
Processed by Luminess, 75001 PARIS (FR)

(19)
EP

4 
22

4 
32

0
A

1
*EP004224320A1*

(11) EP 4 224 320 A1
(12) EUROPEAN PATENT APPLICATION

(43) Date of publication: 
09.08.2023 Bulletin 2023/32

(21) Application number: 23165880.8

(22) Date of filing: 14.09.2018

(51) International Patent Classification (IPC):
G06F 9/50 (2006.01) G06F 9/46 (2006.01)

G06F 12/02 (2006.01) G06F 12/084 (2016.01)

G06F 12/0842 (2016.01)

(52) Cooperative Patent Classification (CPC): 
G06F 9/5016; G06F 12/0223; G06F 12/084; 
G06F 12/0842; Y02D 10/00 

(84) Designated Contracting States: 
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB 
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO 
PL PT RO RS SE SI SK SM TR

(30) Priority: 15.09.2017 GB 201714922

(62) Document number(s) of the earlier application(s) in 
accordance with Art. 76 EPC: 
18194407.5 / 3 457 280

(71) Applicant: Imagination Technologies Limited
Kings Langley, Hertfordshire WD4 8LZ (GB)

(72) Inventors:  
• IULIANO, Luca

Kings Langley, WD4 8LZ (GB)

• NIELD, Simon
Kings Langley, WD4 8LZ (GB)

• FOO, Yoong-Chert
Kings Langley, WD4 8LZ (GB)

• MOWER, Ollie
Kings Langley, WD4 8LZ (GB)

• REDSHAW, Jonathan
Kings Langley, WD4 8LZ (GB)

(74) Representative: Slingsby Partners LLP
1 Kingsway
London WC2B 6AN (GB)

Remarks: 
This application was filed on 31-03-2023 as a 
divisional application to the application mentioned 
under INID code 62.

(54) RESOURCE ALLOCATION

(57) A memory subsystem for use with a single-in-
struction multiple-data (SIMD) processor comprising a
plurality of processing units configured for processing
one or more workgroups each comprising a plurality of
SIMD tasks, the memory subsystem comprising: a
shared memory partitioned into a plurality of memory por-
tions for allocation to tasks that are to be processed by

the processor; and a resource allocator configured to, in
response to receiving a memory resource request for first
memory resources in respect of a first-received task of
a workgroup, allocate to the workgroup a block of memory
portions sufficient in size for each task of the workgroup
to receive memory resources in the block equivalent to
the first memory resources.
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Description

BACKGROUND

[0001] The present disclosure relates to memory sub-
systems for use with a plurality of processing units.
[0002] In systems comprising a plurality of processing
units, a shared memory is often provided that can be
accessed by at least some of the processing units. Be-
cause of the range of processing tasks that might be run
at the processing units, each having varying memory re-
quirements, shared memory resources are not typically
fixed at design time for each processing unit. An alloca-
tion mechanism is typically provided to allow processing
tasks running on the different processing units to each
request one or more areas of the shared memory. This
enables the shared memory to be dynamically assigned
for use by the tasks being performed at the processing
units.
[0003] Efficient use of a shared memory can be
achieved through careful design of the allocation mech-
anism.

SUMMARY

[0004] This summary is provided to introduce a selec-
tion of concepts that are further described below in the
detailed description. This summary is not intended to
identify key features or essential features of the claimed
subject matter, nor is it intended to be used to limit the
scope of the claimed subject matter.
[0005] There is provided a memory subsystem for use
with a single-instruction multiple-data (SIMD) processor
comprising a plurality of processing units configured for
processing one or more workgroups each comprising a
plurality of SIMD tasks, the memory subsystem compris-
ing:

a shared memory partitioned into a plurality of mem-
ory portions for allocation to tasks that are to be proc-
essed by the processor; and
a resource allocator configured to, in response to
receiving a memory resource request for first mem-
ory resources in respect of a first-received task of a
workgroup, allocate to the workgroup a block of
memory portions sufficient in size for each task of
the workgroup to receive memory resources in the
block equivalent to the first memory resources.

[0006] The resource allocator may be configured to al-
locate the block as a contiguous block of memory por-
tions.
[0007] The resource allocator may be configured to,
on servicing the first-received task of the workgroup, al-
locate to that task the requested first memory resources
from the block and reserve the remaining memory por-
tions of the block so as to prevent allocation to tasks of
other workgroups.

[0008] The resource allocator may be configured to, in
response to subsequently receiving a memory resource
request in respect of a second task of the workgroup,
allocate memory resources of the block to that second
task.
[0009] The resource allocator may be arranged to re-
ceive memory resource requests from a plurality of dif-
ferent requestors and to, in response to allocating the
block of memory portions to the workgroup, preferentially
service memory requests received from the requestor
from which the first-received task of that workgroup was
received.
[0010] The resource allocator may be further config-
ured to, in response to receiving an indication that
processing of a task of the workgroup has completed,
deallocate the memory resources allocated to that task
without waiting for processing of the workgroup to com-
plete.
[0011] The shared memory may be further partitioned
into a plurality of non-overlapping windows each com-
prising a plurality of memory portions and the resource
allocator is configured to maintain a window pointer in-
dicating a current window in which allocation of memory
portions will be attempted in response to a next-received
memory request.
[0012] The resource allocator may be embodied in a
binary logic circuit and the window length is such that the
availability of all of the memory portions of each window
can be checked in a single clock cycle of the binary logic
circuit.
[0013] The resource allocator may be further config-
ured to maintain a fine status array arranged to indicate
whether each memory portion of the shared memory is
allocated to a task.
[0014] The resource allocator may be configured to, in
response to receiving the memory resource request in
respect of the first-received task of the workgroup, search
the current window for a contiguous block of memory
portions which are indicated by the fine status array as
being available for allocation, the resource allocator be-
ing configured to, if such a contiguous block is identified
in the current window, allocate that contiguous block to
the workgroup.
[0015] The resource allocator may be configured to al-
locate the contiguous block of memory portions such that
the block starts at the lowest possible position in the win-
dow.
[0016] The resource allocator may be further config-
ured to maintain a coarse status array arranged to indi-
cate, for each window of the shared memory, whether all
the memory portions of the window are unallocated, the
resource allocator being configured to, in parallel with
searching the current window for a contiguous block of
memory portions, check the coarse status array to de-
termine whether the size of the requested block can be
accommodated by one or more subsequent windows;
the resource allocator being configured to, if both a suf-
ficiently large contiguous block cannot be identified in the
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current window and the requested block can be accom-
modated by one or more subsequent windows, allocate
the block to the workgroup comprising memory portions
starting at the first memory portion of the current window
in a contiguous block with the subsequent window(s) and
extending into those subsequent window(s).
[0017] The resource allocator may be further config-
ured to, in parallel with searching the current window,
form an overflow metric representing the memory re-
sources of the required block of memory portions which
cannot be accommodated in the current window starting
at the first memory portion of the current window in a
contiguous block of unallocated memory portions imme-
diately adjacent to the subsequent window, the resource
allocator being configured to, if both a sufficiently large
contiguous block cannot be identified in the current win-
dow and the requested block cannot be accommodated
by one or more subsequent windows, subsequently at-
tempt allocation of a block to the workgroup by searching
the subsequent window, starting at the first memory por-
tion of the subsequent window, for a contiguous block of
unallocated memory portions sufficient in total size to ac-
commodate the overflow metric.
[0018] The fine status array may be an array of bits in
which each bit corresponds to one memory portion of the
shared memory and the value of each bit indicates wheth-
er the corresponding memory portion is unallocated or
not
[0019] The coarse status array may be an array of bits
in which each bit corresponds to one window of the
shared memory and the value of each bit indicates wheth-
er the respective window is entirely unallocated or not.
[0020] The resource allocator may be configured to
form each bit of the coarse status array by performing an
OR reduction of all of the bits of the fine status array
which correspond to memory portions lying in the window
corresponding to that bit of the coarse status array.
[0021] The window length may be a power of two.
[0022] The resource allocator may maintain a data
structure identifying which of the one or more workgroups
are currently allocated a block of memory portions.
[0023] According to a second aspect there is provided
a method of allocating shared memory resources to tasks
for execution in a single-instruction multiple-data (SIMD)
processor comprising a plurality of processing units each
configured for processing one or more workgroups each
comprising a plurality of SIMD tasks, the method com-
prising:

receiving a shared memory resource request for first
memory resources in respect of a first-received task
of a workgroup; and
allocating to the workgroup a block of memory por-
tions of a shared memory sufficient in size for each
task of the workgroup to receive memory resources
in the block equivalent to the first memory resources.

