diagram illustrating an embodiment of a method
of writing data in a multi-processor system such as shown in FIG. 2A.
[0013] FIG. 7 is a flow diagram illustrating an embodiment of a method

of reading data in a multi-processor system such as shown in FIG. 2A.

DETAILED DESCRIPTION
[0014] In a multi-processor memory system, a mutual exclusion (mutex)

software tool that locks out all other processors in a controller from

-2.

WO 2017/074583 PCT/US2016/051674

10

15

20

25

30

accessing commands in a queue while another processor is acting on the
gueue can limit controller performance. Also, the use of multiple queues in
a multi-processor memory system, where commands are copied between
the different command queues, there may be appreciable processing
overhead that is necessary. A method and system are disclosed below for
a multi-processor non-volatile memory system with a common data path
buffer where no mutex software is necessary and thus no mutex locking
problems are at issue.
[0015] The method and system discussed below utilizes multiple
processors and a shared data path cyclic buffer, along with additional buffers,
to manage data path operations executed by the multiple processors without
locking shared memory resources. The different processors in the multi-
processor controller may use an inter-process communication protocol for
messaging. A main data path shared cyclic buffer is used to store commands
and messages that flow between the multiple processors of the non-volatile
memory system utilizing separate cyclic pointers for each of the multiple
processors. The multiple processors of the non-volatile memory system are
configured to send inter-processor communication messages, such as
interrupt requests, to each other. By coordinating access to the shared cyclic
memory buffer with separate pointers, the respective processors do not
overwrite valid commands or messages by avoiding accessing the same
location in the shared data path cyclic buffer location. As described in greater
detail below, the ability to concurrently have multiple processors in the
controller access and change different buffer locations in the shared data path
cyclic buffer may be achieved without the need for using a mutex software
tool that only permits one processor to operate on a shared buffer at a time
and locking out remaining processors from the shared data path cyclic buffer
resource.
[0016] According to one aspect, a method is disclosed for managing
operations in a non-volatile memory system having a controller with a plurality
of processors and a data path queue shared by the plurality of different
processors. The method may include a first processor of the plurality of
processors in the controller accessing data at a first entry location of the

-3-

WO 2017/074583 PCT/US2016/051674

10

15

20

25

30

shared data path queue. The first processor may then proceed with
updating a first pointer to point to a next entry location adjacent to the first
entry location in the shared data path queue after accessing the data at the
first entry location. The method may also include a second processor of the
plurality of processors in the controller accessing data in a different entry
location in the shared data path queue at least partially concurrently with the
first processor accessing the data at the first entry location. When the first
pointer is not pointing to a second next entry location in the shared data path
queue immediately adjacent the different entry, the second processor may
update a second pointer to point to the second next entry location. When the
first pointer is pointing to the second next entry location in the data path
queue, the second processor may wait until the first pointer moves away from
the second next data entry before updating the second pointer to point to the
second next entry.

[0017] In different implementations, the shared data path queue may be
stored in a cyclic data buffer and updating the first pointer and updating the
second pointer may consist of the first processor only moving the first pointer
in a single direction along the cyclic data buffer and the second processor
only moving the second pointer in the same direction along the cyclic data
buffer. Each of the first and second processors may continue to operate on
entry locations of the shared data path queue and update their respective
pointers to point to respective next entry locations in the first direction unless
updating one of the pointers results in one of the pointers pointing to a same
entry location currently pointed to a pointer for any of the plurality of
processors.

[0018] According to another aspect of the invention, a non-volatile memory
system is disclosed. The non-volatile memory system includes a non-volatile
memory, a shared data path queue for host commands, the shared data path
queue having a plurality of entry locations, and a controller in communication
with the non-volatile memory and the shared data path queue. The controller
includes a plurality of processors. Each of the plurality of processors is
configured to exclusively control a respective data path queue pointer pointing

to a respective one of the plurality of entry locations. Each of the plurality of

-4-

WO 2017/074583 PCT/US2016/051674

10

15

20

25

30

processors is also configured to operate on, or update, a host command in an
entry location currently pointed to by its respective data path queue pointer,
and then update its respective data path queue pointer to point to a next entry
location in the shared data path queue only when the next entry location is not
already being pointed to by another data path queue pointer. Also, each of
the plurality of processors is configured to concurrently operate on different
host commands in different ones of the plurality of entry locations in the
shared data path queue. Thus the processor attempting to update its
respective pointer to a location in the shared data path queue already pointed
to by another pointer is not permitted to operate on or change a command or
data at that location until the other pointer no longer points to that location.
Each of the multiple processors may be configured such that it may only
update its respective pointer to point to a next location in the shared data path
queue in a common direction.

[0019] In yet another aspect, a method is disclosed for managing
operations in a non-volatile memory system having a non-volatile memory, a
controller in communication with the non-volatile memory and having a
plurality of processors, and a data path queue for host commands shared by
the plurality of different processors. The method includes a first processor of
the plurality of processors in the controller performing a first operation relating
to a first host command at a first entry location of the shared data path queue,
where the first processor updates a first pointer to point to a first next entry
location adjacent to the first entry location in a predetermined direction along
the shared data path queue after performing the first operation at the first
entry location. The method includes a second processor of the plurality of
processors performing a second operation to a second host command at a
second entry location in the shared data path queue at least partially
concurrently with the first processor performing the first operation at the first
entry location. The second processor updates a second pointer to point to a
second next entry location in the shared data path queue, where the second
next entry location is adjacent the second entry in the predetermined direction
along the shared data path queue, only when the second next entry location is

not already being pointed to by the first pointer.

-5-

WO 2017/074583 PCT/US2016/051674

10

15

20

25

30

[0020] In yet another aspect, a non-volatile memory system is disclosed
that includes a non-volatile memory, a shared data path queue having a
plurality of entry locations for storing host commands directed to the non-
volatile memory and a controller in communication with the non-volatile
memory and the shared data path queue. The controller comprises a plurality
of processing means, each of the plurality of processing means for operating
on different host commands in the shared data path queue at least partially
concurrently with each other of the plurality of processing means, and for
preventing concurrent operations with each other of the plurality of processing
means on a same command in a same entry location of the shared data path
queue.

[0021] FIG. 1A is a block diagram illustrating a non-volatile memory
system. The non-volatile memory (NVM) system 100 includes a controller
102 and non-volatile memory that may be made up of one or more non-
volatile memory die 104. As used herein, the term die refers to the set of non-
volatile memory cells, and associated circuitry for managing the physical
operation of those non-volatile memory cells, that are formed on a single
semiconductor substrate. Controller 102 interfaces with a host system and
transmits command sequences for read, program, and erase operations to
non-volatile memory die 104.

[0022] The controller 102 (which may be a flash memory controller) can
take the form of processing circuitry, one or more microprocessors or
processors (also referred to herein as central processing units (CPUs)),
and a computer-readable medium that stores computer-readable program
code (e.g., software or firmware) executable by the (micro)processors,
logic gates, switches, an application specific integrated circuit (ASIC), a
programmable logic controller, and an embedded microcontroller, for
example. The controller 102 can be configured with hardware and/or
firmware to perform the various functions described below and shown in
the flow diagrams. Also, some of the components shown as being internal
to the controller can also be stored external to the controller, and other

components can be used. Additionally, the phrase “operatively in

-6-

WO 2017/074583 PCT/US2016/051674

10

15

20

25

30

communication with” could mean directly in communication with or
indirectly (wired or wireless) in communication with through one or more
components, which may or may not be shown or described herein.

