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(57) ABSTRACT

The present invention relates to determination of a state of
a vehicle on a road portion. The vehicle includes an Auto-
mated Driving System (ADS) feature. At first, map data
associated with the road portion, positioning data indicating
a pose of the vehicle on the road, and sensor data of the
vehicle are obtained. Then, a plurality of filters for the road
portion are initialized. Further, one or more sensor data
point(s) in the obtained sensor data is associated to a
corresponding map-element of the obtained map data to
determine one or more normalized similarity score(s). Now,
based on the determined one or more normalized similarity
score(s), one or more multivariate time-series data are also
determined and provided as input to a trained machine-
learning algorithm. Then, one of the initialized filters is
selected by the machine learning algorithm to indicate a
current state of the vehicle on the road portion.
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DETERMINING A STATE OF A VEHICLE ON
A ROAD

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] The present application for patent claims priority to
European Patent Office Application Ser. No. 22173553.3,
entitled “DETERMINING A STATE OF A VEHICLE ON A
ROAD” filed on May 16, 2022, assigned to the assignee
thereof, and expressly incorporated herein by reference.

TECHNICAL FIELD

[0002] The present disclosure relates to methods and sys-
tems for determining a state of a vehicle on a road. More
specifically, embodiments and aspects of the present disclo-
sure relate to initialization of filters for the vehicle on a road
and systems and methods for selection of the initialized
filters by means of machine learning algorithms to determine
the state of the vehicle on the road.

BACKGROUND

[0003] During the last few years, the research and devel-
opment activities related to autonomous vehicles have
exploded in number and many different approaches are
being explored. An increasing portion of modern vehicles
have advanced driver-assistance systems (ADAS) to
increase vehicle safety and more generally road safety.
ADAS—which for instance may be represented by adaptive
cruise control (ACC) collision avoidance system, forward
collision warning, etc.—are electronic systems that may aid
a vehicle driver while driving. Today, there is ongoing
research and development within a number of technical
areas associated to both the ADAS and the Autonomous
Driving (AD) field. ADAS and AD will herein be referred to
under the common term Automated Driving System (ADS)
corresponding to all of the different levels of automation as
for example defined by the SAE J3016 levels (0-5) of
driving automation, and in particular for level 4 and 5.
[0004] In a not too distant future, ADS solutions are
expected to have found their way into a majority of the new
cars being put on the market. An ADS may be construed as
a complex combination of various components that can be
defined as systems where perception, decision making, and
operation of the vehicle are performed by electronics and
machinery instead of a human driver, and as introduction of
automation into road traffic. This includes handling of the
vehicle, destination, as well as awareness of surroundings.
While the automated system has control over the vehicle, it
allows the human operator to leave all or at least some
responsibilities to the system. An ADS commonly combines
a variety of sensors to perceive the vehicle’s surroundings,
such as e.g. radar, LIDAR, sonar, camera, navigation system
e.g. GPS, odometer and/or inertial measurement units
(IMUs), upon which advanced control systems may interpret
sensory information to identify appropriate navigation paths,
as well as obstacles, free-space areas, and/or relevant sig-
nage.

[0005] An important requirement for autonomous and
semi-autonomous vehicles is that they are able to estimate
the pose i.e. the state (position and orientation) of the vehicle
with accuracy and consistency since this is an important
safety aspect when the vehicle is moving within traffic.
Conventionally, satellite based positioning systems (Global
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Navigation Satellite Systems, GNSS), like for instance
Global Positioning System (GPS), Globalnaya Navigazion-
naya Sputnikovaya Sistema (GLONASS), Galileo, Beidou,
have been used for positioning purposes.

[0006] However, these and other regional systems are
often not accurate enough to rely on solely for determining
the pose of a moving vehicle in autonomous applications.
Moreover, GNSS based solutions have even less accuracy in
determining height information.

[0007] Alternatively, there are systems and methods which
utilize HD-map information together with a number of
different sensors to increase the reliability of the map
position such as cameras, LIDAR, RADAR, and other
sensors for determining vehicle travelling parameters such
as speed, angular rate and so on. However, even given
current vehicle pose, it is still hard to predict a robust vehicle
pose estimation by only odometry due to the measurement
noise from different measurement sensors, e.g. motion sen-
SOIS.

[0008] There is thus a need in the art for new and
improved solutions for determining the state of the vehicle
on the road with more certainty and accuracy.

SUMMARY

[0009] It is therefore an object of the present invention to
provide a system, a vehicle comprising such a system, a
method, and a computer-readable storage medium, which
alleviate all or at least some of the drawbacks of presently
known solutions.

[0010] More specifically, it is an object of the present
invention to alleviate problems related to determination of
state of a vehicle comprising an Automated Driving System
(ADS) feature on a road portion having two or more lanes.
[0011] These objects are achieved by means of a system,
a vehicle comprising such a control system, a method, and
a computer-readable storage medium, as defined in the
appended independent claims. The term exemplary is in the
present context to be understood as serving as an instance,
example or illustration.

[0012] According to a first aspect of the present invention,
there is provided a method for determining a state of a
vehicle on a road portion having two or more lanes, the
vehicle comprising an Automated Driving System (ADS)
feature. The method comprises obtaining map data associ-
ated with the road portion and obtaining positioning data
indicating a pose of the vehicle on the road and obtaining
sensor data from a sensor system of the vehicle. Further the
method comprises initializing a plurality of filters for the
road portion wherein one filter is initialized per lane of the
road portion based on the obtained map data, the obtained
positioning data, and the obtained sensor data, wherein each
filter indicates an estimated state of the vehicle on the road
portion. Additionally, the method comprises associating one
or more sensor data point(s) in the obtained sensor data to a
corresponding map-element of the obtained map data and
determining one or more normalized similarity score(s)
between the associated obtained map data and the obtained
sensor data. Further, the method comprises determining one
or more multivariate time-series data based on the deter-
mined one or more normalized similarity score(s), wherein
each multivariate time-series data is attributed to a corre-
sponding initialized filter among the plurality of initialized
filters. In addition, the method comprises providing the one
or more multivariate time-series data as input to a trained
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machine-learning algorithm. The trained machine learning
algorithm is configured for determining a confidence prob-
ability value for each initialized filter of the plurality of
initialized filters by means of a probabilistic classifier.
Further the machine learning algorithm is configured for
selecting one of the initialized filters, by comparing the
confidence probability values determined for each initialized
filter in conjunction with one or more multi-objective opti-
mized coefficient(s), each optimized coeflicient being
indicative of an optimization, e.g. an optimized trade-off,
between a readiness performance indicator and an accuracy
performance indicator for selecting a single initialized filter
as an output of the machine learning algorithm. The output
of the machine learning algorithm is indicative of a current
state of the vehicle on the road portion. The method further
comprises controlling the ADS feature of the vehicle based
on the selected initialized filter.

[0013] When it comes to autonomous vehicles, an accu-
rate localization of the vehicle state is of great importance in
order to make safe decisions without endangering a vehi-
cle’s occupants or external objects, particularly when using
the ADS features.

[0014] According to the presented method, by employing
a data-driven approach comprising the use of machine
learning algorithms to identify and select the most promising
initialized filter out of the plurality of initialized filters per
lane of a multi-lane road, the possibilities of accurately and
efficiently estimating the state of the vehicle on the road
portion are noticeably improved. This advantage is particu-
larly noteworthy in comparison with rule-based algorithm
designs for identifying the most accurate initialized filter
indicative of the state of the vehicle on the road portion.
Even though the rule-based approaches may be capable of
accurately determining the state of the vehicle on the road
portion, the likelihood of avoiding unforeseeable corner
cases is considerably enhanced by training and employing
the machine learning algorithm according to the present
invention.

[0015] To this end, the trained machine learning algorithm
is used to influence and promote behavior that leads to an
increased possibility of generating interesting scenarios,
including the corner case scenarios involving multiple envi-
ronmental variables or conditions happening simultaneously
or outside the conventional levels. Further, the versatility of
the proposed solution establishes the proposed method, and
corresponding system and vehicle to be readily adaptable for
varying traffic situations or road and transportation infra-
structure in different countries.

