
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2017/0123725 A1

US 201701.23725A1

MILLER, JR. et al. (43) Pub. Date: May 4, 2017

(54) REDUCING PAGE INVALIDATION (52) U.S. Cl.
BROADCASTS IN VIRTUAL STORAGE CPC G06F 3/0659 (2013.01); G06F 3/0619
MANAGEMENT (2013.01); G06F 3/0685 (2013.01); G06F

12/1027 (2013.01); G06F 12/023 (2013.01);
(71) Applicant: INTERNATIONAL BUSINESS G06F 2212/1041 (2013.01); G06F 22 12/152

MACHINES CORPORATION, (2013.01); G06F 221 2/683 (2013.01)
Armonk, NY (US)

(72) Inventors: ROBERT MILLER, JR., 57 ABSTRACT
POUGHKEEPSIE, NY (US); HARRIS (57)
M. MORGENSTERN, WAPPINGERS
FALLS, NY (US); JAMES H. Technical solutions for reducing page invalidation broad
MULDER, POUGHKEEPSIE, NY casts in virtual storage management are described. One
(US); ELPIDATZORTZATOS, general aspect includes a method including allocating, by a
LAGRANGEVILLE, NY (US); storage manager, a virtual memory page to a memory buffer
DIETER WELLERDIEK, that is used by an application being executed by a multi
AMMERBUCH (DE) processor System, the virtual memory page being allocated

(21) Appl. No.: 14/925,250 from an address space of the application. The method also
y x- - - 9 includes recording, by a memory management unit, a map

(22) Filed: Oct. 28, 2015 ping between the virtual memory page and a physical
O O location in a memory. The method also includes in response Publication Classification to a request, from the application, to deallocate the memory

(51) Int. Cl. buffer, delaying invalidation of the mapping between the
G06F 3/06 (2006.01) virtual memory page and the physical location in a memory,
G06F 2/02 (2006.01) based on a count of free frames in the address space of the
G06F 2/10 (2006.01) application.

100
Ya

Operating System 30

System Resource Manager 135
Allocated virtual Primary Secondary

Storage Manager 37 memory page 160 memory frame 70 memory frame 80

Applications 120 is: PTE 165

A12A A2208 A 20

Memory 07

Real Storage 115

Secondary Memory 10

Multi-Processor 105

Secondary
Real Storage Memory

83.38::::::: 115 10
P1 1 05A P2.108B Pn 103N Address Space for

MMU MU ? 3. Apaton

May 4, 2017. Sheet 1 of 5 US 2017/O123725 A1 Patent Application Publication

g95. Eaed

004

Patent Application Publication May 4, 2017. Sheet 2 of 5 US 2017/O123725 A1

ReCeive instruction to free a virtual
memory buffer 205

Identify a memory frame Corresponding to Delay the release of the
the virtual memory buffer memory frame and admit the

207 frame to Freedframes 290

Yes

NO Buffer Size <
Thresholds? In the address space:

FreeFrames <
#Freed FramesTarget?

Yes

SLA COnditions
met?

#FreedFramesTarget <=
FreeFrameS <

#Freed FramesTarget"2?
Yes

ls
memory frame of
a predetermined

type?

NO Does memory frame 255
Contain a quad-page?fe

Release the memory frame without
delay 292

Adjacent pages in
quad-page freed?

260

YeS

Release the frame and the
adjacent frame without delay 294

Fig. 2

Patent Application Publication May 4, 2017. Sheet 3 of 5 US 2017/O123725 A1

Receive instruction to free a virtual
memory buffer 205

ldentify a memory frame corresponding to
the virtual memory buffer

Delay the release of the
memory frame and admit the

2O7 frame to Freed Frames 290

Buffer size - is
sts size? o

Yes

in the address space:
iFreeFrames < 240

#Freed framesTarget?

SLA Conditions
met?

#Freedframesarget <=
#FreeFrames <

#FreedFramesTarget"2? ls
memory frame of
a predetermined

type?

Does memory frame 255 Contain a quad-page?

Release the memory frame without

Adjacent pages in 2
quad-page freed? 260

Release the frame and the
adjacent frame without delay 294

May 4, 2017. Sheet 5 of 5 US 2017/O123725 A1 Patent Application Publication

y '61)

?? Eid

ºffeg

US 2017/O123725 A1

REDUCING PAGE INVALIDATION
BROADCASTS IN VIRTUAL STORAGE

MANAGEMENT

BACKGROUND

0001. The present application relates to computer tech
nology, and particularly to virtual memory management,
Such as by an operating system.
0002 Applications, such as computer programs, execut
ing on a computer, have many different modes of handling
virtual storage. An application obtains and releases virtual
storage via system calls, and relies on the computer to
manage the virtual storage. Typically, an operating system of
the computer manages allocation and freeing of the virtual
storage. For example, the operating system manages an
association of a virtual memory pages and corresponding
real frames, the real frame being a memory space in storage
of the computer. The operating system may also manage
Swapping the real frames in and out of the storage. When the
virtual memory page is freed, if the pages are associated
with real frames, the virtual to real association must be
removed not only from the page table, but also from the
Translation Lookaside Buffers (TLBs) associated with each
active processor in the computer. The processor performing
the invalidation must issue an instruction to broadcast the
virtual address being invalidated to all other processors in
the system. Such a broadcast is very disruptive to ongoing
work and becomes even more disruptive as the number of
processors increase.