[0023] As used herein, a flash memory controller is a device that
manages data stored on flash memory and communicates with a host,
such as a computer or electronic device. A flash memory controller can
have various functionality in addition to the specific functionality described
herein. For example, the flash memory controller can format the flash
memory to ensure the memory is operating properly, map out bad flash
memory cells, and allocate spare cells to be substituted for future failed
cells. Some part of the spare cells can be used to hold firmware to operate
the flash memory controller and implement other features. In operation,
when a host needs to read data from or write data to the flash memory, it
will communicate with the flash memory controller. If the host provides a
logical address to which data is to be read/written, the flash memory
controller can convert the logical address received from the host to a
physical address in the flash memory. The flash memory controller can
also perform various memory management functions, such as, but not
limited to, wear leveling (distributing writes to avoid wearing out specific
blocks of memory that would otherwise be repeatedly written to) and
garbage collection (after a block is full, moving only the valid pages of data
to a new block, so the full block can be erased and reused).

[0024] Non-volatile memory die 104 may include any suitable non-
volatile storage medium, including NAND flash memory cells and/or NOR
flash memory cells. The memory cells can take the form of solid-state
(e.g., flash) memory cells and can be one-time programmable, few-time
programmable, or many-time programmable. The memory cells can also
be single-level cells (SLC), multiple-level cells (MLC), triple-level cells
(TLC), or use other memory cell level technologies, now known or later
developed. Also, the memory cells can be fabricated in a two-dimensional

or three-dimensional fashion.

WO 2017/074583 PCT/US2016/051674

10

15

20

25

30

[0025] The interface between controller 102 and non-volatile memory
die 104 may be any suitable flash interface, such as Toggle Mode 200,
400, or 800. In one embodiment, memory system 100 may be a card
based system, such as a secure digital (SD) or a micro secure digital
(micro-SD) card. In an alternate embodiment, memory system 100 may be
part of an embedded memory system.
[0026] Although in the example illustrated in FIG. 1A NVM system 100
includes a single channel between controller 102 and non-volatile memory
die 104, the subject matter described herein is not limited to having a
single memory channel. For example, in some NAND memory system
architectures, such as in Figs. 1B and 1C, 2, 4, 8 or more NAND channels
may exist between the controller and the NAND memory device,
depending on controller capabilities. In any of the embodiments described
herein, more than a single channel may exist between the controller and
the memory die, even if a single channel is shown in the drawings.
[0027] FIG. 1B illustrates a storage module 200 that includes plural
NVM systems 100. As such, storage module 200 may include a storage
controller 202 that interfaces with a host and with storage system 204,
which includes a plurality of NVM systems 100. The interface between
storage controller 202 and NVM systems 100 may be a bus interface, such
as a serial advanced technology attachment (SATA) or peripheral
component interface express (PCle) interface. Storage module 200, in
one embodiment, may be a solid state drive (SSD), such as found in
portable computing devices, such as laptop computers, and tablet
computers.
[0028] FIG. 1C is a block diagram illustrating a hierarchical storage
system. A hierarchical storage system 210 includes a plurality of storage
controllers 202, each of which controls a respective storage system 204.
Host systems 212 may access memories within the hierarchical storage
system via a bus interface. In one embodiment, the bus interface may be
a non-volatile memory express (NVMe) or a fiber channel over Ethernet
(FCoE) interface. In one embodiment, the system illustrated in FIG. 1C
-8-

WO 2017/074583 PCT/US2016/051674

10

15

20

25

30

may be a rack mountable mass storage system that is accessible by
multiple host computers, such as would be found in a data center or other
location where mass storage is needed.
[0029] FIG. 2Ais a block diagram illustrating exemplary components of
controller 102 in more detail. Controller 102 includes a front end module
108 that interfaces with a host, a back end module 110 that interfaces with
the one or more non-volatile memory die 104, and various other modules
that perform functions which will now be described in detail. A module
may take the form of a packaged functional hardware unit designed for use
with other components, a portion of a program code (e.g., software or
firmware) executable by a (micro)processor or processing circuitry that
usually performs a particular function of related functions, or a self-
contained hardware or software component that interfaces with a larger
system, for example. In one embodiment, separate processors, such as
central processing units (CPUs) CPUO 111, CPU1 113 and CPU2 115 may
be part of or assigned to the front end module 108, the back end module
110 and the media management layer 138 (also referred to as the flash
translation layer), respectively. CPUO manages the host interface 120 and
implements a command manager (CM) function that translates host
commands received from a host into a format usable by the NVM system
and inserts the translated commands into a cyclic buffer shared by CPUO,
CPU1 and CPU2. CPUO exclusively manages a first cyclic pointer that
points to a location or entry in a data path queue in the cyclic buffer.
CPU1 manages the backend module 110, which may also referred to as
the physical storage layer (PS), and specifically manages read and write
operations to and from the non-volatile memory. CPU1 may be configured
to read and update commands stored in the shared cyclic buffer without
releasing the entry or marking it as complete. CPU1 exclusively manages
a second cyclic pointer that points to a location or entry in a data path
queue in the cyclic buffer. CPU2 manages the media management layer
(MML) 138 and specifically read operations. The MML (CPU2) extracts
commands from the shared data path queue in the cyclic buffer. CPU2
-9-

WO 2017/074583 PCT/US2016/051674

10

15

20

25

30

manages a third cyclic pointer pointing to the cyclic buffer, where
movement of the third cyclic pointer (updating the location in the shared
data path queue that the pointer is pointing to) by CPU2 releases the entry
and indicates completion of the entry. Although three processors 111,
113, 115 are illustrated in the example of FIG. 2B, any multiple of two or
more processors dividing up the various tasks of the controller 102 are
contemplated.
[0030] Modules of the controller 102 may include an inter-processor
communication module 112 present on the die of the controller 102. The
inter-processor communication module 112 may provide functionality for
managing the use of the multiple processors 111, 113, 115, for example
the module 112 may include event and processor wake-up communication
formats, as well as information on how the processors may interact with
the multiple different queues described herein.
[0031] Referring again to modules of the controller 102, a buffer
manager/bus controller 114 manages buffers in random access memory
(RAM) 116 and controls the internal bus arbitration of controller 102. A
read only memory (ROM) 118 stores system boot code. Although
illustrated in FIG. 2A as located separately from the controller 102, in other
embodiments one or both of the RAM 116 and ROM 118 may be located
within the controller 102. In yet other embodiments, portions of RAM 116
and ROM 118 may be located both within the controller 102 and outside
the controller. Further, in some implementations, the controller 102, RAM
116, and ROM 118 may be located on separate semiconductor die. As
described in greater detail below, the RAM 116 in the NVM system,
whether outside the controller 102, inside the controller or present both
outside and inside the controller 102, may contain the a CPU pointer table
117 storing respective pointers used by the CPUs 111, 113, 115 to track
locations in a shared data path queue in a cyclic buffer. One or more
cyclic buffers 119 associated with the various queues described herein,
may also be stored in the RAM 116. A portion of the RAM 116 may also
be reserved for a host data buffer (not shown) buffering host data being
-10 -