[0016] According to some embodiments, each initialized
filter may be one of a Bayesian filter and a combination of
multiple Bayesian filters. In several embodiments, each
Bayesian filter may be one of Kalman Filter, Extended
Kalman Filter, EKF, Unscented Kalman Filter, UKF, Cuba-
ture Kalman Filter, CKF, and Particle Filter, PF.

[0017] In various embodiments, the obtained sensor data
may comprise information about a state of one or more other
vehicles in the surrounding environment of the vehicle, lane
marker geometry, lane marker type, traffic sign information,
road barrier information, and Inertial Measurement Unit,
IMU, data. In various embodiments the map data may
comprise HD-map data.

[0018] In some embodiments, the method may further
comprise determining one or more normalized similarity
score(s) between the associated obtained map data and the
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obtained sensor data by computing an association cost value
for each sensor data point of the one or more sensor data
point(s) associated to a corresponding map element; and
selecting a sensor data point and map-element combination
having the smallest association cost value.

[0019] In several embodiments, the method may further
comprise determining the one or more multivariate time-
series data based on the determined one or more normalized
similarity score(s) by obtaining one or more time-dependent
feature(s) of each determined normalized similarity score.

[0020] In some embodiments, the trained machine learn-
ing algorithm may be further configured for sorting the
determined confidence probability values for the plurality of
the initialized filters based on the confidence level of each
determined confidence probability value.

[0021] In several embodiments, for each optimized coet-
ficient the readiness performance indicator may comprise
any one of an availability performance indicator comprising
a proportion of the one or more multivariate time-series data
for which a selection of a single initialized filter is performed
by the trained machine learning algorithm. The readiness
performance indicator may further comprise an earliness
performance indicator comprising an average fraction
passed of the one or more multivariate time-series data
before a selection of a single initialized filter is performed by
the trained machine learning algorithm. Further for each
optimized coefficient the performance accuracy indicator
may comprise a proportion of correctly-selected single ini-
tialized filters by the trained machine learning algorithm,
being indicative of the current state of the vehicle on the
road portion.

[0022] According to a second aspect of the present inven-
tion there is provided a (non-transitory) computer-readable
storage medium storing one or more programs configured to
be executed by one or more processors of a processing
system, the one or more programs comprising instructions
for performing the method according to any one of the
embodiments of the method disclosed herein.

[0023] The term “non-transitory,” as used herein, is
intended to describe a computer-readable storage medium
(or “memory”) excluding propagating electromagnetic sig-
nals, but are not intended to otherwise limit the type of
physical computer-readable storage device that is encom-
passed by the phrase computer-readable medium or memory.
For instance, the terms “non-transitory computer readable
medium” or “tangible memory” are intended to encompass
types of storage devices that do not necessarily store infor-
mation permanently, including for example, random access
memory (RAM). Program instructions and data stored on a
tangible computer-accessiblestorage medium in non-transi-
tory form may further be transmitted by transmission media
or signals such as electrical, electromagnetic, or digital
signals, which may be conveyed via a communication
medium such as a network and/or a wireless link. Thus, the
term “non-transitory”, as used herein, is a limitation of the
medium itself (i.e., tangible, not a signal) as opposed to a
limitation on data storage persistency (e.g., RAM vs. ROM).

[0024] According to a third aspect of the present inven-
tion, there is provided a computer program product com-
prising instructions which, when the program is executed by
one or more processors of a processing system, causes the
processing system to carry out the method according to any
one of the embodiments of the method disclosed herein.
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[0025] According to a further fourth aspect, there is pro-
vided a system for determining a state of a vehicle on a road
portion having two or more lanes, the vehicle comprising an
Automated Driving System, ADS, feature, the system com-
prising processing circuitry configured to obtain map data
associated with the road portion and to obtain positioning
data indicating a pose of the vehicle on the road and to obtain
sensor data from a sensor system of the vehicle. Further, the
processing circuitry is configured to initialize a plurality of
filters for the road portion wherein one filter is initialized per
lane of the road portion based on the obtained map data, the
obtained positioning data, and the obtained sensor data,
wherein each filter indicates an estimated state of the vehicle
on the road portion. Even further, the processing circuitry is
configured to associate one or more sensor data point(s) in
the obtained sensor data to a corresponding map-element of
the obtained map data and determine one or more normal-
ized similarity score(s) between the associated obtained map
data and the obtained sensor data. In addition, the processing
circuitry is configured to determine one or more multivariate
time-series data based on the determined one or more
normalized similarity score(s), wherein each multivariate
time-series data is attributed to a corresponding initialized
filter among the plurality of initialized filters. The processing
circuitry is additionally configured to provide the one or
more multivariate time-series data as input to a trained
machine-learning algorithm. The trained machine learning
algorithm is configured to determine a confidence probabil-
ity value for each initialized filter of the plurality of initial-
ized filters by means of a probabilistic classifier and select
one of the initialized filters, by comparing the confidence
probability values determined for each initialized filter in
conjunction with one or more multi-objective optimized
coeflicient(s), each optimized coefficient being indicative of
an optimization between a readiness performance indicator
and an accuracy performance indicator for selecting a single
initialized filter as an output of the machine learning algo-
rithm indicative of a current state of the vehicle on the road
portion. The processing circuitry is further configured to
control the ADS feature of the vehicle based on the selected
initialized filter.

[0026] According to yet another fifth aspect, there is
provided a vehicle comprising one or more vehicle-mounted
sensors configured to monitor a surrounding environment of
the vehicle. The vehicle further comprises a localization
system configured to monitor a pose of the vehicle i.e.
geographical position and heading of the vehicle on a road.
The vehicle further comprises a system according to the
fourth aspects and various embodiments of the fourth aspect.
The vehicle further comprises an ADS feature for control-
ling one or more of acceleration, steering, and braking of the
vehicle.

[0027] Further embodiments of the different aspects are
defined in the dependent claims.

[0028] Itisto be noted that all the embodiments, elements,
features and advantages associated with the first aspect also
analogously apply to the second, third, fourth and the fifth
aspects of the present disclosure.

[0029] These and other features and advantages of the
present disclosure will in the following be further clarified in
the following detailed description.
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BRIEF DESCRIPTION OF THE DRAWINGS

[0030] Further objects, features and advantages of
embodiments of the disclosure will appear from the follow-
ing detailed description, reference being made to the accom-
panying drawings. The drawings are not to scale.

[0031] FIG. 1 shows a schematic top view of a road
portion having multiple lanes and a vehicle traveling on the
road portion in accordance with some embodiments.
[0032] FIG. 2 shows a schematic block diagrams of a
machine learning algorithm in accordance with several
embodiments.

[0033] FIGS. 3a-b are schematic flowcharts illustrating a
method in accordance with several embodiments.

[0034] FIG. 4 shows a schematic side view illustration of
the vehicle comprising the control system in accordance
with some embodiments.

DETAILED DESCRIPTION

[0035] Those skilled in the art will appreciate that the
steps, services and functions explained herein may be imple-
mented using individual hardware circuitry, using software
functioning in conjunction with a programmed micropro-
cessor or general purpose computer, using one or more
Application Specific Integrated Circuits (ASICs) and/or
using one or more Digital Signal Processors (DSPs). It will
also be appreciated that when the present disclosure is
described in terms of a method, it may also be embodied in
one or more processors and one or more memories coupled
to the one or more processors, wherein the one or more
memories store one or more programs that perform the steps,
services and functions disclosed herein when executed by
the one or more processors.

[0036] In the following description of exemplary embodi-
ments, the same reference numerals denote the same or
similar components. Even though the following disclosure
mainly discusses vehicles in the form of cars, the skilled
reader readily realizes that the teachings discussed herein are
applicable to other forms of vehicles such as trucks, buses
and construction equipment.

[0037] FIG. 1illustrates a schematic perspective top views
of a vehicle 1 comprising an Automated Driving System
(ADS). Moreover, the ADS comprises one or more ADS
features that are preferably a level 2 feature or higher
according to SAE J3016 levels of driving automation for
on-road vehicles. In the present context, an ADS feature may
be in the form of an autopilot feature, a traffic jam pilot, a
highway pilot, or any other SAE J3016 level 2+ ADS
feature. The vehicle 1 may also be referred to as the
ego-vehicle.