[0024] Allocating to the workgroup a block of memory

portions may comprise allocating the block as a contig-
uous block of memory portions.
[0025] The method may further comprise, on servicing
the first-received task of the workgroup, allocating to that
task the requested first memory resources from the block
and reserve the remaining memory portions of the block
so as to prevent allocation to tasks of other workgroups.
[0026] The method may further comprise, in response
to subsequently receiving a memory resource request in
respect of a second task of the workgroup, allocating
memory resources of the block to that second task.
[0027] The method may further comprise receiving
memory resource requests from a plurality of different
requestors and to, in response to allocating the block of
memory portions to the workgroup, preferentially servic-
ing memory requests received from the requestor from
which the first-received task of that workgroup was re-
ceived.
[0028] The method may further comprise, in response
to receiving an indication that processing of a task of the
workgroup has completed, deallocating the memory re-
sources allocated to that task without waiting for process-
ing of the workgroup to complete.
[0029] The method may further comprise maintaining
a fine status array arranged to indicate whether each
memory portion of the shared memory is allocated to a
task.
[0030] Allocating to the workgroup a block of memory
portions may comprise searching the current window for
a contiguous block of memory portions which are indi-
cated by the fine status array as being available for allo-
cation and, if such a contiguous block is identified in the
current window, allocating that contiguous block to the
workgroup.
[0031] Allocating the contiguous block to the work-
group may comprise allocating the contiguous block of
memory portions such that the contiguous block starts
at the lowest possible position in the window.
[0032] The method may further comprise:

maintaining a coarse status array arranged to indi-
cate, for each window of the shared memory, wheth-
er all the memory portions of the window are unal-
located;
in parallel with searching the current window for a
contiguous block of memory portions, checking the
coarse status array to determine whether the size of
the requested block can be accommodated by one
or more subsequent windows; and
if both a sufficiently large contiguous block cannot
be identified in the current window and the requested
block can be accommodated by one or more subse-
quent windows, allocating the block to the workgroup
comprising memory portions starting at the first
memory portion of the current window in a contigu-
ous block with the subsequent window(s) and ex-
tending into those subsequent window(s).
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[0033] The method may further comprise:

in parallel with searching the current window, forming
an overflow metric representing the memory re-
sources of the required block of memory portions
which cannot be accommodated in the current win-
dow starting at the first memory portion of the current
window in a contiguous block of unallocated memory
portions immediately adjacent to the subsequent
window; and
if both a sufficiently large contiguous block cannot
be identified in the current window and the requested
block cannot be accommodated by one or more sub-
sequent windows, subsequently attempting alloca-
tion of a block to the workgroup by searching the
subsequent window, starting at the first memory por-
tion of the subsequent window, for a contiguous
block of unallocated memory portions sufficient in
total size to accommodate the overflow metric.

[0034] According to another example there is provided
a memory subsystem for use with a single-instruction
multiple-data (SIMD) processor comprising a plurality of
processing units for processing SIMD tasks, the memory
subsystem comprising:

a shared memory partitioned into a plurality of mem-
ory portions for allocation to tasks that are to be proc-
essed by the processor;
a translation unit configured to associate tasks with
one or more physical addresses of the shared mem-
ory; and
a resource allocator configured to, in response to
receiving a memory resource request for first mem-
ory resources in respect of a task, allocate to the
task a contiguous virtual memory block and cause
the translation unit to associate the task with a plu-
rality of physical addresses of memory portions each
corresponding to a region of the virtual memory
block, said memory portions collectively embodying
the complete virtual memory block.

[0035] At least some of the plurality of memory portions
of the block may not be contiguous in the shared memory.
[0036] The virtual memory block may comprise a base
address which is the physical address of one of the mem-
ory portions associated with the task.
[0037] The virtual memory block may comprise a base
address which is a logical address of the virtual memory
block.
[0038] The translation unit may be operable to subse-
quently service an access request received from the task
in respect of the virtual memory block, the access request
including an identifier of the task and an offset of an area
of memory within the virtual memory block, the translation
unit being configured to service the access request at
the memory portion corresponding to the region of the
virtual memory block indicated by the offset.

[0039] The translation unit may comprise a content ad-
dressable memory configured to return one or more cor-
responding physical addresses in response to receiving
an identifier of the item and an offset within the virtual
memory block.
[0040] The SIMD processor may be configured for
processing a workgroup comprising a plurality of tasks,
the task is the first-received task of a workgroup, and the
resource allocator is configured to reserve for the work-
group sufficient memory portions for each task of the
workgroup to receive memory resources equivalent to
the first memory resources and to allocate to the first-
received task the requested memory resources from the
memory portions reserved for the workgroup.
[0041] The resource allocator may be configured to al-
locate each task of the workgroup a virtual memory block
such that the virtual memory blocks allocated to the tasks
of the workgroup collectively represent a contiguous su-
perblock of virtual memory blocks.
[0042] The resource allocator may be configured to, in
response to subsequently receiving a memory resource
request in respect of a second task of the workgroup,
allocate a contiguous virtual memory block from the su-
perblock to the second task.
[0043] According to another example there is provided
a method of allocating shared memory resources to tasks
for execution in a single-instruction multiple-data (SIMD)
processor comprising a plurality of processing units each
configured for processing SIMD tasks, the method com-
prising:

receiving a memory resource request for first mem-
ory resources in respect of a task;
allocating to the task a contiguous virtual memory
block; and

associating the task with a plurality of physical addresses
of memory portions of a shared memory, each corre-
sponding to a region of the virtual memory block, said
memory portions collectively embodying the complete
virtual memory block.
[0044] The method may further comprise:

subsequently receiving an access request received
from the task in respect of the virtual memory block,
the access request including an identifier of the task
and an offset of an area of memory within the virtual
memory block; and
servicing the access request by accessing the mem-
ory portion corresponding to the region of the virtual
memory block indicated by the offset.

[0045] The tasks may be grouped together in work-
groups for execution at the SIMD processor, the task may
be the first-received task of a workgroup, and the allo-
cating to the task a contiguous virtual memory block may
comprise:
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reserving for the workgroup sufficient memory por-
tions for each task of the workgroup to receive mem-
ory resources equivalent to the first memory resourc-
es; and
allocating to the first-received task the requested
memory resources from the memory portions re-
served for the workgroup.

[0046] The reserving for the workgroup may comprise
reserving each task of the workgroup a virtual memory
block such that the virtual memory blocks allocated to
the tasks of the workgroup collectively represent a con-
tiguous superblock of virtual memory blocks.
[0047] The method may further comprise, in response
to subsequently receiving a memory resource request in
respect of a second task of the workgroup, allocating a
contiguous virtual memory block from the superblock to
the second task.
[0048] The memory subsystem may be embodied in
hardware on an integrated circuit.
[0049] There is provided a method of manufacturing,
using an integrated circuit manufacturing system, a mem-
ory subsystem as described herein.
[0050] There is provided a method of manufacturing,
using an integrated circuit manufacturing system, a mem-
ory subsystem as described herein, the method compris-
ing:

processing, using a layout processing system, a
computer readable description of the graphics
processing system so as to generate a circuit layout
description of an integrated circuit embodying the
graphics processing system; and
manufacturing, using an integrated circuit genera-
tion system, the graphics processing system accord-
ing to the circuit layout description.

[0051] There is provided an integrated circuit definition
dataset that, when processed in an integrated circuit
manufacturing system, configures the system to manu-
facture a memory subsystem as described herein. There
is provided a non-transitory computer readable storage
medium having stored thereon a computer readable de-
scription of an integrated circuit that, when processed in
an integrated circuit manufacturing system, causes the
integrated circuit manufacturing system to manufacture
a memory subsystem as described herein.
[0052] There is provided a non-transitory computer
readable storage medium having stored thereon a com-
puter readable description of a memory subsystem as
described herein which, when processed in an integrated
circuit manufacturing system, causes the integrated cir-
cuit manufacturing system to:

process, using a layout processing system, the com-
puter readable description of the graphics process-
ing system so as to generate a circuit layout descrip-
tion of an integrated circuit embodying the graphics

processing system; and
manufacture, using an integrated circuit generation
system, the graphics processing system according
to the circuit layout description.

[0053] There is provided an integrated circuit manu-
facturing system configured to manufacture a memory
subsystem as described herein.
[0054] There is provided an integrated circuit manu-
facturing system comprising:

a non-transitory computer readable storage medium
having stored thereon a computer readable integrat-
ed circuit description that describes a memory sub-
system as described herein;
a layout processing system configured to process
the integrated circuit description so as to generate a
circuit layout description of an integrated circuit em-
bodying the memory subsystem; and
an integrated circuit generation system configured
to manufacture the memory subsystem according to
the circuit layout description.

[0055] There is provided a memory subsystem config-
ured to perform a method as described herein. There is
provided computer program code for performing a meth-
od as described herein. There is provided a non-transi-
tory computer readable storage medium having stored
thereon computer readable instructions that, when exe-
cuted at a computer system, cause the computer system
to perform a method as described herein.

BRIEF DESCRIPTION OF THE DRAWINGS

[0056] The present invention is described by way of
example with reference to the accompanying drawings.
In the drawings:

Figure 1 illustrates conventional allocation of shared
memory to tasks for execution at a SIMD processor.
Figure 2 is a schematic diagram of a first memory
subsystem comprising a resource allocator config-
ured according to principles described herein.
Figure 3 illustrates the memory subsystem in context
in a computer system having a plurality of processing
cores.
Figure 4 shows a shared memory comprising a block
allocated in slices to tasks of a workgroup.
Figure 5 illustrates allocation of shared memory by
the resource allocator to tasks for execution as a
workgroup at a SIMD processor.
Figure 6 illustrates allocation of shared memory by
the resource allocator configured according to a par-
ticular embodiment described herein.
Figure 7 is a schematic diagram of a second memory
subsystem comprising a resource allocator config-
ured according to principles described herein.
Figure 8 illustrates the correspondence between a
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virtual memory block and its underlying memory por-
tions of a shared memory.
Figure 9 is a flowchart illustrating the operation of
the first memory subsystem configured according to
principles described herein.
Figure 10 is a flowchart illustrating the operation of
the second memory subsystem configured accord-
ing to principles described herein.
Figure 11 is a schematic diagram of an integrated
circuit manufacturing system.