WO 2017/074583 PCT/US2016/051674

10

15

20

25

30

written to the non-volatile memory 104 and data being read from the non-
volatile memory 104.
[0032] Front end module 108 includes a host interface 120 and a
physical layer interface (PHY) 122 that provide the electrical interface with
the host or next level storage controller. The choice of the type of host
interface 120 can depend on the type of memory being used. Examples of
host interfaces 120 include, but are not limited to, SATA, SATA Express,
SAS, Fibre Channel, USB, PCle, and NVMe. The host interface 120
typically facilitates transfer for data, control signals, and timing signals.
[0033] Back end module 110 includes an error correction controller
(ECC) engine 124 that encodes the data bytes received from the host, and
decodes and error corrects the data bytes read from the non-volatile
memory. A command sequencer 126 generates command sequences,
such as program and erase command sequences, to be transmitted to
non-volatile memory die 104. A RAID (Redundant Array of Independent
Drives) module 128 manages generation of RAID parity and recovery of
failed data. The RAID parity may be used as an additional level of integrity
protection for the data being written into the NVM system 100. In some
cases, the RAID module 128 may be a part of the ECC engine 124. A
memory interface 130 provides the command sequences to non-volatile
memory die 104 and receives status information from non-volatile memory
die 104. In one embodiment, memory interface 130 may be a double data
rate (DDR) interface, such as a Toggle Mode 200, 400, or 800 interface. A
flash control layer 132 controls the overall operation of back end module
110.
[0034] Additional components of NVM system 100 illustrated in FIG. 2A
include the media management layer 138, which performs wear leveling of
memory cells of non-volatile memory die 104 and manages mapping
tables and logical-to-physical mapping or reading tasks. NVM system 100
also includes other discrete components 140, such as external electrical
interfaces, external RAM, resistors, capacitors, or other components that
may interface with controller 102. In alternative embodiments, one or more
11 -

WO 2017/074583 PCT/US2016/051674

10

15

20

25

30

of the physical layer interface 122, RAID module 128, media management
layer 138 and buffer management/bus controller 114 are optional
components that are not necessary in the controller 102.
[0035] FIG. 2B is a block diagram illustrating exemplary components of
non-volatile memory die 104 in more detail. Non-volatile memory die 104
includes peripheral circuitry 141 and non-volatile memory array 142. Non-
volatile memory array 142 includes the non-volatile memory cells used to
store data. The non-volatile memory cells may be any suitable non-volatile
memory cells, including NAND flash memory cells and/or NOR flash
memory cells in a two dimensional and/or three dimensional configuration.
Peripheral circuitry 141 includes a state machine 152 that provides status
information to controller 102. Non-volatile memory die 104 further includes
a data cache 156 that caches data being read from or programmed into
the non-volatile memory cells of the non-volatile memory array 142. The
data cache 156 comprises sets of data latches 158 for each bit of data in a
memory page of the non-volatile memory array 142. Thus, each set of
data latches 158 may be a page in width and a plurality of sets of data
latches 158 may be included in the data cache 156. For example, for a
non-volatile memory array 142 arranged to store n bits per page, each set
of data latches 158 may include n data latches where each data latch can
store 1 bit of data.
[0036] In one implementation, an individual data latch may be a circuit
that has two stable states and can store 1 bit of data, such as a set/reset,
or SR, latch constructed from NAND gates. The data latches 158 may
function as a type of volatile memory that only retains data while powered
on. Any of a number of known types of data latch circuits may be used for
the data latches in each set of data latches 158. Each non-volatile
memory die 104 may have its own sets of data latches 158 and a non-
volatile memory array 142. Peripheral circuitry 141 includes a state
machine 152 that provides status information to controller 102. Peripheral
circuitry 141 may also include additional input/output circuitry that may be
used by the controller 102 to transfer data to and from the latches 158, as
-12-

WO 2017/074583 PCT/US2016/051674

10

15

20

25

30

well as an array of sense modules operating in parallel to sense the
current in each non-volatile memory cell of a page of memory cells in the
non-volatile memory array 142. Each sense module may include a sense
amplifier to detect whether a conduction current of a memory cell in
communication with a respective sense module is above or below a
reference level.
[0037] Referring now to FIG. 3, a conceptual and simplified diagram of
components of the NVM memory system 100 of FIGS. 2A-2B is illustrated.
The non-volatile memory system 300 of FIG. 3 includes a multi-processor
controller 302 and non-volatile storage 304. The controller 302 includes
the host interface 308, including a command manager (CM) that is
executed via CPUO 111, a physical storage (PS) interface 310 executed
via CPU1 113, a media management layer (MML) executed via CPU2 115
and a common data path 314 shared by all of the controllers (CPUO, CPU1
and CPU2) for commands from the host 306.
[0038] FIG. 4 illustrates an example message flow and data queue
architecture 400 for a multi-processor non-volatile memory system such as
shown in FIGS. 2A and 3. Host commands may be received at the
command manager (CM) 402 executed by CPUO. CM 402 places
commands from the host on the shared data path queue 408 that is shared
with the physical storage (PS) layer 406 utilizing CPU1 and the media
management layer (MML) 404 utilizing CPU2. The shared data path
queue 408 is the queue in which all commands from the host are inserted
by the CM 402. As discussed with respect to FIG. 2A, the data path queue
408 may be stored in a cyclic buffer 119 in RAM 116 in the NVM system
100. In one implementation, only the CM 402 inserts commands into the
shared data path queue 408, but the PS 402 and MML 404 may both
access and operate on the commands in the data path queue 408.
Typically, CPU1 in the PS 406 either operates on and updates a given
command in an entry of the data path queue 408 (for example if the
command is a write command, as discussed below), or CPU1 simply looks
at the command and takes no action other than notifying CPU2 of the

- 13-

WO 2017/074583 PCT/US2016/051674

10

15

20

25

30

presence of the command (for example if the command is a read
command, as discussed below). CPU2 reads the command at a later point
and operates on the command to handle mapping table updates of lookup.
Each of the CPUs utilizes a respective data path queue pointer to permit
concurrent operation on command entries in the queue by multiple ones of
the processors. Each of the CPUs also uses inter-processor
communication messages to alert the other processors of the presence of
a command in the shared data path queue 408, or one of the other queues
described herein, that is relevant to that other processor.
[0039] The data path queue 408 is arranged in a cyclic buffer. The data
path queue 408 of FIG. 4 is shown conceptually in a cyclic buffer 500 in
FIG. 5 to better illustrate the workings of the separate pointers 502, 504
and 506 used by the separate processors CPUO 111, CPU1 113, CPU2
115. Each processor 111, 113, 115 has its own pointer and each pointer
can only be moved in the same single direction 510 (illustrated as a
clockwise direction in this example) as the processors work their way
through the entries 508 in the representation of the data path queue cyclic
buffer of FIG. 5. In one implementation, each processor can only update
its own pointer 502, 504, 506, but all three pointers are viewable by all of
the processors. The processors are configured to send inter-processor
communication messages, such as interrupt requests, to each other to
coordinate the cyclic movement of the pointers. The data path queue
cyclic buffer and the pointers, as well as the other queues noted below,
may be stored in RAM 116 in the controller 102 or outside of the controller.
The three pointers permit the three processors to simultaneously access or
operate on different entries of the data path queue 500 without the
possibility of overwriting valid commands or messages and without the
need for a mutual exclusion (mutex) software application that can lock out
a shared data path to all but one processor.
[0040] The prevention of overlap of the pointers may be implemented by
preventing a processor from updating its pointer to point to a next location
508 in the data queue 500 if that next location is already pointed to by