[0038] The vehicle 1 comprises a control system 10 for
controlling a driver support function (i.e. an ADS feature)
for autonomously maneuvering the vehicle 1 according to
several embodiments and aspects of the present disclosure.
The control system 10 may be a part of the overall ADS
architecture of the vehicle, and may accordingly be a module
or component of the ADS. The control system 10 of the
vehicle 1 comprises control circuitry 11 or processing cir-
cuitry 11 configured to obtain data comprising information
about the surrounding environment of the vehicle 1. The
vehicle is also provided with a localization system 5 which
in communication with the control system 10 are configured
to provide an estimation of the vehicle’s 1 state or pose i.e.
vehicle’s geographical position and heading on the road
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portion 24. The term obtaining is herein to be interpreted
broadly and encompasses receiving, retrieving, collecting,
acquiring, and so forth.

[0039] The state of the vehicle in the context of this
disclosure can be construed as having three physical states,
namely the longitude, the latitude and the heading of the
vehicle. The longitude and the latitude are defined with
respect to a geographical coordinate system such as the
Cartesian coordinate system and indicate the longitudinal
position and lateral position of the vehicle on the road
portion. The heading of the vehicle indicates the compass
direction of the vehicle with respect to the geographical
north 120 and is typically understood as an angle ()
between a vector 100 of a forward-orientation of the vehicle
and a center line 110 extending from the vehicle towards the
geographical north. The state of the vehicle may also be
referred to as a pose of the vehicle. The pose is in some
embodiments represented by a 2D Cartesian position and a
yaw of the vehicle (%, y, 8). However, in some embodiments,
the pose is a 6D pose where the position is defined by a 3D
Cartesian position and the orientation is defined by a roll,
pitch, and yaw of the vehicle.

[0040] FIG. 1 shows the ego-vehicle 1 travelling on a
portion 24 of a road. In this example, the road is in the form
of a carriage way having four lanes 101-104, and the road
portion 24 is a portion of the carriage way. In several other
examples and embodiments the road may be any other type
of'road e.g. a highway with dual carriageways. The road may
also be a motorway, freeway or expressway. The road may
also be a country road, rural road or any other carriageway.
The road may have a plurality of lanes such as more than one
lane in the same travelling direction e.g. two or more lanes
or at least one lane in each travelling direction as is usually
the case for rural roads.

[0041] The control system 10 of vehicle 1 is configured to
determine the geographical position and heading of the
vehicle on the road portion 24 based on data from the
localization system 5 comprising positioning data indicating
a pose, i.e. position and orientation, of the vehicle on the
road portion 24, map data associated with the road portion
24 and sensor data obtained by the from a perception system
i.e. sensor system 6 of the vehicle 1. In several embodi-
ments, the vehicle may utilize a localization system 5 in the
form of a suitable satellite based positioning systems, such
as either one of a GNSS or a corresponding regional system
such as e.g. a GPS, Globalnaya Navigazionnaya Sputnik-
ovaya Sistema (GLONASS), Galileo, Beidou, etc.

[0042] The localization system 5 may comprise or be
associated with an HD-map module. An HD-map is in the
present context to be understood as map comprising data
with highly accurate and realistic representations of the road
travelled upon by the vehicle 1. In more detail HD-maps
may be understood as maps that are particularly built for
autonomous driving purposes. These maps have an
extremely high precision, oftentimes at a centimeter-level.
Moreover, the maps generally contain information such as
where the lanes are, where the road boundaries are, where
the curves are, how high the curves are, and so forth.
[0043] The control system 10 may for in various aspects
and embodiments comprise or be associated with an Inertial
Measurement Unit (IMU). An IMU may be understood as a
device configured to detect linear acceleration using one or
more accelerometers and rotational rate using one or more
gyroscopes. Thus, in some embodiments, the sensor data

Nov. 16, 2023

may be in the form of sensor data obtained from the IMU.
The output from the IMU is then used to estimate a change
in the vehicle’s pose over time. In more detail, the prediction
of the vehicle’s pose may be estimated based on a vehicle
motion model together with motion sensor data (e.g. data
from accelerometers and gyroscopes, which will herein
collectively be referred to as motion sensors). The obtained
sensor data may additionally comprise information about a
state of one or more other external vehicles in the surround-
ing environment of the ego-vehicle, lane marker geometry
on the two or more lanes of the portion 24 of the road, lane
marker 241-243 type (e.g. solid, dashed, double marker, etc.)
on the portion 24 of the road, traffic sign information 245,
road barrier information, etc.

[0044] Invarious aspects and embodiments, the prediction
of the pose of the vehicle performed by the control system
10 may comprise using linear or non-linear filtering e.g. by
using a Bayesian filter or a combination of multiple Bayes-
ian filters. In several aspects and embodiments, each Bayes-
ian filter may be one of Kalman Filter, Extended Kalman
Filter (EKF), Unscented Kalman Filter (UKF), Cubature
Kalman Filter (CKF), and Particle Filter (PF). The selection
of the Bayesian filters may be based on design factors or
quality of obtained sensor data e.g. the linearity of the sensor
measurement models which may control the use of suitable
filters or filter combinations for different sensors.

[0045] In an example shown in FIG. 1, the localization
system 5 of the vehicle 1, obtains a GNSS position of the
vehicle 1 on the road portion 24. This position is marked as
an initial position “A” of the vehicle 1 and a single filter
comprising a Bayesian filter or a combination of Bayesian
filters are initialized based on the initial position of vehicle
1 as well as the HD-map data of the road portion 24 together
with the sensor data to predict the state of the vehicle 1 of
the road portion. In several embodiments, the obtained
positioning data may comprise an initial longitude, initial
latitude and an initial heading of the vehicle 1 connected to
the initial GNSS position “A” of the vehicle. Realistically,
the GNSS data is usually associated with an uncertainty
“AA” indicated by the dashed circle in FIG. 1.

[0046] The inventors have realized that by initializing
multiple filters 201-204 for the multi-lane road portion 24 of
FIG. 2 such that one filter is initialized per lane 101-104 of
the road portion 24, the safety and certainty of the pose
estimation of the vehicle 1 on the road portion may be
increased noticeably. Even though, this approach requires
more computation and processing compared to initializing a
single filter around the initial GNSS position, it however
allows for a much safer and more certain decision making,
especially for controlling the ADS feature of the ego-vehicle
1. In the context of the present disclosure, the outcome or
output of each filter 201-204 may also be referred to as a
hypothesis. Each hypothesis therefore is an estimation of the
pose or state of the vehicle 1 on a designated lane among the
plurality of lanes 101-104 of the road portion 24. The
inventive method and system presented here therefore scru-
tinizes each hypothesis to select a most promising hypoth-
esis indicative of the most accurate state of the vehicle on the
road portions.

[0047] As shown in FIG. 1, by initializing a filter 201-204
per lane 101-104 on the road portion 24, each filter con-
tinuously provides an estimation of the state of the vehicle
1 on its designated lane based on the positioning data,
obtained sensor data and the HD-map data. Each filter may
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comprise a Bayesian filter or a combination of Bayesian
filters. This way, the most accurate initialized filter amongst
the plurality of initialized filters 201-204 can be identified
and selected which in turn will indicate the most accurate
pose of the vehicle 1 on the road portion 24.

