a2 United States Patent

Givental et al.

US011888883B2

US 11,888,883 B2
Jan. 30, 2024

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

THREAT DISPOSITION ANALYSIS AND
MODELING USING SUPERVISED MACHINE
LEARNING

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Inventors: Gary 1. Givental, Bloomfield Hills, MI
(US); Aankur Bhatia, Bethpage, NY
(US); Paul J. Dwyer, Pewaukee, WI
(US)

Assignee: International Business Machines
Corporation, Armonk, NY (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 726 days.

Appl. No.: 15/623,125

Filed: Jun. 14, 2017

Prior Publication Data

US 2018/0367561 Al Dec. 20, 2018

Int. CL.

HO4L 9/40 (2022.01)

GO6N 20/00 (2019.01)

GO6F 21/55 (2013.01)

GO6N 5/04 (2023.01)

U.S. CL

CPC ... HO04L 63/1433 (2013.01); GO6F 21/552

(2013.01); GO6N 20/00 (2019.01); HO4L
63/1408 (2013.01); GO6N 5/04 (2013.01)
Field of Classification Search
CPC HO4L 63/1433; GO6N 20/00
See application file for complete search history.

300

(56) References Cited

U.S. PATENT DOCUMENTS

9,516,053 B1 12/2016 Coden et al.
9,690,938 B1* 6/2017 Saxeccccecvennn GO6N 3/045
10,091,231 B1* 10/2018 Gates HO4L 63/1433

2009/0099988 Al 4/2009 Stokes et al.
2015/0067857 Al* 3/2015 Symons GO6N 5/043
726/23

2015/0172321 Al 6/2015 Kirti et al.
(Continued)

OTHER PUBLICATIONS

IPCOMO000243925d, “Analytic Forecasting of Future Electronic
Cyber Threats with Deep Learning and Coevolutionary Strategies,”
Oct. 28, 2015.

(Continued)

Primary Examiner — Trang T Doan
(74) Attorney, Agent, or Firm — Aaron Pontikos

(57) ABSTRACT

An enhanced threat disposition analysis technique is pro-
vided. In response to receipt of a security threat, a threat
disposition score (TDS) is retrieved. The threat disposition
score is generated from a machine learning scoring model
that is built from information about historical security
threats, including historical disposition of one or more alerts
associated with the historical security threats. The system
augments an alert to include the threat disposition score,
optionally together with a confidence level, to generate an
enriched alert. The enriched alert is then presented to the
security analyst for handling directly. Depending on the TDS
(and its confidence level), the analyst may be able to respond
to the threat immediately, i.e., without further detailed
investigation. Preferably, the machine learning model is
updated continuously as the system handles security threats,
thereby increasing the predictive benefit of the TDS scoring.

26 Claims, 9 Drawing Sheets

DISTRIBUTED

SECURITY
INTELLIGENCE 1

SECURITY
INTELLIGENCE
PLATFORM

DATABASE
306

CONSCLE |
308 |

INCIDENT
FORENSICS
MODULE

PACKET CAPTURE
APPLIANCES
302

E==oo

|

== oo

hBin ot

~

USER AND
ks IDENTITIES

& SECURITY ~<
DEVICES ~- -
~
SERVERS AND >~
T MANFRAVES CORRELATION S~ SUSPECTED
o LOGS/EVENTS ~< INCIDENTS
NETWORK AND . S
VIRTUAL ACTNITY « IPREPUTATION ~a
* GEOGRAPHIC LOCATION OFFENSE >~ -
S DATAACTIVITY ACTIVITY BASELINING AND IDEEEEID%E%C N
ANOMALY DETECTION .
[APPLICATION o USERACTMTY SEVERITY e
ACTVITY . DATABASE « RELEVANCE .~
ABAS -
&5 CONFIGURATION ACTVTY -
INFORMATION ¢ APPLICATION s TRUE
Acviry e OFFENSE
- VULNERABILITIES » NETWORK P
AND THREATS ATMY

US 11,888,883 B2

(56)

2016/0364163 Al

2017/0063912 Al

2017/0118240 A1*
2017/0214708 Al*
2018/0083988 Al*
2018/0183827 Al*
2018/0248893 Al*

Page 2
References Cited
U.S. PATENT DOCUMENTS

12/2016 Kamble
3/2017 Muddu et al.
4/2017 Devi Reddy GO6N 7/005
7/2017 Gukal GO6F 16/285
3/2018 Kataoka HO4L 63/1416
6/2018 Zorlular . HO4L 63/1416
8/2018 Israelooooevvnne. HO04L 67/10

OTHER PUBLICATIONS

Santos et al, IPCOMO000248565D, “Adaptive Learning Model for
Application-Based Trust and Risk Scoring Using Consistent Profile
Creation,” Dec. 19, 2016.
Kumar et al, IPCOM000239081D, “Machine Learning Based Pre-
dictive Model for Analyzing the Sentiments in Short Text,” Oct. 10,

2014.

Stiborek et al, IPCOM000238197D, “Realistic Simulation of Net-
work Behavior for Evaluation and Self-Adjustment of Intrusion
Detection System,” Aug. 7, 2014.

* cited by examiner

U.S. Patent Jan. 30, 2024

100
N

L00R]

104

|

SERVER

=
===
—F—]
ey gy

Sheet 1 of 9

NETWORK

US 11,888,883 B2

§
106 L
[—: 2 i) 14
SERVER 108 CLIENT
FIG. 1
200
=== ———————————————— i1 -——-"
| !
| | PROCESSOR UNIT MEMORY el
| 1
| — S v |
| 204 @ 20\2 @ 206 @ 208 |
1< > 1
: 210 212 @ 214 :
7 / A
COMMUNICATIONS INPUT/OUTPUT
| UNIT UNIT DISPLAY :
L _________C J
0 o

COMPUTER

READABLE

MEDIA

PROGRAM 220

216

CODE

FIG. 2

U.S. Patent

Jan. 30, 2024

Sheet 2 of 9 US 11,888,883 B2

300 DISTRIBUTED
N SECURITY DATABASE
SECURITY INTELLIGENCE .~ 306
INTELLIGENCE — — — {| PLATFORM
CONSOLE |
308 I 1
N\ 5"’"\ | INCIDENT
l (] D0obogono) copeNSICS
L —— — MODULE
— 304
0] PACKET CAPTURE
? APPLIANCES
'3/02

A SECURITY
DEVICES

5 SERVERS AND
MAINFRAMES

NETWORK AND
VIRTUAL ACTIVITY

E DATA ACTIVITY

— APPLICATION
ACTIVITY

CONFIGURATION

& INFORMATION

VULNERABILITIES

= AND THREATS

USER AND
& IDENTITIES

~
~
~
~
~
~
S~

CORRELATION S - SUSPECTED
e LOGS/EVENTS ~ o INCIDENTS
e FLOWS N -
e |PREPUTATION ~.
o GEOGRAPHICLOCATION OFFENSE N -
ACTIVITY BASELINING AND IDENTIFICATION
ANOMALY DETECTION e CREDIBILITY
o USERACTIVITY e SEVERITY
e DATABASE e RELEVANCE _ ~

ACTIVITY - -
e APPLICATION Pg

TRUE

ACTIVITY -
e NETWORK - -~ OFFENSE

ACTIVITY - -

-
-
_-

- FIG. 3

US 11,888,883 B2

Sheet 3 of 9

Jan. 30, 2024

U.S. Patent

ISATVNVY L1

IR-El\
[ALNNIW
0¢-G1

(1¥V YOordd)
v 'DIA
Ly~ {Nowov) a9 IN3MD oLy
Iwve | —\ 0
4001 . B (MOVLLY 3781SSOd)
d=—- (3AILISOd ISTVA NOILYTv0S3
Moveadad y Ty A owmo._w V
LENS N J
ONILIMOIL
. %
14%% g
(3INILISOd 3STV4)
g3so1o