SUMMARY

0003. One general aspect includes a system that includes
a memory. The system also includes a plurality of proces
sors, and a storage manager. The storage manager receives
a request to deallocate a memory buffer that is being used by
an application. The storage manager identifies a virtual
memory page corresponding to the memory buffer. The
storage manager delays invalidation of the virtual memory
page. The invalidation includes a broadcast to each of the
processors to remove an association between the virtual
memory page and a corresponding physical memory loca
tion.
0004 Another general aspect includes a computer prod
uct including a non-transitory computer readable storage
medium that includes computer executable instructions. The
non-transitory computer readable storage medium includes
instructions to receive, from an application, a request to
deallocate a memory buffer being used by the application.
The non-transitory computer readable storage medium
includes instructions to identify a virtual memory page
corresponding to the memory buffer. The non-transitory
computer readable storage medium includes instructions to
delay invalidation of the virtual memory page in response to
the request to deallocate the memory buffer, where the
invalidation includes broadcast of a request to a plurality of
processors to remove an association between the virtual
memory page and a corresponding physical memory loca
tion.

0005. Another general aspect includes a method includ
ing allocating, by a storage manager, a virtual memory page
to a memory buffer that is used by an application being
executed by a multiprocessor system, the virtual memory
page being allocated from an address space of the applica

May 4, 2017

tion. The method includes recording, by a memory manage
ment unit, a mapping between the virtual memory page and
a physical location in a memory. The method includes in
response to a request, from the application, to deallocate the
memory buffer, delaying invalidation of the mapping
between the virtual memory page and the physical location
in a memory, based on system conditions as directed by a
system resource manager.

BRIEF DESCRIPTION OF THE DRAWINGS

0006. The examples described throughout the present
document may be better understood with reference to the
following drawings and description. The components in the
figures are not necessarily to scale. Moreover, in the figures,
like-referenced numerals designate corresponding parts
throughout the different views.
0007 FIG. 1 illustrates a virtual memory management in
an example system.
0008 FIG. 2 illustrates a flow diagram illustrating
example logic of freeing a virtual memory buffer in accor
dance with an embodiment.
0009 FIG. 3 illustrates a flow diagram illustrating
example logic of allocating a virtual memory buffer in
accordance with an embodiment.
0010 FIG. 4 illustrates an example state of a page table
entry (PTE) that maps a page backed by a freed frame when
it has been delayed from being released in accordance with
an embodiment.

DETAILED DESCRIPTION

0011. An operating system manages virtual memory of a
computer, such as a multiprocessor system. The multipro
cessor System executes multiple applications simultane
ously. The operating system allocates each application a
corresponding address space in the virtual memory. The
operating system manages the address space for the appli
cation. For example, the application requests the operating
system to allocate a memory buffer any time the application
is in need of memory space for its operation. In response to
the request, the operating System may manage a mapping
between the virtual memory and physical memory.
0012 FIG. 1 illustrates virtual memory management in
an example system. A system 100 is shown that includes a
multiprocessor 105, and a memory 107. The memory 107
includes a secondary memory 110 and a real storage 115.
The system 100 may execute one or more applications 120,
and an operating system 130 may manage operations of the
system 100. The system 100 may include other components
Such as a communication interface, an input device (Such as
a keyboard, a mouse, a touchscreen), an output device (Such
as a display, a printer), and other electronic circuitry not
shown in FIG. 1.
0013 The multiprocessor 105 is a central processor of the
system 100, and is responsible for execution of the operating
system 130, the applications 120, and any other executable
instructions. The multiprocessor 105 is operable to execute
logic. The logic includes computer executable instructions
or computer code embodied in the memory 107 or in other
memory that when executed by the multiprocessor 105,
cause the multiprocessor 105 to perform the features imple
mented by the logic. The computer code includes instruc
tions executable with the multiprocessor 105. The computer
code may include embedded logic. The computer code may

US 2017/O123725 A1

be written in any computer language now known or later
discovered. Such as C++, C#, Java, Pascal, Visual Basic,
Perl, HyperText Markup Language (HTML), JavaScript,
assembly language, shell Script, or any combination thereof.
The computer code may include source code and/or com
piled code. The multiprocessor 105 may be a general pro
cessor, central processing unit, server, application specific
integrated circuit (ASIC), digital signal processor, field
programmable gate array (FPGA), digital circuit, analog
circuit, or combinations thereof. The multiprocessor 105 is
in communication with the memory 107, the operating
system 130, and the applications 120, and other components
of the system 100.
0014. The multiprocessor 105 includes a plurality of
processors P1-Pn 105A-105N. Each processor may operate
independently. Alternatively or in addition, the processors
105-105N may operate in conjunction. Each processor,
among other circuitry, includes a memory management unit
(MMU). The MMU is a computer hardware unit that trans
lates a virtual memory address to physical memory address.
The MMU, in addition, may be responsible for memory
protection, cache control, and bus arbitration.
0015 The memory 107 includes non-transitory computer
storage medium. The memory 107 stores control instruc
tions and data of the operating system 130 and the applica
tions 120 that are executable by the multiprocessor 105. In
addition, the memory 107 may contain other data such as
images, videos, documents, spreadsheets, audio files, and
other data that may be associated with operation of the
system 100.
0016. The memory 107 includes the real storage 115,
which is volatile memory Such as dynamic random-access
memory (DRAM), static random-access memory (SRAM),
or any other type of Volatile memory or a combination
thereof. The memory 107 also includes the secondary
memory 110, which is non-volatile memory such as hard
disks, magnetic tape, flash memory, or any other type of
non-volatile memory or combination thereof.
0017. The applications 120 include software applications
A1-An 120A to 120N. The multiprocessor 105 may be
executing the applications 120. The operating system 130 is
responsible for managing the operations of the system 100.
The operating system 130 may be any operating system Such
as z/OSTM, WINDOWSTM, LINUXTM, OS/XTM, or any other
operating system. The operating system 130 includes a
system resource manager 135 and a storage manager. The
system resource manager 135 manages the resources among
the applications 120 that are being executed on the system
100. In this regard, the system resource manager 135 moni
tors the resources currently allocated and used by the
applications 120. The system resource manager 135 may
request an application to release resources that were allo
cated for that application, and allocate the freed resources to
another application. The system resource manager 135, thus,
balances the resources among the applications 120. To this
end, the system resource manager 135 may include the
storage manager that maintains statistics about the allocation
and usage of the resources by the applications 120. Among
other resources, the storage manager under the direction of
the System Resource Manager 135 may manage and balance
the allocation and use of memory 107, particularly real
storage 115, by the applications 120. The storage manager is
responsible for providing interfaces to the application for
obtaining and freeing virtual storage, for backing virtual

