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PARALLEL PROCESSING TECHNIQUES
FOR EXPEDITING RECONCILIATION FOR
A HIERARCHY OF FORECASTS ON A
COMPUTER SYSTEM

REFERENCE TO RELATED APPLICATION

This claims the benefit of priority under 35 U.S.C. §
119(e) to U.S. Provisional Patent Application No. 63/457,
391 filed May 5, 2023, and to U.S. Provisional Patent
Application No. 63/461,208, filed Apr. 21, 2023, the entirety
of'each of which is hereby incorporated by reference herein.

TECHNICAL FIELD

The present disclosure relates generally to parallel pro-
cessing in a computing cluster. More specifically, but not by
way of limitation, this disclosure relates to a parallel pro-
cessing technique for expediting reconciliation of a hierar-
chy of forecasts on a computer system.

BACKGROUND

In some situations, time series data can be organized
hierarchically. For example, an administrator of a network
can receive a set of time series indicating the total number
of packets flowing through the network’s servers over a
given time window, such as one month. Each time series can
correspond to an individual server and each data point in the
time series can indicate the total number of packets flowing
through that server at a particular point in time, such as on
a given day. The data points can be collected daily or at
another frequency. The servers can be geographically dis-
tributed across a country, such as the United States. The time
series may be organized hierarchically by geographical
region, such as by states, counties, and cities within the
country. When time series data is organized in a hierarchical
fashion, there are often constraints that link the time series
together at different levels of the hierarchy. For example, the
total packet flow through the entire network should be the
sum of all of the packet flow through all of the states covered
by the network. While these constraints may be inherently
satisfied by actual time-series data, it can be more challeng-
ing to meet these constraints in the context of predictive
forecasting.

Forecasting can involve generating time-stamped data
(e.g., a time series) with predicted values over a future time
window. Such forecasts are normally generated using mod-
els, such as machine-learning models. In some cases, the
forecasts can have a hierarchical relationship with respect to
one another. For example, the forecasts can be generated to
predict the packet flow through the network at the state level,
the county level, and the city level over a future time
window. But imposing the abovementioned constraints dur-
ing a forecasting process may be challenging, because the
forecasts are often individually generated by the models,
without regard for the other levels of the hierarchy. As a
result, such forecasts often do not respect the constraints. To
resolve this problem, after the forecasts have been gener-
ated, a reconciliation process may be applied to the forecasts
to adjust the forecasts so that they adhere to those con-
straints.

SUMMARY

One example of the present disclosure includes a system
comprising one or more processors and one or more memo-
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ries. The one or more memories can include program code
that is executable by the one or more processors for causing
the one or more processors to perform operations. The
operations can include receiving a plurality of forecasts that
have a hierarchical relationship with respect to one another,
wherein each forecast among the plurality of forecasts
corresponds to a respective level of a hierarchy, and wherein
at least one forecast in the plurality of forecasts corresponds
to a higher level of the hierarchy than at least one other
forecast of the plurality of forecasts. The operations can
include distributing the plurality of forecasts among a plu-
rality of computing nodes of a distributed computing envi-
ronment by time point, such that all data points correspond-
ing to a same time point in the plurality of forecasts are
assigned to a same computing node of the plurality of
computing nodes. The plurality of computing nodes can be
configured to collectively process the plurality of forecasts
in parallel to implement a reconciliation process that
involves adjusting the plurality of forecasts subject to an
aggregation constraint. The plurality of computing nodes
can be further configured to: receive a plurality of datasets
corresponding to a plurality of time points, each dataset of
the plurality of datasets including a respective set of data
points from the plurality of forecasts corresponding to a
single time point; organize the respective set of data points
in each of the plurality of datasets by forecast to generate a
plurality of ordered datasets; assign the plurality of ordered
datasets to a plurality of processing threads on the plurality
of computing nodes, the plurality of processing threads
being executable in parallel to implement respective por-
tions of the reconciliation process using the plurality of
ordered datasets; execute the plurality of processing threads
to implement the reconciliation process on the plurality of
forecasts, to thereby generate a plurality of reconciled val-
ues; and output the plurality of reconciled values.

Another example of the present disclosure includes
method of operations. The operations can include receiving
a plurality of forecasts that have a hierarchical relationship
with respect to one another, wherein each forecast among the
plurality of forecasts corresponds to a respective level of a
hierarchy, and wherein at least one forecast in the plurality
of forecasts corresponds to a higher level of the hierarchy
than at least one other forecast of the plurality of forecasts.
The operations can include distributing the plurality of
forecasts among a plurality of computing nodes of a dis-
tributed computing environment by time point, such that all
data points corresponding to a same time point in the
plurality of forecasts are assigned to a same computing node
of the plurality of computing nodes. The plurality of com-
puting nodes can be configured to collectively process the
plurality of forecasts in parallel to implement a reconcilia-
tion process that involves adjusting the plurality of forecasts
subject to an aggregation constraint. The plurality of com-
puting nodes can be further configured to: receive a plurality
of datasets corresponding to a plurality of time points, each
dataset of the plurality of datasets including a respective set
of data points from the plurality of forecasts corresponding
to a single time point; organize the respective set of data
points in each of the plurality of datasets by forecast to
generate a plurality of ordered datasets; assign the plurality
of ordered datasets to a plurality of processing threads on the
plurality of computing nodes, the plurality of processing
threads being executable in parallel to implement respective
portions of the reconciliation process using the plurality of
ordered datasets; execute the plurality of processing threads
to implement the reconciliation process on the plurality of
forecasts, to thereby generate a plurality of reconciled val-
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ues; and output the plurality of reconciled values. The
operations can be implemented by one or more processors.

Yet another example of the present disclosure includes a
non-transitory computer-readable medium comprising pro-
gram code that is executable by one or more processors for
causing the one or more processors to perform operations.
The operations can include receiving a plurality of forecasts
that have a hierarchical relationship with respect to one
another, wherein each forecast among the plurality of fore-
casts corresponds to a respective level of a hierarchy, and
wherein at least one forecast in the plurality of forecasts
corresponds to a higher level of the hierarchy than at least
one other forecast of the plurality of forecasts. The opera-
tions can include distributing the plurality of forecasts
among a plurality of computing nodes of a distributed
computing environment by time point, such that all data
points corresponding to a same time point in the plurality of
forecasts are assigned to a same computing node of the
plurality of computing nodes. The plurality of computing
nodes can be configured to collectively process the plurality
of forecasts in parallel to implement a reconciliation process
that involves adjusting the plurality of forecasts subject to an
aggregation constraint. The plurality of computing nodes
can be further configured to: receive a plurality of datasets
corresponding to a plurality of time points, each dataset of
the plurality of datasets including a respective set of data
points from the plurality of forecasts corresponding to a
single time point; organize the respective set of data points
in each of the plurality of datasets by forecast to generate a
plurality of ordered datasets; assign the plurality of ordered
datasets to a plurality of processing threads on the plurality
of computing nodes, the plurality of processing threads
being executable in parallel to implement respective por-
tions of the reconciliation process using the plurality of
ordered datasets; execute the plurality of processing threads
to implement the reconciliation process on the plurality of
forecasts, to thereby generate a plurality of reconciled val-
ues; and output the plurality of reconciled values.

This summary is not intended to identify key or essential
features of the claimed subject matter, nor is it intended to
be used in isolation to determine the scope of the claimed
subject matter. The subject matter should be understood by
reference to appropriate portions of the entire specification,
any or all drawings, and each claim.

The foregoing, together with other features and examples,
will become more apparent upon referring to the following
specification, claims, and accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure is described in conjunction with
the appended FIGURES:

FIG. 1 shows an example of the hardware components of
a data transmission network according to some aspects of
the present disclosure.

FIG. 2 shows an example network including an example
set of devices communicating with each other over an
exchange system according to some aspects of the present
disclosure.

FIG. 3 shows an example representation of a conceptual
model of a communications protocol system according to
some aspects of the present disclosure.

FIG. 4 shows a communications grid computing system
including a variety of control and worker nodes according to
some aspects of the present disclosure.

FIG. 5 shows a flow chart showing an example process for
adjusting a communications grid or a work project in a
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communications grid after a failure of a node according to
some aspects of the present disclosure.

FIG. 6 shows a portion of a communications grid com-
puting system including a control node and a worker node
according to some aspects of the present disclosure.

FIG. 7 shows a flow chart showing an example method
700 for executing a project within a grid computing system
according to some aspects of the present disclosure.

FIG. 8 shows a block diagram including components of an
Event Stream Processing Engine (ESPE) according to some
aspects of the present disclosure.

FIG. 9 shows a flow chart of an example process includ-
ing operations performed by an event stream processing
engine according to some aspects of the present disclosure.

FIG. 10 shows an ESP system interfacing between pub-
lishing device and event subscribing devices according to
some aspects of the present disclosure.

FIG. 11 shows a flow chart of an example of a process for
generating and using a machine-learning model according to
some aspects of the present disclosure.

FIG. 12 shows a node-link diagram of an example of a
neural network according to some aspects of the present
disclosure.

FIG. 13 shows various aspects of the use of containers as
a mechanism to allocate processing, storage and/or other
resources of a processing system to the performance of
various analyses according to some aspects of the present
disclosure.

FIG. 14 shows a block diagram of an example of a
computer system for expediting reconciliation of a hierarchy
of forecasts according to some aspects of the present dis-
closure.

FIG. 15 shows a block diagram of an example of a
hierarchy of forecasts according to some aspects of the
present disclosure.

FIG. 16 shows an example of a hierarchy of forecasts
according to some aspects of the present disclosure.

FIG. 17 shows an example of a hierarchy of data tables
according to some aspects of the present disclosure.

FIG. 18 shows an example of a dataset corresponding to
a particular time point in a set of forecasts according to some
aspects of the present disclosure.

FIG. 19 shows an example of an S-matrix according to
some aspects of the present disclosure.

FIG. 20 shows a block diagram of an example of a
computer system with a modified S-matrix and a modified
G-matrix according to some aspects of the present disclo-
sure.

FIG. 21 shows an example of a dataset, an S-matrix, a
modified dataset, and a modified S-matrix according to some
aspects of the present disclosure.

FIG. 22 shows a flowchart of an example of a process for
dividing and distributing forecast data among a group of
nodes according to some aspects of the present disclosure.

FIG. 23 shows a flowchart of an example of a process for
performing reconciliation on a computing node according to
some aspects of the present disclosure.

FIG. 24 shows a flowchart of an example of a process for
S-matrix validation according to some aspects of the present
disclosure.

FIG. 25 shows a flowchart of an example of a process for
performing reconciliation on a processing thread of a com-
puting node according to some aspects of the present dis-
closure.

In the appended FIGURES, similar components or fea-
tures can have the same reference number. Further, various
components of the same type may be distinguished by
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following the reference number with a lowercase letter that
distinguishes among the similar components. If only the first
reference number is used in the specification, the description
is applicable to any one of the similar components having
the same first reference number irrespective of the lowercase
letter.

DETAILED DESCRIPTION

Computerized forecasting can involve a computer system
executing a model (e.g., a machine-learning model) to
generate a forecast, which can include time-stamped data of
predicted values over a future time window. In some cases,
the computer system can generate multiple forecasts that
have a hierarchical relationship with respect to one another.
For example, a first forecast in the hierarchy may be
considered a parent and a second forecast in the hierarchy
may be considered a child of the parent. Given that the
forecasts have a hierarchical relationship with respect to one
another, it may be desirable to impose certain constraints
such as an aggregation constraint on the forecasts. An
aggregation constraint may be a requirement that values at
a lower level of the hierarchy sum up to values at a higher
level of the hierarchy. For instance, the total of all packet
flow through a state at any given point in time should be the
sum of all packet flow through all regions of the state at that
point in time. But imposing such constraints during a
forecasting process may be challenging for a variety of
reasons. To help resolve this problem, after the forecasts
have been generated, the computer system may perform a
reconciliation process on the forecasts to adjust the forecasts
so that they adhere to those constraints.

Existing reconciliation processes are technically complex.
They normally involve computationally intensive matrix
operations with high computational overhead. As a result,
reconciliation can be slow, inefficient, and resource intensive
(e.g., it can consume a significant amount of processing
power, memory, and storage) when performed in conven-
tional ways on a computer. This can prevent the computer
from performing other tasks and may introduce latency in
forecasting applications.

Existing reconciliation processes may also only handle
two forecasts of a hierarchy at a time. For example, if the
reconciliation process is to be applied to a four level
hierarchy, it may reconcile levels one and two, and then
levels two and three, and then levels three and four. This
pairwise reconciliation process can be difficult to implement
and may be computationally intensive.

Some examples of the present disclosure can overcome
one or more of the abovementioned problems by performing
reconciliation on a set of hierarchical forecasts (e.g., fore-
casts having a hierarchical relationship to one another) using
two levels of parallel processing on a computing cluster. The
two levels of parallel processing can include a first level of
parallelism in which the computing cluster divides the set of
forecasts by time point into datasets. Each dataset may
correspond to a single time point. For example, each dataset
may only consist of the data points related to that single time
point in the forecasts. After dividing the forecasts into the
datasets by time point, the computing cluster can distribute
the datasets among its computing nodes to be processed in
parallel by the computing nodes. The two levels of parallel
processing can also include a second level of parallelism.
The second level of parallelism can be applied at each
individual computing node. In particular, each individual
computing node can process its assigned datasets in parallel
using multiple threads (processing threads). For example, if
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five datasets are assigned to a single node, those five datasets
can be processed on that single node in parallel using five
threads, where each dataset is processed by one of the
threads. This can involve the thread executing a reconcili-
ation process on the data points in its assigned dataset. Using
these techniques, the reconciliation process can be distrib-
uted among multiple nodes of a computing cluster and
parallelized in two ways. This can significantly expedite the
reconciliation process and reduce latency.

The techniques described herein can also perform recon-
ciliation simultaneously across any number of levels of a
hierarchy. For example, by dividing and distributing all
levels of the hierarchy across the computing nodes for
parallel processing, as described above, the system can
simultaneously reconcile all levels of an N-level hierarchy
(e.g., rather than performing pairwise reconciliation on two
levels at a time). This may lead to improved accuracy as
compared to conventional approaches.

As noted above, an overall reconciliation process for the
set of forecasts can be divided up and distributed among
multiple threads of multiple computing nodes. Each thread
can execute a respective reconciliation process on its
assigned dataset to generate one or more reconciled values
for the corresponding time point. The computing cluster can
then collect the reconciled values for some or all of the time
points and use them to generate reconciled forecasts (e.g.,
reconciled versions of the original set of forecasts) that
satisfy one or more predefined constraints.

In some examples, each computing node can inspect one
of its assigned datasets to construct a summing matrix
(“S-matrix”) to be used by its threads in its reconciliation
processes. The S-matrix can encode the aggregation con-
straints between the levels of the hierarchy. The computing
nodes can then compare their S-matrices to one another to
check whether they match. This check can be performed
prior to the computing nodes executing their respective
reconciliation processes on their assigned datasets. If the
check succeeds, the computing nodes can proceed to execute
their respective reconciliation processes. If the check fails,
for example because at least two of the nodes have different
S-matrices, it may mean that the nodes disagree about the
aggregation constraints, so the computing cluster can issue
an error notification. By performing this validation prior to
executing the reconciliation processes, the computing clus-
ter can help avoid wasting computing resources by perform-
ing the reconciliation processes in situations that would
yield inaccurate results, because the S-matrices are used in
the reconciliation computations.

In some examples, each thread can check whether its
assigned dataset has any missing values. For example, there
can be a dataset that is assigned to a thread on a computing
node. The dataset can correspond to a time point in a set of
three forecasts. In the dataset, there can be three data
points—one data point extracted from each of the three
forecasts. The thread can analyze the three data points to
determine if any of them have missing values (e.g., an empty
or NULL value for a data point). A data point may have a
missing value for any number of reasons, such as a problem
with the forecasting model that produced the corresponding
forecast. If the thread determines that a data point is missing
a value, the thread can execute a missing-value handling
process. This can involve dynamically moditying the S-ma-
trix that it previously computed, for example, to remove a
row and/or column related to the missing value from the
S-matrix. The thread can then use the dynamically modified
S-matrix to perform its reconciliation process. In this way,
each thread can perform a missing value check on each of its
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assigned datasets and dynamically adjust the pre-computed
S-matrix upon detecting a missing value in a dataset, so that
the missing value does not negatively affect the reconcilia-
tion process for that dataset.

Because of some or all of the features described above,
the techniques described herein can be more stable and
hundreds or thousands of times faster than conventional
reconciliation approaches. For example, existing reconcili-
ation libraries such as HTS and Fabletools either cannot
perform any parallelization at all or can only performed
limited parallel processing on a single computer, not a
cluster of distributed nodes. The inability to perform parallel
reconciliation or distributed reconciliation significantly lim-
its the speed and abilities of these libraries. This can result
in memory errors and scalability problems when applied to
larger datasets. Some existing reconciliation libraries, such
as existing Python packages, also do not compute an S-ma-
trix or organize the forecast data. Thus, the techniques
described herein can provide numerous technical improve-
ments over existing reconciliation approaches.