\
3dSvavlvd _ Z

JT0SNOD

ONIYOLINOW

1V3yHL

A A

€

IR-E N\

14014

WHO4LV1d
SOILATVNY

N
00¥

80y

90¥

}
SLHITV

[]
[]
]

cov
S32UNOS
o071

US 11,888,883 B2

Sheet 4 of 9

Jan. 30, 2024

U.S. Patent

¢ DIA 8 \E
AGBN [Pyttt T300M
716 SNIHOVIN NOLLOIQ3Md
NOLLOV 1 ® e LSATYNY Z1
DVL | —\ A~
qq \/
| 7
. OIOVLLY J18ISS0d) [~ oo
dOOT i, (anLisod 3sTv4) NOILY YOS ALONIN
Walsas | o f | v
ONILINOIL
og
- SEREE—.
pig | o
! (3nILISOd 3STV4)
m a3aso1o
|
|
HE =N
“ ONIMOLINOW |«
“ 9 1Svd 1VINHL ;/ 90S
| y -}
| g
¥
dsveviva | z WHO4LY1d)
S1300W NOILOIa3ad a3y = SOULATYNY | STua Ty
31vddn 0L 4001 Y0vaa3ad N
¥06G 00

ONIHOJS
NOILISOdSIa
1V3HHL
“NOILVOIHISSVTIO
-NOILOI03¥d
JNIL V3

]
]
]

¢09
S$304N0S
001

US 11,888,883 B2

Sheet 5 of 9

Jan. 30, 2024

U.S. Patent

9 DIA
¢l9 0l9 809 909
\ \ / /
JAQOW A3ANIVYL V
J1VY3INISO ANV Y1va
JNIL TVIY NI 3DVSN ONINIVYL A3AINOYd 13S VLVA ONINIVHL
Y1V HO4 WALSAS HLIM SWHLI¥OD TV TVILINI SLVHANIDO o
a3140dx3 39 T1IM 3H1 01 13aoNW ONINYY3T ANIHOVYIN a3dino3y
300N TYNI4 IHL » Q3NIVYL 3AINOYd » JHL NNY TUM WILSAS » SALNGINYLLY 103738 »
N 300N < 300N QaNIvyl <] 300N NIviL Q L¥0dX3V1iva
4 4 N\
71300 Q3INIVYL 300N LHOdX3 T30 ONINOIS NIVHL V1Va L1¥0dX3
\.. . J
/ N
09 209

3aSvyav.ivd
1831V

009

US 11,888,883 B2

Sheet 6 of 9

Jan. 30, 2024

U.S. Patent

L DIA
1474 0LL 80/ 0. ¢0.
\ \ / / /
NOILYIQaINIY
Y04 SNOISI93d 300N ONINODS
H3LSY4 INVIN HO0S Q3NIV¥HL IHL OLNI
01378V 38 TIM NOLLISOdSIa .S1NdNI. SV @3sn
ISATYNY ALI¥ND3S » 1YIHHL 39 0L SALNAMLLY
MIIA a3aLvindvo JHL LNdLNO H3dO¥d JHL
STV13A 1VIYHL SVYM 34008 ANV S1NdNI NIV180 TIM LI
3H1 0L a3aav 3g 3HL MOH Lnogav 3AINO¥d HLIM L3V IHLNOYA » S3DIAIA ALI¥ND3AS
TIUM STIVLIA ANV STVL3A 3AINOYd e 300N QaNIvyL IRERVAEINEN) SY T13M SV SW3IS
3409S NOILISOdSId JH0IS NOILISOdSIA JHL NNY HOV3 3LVILINI A€ QILVHANIO THY
1VIYHL IHL o | | LV3YHL JHL LNDLNO TUM WILSAS TIM WILSAS HNO SIMITV LVIYHL
g 1MV HORING g NOILOIOTYd < TH0OW NNY < SL¥FTV $S300¥d QNOLLVRINTO LTV
4 ™ 4 4
[EIVEENER)
, LH3TV HOIYNT \ IH0OS ALVHINID r T3A0OW NNY @3SS300¥d SLYI TV | s v
/ N \
A% 90. 00.

US 11,888,883 B2

Sheet 7 of 9

Jan. 30, 2024

U.S. Patent

IAOHdNI
8 'DIAH OL 3NNILNOD
TIM ONIH0S
4% ¢l8 918 NOILISO4SIA LYTYHL

N N / AOVINOOY FHL ANV

[() (d31v40ddOON! 39
JAILYWHIHHY JAILISOd OL 39T TMON M3IN

LV3dHL ASTv4) .
S3LVIQINIY 134011 350710 e .:_D\%_m__w,_

I X asvavlvd ONINIVYL G31Yadn

oL,e 1 ! >0 -]
N _ > mwmw__@ NV JLVYINIO
1 aNY ‘asvaviva

L13IMOIL ANV LH3TV
NOILOV SINVL 4INOLSND WOu4 S13Sv1va

T MAN 1H0dX3
TVAYALNI HVINO3Y

V NO SS300dd
SIHL 1v3d3d
TIMWILSAS HNO »

<] SS300¥d 1V3d
L
| 8i8

ﬁ 1301l sz:mon_ mﬂiq m 30O ONIMODS |

A1VIvOS3 1¥31v ISO10 NIVYL-3Y

7] f R
808 mow F 0¢8

ﬁ NOILOY SINVL LSATYNY w LIV FLYOILSIANI owmw_wﬂm LYV HOIMNE ﬁ 300N ONINODS g

(N
¥08 208 008

US 11,888,883 B2

Sheet 8 of 9

Jan. 30, 2024

U.S. Patent

/

906
/

S3LNaiLLyY
10313S

ONIMOJS 40 AOVHNIJVY
JHL AOHdAI OL ONINIVHL
JH1 1SNFrav ATISY3

01 SN SMOTIV SIHL

SLNdNI ONINIVHL FHL ¥O04

d3sn ¥V S1HY3TV LVIHHL

3JHL 40 S3LNFIYLLY FHL

MOTIV OL JOV4H3LNI I1dNIS
V 43440 SINFLSAS HNO »

< NOILVHNOIANOD 31LNFIFLLY

3aSvavlvd

IR-ER\4

US 11,888,883 B2

Sheet 9 of 9

Jan. 30, 2024

U.S. Patent

suojeunsa(

$80IN0S

SSe| MoyS
Ey=PloYY ‘GE=PLSNY ‘FE=PHYY :ydlewaN1LBo|

%198 :89UapRUOIUONIYPIpUSLILIOIIYLSe
3S0O10 :uoloYpapusWLIOINfe

SpI”|eas”Gzg 988~ 6G6/2080000000 Aoy usje
9} :Aepg JunoesuaLnyM9e

9} :Aepgg Juno)asuaLInsayMae
0} :AepogjunogasuauIndyLsje

lwyys gebor o7/ :1un

ejeq [euonippy
Jjsuel| "e|qeIN0eX3 d11H

SBlWeN JuaAT

19JSUBI] 9|qBIN0BXT JLLH :SeWeN JuaA
‘suoneunsag
:$80.N0S

‘Jojsuel| "o|qendaxg L 1 H :dnoib Aiobajeo ayy ul jusae Buusbbii sidipeg ay) uo sieadde osfe pue | pajebie) 221n0S JWNTOA MO

uonduose(g

w-Bys-pe uo LN 92:52:01 L10Z/ZL/SO PapuUS pue LD 0€:8Y:S) L102/B0/SO POLEIS

SdX -OpusA W3IS
SpI[ea) 9957656.2080000000d :Aa3 Ll |

SWNaSN ¥ saLeIqI]
Aayuoneuigquios sy IsIoIWBUACIaWINE ‘I e
MUOHEUIGUIOD By IsiTolWeUAgeWwI)eay pr69sel ‘dl Haily IV TeWI0IsNG OURG
XE0 sliejeq Koy v

Ol "DId

US 11,888,883 B2

1
THREAT DISPOSITION ANALYSIS AND
MODELING USING SUPERVISED MACHINE
LEARNING

BACKGROUND
Technical Field

This disclosure relates generally to cybersecurity offense
analytics.

Background of the Related Art

Enterprise security is a complex problem requiring the
coordination across security policies, controls, threat models
and threat detection scenarios (use cases). The implemen-
tation of these policies, models and controls requires exten-
sive use of threat monitoring technologies and security
devices, as well as human resources that have security,
business and technical skills. In particular, the ever increas-
ing number of threats at scale requires automation in support
of security analysts, who are responsible for preventing,
detecting and responding to these threats. In most cases, the
analyst must manually search through a wide range of data
sources (some private, many public), review past threat
events and how they were handled, check for duplicate
events, currently open similar events and a knowledge
database, etc., to determine an appropriate response proce-
dure to handle this information. This process of data col-
lection, analysis, and determining the final disposition of the
alert, is time consuming and tedious for an analyst.