May 4, 2017

storage with real storage and for paging or Swapping virtual
storage backed in real to auxiliary (secondary) storage. The
system resource manager uses storage usage statistics pro
vided by the storage manager to instruct the storage manager
to balance the allocation and use of real storage by the
application.
0018. The applications 120 may, together, use or require
more real storage 115, than what is physically available in
the system 100. Hence, the system 100 may use virtual
memory management for executing the applications 120.
Using virtual memory management, the operating system
130 maps memory addresses used by an application, called
virtual addresses, into physical addresses in the real storage
115.
0019 For example, as shown in FIG. 1, the operating
system 130 allocates a virtual memory 150 for each of the
applications 120. A page is a block of contiguous virtual
memory addresses of a predetermined size and a frame is a
block of contiguous physical memory addresses of a prede
termined size. The MMUs of the multiprocessor 105 map a
virtual address in the virtual memory 150 to a physical
address in the real storage 115. The MMUs maintain a
memory map 140 that associates the virtual address with the
physical address or memory location.
0020 For example, the memory map 140 may include an
in-memory table of items called a page table per application
120A. The page table contains a page table entry (PTE) per
page in the virtual memory 150, to map a virtual page to a
physical page. The MMUs uses an associative cache, called
a translation lookaside buffer (TLB), to avoid the necessity
of accessing Dynamic Address Translation Tables (DAT
tables) every time the application references virtual memory.
Each MMU may have its own TLB. In an example, the
operating system 130 may load into the real storage 115, the
pages that are being used by an application, Such as the
application 120A. The operating system 130 may swap
pages in the real storage 115 into the secondary memory 110.
The secondary memory 110 may be a separate non-volatile
storage designated as the secondary memory 110, or a
section of a non-volatile storage delineated as a Swap file, or
a Swapping partition.
0021. In an example, the application 120A allocates and
deallocates a memory buffer. The application 120A requests
the operating system 130 to allocate and deallocate the
memory buffer. In response to a request to allocate the
memory buffer, the operating system 130 allocates one or
more pages of the virtual memory 150 to the memory buffer.
For example, the operating system 130 allocates a virtual
memory page 160 in the virtual memory 150. The operating
system maps the virtual memory page 160 with a corre
sponding memory frame 170 in the real storage 115. The
operating system 130 records the mapping in the memory
map 140. For example, the operating system 130 may create
or update a PTE 165 in the memory map 140. The mapping
may be stored in the TLB of a subset of the processors of the
multiprocessor 105. The operating system 130 may swap the
primary memory frame 170 into an auxiliary (or secondary)
memory frame 180 in the secondary memory 110.
0022. Subsequently, the application 120A may request
the operating system 130 to deallocate the memory buffer.
Consequently, the operating system 130 may deallocate the
virtual memory page 160. When the virtual memory page
160 is freed, if the page is associated with the primary
memory frame 170, the virtual to real association in the PTE

US 2017/O123725 A1

is typically removed not only from the page table, but also
from the TLBs associated with each processor. For example,
the operating system 130 may issue an Invalidate Page Table
Entry instruction, such as the IPTE instruction of Z/Archi
tectureTM, which broadcasts an invalidation signal for the
virtual address being invalidated to all the processors in the
system 100. The IPTE instruction not only invalidates a
virtual to real mapping in the page table entry, but also
signals every processor to update their TLBs should they
contain a mapping of the page being invalidated. This
broadcast can be disruptive to ongoing work and becomes
even more disruptive as the number of processors increase.
0023 The system 100 may reduce the disruptive broad
casts associated with page invalidations using an instruction,
Such as the IPTERANGE instruction in Z/ARCHITEC
TURETM, to invalidate a range of primary memory pages
with a single invalidation broadcast to the processors. Simi
larly, the IDTE instruction invalidates all storage associated
with a higher level DAT structure (such as a single segment
in Z/Architecture) with a single broadcast. However, despite
usage of such instructions the number of invalidation broad
casts still depends on the behavior of the application 120A.
For example, if the application 120A obtains and frees a
single virtual memory page. Such as the virtual memory page
160, at a time, the number of IPTE invocations does not
change. Additionally, even if the application 120A frees
more than a single virtual memory page at a time, if it
Subsequently obtains pages at the same virtual storage
addresses, the system 100 incurs the overhead of reobtaining
real storage to back the pages as well as repopulating the
cache and TLB.