These illustrative examples are given to introduce the
reader to the general subject matter discussed here and are
not intended to limit the scope of the disclosed concepts. The
following sections describe various additional features and
examples with reference to the drawings in which like
numerals indicate like elements but, like the illustrative
examples, should not be used to limit the present disclosure.

FIG. 1 is a block diagram that provides an illustration of
the hardware components of a data transmission network
100, according to embodiments of the present technology.
Data transmission network 100 is a specialized computer
system that may be used for processing large amounts of
data where a large number of computer processing cycles are
required.

Data transmission network 100 may also include com-
puting environment 114. Computing environment 114 may
be a specialized computer or other machine that processes
the data received within the data transmission network 100.
Data transmission network 100 also includes one or more
network devices 102. Network devices 102 may include
client devices that attempt to communicate with computing
environment 114. For example, network devices 102 may
send data to the computing environment 114 to be processed,
may send signals to the computing environment 114 to
control different aspects of the computing environment or
the data it is processing, among other reasons. Network
devices 102 may interact with the computing environment
114 through a number of ways, such as, for example, over
one or more networks 108. As shown in FIG. 1, computing
environment 114 may include one or more other systems.
For example, computing environment 114 may include a
database system 118 and/or a communications grid 120.

In other embodiments, network devices 102 may provide
a large amount of data, either all at once or streaming over
a period of time (e.g., using event stream processing (ESP),
described further with respect to FIGS. 8-10), to the com-
puting environment 114 via networks 108. For example,
network devices 102 may include network computers, sen-
sors, databases, or other devices that may transmit or oth-
erwise provide data to computing environment 114. For
example, network devices 102 may include local area net-
work devices, such as routers, hubs, switches, or other
computer networking devices. These devices may provide a
variety of stored or generated data, such as network data or
data specific to the network devices themselves. Network
devices 102 may also include sensors that monitor their
environment or other devices to collect data regarding that
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environment or those devices, and such network devices
may provide data they collect over time. Network devices
102 may also include devices within the internet of things,
such as devices within a home automation network. Some of
these devices may be referred to as edge devices, and may
involve edge computing circuitry. Data may be transmitted
by network devices 102 directly to computing environment
114 or to network-attached data stores, such as network-
attached data stores 110 for storage so that the data may be
retrieved later by the computing environment 114 or other
portions of data transmission network 100.

Data transmission network 100 may also include one or
more network-attached data stores 110. Network-attached
data stores 110 are used to store data to be processed by the
computing environment 114 as well as any intermediate or
final data generated by the computing system in non-volatile
memory. However, in certain embodiments, the configura-
tion of the computing environment 114 allows its operations
to be performed such that intermediate and final data results
can be stored solely in volatile memory (e.g., RAM), with-
out a requirement that intermediate or final data results be
stored to non-volatile types of memory (e.g., disk). This can
be useful in certain situations, such as when the computing
environment 114 receives ad hoc queries from a user and
when responses, which are generated by processing large
amounts of data, need to be generated on-the-fly. In this
non-limiting situation, the computing environment 114 may
be configured to retain the processed information within
memory so that responses can be generated for the user at
different levels of detail as well as allow a user to interac-
tively query against this information.

Network-attached data stores 110 may store a variety of
different types of data organized in a variety of different
ways and from a variety of different sources. For example,
network-attached data storage may include storage other
than primary storage located within computing environment
114 that is directly accessible by processors located therein.
Network-attached data storage may include secondary, ter-
tiary or auxiliary storage, such as large hard drives, servers,
virtual memory, among other types. Storage devices may
include portable or non-portable storage devices, optical
storage devices, and various other mediums capable of
storing or containing data. A machine-readable storage
medium or computer-readable storage medium may include
anon-transitory medium in which data can be stored and that
does not include carrier waves and/or transitory electronic
signals. Examples of a non-transitory medium may include,
for example, a magnetic disk or tape, optical storage media
such as compact disk or digital versatile disk, flash memory,
memory or memory devices. A computer-program product
may include code and/or machine-executable instructions
that may represent a procedure, a function, a subprogram, a
program, a routine, a subroutine, a module, a software
package, a class, or any combination of instructions, data
structures, or program statements. A code segment may be
coupled to another code segment or a hardware circuit by
passing and/or receiving information, data, arguments,
parameters, or memory contents. Information, arguments,
parameters, data, etc. may be passed, forwarded, or trans-
mitted via any suitable means including memory sharing,
message passing, token passing, and network transmission,
among others. Furthermore, the data stores may hold a
variety of different types of data. For example, network-
attached data stores 110 may hold unstructured (e.g., raw)
data, such as manufacturing data (e.g., a database containing
records identifying products being manufactured with
parameter data for each product, such as colors and models)
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or product sales databases (e.g., a database containing indi-
vidual data records identifying details of individual product
sales).

The unstructured data may be presented to the computing
environment 114 in different forms such as a flat file or a
conglomerate of data records, and may have data values and
accompanying time stamps. The computing environment
114 may be used to analyze the unstructured data in a variety
of ways to determine the best way to structure (e.g., hier-
archically) that data, such that the structured data is tailored
to a type of further analysis that a user wishes to perform on
the data. For example, after being processed, the unstruc-
tured time stamped data may be aggregated by time (e.g.,
into daily time period units) to generate time series data
and/or structured hierarchically according to one or more
dimensions (e.g., parameters, attributes, and/or variables).
For example, data may be stored in a hierarchical data
structure, such as a ROLAP OR MOLAP database, or may
be stored in another tabular form, such as in a flat-hierarchy
form.

Data transmission network 100 may also include one or
more server farms 106. Computing environment 114 may
route select communications or data to the one or more
server farms 106 or one or more servers within the server
farms. Server farms 106 can be configured to provide
information in a predetermined manner. For example, server
farms 106 may access data to transmit in response to a
communication. Server farms 106 may be separately housed
from each other device within data transmission network
100, such as computing environment 114, and/or may be
part of a device or system.

Server farms 106 may host a variety of different types of
data processing as part of data transmission network 100.
Server farms 106 may receive a variety of different data
from network devices 102, from computing environment
114, from cloud network 116, or from other sources. The
data may have been obtained or collected from one or more
sensors, as inputs from a control database, or may have been
received as inputs from an external system or device. Server
farms 106 may assist in processing the data by turning raw
data into processed data based on one or more rules imple-
mented by the server farms. For example, sensor data may
be analyzed to determine changes in an environment over
time or in real-time.

Data transmission network 100 may also include one or
more cloud networks 116. Cloud network 116 may include
a cloud infrastructure system that provides cloud services. In
certain embodiments, services provided by the cloud net-
work 116 may include a host of services that are made
available to users of the cloud infrastructure system on
demand. Cloud network 116 is shown in FIG. 1 as being
connected to computing environment 114 (and therefore
having computing environment 114 as its client or user), but
cloud network 116 may be connected to or utilized by any
of the devices in FIG. 1. Services provided by the cloud
network can dynamically scale to meet the needs of its users.
The cloud network 116 may include one or more computers,
servers, and/or systems. In some embodiments, the comput-
ers, servers, and/or systems that make up the cloud network
116 are different from the user’s own on-premises comput-
ers, servers, and/or systems. For example, the cloud network
116 may host an application, and a user may, via a commu-
nication network such as the Internet, on demand, order and
use the application.

While each device, server and system in FIG. 1 is shown
as a single device, it will be appreciated that multiple
devices may instead be used. For example, a set of network
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devices can be used to transmit various communications
from a single user, or remote server may include a server
stack. As another example, data may be processed as part of
computing environment 114.

Each communication within data transmission network
100 (e.g., between client devices, between servers 106 and
computing environment 114 or between a server and a
device) may occur over one or more networks 108. Net-
works 108 may include one or more of a variety of different
types of networks, including a wireless network, a wired
network, or a combination of a wired and wireless network.
Examples of suitable networks include the Internet, a per-
sonal area network, a local area network (LAN), a wide area
network (WAN), or a wireless local area network (WLAN).
A wireless network may include a wireless interface or
combination of wireless interfaces. As an example, a net-
work in the one or more networks 108 may include a
short-range communication channel, such as a BLU-
ETOOTH® communication channel or a BLUETOOTH®
Low Energy communication channel. A wired network may
include a wired interface. The wired and/or wireless net-
works may be implemented using routers, access points,
bridges, gateways, or the like, to connect devices in the
network 108, as will be further described with respect to
FIG. 2. The one or more networks 108 can be incorporated
entirely within or can include an intranet, an extranet, or a
combination thereof. In one embodiment, communications
between two or more systems and/or devices can be
achieved by a secure communications protocol, such as
secure sockets layer (SSL) or transport layer security (TLS).
In addition, data and/or transactional details may be
encrypted.

Some aspects may utilize the Internet of Things (IoT),
where things (e.g., machines, devices, phones, sensors) can
be connected to networks and the data from these things can
be collected and processed within the things and/or external
to the things. For example, the IoT can include sensors in
many different devices, and high value analytics can be
applied to identify hidden relationships and drive increased
efficiencies. This can apply to both big data analytics and
real-time (e.g., ESP) analytics. This will be described further
below with respect to FIG. 2.

As noted, computing environment 114 may include a
communications grid 120 and a transmission network data-
base system 118. Communications grid 120 may be a
grid-based computing system for processing large amounts
of data. The transmission network database system 118 may
be for managing, storing, and retrieving large amounts of
data that are distributed to and stored in the one or more
network-attached data stores 110 or other data stores that
reside at different locations within the transmission network
database system 118. The compute nodes in the grid-based
computing system 120 and the transmission network data-
base system 118 may share the same processor hardware,
such as processors that are located within computing envi-
ronment 114.

FIG. 2 illustrates an example network including an
example set of devices communicating with each other over
an exchange system and via a network, according to embodi-
ments of the present technology. As noted, each communi-
cation within data transmission network 100 may occur over
one or more networks. System 200 includes a network
device 204 configured to communicate with a variety of
types of client devices, for example client devices 230, over
a variety of types of communication channels.

As shown in FIG. 2, network device 204 can transmit a
communication over a network (e.g., a cellular network via
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a base station). The communication can be routed to another
network device, such as network devices 205-209, via base
station. The communication can also be routed to computing
environment 214 via base station. For example, network
device 204 may collect data either from its surrounding
environment or from other network devices (such as net-
work devices 205-209) and transmit that data to computing
environment 214.

Although network devices 204-209 are shown in FIG. 2
as a mobile phone, laptop computer, tablet computer, tem-
perature sensor, motion sensor, and audio sensor respec-
tively, the network devices may be or include sensors that
are sensitive to detecting characteristics of their environ-
ment. For example, the network devices may include sensors
such as water sensors, power sensors, electrical current
sensors, chemical sensors, optical sensors, pressure sensors,
geographic or position sensors (e.g., GPS), velocity sensors,
acceleration sensors, flow rate sensors, among others.
Examples of characteristics that may be sensed include
force, torque, load, strain, position, temperature, air pres-
sure, fluid flow, chemical properties, resistance, electromag-
netic fields, radiation, irradiance, proximity, acoustics, mois-
ture, distance, speed, vibrations, acceleration, electrical
potential, and electrical current, among others. The sensors
may be mounted to various components used as part of a
variety of different types of systems (e.g., an oil drilling
operation). The network devices may detect and record data
related to the environment that it monitors, and transmit that
data to computing environment 214.

As noted, one type of system that may include various
sensors that collect data to be processed and/or transmitted
to a computing environment according to certain embodi-
ments includes an oil drilling system. For example, the one
or more drilling operation sensors may include surface
sensors that measure a hook load, a fluid rate, a temperature
and a density in and out of the wellbore, a standpipe
pressure, a surface torque, a rotation speed of a drill pipe, a
rate of penetration, a mechanical specific energy, etc., and
downhole sensors that measure a rotation speed of a bit, fluid
densities, downhole torque, downhole vibration (axial, tan-
gential, lateral), a weight applied at a drill bit, an annular
pressure, a differential pressure, an azimuth, an inclination,
a dog leg severity, a measured depth, a vertical depth, a
downhole temperature, etc. Besides the raw data collected
directly by the sensors, other data may include parameters
either developed by the sensors or assigned to the system by
a client or other controlling device. For example, one or
more drilling operation control parameters may control
settings such as a mud motor speed to flow ratio, a bit
diameter, a predicted formation top, seismic data, weather
data, etc. Other data may be generated using physical
models such as an earth model, a weather model, a seismic
model, a bottom hole assembly model, a well plan model, an
annular friction model, etc. In addition to sensor and control
settings, predicted outputs, of for example, the rate of
penetration, mechanical specific energy, hook load, flow in
fluid rate, flow out fluid rate, pump pressure, surface torque,
rotation speed of the drill pipe, annular pressure, annular
friction pressure, annular temperature, equivalent circulating
density, etc. may also be stored in the data warehouse.

In another example, another type of system that may
include various sensors that collect data to be processed
and/or transmitted to a computing environment according to
certain embodiments includes a home automation or similar
automated network in a different environment, such as an
office space, school, public space, sports venue, or a variety
of other locations. Network devices in such an automated
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network may include network devices that allow a user to
access, control, and/or configure various home appliances
located within the user’s home (e.g., a television, radio,
light, fan, humidifier, sensor, microwave, iron, and/or the
like), or outside of the user’s home (e.g., exterior motion
sensors, exterior lighting, garage door openers, sprinkler
systems, or the like). For example, network device 102 may
include a home automation switch that may be coupled with
a home appliance. In another embodiment, a network device
can allow a user to access, control, and/or configure devices,
such as office-related devices (e.g., copy machine, printer, or
fax machine), audio and/or video related devices (e.g., a
receiver, a speaker, a projector, a DVD player, or a televi-
sion), media-playback devices (e.g., a compact disc player,
a CD player, or the like), computing devices (e.g., a home
computer, a laptop computer, a tablet, a personal digital
assistant (PDA), a computing device, or a wearable device),
lighting devices (e.g., a lamp or recessed lighting), devices
associated with a security system, devices associated with an
alarm system, devices that can be operated in an automobile
(e.g., radio devices, navigation devices), and/or the like.
Data may be collected from such various sensors in raw
form, or data may be processed by the sensors to create
parameters or other data either developed by the sensors
based on the raw data or assigned to the system by a client
or other controlling device.

In another example, another type of system that may
include various sensors that collect data to be processed
and/or transmitted to a computing environment according to
certain embodiments includes a power or energy grid. A
variety of different network devices may be included in an
energy grid, such as various devices within one or more
power plants, energy farms (e.g., wind farm, solar farm,
among others) energy storage facilities, factories, homes and
businesses of consumers, among others. One or more of
such devices may include one or more sensors that detect
energy gain or loss, electrical input or output or loss, and a
variety of other efficiencies. These sensors may collect data
to inform users of how the energy grid, and individual
devices within the grid, may be functioning and how they
may be made more efficient.

Network device sensors may also perform processing on
data they collect before transmitting the data to the com-
puting environment 114, or before deciding whether to
transmit data to the computing environment 114. For
example, network devices may determine whether data
collected meets certain rules, for example by comparing data
or values calculated from the data and comparing that data
to one or more thresholds. The network device may use this
data and/or comparisons to determine if the data should be
transmitted to the computing environment 214 for further
use or processing.

Computing environment 214 may include machines 220
and 240. Although computing environment 214 is shown in
FIG. 2 as having two machines, 220 and 240, computing
environment 214 may have only one machine or may have
more than two machines. The machines that make up
computing environment 214 may include specialized com-
puters, servers, or other machines that are configured to
individually and/or collectively process large amounts of
data. The computing environment 214 may also include
storage devices that include one or more databases of
structured data, such as data organized in one or more
hierarchies, or unstructured data. The databases may com-
municate with the processing devices within computing
environment 214 to distribute data to them. Since network
devices may transmit data to computing environment 214,
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that data may be received by the computing environment
214 and subsequently stored within those storage devices.
Data used by computing environment 214 may also be
stored in data stores 235, which may also be a part of or
connected to computing environment 214.

Computing environment 214 can communicate with vari-
ous devices via one or more routers 225 or other inter-
network or intra-network connection components. For
example, computing environment 214 may communicate
with client devices 230 via one or more routers 225. Com-
puting environment 214 may collect, analyze and/or store
data from or pertaining to communications, client device
operations, client rules, and/or user-associated actions stored
at one or more data stores 235. Such data may influence
communication routing to the devices within computing
environment 214, how data is stored or processed within
computing environment 214, among other actions.

Notably, various other devices can further be used to
influence communication routing and/or processing between
devices within computing environment 214 and with devices
outside of computing environment 214. For example, as
shown in FIG. 2, computing environment 214 may include
a machine 240 that is a web server. Thus, computing
environment 214 can retrieve data of interest, such as client
information (e.g., product information, client rules, etc.),
technical product details, news, current or predicted weather,
and so on.

In addition to computing environment 214 collecting data
(e.g., as received from network devices, such as sensors, and
client devices or other sources) to be processed as part of a
big data analytics project, it may also receive data in real
time as part of a streaming analytics environment. As noted,
data may be collected using a variety of sources as com-
municated via different kinds of networks or locally. Such
data may be received on a real-time streaming basis. For
example, network devices may receive data periodically
from network device sensors as the sensors continuously
sense, monitor and track changes in their environments.
Devices within computing environment 214 may also per-
form pre-analysis on data it receives to determine if the data
received should be processed as part of an ongoing project.
The data received and collected by computing environment
214, no matter what the source or method or timing of
receipt, may be processed over a period of time for a client
to determine results data based on the client’s needs and
rules.