There are a variety of tools that exist for threat monitoring
to analyze a wide range of data sources (including structured
data, unstructured data, semi-structured data, and reference
data) to identify patterns that are indicative of threats,
security policy and control anomalies. When these threats
and/or anomalies are detected, actionable alerts are created.
In many cases, the number of alerts exceeds the capacity of
the security analyst to effectively and efficiently handle
them. Security Operations Center (SOC) analysts are
responsible for this process, and this is typically done by
taking a closer look at the raw data associated with the alert,
including a review of both contextual data, as well as the raw
data from the data sources that triggered the alert. As noted,
this data collection and investigation is time-consuming, and
it often requires complex correlation analysis. This fact
correlation can include information that is general to the
threat or anomaly, but it can also require very specific
information about a customer, their assets, and any other
special instructions the customer may have provided regard-
ing the proper alert handling. Additionally, the security
analyst may often need to do additional research to under-
stand the nature of the threat, the vector of the attack, and so
forth, to discern whether the target is truly vulnerable.

Once all known factors are considered, the security ana-
lyst must then determine the optimal disposition for a
specific alert. There are a range of possible dispositions
including, but not limited to identifying the alert as one of:
a duplicate, a false positive, a currently open case, a new
case (first of a kind), and a known alert. For each of these
dispositions, there are also a range of actions that the analyst
can recommend including, for example: closing the alert
with no further action, holding the alert for further investi-
gation, and escalating the alert for additional review. In each
of these cases, the analyst also may be able to recommend
the specific mitigation and remediation activities that are
needed to deal with the alert.

10

15

20

25

30

35

40

45

50

55

60

65

2

It is known in the prior art to provide systems that can
classify the severity of an alert, but typically these systems
use static algorithms that simply calculate a score based on
pre-defined attributes built into an alert rule. Moreover, these
systems only provide pre-defined recommendations on the
handling of the alert, and they do not include the ability to
learn about the likely disposition of the alert.

BRIEF SUMMARY

The subject matter herein provides a mechanism and
method to reduce the time required for security analyst alert
investigation, preferably by enriching threat data with addi-
tional contextual information, with a primary goal being
reducing alert disposition error rates. To this end, machine
learning (ML) is used to augment a security threat monitor-
ing platform. Preferably, the machine learning is trained
using previously-handled alerts and, in particular, by ana-
lyzing historical disposition of these alerts. Preferably, these
analytics supplement alert information to generate a data-
driven threat disposition score (TDS) that helps the analyst
characterize the alert he or she is analyzing, e.g., to deter-
mine the likelihood that is a false positive versus a potential
security incident. As the machine learning continues, the
accuracy of the TDS continues to increase as the system
learns from SOC analyst actions (escalation vs. closing as
false positive), as well as feedback on alert handling (e.g.,
from higher level security analysts on the actions taken by
the front line security analyst. Over time, and as the machine
learning adapts, the algorithms improve their accuracy and
predict alert dispositions with high accuracy levels.

According to a first aspect of this disclosure, a method for
threat disposition analysis is provided. The method begins in
response to receipt of a security threat. In particular, upon
receipt, a threat disposition score (TDS) is retrieved. The
threat disposition score is generated from a machine learning
scoring model that is built from information about historical
security threats, including historical disposition of one or
more alerts associated with the historical security threats.
The system then augments an alert to include the threat
disposition score, optionally together with a confidence
level, to generate an enriched alert. The enriched alert is then
presented to the security analyst for handling directly.
Depending on the TDS (and its confidence level), the analyst
may be able to respond to the threat immediately, i.e.,
without further detailed investigation. Preferably, the
machine learning model is updated continuously as the
system handles security threats, thereby increasing the pre-
dictive benefit of the TDS scoring.

According to a second aspect of this disclosure, an
apparatus for processing security event data is described.
The apparatus comprises a set of one or more hardware
processors, and computer memory holding computer pro-
gram instructions executed by the hardware processors to
perform a set of operations such as described above.

According to a third aspect of this disclosure, a computer
program product in a non-transitory computer readable
medium for use in a data processing system for processing
security event data is described. The computer program
product holds computer program instructions executed in the
data processing system and operative to perform operations
such as described above.

The foregoing has outlined some of the more pertinent
features of the subject matter. These features should be
construed to be merely illustrative. Many other beneficial

US 11,888,883 B2

3

results can be attained by applying the disclosed subject
matter in a different manner or by modifying the subject
matter as will be described.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the subject matter
and the advantages thereof, reference is now made to the
following descriptions taken in conjunction with the accom-
panying drawings, in which:

FIG. 1 depicts an exemplary block diagram of a distrib-
uted data processing environment in which exemplary
aspects of the illustrative embodiments may be imple-
mented;

FIG. 2 is an exemplary block diagram of a data processing
system in which exemplary aspects of the illustrative
embodiments may be implemented;

FIG. 3 illustrates a security intelligence platform in which
the techniques of this disclosure may be practiced;

FIG. 4 depicts a Level 1 security threat monitoring
operation in a data center operating environment according
to known techniques;

FIG. 5 depicts the technique of this disclosure wherein
supervised machine learning is used to augment the security
threat monitoring system in FIG. 4;

FIG. 6 is a high level process flow depicting how to create
a scoring model according to this disclosure;

FIG. 7 is a high level process flow depicting how to use
the trained model to facilitate alert disposition by the secu-
rity analyst;

FIG. 8 is a high level process flow depicting how to
update the scoring model;

FIG. 9 is a high level process flow describing how to
configure attributes for the TDS scoring model according to
this disclosure; and

FIG. 10 is a representative portion of a display screen
showing an alert provided to an analyst using the technique
of this disclosure.

DETAILED DESCRIPTION OF AN
ILLUSTRATIVE EMBODIMENT

With reference now to the drawings and in particular with
reference to FIGS. 1-2, exemplary diagrams of data pro-
cessing environments are provided in which illustrative
embodiments of the disclosure may be implemented. It
should be appreciated that FIGS. 1-2 are only exemplary and
are not intended to assert or imply any limitation with regard
to the environments in which aspects or embodiments of the
disclosed subject matter may be implemented. Many modi-
fications to the depicted environments may be made without
departing from the spirit and scope of the present invention.

With reference now to the drawings, FIG. 1 depicts a
pictorial representation of an exemplary distributed data
processing system in which aspects of the illustrative
embodiments may be implemented. Distributed data pro-
cessing system 100 may include a network of computers in
which aspects of the illustrative embodiments may be imple-
mented. The distributed data processing system 100 contains
at least one network 102, which is the medium used to
provide communication links between various devices and
computers connected together within distributed data pro-
cessing system 100. The network 102 may include connec-
tions, such as wire, wireless communication links, or fiber
optic cables.

In the depicted example, server 104 and server 106 are
connected to network 102 along with storage unit 108. In

10

15

20

25

30

35

40

45

50

55

60

65

4

addition, clients 110, 112, and 114 are also connected to
network 102. These clients 110, 112, and 114 may be, for
example, personal computers, network computers, or the
like. In the depicted example, server 104 provides data, such
as boot files, operating system images, and applications to
the clients 110, 112, and 114. Clients 110, 112, and 114 are
clients to server 104 in the depicted example. Distributed
data processing system 100 may include additional servers,
clients, and other devices not shown.

In the depicted example, distributed data processing sys-
tem 100 is the Internet with network 102 representing a
worldwide collection of networks and gateways that use the
Transmission Control Protocol/Internet Protocol (TCP/IP)
suite of protocols to communicate with one another. At the
heart of the Internet is a backbone of high-speed data
communication lines between major nodes or host comput-
ers, consisting of thousands of commercial, governmental,
educational and other computer systems that route data and
messages. Of course, the distributed data processing system
100 may also be implemented to include a number of
different types of networks, such as for example, an intranet,
a local area network (LAN), a wide area network (WAN), or
the like. As stated above, FIG. 1 is intended as an example,
not as an architectural limitation for different embodiments
of the disclosed subject matter, and therefore, the particular
elements shown in FIG. 1 should not be considered limiting
with regard to the environments in which the illustrative
embodiments of the present invention may be implemented.

With reference now to FIG. 2, a block diagram of an
exemplary data processing system is shown in which aspects
of the illustrative embodiments may be implemented. Data
processing system 200 is an example of a computer, such as
client 110 in FIG. 1, in which computer usable code or
instructions implementing the processes for illustrative
embodiments of the disclosure may be located.