[0048] In several embodiments, the initial longitudinal
position, initial later position and initial heading (initial
pose) comprised in the positioning data connected to the
initial position “A” of the vehicle may be obtained from a
satellite positioning module, wherein the satellite position-
ing module may use a Kalman filter or any variants of a
Kalman filter such as an extended Kalman filter, an
unscented Kalman filter, or a cubature Kalman filter, to
continuously estimate the vehicle’s pose with inputs of
GNSS data, and a predefined motion model of the vehicle.
This way initial positioning data of the vehicle 1 comprising
initial longitude, initial latitude and initial heading may be
obtained. In a prediction stage, the motion model may be
used together with the velocity and/or acceleration data e.g.
as obtained from the IMU to predict the vehicle’s pose. The
continuously-obtained positioning data e.g. GNSS data may
be applied to the Kalman filter to further estimate and update
the vehicle’s pose. An output of the satellite positioning
module is geodetic vehicle pose, including the initial head-
ing, initial longitude, initial latitude, or in some embodi-
ments an initial altitude of the vehicle.. In several embodi-
ments, a pose converter may be used to transform the initial
vehicle pose (output of the satellite positioning module)
from geodetic coordinates to a local Cartesian coordinate
system. As a result, the initial vehicle pose can be repre-
sented as a longitudinal position, a lateral position, and a
heading.

[0049] It should be noted that the filter initialization is
designed to be a continuous process for controlling the ADS
feature of the ego-vehicle 1 and it is possible that in some
scenarios, all or some of the initialized filters and their
respective pose estimations will be terminated and a filter
re-initialization in all or some of the lanes will be repeated.
[0050] However, to select the most accurate initialized
filter amongst the plurality of initialized filters 201-204, it is
required to establish algorithms which will efficiently per-
form the selection process.

[0051] The inventors have further realized that by using a
data-driven approach comprising the use of machine learn-
ing (ML) algorithms to identify and select the most prom-
ising initialized filter out of the plurality of initialized filters
of a multi-lane road, the possibilities of accurately estimat-
ing the state of the vehicle on the road portion 24 improves
significantly. Further, the data-driven approach of the pres-
ent disclosure is much more scalable and easier to maintain
than any rule-based approach or any algorithm based on
human intuition.

[0052] Accordingly, hypothesis-inference algorithms and
methods according to the present disclosure comprise
machine learning algorithms used to influence and promote
behavior that increases the possibility for accurately esti-
mating the state of the vehicle in various scenarios including
corner case or edge case scenarios involving multiple envi-
ronmental variables or conditions happening simultaneously
or outside the conventional levels. Trained machine learning
algorithms in the present context may comprise supervised
machine learning algorithms, trained, tested and verified
based on conventional real-world data which is obtained
through driving the vehicle 1 on various types of roads under
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a variety of environmental conditions and for suitable peri-
ods of time to collect and evaluate the data sets for various
scenarios. Particularly, the process of training the ML algo-
rithm may comprises pre-processing, training, testing, and
validating phases. To this end, HD-map data, positioning
data, various sensor measurements including camera, radar,
LIDAR, GNSS, IMU, pose of other external vehicles in the
surrounding environment of the ego-vehicle 1, geometry and
type of lane markers, traffic signs and traffic information,
road barriers, weather forecast, etc. may be employed as
input data for training the ML algorithm. Further, reference
data, also referred to as “ground-truth” data from the real-
world driving data collection which include the actual poses
and trajectories of the ego-vehicle may be used. In some
aspects and embodiments, unsupervised machine learning
algorithms may be used for at least part of the determination
of the most accurate hypothesis. In some cases for instance
parameters of the trained supervised machine learning algo-
rithm may be used as the initial states for a continuous
unsupervised machine learning model based on the large
scale dataset.

[0053] In several embodiments and aspects in order to
assess the likelihood of the difference hypotheses and to be
able to select the most promising hypothesis among the
plurality of initialized hypotheses, the sensor measurements
(e.g. state of one or more other external vehicles in the
surrounding environment of the vehicle, lane marker geom-
etry, lane marker type, traffic sign information, road barrier
information, IMU data etc.) acquired by the sensor devices
are converted into a series of quality measures. This may
include associating one or more sensor data point(s) in the
obtained sensor data to a corresponding map-element of the
obtained map data on the HD-map. To perform such as
association of sensor measurements to the map data, both the
map elements and the sensor measurements may be con-
verted into a same coordinate system based on the believed
pose of the ego vehicle. Further, the association of each
sensor measurement i.e. sensor data point associated with
each sensor measurement to a map element may further
comprise determining one or more similarity score(s)
between the associated obtained map data and the obtained
sensor data. Determining the one or more similarity score(s)
between the associated obtained map data and the obtained
sensor data may be performed by computing an association
cost value for each sensor data point of the one or more
sensor data point(s) associated to a corresponding map
element and selecting a sensor data point and map-element
combination having the smallest association cost value. In
some embodiments if no association could be made or the
smallest association cost would be significantly high, a
default penalty is assigned to the sensor data point in
question e.g. by labeling the sensor data point as an outlier.
After the sensor data point-map element associations are
made, each association cost is normalized based on the
number of sensor data points that were used to provide a
normalized similarity score(s) between the associated
obtained map data and the obtained sensor data. The nor-
malization may be performed by means of known
approaches in the art e.g. by using a Chi-square distribution,
with the number of sensor data points corresponding to the
degrees of freedom of the Chi-square distribution. The
normalized similarity scores may also be referred to as
“measurement model qualities” or simply as “model quali-
ties” herein, each measurement model quality being indica-
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tive of the similarity between the HD-map elements and
perceived sensor data points e.g. sensor measurements of the
lane markers relative to each initialized filter 201-204. Each
measurement source may have its own model and thus its
own measurement model quality. For example, lane marker
geometry as a feature represents how well the geometry of
the lane markers perceived by the sensors of the vehicle 1
follow the expected geometry as displayed by the HD-map.
Using a Chi-square normalization ensures that all model
qualities have similar magnitudes, regardless of their num-
ber of sensor data points. This way, it is easier to combine
model qualities together and compare hypotheses. In some
exemplary embodiments the model qualities may be
obtained at a frequency of 40 Hz, however the model
qualities may be obtained at any other suitable frequencies.

[0054] Further, with reference to FIG. 2, in order to
provide the required input 201 to the supervised machine
learning algorithm 200 for selecting the most accurate
initialized filter, the model qualities are used for determining
one or more multivariate time-series data 201 based on the
determined one or more normalized similarity score(s),
wherein each multivariate time-series data may be attributed
to a corresponding initialized filter among the plurality of
initialized filters. In the present context by the multivariate
time-series it is meant a time-series in which each data point
is multi-dimensional. In FIG. 2, the number of one or more
multivariate time-series data equals “n” which is also the
number of active hypotheses. By way of example, for the
road portion 24 of FIG. 1, n would be equal to 4, since there
are 4 lanes on the road portion and each lane has a desig-
nated initialized hypothesis 201-204. Clearly the number of
hypothesis and the attributed input 201 may vary accord-
ingly depending on each scenario.

[0055] In FIG. 2 the input 201 to the machine learning
algorithm 200 comprises multivariate time-series data,
[MTS] _t'ie[l, n], for “i” being the number of active
hypotheses at a current time step “t”, wherein i=1, . . . , n.

[0056] Determination of the multivariate time-series data
may be done based on raw time-series data, or it may be
done using some feature extraction or transformation
method. Examples of features that can be extracted from
time-series data of the model qualities may be temporal
averages, mean of values, the variance, standard deviation,
the mode of the data or combinations or aggregations of the
model qualities. For example, one of the features may be
constructed by taking the mean of the two lane marker type
model qualities temporally and averaging them into one
value. Another feature may be the average variance for all
model qualities until a given time step. Any other examples
of extraction of features from the model qualities than the
ones mentioned above may similarly be performed. The
feature extraction or transformation methods may be any of
the known methods or processes in the art e.g. random
feature transformation by use of random convolutional ker-
nels, or extracting the mean, the standard deviation and the
slope of the data within specific time windows. Each [ MTS
] _t"ie[1, n]may be a vector of dimension txm, wherein m
equals the number of features obtained from the quality
models.