FIG. 3 illustrates a representation of a conceptual model
of'a communications protocol system, according to embodi-
ments of the present technology. More specifically, FIG. 3
identifies operation of a computing environment in an Open
Systems Interaction model that corresponds to various con-
nection components. The model 300 shows, for example,
how a computing environment, such as computing environ-
ment 314 (or computing environment 214 in FIG. 2) may
communicate with other devices in its network, and control
how communications between the computing environment
and other devices are executed and under what conditions.

The model can include layers 301-307. The layers are
arranged in a stack. Each layer in the stack serves the layer
one level higher than it (except for the application layer,
which is the highest layer), and is served by the layer one
level below it (except for the physical layer, which is the
lowest layer). The physical layer is the lowest layer because
it receives and transmits raw bites of data, and is the farthest
layer from the user in a communications system. On the
other hand, the application layer is the highest layer because
it interacts directly with a software application.
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As noted, the model includes a physical layer 301. Physi-
cal layer 301 represents physical communication, and can
define parameters of that physical communication. For
example, such physical communication may come in the
form of electrical, optical, or electromagnetic signals. Physi-
cal layer 301 also defines protocols that may control com-
munications within a data transmission network.

Link layer 302 defines links and mechanisms used to
transmit (i.e., move) data across a network. The link layer
302 manages node-to-node communications, such as within
a grid computing environment. Link layer 302 can detect
and correct errors (e.g., transmission errors in the physical
layer 301). Link layer 302 can also include a media access
control (MAC) layer and logical link control (LLC) layer.

Network layer 303 defines the protocol for routing within
a network. In other words, the network layer coordinates
transferring data across nodes in a same network (e.g., such
as a grid computing environment). Network layer 303 can
also define the processes used to structure local addressing
within the network.

Transport layer 304 can manage the transmission of data
and the quality of the transmission and/or receipt of that
data. Transport layer 304 can provide a protocol for trans-
ferring data, such as, for example, a Transmission Control
Protocol (TCP). Transport layer 304 can assemble and
disassemble data frames for transmission. The transport
layer can also detect transmission errors occurring in the
layers below it.

Session layer 305 can establish, maintain, and manage
communication connections between devices on a network.
In other words, the session layer controls the dialogues or
nature of communications between network devices on the
network. The session layer may also establish checkpoint-
ing, adjournment, termination, and restart procedures.

Presentation layer 306 can provide translation for com-
munications between the application and network layers. In
other words, this layer may encrypt, decrypt and/or format
data based on data types and/or encodings known to be
accepted by an application or network layer.

Application layer 307 interacts directly with software
applications and end users, and manages communications
between them. Application layer 307 can identify destina-
tions, local resource states or availability and/or communi-
cation content or formatting using the applications.

Intra-network connection components 321 and 322 are
shown to operate in lower levels, such as physical layer 301
and link layer 302, respectively. For example, a hub can
operate in the physical layer, a switch can operate in the link
layer, and a router can operate in the network layer. Inter-
network connection components 323 and 328 are shown to
operate on higher levels, such as layers 303-307. For
example, routers can operate in the network layer and
network devices can operate in the transport, session, pre-
sentation, and application layers.

As noted, a computing environment 314 can interact with
and/or operate on, in various embodiments, one, more, all or
any of the various layers. For example, computing environ-
ment 314 can interact with a hub (e.g., via the link layer) so
as to adjust which devices the hub communicates with. The
physical layer may be served by the link layer, so it may
implement such data from the link layer. For example, the
computing environment 314 may control which devices it
will receive data from. For example, if the computing
environment 314 knows that a certain network device has
turned off, broken, or otherwise become unavailable or
unreliable, the computing environment 314 may instruct the
hub to prevent any data from being transmitted to the



US 11,809,915 B1

15

computing environment 314 from that network device. Such
a process may be beneficial to avoid receiving data that is
inaccurate or that has been influenced by an uncontrolled
environment. As another example, computing environment
314 can communicate with a bridge, switch, router or
gateway and influence which device within the system (e.g.,
system 200) the component selects as a destination. In some
embodiments, computing environment 314 can interact with
various layers by exchanging communications with equip-
ment operating on a particular layer by routing or moditying
existing communications. In another embodiment, such as in
a grid computing environment, a node may determine how
data within the environment should be routed (e.g., which
node should receive certain data) based on certain param-
eters or information provided by other layers within the
model.

As noted, the computing environment 314 may be a part
of'a communications grid environment, the communications
of which may be implemented as shown in the protocol of
FIG. 3. For example, referring back to FIG. 2, one or more
of machines 220 and 240 may be part of a communications
grid computing environment. A gridded computing environ-
ment may be employed in a distributed system with non-
interactive workloads where data resides in memory on the
machines, or compute nodes. In such an environment, ana-
Iytic code, instead of a database management system, con-
trols the processing performed by the nodes. Data is co-
located by pre-distributing it to the grid nodes, and the
analytic code on each node loads the local data into memory.
Each node may be assigned a particular task such as a
portion of a processing project, or to organize or control
other nodes within the grid.

FIG. 4 illustrates a communications grid computing sys-
tem 400 including a variety of control and worker nodes,
according to embodiments of the present technology. Com-
munications grid computing system 400 includes three con-
trol nodes and one or more worker nodes. Communications
grid computing system 400 includes control nodes 402, 404,
and 406. The control nodes are communicatively connected
via communication paths 451, 453, and 455. Therefore, the
control nodes may transmit information (e.g., related to the
communications grid or notifications), to and receive infor-
mation from each other. Although communications grid
computing system 400 is shown in FIG. 4 as including three
control nodes, the communications grid may include more
or less than three control nodes.

Communications grid computing system (or just “com-
munications grid”) 400 also includes one or more worker
nodes. Shown in FIG. 4 are six worker nodes 410-420.
Although FIG. 4 shows six worker nodes, a communications
grid according to embodiments of the present technology
may include more or less than six worker nodes. The number
of worker nodes included in a communications grid may be
dependent upon how large the project or data set is being
processed by the communications grid, the capacity of each
worker node, the time designated for the communications
grid to complete the project, among others. Each worker
node within the communications grid 400 may be connected
(wired or wirelessly, and directly or indirectly) to control
nodes 402-406. Therefore, each worker node may receive
information from the control nodes (e.g., an instruction to
perform work on a project) and may transmit information to
the control nodes (e.g., a result from work performed on a
project). Furthermore, worker nodes may communicate with
each other (either directly or indirectly). For example,
worker nodes may transmit data between each other related
to a job being performed or an individual task within a job
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being performed by that worker node. However, in certain
embodiments, worker nodes may not, for example, be con-
nected (communicatively or otherwise) to certain other
worker nodes. In an embodiment, worker nodes may only be
able to communicate with the control node that controls it,
and may not be able to communicate with other worker
nodes in the communications grid, whether they are other
worker nodes controlled by the control node that controls the
worker node, or worker nodes that are controlled by other
control nodes in the communications grid.

A control node may connect with an external device with
which the control node may communicate (e.g., a grid user,
such as a server or computer, may connect to a controller of
the grid). For example, a server or computer may connect to
control nodes and may transmit a project or job to the node.
The project may include a data set. The data set may be of
any size. Once the control node receives such a project
including a large data set, the control node may distribute the
data set or projects related to the data set to be performed by
worker nodes. Alternatively, for a project including a large
data set, the data set may be received or stored by a machine
other than a control node (e.g., a HADOOP® standard-
compliant data node employing the HADOOP® Distributed
File System, or HDFS).

Control nodes may maintain knowledge of the status of
the nodes in the grid (i.e., grid status information), accept
work requests from clients, subdivide the work across
worker nodes, and coordinate the worker nodes, among
other responsibilities. Worker nodes may accept work
requests from a control node and provide the control node
with results of the work performed by the worker node. A
grid may be started from a single node (e.g., a machine,
computer, server, etc.). This first node may be assigned or
may start as the primary control node that will control any
additional nodes that enter the grid.

When a project is submitted for execution (e.g., by a client
or a controller of the grid) it may be assigned to a set of
nodes. After the nodes are assigned to a project, a data
structure (i.e., a communicator) may be created. The com-
municator may be used by the project for information to be
shared between the project codes running on each node. A
communication handle may be created on each node. A
handle, for example, is a reference to the communicator that
is valid within a single process on a single node, and the
handle may be used when requesting communications
between nodes.

A control node, such as control node 402, may be desig-
nated as the primary control node. A server, computer or
other external device may connect to the primary control
node. Once the control node receives a project, the primary
control node may distribute portions of the project to its
worker nodes for execution. For example, when a project is
initiated on communications grid 400, primary control node
402 controls the work to be performed for the project in
order to complete the project as requested or instructed. The
primary control node may distribute work to the worker
nodes based on various factors, such as which subsets or
portions of projects may be completed most efficiently and
in the correct amount of time. For example, a worker node
may perform analysis on a portion of data that is already
local to (e.g., stored on) the worker node. The primary
control node also coordinates and processes the results of the
work performed by each worker node after each worker
node executes and completes its job. For example, the
primary control node may receive a result from one or more
worker nodes, and the control node may organize (e.g.,
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collect and assemble) the results received and compile them
to produce a complete result for the project received from
the end user.

Any remaining control nodes, such as control nodes 404
and 406, may be assigned as backup control nodes for the
project. In an embodiment, backup control nodes may not
control any portion of the project. Instead, backup control
nodes may serve as a backup for the primary control node
and take over as primary control node if the primary control
node were to fail. If a communications grid were to include
only a single control node, and the control node were to fail
(e.g., the control node is shut off or breaks), then the
communications grid as a whole may fail and any project or
job being run on the communications grid may fail and may
not complete. While the project may be run again, such a
failure may cause a delay (severe delay in some cases, such
as overnight delay) in completion of the project. Therefore,
a grid with multiple control nodes, including a backup
control node, may be beneficial.

To add another node or machine to the grid, the primary
control node may open a pair of listening sockets, for
example. A socket may be used to accept work requests from
clients, and the second socket may be used to accept
connections from other grid nodes. The primary control
node may be provided with a list of other nodes (e.g., other
machines, computers, servers) that will participate in the
grid, and the role that each node will fill in the grid. Upon
startup of the primary control node (e.g., the first node on the
grid), the primary control node may use a network protocol
to start the server process on every other node in the grid.
Command line parameters, for example, may inform each
node of one or more pieces of information, such as: the role
that the node will have in the grid, the host name of the
primary control node, and the port number on which the
primary control node is accepting connections from peer
nodes, among others. The information may also be provided
in a configuration file, transmitted over a secure shell tunnel,
or received from a configuration server, among others.
While the other machines in the grid may not initially know
about the configuration of the grid, that information may
also be sent to each other node by the primary control node.
Updates of the grid information may also be subsequently
sent to those nodes.

For any control node other than the primary control node
added to the grid, the control node may open three sockets.
The first socket may accept work requests from clients, the
second socket may accept connections from other grid
members, and the third socket may connect (e.g., perma-
nently) to the primary control node. When a control node
(e.g., primary control node) receives a connection from
another control node, it first checks to see if the peer node
is in the list of configured nodes in the grid. If it is not on
the list, the control node may clear the connection. If it is on
the list, it may then attempt to authenticate the connection.
If authentication is successful, the authenticating node may
transmit information to its peer, such as the port number on
which a node is listening for connections, the host name of
the node, and information about how to authenticate the
node, among other information. When a node, such as the
new control node, receives information about another active
node, it will check to see if it already has a connection to that
other node. If it does not have a connection to that node, it
may then establish a connection to that control node.

Any worker node added to the grid may establish a
connection to the primary control node and any other control
nodes on the grid. After establishing the connection, it may
authenticate itself to the grid (e.g., any control nodes,
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including both primary and backup, or a server or user
controlling the grid). After successful authentication, the
worker node may accept configuration information from the
control node.

When a node joins a communications grid (e.g., when the
node is powered on or connected to an existing node on the
grid or both), the node is assigned (e.g., by an operating
system of the grid) a universally unique identifier (UUID).
This unique identifier may help other nodes and external
entities (devices, users, etc.) to identify the node and dis-
tinguish it from other nodes. When a node is connected to
the grid, the node may share its unique identifier with the
other nodes in the grid. Since each node may share its unique
identifier, each node may know the unique identifier of every
other node on the grid. Unique identifiers may also designate
a hierarchy of each of the nodes (e.g., backup control nodes)
within the grid. For example, the unique identifiers of each
of'the backup control nodes may be stored in a list of backup
control nodes to indicate an order in which the backup
control nodes will take over for a failed primary control node
to become a new primary control node. However, a hierar-
chy of nodes may also be determined using methods other
than using the unique identifiers of the nodes. For example,
the hierarchy may be predetermined, or may be assigned
based on other predetermined factors.

The grid may add new machines at any time (e.g.,
initiated from any control node). Upon adding a new node
to the grid, the control node may first add the new node to
its table of grid nodes. The control node may also then notify
every other control node about the new node. The nodes
receiving the notification may acknowledge that they have
updated their configuration information.

Primary control node 402 may, for example, transmit one
or more communications to backup control nodes 404 and
406 (and, for example, to other control or worker nodes
within the communications grid). Such communications
may be sent periodically, at fixed time intervals, between
known fixed stages of the project’s execution, among other
protocols. The communications transmitted by primary con-
trol node 402 may be of varied types and may include a
variety of types of information. For example, primary con-
trol node 402 may transmit snapshots (e.g., status informa-
tion) of the communications grid so that backup control
node 404 always has a recent snapshot of the communica-
tions grid. The snapshot or grid status may include, for
example, the structure of the grid (including, for example,
the worker nodes in the grid, unique identifiers of the nodes,
or their relationships with the primary control node) and the
status of a project (including, for example, the status of each
worker node’s portion of the project). The snapshot may also
include analysis or results received from worker nodes in the
communications grid. The backup control nodes may
receive and store the backup data received from the primary
control node. The backup control nodes may transmit a
request for such a snapshot (or other information) from the
primary control node, or the primary control node may send
such information periodically to the backup control nodes.

As noted, the backup data may allow the backup control
node to take over as primary control node if the primary
control node fails without requiring the grid to start the
project over from scratch. If the primary control node fails,
the backup control node that will take over as primary
control node may retrieve the most recent version of the
snapshot received from the primary control node and use the
snapshot to continue the project from the stage of the project
indicated by the backup data. This may prevent failure of the
project as a whole.
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A backup control node may use various methods to
determine that the primary control node has failed. In one
example of such a method, the primary control node may
transmit (e.g., periodically) a communication to the backup
control node that indicates that the primary control node is
working and has not failed, such as a heartbeat communi-
cation. The backup control node may determine that the
primary control node has failed if the backup control node
has not received a heartbeat communication for a certain
predetermined period of time. Alternatively, a backup con-
trol node may also receive a communication from the
primary control node itself (before it failed) or from a
worker node that the primary control node has failed, for
example because the primary control node has failed to
communicate with the worker node.

Different methods may be performed to determine which
backup control node of a set of backup control nodes (e.g.,
backup control nodes 404 and 406) will take over for failed
primary control node 402 and become the new primary
control node. For example, the new primary control node
may be chosen based on a ranking or “hierarchy” of backup
control nodes based on their unique identifiers. In an alter-
native embodiment, a backup control node may be assigned
to be the new primary control node by another device in the
communications grid or from an external device (e.g., a
system infrastructure or an end user, such as a server or
computer, controlling the communications grid). In another
alternative embodiment, the backup control node that takes
over as the new primary control node may be designated
based on bandwidth or other statistics about the communi-
cations grid.

A worker node within the communications grid may also
fail. If a worker node fails, work being performed by the
failed worker node may be redistributed amongst the opera-
tional worker nodes. In an alternative embodiment, the
primary control node may transmit a communication to each
of the operable worker nodes still on the communications
grid that each of the worker nodes should purposefully fail
also. After each of the worker nodes fail, they may each
retrieve their most recent saved checkpoint of their status
and re-start the project from that checkpoint to minimize lost
progress on the project being executed.

FIG. 5 illustrates a flow chart showing an example process
500 for adjusting a communications grid or a work project
in a communications grid after a failure of a node, according
to embodiments of the present technology. The process may
include, for example, receiving grid status information
including a project status of a portion of a project being
executed by a node in the communications grid, as described
in operation 502. For example, a control node (e.g., a backup
control node connected to a primary control node and a
worker node on a communications grid) may receive grid
status information, where the grid status information
includes a project status of the primary control node or a
project status of the worker node. The project status of the
primary control node and the project status of the worker
node may include a status of one or more portions of a
project being executed by the primary and worker nodes in
the communications grid. The process may also include
storing the grid status information, as described in operation
504. For example, a control node (e.g., a backup control
node) may store the received grid status information locally
within the control node. Alternatively, the grid status infor-
mation may be sent to another device for storage where the
control node may have access to the information.