With reference now to FIG. 2, a block diagram of a data
processing system is shown in which illustrative embodi-
ments may be implemented. Data processing system 200 is
an example of a computer, such as server 104 or client 110
in FIG. 1, in which computer-usable program code or
instructions implementing the processes may be located for
the illustrative embodiments. In this illustrative example,
data processing system 200 includes communications fabric
202, which provides communications between processor
unit 204, memory 206, persistent storage 208, communica-
tions unit 210, input/output (I/O) unit 212, and display 214.

Processor unit 204 serves to execute instructions for
software that may be loaded into memory 206. Processor
unit 204 may be a set of one or more processors or may be
a multi-processor core, depending on the particular imple-
mentation. Further, processor unit 204 may be implemented
using one or more heterogeneous processor systems in
which a main processor is present with secondary processors
on a single chip. As another illustrative example, processor
unit 204 may be a symmetric multi-processor (SMP) system
containing multiple processors of the same type.

Memory 206 and persistent storage 208 are examples of
storage devices. A storage device is any piece of hardware
that is capable of storing information either on a temporary
basis and/or a permanent basis. Memory 206, in these
examples, may be, for example, a random access memory or
any other suitable volatile or non-volatile storage device.
Persistent storage 208 may take various forms depending on
the particular implementation. For example, persistent stor-
age 208 may contain one or more components or devices.
For example, persistent storage 208 may be a hard drive, a
flash memory, a rewritable optical disk, a rewritable mag-

US 11,888,883 B2

5

netic tape, or some combination of the above. The media
used by persistent storage 208 also may be removable. For
example, a removable hard drive may be used for persistent
storage 208.

Communications unit 210, in these examples, provides
for communications with other data processing systems or
devices. In these examples, communications unit 210 is a
network interface card. Communications unit 210 may pro-
vide communications through the use of either or both
physical and wireless communications links.

Input/output unit 212 allows for input and output of data
with other devices that may be connected to data processing
system 200. For example, input/output unit 212 may provide
a connection for user input through a keyboard and mouse.
Further, input/output unit 212 may send output to a printer.
Display 214 provides a mechanism to display information to
a user.

Instructions for the operating system and applications or
programs are located on persistent storage 208. These
instructions may be loaded into memory 206 for execution
by processor unit 204. The processes of the different
embodiments may be performed by processor unit 204 using
computer implemented instructions, which may be located
in a memory, such as memory 206. These instructions are
referred to as program code, computer-usable program code,
or computer-readable program code that may be read and
executed by a processor in processor unit 204. The program
code in the different embodiments may be embodied on
different physical or tangible computer-readable media, such
as memory 206 or persistent storage 208.

Program code 216 is located in a functional form on
computer-readable media 218 that is selectively removable
and may be loaded onto or transferred to data processing
system 200 for execution by processor unit 204. Program
code 216 and computer-readable media 218 form computer
program product 220 in these examples. In one example,
computer-readable media 218 may be in a tangible form,
such as, for example, an optical or magnetic disc that is
inserted or placed into a drive or other device that is part of
persistent storage 208 for transfer onto a storage device,
such as a hard drive that is part of persistent storage 208. In
a tangible form, computer-readable media 218 also may take
the form of a persistent storage, such as a hard drive, a thumb
drive, or a flash memory that is connected to data processing
system 200. The tangible form of computer-readable media
218 is also referred to as computer-recordable storage
media. In some instances, computer-recordable media 218
may not be removable.

Alternatively, program code 216 may be transferred to
data processing system 200 from computer-readable media
218 through a communications link to communications unit
210 and/or through a connection to input/output unit 212.
The communications link and/or the connection may be
physical or wireless in the illustrative examples. The com-
puter-readable media also may take the form of non-tangible
media, such as communications links or wireless transmis-
sions containing the program code. The different compo-
nents illustrated for data processing system 200 are not
meant to provide architectural limitations to the manner in
which different embodiments may be implemented. The
different illustrative embodiments may be implemented in a
data processing system including components in addition to
or in place of those illustrated for data processing system
200. Other components shown in FIG. 2 can be varied from
the illustrative examples shown. As one example, a storage
device in data processing system 200 is any hardware
apparatus that may store data. Memory 206, persistent

10

25

30

40

45

6

storage 208, and computer-readable media 218 are examples
of storage devices in a tangible form.

In another example, a bus system may be used to imple-
ment communications fabric 202 and may be comprised of
one or more buses, such as a system bus or an input/output
bus. Of course, the bus system may be implemented using
any suitable type of architecture that provides for a transfer
of data between different components or devices attached to
the bus system. Additionally, a communications unit may
include one or more devices used to transmit and receive
data, such as a modem or a network adapter. Further, a
memory may be, for example, memory 206 or a cache such
as found in an interface and memory controller hub that may
be present in communications fabric 202.

Computer program code for carrying out operations of the
present invention may be written in any combination of one
or more programming languages, including an object-ori-
ented programming language such as Java™, Smalltalk,
C++ or the like, and conventional procedural programming
languages, such as the “C” programming language or similar
programming languages. The program code may execute
entirely on the user’s computer, partly on the user’s com-
puter, as a stand-alone software package, partly on the user’s
computer and partly on a remote computer, or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user’s computer through
any type of network, including a local area network (LAN)
or a wide area network (WAN), or the connection may be
made to an external computer (for example, through the
Internet using an Internet Service Provider).

Those of ordinary skill in the art will appreciate that the
hardware in FIGS. 1-2 may vary depending on the imple-
mentation. Other internal hardware or peripheral devices,
such as flash memory, equivalent non-volatile memory, or
optical disk drives and the like, may be used in addition to
or in place of the hardware depicted in FIGS. 1-2. Also, the
processes of the illustrative embodiments may be applied to
a multiprocessor data processing system, other than the SMP
system mentioned previously, without departing from the
spirit and scope of the disclosed subject matter.

As will be seen, the techniques described herein may
operate in conjunction within the standard client-server
paradigm such as illustrated in FIG. 1 in which client
machines communicate with an Internet-accessible Web-
based portal executing on a set of one or more machines.
End users operate Internet-connectable devices (e.g., desk-
top computers, notebook computers, Internet-enabled
mobile devices, or the like) that are capable of accessing and
interacting with the portal. Typically, each client or server
machine is a data processing system such as illustrated in
FIG. 2 comprising hardware and software, and these entities
communicate with one another over a network, such as the
Internet, an intranet, an extranet, a private network, or any
other communications medium or link. A data processing
system typically includes one or more processors, an oper-
ating system, one or more applications, and one or more
utilities. The applications on the data processing system
provide native support for Web services including, without
limitation, support for HTTP, SOAP, XML, WSDL, UDDI,
and WSFL, among others. Information regarding SOAP,
WSDL, UDDI and WSFL is available from the World Wide
Web Consortium (W3C), which is responsible for develop-
ing and maintaining these standards; further information
regarding HTTP and XML is available from Internet Engi-
neering Task Force (IETF). Familiarity with these standards
is presumed.

US 11,888,883 B2

7

Security Intelligence Platform with Incident Forensics

A known type of security intelligence platform is illus-
trated in FIG. 3. Generally, the platform provides search-
driven data exploration, session reconstruction, and foren-
sics intelligence to assist security incident investigations. In
pertinent part, the platform 300 comprises a set of packet
capture appliances 302, an incident forensics module appli-
ance 304, a distributed database 306, and a security intelli-
gence console 308. The packet capture and module appli-
ances are configured as network appliances, or they may be
configured as virtual appliances. The packet capture appli-
ances 302 are operative to capture packets off the network
(using known packet capture (pcap) application program-
ming interfaces (APIs) or other known techniques), and to
provide such data (e.g., real-time log event and network
flow) to the distributed database 306, where the data is
stored and available for analysis by the forensics module
304 and the security intelligence console 308. A packet
capture appliance operates in a session-oriented manner,
capturing all packets in a flow, and indexing metadata and
payloads to enable fast search-driven data exploration. The
database 306 provides a forensics repository, which distrib-
uted and heterogeneous data sets comprising the information
collected by the packet capture appliances. The console 308
provides a web- or cloud-accessible user interface (UI) that
exposes a “Forensics” dashboard tab to facilitate an incident
investigation workflow by an investigator. Using the dash-
board, an investigator selects a security incident. The inci-
dent forensics module 304 retrieves all the packets (includ-
ing metadata, payloads, etc.) for a selected security incident
and reconstructs the session for analysis.