-14 -

WO 2017/074583 PCT/US2016/051674

10

15

20

25

30

another processor’s pointer. In one embodiment, each processor may
update its pointer to point to a next location in the single permitted direction
of movement in the cyclic buffer after that processor has completed its
activity on the current entry it is pointing to. Before it can update its
pointer, that processor must first look to the pointer of the processor that is
ahead of it to see if it is occupying that next location. Because each
processor’s pointer will always be following just one other processor’s
pointer in the cyclic buffer, each processor only needs to determine the
position of one other pointer and may always ignore the position of the
remaining pointer(s). This allows for implementation of the method to even
larger numbers of processors than the three processor example illustrated
in FIG. 5. If a processor looks at the pointer for the next processor ahead
in the direction of movement 510 permitted through the buffer and sees
that the pointer of that next processor is occupying (pointing to) the next
sequential location in the cyclic buffer, then the processor must wait until
that pointer moves and cannot operate on the data path queue again until
the prior pointer has been updated to point to another location. In addition,
the first pointer for the command manager CPU (CPUO) may not need to
move its pointer in situations where there is nothing to insert into the
gueue, such as when there is no external request from the host or an
internal request that has been received.
[0041] Use of the separate data path queue pointers 502, 504, 506,
permits the NVM system 100 to keep processors from overlapping
commands in the data path queue and thus avoids potential corruption or
loss of command data. Although each processor may be completing its
tasks at each location in the queue at a different rate and the pointers may
often be spaced apart by multiple locations, the different rates may lead to
one processor catching up in the data path queue to another processor.
The requirement that no processor may update its pointer to point to a
location currently pointed to by another processor’s pointer provides a
relatively simple tool to avoid overlap and destruction of command
information in the shared data path.

-15 -

WO 2017/074583 PCT/US2016/051674

10

15

20

25

30

[0042] Referring again to FIG. 4, in addition to the main data path cyclic
buffer 408, additional queues are utilized. An MML-PS queue 410 is used
by the MML 404 for providing physical block addresses associated with
logical block addresses to the PS layer 406. Only the MML 404 may insert
events into the MML-PS queue 410 and send an inter-processor command
(IPC) message to the PS layer 406 notifying it that the physical address for
a read command is waiting. The IPC PC-CM ACK queue 416 can only be
updated by the PS (CPU1) layer 406 during a write operation. When a
write occurs and is acted on by the PS layer 406, the acknowledgment that
that write has been completed is received by CPU1 and inserted as an
event into the IPC PC-CM ACK queue 416 so that the CM 402 (CPUO)
knows when it can release the data buffer in the NVM system containing
the host data for that command. The MML-PS queue 410 is a queue that
only receives input from the MML 404 (CPU2) on a data read and contains
entries created by MML showing the physical address retrieved by the
MML that is associated with a logical address in a read command. The PS
layer 406 (CPU1) can then act on that by accessing the MML PS queue to
retrieve data from the physical address noted in the entry. The urgent
queue 412 is another queue that only has entries inserted by the MML
(CPU2) 404 and is only read by the PS layer (CPU1) 406. Entries
generated for the urgent queue 412 by the MML 404 relate to urgent
events that supersede the priority of anything in the MML PS queue 410.
For example, there may be times when the MML 404 needs to write an
update to the main mapping table in the non-volatile memory and it is
advantageous for performance reasons to complete the operation quickly
in order to free the mapping table and CPU for other operations. The PS
layer (CPU1) 406 knows to always take events in the urgent queue 412
ahead of the MML PS queue 410 to avoid situations such as those. The
IPC PS-MML ACK queue 414 between CPU1 and CPU2 is a queue that
has events inserted only from CPU1 and is extracted by CPU2 in this
implementation. For example, there may be times when a read command
comes in to a particular logical block address and the MML (CPU2) 404

- 16 -

WO 2017/074583 PCT/US2016/051674

10

15

20

25

30

realizes that the portion of the mapping table that includes that particular
logical block address is not currently in RAM 116 so that it needs to be
read from non-volatile memory 104 (see FIG. 2A). In that case, the MML
(CPU2) 404 will generate an event in the MML PS queue 410 requesting
the PS layer (CPU1) 406 read the mapping table in non-volatile memory
for that data. Subsequently, when the PS layer (CPU1) 406 has retrieved
that mapping information from the physical location in non-volatile memory,
it places it in the IPC PS-MML ACK queue 414 and sends an inter-
processor event message to the MML 404 indicating that the address
information is present in an entry in the queue.
[0043] In addition to the shared data path queue with pointer protected
cyclic buffer protection discussed above, it is contemplated that other
queues that include standard mutex (mutual exclusion) software functions
may also be included in the NVM system 100. For example, queues for
lower priority commands that are not directly related to handling host data
may be used with mutex software. These other queues, for example the
IPC PS protected queue 418 and the IPC MML protected queue 420 may
accept input from multiple modules 422. These multiple modules 422 may
include the front end module 108 (FIG. 2A) and other modules in the NVM
system that may have lower priority applications that typically don’t deal
directly with host data. For example, an IPC PS protected queue 418 may
be used when there is a need to request certain statistical data or health
data from the PS layer 406, such as the number of write operation failures
or read operation failures that have occurred in the non-volatile memory
104. The IPC PS protected queue 418 may have commands inserted by
multiple modules 422 for requests that are directed to the physical storage
layer (CPU1) 406. Other health or maintenance type queries from various
modules within the NVM system that are directed to the NNL 404 go
through a separate protected queue, the IPC MML protected queue 420,
such as those requests directed to wear leveling statistics and health
which may require statistics on the number of program and erase cycles or
a percentage of program and erase cycles used for the NVM system.