0024 Disclosed herein are systems and methods for
reducing the number of page invalidations, increase cache
consistency, and reduce memory management path length.
For example, based on predetermined conditions, the virtual
to real association in the PTE is not broken when the
application 120A requests releasing the memory buffer. The
operating system 130 delays releasing the corresponding
primary memory frame 170 and marks the primary memory
frame 170 as a “Freed Frame.” The operating system 130
thus, avoids the overhead of the invalidation broadcast when
invalidating the page, and further avoids the overhead of the
bookkeeping of processing the corresponding primary
memory frame 170 that is no longer in use. If the virtual
memory page 160 that was just freed by the application
happens to be re-obtained within a small interval of time,
addressability to the page in the TLB may still exist and the
data for the page may already be in the cache for the
processor obtaining the storage. Thus, the storage manager
may avoid the overhead of having to obtain a new frame to
back the virtual storage and the application may avoid the
Subsequent TLB and cache misses when accessing it.
0025. The system resource manager 135 may track sta

tistics of frame reuse to determine whether the application
120A is effectively reusing freed frames. When the appli
cation 120A is not efficiently using the number of freed
frames, a predetermined freed frames threshold is reduced.
When nearly all freed frames are reused by the application
120A the freed frames threshold is increased. For example,
the system resource manager 135 may keep track of a
number of freed frames owned by all applications 120 and
limit the maximum number of freed frames that an appli
cation 120A can own. For example, if the number of freed
frames crosses a predetermined freed frames threshold,

May 4, 2017

performance of other storage management functions owned
by the applications may degrade. The system resource
manager 135 may setup the predetermined freed frames
threshold for the application 120A.
0026 FIG. 2 illustrates example logic implemented by
the operating system 130 for freeing a virtual memory
buffer. The operating system 130 may implement the opera
tions in a different order in another example. In an example,
the operating system 130 provides a storage free routine,
which obtains control via a system call to release virtual
storage and real storage that is associated with the virtual
storage. In one embodiment, the operating system 130
receives a request from the application 120A to release a
virtual memory buffer, as shown at block 205. In response to
receiving the request to release the virtual memory buffer,
the operating system 130 identifies a primary memory
frame, as shown at block 207. The operating system 130
determines whether the size of the virtual memory buffer is
less than a predefined threshold, as shown at decision block
210. In one embodiment, in Z/OS the threshold is 256 pages.
Of course, the threshold may be different in other embodi
ments and the threshold may be configurable. If the size of
the virtual memory buffer exceeds the threshold, the oper
ating system 130 may release the virtual memory buffer and
the corresponding primary memory frame without any
delay, as shown at block 292, since doing so may result in
fewer page invalidation broadcasts than freeing Smaller
buffers. In case the virtual memory buffer is less than the
threshold, the operating system 130 may delay releasing the
primary memory frame, as shown at block 290, based on
other parameters. For example, the operating system 130
may determine if any Service Level Agreement (SLA) terms
are being met, as shown at block 220. For example, the
operating system 130 may have an SLA that indicates a
predetermined amount of freed frames. If the SLA terms are
not being met, the operating system 130 releases the virtual
memory buffer, as shown at block 292. Alternatively, the
operating system 130 may delay releasing the primary
memory frame, as shown at block 290, based on other
parameters. The storage manager 137 of the operating
system 130 may admit the memory frame as a “Freed
Frame,” which marks the corresponding virtual memory as
being unallocated but maintains the association between the
virtual storage and the backing real frame (that is, the pages
are not invalidated).
(0027 FIG. 4 illustrates an example state of a PTE of a
freed frame when it has been delayed from being released.
The PTE 165 may identify the memory location of the
primary memory frame 470 that has been freed (but not
released). The PTE 165 may further indicate that the page is
valid in real, for example, based on a page invalid identifier
in the PTE 165. The operating system 130 in addition
maintains a Page Table Entry Extension (PTEX) 465, which
maintains attributes of the page (such as, its location when
not on real storage), but is not part of the hardware archi
tecture. The PTEX 465 includes an identifier that indicates
that the page is freed and can be reallocated. For example,
the PTEx 465 may include a page allocated bit that indicates
whether the page is currently allocated to a memory buffer.
In an example, the page allocated bit being 0 (zero) indicates
that the page is not currently allocated, and being 1 (one)
indicates that the page is currently in use. Other examples
may use other bit values or a different identifier than a bit.
The operating system may maintain the state of the identi