A representative commercial product that implements an
incident investigation workflow of this type is IBM® Secu-
rity QRadar® Incident Forensics V7.2.3 (or higher). Using
this platform, an investigator searches across the distributed
and heterogeneous data sets stored in the database, and
receives a unified search results list. The search results may
be merged in a grid, and they can be visualized in a “digital
impression” tool so that the user can explore relationships
between identities.

In particular, a typical incident forensics investigation to
extract relevant data from network traffic and documents in
the forensic repository is now described. According to this
approach, the platform enables a simple, high-level
approach of searching and bookmarking many records at
first, and then enables the investigator to focus on the
bookmarked records to identify a final set of records. In a
typical workflow, an investigator determines which material
is relevant. He or she then uses that material to prove a
hypothesis or “case” to develop new leads that can be
followed up by using other methods in an existing case.
Typically, the investigator focuses his or her investigation
through course-grained actions at first, and then proceeds to
fine-tune those findings into a relevant final result set. The
bottom portion of FIG. 3 illustrates this basic workflow.
Visualization and analysis tools in the platform may then be
used to manually and automatically assess the results for
relevance. The relevant records can be printed, exported, or
submitted processing.

As noted above, the platform console provides a user
interface to facilitate this workflow. Thus, for example, the
platform provides a search results page as a default page on
an interface display tab. Investigators use the search results
to search for and access documents. The investigator can use
other tools to further the investigation. One of these tools is
a digital impression tool. A digital impression is a compiled
set of associations and relationships that identify an identity

10

15

20

25

30

35

40

45

50

55

60

65

8

trail. Digital impressions reconstruct network relationships
to help reveal the identity of an attacking entity, how it
communicates, and what it communicates with. Known
entities or persons that are found in the network traffic and
documents are automatically tagged. The forensics incident
module 304 is operative to correlate tagged identifiers that
interacted with each other to produce a digital impression.
The collection relationships in a digital impression report
represent a continuously-collected electronic presence that
is associated with an attacker, or a network-related entity, or
any digital impression metadata term. Using the tool, inves-
tigators can click any tagged digital impression identifier
that is associated with a document. The resulting digital
impression report is then listed in tabular format and is
organized by identifier type.

Generalizing, a digital impression reconstructs network
relationships to help the investigator identify an attacking
entity and other entities that it communicates with. A secu-
rity intelligence platform includes a forensics incident mod-
ule that is operative to correlate tagged identifiers that
interacted with each other to produce a digital impression.
The collection relationships in a digital impression report
represent a continuously-collected electronic presence that
is associated with an attacker, or a network-related entity, or
any digital impression metadata term. Using the tool, inves-
tigators can click any tagged digital impression identifier
that is associated with a document. The resulting digital
impression report is then listed in tabular format and is
organized by identifier type.

Typically, an appliance for use in the above-described
system is implemented is implemented as a network-con-
nected, non-display device. For example, appliances built
purposely for performing traditional middleware service
oriented architecture (SOA) functions are prevalent across
certain computer environments. SOA middleware appli-
ances may simplify, help secure or accelerate XML and Web
services deployments while extending an existing SOA
infrastructure across an enterprise. The utilization of middle-
ware-purposed hardware and a lightweight middleware
stack can address the performance burden experienced by
conventional software solutions. In addition, the appliance
form-factor provides a secure, consumable packaging for
implementing middleware SOA functions. One particular
advantage that these types of devices provide is to offload
processing from back-end systems. A network appliance of
this type typically is a rack-mounted device. The device
includes physical security that enables the appliance to serve
as a secure vault for sensitive information. Typically, the
appliance is manufactured, pre-loaded with software, and
then deployed within or in association with an enterprise or
other network operating environment; alternatively, the box
may be positioned locally and then provisioned with stan-
dard or customized middleware virtual images that can be
securely deployed and managed, e.g., within a private or an
on premise cloud computing environment. The appliance
may include hardware and firmware cryptographic support,
possibly to encrypt data on hard disk. No users, including
administrative users, can access any data on physical disk. In
particular, preferably the operating system (e.g., Linux)
locks down the root account and does not provide a com-
mand shell, and the user does not have file system access.
Typically, the appliance does not include a display device, a
CD or other optical drive, or any USB, Firewire or other
ports to enable devices to be connected thereto. It is
designed to be a sealed and secure environment with limited
accessibility and then only be authenticated and authorized
individuals.

US 11,888,883 B2

9

An appliance of this type can facilitate Security Informa-
tion Event Management (SIEM). For example, IBM® Secu-
rity QRadar® SIEM is an enterprise solution that includes
packet data capture appliances that may be configured as
appliances of this type. Such a device is operative, for
example, to capture real-time Layer 4 network flow data
from which Layer 7 application payloads may then be
analyzed, e.g., using deep packet inspection and other tech-
nologies. It provides situational awareness and compliance
support using a combination of flow-based network knowl-
edge, security event correlation, and asset-based vulnerabil-
ity assessment. In a basic QRadar STEM installation, the
system such as shown in FIG. 3 is configured to collect event
and flow data, and generate reports. As noted, a user (e.g., an
SOC analyst) can investigate offenses to determine the root
cause of a network issue.

Generalizing, Security Information and Event Manage-
ment (SIEM) tools provide a range of services for analyzing,
managing, monitoring, and reporting on IT security events
and vulnerabilities. Such services typically include collec-
tion of events regarding monitored accesses and unexpected
occurrences across the data network, and analyzing them in
a correlative context to determine their contribution to
profiled higher-order security events. They may also include
analysis of firewall configurations, network topology and
connection visualization tools for viewing current and
potential network traffic patterns, correlation of asset vul-
nerabilities with network configuration and traffic to identify
active attack paths and high-risk assets, and support of
policy compliance monitoring of network traffic, topology
and vulnerability exposures. Some SIEM tools have the
ability to build up a topology of managed network devices
such as routers, firewalls, and switches based on a transfor-
mational analysis of device configurations processed
through a common network information model. The result is
a locational organization which can be used for simulations
of security threats, operational analyses of firewall filters,
and other applications. The primary device criteria, how-
ever, are entirely network- and network-configuration based.
While there are a number of ways to launch a discovery
capability for managed assets/systems, and while contain-
ment in the user interface is semi-automatically managed
(that is, an approach through the user interface that allows
for semi-automated, human-input-based placements with
the topology, and its display and formatting, being data-
driven based upon the discovery of both initial configura-
tions and changes/deletions in the underlying network),
nothing is provided in terms of placement analytics that
produce fully-automated placement analyses and sugges-
tions.

FIG. 4 depicts a Security Operation Center (SOC) that
provides Level 1 security threat monitoring using an ana-
Iytics platform 400 such as IBM QRadar. The platform 400
receives alerts (at step (1)) from a variety of log sources 402,
such as firewalls, intrusion detection and prevention sys-
tems, antivirus systems, web proxies, and other systems and
network devices. At step (2), the alerts are stored in an alert
database 404. At step (3), the alerts are provided to a threat
monitoring console 406 that is manned by a security analyst
408. As is well-known, a SOC typically is manned by
different levels of security analysts. A Level 1 (LL1) analyst
408 is responsible for monitoring reported security events,
and for closing or escalating those events according to SOC
rules, policies and procedures. The security analyst 408
typically interacts with a client 410, which is the enterprise
entity having an application that is being monitored for
security threats. Although not shown, typically the SOC has

10

15

20

25

30

35

40

45

50

55

60

65

10
one or more additional levels of security analysts, such
Level 2 (L.2) and Level 3 (L3) analysts. Typically, [.2
security analysts handle escalations from L1 analysts and
perform other administration and management functions,
such as monitoring the performance of the L1 analysts to
ensure that security events are handled timely, mentoring,
and the like. Level 3 analysts handle further escalations
(from L2 analysts), and provide additional higher-level
administration and management functions in the SOC. Of
course, the number of levels and the various tasks associated
with each level may be varied and implementation-specific.