-17 -

WO 2017/074583 PCT/US2016/051674

10

15

20

25

30

Because the timing and demand for this information is much less critical
than the host data commands handled by the cyclic buffer example of FIG.
5, the loss of processing efficiency of commands in the IPC PS protected
and IPC MML protected queues 418, 420 resulting from using mutex
software protection is generally not an issue.
[0044] Referring now to FIG. 6, an example of using the shared data
path queue with cyclic buffer pointers and multiple queues above is shown
for a write operation. When a host write command first arrives at the non-
volatile memory (NVM) system 100, the command manager (CPUOQ) 402
inserts the command into the cyclic queue (at 602). The write command is
translated by the command manager 402 to confirm with internal command
formats for the NVM system (at 604). After inserting the commands into
the data path queue, CPUO then updates its data queue pointer 502 to
point to the next available event location 508 in the queue 500 and CPUO
generates an inter-processor communication event message and alerts
CPU1 in the physical storage layer that the command is present in the
queue 500 (at 606). The inter-processor communication message may be
an event message such as an interrupt or other type of inter-processor
communication message that will “wake-up” CPU1 if CPU1 has been idle.
CPU1, when it reaches the location 508 in the queue 500 where the write
command inserted by CPUO exists, will read the write command and write
the data associated with the logical block address included in that write
command to the non-volatile memory (at 608, 610).
[0045] After executing the write command, CPU1 will then update the
same write command entry in the queue 500 to include the physical
storage location in the non-volatile memory that the data associated with
the logical block address in the command was written to (at 612). After
updating the field in the command message with the physical address to
be associated with the host logical block address, CPU1 updates its
pointer 504 to move the pointer to the next event location 508 in the data
path cyclic queue 500 and also sends an inter-processor communication to
CPU2 (the processor handling the media management layer applications)
- 18-

WO 2017/074583 PCT/US2016/051674

10

15

20

25

30

to alert CPU2 to “wake-up” if it is currently idle and look at the cyclic data
path queue 500 (at 614). When the pointer for CPU2 reaches the event
location in the data path cyclic queue with the write command, it reviews
the event entry and updates the logical-to-physical mapping table for the
non-volatile memory so that the write event initiated by CPU1 is recorded
(at 616, 618). CPU2 finishes the update to the mapping table, it updates
it's pointer to the next position in the data path cyclic queue 500 and takes
any action on the command at that next event location.

[0046] It should be noted that another message is sent back to the
command manager (CPUO) 402 from the PS layer 406 (CPU1) when
confirmation is received is subsequently received at CPU1 from the non-
volatile memory that the write to non-volatile memory has been fully
completed. The acknowledgement is inserted as an event into the
acknowledgement queue (IPC PS-CM ACK Queue) by CPU1 and an IPC
message sent to CPUO so that, when the command manager (CPUOQ) 402
has a chance to retrieve the event in that queue 416, the command
manager can then release the host data buffer in the NVM system that is
holding a copy of the data that was just written to the non-volatile memory.
That confirmation event inserted into the acknowledgement queue 416
may happen at some point after the PS layer 406 has requested that the
write occur and after the CPU2 has already updated its pointer and sent
the IPC message to CPU1 for that particular command. In other words, it
is possible that the message from PS layer (CPU1) 406 regarding the
acknowledgment of write completion may occur after one or more other
command events in the queue have been acted on by CPU1. This is just

one example of the asynchronous operations of the multiple processors.

[0047] It should be noted that the individual pointers 502, 504, 506 that

each CPU 111, 113, 115 has pointing to a different location in the cyclic

data path queue 500 only be updated by its respective processor. Also,

before each of the processors (CPUO, CPU1, CPU2) may update where a

pointer is pointing, it first looks to where the pointer in front of it is pointing
-19-

WO 2017/074583 PCT/US2016/051674

10

15

20

25

30

to prevent pointers from pointing to a same location where the processors
may then overwrite valid commands or messages in the queue 500. With
respect to which pointer is in advance of another, referring again to FIG. 5,
the pointer distribution for CPUO, CPU1 and CPU2 is illustrated where the
CM pointer (CPUO) 502 always precedes the next pointer for the PS layer
(CPU1) 504 which, in turn, always precedes the for the MML (CPU2)
pointer 506. In the cyclic data path queue 500, the pointers are only
allowed to move in the same direction 510. The multiple pointer multi-
processor architecture discussed herein permits concurrent operation on
different entries of the queue without overlap or corruption. For example,
the CM (CPUOQ) 402 may be continuously inserting commands from the
host into sequential entries in the cyclic data buffer queue, the PS layer
(CPU1) 406 may be a few location back from where the CM 402 is
currently inserting commands in the data path queue and concurrently
modifying those earlier inserted commands (that were write entries) with
for example, the physical addresses associated with the logical block
address of those particular commands.
[0048] Referring now to FIG. 7, method for implementing host read
commands through the cyclic data buffer queue 500 is illustrated. When
the host command received by the command manager (CPUO) is for a
read (at 702), the command manager 402 inserts the translated read
command (at 704) into an entry in the cyclic data buffer, updates its pointer
502 to point to the next entry and sends an IPC event message to CPU1
(at 706). When the PS layer (CPU1) 406 has completed any other
commands at intervening locations 508 and the pointer for CPU1 reaches
that event entry, it notes that the command is for a read command in that
no action is necessary on its part (at 708). CPU1 will then inform the MML
(CPU2) 404 that it needs to take action. Thus after reviewing and not
acting on the read command, CPU1 moves it’s pointer to the next entry in
the cyclic data queue and sends and IPC message to the MML (CPU2) (at
710). MML (CPU2) 404, when it has completed whatever other events
precede the above-noted event, extracts the read command and looks up
- 20 -

WO 2017/074583 PCT/US2016/051674

10

15

20

25

30

the physical address in the mapping table associated with the host LBA
contained in the read command (at 712, 714).
[0049] Once MML (CPU2) 404 has received the information from the
mapping table, it updates its pointer 506, generates an event in a separate
queue, the MML-PS queue 410, and sends an IPC message to the
physical storage back end (CPU1) that it needs to look at the MML PS
queue 410 (at 716, 718, 720). The physical storage back end (CPU1) will
then, at the time it reaches the event in the MML PS queue 410, open the
event in that queue, and provide the physical address to the flash
controller which will pass the information to the automated read path for
automatically retrieving the data at the identified address from the non-
volatile memory and sending it to the host. In addition to the read and
write commands that may be inserted into the cyclic data path queue,
insertion of any of a number of other host commands is also contemplated.
Some examples of such other commands may include, without limitation, a
flush cache command, a trim command for providing advance notice of
data to be deleted, and a power management message command.
[0060] In the present application, semiconductor memory devices such
as those described in the present application may include volatile memory
devices, such as dynamic random access memory (“DRAM”) or static
random access memory (“SRAM”) devices, non-volatile memory devices,
such as resistive random access memory (“ReRAM?”), electrically erasable
programmable read only memory (“‘EEPROM”), flash memory (which can
also be considered a subset of EEPROM), ferroelectric random access
memory (“FRAM”), and magnetoresistive random access memory
(“MRAM?”), and other semiconductor elements capable of storing
information. Each type of memory device may have different
configurations. For example, flash memory devices may be configured in
a NAND or a NOR configuration.
[0061] The memory devices can be formed from passive and/or active
elements, in any combinations. By way of non-limiting example, passive
semiconductor memory elements include ReRAM device elements, which
- 21 -

WO 2017/074583 PCT/US2016/051674

10

15

20

25

30

in some embodiments include a resistivity switching storage element, such
as an anti-fuse, phase change material, etc., and optionally a steering
element, such as a diode, etc. Further by way of non-limiting example,
active semiconductor memory elements include EEPROM and flash
memory device elements, which in some embodiments include elements
containing a charge storage region, such as a floating gate, conductive
nanoparticles, or a charge storage dielectric material.