The process may also include receiving a failure commu-
nication corresponding to a node in the communications grid
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in operation 506. For example, a node may receive a failure
communication including an indication that the primary
control node has failed, prompting a backup control node to
take over for the primary control node. In an alternative
embodiment, a node may receive a failure that a worker
node has failed, prompting a control node to reassign the
work being performed by the worker node. The process may
also include reassigning a node or a portion of the project
being executed by the failed node, as described in operation
508. For example, a control node may designate the backup
control node as a new primary control node based on the
failure communication upon receiving the failure commu-
nication. If the failed node is a worker node, a control node
may identify a project status of the failed worker node using
the snapshot of the communications grid, where the project
status of the failed worker node includes a status of a portion
of the project being executed by the failed worker node at
the failure time.

The process may also include receiving updated grid
status information based on the reassignment, as described
in operation 510, and transmitting a set of instructions based
on the updated grid status information to one or more nodes
in the communications grid, as described in operation 512.
The updated grid status information may include an updated
project status of the primary control node or an updated
project status of the worker node. The updated information
may be transmitted to the other nodes in the grid to update
their stale stored information.

FIG. 6 illustrates a portion of a communications grid
computing system 600 including a control node and a
worker node, according to embodiments of the present
technology. Communications grid computing system 600
includes one control node (control node 602) and one
worker node (worker node 610) for purposes of illustration,
but may include more worker and/or control nodes. The
control node 602 is communicatively connected to worker
node 610 via communication path 650. Therefore, control
node 602 may transmit information (e.g., related to the
communications grid or notifications), to and receive infor-
mation from worker node 610 via path 650.

Similar to in FIG. 4, communications grid computing
system (or just “communications grid”) 600 includes data
processing nodes (control node 602 and worker node 610).
Nodes 602 and 610 include multi-core data processors. Each
node 602 and 610 includes a grid-enabled software compo-
nent (GESC) 620 that executes on the data processor asso-
ciated with that node and interfaces with buffer memory 622
also associated with that node. Each node 602 and 610
includes database management software (DBMS) 628 that
executes on a database server (not shown) at control node
602 and on a database server (not shown) at worker node
610.

Each node also includes a data store 624. Data stores 624,
similar to network-attached data stores 110 in FIG. 1 and
data stores 235 in FIG. 2, are used to store data to be
processed by the nodes in the computing environment. Data
stores 624 may also store any intermediate or final data
generated by the computing system after being processed,
for example in non-volatile memory. However in certain
embodiments, the configuration of the grid computing envi-
ronment allows its operations to be performed such that
intermediate and final data results can be stored solely in
volatile memory (e.g., RAM), without a requirement that
intermediate or final data results be stored to non-volatile
types of memory. Storing such data in volatile memory may
be useful in certain situations, such as when the grid receives
queries (e.g., ad hoc) from a client and when responses,
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which are generated by processing large amounts of data,
need to be generated quickly or on-the-fly. In such a situa-
tion, the grid may be configured to retain the data within
memory so that responses can be generated at different
levels of detail and so that a client may interactively query
against this information.

Each node also includes a user-defined function (UDF)
626. The UDF provides a mechanism for the DBMS 628 to
transfer data to or receive data from the database stored in
the data stores 624 that are managed by the DBMS 628. For
example, UDF 626 can be invoked by the DBMS 628 to
provide data to the GESC 620 for processing. The UDF 626
may establish a socket connection (not shown) with the
GESC 620 to transfer the data. Alternatively, the UDF 626
can transfer data to the GESC 620 by writing data to shared
memory accessible by both the UDF 626 and the GESC 620

The GESC 620 at the nodes 602 and 610 may be con-
nected via a network, such as network 108 shown in FIG. 1.
Therefore, nodes 602 and 610 can communicate with each
other via the network using a predetermined communication
protocol such as, for example, the Message Passing Interface
(MPI). Each GESC 620 can engage in point-to-point com-
munication with the GESC at another node or in collective
communication with multiple GESCs via the network. The
GESC 620 at each node may contain identical (or nearly
identical) software instructions. Each node may be capable
of operating as either a control node or a worker node. The
GESC at the control node 602 can communicate, over a
communication path 652, with a client device 630. More
specifically, control node 602 may communicate with client
application 632 hosted by the client device 630 to receive
queries and to respond to those queries after processing large
amounts of data.

DBMS 628 may control the creation, maintenance, and
use of database or data structure (not shown) within a nodes
602 or 610. The database may organize data stored in data
stores 624. The DBMS 628 at control node 602 may accept
requests for data and transfer the appropriate data for the
request. With such a process, collections of data may be
distributed across multiple physical locations. In this
example, each node 602 and 610 stores a portion of the total
data managed by the management system in its associated
data store 624.

Furthermore, the DBMS may be responsible for protect-
ing against data loss using replication techniques. Replica-
tion includes providing a backup copy of data stored on one
node on one or more other nodes. Therefore, if one node
fails, the data from the failed node can be recovered from a
replicated copy residing at another node. However, as
described herein with respect to FIG. 4, data or status
information for each node in the communications grid may
also be shared with each node on the grid.

FIG. 7 illustrates a flow chart showing an example method
700 for executing a project within a grid computing system,
according to embodiments of the present technology. As
described with respect to FIG. 6, the GESC at the control
node may transmit data with a client device (e.g., client
device 630) to receive queries for executing a project and to
respond to those queries after large amounts of data have
been processed. The query may be transmitted to the control
node, where the query may include a request for executing
a project, as described in operation 702. The query can
contain instructions on the type of data analysis to be
performed in the project and whether the project should be
executed using the grid-based computing environment, as
shown in operation 704.
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To initiate the project, the control node may determine if
the query requests use of the grid-based computing envi-
ronment to execute the project. If the determination is no,
then the control node initiates execution of the project in a
solo environment (e.g., at the control node), as described in
operation 710. If the determination is yes, the control node
may initiate execution of the project in the grid-based
computing environment, as described in operation 706. In
such a situation, the request may include a requested con-
figuration of the grid. For example, the request may include
a number of control nodes and a number of worker nodes to
be used in the grid when executing the project. After the
project has been completed, the control node may transmit
results of the analysis yielded by the grid, as described in
operation 708. Whether the project is executed in a solo or
grid-based environment, the control node provides the
results of the project, as described in operation 712.

As noted with respect to FIG. 2, the computing environ-
ments described herein may collect data (e.g., as received
from network devices, such as sensors, such as network
devices 204-209 in FIG. 2, and client devices or other
sources) to be processed as part of a data analytics project,
and data may be received in real time as part of a streaming
analytics environment (e.g., ESP). Data may be collected
using a variety of sources as communicated via different
kinds of networks or locally, such as on a real-time stream-
ing basis. For example, network devices may receive data
periodically from network device sensors as the sensors
continuously sense, monitor and track changes in their
environments. More specifically, an increasing number of
distributed applications develop or produce continuously
flowing data from distributed sources by applying queries to
the data before distributing the data to geographically dis-
tributed recipients. An event stream processing engine
(ESPE) may continuously apply the queries to the data as it
is received and determines which entities should receive the
data. Client or other devices may also subscribe to the ESPE
or other devices processing ESP data so that they can receive
data after processing, based on for example the entities
determined by the processing engine. For example, client
devices 230 in FIG. 2 may subscribe to the ESPE in
computing environment 214. In another example, event
subscription devices 1024a-c, described further with respect
to FIG. 10, may also subscribe to the ESPE. The ESPE may
determine or define how input data or event streams from
network devices or other publishers (e.g., network devices
204-209 in FIG. 2) are transformed into meaningful output
data to be consumed by subscribers, such as for example
client devices 230 in FIG. 2.

FIG. 8 illustrates a block diagram including components
of'an Event Stream Processing Engine (ESPE), according to
embodiments of the present technology. ESPE 800 may
include one or more projects 802. A project may be
described as a second-level container in an engine model
managed by ESPE 800 where a thread pool size for the
project may be defined by a user. Each project of the one or
more projects 802 may include one or more continuous
queries 804 that contain data flows, which are data trans-
formations of incoming event streams. The one or more
continuous queries 804 may include one or more source
windows 806 and one or more derived windows 808.

The ESPE may receive streaming data over a period of
time related to certain events, such as events or other data
sensed by one or more network devices. The ESPE may
perform operations associated with processing data created
by the one or more devices. For example, the ESPE may
receive data from the one or more network devices 204-209
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shown in FIG. 2. As noted, the network devices may include
sensors that sense different aspects of their environments,
and may collect data over time based on those sensed
observations. For example, the ESPE may be implemented
within one or more of machines 220 and 240 shown in FIG.
2. The ESPE may be implemented within such a machine by
an ESP application. An ESP application may embed an
ESPE with its own dedicated thread pool or pools into its
application space where the main application thread can do
application-specific work and the ESPE processes event
streams at least by creating an instance of a model into
processing objects.

The engine container is the top-level container in a model
that manages the resources of the one or more projects 802.
In an illustrative embodiment, for example, there may be
only one ESPE 800 for each instance of the ESP application,
and ESPE 800 may have a unique engine name. Addition-
ally, the one or more projects 802 may each have unique
project names, and each query may have a unique continu-
ous query name and begin with a uniquely named source
window of the one or more source windows 806. ESPE 800
may or may not be persistent.

Continuous query modeling involves defining directed
graphs of windows for event stream manipulation and
transformation. A window in the context of event stream
manipulation and transformation is a processing node in an
event stream processing model. A window in a continuous
query can perform aggregations, computations, pattern-
matching, and other operations on data flowing through the
window. A continuous query may be described as a directed
graph of source, relational, pattern matching, and procedural
windows. The one or more source windows 806 and the one
or more derived windows 808 represent continuously
executing queries that generate updates to a query result set
as new event blocks stream through ESPE 800. A directed
graph, for example, is a set of nodes connected by edges,
where the edges have a direction associated with them.

An event object may be described as a packet of data
accessible as a collection of fields, with at least one of the
fields defined as a key or unique identifier (ID). The event
object may be created using a variety of formats including
binary, alphanumeric, XML, etc. Each event object may
include one or more fields designated as a primary identifier
(ID) for the event so ESPE 800 can support operation codes
(opcodes) for events including insert, update, upsert, and
delete. Upsert opcodes update the event if the key field
already exists; otherwise, the event is inserted. For illustra-
tion, an event object may be a packed binary representation
of a set of field values and include both metadata and field
data associated with an event. The metadata may include an
opcode indicating if the event represents an insert, update,
delete, or upsert, a set of flags indicating if the event is a
normal, partial-update, or a retention generated event from
retention policy management, and a set of microsecond
timestamps that can be used for latency measurements.

An event block object may be described as a grouping or
package of event objects. An event stream may be described
as a flow of event block objects. A continuous query of the
one or more continuous queries 804 transforms a source
event stream made up of streaming event block objects
published into ESPE 800 into one or more output event
streams using the one or more source windows 806 and the
one or more derived windows 808. A continuous query can
also be thought of as data flow modeling.

The one or more source windows 806 are at the top of the
directed graph and have no windows feeding into them.
Event streams are published into the one or more source
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windows 806, and from there, the event streams may be
directed to the next set of connected windows as defined by
the directed graph. The one or more derived windows 808
are all instantiated windows that are not source windows and
that have other windows streaming events into them. The
one or more derived windows 808 may perform computa-
tions or transformations on the incoming event streams. The
one or more derived windows 808 transform event streams
based on the window type (that is operators such as join,
filter, compute, aggregate, copy, pattern match, procedural,
union, etc.) and window settings. As event streams are
published into ESPE 800, they are continuously queried, and
the resulting sets of derived windows in these queries are
continuously updated.

FIG. 9 illustrates a flow chart showing an example process
including operations performed by an event stream process-
ing engine, according to some embodiments of the present
technology. As noted, the ESPE 800 (or an associated ESP
application) defines how input event streams are trans-
formed into meaningful output event streams. More specifi-
cally, the ESP application may define how input event
streams from publishers (e.g., network devices providing
sensed data) are transformed into meaningful output event
streams consumed by subscribers (e.g., a data analytics
project being executed by a machine or set of machines).

Within the application, a user may interact with one or
more user interface windows presented to the user in a
display under control of the ESPE independently or through
a browser application in an order selectable by the user. For
example, a user may execute an ESP application, which
causes presentation of a first user interface window, which
may include a plurality of menus and selectors such as drop
down menus, buttons, text boxes, hyperlinks, etc. associated
with the ESP application as understood by a person of skill
in the art. As further understood by a person of skill in the
art, various operations may be performed in parallel, for
example, using a plurality of threads.

At operation 900, an ESP application may define and start
an ESPE, thereby instantiating an ESPE at a device, such as
machine 220 and/or 240. In an operation 902, the engine
container is created. For illustration, ESPE 800 may be
instantiated using a function call that specifies the engine
container as a manager for the model.

In an operation 904, the one or more continuous queries
804 are instantiated by ESPE 800 as a model. The one or
more continuous queries 804 may be instantiated with a
dedicated thread pool or pools that generate updates as new
events stream through ESPE 800. For illustration, the one or
more continuous queries 804 may be created to model
business processing logic within ESPE 800, to predict
events within ESPE 800, to model a physical system within
ESPE 800, to predict the physical system state within ESPE
800, etc. For example, as noted, ESPE 800 may be used to
support sensor data monitoring and management (e.g., sens-
ing may include force, torque, load, strain, position, tem-
perature, air pressure, fluid flow, chemical properties, resis-
tance, electromagnetic fields, radiation, irradiance,
proximity, acoustics, moisture, distance, speed, vibrations,
acceleration, electrical potential, or electrical current, etc.).

ESPE 800 may analyze and process events in motion or
“event streams.” Instead of storing data and running queries
against the stored data, ESPE 800 may store queries and
stream data through them to allow continuous analysis of
data as it is received. The one or more source windows 806
and the one or more derived windows 808 may be created
based on the relational, pattern matching, and procedural
algorithms that transform the input event streams into the
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output event streams to model, simulate, score, test, predict,
etc. based on the continuous query model defined and
application to the streamed data.

In an operation 906, a publish/subscribe (pub/sub) capa-
bility is initialized for ESPE 800. In an illustrative embodi-
ment, a pub/sub capability is initialized for each project of
the one or more projects 802. To initialize and enable
pub/sub capability for ESPE 800, a port number may be
provided. Pub/sub clients can use a host name of an ESP
device running the ESPE and the port number to establish
pub/sub connections to ESPE 800.

FIG. 10 illustrates an ESP system 1000 interfacing
between publishing device 1022 and event subscribing
devices 1024a-c, according to embodiments of the present
technology. ESP system 1000 may include ESP device or
subsystem 1001, event publishing device 1022, an event
subscribing device A 1024a, an event subscribing device B
10245, and an event subscribing device C 1024c¢. Input event
streams are output to ESP subsystem 1001 by publishing
device 1022. In alternative embodiments, the input event
streams may be created by a plurality of publishing devices.
The plurality of publishing devices further may publish
event streams to other ESP devices. The one or more
continuous queries instantiated by ESPE 800 may analyze
and process the input event streams to form output event
streams output to event subscribing device A 1024a, event
subscribing device B 10245, and event subscribing device C
1024¢. ESP system 1000 may include a greater or a fewer
number of event subscribing devices of event subscribing
devices.

Publish-subscribe is a message-oriented interaction para-
digm based on indirect addressing. Processed data recipients
specify their interest in receiving information from ESPE
800 by subscribing to specific classes of events, while
information sources publish events to ESPE 800 without
directly addressing the receiving parties. ESPE 800 coordi-
nates the interactions and processes the data. In some cases,
the data source receives confirmation that the published
information has been received by a data recipient.

A publish/subscribe API may be described as a library that
enables an event publisher, such as publishing device 1022,
to publish event streams into ESPE 800 or an event sub-
scriber, such as event subscribing device A 1024a, event
subscribing device B 10245, and event subscribing device C
1024c¢, to subscribe to event streams from ESPE 800. For
illustration, one or more publish/subscribe APIs may be
defined. Using the publish/subscribe API, an event publish-
ing application may publish event streams into a running
event stream processor project source window of ESPE 800,
and the event subscription application may subscribe to an
event stream processor project source window of ESPE 800.

The publish/subscribe API provides cross-platform con-
nectivity and endianness compatibility between ESP appli-
cation and other networked applications, such as event
publishing applications instantiated at publishing device
1022, and event subscription applications instantiated at one
or more of event subscribing device A 10244, event sub-
scribing device B 10245, and event subscribing device C
1024c.

Referring back to FIG. 9, operation 906 initializes the
publish/subscribe capability of ESPE 800. In an operation
908, the one or more projects 802 are started. The one or
more started projects may run in the background on an ESP
device. In an operation 910, an event block object is received
from one or more computing device of the event publishing
device 1022.
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ESP subsystem 1001 may include a publishing client
1002, ESPE 800, a subscribing client A 1004, a subscribing
client B 1006, and a subscribing client C 1008. Publishing
client 1002 may be started by an event publishing applica-
tion executing at publishing device 1022 using the publish/
subscribe API. Subscribing client A 1004 may be started by
an event subscription application A, executing at event
subscribing device A 1024a using the publish/subscribe API.
Subscribing client B 1006 may be started by an event
subscription application B executing at event subscribing
device B 10245 using the publish/subscribe API. Subscrib-
ing client C 1008 may be started by an event subscription
application C executing at event subscribing device C 1024¢
using the publish/subscribe API.