As depicted, the L1 analyst makes a finding regarding an
alert, typically with a goal of making this finding within
about 15-20 minutes after receiving the alert. Typically, the
finding closes the alert (step 5(a)) as a false positive, or
escalation the alert (step 5(b)) as a possible attack. The false
positive finding is stored in the alert database 404. The attack
finding typically is reported to the client 410 whose appli-
cation is affected. Depending on the implementation (e.g.,
the SOC policy, the client procedure, etc.), some remedia-
tion or other action (step 6(b)) is taken; alternatively, the
client 410 may indicate that indeed the alert is a false
positive and thus should be closed (step 6(c)). The respon-
sive action 412 may be carried out in an automated manner
(e.g., programmatically), manually, or by a combination of
automation and manual operations. The action may be
carried out by SOC personnel, by the client, or by a
combination of SOC personnel and the client. As also
depicted, information regarding the response to the alert is
also provided to a ticketing system 414, and such informa-
tion may then be reported back to the security analyst (step
7(c)). The security analyst may then update the alert data-
base (at step 8(c)) with the information about how the alert
was handled (or otherwise closed). Thus, the alert and its
associated handling information is stored in the alert data-
base 404 and available as a data source going forward.
Threat Disposition Analysis and Modeling Using Super-
vised Machine Learning

With the above as background, the following describes a
threat disposition analysis and modeling technique accord-
ing to this disclosure. As will be seen, by using supervised
machine learning as described herein, the time required for
threat investigation prior to remediation response is signifi-
cantly reduced.

The preferred approach is depicted in FIG. 5, which
depict how the L1 security threat monitoring technique in
FIG. 4 is augmented with supervised machine learning
according to this disclosure. FIG. 5 depicts a Security
Operation Center (SOC) that provides Level 1 security
threat monitoring using an analytics platform 500. Once
again, the platform 500 receives alerts (at step (1)) from one
or more log sources 502. At step (2), the alerts are stored to
the alert database 504. At step (3), the alerts are provided to
the threat monitoring console 506 that is manned by the [.1
security analyst 510. The security analyst 508 interacts with
the client 510, as previously described. In particular, and as
depicted, the .1 analyst makes a finding regarding an alert,
and a goal of the technique of this disclosure is to reduce
significantly the time needed for the analyst to make his or
her initial finding. As before, typically the finding closes the
alert (step 5(a)) as a false positive, or escalates the alert (step
5(b)) as a possible attack. The false positive finding is stored
in the alert database 504. The attack finding typically also is
reported to the client 510 whose application is affected.
Once again, and depending on the implementation (e.g., the
SOC policy, the client procedure, etc.), some remediation or
other action (step 6(b)) is taken; alternatively, the client 510

US 11,888,883 B2

11

indicates that the alert is a false positive and thus should be
closed (step 6(c)). The responsive action 512 is carried out,
the information regarding the response to the alert provided
to the ticketing system 514, and the information is reported
back to the security analyst (step 7(c)), all as previously
described. The security analyst updates the alert database (at
step 8(c)) with the information about how the alert was
handled (or otherwise closed).

Unlike the technique shown in FIG. 4, the approach of this
disclosure uses machine learning techniques to enhance the
threat disposition analysis. Machine learning (ML) algo-
rithms iteratively learn from data, thus allowing computers
to find hidden insights without being explicitly programmed
where to look. Machine Learning is essentially teaching the
computer to solve problems by creating algorithms that learn
by looking at hundreds or thousands of examples, and then
using that experience to solve the same problem in new
situations. Machine Learning tasks are typically classified
into the following three broad categories, depending on the
nature of the learning signal or feedback available to a
learning system: supervised learning, unsupervised learning,
and reinforcement learning. In supervised learning, the
algorithm trains on labeled historic data and learns general
rules that map input to output/target. In particular, the
discovery of relationships between the input variables and
the label/target variable in supervised learning is done with
a training set. The computer/machine learns from the train-
ing data. In this approach, a test set is used to evaluate
whether the discovered relationships hold and the strength
and utility of the predictive relationship is assessed by
feeding the model with the input variables of the test data
and comparing the label predicted by the model with the
actual label of the data. The most widely used supervised
learning algorithms are Support Vector Machines, Linear
Regression, Logistic Regression, Naive Bayes, and Neural
Networks.

In unsupervised machine learning, the algorithm trains on
unlabeled data. The goal of these algorithms is to explore the
data and find some structure within. The most widely used
unsupervised learning algorithms are Cluster Analysis and
Market Basket Analysis. In reinforcement learning, the
algorithm learns through a feedback system. The algorithm
takes actions and receives feedback about the appropriate-
ness of its actions and based on the feedback, modifies the
strategy and takes further actions that would maximize the
expected reward over a given amount of time.

The following provides additional details regarding
supervised machine learning, which is the preferred tech-
nique used in the threat disposition analysis approach of this
disclosure. As noted above, supervised learning is the
machine learning task of inferring a function from labeled
training data. The training data consist of a set of training
examples. In supervised learning, typically each example is
a pair consisting of an input object (typically a vector), and
a desired output value (also called the supervisory signal). A
supervised learning algorithm analyzes the training data and
produces an inferred function, which can be used for map-
ping new examples. An optimal scenario allows for the
algorithm to correctly determine the class labels for unseen
instances. This requires the learning algorithm to generalize
reasonably from the training data to unseen situations.

To solve problem of supervised learning, one has to
perform the following steps: Determine the type of training
examples. Before doing anything else, the user should
decide what kind of data is to be used as a training set.
Gather a training set; the training set needs to be represen-
tative of the real-world use of the function. Thus, a set of

20

25

30

40

45

50

12

input objects is gathered and corresponding outputs are also
gathered, either from human experts or from measurements.
The, determine the input feature representation of the
learned function. The accuracy of the learned function
depends strongly on how the input object is represented.
Typically, the input object is transformed into a feature
vector, which contains a number of features that are descrip-
tive of the object. The structure of the learned function and
corresponding learning algorithm are then determined. For
example, the engineer may choose to use support vector
machines or decision trees. The learning algorithm is then
run on the gathered training set. Some supervised learning
algorithms require the user to determine certain control
parameters. These parameters may be adjusted by optimiz-
ing performance on a subset (called a validation set) of the
training set, or via cross-validation. The accuracy of the
learned function is then evaluated. After parameter adjust-
ment and learning, the performance of the resulting function
is measured on a test set that is separate from the training set.

Referring now back to FIG. 5, in this approach herein
information collected in the alert database 504 is provided to
a machine learning/training sub-system 516, which uses the
information about alerts and prior alert handling to build a
prediction model 518 that is then provided to the security
analysts (e.g., via the threat monitoring console 506) to
reduce the time needed for the security analyst to identify,
categorize, prioritize and investigate events for the client(s).

In a preferred approach, and for each threat detected (e.g.
by a SIEM, an enterprise security Tool, any other Big Data
tool) and presented to the SOC analyst in the threat moni-
toring console 506 as an alert, the data associated with this
alert is enriched using the historical information on how this
alert has been handled previously. This enrichment is pro-
vided by the machine learning/training sub-system 516,
which as noted above outputs the prediction model 518.
Information from the model is summarized for the SOC
analyst, typically in the form of a reified value, referred to
herein as a threat disposition score (TDS). Preferably, the
TDS is enabled by a set of one or more supervised machine
learning (ML) algorithms. Without limitation, preferably the
ML algorithm(s) create the prediction model 518 by taking
into account data about historical alerts, e.g., what action the
SOC analyst took on an alert (e.g., escalation, closing,
holding for further analysis, etc.), any feedback on alert
handling (e.g., from L2 or L3 analysts based on the L1
analyst action), as well as a variety of attributes regarding
the nature of the alert itself. The system then continuously
learns (e.g., from new inputs) to improve and update its
training model 518 on a regular basis. As the richness of
historical data grows, the ML algorithms in the machine
learning/training sub-system 516 themselves evolve to
become more accurate at scoring new threats. Preferably,
this feedback loop is enhanced further by evaluating an
effectiveness of a calculated TDS in comparison to a reme-
diation action taken by the SOC analyst and vetted by
feedback on alert handling (e.g., from L2 or L3 analysts).
Thus, for example, a scenario in which a TDS was at odds
with the remediation action taken allows the system to adjust
and improve the training model 518, thereby improving
performance (by further reducing the response time). As
another example, when a higher level analyst responds to an
escalated alert and determines a correct alert disposition
(e.g. a L2 or L3 analyst affirms the alert is an actual threat
or requests to close the alert even though it was escalated
(i.e. false positive)), this valuable feedback is provided to the
machine learning and reflected in an updated prediction

US 11,888,883 B2

13

model, thereby further improving the accuracy of the pre-
dicted alert disposition as indicated by the TDS.