[0062] Multiple memory elements may be configured so that they are
connected in series or so that each element is individually accessible. By
way of non-limiting example, flash memory devices in a NAND
configuration (NAND memory) typically contain memory elements
connected in series. A NAND memory array may be configured so that the
array is composed of multiple strings of memory in which a string is
composed of multiple memory elements sharing a single bit line and
accessed as a group. Alternatively, memory elements may be configured
so that each element is individually accessible, e.g., a NOR memory array.
NAND and NOR memory configurations are exemplary, and memory
elements may be otherwise configured.

[0063] The semiconductor memory elements located within and/or over
a substrate may be arranged in two or three dimensions, such as a two
dimensional memory structure or a three dimensional memory structure.
[0064] In atwo dimensional memory structure, the semiconductor
memory elements are arranged in a single plane or a single memory
device level. Typically, in a two dimensional memory structure, memory
elements are arranged in a plane (e.g., in an x-z direction plane) which
extends substantially parallel to a major surface of a substrate that
supports the memory elements. The substrate may be a wafer over or in
which the layer of the memory elements are formed or it may be a carrier
substrate which is attached to the memory elements after they are formed.
As a non-limiting example, the substrate may include a semiconductor

such as silicon.

-22.

WO 2017/074583 PCT/US2016/051674

10

15

20

25

30

[0065] The memory elements may be arranged in the single memory
device level in an ordered array, such as in a plurality of rows and/or
columns. However, the memory elements may be arrayed in non-regular
or non-orthogonal configurations. The memory elements may each have
two or more electrodes or contact lines, such as bit lines and word lines.
[0066] A three dimensional memory array is arranged so that memory
elements occupy multiple planes or multiple memory device levels, thereby
forming a structure in three dimensions (i.e., in the x, y and z directions,
where the y direction is substantially perpendicular and the x and z
directions are substantially parallel to the major surface of the substrate).
[0067] As a non-limiting example, a three dimensional memory structure
may be vertically arranged as a stack of multiple two dimensional memory
device levels. As another non-limiting example, a three dimensional
memory array may be arranged as multiple vertical columns (e.g., columns
extending substantially perpendicular to the major surface of the substrate,
i.e., in the y direction) with each column having multiple memory elements
in each column. The columns may be arranged in a two dimensional
configuration, e.g., in an x-z plane, resulting in a three dimensional
arrangement of memory elements with elements on multiple vertically
stacked memory planes. Other configurations of memory elements in
three dimensions can also constitute a three dimensional memory array.
[0068] By way of non-limiting example, in a three dimensional NAND
memory array, the memory elements may be coupled together to form a
NAND string within a single horizontal (e.g., x-z) memory device levels.
Alternatively, the memory elements may be coupled together to form a
vertical NAND string that traverses across multiple horizontal memory
device levels. Other three dimensional configurations can be envisioned
wherein some NAND strings contain memory elements in a single memory
level while other strings contain memory elements which span through
multiple memory levels. Three dimensional memory arrays may also be

designed in a NOR configuration and in a ReRAM configuration.

-23 -

WO 2017/074583 PCT/US2016/051674

10

15

20

25

30

[0069] Typically, in a monolithic three dimensional memory array, one or
more memory device levels are formed above a single substrate.
Optionally, the monolithic three dimensional memory array may also have
one or more memory layers at least partially within the single substrate.
As a non-limiting example, the substrate may include a semiconductor
such as silicon. In a monolithic three dimensional array, the layers
constituting each memory device level of the array are typically formed on
the layers of the underlying memory device levels of the array. However,
layers of adjacent memory device levels of a monolithic three dimensional
memory array may be shared or have intervening layers between memory
device levels.
[0060] Then again, two dimensional arrays may be formed separately
and then packaged together to form a non-monolithic memory device
having multiple layers of memory. For example, non-monolithic stacked
memories can be constructed by forming memory levels on separate
substrates and then stacking the memory levels atop each other. The
substrates may be thinned or removed from the memory device levels
before stacking, but as the memory device levels are initially formed over
separate substrates, the resulting memory arrays are not monolithic three
dimensional memory arrays. Further, multiple two dimensional memory
arrays or three dimensional memory arrays (monolithic or non-monolithic)
may be formed on separate chips and then packaged together to form a
stacked-chip memory device.
[0061] Associated circuitry is typically required for operation of the
memory elements and for communication with the memory elements. As
non-limiting examples, memory devices may have circuitry used for
controlling and driving memory elements to accomplish functions such as
programming and reading. This associated circuitry may be on the same
substrate as the memory elements and/or on a separate substrate. For
example, a controller for memory read-write operations may be located on
a separate controller chip and/or on the same substrate as the memory
elements.

- 24 -

WO 2017/074583 PCT/US2016/051674

10

15

20

25

30

[0062] One of skill in the art will recognize that this invention is not
limited to the two dimensional and three dimensional exemplary structures
described but cover all relevant memory structures within the spirit and
scope of the invention as described herein and as understood by one of
skill in the art.

[0063] Methods and systems have been disclosed for implementing a
multi-processor controller architecture without the need for locking a data
path by permitting only one processor at a time to access a shared data
path queue. Instead, the disclosed method and system utilize a cyclic data
buffer containing a shared data path queue of host commands. Separate
pointers to the shared data path queue and controlled by a respective one
of the multiple controllers permit multiple ones of the processors to
concurrently access and update commands and data in the queue while
avoiding overlap and thus avoiding the need for a mutex software
protection and associated delay. The ability to allow concurrent operation
of multiple processors on different commands in the shared data path
gueue may provide greater performance in large data throughput NVM
systems. The same techniques applied to multiple processors seeking to
concurrently execute on different locations of a shared data path queue
may also be applied to a single processor NVM system that is handling
multiple thread processes. The multiple thread processes may be
provided a more efficient environment within which to execute using the
techniques described above for multiple processors.

[0064] Itis intended that the foregoing detailed description be
understood as an illustration of selected forms that the invention can take
and not as a definition of the invention. It is only the following claims,
including all equivalents, that are intended to define the scope of the
claimed invention. Finally, it should be noted that any aspect of any of the
preferred embodiments described herein can be used alone orin

combination with one another.

-25 -

WO 2017/074583 PCT/US2016/051674

10

15

20

25

30

WE CLAIM:

1. A method for managing operations in a non-volatile memory system
having a controller with a plurality of processors and a data path queue
shared by the plurality of different processors, the method comprising:

a first processor of the plurality of processors in the controller
accessing data at a first entry location of the shared data path queue;

the first processor updating a first pointer to point to a next entry
location adjacent to the first entry location in the shared data path queue
after accessing the data at the first entry location;

a second processor of the plurality of processors in the controller
accessing data in a different entry location in the shared data path queue
at least partially concurrently with the first processor accessing the data at
the first entry location;

when the first pointer is not pointing to a second next entry location
in the shared data path queue immediately adjacent the different entry,
the second processor updating a second pointer to point to the second
next entry location; and

when the first pointer is pointing to the second next entry location in
the data path queue, the second processor waiting until the first pointer
moves away from the second next data entry before updating the second

pointer to point to the second next entry.

2. The method of claim 1, wherein the shared data path queue is

stored in a cyclic data buffer.

3. The method of claim 2, wherein updating the first pointer and
updating the second pointer comprises the first processor only moving the
first pointer in a single direction along the cyclic data buffer and the second
processor only moving the second pointer in the single direction along the

cyclic data buffer.