[0057] Other example of feature extraction and transfor-
mation may be used depending on the type of data and type
of an implemented probabilistic classifier which are
assumed to be readily available to the skilled person.
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[0058] The trained machine learning algorithm in several
embodiments and aspects may comprise a supervised
machine learning classifier 205, also referred to as a proba-
bilistic classifier herein. In various embodiments, various
probabilistic classifiers known in the art may be used such
as a Gaussian Naive Bayes, Logistic Regression, Canonical
Interval Forest (a state-of-the-art model for multivariate
time-series classification), Linear Support Vector Classifier,
Kernel Support Vector Classifier, tree ensemble classifiers
such as Gradient Boosting Classifier (a popular and widely
used model) or Random Forest Classifier, etc. Each of the
above-mentioned machine learning probabilistic classifiers
205 are accordingly trained and evaluated to be imple-
mented in the hypothesis inference algorithm presented in
this disclosure. Accordingly, by providing the one or more
multivariate time-series data as input 201 to the trained
machine-learning algorithm 200, a confidence probability
value 203 for each initialized filter of the plurality of
initialized filters may be determined by means of the trained
probabilistic classifier 205. The confidence probability val-
ues 203 in FIG. 2 comprises “n” probability values p_(1,)
p_(2,) ..., p_(n), each calculated for one of the “n” active
initialized hypothesis based on the input data [ MTS] _t'ie
[1, n].

[0059] As mentioned above, the supervised probabilistic
classifier may be applied to each hypothesis of the plurality
of hypotheses at given time steps “t”. The input fed into the
probabilistic classifier are time-dependent features of model
qualities i.e. the one or more multivariate time-series data,
[MTS] _t'ie[1, n], determined based on the determined
one or more normalized similarity score(s). The input data
may also be referred to as a driving sequence herein, each
driving sequence comprising the one or more concurrent
multivariate time-series data, each multivariate time-series
data being attributed to its corresponding initialized filter.

[0060] The output of the probabilistic classifier is a float-
ing probability value between “0” and “1” for each initial-
ized hypothesis. Stated differently, various features extracted
from the time-series data of the model qualities as explained
earlier may be fed into the supervised probabilistic classifier
in order to calculate the confidence probability values for
each of the hypotheses. The calculated confidence probabil-
ity value for each hypothesis i.e. initialized filter is an
indicative of accuracy of that specific hypothesis represent-
ing the state of the ego vehicle 1 on the road portion. In other
words, the trained machine learning algorithm ensures that
highest probable hypothesis is selected. This task is fulfilled
by a function 207 comprised in the trained machine learning
algorithm for assessing the confidence in selecting the most
accurate initialized hypothesis based on the output of the
probabilistic classifier. This function may also be referred to
as a trigger function 207 herein. The trigger function may be
a binary function, providing a “true” output class 217 which
signifies that a hypothesis is correct, and a “false” output
class 219 which signifies that a hypothesis is incorrect. The
probabilistic outputs of the probabilistic classifier fed into
the trigger function would lead to a belief of the trigger
function expressing if a hypothesis is part of the “true”
output class or not.

[0061] Accordingly, the purpose of the trigger function is
deciding if the output from the probabilistic classifier is
reliable enough, i.e. “true” output class 217, that it should
make a prediction, i.e. selection, of the most accurate
hypothesis. Further the trigger function may comprise a
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“reject” or “false” output class 219 functionality. That is,
where the trigger function may not reach a prediction based
on the outputs received from the probability classifier. In
these scenarios the trigger function 207 is configured to wait
for more data to be received from the probabilistic classifier.
The time 213 shown in FIG. 2 indicates that when the trigger
function 207 could not reach a certain hypothesis selection
at the current time “t”, it may wait for another time step “At”
in order to gather further data and evaluate the newly
generated driving sequence in the time step “t+At”. This way
a temporal aspect of the problem is taken into account,
meaning that by waiting for a longer period of time the
multivariate time-series data of the model qualities may
provide more information regarding the surroundings of the
ego vehicle which could in turn be used for a more confident
assessment in selecting the most accurate hypothesis by the
trigger function. Thus, the trigger function 207 is imple-
mented by providing a loop of gathering data, evaluating
hypotheses, and then either outputting a selection or gath-
ering more data. If the trigger function 207 deems the
prediction of the single initialized filter to be reliable
enough, then that hypothesis with highest probability is
selected as the output 215 of the machine learning algorithm
200.

[0062] In some exemplary embodiments the multivariate
time series data may be segmented into driving sequences of
a certain time length e.g. 30 seconds. With the model
qualities obtained at a frequency of 40 Hz, each driving
sequence may be segmented into 1200 time steps with each
1-second time length corresponding to 40 time steps.
Accordingly, each driving sequence may be evaluated at
certain lengths of time, for instance after 1 second has
passed. With the probabilistic classifier outputting its first
output at the current time step 40 (t=40) corresponding to 1
second at the 40 Hz rate, if the trigger function provides a
“true” class output 217 and a selection is made, then the
trigger function is only run once for that driving sequence.
Otherwise, it will be run at least once more waiting for more
data to arrive at the subsequent time steps (t=t+At). It should
be clear to a skilled person in the art that the above
mentioned scenario forms only an example according to
some embodiments and any other suitable parameter values
may be used instead.

[0063] In some embodiments the trigger function may be
implemented as a parametrized linear inequality function. In
various embodiments and aspects one of the initialized
filters having the highest confidence probability may be
selected by the trained machine learning algorithm by com-
paring the confidence probability values 203 determined for
each initialized filter. Further, one or more multi-objective
optimized coefficient(s) 209 may be introduced to the trigger
function 207. Each optimized coefficient 209 is indicative of
an optimization, e.g. an optimized trade-off, between a
readiness performance indicator and an accuracy perfor-
mance indicator for selecting a single initialized filter as an
output of the machine learning algorithm. In some exem-
plary embodiments the trigger function may make use of the
highest probability output of the classifier i.e. the most
probable hypothesis and the second highest probability
output of the classifier i.e. the second most probable hypoth-
esis and the difference between these two parameters for
evaluating the driving sequences in conjunction with the
multi-objective optimized coefficients. Other suitable com-
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binations of the outputs of the probabilistic classifier may
also be used by the trigger function for selecting the most
suitable hypothesis.

[0064] The selected initialized filter is indicative of a
current state of the vehicle 1 on the road portion 24. A
comparison of the probabilistic outputs is what is used to
determine the certainty with which a selection of the single
initialized filter can be made. In some embodiments the
outputs of the probabilistic classifier may be sorted 211 by
magnitude and used as input to the trigger function whose
output determines if a selection should be made at this time
step or if the model needs more data, i.e. time, to become
more confident in that the highest probable hypothesis,
given by the probabilistic classifier, is correct.

[0065] There are a few advantages to optimize over the
two objectives separately instead of merging them together
into one objective. Firstly, with a single objective, there may
be a need to weight the importance of the readiness and
accuracy in advance, which may be difficult in some situa-
tions. Moreover, no consideration needs to be made regard-
ing the scaling of the measures, which wouldn’t be the case
if they were to be optimized together. Finally, the results
from a multi-objective execution give a clearer picture of the
readiness-accuracy trade-off without having to run the algo-
rithm several times as would be the case in the single-
objective scenario.

[0066] In some embodiments the readiness performance
indicator may comprise an availability performance indica-
tor. In some embodiments the readiness performance indi-
cator may comprise an earliness performance indicator.
[0067] The multi-objective optimized coeflicients of the
trigger function are learned in the training phase of the ML
algorithm by optimizing both accuracy and readiness i.e.
availability and/or earliness performance measures. In
simple terms, the earliness performance measure accounts
for making a prediction of an initialized filter as fast as
possible. The availability performance measure accounts for
making a prediction of an initialized filter in as many
scenarios as possible. In other words, availability is defined
as the proportion of driving sequences for which the trigger
function provides a “true” output evaluation before the
sequence has ended i.e. before a set time step e.g. 1 second
and no more evaluations can be made. The accuracy per-
formance measure simply accounts for a proportion of
correctly-selected single initialized filters by the trained
machine learning algorithm i.e. the most accurate initialized
filter indicative of the current state of the vehicle 1 on the
road portion 24. Thus, a prediction of the most accurate
hypothesis for a sequence of input data may be provided as
soon as a prediction can be made with certainty, bearing in
mind that the more observations are made, the more certain
a prediction would be. The problem to be solved by the
multi-objective algorithm then becomes finding the trade-off
between accuracy and readiness. The coefficients of the
trigger function are established based on the multi-objective
optimization in the training phase of the trained machine
learning algorithm and the learned coefficients are then used
in the test stage to find the best hypothesis in conjunction
with the confidence probability values outputted by the
probabilistic classifier.