US 2017/O123725 A1

fier. Further, the operating system may maintain a page
frame table entry (PFTE) 430 to contain attributes associated
with the primary memory frame 170. The PFTE 430 may
identify that the corresponding primary memory frame is a
freed frame. For example, the PFTE 430 may include a freed
frame indicator that identifies whether the corresponding
primary memory frame 170 is a freed frame, a released
frame, or a frame in use, or any other state of the primary
memory frame 170.
0028. In another example, the operating system 130
determines if the primary memory frame corresponding to
the virtual memory buffer to be freed is of a predetermined
type that can be freed after a delay, as shown at decision
block 230. For example, the operating system 130 cannot
delay releasing frames within a predetermined memory
address range. For example, in Z/ARCHITECTURE, a
frame with physical address less than 16 Meg represents a
scarce system resource. Other operating systems may use
different address ranges, or different indicators to identify
scarce system resources. Additionally the operating system
130 may ensure that the frame is not part of a quad-group or
a 1M frame group because these frame groups are costly to
reform if their 4k units are left owned by different address
spaces. Thus, if the primary memory frame corresponding to
the virtual memory buffer is of the predetermined type, such
as a scarce resource, or part of a quad-group, the operating
system 130 releases the virtual memory buffer and the
primary memory frame without any delay, as shown at block
292. Else, the operating system 130 may add the primary
memory frame to the freed frames and delay releasing the
frame based on other parameters, as shown at block 290.
0029. For example, the operating system 130, via a
storage release processor, may compare a number of freed
frames in the address space of the application 120A to
determine if the number is less than a “FreedFramesTarget'
that is maintained by the system resource manager, as shown
at decision block 240. If the number of freed frames is less
than the predetermined target, the operating system 130
maintains the virtual to real association. Else, the operating
system 130 may compare the number of free frames with a
second threshold, such as FreedFramesTarget2, as shown at
decision block 250. Other second thresholds may be used in
other examples. In an example, the operating system 130
may check f
#FreedFramesTarget-#FreeFrames<#Freed FramesTarget2.
If the above condition is not met, the operating system 130
will invalidate the virtual page and release the associated
frame without delay, as shown at block 292.
0030 Else, if the above condition is met, for example,
when the number of freed frames in the address space
exceeds the FreedFramesTarget but is less than twice the
FreedFramesTarget, the storage manager 137 may identify
whether the memory frame contains a quad-page, as shown
at block 255. If the frame does not contain a quad-page, the
operating system 130 delays the release of the memory
frame, as shown at blocks 255 and 290. Else, if the frame is
part of a quad-page, the storage manager 137 identifies a
status of neighboring pages corresponding to the virtual
memory buffer to be freed, as shown at decision block 260.
The operating system 130 may determine if the neighboring
three pages in the quad-page are backed by real frames that
are also part of the freed frame set, in which case the entire
group of quad-page is released without delay, as shown at
block 294, such as using the IPTERANGE instruction. For

May 4, 2017

this, the operating system 130 may round the virtual address
of the page to be freed to a quad-page boundary. For
example, in Z/ARCHITECTURE where pages are 4096
bytes (212), the start of a quad-page boundary is computed
as Page Address & FFFFC000x (in case the Page Address
is a 31 bit address). Other examples may round the virtual
address according to different setups. Alternatively, if the
adjacent pages in the quad-page are not freed, the operating
system 130 may delay releasing the virtual to real associa
tion of the memory frame, as shown at blocks 260 and 290.
0031. By implementing the above logic, the operating
system 130 reduces the number of page invalidation broad
casts by delaying when the frame is actually released. In
addition, the operating system 130 uses the IPTERANGE
instruction which can invalidate a set of sequential pages
with only a single broadcast as described elsewhere in the
present document. The operating system’s 130 storage man
ager 137 maintains statistics regarding the freed frames to
determine what action would be most efficient. For example,
the storage manager 137 when processing a storage release
request ensures that when the total number of Freed Frames
exceeds twice the “FreedFramesTarget” threshold, frames
are immediately returned to the system.
0032. Accordingly, the System Resource Management
function of the operating system 137 ensures that there are
sufficient available frames in the system 100. The System
Resource Manager may indicate to the operating system 130
via a control block whether to admit the frames as freed
frames, either at the system level or at the address space
level. In an example, the System Resource Manager sets the
“FreedFramesTarget of the address space of the application
120A to Zero (0), thus controlling when the Storage manager
admits frames in response to a free storage request from the
application 120A. In an example, the System Resource
Manager may set the FreedFramesTarget for every address
Space.
0033. In addition, the storage manager 137 may maintain
address space and system level statistics describing the state
of Freed Frames. For example, when a new freed frame is
admitted to the set of freed frames, the “FreedFramesCount
associated with the address space and “FreedFramesSystem
Count” are incremented. As described throughout the pres
ent document, the set of freed frames is the set of frames
whose release is delayed. Thus, #FreedFramesCount repre
sents a number of frames whose release is delayed. Addi
tionally, if the virtual storage address that the frame backs is
greater than any other virtual storage address backed by a
freed frame, the new “FreedFramesHighWsa’ is recorded.
This address is used in steal processing since it provides a
starting location where freed frames can be found. Addi
tionally, a monotonically increasing count of "FreedFrames
Monotonic' is incremented.
0034 Table 1 identifies counts associated with freed
frames of an address space and how and when the storage
manager 137 updates statistics related to the freed frames.

TABLE 1.

When
Address Space Counter Updated How Updated

FreedFramesCount Storage Incremented
Deallocation
Storage
Allocation

FreedFramesCount Decremented

US 2017/O123725 A1

TABLE 1-continued

When
Address Space Counter Updated How Updated

FreedFramesCount Frame Steal Decremented
FreedFramesMonotonic Storage Incremented

Deallocation
Freed FramesReused Monotonic Storage Incremented

Allocation
Freed FramesFailed Monotonic Storage Incremented

Allocation
Freed FramesHigh Vsa Storage Set to

Deallocation MAX(FreedFramesHigh Vsa,
Vsa of buffer)

Frame Steal Decremented by some
multiple of the page size
during Freed Frames steal
processing

Freed FramesHigh Vsa

0035 Table 2 identifies counts associated with freed
frames of at the system level and how and when the storage
manager 137 updates statistics related to the freed frames.