An event block object containing one or more event
objects is injected into a source window of the one or more
source windows 806 from an instance of an event publishing
application on event publishing device 1022. The event
block object may be generated, for example, by the event
publishing application and may be received by publishing
client 1002. A unique ID may be maintained as the event
block object is passed between the one or more source
windows 806 and/or the one or more derived windows 808
of ESPE 800, and to subscribing client A 1004, subscribing
client B 1006, and subscribing client C 1008 and to event
subscription device A 1024a, event subscription device B
10245, and event subscription device C 1024¢. Publishing
client 1002 may further generate and include a unique
embedded transaction ID in the event block object as the
event block object is processed by a continuous query, as
well as the unique ID that publishing device 1022 assigned
to the event block object.

In an operation 912, the event block object is processed
through the one or more continuous queries 804. In an
operation 914, the processed event block object is output to
one or more computing devices of the event subscribing
devices 1024a-c. For example, subscribing client A 1004,
subscribing client B 1006, and subscribing client C 1008
may send the received event block object to event subscrip-
tion device A 1024a, event subscription device B 10245, and
event subscription device C 1024c, respectively.

ESPE 800 maintains the event block containership aspect
of the received event blocks from when the event block is
published into a source window and works its way through
the directed graph defined by the one or more continuous
queries 804 with the various event translations before being
output to subscribers. Subscribers can correlate a group of
subscribed events back to a group of published events by
comparing the unique ID of the event block object that a
publisher, such as publishing device 1022, attached to the
event block object with the event block ID received by the
subscriber.

In an operation 916, a determination is made concerning
whether or not processing is stopped. If processing is not
stopped, processing continues in operation 910 to continue
receiving the one or more event streams containing event
block objects from the, for example, one or more network
devices. If processing is stopped, processing continues in an
operation 918. In operation 918, the started projects are
stopped. In operation 920, the ESPE is shutdown.

As noted, in some embodiments, big data is processed for
an analytics project after the data is received and stored. In
other embodiments, distributed applications process con-
tinuously flowing data in real-time from distributed sources
by applying queries to the data before distributing the data
to geographically distributed recipients. As noted, an event
stream processing engine (ESPE) may continuously apply
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the queries to the data as it is received and determines which
entities receive the processed data. This allows for large
amounts of data being received and/or collected in a variety
of environments to be processed and distributed in real time.
For example, as shown with respect to FIG. 2, data may be
collected from network devices that may include devices
within the internet of things, such as devices within a home
automation network. However, such data may be collected
from a variety of different resources in a variety of different
environments. In any such situation, embodiments of the
present technology allow for real-time processing of such
data.

Aspects of the current disclosure provide technical solu-
tions to technical problems, such as computing problems
that arise when an ESP device fails which results in a
complete service interruption and potentially significant data
loss. The data loss can be catastrophic when the streamed
data is supporting mission critical operations such as those
in support of an ongoing manufacturing or drilling opera-
tion. An embodiment of an ESP system achieves a rapid and
seamless failover of ESPE running at the plurality of ESP
devices without service interruption or data loss, thus sig-
nificantly improving the reliability of an operational system
that relies on the live or real-time processing of the data
streams. The event publishing systems, the event subscrib-
ing systems, and each ESPE not executing at a failed ESP
device are not aware of or effected by the failed ESP device.
The ESP system may include thousands of event publishing
systems and event subscribing systems. The ESP system
keeps the failover logic and awareness within the boundaries
of out-messaging network connector and out-messaging
network device.

In one example embodiment, a system is provided to
support a failover when event stream processing (ESP) event
blocks. The system includes, but is not limited to, an
out-messaging network device and a computing device. The
computing device includes, but is not limited to, a processor
and a computer-readable medium operably coupled to the
processor. The processor is configured to execute an ESP
engine (ESPE). The computer-readable medium has instruc-
tions stored thereon that, when executed by the processor,
cause the computing device to support the failover. An event
block object is received from the ESPE that includes a
unique identifier. A first status of the computing device as
active or standby is determined. When the first status is
active, a second status of the computing device as newly
active or not newly active is determined. Newly active is
determined when the computing device is switched from a
standby status to an active status. When the second status is
newly active, a last published event block object identifier
that uniquely identifies a last published event block object is
determined. A next event block object is selected from a
non-transitory computer-readable medium accessible by the
computing device. The next event block object has an event
block object identifier that is greater than the determined last
published event block object identifier. The selected next
event block object is published to an out-messaging network
device. When the second status of the computing device is
not newly active, the received event block object is pub-
lished to the out-messaging network device. When the first
status of the computing device is standby, the received event
block object is stored in the non-transitory computer-read-
able medium.

FIG. 11 is a flow chart of an example of a process for
generating and using a machine-learning model according to
some aspects. Machine learning is a branch of artificial
intelligence that relates to mathematical models that can
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learn from, categorize, and make predictions about data.
Such mathematical models, which can be referred to as
machine-learning models, can classify input data among two
or more classes; cluster input data among two or more
groups; predict a result based on input data; identity patterns
or trends in input data; identify a distribution of input data
in a space; or any combination of these. Examples of
machine-learning models can include (i) neural networks;
(ii) decision trees, such as classification trees and regression
trees; (iii) classifiers, such as Naive bias classifiers, logistic
regression classifiers, ridge regression classifiers, random
forest classifiers, least absolute shrinkage and selector
(LASSO) classifiers, and support vector machines; (iv)
clusterers, such as k-means clusterers, mean-shift clusterers,
and spectral clusterers; (v) factorizers, such as factorization
machines, principal component analyzers and kernel prin-
cipal component analyzers; and (vi) ensembles or other
combinations of machine-learning models. In some
examples, neural networks can include deep neural net-
works, feed-forward neural networks, recurrent neural net-
works, convolutional neural networks, radial basis function
(RBF) neural networks, echo state neural networks, long
short-term memory neural networks, bi-directional recurrent
neural networks, gated neural networks, hierarchical recur-
rent neural networks, stochastic neural networks, modular
neural networks, spiking neural networks, dynamic neural
networks, cascading neural networks, neuro-fuzzy neural
networks, or any combination of these.

Different machine-learning models may be used inter-
changeably to perform a task. Examples of tasks that can be
performed at least partially using machine-learning models
include various types of scoring; bioinformatics; chemin-
formatics; software engineering; fraud detection; customer
segmentation; generating online recommendations; adaptive
websites; determining customer lifetime value; search
engines; placing advertisements in real time or near real
time; classifying DNA sequences; affective computing; per-
forming natural language processing and understanding;
object recognition and computer vision; robotic locomotion;
playing games; optimization and metaheuristics; detecting
network intrusions; medical diagnosis and monitoring; or
predicting when an asset, such as a machine, will need
maintenance.

Any number and combination of tools can be used to
create machine-learning models. Examples of tools for cre-
ating and managing machine-learning models can include
SAS® Enterprise Miner, SAS® Rapid Predictive Modeler,
and SAS® Model Manager, SAS Cloud Analytic Services
(CAS)®, SAS Viya® of all which are by SAS Institute Inc.
of Cary, North Carolina.

Machine-learning models can be constructed through an
at least partially automated (e.g., with little or no human
involvement) process called training. During training, input
data can be iteratively supplied to a machine-learning model
to enable the machine-learning model to identify patterns
related to the input data or to identify relationships between
the input data and output data. With training, the machine-
learning model can be transformed from an untrained state
to a trained state. Input data can be split into one or more
training sets and one or more validation sets, and the training
process may be repeated multiple times. The splitting may
follow a k-fold cross-validation rule, a leave-one-out-rule, a
leave-p-out rule, or a holdout rule. An overview of training
and using a machine-learning model is described below with
respect to the flow chart of FIG. 11.

In block 1102, training data is received. In some
examples, the training data is received from a remote
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database or a local database, constructed from various
subsets of data, or input by a user. The training data can be
used in its raw form for training a machine-learning model
or pre-processed into another form, which can then be used
for training the machine-learning model. For example, the
raw form of the training data can be smoothed, truncated,
aggregated, clustered, or otherwise manipulated into another
form, which can then be used for training the machine-
learning model.

In block 1104, a machine-learning model is trained using
the training data. The machine-learning model can be trained
in a supervised, unsupervised, or semi-supervised manner.
In supervised training, each input in the training data is
correlated to a desired output. This desired output may be a
scalar, a vector, or a different type of data structure such as
text or an image. This may enable the machine-learning
model to learn a mapping between the inputs and desired
outputs. In unsupervised training, the training data includes
inputs, but not desired outputs, so that the machine-learning
model has to find structure in the inputs on its own. In
semi-supervised training, only some of the inputs in the
training data are correlated to desired outputs.

In block 1106, the machine-learning model is evaluated.
For example, an evaluation dataset can be obtained, for
example, via user input or from a database. The evaluation
dataset can include inputs correlated to desired outputs. The
inputs can be provided to the machine-learning model and
the outputs from the machine-learning model can be com-
pared to the desired outputs. If the outputs from the
machine-learning model closely correspond with the desired
outputs, the machine-learning model may have a high
degree of accuracy. For example, if 90% or more of the
outputs from the machine-learning model are the same as the
desired outputs in the evaluation dataset, the machine-
learning model may have a high degree of accuracy. Oth-
erwise, the machine-learning model may have a low degree
of'accuracy. The 90% number is an example only. A realistic
and desirable accuracy percentage is dependent on the
problem and the data.

In some examples, if, at block 1108, the machine-learning
model has an inadequate degree of accuracy for a particular
task, the process can return to block 1104, where the
machine-learning model can be further trained using addi-
tional training data or otherwise modified to improve accu-
racy. However, if, at block 1108, the machine-learning
model has an adequate degree of accuracy for the particular
task, the process can continue to block 1110.

In block 1110, new data is received. In some examples,
the new data is received from a remote database or a local
database, constructed from various subsets of data, or input
by a user. The new data may be unknown to the machine-
learning model. For example, the machine-learning model
may not have previously processed or analyzed the new
data.

In block 1112, the trained machine-learning model is used
to analyze the new data and provide a result. For example,
the new data can be provided as input to the trained
machine-learning model. The trained machine-learning
model can analyze the new data and provide a result that
includes a classification of the new data into a particular
class, a clustering of the new data into a particular group, a
prediction based on the new data, or any combination of
these.

In block 1114, the result is post-processed. For example,
the result can be added to, multiplied with, or otherwise
combined with other data as part of a job. As another
example, the result can be transformed from a first format,
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such as a time series format, into another format, such as a
count series format. Any number and combination of opera-
tions can be performed on the result during post-processing.

A more specific example of a machine-learning model is
the neural network 1200 shown in FIG. 12. The neural
network 1200 is represented as multiple layers of neurons
1208 that can exchange data between one another via
connections 1255 that may be selectively instantiated therea-
mong. The layers include an input layer 1202 for receiving
input data provided at inputs 1222, one or more hidden
layers 1204, and an output layer 1206 for providing a result
at outputs 1277. The hidden layer(s) 1204 are referred to as
hidden because they may not be directly observable or have
their inputs or outputs directly accessible during the normal
functioning of the neural network 1200. Although the neural
network 1200 is shown as having a specific number of layers
and neurons for exemplary purposes, the neural network
1200 can have any number and combination of layers, and
each layer can have any number and combination of neu-
rons.

The neurons 1208 and connections 1255 thereamong may
have numeric weights, which can be tuned during training of
the neural network 1200. For example, training data can be
provided to at least the inputs 1222 to the input layer 1202
of the neural network 1200, and the neural network 1200 can
use the training data to tune one or more numeric weights of
the neural network 1200. In some examples, the neural
network 1200 can be trained using backpropagation. Back-
propagation can include determining a gradient of a particu-
lar numeric weight based on a difference between an actual
output of the neural network 1200 at the outputs 1277 and
a desired output of the neural network 1200. Based on the
gradient, one or more numeric weights of the neural network
1200 can be updated to reduce the difference therebetween,
thereby increasing the accuracy of the neural network 1200.
This process can be repeated multiple times to train the
neural network 1200. For example, this process can be
repeated hundreds or thousands of times to train the neural
network 1200.

In some examples, the neural network 1200 is a feed-
forward neural network. In a feed-forward neural network,
the connections 1255 are instantiated and/or weighted so
that every neuron 1208 only propagates an output value to
a subsequent layer of the neural network 1200. For example,
data may only move one direction (forward) from one
neuron 1208 to the next neuron 1208 in a feed-forward
neural network. Such a “forward” direction may be defined
as proceeding from the input layer 1202 through the one or
more hidden layers 1204, and toward the output layer 1206.

In other examples, the neural network 1200 may be a
recurrent neural network. A recurrent neural network can
include one or more feedback loops among the connections
1255, thereby allowing data to propagate in both forward
and backward through the neural network 1200. Such a
“backward” direction may be defined as proceeding in the
opposite direction of forward, such as from the output layer
1206 through the one or more hidden layers 1204, and
toward the input layer 1202. This can allow for information
to persist within the recurrent neural network. For example,
a recurrent neural network can determine an output based at
least partially on information that the recurrent neural net-
work has seen before, giving the recurrent neural network
the ability to use previous input to inform the output.

In some examples, the neural network 1200 operates by
receiving a vector of numbers from one layer; transforming
the vector of numbers into a new vector of numbers using a
matrix of numeric weights, a nonlinearity, or both; and
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providing the new vector of numbers to a subsequent layer
(“subsequent” in the sense of moving “forward”) of the
neural network 1200. Each subsequent layer of the neural
network 1200 can repeat this process until the neural net-
work 1200 outputs a final result at the outputs 1277 of the
output layer 1206. For example, the neural network 1200
can receive a vector of numbers at the inputs 1222 of the
input layer 1202. The neural network 1200 can multiply the
vector of numbers by a matrix of numeric weights to
determine a weighted vector. The matrix of numeric weights
can be tuned during the training of the neural network 1200.
The neural network 1200 can transform the weighted vector
using a nonlinearity, such as a sigmoid tangent or the
hyperbolic tangent. In some examples, the nonlinearity can
include a rectified linear unit, which can be expressed using
the equation y=max(x, 0) where y is the output and x is an
input value from the weighted vector. The transformed
output can be supplied to a subsequent layer (e.g., a hidden
layer 1204) of the neural network 1200. The subsequent
layer of the neural network 1200 can receive the transformed
output, multiply the transformed output by a matrix of
numeric weights and a nonlinearity, and provide the result to
yet another layer of the neural network 1200 (e.g., another,
subsequent, hidden layer 1204). This process continues until
the neural network 1200 outputs a final result at the outputs
1277 of the output layer 1206.

As also depicted in FIG. 12, the neural network 1200 may
be implemented either through the execution of the instruc-
tions of one or more routines 1244 by central processing
units (CPUs), or through the use of one or more neuromor-
phic devices 1250 that incorporate a set of memristors (or
other similar components) that each function to implement
one of the neurons 1208 in hardware. Where multiple
neuromorphic devices 1250 are used, they may be intercon-
nected in a depth-wise manner to enable implementing
neural networks with greater quantities of layers, and/or in
a width-wise manner to enable implementing neural net-
works having greater quantities of neurons 1208 per layer.

The neuromorphic device 1250 may incorporate a storage
interface 1299 by which neural network configuration data
1293 that is descriptive of various parameters and hyperpa-
rameters of the neural network 1200 may be stored and/or
retrieved. More specifically, the neural network configura-
tion data 1293 may include such parameters as weighting
and/or biasing values derived through the training of the
neural network 1200, as has been described. Alternatively or
additionally, the neural network configuration data 1293
may include such hyperparameters as the manner in which
the neurons 1208 are to be interconnected (e.g., feed-
forward or recurrent), the trigger function to be implemented
within the neurons 1208, the quantity of layers and/or the
overall quantity of the neurons 1208. The neural network
configuration data 1293 may provide such information for
more than one neuromorphic device 1250 where multiple
ones have been interconnected to support larger neural
networks.

Other examples of the present disclosure may include any
number and combination of machine-learning models hav-
ing any number and combination of characteristics. The
machine-learning model(s) can be trained in a supervised,
semi-supervised, or unsupervised manner, or any combina-
tion of these. The machine-learning model(s) can be imple-
mented using a single computing device or multiple com-
puting devices, such as the communications grid computing
system 400 discussed above.

Implementing some examples of the present disclosure at
least in part by using machine-learning models can reduce
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the total number of processing iterations, time, memory,
electrical power, or any combination of these consumed by
a computing device when analyzing data. For example, a
neural network may more readily identify patterns in data
than other approaches. This may enable the neural network
to analyze the data using fewer processing cycles and less
memory than other approaches, while obtaining a similar or
greater level of accuracy.