DETAILED DESCRIPTION

[0057] The following description is presented by way
of example to enable a person skilled in the art to make
and use the invention. The present invention is not limited
to the embodiments described herein and various mod-
ifications to the disclosed embodiments will be apparent
to those skilled in the art. Embodiments are described
by way of example only.
[0058] The term ’task’ is used herein to refer to a group
of data-items and the work that is to be performed upon
those data-items. For example, a task may comprise or
be associated with a program or reference to a program
(e.g. the same sequence of ALU instructions or reference
thereto) in addition to a set of data that is to be processed
according to the program, where this set of data may
comprise one or more data elements (or data-items, e.g.
a plurality of pixels or vertices).
[0059] The term ’program instance’ is used herein to
refer to individual instances that take a path through the
code. A program instance therefore refers to a single
data-item and a reference (e.g. pointer) to a program
which will be executed on the data-item. A task therefore
could be considered to comprise a plurality of program
instances (e.g. up to 32 program instances), though in
practice only a single instance of the common program
(or reference) is required per task. Groups of tasks that
share a common purpose, share local memory and may
execute the same program (although they may execute
different parts of that program) or compatible programs
on different pieces of data may be linked by a group ID.
A group of tasks with the same group ID may be referred
to as a ’workgroup’ (and hence the group ID may be re-
ferred to as the ’workgroup ID’). There is therefore a hi-
erarchy of terminology, with tasks comprising a plurality
of program instances and groups (or workgroups) com-
prising a plurality of tasks.
[0060] Some processing systems which provide a
shared memory may comprise one or more SIMD (Single
Instruction, Multiple Data) processors each configured
to execute a workgroup of tasks in parallel. Each task of
a workgroup may require an allocation of shared mem-
ory. Often however, there is some interdependency be-
tween the processing of tasks being executed at a SIMD
processor. For example, for some workgroups a barrier
synchronisation point is defined which all tasks must
reach in order for processing of any one of the tasks to

continue past the barrier synchronisation point and
processing of the workgroup as a whole to complete.
More than one barrier synchronisation point can some-
times be defined for a workgroup, with all tasks needing
to reach a given barrier in order for processing of any of
the tasks to continue beyond the barrier.
[0061] With conventional allocation mechanisms for
shared memories, the use of barrier synchronisation
points can lead to processing deadlock for a workgroup.
This is illustrated in a simple example in Figure 1 which
shows a shared memory 100 partitioned into a plurality
of memory portions 101 and a SIMD processor 102 hav-
ing five processing elements 109-113 configured to proc-
ess in parallel a workgroup ’A’ comprising five tasks
103-107. In this example, processing of only four of the
tasks has started and all of these tasks have reached the
barrier synchronisation point 108. This is because each
of the tasks requires a contiguous block of two memory
portions in shared memory (marked with letter ’A’) but,
once the first four tasks had been allocated their blocks
of shared memory, it was not possible to allocate a con-
tiguous block of two memory portions to the fifth task.
Memory portions belonging to a second workgroup are
marked with the letter ‘B’. Several memory portions 114
are available in the shared memory but these memory
portions are fragmented and cannot provide a continuous
block of memory. As a result deadlock ensued: process-
ing of the four tasks 103-106 has stopped awaiting the
fifth task 107 to reach the barrier synchronisation point
108, but processing of the fifth task 107 cannot be started
because its request to be allocated shared memory can-
not be serviced.
[0062] Such deadlocks can introduce substantial la-
tency and are typically only resolved when processing of
a deadlocked workgroup hits a predetermined timeout.
Not only is the time spent waiting for the timeout to expire
wasted, but so is the partial processing performed on the
tasks which have reached the barrier synchronisation
point-this processing will need to be repeated. Deadlock
situations can be particularly problematic in systems
comprising multiple SIMD processors all sharing a com-
mon memory since, in conditions when available shared
memory is limited or when tasks require relatively large
contiguous blocks of memory, more than one workgroup
may be deadlocked at a time.

Fragmentation Avoidance

[0063] Figure 2 is a schematic diagram showing a
memory subsystem 200 configured to allocate shared
memory in a manner which addresses the issues identi-
fied above. Memory subsystem 200 comprises a re-
source allocator 201 and shared memory 202 partitioned
into a plurality of memory portions 203. The resource
allocator may be configured to receive memory requests
from a plurality of requestors 205 - for example, each
task running at a processing unit may be a requestor,
each processing unit may be a requestor, or each type
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of processing unit may be a requestor. Different reques-
tors may have different hard-wired inputs to the resource
allocator which the resource allocator is required to ar-
bitrate between. The resource allocator may service
memory requests from requestors on any suitable basis
- for example, memory requests could be serviced on a
simple round-robin basis or according to a set of arbitra-
tion rules for selecting the next requestor to be serviced.
In other embodiments, memory requests from multiple
requestors may be aggregated at a request queue into
which memory allocation requests are received and from
which the resource allocator may receive memory re-
quests to service.
[0064] Allocated portions of the shared memory may
be accessed by the processing units by means of in-
put/output arbiter 204. The I/O arbiter 204 arbitrates ac-
cess to the shared memory between a plurality of units
(e.g. processing units or other units that are able to ac-
cess the shared memory) which submit access requests
(e.g. read/writes) over interface 211 (which may com-
prise one or more hardwired links between which the I/O
arbiter arbitrates).
[0065] Figure 3 shows the memory subsystem 200 in
context in a computer system 300 comprising a plurality
of processing units 301 and a work scheduler 302 con-
figured to schedule tasks it receives for processing at the
processing units. One or more of the processing units
may be SIMD processors. The computer system could
be, for example, a graphics processing unit (GPU) and
the processing units could comprise one or more units
(which may each be a SIMD processor) for performing
integer operations, floating point operations, complex
arithmetic, texture address calculations, sampling oper-
ations, etc. The processing units may together form a set
of parallel pipelines 305 with each processing unit rep-
resenting one of the pipelines of the set. The computer
system could in examples be a vector processor.
[0066] Each processing unit could comprise one or
more arithmetic logic units (ALUs), and each SIMD proc-
essor may comprise one or more different types of ALUs,
e.g. with each type of ALU being optimized for a particular
type of computation. In examples where the processing
units 301 are provided at a GPU, the processing block
104 may comprise a plurality of shader cores, with each
shader core comprising one or more ALUs.
[0067] Work scheduler 302 may comprise a scheduler
unit 303 and an instruction decoder 304, the scheduler
unit being configured to perform the scheduling of tasks
for execution at the processing units 301 and the instruc-
tion decoder being configured to decode the tasks into a
form suitable for execution at the processing units 301.
It will be appreciated that the particular decoding of the
tasks performed by the instruction decoder will be deter-
mined by the type and configuration of the processing
units 301.
[0068] The resource allocator 201 is operable to re-
ceive requests to allocate memory resources to tasks
executing at the processing units 301 of the computer

system. Each of the tasks or processing units could be
a requestor 205. One or more of the processing units
may be SIMD processors configured to execute a work-
group of tasks in parallel. Each task of a workgroup may
request an allocation of memory from the resource allo-
cator - depending on the particular architecture of the
system, such a request could be made on behalf of the
task (e.g. by a work scheduler on assigning the task to
a parallel processor) or by the task itself.
[0069] In some architectures, tasks relating to various
workgroups or for execution at different types of process-
ing unit may be queued for processing at one or more
common work queues such that tasks for processing in
parallel as a workgroup are assigned over a period of
time to the appropriate processing unit by work scheduler
302. Tasks relating to other workgroups and/or process-
ing units may be interspersed with the tasks of a work-
group. A request to the resource allocator for memory
resources would typically be made in respect of a task
on that task being scheduled at a processor. The task
may but need not make the request for memory resourc-
es itself. For example, in some architectures the work
scheduler 302 might make requests for memory resourc-
es on behalf of the tasks it schedules at the processing
units. Many other architectures are possible.
[0070] The resource allocator is configured to allocate
memory resources to the entire workgroup on first re-
ceiving an allocation request in respect of a task of that
workgroup. An allocation request typically indicates the
size of the memory resources required - for example, a
task might require a certain number of bytes or memory
portions. Because a SIMD processor performs the same
instructions in parallel on different source data, each task
of a workgroup for execution at a SIMD processor has
the same memory requirements. The resource allocator
is configured to, in response to the first request it receives
for memory in respect of a task of a workgroup, allocate
a contiguous block of memory for the entire workgroup.
The size of that block is at least N times the memory
resources requested in that first request, where N is the
number of tasks in the workgroup (e.g. 32). The number
of tasks in a workgroup may be fixed for a given system
and therefore known to the resource allocator in advance,
the number of tasks in a workgroup may be provided to
the resource allocator with the first request for memory
resources, and/or the number of tasks in a workgroup
may be otherwise available to the resource allocator (e.g.
as a parameter maintained at a data store accessible to
the resource allocator).
[0071] If there is sufficient contiguous space in the
shared memory for the entire block of the workflow, the
resource allocator is configured to respond to the first-
received request for memory resources for a task of a
workflow with the memory resources requested by that
task. This allows processing of that first task of the work-
group to commence. The resource allocator further re-
serves the remainder of the block of shared memory
which is to be allocated to the other tasks of the work-
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group so as to prevent allocation of the block to tasks of
other workgroups. If there is not sufficient contiguous
space in the shared memory for the entire block of the
workflow, the first-received memory request is rejected.
This approach ensures that once a first task of a work-
group does receive an allocation of memory, the system
can guarantee that all the tasks of the workgroup will
receive their allocation of memory. This avoids the dead-
lock scenario described above.
[0072] When the resource allocator receives requests
for memory resources for subsequently-received tasks
of the same workgroup, the resource allocator allocates
the required resources to those tasks from the reserved
block. The resource allocator may sequentially allocate
adjacent "slices" of the reserved block of shared memory
to the tasks in the order their respective memory requests
are received, with the first-received task receiving the
first slice of the block. This is illustrated in Figure 4 which
shows a shared memory 202 comprising a plurality of
memory portions 203 and a block 402 reserved for a
workgroup following the reception of a first memory re-
quest for a task of that workgroup. In this example, each
slice comprises two memory portions. The first slice 403
of the block is allocated to that first task and the subse-
quent slices of the block are reserved in the shared mem-
ory such that when the next memory request is received
for a task of the workgroup, the next slice 404 is allocated,
and so on, until all the slices 403-407 of the block are
allocated to the tasks and the workgroup can be proc-
essed to completion.
[0073] Where the tasks of a workgroup have an ex-
pected or predefined order, the resource allocator could
alternatively allocate memory slices of a reserved mem-
ory block to the tasks of the workgroup according to that
order. In some architectures, memory requests for tasks
may be received out of order. For example, task number
three of five may be allocated the third slice of the block
even if a memory request is received for the third task
before a memory request for the second task. In this man-
ner, each task of a workgroup may be allocated a pre-
determined slice of a block reserved for the workgroup.
Since the first-received task may not be the first task of
a workgroup, the first task need not be allocated the first
slice of the block reserved for the workgroup.
[0074] In some architectures it is possible for tasks to
make further requests for memory during processing.
Such memory requests may be handled in the same man-
ner as the initial requests for memory, with a block being
allocated for all the tasks of the workgroup when the first
request is received in respect of the workgroup on the
basis that each task for processing at a SIMD processor
will require the same memory resources. The allocated
block size would be at least N times the memory resourc-
es requested in that first request, where N is the number
of task in the workgroup.
[0075] Once a task has been scheduled at a process-
ing unit, the task may access its allocated memory re-
sources (e.g. by performing reads and/or writes) at the