- 26 -

WO 2017/074583 PCT/US2016/051674

10

15

20

25

30

4, The method of claim 3, wherein accessing data at the first entry
location comprises the first processor inserting a received host command

into the first entry location.

5. The method of claim 4, further comprising the first processor
transmitting a message to the second processor after updating the first

pointer.

6. The method of claim 4, wherein the received host command is a
write command and wherein the method further comprises, when the
second pointer points to the first entry location, the second processor
reading the write command from the first entry location and writing data
associated with a logical block address included in the write command to a

non-volatile memory in the non-volatile memory system.

7. The method of claim 6, further comprising the second processor,
upon writing the data associated with the logical block address to the non-
volatile memory, updating data in the first entry to include a physical
storage location in the non-volatile memory that the data associated with

the logical block address in the command was written to.

8. The method of claim 4, wherein the received host command is a
read command and wherein the method further comprises:

when the second pointer points to the first entry location, the second
processor reading the read command from the first entry location and
transmitting a message to a third processor of the plurality of processors;
and

when a third pointer associated with the third processor reaches the
first entry location, the third processor retrieving from a mapping table a
physical location of data associated with a logical block address in the read

command.

- 27 -

WO 2017/074583 PCT/US2016/051674

10

15

20

25

30

9. A non-volatile memory system comprising:
a non-volatile memory;
a shared data path queue for host commands, the shared data path
queue having a plurality of entry locations;
a controller in communication with the non-volatile memory and the
shared data path queue, the controller comprising:
a plurality of processors, wherein each of the plurality of
processors is configured to:
exclusively control a respective data path queue pointer
pointing to a respective one of the plurality of entry locations;
operate on, or update, a host command in an entry
location currently pointed to by its respective data path queue
pointer; and
update its respective data path queue pointer to point to a
next entry location in the shared data path queue only when the
next entry location is not already being pointed to by another
data path queue pointer;
and
wherein each of the plurality of processors is configured to
concurrently operate on different host commands in different ones of

the plurality of entry locations in the shared data path queue.

10. The non-volatile memory system of claim 9, wherein the shared data

path queue is stored in a cyclic data buffer.
11. The non-volatile memory system of claim 10, wherein each of the
plurality of processors is configured to only update its respective data path

gueue pointer in a same single direction of the circular data buffer.

12. The non-volatile memory system of claim 11, wherein the next entry

location comprises an entry location, adjacent a current entry location

- 28 -

WO 2017/074583 PCT/US2016/051674

10

15

20

25

30

being pointed to by the respective data path queue, in the same single

direction.

13. The non-volatile memory system of claim 9, further comprising a
volatile memory wherein the cyclic data buffer and each respective data

path queue pointer are maintained in the volatile memory.

14. The non-volatile memory system of claim 9, wherein the non-volatile
memory comprises a silicon substrate and a plurality of memory cells
forming a monolithic three-dimensional structure, wherein at least one
portion of the memory cells is vertically disposed with respect to the silicon

substrate.

15. The non-volatile memory system of claim 11, wherein a first
processor of the plurality of processors, the first processor having a first
data path queue pointer, is configured to, in response to receipt of a host
write command, insert the host write command into a first entry location in

the data path queue.

16. The non-volatile memory system of claim 15, wherein a second
processor of the plurality of processors is configured to, after the first
processor has moved the first data path queue pointer from the first entry
location:

move a second data path queue pointer associated with the second
processor to point to the first entry location;

write data associated with the host write command of the first entry
location to the non-volatile memory; and

insert into the first entry location information on the physical location

of the data written to the non-volatile memory.

17. The non-volatile memory system of claim 16, wherein a third
processor of the plurality of processors is configured to, after the second
-29.-

WO 2017/074583 PCT/US2016/051674

10

15

20

25

30

processor has moved the second data path queue pointer from the first
entry location:

move a third data path queue pointer associated with the third
processor to point to the first entry location; and

update a mapping table with the logical-to-physical mapping
information for the data written to the non-volatile memory associated with

the host write command.

18. A method for managing operations in a non-volatile memory system
having a non-volatile memory, a controller in communication with the non-
volatile memory and having a plurality of processors, and a data path
queue for host commands shared by the plurality of different processors,
the method comprising:

a first processor of the plurality of processors in the controller
performing a first operation relating to a first host command at a first entry
location of the shared data path queue;

the first processor updating a first pointer to point to a first next entry
location adjacent to the first entry location in a predetermined direction
along the shared data path queue after performing the first operation at the
first entry location;

a second processor of the plurality of processors in the controller
performing a second operation to a second host command at a second
entry location in the shared data path queue at least partially concurrently
with the first processor performing the first operation at the first entry
location;

the second processor updating a second pointer to point to a second
next entry location in the shared data path queue, the second next entry
location being adjacent the second entry in the predetermined direction
along the shared data path queue, when the second next entry location is

not already being pointed to by the first pointer.

-30 -

WO 2017/074583 PCT/US2016/051674

10

15

20

19. The method of claim 18, wherein when the second entry location is
already being pointed to by the first pointer, the second processor waiting
until the first processor moves the first pointer from the second entry

location before updating the second pointer such that only one processor

is able to operate on the second entry location at any given.

20. A non-volatile memory system comprising:

a non-volatile memory;

a shared data path queue for storing host commands directed to the
non-volatile memory, the shared data path queue having a plurality of entry
locations;

a controller in communication with the non-volatile memory and the
shared data path queue, the controller comprising:

a plurality of processing means, each of the plurality of
processing means for operating on different host commands in the
shared data path queue at least partially concurrently with each other
of the plurality of processing means, and for preventing concurrent
operations with each other of the plurality of processing means on a
same command in a same entry location of the shared data path

queue.

-31 -

WO 2017/074583 PCT/US2016/051674
TO HOST
AN NON-VOLATILE
L MEMORY SYSTEM
102 100
CONTROLLER" | _~
TO HOST
STORAGE MODULE jt
200
NON-VOLATILE 202
104 STORAGE
MEMORY = = ~\\\\ ™ CONTROLLER
FIG. 1A STORAGE SYSTEM

<

I
3

>

204 @
4
102

102 102 @
| controtter || N controtier || N controLLEr
100
\" [X N]
104 % 104
=g = NVM

FIG. 1B
212 212
HOST ¢ o & HOST —~ HIERARCHICAL STORAGE
ﬁ ﬁ SYSTEM
il i 210
202 202
STORAGE 0 STORAGE
CONTROLLER | * °* ° CONTROLLER | * °* °
204 204
STORAGE STORAGE . e .
SYSTEM e —1 SYSTEM
FIG. 1C