[0068] In several embodiments and examples, the multi-
objective optimization algorithm may be implemented by
using a genetic algorithm and more specifically NSGA2
algorithm. NSGA2 stands for (Non-Dominated Sorting
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Genetic Algorithm 2) which is a genetic algorithm for
producing non-dominated solutions in multi-objective opti-
mization. To choose one of the solutions from the non-
dominated solution set received, an achievement scalariza-
tion function as known in the art may be used. In summary,
an optimal solution will be returned based on a vector of
weights for accuracy and availability, as well as for accuracy
and earliness performance indicators. In various embodi-
ments and examples, the weights may be set by customizing
the preference for accuracy versus availability or earliness.
For instance, the weights may be set by choosing the
accuracy performance indicator to be more important than
availability and/or earliness measures. In various embodi-
ments, the training of the probabilistic classifier, the opti-
mization of the trigger function and testing of the complete
trained ML, model may be an iterative process performed
continuously on the obtained data sequences.

[0069] FIGS. 3a-b show flowcharts of a method 300
according to various aspects and embodiments of the present
disclosure for determining a state of a vehicle 1 on a road
portion 24 having two or more lanes 101-104. The method
300 comprises obtaining 301 map data, associated with the
road portion 24. As mentioned earlier the map data is
typically the HD-map data comprising data with highly
accurate and realistic representations of the road portion 24.
The method further comprises obtaining 303 positioning
data 402 indicating a pose of the vehicle 1 on the road. More
specifically, the initial GNSS position “A” of the vehicle 1
on the road portion 24 is obtained by the localization system
5. In several embodiments, the positioning data comprises
an initial longitude, initial latitude and an initial heading of
the vehicle 1 connected to the initial GNSS position “A” of
the vehicle.

[0070] The control system 10 is configured to perform the
method step of obtaining 305 sensor data from a sensor
system i.e. perception system 6 of the vehicle 1 comprising
a variety of different sensors such as sensors 6a-6¢ illus-
trated for the vehicle 1 of FIG. 4.

[0071] In some embodiments obtaining 305 sensor data
may comprise obtaining 314 at least one of acceleration and
velocity of the vehicle 1. By obtaining the velocity and/or
acceleration data as well as a temporal positioning profile of
the vehicle 1, an in-lane longitudinal position (x) of the
vehicle 1 on the road portion 24 can be determined.
[0072] Further, in several aspects and embodiments,
obtaining 305 sensor data may comprise obtaining 316 the
lane marker geometry and a relative distance of the vehicle
1 from the lane markers 241-243 on the road portion 24. By
retrieving the information about the lane markers on the road
portion and calculating the relative distance of the vehicle
from different lane marker types (e.g. the lane markers
located on a right side and/or on a left side of the vehicle),
an in-lane lateral position (y) and in-lane heading 100 of the
vehicle 1 on the road portion 24 may be determined. By
determining the longitudinal and in-lane lateral position of
the vehicle, the heading of the vehicle can be determined. To
determine the heading 100 of the vehicle, a tangent of the
angle “0” along the center line 110 (being substantially
parallel with the extension of at least one of the lanes on the
road portion 24) of the vehicle is calculated. As a result, the
direction of the tangent 100 along the lane is determined as
the initialization for the heading of the vehicle. The method
further comprises initializing 307 a plurality of filters 201-
204 for the road portion wherein one filter is initialized per
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lane 101-104 of the road portion 24 based on the obtained
map data, the obtained positioning data, and the obtained
sensor data, wherein each filter 201-204 indicates an esti-
mated state of the vehicle 1 on the road portion 24. As
mentioned earlier each filter may employ a Bayesian filter or
a combination of different Bayesian filters suitable for the
specific scenario to estimate the state of the vehicle 1. In
some embodiments, the initializing 307 of the filters 201-
204 per lane 101-104 of the road portion 24 may further
comprise, for each filter continuously obtaining 304 the
positioning data of the vehicle 1 on the road over time. In
other words, obtaining the initial GNSS position “A” of the
vehicle 1 on the road portion 24 is an iterative process and
the localization system 5 is configured to repeatedly acquire
the initial position “A” over a certain period of time, in
predetermined intervals, or based on any other suitable
temporal scheme. This way the certainty of the obtained
positioning data is noticeably elevated which contributes to
reducing the margin of error when estimating the vehicle
pose by each filter 201-204. In some embodiments each filter
may be initialized based on the determined 307a, 3075
longitudinal position (x) and in-lane lateral position (y) and
heading 100 of the vehicle 1 on the road portion for each
filter 201-204. The method continuous to FIG. 35 wherein it
is shown that the method 300 further comprises associating
309 one or more sensor data point(s) in the obtained sensor
data to a corresponding map-clement of the obtained map
data. Even further, the method 300 comprises determining
311 one or more normalized similarity score(s) between the
associated obtained map data and the obtained sensor data.
The method 300 further comprises determining 313 one or
more multivariate time-series data based on the determined
one or more normalized similarity score(s), wherein each
multivariate time-series data is attributed to a corresponding
initialized filter among the plurality of initialized filters.
Additionally, the method comprises providing 315 the one or
more multivariate time-series data as input 201 to a trained
machine-learning algorithm 200. The trained machine learn-
ing algorithm 200 is configured for determining 317 a
confidence probability value 203 e.g. including p_(1,) p_
(2,) p_(3,) p_(4), for each initialized filter of the plurality of
initialized filters 201-204 (4 filters in the example of FIG. 1,
with n=4) by means of a probabilistic classifier 205. Further,
the machine learning algorithm is configured for selecting
319 one of the initialized filters, by comparing the confi-
dence probability values determined for each initialized
filter in conjunction with one or more multi-objective opti-
mized coefficient(s) 209, each optimized coeflicient being
indicative of an optimization, e.g. an optimized trade-off,
between a readiness performance indicator and an accuracy
performance indicator for selecting a single initialized filter
as an output 215 of the machine learning algorithm. The
output of the machine learning algorithm is indicative of a
current state of the vehicle on the road portion. The method
further comprises controlling 321 the ADS feature of the
vehicle based on the selected initialized filter.

[0073] In some embodiments and aspects the method 300
may further comprise obtaining 323 a signal indicative of a
desired activation of the ADS feature. Controlling 321 the
ADS feature may comprise activating 325 the ADS feature
after the selection of the initialized filter has been made and
using the selected initialized filter to indicate the vehicle’s
state on the road portion 24. Accordingly, controlling 321
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the ADS feature may comprise at least controlling 321 one
or more of acceleration, steering, and braking of the vehicle.
[0074] In some embodiments the method 300 may further
comprise determining 311 the one or more similarity score
(s) between the associated obtained map data and the
obtained sensor data by computing 327 an association cost
value for each sensor data point of the one or more sensor
data point(s) associated to a corresponding map element and
selecting 329 a sensor data point and map-element combi-
nation having the smallest association cost value.

[0075] In several embodiments, the method 300 may
further comprise determining 313 the one or more multi-
variate time-series data based on the determined one or more
normalized similarity score(s) by obtaining 331 one or more
time-dependent feature(s) of each determined normalized
similarity score.

[0076] Executable instructions for performing these func-
tions are, optionally, included in a non-transitory computer-
readable storage medium or other computer program prod-
uct configured for execution by one or more processors.
[0077] In some embodiments, the trained machine learn-
ing algorithm may further be configured for sorting 333 the
determined confidence probability values for the plurality of
the initialized filters based on the confidence level or mag-
nitude of each determined confidence probability value.
[0078] In several embodiments for each multi-objective
optimized coeflicient the readiness performance indicator
may comprise an availability performance indicator com-
prising a proportion of the one or more multivariate time-
series data for which a selection of a single initialized filter
is performed by the trained machine learning algorithm, i.e.
the trigger function. In other words the availability perfor-
mance measure accounts for making a prediction of an
initialized filter in as many scenarios as possible. In some
embodiments, selection of a single initialized filter for a
proportion of the one or more multivariate time-series data
may be performed within or before a set period of time, as
discussed earlier with respect to time steps.