shared memory 202 as indicated by data path 210.
[0076] The resource allocator may be configured to
deallocate the slice of shared memory allocated to each
task as soon as processing of that task completes at the
processing unit (i.e. without waiting for the entire work-
group to complete). This ensures that memory portions
which are no longer required are released as soon as
possible for use by other tasks. For example, the release
of a final "slice" might create a subsequent contiguous
block sufficiently sized for allocation to a subsequently
processed workgroup.
[0077] Figure 5 illustrates the allocation of shared
memory to tasks according to the principles described
herein. Shared memory 202 is shown portioned into a
plurality of memory portions 203 along with a SIMD proc-
essor 502 having five processing elements 503-507. For
contrast with the conventional approach to shared mem-
ory allocation, this arrangement corresponds to the ar-
rangement shown in Figure 1. The shared memory com-
prises an existing block of memory portions 508 allocated
to a workgroup B (the respective memory portions are
marked ’B’ in the figure). Consider the point at which a
first memory request is received in respect of a task 509
of a second workgroup A. On receiving a memory request
for task 509 a block 514 of memory portions (marked ‘A’)
is allocated to the shared memory as shown in the figure.
Thus, as described above, the allocation of the block of
memory portions for the whole workgroup is performed
in response to receiving the first request for memory in
respect of the tasks of the workgroup. A slice 515 of two
memory portions of the block 514 is allocated to the first
task. Slices 516-519 of the block are reserved for the
other tasks of workgroup A.
[0078] As memory requests for the subsequent tasks
510-513 are received, each can be serviced by allocating
one of the reserved slices 516-519 to the respective task
and the task scheduled for execution at the SIMD proc-
essor 502. Because all of the memory required by the
workgroup is allocated in advance, the last task 513 re-
ceives slice 519 of the block. Since all of the tasks receive
their required memory allocations, processing of all of
the tasks can proceed to the barrier synchronisation point
520. Once all of the tasks have been processed to the
barrier 520, processing of all of the tasks may be permit-
ted to continue to completion and hence the workgroup
as a whole can be processed to completion. Because of
the approach of allocating contiguous space to a whole
block, the shared memory is more robust to fragmenta-
tion, with contiguous space being more likely to be avail-
able in the shared memory for allocation to new blocks.
[0079] If sufficient contiguous space is not available
for the whole block 514, the memory request in respect
of the first tasks of workgroup A is rejected. The rejected
memory request may be handled in any number of ways
but would typically wait to be serviced the next time the
resource allocator looks to service the respective reques-
tor according to its defined scheme (e.g. on a round-robin
basis or according to a set of rules for arbitrating between
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the requestors). Subsequent memory allocation requests
may be successful once sufficient memory becomes
available (e.g. through tasks completing at other process-
ing units and the corresponding memory portions being
released).
[0080] The resource allocator may maintain a data
structure 206 identifying which workgroups have already
been allocated a block of memory. For example, on re-
serving a block of memory for a workgroup, the resource
allocator may add an entry to the data structure associ-
ating the memory block with that workgroup so that when
tasks of that workgroup are subsequently received the
resource allocator can identify from which block a slice
of memory is to be allocated. Similarly, the resource al-
locator can use the data structure 206 to identify which
tasks do not belong to a workgroup for which a block of
memory has already been allocated, and therefore for
which a new block allocation is to be performed. The data
structure 206 could have any suitable configuration - for
example, it may be a simple lookup table or register.
[0081] In order to allocate slices of a reserved block to
subsequently-received tasks of a workgroup, the re-
source allocator needs to know which memory requests
it receives belong to which workgroup. A memory request
may comprise an identifier of the workgroup the respec-
tive task belongs to so as to allow the resource allocator
to identify memory requests belonging to workgroups for
which a block has been reserved. Alternatively, the re-
source allocator may have access to a data store (e.g. a
lookup table held at the work scheduler 302) which iden-
tifies which tasks belong to which workgroups. Typically
a memory request will identify the task in respect of which
a memory request is being made and such a task iden-
tifier could be used to look up the corresponding work-
group in the data store.
[0082] Memory requests received in respect of work-
groups for which a memory block has already been allo-
cated can be preferentially prioritised. This can help to
minimise latency in the system by ensuring that, once
memory has been allocated to a workgroup and the re-
sources are reserved in the system for processing that
workgroup to completion, all the tasks of the workgroup
are able to commence processing as soon as possible
and reach any defined barrier synchronisation point for
the workgroup. In other words, ensuring that memory is
allocated to tasks as soon as possible after it has been
reserved as a block for a workgroup can help to avoid
tasks which are later allocated their memory slice from
delaying the processing of other tasks in a workgroup
which have already been allocated their slice and are
ready to begin processing.
[0083] Any suitable mechanism for prioritising memory
requests may be implemented. For example, the re-
source allocator could be configured to preferentially
service requests from the same requestor 205 from which
the initial request which led to the block being allocated
was received. A requestor could be preferred by increas-
ing the frequency at which its memory requests are serv-

iced relative to other requestors. A requestor could be
preferred by, following allocation of a block, repeatedly
servicing memory requests received from that same re-
questor until a memory request is received in respect of
a task belonging to a different workgroup. The resource
allocator may use the data structure 206 described above
to identify which memory requests correspond to work-
groups for which a memory block has already been re-
served, and hence which memory requests should be
prioritised.
[0084] Note that in some implementations of the sys-
tem described herein, some tasks in respect of which
memory requests are received by the resource allocator
will not belong to a workgroup. For example, one or more
of the processing units 301 in Figure 3 for processing
tasks may not be a SIMD processor. The resource allo-
cator may be configured to identify tasks that do not be-
long to a workgroup from one or more identifiers, or a
lack of one or more identifiers - e.g. no workgroup iden-
tifier, in the memory requests it receives. Alternatively or
additionally, the resource allocator may determine
whether a received memory request is made in respect
of a task that does not belong to a workgroup by looking
up an identifier received in the memory request in a data
store (e.g. a lookup table held at the work scheduler 302)
identifying which tasks belong to which workgroups.
[0085] An approach to allocating memory portions at
the resource allocator 201 will now be described.
[0086] The resource allocator may be configured to fur-
ther partition the shared memory 202 into a plurality of
non-overlapping windows, each comprising a plurality of
memory portions. The length of each window may be a
power of two so as to enable efficient implementation of
the resource allocator at a binary logic circuit. The win-
dows may all be of the same length. A fine status array
207 is maintained by the resource allocator indicating
which memory portions are allocated and which are not
allocated - for example, the fine status array may com-
prise a one-dimensional array of bits in which each bit
corresponds to one memory portion of the shared mem-
ory and the value of each bit indicates whether the re-
spective memory portion is allocated or not (e.g. a ’1’
indicates a portion is allocated; a ’0’ indicates it is not).
The size of each window may be selected such that the
resource allocator is able to search the window for non-
allocated memory portions sufficient to contain a given
size of contiguous block in a single clock cycle of the
digital hardware at which the resource allocator is em-
bodied. Typically the size of the shared memory 202 will
be too large for the resource allocator to search the entire
memory space in one clock cycle.
[0087] The resource allocator may maintain a window
pointer 208 (e.g. a register internal to the resource allo-
cator) which identifies in which window of the shared
memory the resource allocator is to start a new memory
allocation on receiving a first memory request in respect
of a workgroup that has yet to be allocated memory. On
receiving a memory request in respect of a first task of a
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workgroup, the resource allocator checks the current win-
dow for a position in which the contiguous block of mem-
ory to be reserved for the workgroup can fit. This will be
termed a "fine check". The resource allocator identifies
unallocated memory portions using the fine status array
207. The resource allocator may start at the lowest ad-
dress of the current window and scan in the direction of
increasing memory address so as to identify the lowest
possible starting position for the block and minimise frag-
mentation of the shared memory. Any suitable algorithm
for identifying a contiguous set of memory portions which
can accommodate the block of memory may be used.
[0088] When a block is allocated to a workgroup, the
fine status array is updated so as to mark the all the re-
spective memory portions of the block as allocated. In
this manner the block is reserved for use by the tasks of
the workgroup.
[0089] The resource allocator may further maintain a
coarse status array 209 which indicates whether each
window of the shared memory is entirely unallocated - in
other words, whether all of the memory portions of a win-
dow are unallocated. The coarse status array could be
a one-dimensional array of bits in which each bit corre-
sponds to one window of the shared memory and the
value of each bit indicates whether the respective window
is entirely unallocated or not. The bit value of a window
in the coarse status array could be calculated as an OR
reduction of all of the bits of the status array which cor-
respond to memory portions lying in that window.
[0090] The resource allocator may be configured to
perform a coarse check in conjunction with the fine check.
The coarse check comprises identifying from the coarse
status array 209 whether or not the next one or more
windows after the current window indicated by the win-
dow pointer 208 can accommodate the new block of
memory required for the workgroup - i.e. if the coarse
status array 209 indicates that the next window is com-
pletely unallocated then all of those memory portions are
available for use by the block. One or more windows fol-
lowing the current window may be checked since in some
systems it might be possible for a required block to ex-
ceed the size of a window.
[0091] The resource allocator may be configured to al-
locate a block of shared memory to a workgroup using
the fine and coarse checks as follows:

1. If the fine check of a block of memory for allocation
to a workgroup is successful and the block can be
accommodated in the current window, the block is
reserved for use by that workgroup (e.g. by marking
the respective memory portions as allocated in the
fine status array and adding the workgroup to data
structure 206) and a slice of the block (e.g. the first
slice) is allocated to the task in respect of which the
memory request was made. If a coarse check of
memory indicated that the current window of the
shared memory was entirely unallocated then the
coarse status array could be updated to indicate that

the current window is now no longer entirely unallo-
cated.
2. If the fine check of a block of memory for allocation
to a workgroup was not successful but the coarse
check of memory is successful and the block can be
accommodated by one or more unallocated windows
following the current window, the block is reserved
for use by the workgroup. The block may be allocated
starting at the first unallocated memory portion which
forms a contiguous region of unallocated memory
portions with the following window. The allocated
block extends into the one or more following windows
identified as being available by the coarse check.

[0092] If both the fine and coarse checks fail, the mem-
ory request could be deferred and subsequently attempt-
ed again (perhaps on the next clock cycle or after a pre-
determined number of clock cycles have passed). The
resource allocator could attempt to service other memory
requests prior to returning to the failed memory request
(e.g. the resource allocator could move on to service a
memory request from the next requestor according to
some defined rules for arbitrating between the request-
ors).
[0093] An exemplary allocation according to the above
approach is illustrated in Figure 6 in which the shared
memory is partitioned into 128 memory portions and 4
windows each of 32 memory portions. The ’1’ bits 601 in
the fine status array 207 indicate that the first 24 memory
portions are allocated to workgroups but all of the higher
memory portions are unallocated. The coarse status ar-
ray thus indicates that only the first window includes al-
located memory portions (see the ’1’ bit 602 correspond-
ing to the first window). In this example, a 48 memory
portion block of memory 603 is required for a workgroup.
The resource allocator may have determined that such
a block is required on receiving a memory request for 3
memory portions in respect of a first task of the work-
group: knowing that the memory request has been re-
ceived from a requestor which is a SIMD processor for
processing workgroups of 16 tasks, the resource alloca-
tor determined that 48 memory portions are required for
the workgroup as a whole.
[0094] Assume that the current window as indicated
by the window pointer of the resource allocator is the first
window ’0’ (this is likely because the first unallocated
memory portion after the allocated memory portions is
memory portion 24). The fine check of the current window
would fail because there are not 48 memory portions re-
maining in the first window ’0’. However, the coarse check
would succeed because both the second and third win-
dows are indicated as being completely unallocated by
the coarse status array 209. Block 48 would therefore be
allocated starting from memory portion 24 of the first win-
dow and up to memory portion 71 of the third window.
The window pointer would be updated to identify the third
window as the current window because the next available
unallocated memory portion is number 72.
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[0095] The resource allocator could be configured to,
in parallel with the fine and coarse checks, calculate an
overflow metric. The overflow metric is given by the
number of unallocated memory portions at the top of the
current window (i.e. adjacent to the following window)
subtracted from the size of the memory block required
by the workgroup so as to give a measure of the number
of memory portions that would overflow the current win-
dow if the block was allocated starting at the lowest mem-
ory portion of the contiguous block of unallocated mem-
ory at the top of the current window.
[0096] The resource allocator may be configured to
use the overflow metric in an additional step after steps
1 and 2 above in order to attempt to allocate a block of
memory to a workflow:

3. If the fine and coarse checks failed but there are
some free memory portions at the top of the current
window, a new attempt is made to allocate the block
at the next opportunity (e.g. the next clock cycle)
using the overflow metric as the requested size and
starting at the lowest address of the following window
of the shared memory. Both the fine and coarse
checks may be performed as described for the initial
allocation attempt. This additional allocation attempt
is advantageous because although a coarse check
failed on the following window, enough of the lower
region of the following window may be available to,
along with the free memory portions at the top of the
current window, provide enough contiguous unallo-
cated memory space to receive the block.

[0097] If step 3 fails, the memory request may be de-
ferred and subsequently attempted again as described
above.
[0098] Once an allocation is successful, the resource
allocator updates the window pointer to the window that
contains the memory portion immediately after the end
of the successfully allocated block of memory portions
(this may be the current window or a following window).
[0099] The use of the fine and coarse checks per-
formed in parallel, optionally in combination with the use
of the overflow metric also performed in parallel with the
fine and coarse checks, enable the resource allocator to
efficiently attempt to allocate shared memory to a work-
group in a minimum number of clock cycles. On suitable
hardware, the above approach can enable block alloca-
tion to be performed in two clock cycles (a first in which
the fine and coarse checks are performed and optionally
the overflow metric is calculated, and a second in which
the allocation is attempted according to steps 1-2 and
optionally 3 above).
[0100] A flowchart illustrating the allocation of shared
memory by the resource allocator is shown in Figure 9.
The resource allocator receives a request for shared
memory resources 901 in respect of a first task of a work-
group - i.e. the first task from amongst the tasks of the
workgroup for which a request for shared memory has

been received. In response, the workgroup is allocated
a block of shared memory which is sufficient in size to
provide all of the tasks of the workgroup with the resourc-
es requested by the first task. Typically the block will be
a contiguous block of shared memory. The first task is
allocated a portion of the block of shared memory 903
-this step may or may not be considered part of the allo-
cation of memory to the workgroup 902 and may be per-
formed before, concurrently with, or after the allocation
of memory resources to the workgroup. In some imple-
mentations the remaining part of the shared memory may
be reserved for the other tasks of the workgroup.
[0101] When a subsequent request for shared memory
is received for another task of the same workgroup 904,
that task is allocated 905 a portion of the block of shared
memory allocated to the workgroup. In some implemen-
tations the allocation of shared memory may be per-
formed for all tasks in response to receiving the first mem-
ory request 901 from the tasks of the workgroup. In such
implementations further allocation may comprise re-
sponding with the allocation of memory resources to
tasks established in response to the first-received mem-
ory request in respect of the workgroup.
[0102] The allocation of memory resources from the
block is repeated 907 until all the tasks of the workgroup
have received the required memory resources. Execu-
tion of the workgroup may then be performed 906, with
each task using its allocated shared memory resources
of the block allocated to the workgroup.

Fragmentation Insensitive

[0103] A second configuration of a memory subsystem
will now be described which also addresses the above-
described limitations of prior art systems for allocating
shared memory.
[0104] Figure 7 shows a memory subsystem 700 com-
prising a resource allocator 701, a shared memory 702,
an input/output arbiter 703 and a translation unit 704.
The shared memory is partitioned into a plurality of mem-
ory portions 705. The resource allocator may be config-
ured to receive memory requests from a plurality of re-
questors 205 - for example, each task running at a
processing unit may be a requestor, each processing unit
may be a requestor, or each type of processing unit may
be a requestor. Different requestors may have different
hard-wired inputs to the resource allocator which the re-
source allocator is required to arbitrate between. The re-
source allocator may service memory requests from re-
questors on any suitable basis - for example, memory
requests could be serviced on a simple round-robin basis
or according to a set of arbitration rules for selecting the
next requestor to be serviced. In other embodiments,
memory requests from multiple requestors may be ag-
gregated at a request queue into which memory alloca-
tion requests are received and from which the resource
allocator may receive memory requests to service. Allo-
cation portions of the shared memory may be accessed
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by the processing units by means of input/output arbiter
703.
[0105] The memory subsystem 700 may be arranged
in a computer system in the manner shown in Figure 3
and described above.
[0106] In the present configuration, the resource allo-
cator is configured to allocate shared memory 702 to
tasks using the translation unit 704, and input/output ar-
biter 703 is configured to access shared memory 702 by
means of the translation unit 704. The translation unit
704 is configured to associate each task in respect of
which a memory request is received with a plurality of
memory portions 705 of the shared memory. Each task
would typically have an identifier which is provided in a
memory request made in respect of that task. The plu-
rality of memory portions associated with a task do not
need to be contiguous in the shared memory. However,
from the point of view of the task, the task will receive an
allocation of a contiguous block of memory. This is
achieved by the resource allocator being configured to
allocate to a task a contiguous virtual block of memory
when that same task is in fact associated at the transla-
tion unit with a potentially non-contiguous set of memory
portions.
[0107] On a task accessing an area of memory allo-
cated to it (e.g. by means of a read or write operation),
the translation unit 704 is configured to translate between
the logical address provided by the task and the physical
address at which its data is held or to be written to. Note
that the virtual addresses provided to tasks by the re-
source allocator need not belong to a consistent virtual
address space, and in some examples the virtual ad-
dresses will correspond to physical addresses at the
shared memory. It can be advantageous for the logical
addresses used by tasks to be offsets relative to some
base address (which itself may be an offset of zero or
some other predefined value) of a predetermined position
in a virtual block (typically the start of the block). Since a
virtual block is contiguous, only the relative position of
data within its block to which access is required needs
to be provided to the translation unit. The particular set
of memory portions in shared memory which make up a
virtual block of a task are determined by the translation
unit from the association in the data store 706 of the task
identifier with those memory portions.
[0108] In response to receiving a request for memory
resources, the resource allocator is configured to allocate
to the task a set of memory portions sufficient to satisfy
the request. The memory portions need not be contigu-
ous or stored in sequence in the shared memory. The
resource allocator is configured to cause the translation
unit to associate the task with each of the memory por-
tions of the set. The resource allocator may keep track
of unallocated memory portions at the shared memory
by means of a data structure 707 indicating which mem-
ory portions are available. For example, the data struc-
ture could be a status array (such as the fine status array
above) whose bits identify whether each memory portion