1/8

PCT/US2016/051674

WO 2017/074583

4! // N
FINCON NOLLYOINNWINOD - KT
¥OSSFOONd-¥IINI YZ ©l4
g3 TI04INOD
(=) SNE/LNINIOVNVIN
m@_mm@w&m__,_%o \m_m&:m
¥3HLO — ¥IAVT INFWIOVNYI ViaIn [K——=) ril
ovl - 8¢l / (1oke
A”v Juswabeuely eipsy)
ZNdod
e
H3IAV]
TOYLNOD HSV14 Awam._owm
AHONIIN) reoisfud - pu3 yoeg)
J1LYIOA-NON 251 = I NdO
30V443LNI
u ave 4
gr_ JRUGIEN) ehl
_ A”v (1ebeuey puewwon)
_ L ¥30NIND3S 003 H~ 0Ndd
vl
4 —>
oy K= 3INCON ONI NOVE S/ o 130H
0bl ol
9Ll all - Bl
/ P TR Ree————
1 siegng olphy m AHd ™~
siayng o1k T N — acl
bl oqel b
AL | muodndo | | o] | R
181u10d NdD Vo vy $5==z3y 0ch
- b e H
L) W K== y3m0u1n09 N 3INAOW ONI LNOYNS
W3LSAS AHOWIW FTILYTOA-NON ~~20) o001

2/8

PCT/US2016/051674

WO 2017/074583

d¢ ol

4300030 $$3HAqY
/
061~
>
o
o
A
o
AVHNY AMOWIIN %
FTLYIOA-NON 2
Q
A S
ot 5 = .
87l ENOT Y N O
3LV1S 5
29 2
S3HOLYTVLYC = ol
2 R E
/] S3HOLYTVLYC 1 ALINDYIO ol
i WHIHdINId
%1]
o517/
AMOWIW FTILYTOA-NON
SINNOANOO | 3
oy | 3L3U0SIT¥IHIO
— WOoY < >
g1l
— IE < >
oLl ;

INLSAS AHOWIW FTILYIOA-NON 00} / o=

3/8

WO 2017/074583 PCT/US2016/051674

~ 306
/
HOST
/_ 308
()
(CPUQ) Host Interface — Command Manager
(CM)

302 — 314
N Data Path /

327N (cpuzymmL

(CPU1) Physical Storage(PS) Interface L——310 300
/
\ >/

304 \

Non-Volatile Storage

FIG. 3

4/8

PCT/US2016/051674

WO 2017/074583

\r\‘\, \\\\ - ,,\\\
vy DI A S9NPOp TV X
,ﬁ,\\ | ananp paalold |
L TAWDdI \\;
0cy snanp
A \ SOld
;,,\\ 4 anany //,
. | pa1aload sd Idl \; w
81
(ond9) 34 ©
» S~
Ddl wz ananp
¥ | | . MOYWO-SdOdl | |
Buipesy ¥
(Tndd) | _ N 9l
(Sd) @8e1015 |e21SAyd & T m
| !
© 8nany R B m,,x \ |
8 A |
MOV ananp m:wmuuo e.T ,_ 3nany yiedeieq stmmmmeEi (ondo)
TNIN-Sd wasin i v] (D) 498euelp pUuBLLWO)
_2dl AN)87 NG / | |
) . \ 80 N

,PN Ew,,,,,»xN iy 4

T,
»

(cNd2)
(TNIN) 19AeT Juswadeue eIpaA

Y 00

WO 2017/074583 PCT/US2016/051674

500 T

508

508
pointer

(._

FIG. 5

6/8

WO 2017/074583 PCT/US2016/051674

D
=
(\S)

RECEIVE HOST WRITE COMMAND

i

TRANSLATE AND INSERT COMMAND INTO CYCLIC
DATA PATH QUEUE WITH CPUO

l

UPDATE CPUO POINTER TO MOVE TO NEXT ENTRY
IN CYCLIC DATA PATH QUEUE AND SEND EVENT
MESSAGE VIA IPC TO CPU1

v

REVIEW EVENT ENTRY IN QUEUE WITH CPU1

v

WRITE DATA TO NON-VOLATILE MEMORY WITH
CPU1

N
<o
=

D
o
(o)}

D
S
el

; 612
MODIFY EVENT ENTRY WITH PHYSICAL LOCATION
WRITTEN
v 614

UPDATE CPU1 POINTER TO MOVE TO NEXT ENTRY
IN CYCLIC DATA PATH QUEUE AND SEND EVENT
MESSAGE VIA IPC TO CPU2

v

REVIEW EVENT ENTRY IN QUEUE WITH CPU2

'

UPDATE LOGICAL-TO-PHYSICAL MAPPING TABLE
WITH CPU2

v

UPDATE CPU2 POINTER TO MOVE TO NEXT ENTRY
IN CYCLIC DATA PATH QUEUE

N
[E—
N

N
[E—
o0

AN
)
o

RIRERERER IR IR IR

FIG. 6

7/8

WO 2017/074583 PCT/US2016/051674

~]
=
\S)

RECEIVE HOST READ COMMAND

i

TRANSLATE AND INSERT COMMAND INTO CYCLIC
DATA PATH QUEUE WITH CPUO

l

UPDATE CPUO POINTER TO MOVE TO NEXT ENTRY
IN CYCLIC DATA PATH QUEUE AND SEND EVENT
MESSAGE VIA |IPC TO CPU1

v

REVIEW EVENT ENTRY IN QUEUE WITH CPU1

v

UPDATE CPU1 POINTER TO MOVE TO NEXT ENTRY
IN CYCLIC DATA PATH QUEUE AND SEND EVENT
MESSAGE VIA IPC TO CPU2

i

REVIEW EVENT ENTRY IN QUEUE WITH CPU2

\

RETRIEVE PHYSICAL ADDRESS FROM LOGICAL-
TO-PHYSICAL MAPPING TABLE WITH CPU2

'

UPDATE CPU2 POINTER TO MOVE TO NEXT ENTRY
IN CYCLIC DATA PATH QUEUE

v

INSERT ENTRY INTO MML-PS QUEUE WITH
PHYSICAL ADDRESS FOR CPU1

'

SEND IPC EVENT MESSAGE TO CPU1 REGARDING
MML-PS QUEUE ENTRY

~J
<o
=

~]
o
(o)}

~]
S
e

~
[E—
\S)

714

~
[E—
N

~
[E—
o0

~]
[\
o

AR R

FIG. 7

8/8

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2016/051674

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F3/06 GO6F13/16
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 6 131 113 A (ELLSWORTH EARLE [US] ET 1-5,
AL) 10 October 2000 (2000-10-10) 9-13
2

column 1, line 5 - line 8

column 4, line 62 - column 5, line 13
figures 4A-4C, 5, 6A-6B

column 6, line 40 - column 9, line 3
A US 2015/154132 Al (TUERS DANIEL EDWARD 1-20
[US] ET AL) 4 June 2015 (2015-06-04)
abstract

D Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents : L
"T" later document published after the international filing date or priority

date and not in conflict with the application but cited to understand

"A" document defining the general state of the art which is not considered the principle or theory underlying the invention

to be of particular relevance
"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be

filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone

°ited.t°| establish the pul_r;_licdation date of another citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later than
the priority date claimed "&" document member of the same patent family

Date of the actual completion of the international search Date of mailing of the international search report

25 November 2016 05/12/2016

Name and mailing address of the ISA/ Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, . }
éx%ﬂ1#&34&ﬁh6 Sentier, Ludovic

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No
Information on patent family members

PCT/US2016/051674
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 6131113 A 10-10-2000 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - wo-search-report
	Page 43 - wo-search-report