TABLE 2

System Level Counter When Updated How Updated

FreedFramesSystemCount Storage Deallocation Incremented
FreedFramesSystemCount Storage Allocation Decremented
FreedFramesSystemCount Frame Steal Decremented

0036 FIG. 3 illustrates an example logic that the oper
ating system 130 implements in response to the storage
allocation request. The operating system 130 performs a
storage allocation in response to a request from the appli
cation 120A to obtain a virtual memory buffer, as shown at
block 305. The operating system 130 detects whether there
are freed frames to associate with the virtual memory buffer.
In an example, the operating system 130 may first determine
whether the application 120A requested that the memory
that is not to be backed, as shown at decision block 310. In
this case, the operating system 130 releases the primary
memory frames corresponding to the memory buffer, as
shown at block 315. The operating system may do so in an
efficient manner. Such as using an instruction (such as the
IPTERANGE provided in Z/Architecture) to invalidate con
tiguous pages with a single broadcast. Alternatively, the
application 120A wants the pages to be backed at the time
of obtaining the memory, as shown at decision block 310. In
this case, if the operating system 130 uses a primary memory
frame from the freed frames as the backing frame, as shown
at decision block 320, the operating system 130 clears the
frame, marks the area of the primary memory as allocated,
and updates the statistics related to the freed frames in the
address space and system 100, as shown at block 330. For
example, the storage manager 137 decrements the “Freed
FramesCount' associated with the address space and the
“Freed FramesSystemCount” as shown at block 330. The
storage manager 137 additionally increments a monotoni
cally increasing counter of the number of “FreedFrames
Reused Monotonic' associated with the address space by 1
(one), as shown at block 330. Thus, the overhead of obtain
ing a new primary memory frame is avoided. Further, if the
storage being obtained was freed a small time interval
earlier, the real address of the memory frame may still
resides in the processor's cache. In an example, the operat
ing system 130 may associate the virtual memory buffer with

May 4, 2017

the primary memory frame that was previously used. Thus,
the cache miss that occurs when the frame is cleared by the
system resource manager 135 is avoided, resulting in a
performance improvement. Additionally, since the virtual
to-real bind in the PTE remained intact, the TLB entry
associated with the virtual storage address may also remain
in effect, resulting in a fast virtual address translation when
the application references the storage.
0037. The System Resource Manager 135 monitors the
counters, “FreedFramesReused Monotonic' and “Freed
FramesMonotonic,” to determine how well the application
120A is reusing freed frames. Conversely, when the page
being allocated is not backed by a freed frame, (320) but
there exists freed frames owned by the address space, a
“FreedFramesFailed Monotonic' is incremented as shown at
block 325); this is another monotonically increasing counter
used to determine whether the address space is making
effective use of its freed frames.
0038. Thus, the system resource manager 135 relies on
the counts maintained by the storage manager 137 to deter
mine whether to retain the virtual to real bind in response to
a request to free the memory buffer from the application
120A. The storage manager 137 is responsible for managing
the “Freed Frames' at both the address space and system
level. When the system 100 runs low on frames, the storage
manager 137 is responsible for preventing additional frames
from being admitted as “Freed Frames.” The system
resource manager 135 may set the “FreedFramesTarget' on
the address space corresponding to the application 120A.
The FreedFramesTarget restricts the admission of new
“Freed Frames.” In addition, the system resource manager
135 may direct the Storage Manager 137 to release the Freed
Frames that the address spaces own, when the system runs
low on storage, prior to stealing in use memory. The storage
manager 137 uses the “FreedFramesSystemCount” and the
“Freed FramesCount in this effort.

0039 Based on monitoring the statistics of the address
space, the storage manager 137 may determine that the
address space is not making efficient use of “Freed Frames.”
In such a case, the storage manager 137 reduces the “Freed
FramesTarget corresponding to the address space, free
some or all of the “Freed Frames' in the address space, or
a combination of both. Determining whether the address
space is making efficient usage of “Freed Frames' is based
on the calculation of “FreedFramesReused Monotonic' and
“FreedFramesMonotonic.” For example, if value of a ratio
of “Freed FramesReused Monotonic’ to “Freed Frames
Monotonic' is less than or equal to 1, but when the value is
close to 1 the storage manager 137 concludes that most
frames that were previously admitted to the set of “Freed
Frames' were reused when the storage was Subsequently
re-allocated.
0040. Additionally, the storage manager 137 samples the
“FreedFramesFailed Monotonic' monotonically increasing
count to determine whether freed frames are being reused by
the address space. If this number is continually growing and
the number of freed frames in the address space exceeds
“FreedFramesTarget” for the address space, the storage
manager 137 concludes that the virtual address selected to
back storage allocations within the address space is not
falling in an area backed by freed frames. In this case, the
storage manager 137 may decide to steal Some or all of the
freed frames owned by the address space. The stealing of
freed frames is tied to the way in which virtual storage is

US 2017/O123725 A1

allocated in the address space. That is, if storage is allocated
from lower to higher (i.e. ascending) addresses, then steal
processing traverse Dynamic Address Translation (DAT)
structures, such as the PTE, in descending order starting
from higher addresses to lower addresses in search of freed
frames. Thus, virtual addresses that are less likely to be
allocated using storage allocation requests lose their asso
ciated freed frames. Further, during the steal, when a con
tiguous sequence of pages that are either backed by freed
frames or are invalid are encountered, the storage manager
137 uses the IPTERANGE or IDTE instructions, for
example in a Z/ARCH system, to minimize the number of
invalidation broadcasts.