at the shared memory is allocated or not.
[0109] The translation unit may comprise a data store
706 and be configured to associate a task with a set of
memory portions by storing against the physical address
of each of the memory portions of the set an identifier of
the task (e.g. a task_id) in the data store and an indication
of which region of the contiguous virtual memory block
each memory portion allocated to the task corresponds
(e.g. the offset of the region in the virtual memory block
or a logical address of the region). In this manner, the
translation unit can return the appropriate physical ad-
dress to a task in response to the task providing its iden-
tifier and an indication as to which region of its virtual
memory block it requires (e.g. an offset within its virtual
block). An offset could be a number of memory portions
(e.g. where a memory portion is the basic allocation in-
terval), a number of bits or bytes, or any other indication
of location of a memory area relative to a base address.
A base address may be but need not be a memory ad-
dress at which a virtual memory block starts; a base ad-
dress could be an offset of zero. The data store could be
an associative memory, such as a content addressable
memory, whose inputs could be the task identifier and
an indication of the required region of memory within its
block (e.g. a memory offset from a base address of its
block).
[0110] More generally the translation unit could be pro-
vided at any suitable point along the data path between
the resource allocator 701 and the shared memory 702,
and between the I/O arbiter 703 and the shared memory
702. More than one translator unit may be provided. Mul-
tiple translator units may share a common data store such
as a content addressable memory.
[0111] The resource allocator may be configured to al-
locate logical base addresses to different tasks of a work-
group so as to identify to each task of the workgroup a
contiguous virtual memory block which lies within a con-
tiguous virtual superblock of memory for the workgroup
as a whole.
[0112] Figure 8 illustrates the correspondence be-
tween memory portions 805 of shared memory 702 which
are allocated to a task and a virtual block 801 allocated
to a task. Memory portions 805 marked A-F of the shared
memory provide the underlying storage for the regions
806 of virtual contiguous memory block 801. The memory
blocks A-F are not contiguous or stored in sequence in
the shared memory and are located amongst memory
portions 804 allocated to other tasks. The virtual block
801 has a base address 802 and regions of the block
can be identified by their offset 803 in the block relative
to the base address.
[0113] In one example, in response to receiving a re-
quest for memory resources, the resource allocator is
configured to allocate to the task a contiguous range of
memory addresses starting at the physical address of
the memory portion corresponding to the first region of
the block - in other words, the base address 802 of the
virtual block (and of region ’A’ or 809 in Figure 8) is the
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physical address of the memory portion ’A’ or 808 in Fig-
ure 8. Assuming sufficient unallocated memory portions
exist in the shared memory to service the memory re-
quest, the resource allocator allocates to the task a virtual
memory block of the requested size starting at the phys-
ical memory address of memory region 809. From the
task’s point of view it is therefore allocated a contiguous
block of six memory portions in the shared memory start-
ing at memory portion 808; in fact, the task is allocated
the six non-contiguous memory portions marked A, B, C,
D, E, and F in shared memory 702. Thus, the actual al-
location of memory portions to a task is masked by the
virtual block 801 it receives. In this example the virtual
block has a physical address and there is no virtual ad-
dress space as such.
[0114] Once a task has been allocated a virtual block
of memory, it may access that memory by means of I/O
arbiter 703 which typically arbitrates access to the shared
memory between a plurality of units (e.g. processing units
or other units which are able to access the shared mem-
ory) which submit access requests (e.g. reads/writes)
over interface 708 (which may comprise one or more
hardwired links between which the I/O arbiter arbitrates).
[0115] Continuing the above example, consider the
case when the task requests access an area of its block
801 which lies in region ‘D’. The task would submit a
request to the I/O arbiter 703 which includes its task iden-
tifier (e.g. a task_id) and an indication of the area of its
block it requires access to. That indication could be, for
example, an offset 803 relative to the base address 802
(e.g. a number of bits, bytes or memory portions units),
or a physical address formed based on the physical base
address 802 allocated to the work and the offset 803 in
the block at which the requested memory area is to be
found. The translator unit would look up the work unit
identifier and the desired offset/address in the data store
706 so as to identify the corresponding physical address
identifying memory portion 811 in the shared memory
702. The translator unit would service the access request
from memory portion 811 in the shared memory. Where
a memory area in the block spans more than one memory
region, the data store would return more than one phys-
ical address for the corresponding data portions.
[0116] In implementations in which the task provides
a physical address for the memory area, the submitted
physical address would in this case refer to an area of
memory in memory portion 810, which is allocated to
another task. Thus different tasks might ostensibly have
access to overlapping blocks in the shared memory. But
because each access request is translated by the trans-
lation unit 704, accesses to a physical address submitted
by a task are redirected by the translator unit to the correct
memory portion (in the present example, 811). In this
case therefore, the logical addresses referencing a virtual
memory block are in fact physical addresses but not nec-
essarily the physical addresses at which the respective
data of the block is held in the shared memory.
[0117] In a second example, in response to receiving

a request for memory resources, the resource allocator
is configured to allocate to the task a contiguous range
of logical memory addresses starting at a base logical
address and representing a virtual block of memory. Log-
ical addresses could be allocated in any suitable manner
since a given logical address will be mapped to the phys-
ical address of a corresponding underlying memory por-
tion. For example, logical addresses may be allocated to
tasks from a virtual address space consistent between
tasks so that the virtual blocks allocated to different tasks
do not share overlapping logical address ranges; a logical
base address could be allocated to each task from a set
of logical addresses with offsets relative to the base ad-
dress being used to refer to positions within a virtual
block; or a logical base address could be allocated as an
offset of zero.
[0118] Translation unit is responsive to access re-
quests (e.g. reads/writes) received from tasks via I/O ar-
biter 703. Each access request may include an identifier
of the task and an offset or logical address identifying the
area of its virtual block to which access is required. On
receiving an access request from a task via I/O arbiter
703, the translation unit is configured to identify the re-
quired physical address in the data structure based on
the identifier of the work unit and the offset/logical ad-
dress. The offset/logical address is used to identify which
of the memory portions associated with a task is to be
accessed.
[0119] As an example, consider again the case above
in which a task requires access to an area of memory in
region ‘D’ of its virtual block 801 as shown in Figure 8.
The translation unit would receive an access request
from the task comprising an identifier of the task and an
offset 803 pointing to a location in region ‘D’. Using the
identifier of the task and the offset, the translation units
looks up in the data store 706 the physical address of
the corresponding memory portion 811 in the shared
memory (i.e. the physical address associated in the data
store with that task and offset). The translation unit could
then proceed to service the access request at the corre-
sponding memory portion 811 (e.g. by performing the
requested read from/write to memory portion 811).
[0120] It will be appreciated that the "fragmentation in-
sensitive" approach described herein allows an underly-
ing shared memory 702 to become fragmented whilst
tasks themselves receive contiguous blocks of memory.
Provided that a sufficient number of memory portions are
available at a shared memory, this enables blocks of
memory to be allocated to tasks and workgroups com-
prising a plurality of tasks even when there is insufficient
contiguous space in the shared memory to allocate con-
tiguous blocks of memory portions of the required size.
[0121] A flowchart illustrating the allocation of memory
resources to tasks by the resource allocator is shown in
Figure 10. On receiving a request for shared memory
resources 1001 in respect of a task, the task is allocated
a contiguous block of virtual memory 1002. The virtual
memory block is associated 1003 with physical memory
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addresses of the shared memory such that each portion
of the virtual block corresponds to an underlying portion
of physical shared memory. Once the task has received
its allocated virtual memory, the task may be executed
1004 at the SIMD processor, with the task using the un-
derlying shared memory resources at the physical ad-
dress(es) corresponding to its allocated virtual memory
block.The memory subsystems of Figures 2, 3 and 7 are
shown as comprising a number of functional blocks. This
is schematic only and is not intended to define a strict
division between different logic elements of such entities.
Each functional block may be provided in any suitable
manner. It is to be understood that intermediate values
described herein as being formed by each functional
block need not be physically generated by the functional
block at any point and may merely represent logical val-
ues which conveniently describe the processing per-
formed by the functional block between its input and out-
put.
[0122] The memory subsystems described herein may
be embodied in hardware on an integrated circuit. The
memory subsystems described herein may be config-
ured to perform any of the methods described herein.
Generally, any of the functions, methods, techniques or
components described above can be implemented in
software, firmware, hardware (e.g., fixed logic circuitry),
or any combination thereof. The terms "module," "func-
tionality," "component", "element", "unit", "block" and
"logic" may be used herein to generally represent soft-
ware, firmware, hardware, or any combination thereof.
In the case of a software implementation, the module,
functionality, component, element, unit, block or logic
represents program code that performs the specified
tasks when executed on a processor. The algorithms and
methods described herein could be performed by one or
more processors executing code that causes the proc-
essor(s) to perform the algorithms/methods. Examples
of a computer-readable storage medium include a ran-
dom-access memory (RAM), read-only memory (ROM),
an optical disc, flash memory, hard disk memory, and
other memory devices that may use magnetic, optical,
and other techniques to store instructions or other data
and that can be accessed by a machine.
[0123] The terms computer program code and compu-
ter readable instructions as used herein refer to any kind
of executable code for processors, including code ex-
pressed in a machine language, an interpreted language
or a scripting language. Executable code includes binary
code, machine code, bytecode, code defining an inte-
grated circuit (such as a hardware description language
or netlist), and code expressed in a programming lan-
guage code such as C, Java or OpenCL. Executable
code may be, for example, any kind of software, firmware,
script, module or library which, when suitably executed,
processed, interpreted, compiled, executed at a virtual
machine or other software environment, cause a proc-
essor of the computer system at which the executable
code is supported to perform the tasks specified by the