[0079] In several embodiments for each multi-objective
optimized coeflicient the readiness performance indicator
may comprise an earliness performance indicator compris-
ing an average fraction passed of the one or more multi-
variate time-series data before a selection of a single ini-
tialized filter is performed by the trained machine learning
algorithm 1i.e. the trigger function. In other words the earli-
ness performance measure accounts for making a prediction
of an initialized filter as fast as possible.

[0080] Further, in several embodiments, the accuracy per-
formance indicator may comprise a proportion of correctly-
selected single initialized filters by the trained machine
learning algorithm, i.e. the trigger function, being indicative
of the current state of the vehicle on the road portion. In
other words, the accuracy performance measure simply
accounts for a proportion of correctly-selected single ini-
tialized filters.

[0081] FIG. 4 is a schematic side view of a vehicle 1
comprising a control system 10 (control device 10) for
determining a vehicle pose. The vehicle 1 further comprises
a perception system 6 and a localization system 5. A
perception system 6 is in the present context to be under-
stood as a system responsible for acquiring raw sensor data
from on sensors 6a, 6b, 6¢ such as cameras, LIDARs and
RADARs, ultrasonic sensors, and converting this raw data
into scene understanding. In particular, the vehicle 1 has at
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least one vehicle-mounted camera 6¢ for capturing images
of (at least a portion of) a surrounding environment of the
vehicle. The localization system 5 is configured to monitor
a geographical position and heading of the vehicle, and may
in the form of a Global Navigation Satellite System (GNSS),
such as a GPS. However, the localization system may
alternatively be realized as a Real Time Kinematics (RTK)
GPS in order to improve accuracy. Moreover, in the present
context the vehicle 1 is assumed to have access to a digital
map (e.g. a HD-map), either in the form of a locally stored
digital map or via a remote data repository accessible via an
external communication network 20 (e.g. as a data stream).
In some embodiments, the access to the digital map may for
example be provided by the localization system 5.

[0082] The control system 10 comprises one or more
processors 11, a memory 12, a sensor interface 13 and a
communication interface 14. The processor(s) 11 may also
be referred to as a control circuit 11 or control circuitry 11
or processing circuitry 11. The control circuit 11 is config-
ured to execute instructions stored in the memory 12 to
perform a method for determining a state of an ADS-
equipped vehicle on a road portion having one or more lanes
according to any one of the embodiments disclosed herein.
In more detail, the processing circuitry 11 is configured to
perform the method steps of the method 300 in FIGS. 3a-b
and with reference to FIG. 2 to select a single initialized
filter by the ML algorithm on the multi-lane 101-104 stretch
of road 24. The memory 12 of the control device 10 can
include one or more (non-transitory) computer-readable
storage mediums, for storing computer-executable instruc-
tions, which, when executed by one or more computer
processors 11, for example, can cause the computer proces-
sors 11 to perform the techniques described herein. The
memory 12 optionally includes high-speed random access
memory, such as DRAM, SRAM, DDR RAM, or other
random access solid-state memory devices; and optionally
includes non-volatile memory, such as one or more magnetic
disk storage devices, optical disk storage devices, flash
memory devices, or other non-volatile solid-state storage
devices.

[0083] Further, the vehicle 1 may be connected to external
network(s) 20 via for instance a wireless link (e.g. for
retrieving map data). The same or some other wireless link
may be used to communicate with other external vehicles in
the vicinity of the vehicle or with local infrastructure ele-
ments. Cellular communication technologies may be used
for long range communication such as to external networks
and if the cellular communication technology used have low
latency it may also be used for communication between
vehicles, vehicle to vehicle (V2V), and/or vehicle to infra-
structure, V2X. Examples of cellular radio technologies are
GSM, GPRS, EDGE, LTE, 5G, 5G NR, and so on, also
including future cellular solutions. However, in some solu-
tions mid to short range communication technologies are
used such as Wireless Local Area (LAN), e.g. IEEE 802.11
based solutions. ETSI is working on cellular standards for
vehicle communication and for instance 5G is considered as
a suitable solution due to the low latency and efficient
handling of high bandwidths and communication channels.
[0084] The present disclosure has been presented above
with reference to specific embodiments. However, other
embodiments than the above described are possible and
within the scope of the disclosure. Different method steps
than those described above, performing the method by
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hardware or software, may be provided within the scope of
the disclosure. Thus, according to an exemplary embodi-
ment, there is provided a non-transitory computer-readable
storage medium storing one or more programs configured to
be executed by one or more processors of a vehicle control
system, the one or more programs comprising instructions
for performing the method according to any one of the
above-discussed embodiments. In several aspects and
embodiments, there is provided a computer program product
comprising instructions which, when the program is
executed by one or more processors of a processing system,
causes the processing system to carry out the method
according to any one of the embodiments of the method of
the present disclosure.

[0085] Alternatively, according to another exemplary
embodiment a cloud computing system can be configured to
perform any of the methods presented herein. The cloud
computing system may comprise distributed cloud comput-
ing resources that jointly perform the methods presented
herein under control of one or more computer program
products.

[0086] Generally speaking, a computer-accessible
medium may include any tangible or non-transitory storage
media or memory media such as electronic, magnetic, or
optical media—e.g., disk or CD/DVD-ROM coupled to
computer system via bus. The terms “tangible” and “non-
transitory,” as used herein, are intended to describe a com-
puter-readable storage medium (or “memory”) excluding
propagating electromagnetic signals, but are not intended to
otherwise limit the type of physical computer-readable stor-
age device that is encompassed by the phrase computer-
readable medium or memory. For instance, the terms “non-
transitory computer-readable medium” or “tangible
memory” are intended to encompass types of storage
devices that do not necessarily store information perma-
nently, including for example, random access memory
(RAM). Program instructions and data stored on a tangible
computer-accessible storage medium in non-transitory form
may further be transmitted by transmission media or signals
such as electrical, electromagnetic, or digital signals, which
may be conveyed via a communication medium such as a
network and/or a wireless link.

[0087] The processor(s) 11 (associated with the control
device 10) may be or include any number of hardware
components for conducting data or signal processing or for
executing computer code stored in memory 12. The device
10 may have an associated memory 12, and the memory 12
may be one or more devices for storing data and/or computer
code for completing or facilitating the various methods
described in the present description. The memory may
include volatile memory or non-volatile memory. The
memory 12 may include database components, object code
components, script components, or any other type of infor-
mation structure for supporting the various activities of the
present description. According to an exemplary embodi-
ment, any distributed or local memory device may be
utilized with the systems and methods of this description.
According to an exemplary embodiment the memory 12 is
communicably connected to the processor 11 (e.g., via a
circuit or any other wired, wireless, or network connection)
and includes computer code for executing one or more
processes described herein.

[0088] It should be appreciated that the ego-vehicle 1
further comprises a sensor interface 13 which may also
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provide the possibility to acquire sensor data directly or via
dedicated sensor control circuitry 6 in the vehicle. The
vehicle 1 also comprises a communication/antenna interface
14 which may further provide the possibility to send output
to a remote location (e.g. remote operator or control centre)
by means of an antenna 8. Moreover, some sensors in the
vehicle may communicate with the control device 10 using
a local network setup, such as CAN bus, 12C, Ethernet,
optical fibres, and so on. The communication interface 14
may be arranged to communicate with other control func-
tions of the vehicle and may thus be seen as control interface
also; however, a separate control interface (not shown) may
be provided. Local communication within the vehicle may
also be of a wireless type with protocols such as WiFi, LoRa,
Zigbee, Bluetooth, or similar mid/short range technologies.
[0089] Accordingly, it should be understood that parts of
the described solution may be implemented either in the
vehicle, in a system located external the vehicle, or in a
combination of internal and external the vehicle; for instance
in a server in communication with the vehicle, a so called
cloud solution. In some examples, the ML algorithm may be
implemented in the processing circuitry 11. In some
examples, sensor data may be sent to an external system,
wherein the external system comprises the ML algorithm to
select the single initialized filter. The different features and
steps of the embodiments may be combined in other com-
binations than those described.