The prediction model is sometimes referred to herein as a
scoring model. FIG. 6 depicts a technique for creating the
scoring model according to an embodiment. Here, the alert
database 600 is configured to export data to a train scoring
model function 602, which comprises one or more machine
learning algorithms. As depicted at 606, typically the data
exported from the database 600 includes a set of attributes
required in the model, as well as an initial training data set.
Training (operation 602) involves running the machine
learning algorithm(s) with the provided training set to gen-
erate an initial version of the model 604. The training is
depicted at 608, and additional data from data sources
external to the alert database may also be used to augment
the machine learning. The resulting trained model 604, 612
is exported to the security threat monitoring system (opera-
tion 610).

FIG. 7 depicts how the training model is used to facilitate
reducing the time necessary for a security analyst to identify,
categorize and handle the alert. At step 700, a generated
threat alert is received for handling. As noted at 702, threat
alerts are generated by the STEM, and other security sys-
tems and devices in the data center. At step 704, the system
intakes the alert, and extracts a set of attributes to be used as
inputs to the training model. At step 706, the training model
is run against the attributes that are input; in response, a
threat disposition score (TDS) is generated (step 708). At
step 710, the system outputs a prediction, which typically
comprises the TDS and information about how the score was
computed. At step 712, the alert is “enriched” with this
information, typically by provided the security analyst a
threat details “view” (in the threat monitoring console, or
otherwise). Using the alert that has been enriched in this
manner, the analyst is able to make a more information
decision about the alert, and much faster. This is depicted at
step 714.

FIG. 8 depicts how the scoring model is updated as
learning is on-going. In the depicted scenario, the scoring
model 800 is used to generate the enriched alert 802. As a
result of viewing the enriched alert, the analyst has inves-
tigated the alert and taking an action 804, typically either
closing the alert 806 (as a false positive), or escalating the
issue 808. (Other options depending on the SOC implemen-
tation, policies and procedures, etc., may also be carried
out). When the matter is escalated, the customer (directly or
indirectly via the SOC or other system(s)) may take action
810, typically either to close the ticket 812 (as a false
positive), or by remediating the threat 814. In either case, the
action 810 is reported back (step 816) to the alert database,
and optionally to a ticket database (and other monitoring and
reporting systems). At step 818, and as the alert handling
continues, the learning process is then repeated. The result
is a re-trained (or updated) scoring model 820, which is then
used going forward. The re-training/updating 818 may be
carried out periodically, in response to given occurrences (a
threshold of false positive alerts being reached), or some
combination thereof. Preferably, the re-training of the scor-
ing model occurs continuously as new data points (new
alerts and their alert handling workflow) are received and
stored in the alerts database.

FIG. 9 depicts how attributes for the training model are
configured. As depicted, and as previously described, pref-
erably the alert data (include historic data regarding alert
handling) is exported from the alert database 900 and, at step
902, used by the machine learning algorithm(s) to train the
scoring model 904. The particular attribute configuration

10

15

20

25

30

35

40

45

50

55

60

65

14

906 used for this purpose may be pre-configured (e.g., using
a template, rule or policy) or user-specified (e.g., by a given
security analyst at some level) using a simple GUI interface
provided in the threat monitoring console. By configuring
attributes in this manner, the training can be adjusted
dynamically as the scoring model continues to be re-trained/
updated. In one preferred approach, the system provides the
analyst a set of drop-down configuration menus (or selec-
tions) from which the user configures which attributes
should be considered for the training data set, with the goal
of improving the threat disposition scoring accuracy.

Applying this approach here, a set of prediction models
for training the machine may be generated as follows.
Preferably, data set segregation involves developing a train-
ing set, a testing set, and selecting appropriate machine
learning methods, such as random sampling without replace-
ment. In one embodiment, feature selection for the training
set includes a set of predictors (e.g., customer ID, rule
names, alert creation time, source geo, destination geo,
client industry, and event vendor), and a response variable
(SOC alert status, e.g., closed or escalated). The machine
learning models include, without limitation, one or more of
the following: gradient boosting models (GBM), extreme
gradient boosting (XGBOOST), and boosted classification
trees (ADA). Representative tuning parameters include,
without limitation, cross-validation using repeated sampling
(e.g., using 10 repeats), slow and fast learning rates, a given
number (e.g., 50, 100 and 150) trees, and a minimum
number (e.g., 20) observations per node. Model performance
may be evaluated in any known manner, e.g., for accuracy,
sensitivity, specificity, positive and negative prediction rates,
area under a receiver operator characteristic (ROC) curve,
and the like. Known machine learning methods may be used
for this purpose.

A threat detection score (TDS) may be absolute or rela-
tive, and it may be characterized by a number, a percentage,
or the like. A particular TDS also typically has associated
therewith a confidence value or level (e.g., high), as well as
information detailing how the TDS was computed. For any
particular threat that is the subject of an alert, an appropriate
TDS is computed and output to the security analyst to
facilitate the analyst identifying, categorizing and/or priori-
tizing the alert for response. As a particular TDS confidence
level approaches some defined value (e.g. a configurable
threshold), the system may then be controlled automatically
to implement a given remediation or mitigation operation.
Typically, alerts are classified by type, and there may a
single TDS score associated with all alerts within a type,
although preferably a TDS is associated to each alert includ-
ing those that share an alert type.

Typically, there is a scoring model per alert type, but this
is not required.

FIG. 10 depicts a representative alert screen provided to
an analyst. In this example, the TDS is displayed via two
values—“recommended action” and “recommended action
confidence.” These values work together to suggest to the
analyst the recommended action for the Alert under inves-
tigation, based on the historically-trained model, together
with the confidence of this recommendation.

The historical disposition data for an alert (or alert type)
that is utilized during the machine learning may be quite
varied, e.g., use case documentation, rule documentation,
response procedure documentation, alert documentation,
security incident documentation, security intelligence feeds
documentation, contextual data, mitigation documentation
(short term fix), remediation documentation (long term fix to
prevent recurrence), previous errors, quality control data,

US 11,888,883 B2

15

feedback on alert handling (e.g., from other higher-level
analysts), and combinations of the above.

The approach as described above provides significant
advantages. Foremost, by providing the security analyst a
TDS and supporting information, the time required for threat
investigation and validation is significant reduced, espe-
cially in cases where the TDS has a high degree of confi-
dence and, as a consequence, the analyst is then able to more
readily and efficiently close the alert, e.g., as a false positive.
As additional alerts run through the model and the model is
updated, the system learns continuously, all without direct
human intervention or any need to modify static scoring
algorithms. Moreover, by providing the analyst (or some
other permitted user) the ability to modify the configuration
of'the attributes of a particular threat alert, the scoring model
is updated efficiently and as needed or desired, without any
need to modify the system programmatically. As another
advantage, and as noted above, as threat disposition scoring
gets close to very high (e.g., close to 100%) confidence, the
remediation of threat response may then be automated,
eliminating the need for any further investigation or manual
response. Another advantage is the improvement in the
overall accuracy and reduced error rates that improve cus-
tomer satisfaction. Over a period of time, this results in
productivity improvements with reduced need to hire more
analysts, even as alert volume increases.

By implementing the approach herein, and as noted
above, a security analyst that receives a TDS (e.g., with an
appropriate confidence level) need not even perform what
might be considered a routine further investigation of the
alert, and instead respond as if the investigation were already
completed. Thus, by relying on the TDS, an analyst might
respond to an alert immediately to the effect of “Escalate as
a real attack” or “Close as false positive.” The scoring model
learns primarily based on attributes of the attack and, more
importantly, on the knowledge (and context) available to the
system based on prior similar activity, including how “close”
a prior prediction may have been or how successful any final
outcome might have been. Information about alert disposi-
tion outcomes preferably are returned to the system (e.g., by
higher level analysts, by customers, or by other systems) and
then used to further refine the scoring model. Thus, the
security model may be updated to take into consideration
any knowledge/context available regarding what the “final
outcome” was with respect to a particular alert as previously
vetted by an analyst and/or rated by the customer. The
approach herein in effect predicts that given certain types of
attacks and the related knowledge available to the system,
that a particular alert represents a high (or low) probability
of being a real threat. Because it is machine learning-based,
the approach is primarily fully automated (with the excep-
tion of attribute configuration, which may be manually-
supported), thus obviating manual investigation of the alert
details for many type(s) of alert. Essentially, the approach
enables the analyst to streamline his or her analysis and even
in some cases to avoid having to do any intermediate
analysis, instead providing an appropriate and timely
response.