code.
[0124] A processor, computer, or computer system
may be any kind of device, machine or dedicated circuit,
or collection or portion thereof, with processing capability
such that it can execute instructions. A processor may
be any kind of general purpose or dedicated processor,
such as a CPU, GPU, System-on-chip, state machine,
media processor, an application-specific integrated cir-
cuit (ASIC), a programmable logic array, a field-program-
mable gate array (FPGA), or the like. A computer or com-
puter system may comprise one or more processors.
[0125] It is also intended to encompass software which
defines a configuration of hardware as described herein,
such as HDL (hardware description language) software,
as is used for designing integrated circuits, or for config-
uring programmable chips, to carry out desired functions.
That is, there may be provided a computer readable stor-
age medium having encoded thereon computer readable
program code in the form of an integrated circuit definition
dataset that when processed in an integrated circuit man-
ufacturing system configures the system to manufacture
a memory subsystem configured to perform any of the
methods described herein, or to manufacture a memory
subsystem comprising any apparatus described herein.
An integrated circuit definition dataset may be, for exam-
ple, an integrated circuit description.
[0126] There may be provided a method of manufac-
turing, at an integrated circuit manufacturing system, a
memory subsystem as described herein. There may be
provided an integrated circuit definition dataset that,
when processed in an integrated circuit manufacturing
system, causes the method of manufacturing a memory
subsystem to be performed.
[0127] An integrated circuit definition dataset may be
in the form of computer code, for example as a netlist,
code for configuring a programmable chip, as a hardware
description language defining an integrated circuit at any
level, including as register transfer level (RTL) code, as
high-level circuit representations such as Verilog or VH-
DL, and as low-level circuit representations such as OA-
SIS (RTM) and GDSII. Higher level representations
which logically define an integrated circuit (such as RTL)
may be processed at a computer system configured for
generating a manufacturing definition of an integrated
circuit in the context of a software environment compris-
ing definitions of circuit elements and rules for combining
those elements in order to generate the manufacturing
definition of an integrated circuit so defined by the rep-
resentation. As is typically the case with software exe-
cuting at a computer system so as to define a machine,
one or more intermediate user steps (e.g. providing com-
mands, variables etc.) may be required in order for a
computer system configured for generating a manufac-
turing definition of an integrated circuit to execute code
defining an integrated circuit so as to generate the man-
ufacturing definition of that integrated circuit.
[0128] An example of processing an integrated circuit
definition dataset at an integrated circuit manufacturing
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system so as to configure the system to manufacture a
memory subsystem will now be described with respect
to Figure 11.
[0129] Figure 11 shows an example of an integrated
circuit (IC) manufacturing system 1102 which is config-
ured to manufacture a memory subsystem as described
in any of the examples herein. In particular, the IC man-
ufacturing system 1102 comprises a layout processing
system 1104 and an integrated circuit generation system
1106. The IC manufacturing system 1102 is configured
to receive an IC definition dataset (e.g. defining a memory
subsystem as described in any of the examples herein),
process the IC definition dataset, and generate an IC
according to the IC definition dataset (e.g. which embod-
ies a memory subsystem as described in any of the ex-
amples herein). The processing of the IC definition da-
taset configures the IC manufacturing system 1102 to
manufacture an integrated circuit embodying a memory
subsystem as described in any of the examples herein.
[0130] The layout processing system 1104 is config-
ured to receive and process the IC definition dataset to
determine a circuit layout. Methods of determining a cir-
cuit layout from an IC definition dataset are known in the
art, and for example may involve synthesising RTL code
to determine a gate level representation of a circuit to be
generated, e.g. in terms of logical components (e.g.
NAND, NOR, AND, OR, MUX and FLIP-FLOP compo-
nents). A circuit layout can be determined from the gate
level representation of the circuit by determining posi-
tional information for the logical components. This may
be done automatically or with user involvement in order
to optimise the circuit layout. When the layout processing
system 1104 has determined the circuit layout it may out-
put a circuit layout definition to the IC generation system
1106. A circuit layout definition may be, for example, a
circuit layout description.
[0131] The IC generation system 1106 generates an
IC according to the circuit layout definition, as is known
in the art. For example, the IC generation system 1106
may implement a semiconductor device fabrication proc-
ess to generate the IC, which may involve a multiple-step
sequence of photo lithographic and chemical processing
steps during which electronic circuits are gradually cre-
ated on a wafer made of semiconducting material. The
circuit layout definition may be in the form of a mask which
can be used in a lithographic process for generating an
IC according to the circuit definition. Alternatively, the
circuit layout definition provided to the IC generation sys-
tem 1106 may be in the form of computer-readable code
which the IC generation system 1106 can use to form a
suitable mask for use in generating an IC.
[0132] The different processes performed by the IC
manufacturing system 1102 may be implemented all in
one location, e.g. by one party. Alternatively, the IC man-
ufacturing system 1102 may be a distributed system such
that some of the processes may be performed at different
locations, and may be performed by different parties. For
example, some of the stages of: (i) synthesising RTL

code representing the IC definition dataset to form a gate
level representation of a circuit to be generated, (ii) gen-
erating a circuit layout based on the gate level represen-
tation, (iii) forming a mask in accordance with the circuit
layout, and (iv) fabricating an integrated circuit using the
mask, may be performed in different locations and/or by
different parties.
[0133] In other examples, processing of the integrated
circuit definition dataset at an integrated circuit manufac-
turing system may configure the system to manufacture
a memory subsystem without the IC definition dataset
being processed so as to determine a circuit layout. For
instance, an integrated circuit definition dataset may de-
fine the configuration of a reconfigurable processor, such
as an FPGA, and the processing of that dataset may
configure an IC manufacturing system to generate a
reconfigurable processor having that defined configura-
tion (e.g. by loading configuration data to the FPGA).
[0134] In some embodiments, an integrated circuit
manufacturing definition dataset, when processed in an
integrated circuit manufacturing system, may cause an
integrated circuit manufacturing system to generate a de-
vice as described herein. For example, the configuration
of an integrated circuit manufacturing system in the man-
ner described above with respect to Figure 11 by an in-
tegrated circuit manufacturing definition dataset may
cause a device as described herein to be manufactured.
[0135] In some examples, an integrated circuit defini-
tion dataset could include software which runs on hard-
ware defined at the dataset or in combination with hard-
ware defined at the dataset. In the example shown in
Figure 11, the IC generation system may further be con-
figured by an integrated circuit definition dataset to, on
manufacturing an integrated circuit, load firmware onto
that integrated circuit in accordance with program code
defined at the integrated circuit definition dataset or oth-
erwise provide program code with the integrated circuit
for use with the integrated circuit.
[0136] The graphics processing systems described
herein may be embodied in hardware on an integrated
circuit. The graphics processing systems described here-
in may be configured to perform any of the methods de-
scribed herein.
[0137] The implementation of concepts set forth in this
application in devices, apparatus, modules, and/or sys-
tems (as well as in methods implemented herein) may
give rise to performance improvements when compared
with known implementations. The performance improve-
ments may include one or more of increased computa-
tional performance, reduced latency, increased through-
put, and/or reduced power consumption. During manu-
facture of such devices, apparatus, modules, and sys-
tems (e.g. in integrated circuits) performance improve-
ments can be traded-off against the physical implemen-
tation, thereby improving the method of manufacture. For
example, a performance improvement may be traded
against layout area, thereby matching the performance
of a known implementation but using less silicon. This
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may be done, for example, by reusing functional blocks
in a serialised fashion or sharing functional blocks be-
tween elements of the devices, apparatus, modules
and/or systems. Conversely, concepts set forth in this
application that give rise to improvements in the physical
implementation of the devices, apparatus, modules, and
systems (such as reduced silicon area) may be traded
for improved performance. This may be done, for exam-
ple, by manufacturing multiple instances of a module
within a predefined area budget.
[0138] The applicant hereby discloses in isolation each
individual feature described herein and any combination
of two or more such features, to the extent that such
features or combinations are capable of being carried
out based on the present specification as a whole in the
light of the common general knowledge of a person
skilled in the art, irrespective of whether such features or
combinations of features solve any problems disclosed
herein. In view of the foregoing description it will be evi-
dent to a person skilled in the art that various modifica-
tions may be made within the scope of the invention.