Some machine-learning approaches may be more effi-
ciently and speedily executed and processed with machine-
learning specific processors (e.g., not a generic CPU). Such
processors may also provide an energy savings when com-
pared to generic CPUs. For example, some of these proces-
sors can include a graphical processing unit (GPU), an
application-specific integrated circuit (ASIC), a field-pro-
grammable gate array (FPGA), an artificial intelligence (AI)
accelerator, a neural computing core, a neural computing
engine, a neural processing unit, a purpose-built chip archi-
tecture for deep learning, and/or some other machine-learn-
ing specific processor that implements a machine learning
approach or one or more neural networks using semicon-
ductor (e.g., silicon (Si), gallium arsenide(GaAs)) devices.
These processors may also be employed in heterogeneous
computing architectures with a number of and/or a variety of
different types of cores, engines, nodes, and/or layers to
achieve various energy efficiencies, processing speed
improvements, data communication speed improvements,
and/or data efficiency targets and improvements throughout
various parts of the system when compared to a homoge-
neous computing architecture that employs CPUs for gen-
eral purpose computing.

FIG. 13 illustrates various aspects of the use of containers
1336 as a mechanism to allocate processing, storage and/or
other resources of a processing system 1300 to the perfor-
mance of various analyses. More specifically, in a process-
ing system 1300 that includes one or more node devices
1330 (e.g., the aforementioned grid system 400), the pro-
cessing, storage and/or other resources of each node device
1330 may be allocated through the instantiation and/or
maintenance of multiple containers 1336 within the node
devices 1330 to support the performance(s) of one or more
analyses. As each container 1336 is instantiated, predeter-
mined amounts of processing, storage and/or other resources
may be allocated thereto as part of creating an execution
environment therein in which one or more executable rou-
tines 1334 may be executed to cause the performance of part
or all of each analysis that is requested to be performed.

It may be that at least a subset of the containers 1336 are
each allocated a similar combination and amounts of
resources so that each is of a similar configuration with a
similar range of capabilities, and therefore, are interchange-
able. This may be done in embodiments in which it is desired
to have at least such a subset of the containers 1336 already
instantiated prior to the receipt of requests to perform
analyses, and thus, prior to the specific resource require-
ments of each of those analyses being known.

Alternatively or additionally, it may be that at least a
subset of the containers 1336 are not instantiated until after
the processing system 1300 receives requests to perform
analyses where each request may include indications of the
resources required for one of those analyses. Such informa-
tion concerning resource requirements may then be used to
guide the selection of resources and/or the amount of each
resource allocated to each such container 1336. As a result,
it may be that one or more of the containers 1336 are caused
to have somewhat specialized configurations such that there
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may be differing types of containers to support the perfor-
mance of different analyses and/or different portions of
analyses.

It may be that the entirety of the logic of a requested
analysis is implemented within a single executable routine
1334. In such embodiments, it may be that the entirety of
that analysis is performed within a single container 1336 as
that single executable routine 1334 is executed therein.
However, it may be that such a single executable routine
1334, when executed, is at least intended to cause the
instantiation of multiple instances of itself that are intended
to be executed at least partially in parallel. This may result
in the execution of multiple instances of such an executable
routine 1334 within a single container 1336 and/or across
multiple containers 1336.

Alternatively or additionally, it may be that the logic of a
requested analysis is implemented with multiple differing
executable routines 1334. In such embodiments, it may be
that at least a subset of such differing executable routines
1334 are executed within a single container 1336. However,
it may be that the execution of at least a subset of such
differing executable routines 1334 is distributed across mul-
tiple containers 1336.

Where an executable routine 1334 of an analysis is under
development, and/or is under scrutiny to confirm its func-
tionality, it may be that the container 1336 within which that
executable routine 1334 is to be executed is additionally
configured assist in limiting and/or monitoring aspects of the
functionality of that executable routine 1334. More specifi-
cally, the execution environment provided by such a con-
tainer 1336 may be configured to enforce limitations on
accesses that are allowed to be made to memory and/or 1/0
addresses to control what storage locations and/or 1/O
devices may be accessible to that executable routine 1334.
Such limitations may be derived based on comments within
the programming code of the executable routine 1334 and/or
other information that describes what functionality the
executable routine 1334 is expected to have, including what
memory and/or 1/0 accesses are expected to be made when
the executable routine 1334 is executed. Then, when the
executable routine 1334 is executed within such a container
1336, the accesses that are attempted to be made by the
executable routine 1334 may be monitored to identify any
behavior that deviates from what is expected.

Where the possibility exists that different executable
routines 1334 may be written in different programming
languages, it may be that different subsets of containers 1336
are configured to support different programming languages.
In such embodiments, it may be that each executable routine
1334 is analyzed to identify what programming language it
is written in, and then what container 1336 is assigned to
support the execution of that executable routine 1334 may
be at least partially based on the identified programming
language. Where the possibility exists that a single requested
analysis may be based on the execution of multiple execut-
able routines 1334 that may each be written in a different
programming language, it may be that at least a subset of the
containers 1336 are configured to support the performance
of various data structure and/or data format conversion
operations to enable a data object output by one executable
routine 1334 written in one programming language to be
accepted as an input to another executable routine 1334
written in another programming language.

As depicted, at least a subset of the containers 1336 may
be instantiated within one or more VMs 1331 that may be
instantiated within one or more node devices 1330. Thus, in
some embodiments, it may be that the processing, storage
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and/or other resources of at least one node device 1330 may
be partially allocated through the instantiation of one or
more VMs 1331, and then in turn, may be further allocated
within at least one VM 1331 through the instantiation of one
or more containers 1336.

In some embodiments, it may be that such a nested
allocation of resources may be carried out to effect an
allocation of resources based on two differing criteria. By
way of example, it may be that the instantiation of VMs
1331 is used to allocate the resources of a node device 1330
to multiple users or groups of users in accordance with any
of a variety of service agreements by which amounts of
processing, storage and/or other resources are paid for each
such user or group of users. Then, within each VM 1331 or
set of VMs 1331 that is allocated to a particular user or group
of users, containers 1336 may be allocated to distribute the
resources allocated to each VM 1331 among various analy-
ses that are requested to be performed by that particular user
or group of users.

As depicted, where the processing system 1300 includes
more than one node device 1330, the processing system
1300 may also include at least one control device 1350
within which one or more control routines 1354 may be
executed to control various aspects of the use of the node
device(s) 1330 to perform requested analyses. By way of
example, it may be that at least one control routine 1354
implements logic to control the allocation of the processing,
storage and/or other resources of each node device 1330 to
each VM 1331 and/or container 1336 that is instantiated
therein. Thus, it may be the control device(s) 1350 that
effects a nested allocation of resources, such as the afore-
mentioned example allocation of resources based on two
differing criteria.

As also depicted, the processing system 1300 may also
include one or more distinct requesting devices 1370 from
which requests to perform analyses may be received by the
control device(s) 1350. Thus, and by way of example, it may
be that at least one control routine 1354 implements logic to
monitor for the receipt of requests from authorized users
and/or groups of users for various analyses to be performed
using the processing, storage and/or other resources of the
node device(s) 1330 of the processing system 1300. The
control device(s) 1350 may receive indications of the avail-
ability of resources, the status of the performances of
analyses that are already underway, and/or still other status
information from the node device(s) 1330 in response to
polling, at a recurring interval of time, and/or in response to
the occurrence of various preselected events. More specifi-
cally, the control device(s) 1350 may receive indications of
status for each container 1336, each VM 1331 and/or each
node device 1330. At least one control routine 1354 may
implement logic that may use such information to select
container(s) 1336, VM(s) 1331 and/or node device(s) 1330
that are to be used in the execution of the executable
routine(s) 1334 associated with each requested analysis.

As further depicted, in some embodiments, the one or
more control routines 1354 may be executed within one or
more containers 1356 and/or within one or more VMs 1351
that may be instantiated within the one or more control
devices 1350. It may be that multiple instances of one or
more varieties of control routine 1354 may be executed
within separate containers 1356, within separate VMs 1351
and/or within separate control devices 1350 to better enable
parallelized control over parallel performances of requested
analyses, to provide improved redundancy against failures
for such control functions, and/or to separate differing ones
of the control routines 1354 that perform different functions.
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By way of example, it may be that multiple instances of a
first variety of control routine 1354 that communicate with
the requesting device(s) 1370 are executed in a first set of
containers 1356 instantiated within a first VM 1351, while
multiple instances of a second variety of control routine
1354 that control the allocation of resources of the node
device(s) 1330 are executed in a second set of containers
1356 instantiated within a second VM 1351. It may be that
the control of the allocation of resources for performing
requested analyses may include deriving an order of perfor-
mance of portions of each requested analysis based on such
factors as data dependencies thereamong, as well as allo-
cating the use of containers 1336 in a manner that effectuates
such a derived order of performance.

Where multiple instances of control routine 1354 are used
to control the allocation of resources for performing
requested analyses, such as the assignment of individual
ones of the containers 1336 to be used in executing execut-
able routines 1334 of each of multiple requested analyses, it
may be that each requested analysis is assigned to be
controlled by just one of the instances of control routine
1354. This may be done as part of treating each requested
analysis as one or more “ACID transactions” that each have
the four properties of atomicity, consistency, isolation and
durability such that a single instance of control routine 1354
is given full control over the entirety of each such transac-
tion to better ensure that all of each such transaction is either
entirely performed or is entirely not performed. Allowing
partial performances to occur may cause cache incoheren-
cies and/or data corruption issues.

As additionally depicted, the control device(s) 1350 may
communicate with the requesting device(s) 1370 and with
the node device(s) 1330 through portions of a network 1399
extending thereamong. Again, such a network as the
depicted network 1399 may be based on any of a variety of
wired and/or wireless technologies, and may employ any of
a variety of protocols by which commands, status, data
and/or still other varieties of information may be exchanged.
It may be that one or more instances of a control routine
1354 cause the instantiation and maintenance of a web portal
or other variety of portal that is based on any of a variety of
communication protocols, etc. (e.g., a restful API). Through
such a portal, requests for the performance of various
analyses may be received from requesting device(s) 1370,
and/or the results of such requested analyses may be pro-
vided thereto. Alternatively or additionally, it may be that
one or more instances of a control routine 1354 cause the
instantiation of and maintenance of a message passing
interface and/or message queues. Through such an interface
and/or queues, individual containers 1336 may each be
assigned to execute at least one executable routine 1334
associated with a requested analysis to cause the perfor-
mance of at least a portion of that analysis.

Although not specifically depicted, it may be that at least
one control routine 1354 may include logic to implement a
form of management of the containers 1336 based on the
Kubernetes container management platform promulgated by
Could Native Computing Foundation of San Francisco, CA,
USA. In such embodiments, containers 1336 in which
executable routines 1334 of requested analyses may be
instantiated within “pods” (not specifically shown) in which
other containers may also be instantiated for the execution of
other supporting routines. Such supporting routines may
cooperate with control routine(s) 1354 to implement a
communications protocol with the control device(s) 1350
via the network 1399 (e.g., a message passing interface, one
or more message queues, etc.). Alternatively or additionally,
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such supporting routines may serve to provide access to one
or more storage repositories (not specifically shown) in
which at least data objects may be stored for use in per-
forming the requested analyses.

FIG. 14 shows a block diagram of an example of a system
1400 according to some aspects of the present disclosure.
The system 1400 is a distributed computing environment,
such as a computing cluster, a data grid, or a cloud com-
puting environment. The system 1400 can include any
number of computing nodes (e.g., physical machines), such
as nodes 1406a-n. Examples of the nodes 1406a-z can
include servers, desktop computers, etc.

The system 1400 can include a reconciliation orchestrator
1404. The reconciliation orchestrator 1404 can be any
software that is configured to orchestrate a reconciliation
process for a set of forecasts 1402 across some or all of the
nodes 1406a-z. The reconciliation orchestrator 1404 may
also be configured to perform other tasks, such as job
scheduling or workload balancing. In some examples, the set
of forecasts 1402 may be time series that all span the same
time period and may have the same time interval between
data points. A time series can be a sequence of data points
indexed in time order, where the data points are collected at
uniform time intervals. The forecasts 1402 can have a
hierarchical relationship to one another, such that some
forecasts are children of other forecasts. The reconciliation
process can be configured to adjust the set of forecasts 1402
to minimize a weighted sum of variances of reconciled
forecast errors associated with all forecasts (e.g., time series)
in the hierarchy.

More specifically, the reconciliation orchestrator 1404 can
receive the set of forecasts 1402. The forecasts 1402 may
have been generated by a machine-learning model, such as
an autoregressive integrated moving average (ARIMA)
model or an exponential smoothing model (ESM). The set of
forecasts 1402 may include any number of forecasts, such as
three or more forecasts. The forecasts 1402 may each be
time-stamped data (e.g., a time series) of predicted values
over a future time window.

The forecasts 1402 can have a hierarchical relationship to
one another. One example of such a hierarchy of forecasts is
shown in FIGS. 15-16. FIG. 15 shows a simplified repre-
sentation of the forecasts as blocks. FIG. 16 shows the
forecasts as time series graphs. In FIGS. 15-16, there are
three levels of forecasts in the hierarchies 1500, 1600. The
basal level (e.g., Level 2) has five forecasts—AA, AB, AC,
BA, and BB. The middle level (e.g., Level 1) has two
forecasts—A and B. The top level (e.g., Level 0) has one
forecast—Total.

Still referring to FIGS. 15-16, it may be desirable for the
forecasts to satisfy an aggregation constraint, for example so
that the depicted conditions 1502 are satisfied at every time
t. In particular, at a given time t, the value in the Total
forecast should be the sum of the values in the intermediate
forecasts A and B. Similarly, at that time t, the value in
forecast A should be the sum of the values in the basal
forecasts AA, AB, and AC. And, at that time t, the value in
forecast B should be the sum of the values in the basal
forecasts BA and BB. As one specific example, the forecasts
may relate to a company’s sales. The sales in region A
should be the sum of the sales in locations (e.g., stores) AA,
AB, and AC. The sales in region B should be the sum of the
sales in locations BA and BB. And the total sales should be
the sum of the sales in regions A and B. Of course, other
examples may involve other hierarchical arrangements of
more or fewer forecasts.
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In some examples, the reconciliation orchestrator 1404
can receive the set of forecasts 1402 in a data table format.
For example, the forecasts 1402 can be stored in data tables
that are arranged by level of the hierarchy. There can be one
data table per level of the hierarchy, where the data table
includes all of the data points associated with all of the
forecasts at that level of the hierarchy. For instance, referring
to FIG. 17, there can be a first data table 1702 that includes
all of the data points in all of the forecasts at a first level of
the hierarchy (e.g., AA, AB, AC, BA, and BB). There can be
a second data table 1704 that includes all of the data points
in all of the forecasts at a second level of the hierarchy (e.g.,
A and B). And there can be a third data table 1706 that
includes all of the data points in all of the forecasts at a third
level of the hierarchy (e.g., Total). Each row of each data
table can correspond to a particular data point in a particular
forecast covered by that data table. For example, row 1708
can correspond to a particular data point in forecast AA.
Organizing the forecasts 1402 into data tables by level in the
hierarchy can make it easier for the reconciliation orches-
trator 1404 to divide the forecasts 1402 into datasets by
timestamp, as described below.

Referring back to FIG. 14, after receiving the set of
forecasts 1402, the reconciliation orchestrator 1404 can
determine how to divide and distribute the set of forecasts
1402 among the nodes 1406a-7 to implement the reconcili-
ation process. In some examples, the reconciliation orches-
trator 1404 can divide the set of forecasts 1402 into datasets
1410 by timestamp, where each dataset corresponds to a
single time point in the set of forecasts 1402. For example,
the set of forecasts 1402 have a ten minute interval between
data points. The reconciliation orchestrator 1404 can gen-
erate a first dataset 1410a-1 that consists of the data points
from the set of forecasts 1402 corresponding to Jun. 22,
2024 at 1:00 PM. The reconciliation orchestrator 1404 can
also generate a second dataset 1410a-2 that consists of the
data points from the set of forecasts 1402 corresponding to
Jun. 22, 2024 at 1:10 PM. And the reconciliation orchestra-
tor 1404 can generate a third dataset 14105-1 that consists of
the data points from the set of forecasts 1402 corresponding
to Jun. 22, 2024 at 1:20 PM. And so on for all of the data
points in the set of forecasts 1402. One specific example of
this process is shown in FIG. 18. In FIG. 18, a data point at
time t1 is identified by a dotted line in each of the depicted
forecasts. Those data points are collected into a dataset 1802
corresponding to time t1. That dataset 1802 can be referred
to herein using the mathematical notation y, where t is a
point in time. A basal dataset 1804 may also be determined.
The basal dataset 1804 may only consist of the data points
from the basal level forecasts (and not the higher-level
forecasts). The basal dataset 1804 can be referred to herein
using the mathematical notation y, .,

After dividing the set of forecasts 1402 into the datasets
1410, the reconciliation orchestrator 1404 can distribute the
datasets 1410 among the nodes 1406a-7. The reconciliation
orchestrator 1404 can distribute the datasets 1410 among the
nodes 1406a-7 in any suitable manner. For example, the
reconciliation orchestrator 1404 can distribute the datasets
1410 substantially evenly among the nodes 1406a-7, so that
most or all of the nodes 1406a-» have the same number of
datasets. As another example, the reconciliation orchestrator
1404 can distribute the datasets 1410 based on the existing
workloads of the nodes 14064a-7, for example so that nodes
with less available computing resources may receive fewer
of the datasets 1410 than nodes with more available com-
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puting resources. This can help prevent against overburden-
ing a node that is already processing a large number of
workloads.