0041. The technical solutions described throughout the
present document provide techniques to reduce page invali
dation broadcasts to multiple processors in a system. The
instruction to invalidate a page is relatively expensive since
it signals each processor in the system to indicate that its
translation entry in the TLB is to be removed. The technical
Solutions in the present application delay releasing a virtual
to-real memory bind, or mapping in the PTE in response to
a request to deallocate a memory buffer from an application.
The storage manager updates the PTEX corresponding to the
page and the PFTE corresponding to the associated frame.
The PTE does not change, and instead the PTEX is updated
to indicate that the page is not allocated. Thus, the page itself
is no longer logically allocated. Subsequently, if the appli
cation requests a reallocation, the page may be allocated by
updating the PTEX. Since the virtual-to-real mapping was
maintained, the processors may avoid cache misses, as the
TLB may continue to associate the page with the corre
sponding frame. Alternatively or in addition, in case the
system or the application is running low on available frames,
which the system resource manager detects based on counts
of available frames, the system resource manager may
initiate release of the bindings of the one or more pages that
are not logically allocated. The operating system may
release the pages by first invalidating them by using instruc
tions such as IPTERANGE that invalidate multiple pages at
once. Thus, the above techniques reduce the number of page
invalidation requests that are broadcast in the system.
Accordingly, the technical Solutions improve efficiency of
the system, particularly the virtual memory management of
the operating system in a multiprocessor system.
0042. The present invention may be a system, a method,
and/or a computer program product at any possible technical
detail level of integration. The computer program product
may include a computer readable storage medium (or media)
having computer readable program instructions thereon for
causing a processor to carry out aspects of the present
invention.

0043. The computer readable storage medium can be a
tangible device that can retain and store instructions for use
by an instruction execution device. The computer readable
storage medium may be, for example, but is not limited to,
an electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory

May 4, 2017

(SRAM), a portable compact disc read-only memory (CD
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals perse. Such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.
0044 Computer readable program instructions described
herein can be downloaded to respective computing/process
ing devices from a computer readable storage medium or to
an external computer or external storage device via a net
work, for example, the Internet, a local area network, a wide
area network and/or a wireless network. The network may
comprise copper transmission cables, optical transmission
fibers, wireless transmission, routers, firewalls, Switches,
gateway computers and/or edge servers. A network adapter
card or network interface in each computing/processing
device receives computer readable program instructions
from the network and forwards the computer readable
program instructions for storage in a computer readable
storage medium within the respective computing/processing
device.

0045 Computer readable program instructions for carry
ing out operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, con
figuration data for integrated circuitry, or either source code
or object code written in any combination of one or more
programming languages, including an object oriented pro
gramming language Such as Smalltalk, C++, or the like, and
procedural programming languages, such as the “C” pro
gramming language or similar programming languages. The
computer readable program instructions may execute
entirely on the user's computer, partly on the user's com
puter, as a stand-alone software package, partly on the user's
computer and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user's computer through
any type of network, including a local area network (LAN)
or a wide area network (WAN), or the connection may be
made to an external computer (for example, through the
Internet using an Internet Service Provider). In some
embodiments, electronic circuitry including, for example,
programmable logic circuitry, field-programmable gate
arrays (FPGA), or programmable logic arrays (PLA) may
execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, in order to
perform aspects of the present invention.
0046 Aspects of the present invention are described
herein with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems), and computer
program products according to embodiments of the inven
tion. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer readable program instruc
tions.

US 2017/O123725 A1

0047. These computer readable program instructions may
be provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro
cessing apparatus to produce a machine, Such that the
instructions, which execute via the processor of the com
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, Such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

0048. The computer readable program instructions may
also be loaded onto a computer, other programmable data
processing apparatus, or other device to cause a series of
operational steps to be performed on the computer, other
programmable apparatus or other device to produce a com
puter implemented process, such that the instructions which
execute on the computer, other programmable apparatus, or
other device implement the functions/acts specified in the
flowchart and/or block diagram block or blocks.
0049. The flowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of
possible implementations of systems, methods, and com
puter program products according to various embodiments
of the present invention. In this regard, each block in the
flowchart or block diagrams may represent a module, seg
ment, or portion of instructions, which comprises one or
more executable instructions for implementing the specified
logical function(s). In some alternative implementations, the
functions noted in the blocks may occur out of the order
noted in the Figures. For example, two blocks shown in
Succession may, in fact, be executed Substantially concur
rently, or the blocks may sometimes be executed in the
reverse order, depending upon the functionality involved. It
will also be noted that each block of the block diagrams
and/or flowchart illustration, and combinations of blocks in
the block diagrams and/or flowchart illustration, can be
implemented by special purpose hardware-based systems
that perform the specified functions or acts or carry out
combinations of special purpose hardware and computer
instructions.

0050. Furthermore, although specific components are
described above, methods, systems, and articles of manu
facture described herein may include additional, fewer, or
different components. For example, a processor may be
implemented as a microprocessor, microcontroller, applica
tion specific integrated circuit (ASIC), discrete logic, or a
combination of other type of circuits or logic. Similarly,
memories may be DRAM, SRAM, Flash or any other type
of memory. Flags, data, databases, tables, entities, and other
data structures may be separately stored and managed, may
be incorporated into a single memory or database, may be
distributed, or may be logically and physically organized in
many different ways. The components may operate inde
pendently or be part of a same program or apparatus. The
components may be resident on separate hardware, such as
separate removable circuit boards, or share common hard
ware, Such as a same memory and processor for implement