Annex to the description

[0139]

1. A method of allocating shared memory resources
to tasks for execution in a single-instruction multiple-
data (SIMD) processor comprising a plurality of
processing units each configured for processing one
or more workgroups each comprising a plurality of
SIMD tasks, the method comprising:

receiving a shared memory resource request for
first memory resources in respect of a first-re-
ceived task of a workgroup; and
allocating to the workgroup a block of memory
portions of a shared memory sufficient in size
for each task of the workgroup to receive mem-
ory resources in the block equivalent to the first
memory resources.

2. The method of statement 1, wherein allocating to
the workgroup a block of memory portions comprises
allocating the block as a contiguous block of memory
portions.

3. The method of statement 1 or 2, further compris-
ing, on servicing the first-received task of the work-
group, allocating to that task the requested first mem-
ory resources from the block and reserving the re-
maining memory portions of the block so as to pre-
vent allocation to tasks of other workgroups.

4. The method of any preceding statement, further
comprising, in response to subsequently receiving a
memory resource request in respect of a second task
of the workgroup, allocating memory resources of

the block to that second task.

5. The method of any preceding statement, further
comprising receiving memory resource requests
from a plurality of different requestors and, in re-
sponse to allocating the block of memory portions to
the workgroup, preferentially servicing memory re-
quests received from the requestor from which the
first-received task of that workgroup was received.

6. The method of any preceding statement, further
comprising, in response to receiving an indication
that processing of a task of the workgroup has com-
pleted, deallocating the memory resources allocated
to that task without waiting for processing of the work-
group to complete.

7. The method of any preceding statement, further
comprising maintaining a fine status array arranged
to indicate whether each memory portion of the
shared memory is allocated to a task.

8. The method of statement 7, wherein allocating to
the workgroup a block of memory portions comprises
searching the current window for a contiguous block
of memory portions which are indicated by the fine
status array as being available for allocation and, if
such a contiguous block is identified in the current
window, allocating that contiguous block to the work-
group.

9. The method of any statement 8, wherein allocating
the contiguous block to the workgroup comprises al-
locating the contiguous block of memory portions
such that the contiguous block starts at the lowest
possible position in the window.

10. The method of any of statements 7 to 9, further
comprising:

maintaining a coarse status array arranged to
indicate, for each window of the shared memory,
whether all the memory portions of the window
are unallocated;
in parallel with searching the current window for
a contiguous block of memory portions, check-
ing the coarse status array to determine whether
the size of the requested block can be accom-
modated by one or more subsequent windows;
and
if both a sufficiently large contiguous block can-
not be identified in the current window and the
requested block can be accommodated by one
or more subsequent windows, allocating the
block to the workgroup comprising memory por-
tions starting at the first memory portion of the
current window in a contiguous block with the
subsequent window(s) and extending into those
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subsequent window(s).

11. The method of statement 10, further comprising:

in parallel with searching the current window,
forming an overflow metric representing the
memory resources of the required block of mem-
ory portions which cannot be accommodated in
the current window starting at the first memory
portion of the current window in a contiguous
block of unallocated memory portions immedi-
ately adjacent to the subsequent window; and
if both a sufficiently large contiguous block can-
not be identified in the current window and the
requested block cannot be accommodated by
one or more subsequent windows, subsequent-
ly attempting allocation of a block to the work-
group by searching the subsequent window,
starting at the first memory portion of the sub-
sequent window, for a contiguous block of un-
allocated memory portions sufficient in total size
to accommodate the overflow metric.

12. A memory subsystem for use with a single-in-
struction multiple-data (SIMD) processor comprising
a plurality of processing units configured for process-
ing one or more workgroups each comprising a plu-
rality of SIMD tasks, the memory subsystem com-
prising:

a shared memory partitioned into a plurality of
memory portions for allocation to tasks that are
to be processed by the processor; and
a resource allocator configured to, in response
to receiving a memory resource request for first
memory resources in respect of a first-received
task of a workgroup, allocate to the workgroup
a block of memory portions sufficient in size for
each task of the workgroup to receive memory
resources in the block equivalent to the first
memory resources.

13. A non-transitory computer readable storage me-
dium having stored thereon a computer readable de-
scription of an integrated circuit that, when proc-
essed in an integrated circuit manufacturing system,
causes the integrated circuit manufacturing system
to manufacture a memory subsystem of statement 1.

14. A memory subsystem configured to perform the
method of any of statements 1 to 11.

15. A non-transitory computer readable storage me-
dium having stored thereon computer readable in-
structions that, when executed at a computer sys-
tem, cause the computer system to perform the
method of any of statements 1 to 11.

Claims

1. A method of allocating shared memory resources to
tasks for execution in a single-instruction multiple-
data (SIMD) processor comprising a plurality of
processing units each configured for processing
SIMD tasks, the method comprising:

receiving a memory resource request for first
memory resources in respect of a task;
allocating to the task a contiguous virtual mem-
ory block; and

associating the task with a plurality of physical ad-
dresses of memory portions of a shared memory,
each corresponding to a region of the virtual memory
block, said memory portions collectively embodying
the complete virtual memory block.

2. A method as claimed in claim 1, further comprising:

subsequently receiving an access request re-
ceived from the task in respect of the virtual
memory block, the access request including an
identifier of the task and an offset of an area of
memory within the virtual memory block; and
servicing the access request by accessing the
memory portion corresponding to the region of
the virtual memory block indicated by the offset.

3. A method as claimed in claim 1 or claim 2, wherein
tasks are grouped together in workgroups for exe-
cution at the SIMD processor, the task is the first-
received task of a workgroup, and the allocating to
the task a contiguous virtual memory block compris-
es:

reserving for the workgroup sufficient memory
portions for each task of the workgroup to re-
ceive memory resources equivalent to the first
memory resources; and
allocating to the first-received task the request-
ed memory resources from the memory portions
reserved for the workgroup.

4. A method as claimed in claim 3, wherein the reserv-
ing for the workgroup comprises reserving each task
of the workgroup a virtual memory block such that
the virtual memory blocks allocated to the tasks of
the workgroup collectively represent a contiguous
superblock of virtual memory blocks.

5. A method as claimed in claim 4, further comprising,
in response to subsequently receiving a memory re-
source request in respect of a second task of the
workgroup, allocating a contiguous virtual memory
block from the superblock to the second task.
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6. A memory subsystem for use with a single-instruc-
tion multiple-data (SIMD) processor comprising a
plurality of processing units for processing SIMD
tasks, the memory subsystem comprising:

a shared memory partitioned into a plurality of
memory portions for allocation to tasks that are
to be processed by the processor;
a translation unit configured to associate tasks
with one or more physical addresses of the
shared memory; and
a resource allocator configured to, in response
to receiving a memory resource request for first
memory resources in respect of a task, allocate
to the task a contiguous virtual memory block
and cause the translation unit to associate the
task with a plurality of physical addresses of
memory portions each corresponding to a re-
gion of the virtual memory block, said memory
portions collectively embodying the complete
virtual memory block.

7. A memory subsystem as claimed in claim 6, wherein
at least some of the plurality of memory portions of
the block are not contiguous in the shared memory.

8. A memory subsystem as claimed in claim 6 or 7,
wherein the virtual memory block comprises a base
address which is either:

the physical address of one of the memory por-
tions associated with the task; or
a logical address of the virtual memory block.

9. A memory subsystem as claimed in any of claims 6
to 8, wherein the translation unit is operable to sub-
sequently service an access request received from
the task in respect of the virtual memory block, the
access request including an identifier of the task and
an offset of an area of memory within the virtual mem-
ory block, the translation unit being configured to
service the access request at the memory portion
corresponding to the region of the virtual memory
block indicated by the offset.

10. A memory subsystem as claimed in any of claims 6
to 9, wherein the translation unit comprises a content
addressable memory configured to return one or
more corresponding physical addresses in response
to receiving an identifier of the item and an offset
within the virtual memory block.

11. A memory subsystem as claimed in any of claims 6
to 10, wherein the SIMD processor is configured for
processing a workgroup comprising a plurality of
tasks, the task is the first-received task of a work-
group, and the resource allocator is configured to
reserve for the workgroup sufficient memory portions

for each task of the workgroup to receive memory
resources equivalent to the first memory resources
and to allocate to the first-received task the request-
ed memory resources from the memory portions re-
served for the workgroup.

12. A memory subsystem as claimed in claim 11, where-
in the resource allocator is configured to allocate
each task of the workgroup a virtual memory block
such that the virtual memory blocks allocated to the
tasks of the workgroup collectively represent a con-
tiguous superblock of virtual memory blocks.

13. A memory subsystem as claimed in claim 12, where-
in the resource allocator is configured to, in response
to subsequently receiving a memory resource re-
quest in respect of a second task of the workgroup,
allocate a contiguous virtual memory block from the
superblock to the second task.

14. A computer readable storage medium having stored
thereon an integrated circuit definition dataset that,
when processed in an integrated circuit manufactur-
ing system, configures the system to manufacture a
memory subsystem as claimed in any of claims 6 to
13.

15. Computer program code for performing a method as
claimed in any of claims 1 to 5.
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