The nodes 1406a-» can each receive one or more of the
datasets 1410 from the reconciliation orchestrator 1404.
After receiving the datasets 1410, the nodes 1406a-» can
assign the datasets 1410 to separate processing threads 1408.
For example, node 14064 can receive two datasets 1410a-1,
14104-2 from the reconciliation orchestrator 1404 and
assign them to threads 1408a-1, 1408a-2. As another
example, node 14065 can receive one dataset 14105-1 from
the reconciliation orchestrator 1404 and assign it to thread
14085-1. As yet another example, node 1406% can receive
three datasets 14107-1, 1410%-2, 1410»-3 from the recon-
ciliation orchestrator 1404 and assign them to threads
14087-1, 14087-2, 1408,-3. The nodes 14064-1» may assign
the datasets 1410 to threads 1408 that are not already
processing any workloads, so that the threads 1408 are
dedicated for the reconciliation process. In some examples,
the nodes 14064-1» may generate new threads 1408 that are
solely dedicated to the reconciliation process and shut down
those threads when the reconciliation process is complete.
This may conserve computing resources.

The threads 1408 can each execute a respective recon-
ciliation process on a respective dataset 1410 to produce one
or more reconciled values 1412 (e.g., reconciled data
points). The reconciled values 1412 are denoted as “RV” in
FIG. 14. For example, thread 1408a-1 can execute a recon-
ciliation process on dataset 1410a-1 to produce a reconciled
value 14124-1. Thread 14084-2 can execute a reconciliation
process on dataset 1410a-2 to produce a reconciled value
14124-2. Thread 14085-1 can execute a reconciliation pro-
cess on dataset 14105-1 to produce a reconciled value
14125-1. And so on through thread 14087-3. Some or all of
the threads 1408 across some or all of the nodes 1406 can
execute their reconciliation processes in parallel to one
another, so that the reconciliation processes are performed
concurrently (e.g., simultaneously). The nodes 1406a-7 can
then transmit the reconciled values 1412 to the reconcilia-
tion orchestrator 1404.

The reconciliation orchestrator 1404 can collect the rec-
onciled values 1412 and generate a set of reconciled fore-
casts 1418 based on the reconciled values 1412. The set of
reconciled forecasts 1418 can be reconciled versions of the
original set of forecasts 1402. The reconciliation orchestra-
tor 1404 can then provide the set of reconciled forecasts
1418 for subsequent use. For example, the reconciliation
orchestrator 1404 can transmit the set of reconciled forecasts
1418 to a client device for use by an application executing
on the client device. In some examples, the client device
may have provided the original set of forecasts 1402 to the
system 1400 for reconciliation and can receive the set of
reconciled forecasts 1418 in return from the system 1400.

Through the above process, the reconciliation orchestrator
1404 can divide and distribute the reconciliation process
among the nodes 1406a-», which in turn can further distrib-
ute the reconciliation process among separate threads 1408.
This can result in two levels of parallelism that can improve
the efficiency of the reconciliation process and significantly
expedite the reconciliation process.

As noted above, the nodes 1406a-1» can each perform
reconciliation processes on their assigned datasets 1410. To
perform the reconciliation processes, the nodes 1406a-n
may each compute a respective summation matrix (“S-
matrix”’) 1414 that can encode the aggregation (e.g., sum-
mation) constraints. To compute an S-matrix, a node 14064
can access one of its assigned datasets and generate the
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S-matrix based on that dataset. For example, node 14064 can
generate an S-matrix 1414q based on dataset 1410a-1, node
14065 can generate an S-matrix 14145 based on dataset
14105-1, and node 1406% can generate the S-matrix 1414»
based on dataset 1410%-1.

In some examples, the S-matrix 1414 can have as many
rows as there are forecasts in the set of forecasts 1402. The
S-matrix 1414 may also have as many columns as there are
basal level forecasts in the set of forecasts 1402. One
specific example is shown in FIG. 19. As shown, if there are
eight total forecasts in the set of forecasts 1402, of which
five are basal level forecasts, the S-matrix 1414 can be 8x5
in size. Of course, depending on the implementation, the
number of the rows and columns can be swapped (e.g., so
that the S-matrix is 5x8) in other examples. The S-matrix
1414 can include binary values that encode one or more
aggregation constraints.

After generating the S-matrices 1414, some or all of the
nodes 1406a-r can compare their computed S-matrices 1414
to one another to ensure that they match. For example, node
14064 can request the S-matrix 14145 from node 14065.
Node 1406a can then compare its S-matrix 1414a to the
other S-matrix 14144. If they do not match, it may signify
a nonuniformity in the datasets 1410 that could lead to
downstream errors and/or inaccuracies in the reconciliation
process. So, the node 14064 can transmit an error message
1420 to the reconciliation orchestrator 1404. In some
examples, the reconciliation orchestrator 1404 can receive
the error message 1420 and responsively transmit an error
notification to one or more client devices of one or more
users. The users can include an administrator and/or the user
that submitted the set of forecasts 1402 for reconciliation.
The error notification can notify the one or more users of the
problem. Additionally or alternatively, in response to receiv-
ing the error message 1420, the reconciliation orchestrator
1404 may automatically perform one or more operations in
an effort to resolve the problem. For example, the recon-
ciliation orchestrator 1404 may identify the root cause of the
problem, such as a missing value in the dataset 14105-1, and
update the dataset 14105-1 to include the missing value.
This may involve generating a synthetic value to take the
place of the missing value. The reconciliation orchestrator
1404 may then transmit the updated dataset to the node
14065, which can recompute the S-matrix 14145 and per-
form the validation process again. This initial validation of
the S-matrices 1414a-n can help avoid downstream inaccu-
racies that could occur if different reconciliation processes
are performed on different nodes using different S-matrices.

After generating the S-matrices 1414a-n, the nodes
1406a-n can each generate a respective reconciliation
matrix, which is referred to herein as a “G-matrix”. In some
examples, the nodes 1406a-» can generate the G-matrices
1416 based on the S-matrices 1414 and a weighting matrix.
The weighting matrix can be a predefined matrix of weights.
For instance, the nodes 1406a-» can each generate a G-ma-
trix 1416 according to the following equation:

G=(SWS)~Ls'W
where G is the G-matrix, S is the S-matrix, and W is a
predefined weighting matrix. Thus, the G-matrix on each of
the nodes 1406a-z can depend on the S-matrix 1414 com-
puted by that node. For example, node 1406a can generate
a G-matrix 1416a based on its S-matrix 1414a and option-
ally the weighting matrix. Node 14065 can generate a
G-matrix 14165 based on its S-matrix 14145 and optionally
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the weighting matrix. And node 14067~ can generate a
G-matrix 14167 based on its S-matrix 14147 and optionally
the weighting matrix.

After generating the G-matrices 1416, the nodes 1406a-»
can use the G-matrices 1416 to perform their respective
reconciliation processes. For example, the nodes 1406a-n
can compute the reconciled basal level forecasts according
to the following equation:

Zbasal,z: Gf,

where Z,,..;, includes the reconciled basal level forecast
values, G is the G-matrix, and y, includes the original
forecast values at all levels of the hierarchy. The nodes
1406a-2 can then compute the full reconciled forecasts
according to the following equation:

2,752 501, ~5GI,

where Z, includes the full reconciled forecast values, Z,,,;,
includes the reconciled basal level forecast values, and S is
the S-matrix. After generating the full reconciled forecast
values (e.g., reconciled values 1412), the nodes 1406a-7 can
transmit them to the reconciliation orchestrator 1404 as
described above.

In some examples, a thread 1408 may be assigned to
process a dataset 1410 that is missing a value for a data
point. For example, the dataset 14105-1 may include a data
point from a forecast, where the data point corresponds to
Jun. 22, 2024 at 1:00 PM. But, the data point may be missing
a value (e.g., the value may be NULL). This can happen for
various reasons, for example if the forecasting model that
generated the forecast experienced an error or did not have
sufficient information to create a value for the data point. To
prevent the missing value from causing a downstream error,
in some examples the corresponding thread 14085-1 can
dynamically adjust the corresponding S-matrix 14145 to
account for the missing value. If there is a weighting matrix
(W), the weighting matrix can also be dynamically adjusted
to account for the missing value. One example of adjusting
an S-matrix 2004 is shown in FIG. 20. As shown in FIG. 20,
the thread 14085-1 can dynamically create a modified S-ma-
trix 2004 that accounts for the missing value. The thread
14085-1 can also dynamically create a modified G-matrix
2006 based on the modified S-matrix 2004, for example by
recomputing the G-matrix using the equation described
above. In some examples involving a weighting matrix (W),
the W-matrix can also be dynamically adjusted to account
for the missing value. The thread 14085-1 can then dynami-
cally create the modified G-matrix 2006 based on the
modified S-matrix and the modified W-matrix. The modified
S-matrix 2004, the modified W-matrix, and the modified
G-matrix may be new matrices created separately from the
originals, so that other threads on the node 14065 can still
use the original S-matrix 14145, W-matrix, and G-matrix
14165 in their reconciliation processes. The thread 14085-1
can then use the modified S-matrix 2004, the modified
W-matrix, and the modified G-matrix 2006 in its reconcili-
ation process.

FIG. 21 shows an example of a process for creating a
modified S-matrix 2004. In this example, the dataset 2102
can include data points from all of the forecasts shown in
FIG. 15 for time t. If all of the data points had valid values,
it could result in the S-matrix 2104. But in this example, the
data point value for forecast AC is missing (e.g., NULL). So,
the data point with the missing value can be excluded from
the dataset 2102 to produce a modified dataset 2106. A
modified S-matrix 2108 can then be generated based on the
modified dataset 2106. The modified S-matrix 2108 can
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exclude a row and column corresponding to the missing
value. For illustrative purposes, the excluded row and col-
umn is shown in bold in S-matrix 2104. In this way, a
modified S-matrix 2108 can be generated to account for the
missing value. A similar process can be applied to the
W-matrix (e.g., excluding a row and column associated with
the missing value). The modified S-matrix and/or W-matrix
can then be used to compute a modified G-matrix, as
described above, for use in the reconciliation process.

FIG. 22 shows a flowchart of an example of a process for
dividing and distributing forecast data among a group of
nodes according to some aspects of the present disclosure.
Other examples may include more operations, fewer opera-
tions, different operations, or a different sequence of opera-
tions than is shown. The operations of FIG. 22 are described
below with reference to the components of FIG. 14
described above.

In block 2202, a system 1400 (e.g., reconciliation orches-
trator 1404) can receive a set of forecasts 1402 that have a
hierarchical relationship to one another. The system 1400
may receive the set of forecasts 1402 from a client device,
which can be internal or external to the system 1400.
Examples of the client device can include a laptop computer,
a desktop computer, a server, a wearable device (e.g., a smart
watch), a mobile phone, a tablet, or an e-reader. Each
forecast among the set of forecasts 1402 corresponds to a
respective level of the hierarchy. At least one forecast in the
set of forecasts 1402 can correspond to a higher level of the
hierarchy than at least one other forecast of the set of
forecasts 1402.

In block 2204, the system 1400 divides the set of forecasts
1402 by time point into a plurality of datasets 1410. Each
dataset 1410 can correspond to a single time point. For
example, each dataset 1410 may only include the data points
corresponding to that single time point from the set of
forecasts 1402. In other examples, the system 1400 may
divide the forecasts 1402 into the datasets 1410 based on
other factors, additionally or alternatively to time point.

In block 2206, the system 1400 distributes the plurality of
datasets 1410 among a plurality of computing nodes 1406 of
a distributed computing system 1400. Because the data
points in the forecasts 1402 were grouped into the datasets
1410 by time point in block 2204, all of the data points
corresponding to the same time point may be assigned to the
same computing node. The plurality of computing nodes
1406 can be configured to collectively process the set of
forecasts 1402 in parallel to implement an overall reconcili-
ation process that involves adjusting the set of forecasts
1402 subject to one or more constraints, such as an aggre-
gation constraint. Distributing the datasets 1410 among
more nodes may result in a faster execution of the recon-
ciliation process than distributing the datasets 1410 among
fewer nodes.

FIG. 23 shows a flowchart of an example of a process for
performing reconciliation on a computing node according to
some aspects of the present disclosure. Other examples may
include more operations, fewer operations, different opera-
tions, or a different sequence of operations than is shown.
The operations of FIG. 23 are described below with refer-
ence to the components of FIG. 14 described above.

In block 2302, a computing node 14064 receives a dataset
14104-1. The dataset 1410a-1 can include data points cor-
responding to a single time point in a set of forecasts 1402.
The computing node 1406a may receive the dataset 1410a-1
from a reconciliation orchestrator 1404 or another source.

In block 2304, the computing node 1406a assigns the
dataset 1410a-1 to a processing thread 14084-1. In some
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examples, the processing thread 1408a-1 may be a new
processing thread generated by the computing node 14064 to
handle the dataset 14104a-1.

In block 2306, the computing node 1406a constructs an
S-matrix 1414a based on the dataset 1410a. For example,
the computing node 14064 can generate an S-matrix 1414a
that has a number of rows and columns that corresponds to
the number of forecasts represented in the dataset 1410a.

In block 2308, the computing node 1406a validates the
S-matrix 1414a. This step may be performed using the
process described below with respect to FIG. 24.

In block 2310, the computing node 1406a constructs a
G-matrix based on the S-matrix and a W-matrix. This step
may be performed using any of the techniques described
above.

In block 2312, the computing node 14064 executes the
processing thread. When executed, the processing thread can
implement the steps described below with respect to FIG.
25.

As noted earlier, in some examples the computing node
14064 can perform an S-matrix validation process prior to
executing the reconciliation processes on the threads 1408a.
FIG. 24 shows a flowchart of an example of such an
S-matrix validation process according to some aspects of the
present disclosure.

In block 2402, the computing node 14064 receives one or
more datasets 1410q associated with a set of forecasts 1402.
The computing node 14064 can receive the one or more
datasets 1410a from a reconciliation orchestrator 1404, in
some examples.

In block 2404, the computing node 1406a selects one of
the datasets 1410a and generates an S-matrix 1414a based
on the selected dataset 14104-1.

In block 2406, the computing node 14064 receives one or
more other S-matrices 1414b-n from one or more other
computing nodes 14065-z. The one or more other S-matrices
14145-r may have been computed by the one or more other
computing nodes 14065-n based on the datasets 141056-n
assigned to those computing nodes 14065-7.

In block 2408, the computing node 1406a determines
whether its S-matrix 1414a matches the one or more other
S-matrices 1414b-n. Two S-matrices can “match” if they are
identical. If the S-matrix 1414 matches the one or more
other S-matrices 14145-n, then the process can proceed to
block 2410 where computing node 1406a can proceed with
the reconciliation process. Otherwise, the process can pro-
ceed to block 2412 where the computing node 1406a can
output an error message 1420. For example, the computing
node 1406a can transmit the error message 1420 to the
reconciliation orchestrator 1404.

FIG. 25 shows a flowchart of an example of a process for
performing reconciliation on processing thread of a com-
puting node according to some aspects of the present dis-
closure. Other examples may include more operations, fewer
operations, different operations, or a different sequence of
operations than is shown. The operations of FIG. 25 are
described below with reference to the components of FIG.
14 described above.

In block 2502, a thread 1408a-1 receives a dataset 1410a-
1. The dataset 1410a-1 can include data points correspond-
ing to a single time point in a set of forecasts 1402.

In block 2504, the thread 1408a-1 organizes the set of data
points in the dataset 1410a-1 by forecast. For example, the
thread 1408a-1 can sort the data points by forecast. This may
help ensure that some or all of the datasets 1410 in the
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system 1400 are organized the same way, which can prevent
downstream problems and inaccuracies in the reconciliation
process.

In block 2506, the thread 1408a-1 compares the dataset
1410a-1 to the S-matrix 1414a on the computing node
14064 to perform a further validation. For example, the
thread 1408a-1 can compare the dataset 1410a-1 to the
S-matrix 1414a previously computed by the computed node
14064, for example to make sure that all of forecasts (e.g.,
time series) used construct the S-matrix 1414a exist in the
dataset 1410a, and vice versa. If not, the thread 1408a-1 can
throw an error.

In block 2508, the thread 1408a-1 determines if there are
any missing values in the dataset 1410a-1. For example, the
thread 1408a-1 can identify any data points that have an
empty value or a value of “NULL”. If the thread 14084-1
determines that the dataset 1410qa-1 has a data point with a
missing value, the process can proceed to block 2510.
Otherwise, the process can proceed to block 2514.

In block 2510, the thread 1408a-1 generates a modified
S-matrix and a modified W-matrix that account for missing
value. For example, the thread 1408a-1 can generate a new
S-matrix that excludes a row and/or column of values
associated with the forecast having the missing value. The
thread 1408a-1 can also generate a new W-matrix that
excludes a row and/or column of values associated with the
forecast having the missing value.