May 4, 2017

ing instructions from the memory. Programs may be parts of
a single program, separate programs, or distributed across
several memories and processors.
0051. A second action may be said to be “in response to
a first action independent of whether the second action
results directly or indirectly from the first action. The second
action may occur at a Substantially later time than the first
action and still be in response to the first action. Similarly,
the second action may be said to be in response to the first
action even if intervening actions take place between the
first action and the second action, and even if one or more
of the intervening actions directly cause the second action to
be performed. For example, a second action may be in
response to a first action if the first action sets a flag and a
third action later initiates the second action whenever the
flag is set.
0.052 To clarify the use of and to hereby provide notice
to the public, the phrases “at least one of <Ad, and
<N>' or “at least one of <A>, , ... <N>, or combina
tions thereof or “-A>, , . . . and/or <N>' are to be
construed in the broadest sense, Superseding any other
implied definitions hereinbefore or hereinafter unless
expressly asserted to the contrary, to mean one or more
elements selected from the group comprising A, B, . . . and
N. In other words, the phrases mean any combination of one
or more of the elements A, B, . . . or N including any one
element alone or the one element in combination with one or
more of the other elements which may also include, in
combination, additional elements not listed.
0053. The descriptions of the various embodiments of the
present invention have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to best explain the principles of the embodiments, the
practical application or technical improvement over tech
nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.
What is claimed is:
1. A system comprising:
a memory;
a plurality of processors; and
a storage manager configured to:

receive a request to deallocate a memory buffer that is
being used by an application;

identify, by one of the plurality of processors, a virtual
memory page corresponding to the memory buffer;
and

delay invalidation of the virtual memory page, wherein
the invalidation comprises a broadcast to each of the
processors to remove an association between the
virtual memory page and a corresponding physical
memory location.

2. The system of claim 1, wherein the storage manager is
configured to delay the invalidation in response to a size of
the memory buffer being smaller than a predetermined
buffer threshold.

3. The system of claim 1, wherein the storage manager is
configured to delay the invalidation in response to the virtual
memory page being a predetermined type.

US 2017/O123725 A1

4. The system of claim 1 wherein the storage manager is
configured to delay the invalidation in response to a free
amount of the memory available to the system being below
a predetermined threshold.

5. The system of claim 1, wherein the storage manager is
configured to delay the invalidation in response to a number
of free frames in an address space for the application being
lesser than a predetermined target number of free frames for
the address space.

6. The system of claim 1, wherein the storage manager is
configured to delay the invalidation in response to:

a number of free frames in an address space for the
application not being lesser than a predetermined target
number of free frames for the address space; and

another virtual memory page adjacent to the virtual
memory page being a valid frame that has not been
freed.

7. The system of claim 6, wherein the storage manager is
configured to invalidate the virtual memory page without a
delay, in response to another virtual memory page adjacent
to the virtual memory page being backed by a freed frame.

8. The system of claim 6, wherein the storage manager is
configured to delay the invalidation further in response to
the number of free frames in the address space for the
application being less than a second predetermined threshold
for the address space of the application.

9. The system of claim 8, wherein the storage manager is
configured to invalidate the virtual memory page without a
delay, in response to the number of free frames in the address
space for the application not being less than the second
predetermined threshold for the address space of the appli
cation.

10. The system of claim 1, wherein the storage manager
is further configured to increment, in response to delaying
the invalidation, a count of a number of free frames in an
address space of the application, a count of a total number
of free frames, and a monotonic counter of a number of free
frames freed.

11. A computer program product comprising a non-tran
sitory computer readable storage medium that comprises
computer executable instructions, the non-transitory com
puter readable storage medium comprising instructions to:

receive, from an application, a request to deallocate a
memory buffer being used by the application;

identify a virtual memory page corresponding to the
memory buffer; and

delay invalidation of the virtual memory page in response
to the request to deallocate the memory buffer, wherein
the invalidation comprises broadcast of a request to a
plurality of processors to remove an association
between the virtual memory page and a corresponding
physical memory location.

12. The computer program product of claim 11, wherein
the non-transitory computer readable storage medium fur
ther comprises instructions to increment, in response to

May 4, 2017

delaying the invalidation, a count of a number of free frames
in an address space of the application, a count of a total
number of free frames, and a monotonic counter of a number
of free frames freed.

13. The computer program product of claim 11, wherein
the invalidation of the virtual memory page is delayed in
response to the memory buffer being of a size Smaller than
a predetermined threshold.

14. The computer program product of claim 13, wherein
the invalidation of the virtual memory page is delayed in
response to the virtual memory page being of a predeter
mined type.

15. The computer program product of claim 11, wherein
the invalidation of the virtual memory page is delayed in
response to free amount of memory available being below a
predetermined threshold.

16. The computer program product of claim 11, wherein
the invalidation of the virtual memory page is delayed in
response to:

a number of free frames in an address space for the
application not being lesser than a predetermined target
number of free frames for the address space; and

another virtual memory page adjacent to the virtual
memory page being a valid frame that has not been
freed.

17. A method comprising:
allocating, by a storage manager, a virtual memory page

to a memory buffer that is used by an application being
executed by a multiprocessor system, the virtual
memory page being allocated from an address space of
the application;

recording, by a memory management unit, a mapping
between the virtual memory page and a physical loca
tion in a memory; and

in response to a request, from the application, to deallo
cate the memory buffer, delaying invalidation of the
mapping between the virtual memory page and the
physical location in a memory.

18. The method of claim 17, wherein the invalidation of
the mapping is delayed in response to a size of the memory
buffer being smaller than a predetermined buffer threshold.

19. The method of claim 17, wherein the invalidation of
the mapping comprises broadcasting, to each processor of
the multiprocessor System, a request to remove an associa
tion between the virtual memory page and the physical
memory location.

20. The method of claim 17, wherein the invalidation of
the mapping is delayed further in response to:

a number of free frames in an address space for the
application not being lesser than a predetermined target
number of free frames for the address space; and

another virtual memory page adjacent to the virtual
memory page being a valid frame that has not been
freed.