[0090] It should be noted that the word “comprising” does
not exclude the presence of other elements or steps than
those listed and the words “a” or “an” preceding an element
do not exclude the presence of a plurality of such elements.
It should further be noted that any reference signs do not
limit the scope of the claims, that the disclosure may be at
least in part implemented by means of both hardware and
software, and that several “means” or “units” may be
represented by the same item of hardware.

[0091] Although the figures may show a specific order of
method steps, the order of the steps may differ from what is
depicted. In addition, two or more steps may be performed
concurrently or with partial concurrence. Such variation will
depend on the software and hardware systems chosen and on
designer choice. All such variations are within the scope of
the disclosure. Likewise, in some cases some of the software
implementations may be accomplished with standard pro-
gramming techniques with rule-based logic and other logic
to accomplish the various connection steps, processing
steps, comparison steps and decision steps. The above
mentioned and described embodiments are only given as
examples and should not be limiting to the present disclo-
sure. Other solutions, uses, objectives, and functions within
the scope of the disclosure as claimed in the below described
patent embodiments should be apparent for the person
skilled in the art.

1. A method for determining a state of a vehicle on a road
portion having two or more lanes, the vehicle comprising an
Automated Driving System (ADS) feature, the method
comprising:

obtaining map data associated with the road portion;

obtaining positioning data indicating a pose of the vehicle

on the road;

obtaining sensor data from a sensor system of the vehicle;

initializing a plurality of filters for the road portion

wherein one filter is initialized per lane of the road
portion based on the obtained map data, the obtained
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positioning data, and the obtained sensor data, wherein
each filter indicates an estimated state of the vehicle on
the road portion;

associating one or more sensor data point(s) in the

obtained sensor data to a corresponding map-element
of the obtained map data;

determining one or more normalized similarity score(s)

between the associated obtained map data and the
obtained sensor data;
determining one or more multivariate time-series data
based on the determined one or more normalized
similarity score(s), wherein each multivariate time-
series data is attributed to a corresponding initialized
filter among the plurality of initialized filters; and

providing the one or more multivariate time-series data as
input to a trained machine-learning algorithm; wherein
the trained machine learning algorithm is configured
for:

determining a confidence probability value for each ini-

tialized filter of the plurality of initialized filters by
means of a probabilistic classifier;
selecting one of the initialized filters, by comparing the
confidence probability values determined for each ini-
tialized filter in conjunction with one or more multi-
objective optimized coeflicient(s), each optimized coef-
ficient being indicative of an optimization between a
readiness performance indicator and an accuracy per-
formance indicator for selecting a single initialized
filter as an output of the machine learning algorithm
indicative of a current state of the vehicle on the road
portion; wherein the method further comprises:

controlling the ADS feature of the vehicle based on the
selected initialized filter.

2. The method according to claim 1, wherein each ini-
tialized filter is one of a Bayesian filter and a combination of
multiple Bayesian filters.

3. The method according to claim 2, wherein each Bayes-
ian filter is one of Kalman Filter, Extended Kalman Filter
(EKF), Unscented Kalman Filter (UKF), Cubature Kalman
Filter (CKF), and Particle Filter (PF).

4. The method according to claim 1, wherein the obtained
sensor data comprises information about a state of one or
more other vehicles in the surrounding environment of the
vehicle, lane marker geometry, lane marker type, traffic sign
information, road barrier information, and Inertial Measure-
ment Unit (IMU) data.

5. The method according to claim 1, wherein the method
further comprises determining one or more normalized
similarity score(s) between the associated obtained map data
and the obtained sensor data by:

computing an association cost value for each sensor data

point of the one or more sensor data point(s) associated
to a corresponding map element; and

selecting a sensor data point and map-element combina-

tion having the smallest association cost value.

6. The method according to claim 1, wherein the method
further comprises determining the one or more multivariate
time-series data based on the determined one or more
normalized similarity score(s) by obtaining one or more
time-dependent feature(s) of each determined normalized
similarity score.

7. The method according to claim 1, wherein the trained
machine learning algorithm is further configured for:
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sorting the determined confidence probability values for
the plurality of the initialized filters based on the
confidence level of each determined confidence prob-
ability value.

8. The method according to claim 1, wherein for each
optimized coeflicient:

the readiness performance indicator comprises any one of

an availability performance indicator comprising a pro-
portion of the one or more multivariate time-series data
for which a selection of a single initialized filter is
performed by the trained machine learning algorithm;
and an earliness performance indicator comprising an
average fraction passed of the one or more multivariate
time-series data before a selection of a single initialized
filter is performed by the trained machine learning
algorithm; and

further for each optimized coefficient:

the performance accuracy indicator comprises a propor-

tion of correctly-selected single initialized filters by the
trained machine learning algorithm, being indicative of
the current state of the vehicle on the road portion.

9. The method according to claim 1, wherein the map data
comprises HD map data.

10. A non-transitory computer-readable storage medium
storing one or more programs configured to be executed by
one or more processors of an in-vehicle processing system,
the one or more programs comprising instructions for per-
forming the method according to claim 1.

11. A system for determining a state of a vehicle on a road
portion having two or more lanes, the vehicle comprising an
Automated Driving System (ADS) feature, and the system
comprising processing circuitry configured to:

obtain map data associated with the road portion;

obtain positioning data indicating a pose of the vehicle on

the road;

obtain sensor data from a sensor system of the vehicle;

initialize a plurality of filters for the road portion wherein

one filter is initialized per lane of the road portion based
on the obtained map data, the obtained positioning data,
and the obtained sensor data, wherein each filter indi-
cates an estimated state of the vehicle on the road
portion;

associate one or more sensor data point(s) in the obtained

sensor data to a corresponding map-element of the
obtained map data;

determine one or more normalized similarity score(s)

between the associated obtained map data and the
obtained sensor data;
determine one or more multivariate time-series data based
on the determined one or more normalized similarity
score(s), wherein each multivariate time-series data is
attributed to a corresponding initialized filter among the
plurality of initialized filters; and
provide the one or more multivariate time-series data as
input to a trained machine-learning algorithm; wherein
the trained machine learning algorithm is configured to:

determine a confidence probability value for each initial-
ized filter of the plurality of initialized filters by means
of a probabilistic classifier;

select one of the initialized filters, by comparing the

confidence probability values determined for each ini-
tialized filter in conjunction with one or more multi-
objective optimized coeflicient(s), each optimized coef-
ficient being indicative of an optimization between a
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readiness performance indicator and an accuracy per-
formance indicator for selecting a single initialized
filter as an output of the machine learning algorithm
indicative of a current state of the vehicle on the road
portion; wherein the processing circuitry is further
configured to:
control the ADS feature of the vehicle based on the
selected initialized filter.
12. The system according to claim 11, wherein the pro-
cessing circuitry is further configured to:
compute an association cost value for each sensor data
point of the one or more sensor data point(s) associated
to a corresponding map element; and
select a sensor data point and map-element combination
having the smallest association cost value.
13. The system according to claim 11, wherein the pro-
cessing circuitry is further configured to:
determine the one or more multivariate time-series data
based on the determined one or more normalized
similarity score(s) by obtaining one or more time-
dependent feature(s) of each determined normalized
similarity score.
14. The system according to claim 11, wherein for each
optimized coeflicient:
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the readiness performance indicator comprises any one of
an availability performance indicator comprising a pro-
portion of the one or more multivariate time-series data
for which a selection of a single initialized filter is
performed by the trained machine learning algorithm;
and an earliness performance indicator comprising an
average fraction passed of the one or more multivariate
time-series data before a selection of a single initialized
filter is performed by the trained machine learning
algorithm; and

further for each optimized coefficient:

the performance accuracy indicator comprises a propor-
tion of correctly-selected single initialized filters by the
trained machine learning algorithm, being indicative of
the current state of the vehicle on the road portion.

15. A vehicle comprising:

one or more vehicle-mounted sensors configured to moni-
tor a surrounding environment of the vehicle;

a localization system configured to monitor a pose of the
vehicle on a road; and

a system according to claim 11.
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