In block 2512, the thread 1408a-1 generates a modified
G-matrix based on the modified S-matrix and the modified
W-matrix. For example, the thread 1408a-1 can generate the
modified G-matrix according to the following equation:

G podgificd=Smodisica W,
1S ,modiﬁed W odified

%G )

Where G, 4404 15 the modified G-matrix, S, 4., 15 the
modified S-matrix, and W, 5., is the modified weighting
matrix.

In block 2514, the thread 1408a-1 obtains an S-matrix
14144, a W-matrix, and a G-matrix 1416a, some or all of
which may have previously been computed. For example,
the thread 1408a-1 can obtain an S-matrix 1414a and a
G-matrix 14164 that the computing node 14064 may have
previously computed based on the same dataset 1410a-1 or
a different dataset.

In block 2516, the thread 1408a-1 executes a reconcilia-
tion process on the dataset 1410q-1 using the S-matrix, the
W-matrix, and the G-matrix. The S-matrix can be the
original or modified S-matrix, the W-matrix can be the
original or modified W-matrix, and the G-matrix can be the
original or modified G-matrix, depending on the result of
block 2508. The reconciliation process can yield one or
more reconciled values 14124-1.

In block 2518, the thread 1408a-1 outputs the one or more
reconciled values 1412a-1. For example, the thread 1408a-1
can transmit the one or more reconciled values 1412a-1 via
one or more networks, such as a local area network or the
Internet, to the reconciliation orchestrator 1404 or a client
device.

In the previous description, for the purposes of explana-
tion, specific details are set forth in order to provide a
thorough understanding of examples of the technology. But
various examples can be practiced without these specific
details. The FIGURES and description are not intended to be
restrictive.

The previous description provides examples that are not
intended to limit the scope, applicability, or configuration of
the disclosure. Rather, the previous description of the
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examples provides those skilled in the art with an enabling
description for implementing an example. Various changes
may be made in the function and arrangement of elements
without departing from the spirit and scope of the technol-
ogy as set forth in the appended claims.

Specific details are given in the previous description to
provide a thorough understanding of the examples. But the
examples may be practiced without these specific details.
For example, circuits, systems, networks, processes, and
other components can be shown as components in block
diagram form to prevent obscuring the examples in unnec-
essary detail. In other examples, well-known circuits, pro-
cesses, algorithms, structures, and techniques may be shown
without unnecessary detail in order to avoid obscuring the
examples.

Also, individual examples may have been described as a
process that is depicted as a flowchart, a flow diagram, a data
flow diagram, a structure diagram, or a block diagram.
Although a flowchart can describe the operations as a
sequential process, many of the operations can be performed
in parallel or concurrently. In addition, the order of the
operations can be re-arranged. And a process can have more
or fewer operations than are depicted in a figure. A process
can correspond to a method, a function, a procedure, a
subroutine, a subprogram, etc. When a process corresponds
to a function, its termination can correspond to a return of
the function to the calling function or the main function.

Systems depicted in some of the FIGURES can be pro-
vided in various configurations. In some examples, the
systems can be configured as a distributed system where one
or more components of the system are distributed across one
or more networks in a cloud computing system.

The invention claimed is:
1. A system comprising:
one or more processors; and
one or more memories including program code that is
executable by the one or more processors for causing
the one or more processors to:
receive a plurality of forecasts that have a hierarchical
relationship with respect to one another, wherein
each forecast among the plurality of forecasts cor-
responds to a respective level of a hierarchy, and
wherein at least one forecast in the plurality of
forecasts corresponds to a higher level of the hier-
archy than at least one other forecast of the plurality
of forecasts; and
distribute the plurality of forecasts among a plurality of
computing nodes of a distributed computing envi-
ronment by time point, such that all data points
corresponding to a same time point in the plurality of
forecasts are assigned to a same computing node of
the plurality of computing nodes, the plurality of
computing nodes being configured to collectively
process the plurality of forecasts in parallel to imple-
ment a reconciliation process that involves adjusting
the plurality of forecasts subject to an aggregation
constraint, the plurality of computing nodes being
further configured to:
receive a plurality of datasets corresponding to a
plurality of time points, each dataset of the plu-
rality of datasets including a respective set of data
points from the plurality of forecasts correspond-
ing to a single time point;
organize the respective set of data points in each of
the plurality of datasets by forecast to generate a
plurality of ordered datasets;
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assign the plurality of ordered datasets to a plurality
of processing threads on the plurality of comput-
ing nodes, the plurality of processing threads
being executable in parallel to implement respec-
tive portions of the reconciliation process using
the plurality of ordered datasets;
execute the plurality of processing threads to imple-
ment the reconciliation process on the plurality of
forecasts, to thereby generate a plurality of rec-
onciled values; and
output the plurality of reconciled values.
2. The system of claim 1, wherein the plurality of fore-
casts span a same time period and have a same time interval.
3. The system of claim 1, wherein a computing node in the
plurality of computing nodes is configured to:
access a dataset of the plurality of datasets, wherein the
dataset is assigned to the computing node and corre-
sponds to a particular time point;
generate, based on the dataset, a summation matrix that
encodes aggregation constraints;
determine at least one other summation matrix generated
by at least one other computing node of the plurality of
computing nodes; and
perform a comparison of the summation matrix against
the at least one other summation matrix.
4. The system of claim 3, wherein the computing node is
further configured to:
based on the comparison, determine that the summation
matrix matches the at least one other summation
matrix; and
in response to determining that the summation matrix
matches the at least one other summation matrix,
generate reconciled values associated with the particu-
lar time point based on the summation matrix and the
dataset.
5. The system of claim 3, wherein the computing node is
further configured to:
based on the comparison, determine that the summation
matrix does not match the at least one other summation
matrix; and
based on determining that the summation matrix does not
match the at least one other summation matrix, output
an error message.
6. The system of claim 3, wherein the computing node is
further configured to:
generate a reconciliation matrix based on the summation
matrix and a weighting matrix, wherein the weighting
matrix is distinct from the summation matrix; and
generate reconciled values associated with the particular
time point based on the reconciliation matrix, the
summation matrix, and the dataset.
7. The system of claim 3, wherein a processing thread of
the computing node is further configured to:
determine that the dataset includes a data point with a
missing value, the data point being part of a forecast of
the plurality of forecasts; and
based on determine that the dataset has the data point with
the missing value:
adjust the summation matrix by removing a column and
a row associated with the data point from the sum-
mation matrix, to thereby create an adjusted sum-
mation matrix;
adjust a weighting matrix by removing a column and a
row associated with the data point from the weight-
ing matrix, to thereby create an adjusted weighting
matrix;
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generate a reconciliation matrix based on the adjusted
summation matrix and the adjusted weighting
matrix; and

generate reconciled values associated with the particu-
lar time point based on the reconciliation matrix and
the dataset.

8. The system of claim 3, wherein the one or more
memories further include program code that is executable by
the one or more processors for causing the one or more
processors to:

receive a plurality of data tables, each data table of the

plurality of data tables corresponding to a respective
level of the hierarchy and including all data points from
all forecasts of the plurality of forecasts that correspond
to that respective level of the hierarchy, wherein each
row of each data table of the plurality of data tables
corresponds to a single data point of a single forecast of
the plurality of forecasts; and

generate a dataset, of the plurality of datasets, by extract-

ing a set of datapoints corresponding to the same time
point from the plurality of data tables and grouping
them together as the dataset.

9. The system of claim 1, wherein the reconciliation
process is configured to adjust the plurality of forecasts to
minimize a weighted sum of variances of reconciled forecast
errors associated with all forecasts in the hierarchy.

10. The system of claim 1, wherein the reconciliation
process is configured to determine the plurality of reconciled
values by:

multiplying a summation matrix by a reconciliation

matrix to produce a product; and

multiplying the product by the plurality of forecasts.

11. The system of claim 1, wherein the plurality of
computing nodes are configured to employ two levels of
parallelism to expedite the reconciliation process, the two
levels of parallelism including a first level of parallelism in
which the plurality of forecasts are divided by timestamp
into subsets for processing in parallel across the plurality of
computing nodes, and a second level of parallelism in which
multiple subsets assigned to each individual computing node
of the plurality of computing nodes are processed in parallel
by multiple processing threads on that individual computing
node.

12. A method comprising:

receiving, by one or more processors, a plurality of

forecasts that have a hierarchical relationship with
respect to one another, wherein each forecast among
the plurality of forecasts corresponds to a respective
level of a hierarchy, and wherein at least one forecast in
the plurality of forecasts corresponds to a higher level
of the hierarchy than at least one other forecast of the
plurality of forecasts; and

distributing, by the one or more processors, the plurality

of forecasts among a plurality of computing nodes of a
distributed computing environment by time point, such
that all data points corresponding to a same time point
in the plurality of forecasts are assigned to a same
computing node of the plurality of computing nodes,
the plurality of computing nodes being configured to
collectively process the plurality of forecasts in parallel
to implement a reconciliation process that involves
adjusting the plurality of forecasts subject to an aggre-
gation constraint, the plurality of computing nodes
being further configured to:
receive a plurality of datasets corresponding to a plu-
rality of time points, each dataset of the plurality of
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datasets including a respective set of data points
from the plurality of forecasts corresponding to a
single time point;
organize the respective set of data points in each of the
plurality of datasets by forecast to generate a plural-
ity of ordered datasets;
assign the plurality of ordered datasets to a plurality of
processing threads on the plurality of computing
nodes, the plurality of processing threads being
executable in parallel to implement respective por-
tions of the reconciliation process using the plurality
of ordered datasets;
execute the plurality of processing threads to imple-
ment the reconciliation process on the plurality of
forecasts, to thereby generate a plurality of recon-
ciled values; and
output the plurality of reconciled values.
13. The method of claim 12, wherein the plurality of
forecasts span a same time period.
14. The method of claim 12, wherein a computing node in
the plurality of computing nodes is configured to:
access a dataset of the plurality of datasets, wherein the
dataset is assigned to the computing node and corre-
sponds to a particular time point;
generate, based on the dataset, a summation matrix that
encodes aggregation constraints;
determine at least one other summation matrix generated
by at least one other computing node of the plurality of
computing nodes; and
perform a comparison of the summation matrix against
the at least one other summation matrix.
15. The method of claim 14, wherein the computing node
is further configured to:
based on the comparison, determine that the summation
matrix matches the at least one other summation
matrix; and
in response to determining that the summation matrix
matches the at least one other summation matrix,
generate reconciled values associated with the particu-
lar time point based on the summation matrix and the
dataset.
16. The method of claim 14, wherein the computing node
is further configured to:
based on the comparison, determine that the summation
matrix does not match the at least one other summation
matrix; and
based on determining that the summation matrix does not
match the at least one other summation matrix, output
an error message.
17. The method of claim 14, wherein the computing node
is further configured to:
generate a reconciliation matrix based on the summation
matrix and a weighting matrix, wherein the weighting
matrix is distinct from the summation matrix; and
generate reconciled values associated with the particular
time point based on the reconciliation matrix, the
summation matrix, and the dataset.
18. The method of claim 14, wherein a processing thread
of the computing node is further configured to:
determine that the dataset includes a data point with a
missing value, the data point being part of a forecast of
the plurality of forecasts; and
based on determine that the dataset has the data point with
the missing value:
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adjust the summation matrix by removing a column and
a row associated with the data point from the sum-
mation matrix, to thereby create an adjusted sum-
mation matrix;

generate a reconciliation matrix based on the adjusted
summation matrix and a weighting matrix; and

generate reconciled values associated with the particu-
lar time point based on the reconciliation matrix and
the dataset.

19. The method of claim 14, further comprising:

receiving a plurality of data tables, each data table of the

plurality of data tables corresponding to a respective
level of the hierarchy and including all data points from
all forecasts of the plurality of forecasts that correspond
to that respective level of the hierarchy, wherein each
row of each data table of the plurality of data tables
corresponds to a single data point of a single forecast of
the plurality of forecasts; and

generating a dataset, of the plurality of datasets, by

extracting a set of datapoints corresponding to the same
time point from the plurality of data tables and group-
ing them together as the dataset.

20. The method of claim 14, wherein the reconciliation
process is configured to adjust the plurality of forecasts to
minimize a weighted sum of variances of reconciled forecast
errors associated with all forecasts in the hierarchy.

21. The method of claim 14, wherein the reconciliation
process is configured to determine the plurality of reconciled
values by:

multiplying a summation matrix by a reconciliation

matrix to produce a product; and

multiplying the product by the plurality of forecasts.

22. The method of claim 14, wherein the plurality of
computing nodes are configured to employ two levels of
parallelism to expedite the reconciliation process, the two
levels of parallelism including a first level of parallelism in
which the plurality of forecasts are divided by timestamp
into subsets for processing in parallel across the plurality of
computing nodes, and a second level of parallelism in which
multiple subsets assigned to each individual computing node
of the plurality of computing nodes are processed in parallel
by multiple processing threads on that individual computing
node.

23. A non-transitory computer-readable medium compris-
ing program code that is executable by one or more proces-
sors for causing the one or more processors to:

receive a plurality of forecasts that have a hierarchical

relationship with respect to one another, wherein each
forecast among the plurality of forecasts corresponds to
a respective level of a hierarchy, and wherein at least
one forecast in the plurality of forecasts corresponds to
a higher level of the hierarchy than at least one other
forecast of the plurality of forecasts; and

distribute the plurality of forecasts among a plurality of

computing nodes of a distributed computing environ-
ment by time point, such that all data points corre-
sponding to a same time point in the plurality of
forecasts are assigned to a same computing node of the
plurality of computing nodes, the plurality of comput-
ing nodes being configured to collectively process the
plurality of forecasts in parallel to implement a recon-
ciliation process that involves adjusting the plurality of
forecasts subject to an aggregation constraint, the plu-
rality of computing nodes being further configured to:
receive a plurality of datasets corresponding to a plu-

rality of time points, each dataset of the plurality of
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datasets including a respective set of data points
from the plurality of forecasts corresponding to a
single time point;

organize the respective set of data points in each of the
plurality of datasets by forecast to generate a plural-
ity of ordered datasets;

assign the plurality of ordered datasets to a plurality of
processing threads on the plurality of computing
nodes, the plurality of processing threads being
executable in parallel to implement respective por-
tions of the reconciliation process using the plurality
of ordered datasets;

execute the plurality of processing threads to imple-
ment the reconciliation process on the plurality of
forecasts, to thereby generate a plurality of recon-
ciled values; and

output the plurality of reconciled values.

24. The non-transitory computer-readable medium of
claim 23, wherein a computing node in the plurality of
computing nodes is configured to:

access a dataset of the plurality of datasets, wherein the

dataset is assigned to the computing node and corre-
sponds to a particular time point;

generate, based on the dataset, a summation matrix that

encodes aggregation constraints;

determine at least one other summation matrix generated

by at least one other computing node of the plurality of
computing nodes; and

perform a comparison of the summation matrix against

the at least one other summation matrix.

25. The non-transitory computer-readable medium of
claim 24, wherein the computing node is further configured
to:

based on the comparison, determine that the summation

matrix matches the at least one other summation
matrix; and

in response to determining that the summation matrix

matches the at least one other summation matrix,
generate reconciled values associated with the particu-
lar time point based on the summation matrix and the
dataset.

26. The non-transitory computer-readable medium of
claim 24, wherein the computing node is further configured
to:

based on the comparison, determine that the summation

matrix does not match the at least one other summation
matrix; and

based on determining that the summation matrix does not

match the at least one other summation matrix, output
an error message.
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27. The non-transitory computer-readable medium of
claim 24, wherein the computing node is further configured
to:
generate a reconciliation matrix based on the summation
matrix and a weighting matrix, wherein the weighting
matrix is distinct from the summation matrix; and

generate reconciled values associated with the particular
time point based on the reconciliation matrix, the
summation matrix, and the dataset.

28. The non-transitory computer-readable medium of
claim 24, wherein a processing thread of the computing node
is further configured to:

determine that the dataset includes a data point with a

missing value, the data point being part of a forecast of
the plurality of forecasts; and

based on determine that the dataset has the data point with

the missing value:

adjust the summation matrix by removing a column and
a row associated with the data point from the sum-
mation matrix, to thereby create an adjusted sum-
mation matrix;

generate a reconciliation matrix based on the adjusted
summation matrix and a weighting matrix; and

generate reconciled values associated with the particu-
lar time point based on the reconciliation matrix and
the dataset.

29. The non-transitory computer-readable medium of
claim 24, further comprising program code that is execut-
able by the one or more processors for causing the one or
more processors to:

receive a plurality of data tables, each data table of the

plurality of data tables corresponding to a respective
level of the hierarchy and including all data points from
all forecasts of the plurality of forecasts that correspond
to that respective level of the hierarchy, wherein each
row of each data table of the plurality of data tables
corresponds to a single data point of a single forecast of
the plurality of forecasts; and

generate a dataset, of the plurality of datasets, by extract-

ing a set of datapoints corresponding to the same time
point from the plurality of data tables and grouping
them together as the dataset.

30. The non-transitory computer-readable medium of
claim 23, wherein the reconciliation process is configured to
determine the plurality of reconciled values by:

multiplying a summation matrix by a reconciliation

matrix to produce a product; and

multiplying the product by the plurality of forecasts.
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