Generalizing, the technique provides for a platform that
uses historical threat remediation and customer feedback
data to enrich attack details for a Security Operations Center.
The approach of enriching a threat alert with a machine
learning-based threat disposition score (TDS) (and, option-
ally, associated supporting data) provides the security ana-
lyst with insight on an appropriate disposition for a received
alert. As noted, the machine learning provides an extensive
analysis of previous alerts, e.g., those that are of a similar

25

30

35

40

45

55

16

type to the current alert being evaluated. By significantly
reducing the analyst’s time to resolve the alert, the technique
provides significant productivity and threat disposition
results over prior art techniques, such as static scoring
algorithms that do not take into account historical context,
feedback on alert handling from senior analysts, and so
forth. Based on the threat TDS, the analyst is able to improve
the accuracy of his or her handling on the alert, and the
approach herein also reduces the amount of time needed to
investigate an alert (e.g. when the alert is a false positive).

This subject matter may be implemented as-a-service.
The subject matter may be implemented within or in asso-
ciation with a data center that provides cloud-based com-
puting, data storage or related services. The machine learn-
ing (ML) functionality may be provided as a standalone
function, or it may leverage functionality from other ML.-
based products and services including, without limitation, a
Question-Answer based Natural Language Processing
(NLP) system, products, device, program or process.

As noted above, the machine learning may utilize infor-
mation in addition to the alert information drawn from the
alert database. Thus, a machine learning algorithm may also
take advantage of consolidated security and threat intelli-
gence information from both structured and unstructured
data sources. Structured data sources provide security and
threat intelligence information about “what/who are bad,”
but typically such data sources lack in-depth knowledge
about the threats, as well as actionable insights about how to
address specific situations. Typically, structured data sources
are carefully curated by domain experts. Examples include,
without limitation, IBM X-Force Exchange, Virus Total,
blacklists, Common Vulnerability Scoring System (CVSS)
scores, and others. Unstructured data sources, in contrast,
provide much more contextual information, such as why
particular IP addresses or URLs are bad, what they do, how
to protect users from known vulnerabilities, and the like.
Examples of such unstructured data sources include, without
limitation, threat reports from trusted sources, blogs, tweets,
among others. Thus, the threat disposition analysis and
modeling system of this disclosure may include a technique
to consolidate security and threat intelligence information
obtained from both structured and unstructured data sources.

In a typical use case, a SIEM or other security system has
associated therewith a interface that can be used to render
the TDS visually, to search and retrieve relevant information
from alert database, and to perform other known input and
output functions with respect thereto.

As noted above, the approach herein is designed to be
implemented in an automated manner within or in associa-
tion with a security system, such as a SIEM.

The alert information itself may be processed using a
question and answer (Q&A) system, such as a natural
language processing (NLP)-based artificial intelligence (Al)
learning machine. A machine of this type may combine
natural language processing, machine learning, and hypoth-
esis generation and evaluation; it receives queries and pro-
vides direct, confidence-based responses to those queries. A
Q&A solution such as IBM Watson may be cloud-based,
with the Q&A function delivered “as-a-service” (SaaS) that
receives NLP-based queries and returns appropriate
answers. In an alternative embodiment, the Q&A system
may be implemented using IBM LanguageWare, a natural
language processing technology that allows applications to
process natural language text. LanguageWare comprises a
set of Java libraries that provide various NLP functions such

US 11,888,883 B2

17

as language identification, text segmentation and tokeniza-
tion, normalization, entity and relationship extraction, and
semantic analysis.

The functionality described in this disclosure may be
implemented in whole or in part as a standalone approach,
e.g., a software-based function executed by a hardware
processor, or it may be available as a managed service
(including as a web service via a SOAP/XML interface). The
particular hardware and software implementation details
described herein are merely for illustrative purposes are not
meant to limit the scope of the described subject matter.

More generally, computing devices within the context of
the disclosed subject matter are each a data processing
system (such as shown in FIG. 2) comprising hardware and
software, and these entities communicate with one another
over a network, such as the Internet, an intranet, an extranet,
a private network, or any other communications medium or
link. The applications on the data processing system provide
native support for Web and other known services and
protocols including, without limitation, support for HTTP,
FTP, SMTP, SOAP, XML, WSDL, UDDI, and WSFL,
among others. Information regarding SOAP, WSDL, UDDI
and WSFL is available from the World Wide Web Consor-
tium (W3C), which is responsible for developing and main-
taining these standards; further information regarding HTTP,
FTP, SMTP and XML is available from Internet Engineering
Task Force (IETF). Familiarity with these known standards
and protocols is presumed.

The scheme described herein may be implemented in or
in conjunction with various server-side architectures includ-
ing simple n-tier architectures, web portals, federated sys-
tems, and the like. The techniques herein may be practiced
in a loosely-coupled server (including a “cloud”-based)
environment.

Still more generally, the subject matter described herein
can take the form of an entirely hardware embodiment, an
entirely software embodiment or an embodiment containing
both hardware and software elements. In a preferred
embodiment, the function is implemented in software, which
includes but is not limited to firmware, resident software,
microcode, and the like. Furthermore, as noted above, the
identity context-based access control functionality can take
the form of a computer program product accessible from a
computer-usable or computer-readable medium providing
program code for use by or in connection with a computer
or any instruction execution system. For the purposes of this
description, a computer-usable or computer readable
medium can be any apparatus that can contain or store the
program for use by or in connection with the instruction
execution system, apparatus, or device. The medium can be
an electronic, magnetic, optical, electromagnetic, infrared,
or a semiconductor system (or apparatus or device).
Examples of a computer-readable medium include a semi-
conductor or solid state memory, magnetic tape, a removable
computer diskette, a random access memory (RAM), a
read-only memory (ROM), a rigid magnetic disk and an
optical disk. Current examples of optical disks include
compact disk-read only memory (CD-ROM), compact disk-
read/write (CD-R/W) and DVD. The computer-readable
medium is a tangible item.

The computer program product may be a product having
program instructions (or program code) to implement one or
more of the described functions. Those instructions or code
may be stored in a computer readable storage medium in a
data processing system after being downloaded over a
network from a remote data processing system. Or, those
instructions or code may be stored in a computer readable

10

15

20

25

30

35

40

45

50

55

60

65

18

storage medium in a server data processing system and
adapted to be downloaded over a network to a remote data
processing system for use in a computer readable storage
medium within the remote system.
In a representative embodiment, the threat disposition and
modeling techniques are implemented in a special purpose
computer, preferably in software executed by one or more
processors. The software is maintained in one or more data
stores or memories associated with the one or more proces-
sors, and the software may be implemented as one or more
computer programs. Collectively, this special-purpose hard-
ware and software comprises the functionality described
above.
While the above describes a particular order of operations
performed by certain embodiments of the invention, it
should be understood that such order is exemplary, as
alternative embodiments may perform the operations in a
different order, combine certain operations, overlap certain
operations, or the like. References in the specification to a
given embodiment indicate that the embodiment described
may include a particular feature, structure, or characteristic,
but every embodiment may not necessarily include the
particular feature, structure, or characteristic.
Finally, while given components of the system have been
described separately, one of ordinary skill will appreciate
that some of the functions may be combined or shared in
given instructions, program sequences, code portions, and
the like.
The techniques herein provide for improvements to
another technology or technical field, e.g., security incident
and event management (SIEM) systems, other security sys-
tems, as well as improvements to automation-based cyber-
security analytics.
Having described the invention, what we claim is as
follows:
1. A method for threat disposition analysis, comprising:
responsive to receipt of a security threat identified in an
alert, retrieving a threat disposition score (TDS), the
threat disposition score generated from a machine
learning scoring model built from information about
historical security threats, including historical disposi-
tion of one or more alerts associated with the historical
security threats, the TDS based in part on an effective-
ness of a prior calculated TDS to predict a particular
historical disposition associated with the alert;

augmenting the alert to include the threat disposition
score to generate an enriched alert; and

presenting the enriched alert for further handling;

wherein the historical disposition of at least one alert

comprises feedback from a second security analyst on
handling of the at least one alert by a first security
analyst.

2. The method as described in claim 1 wherein enriched
alert also includes historical information about how the
security threat has been handled previously.

3. The method as described in claim 1 wherein the
feedback is generated following the at least one alert having
been escalated from the first security analyst to the second
security analyst.

4. The method as described in claim 1 further including
building the machine learning scoring model, wherein the
machine learning scoring model also is built from a set of
attributes regarding an alert.

5. The method as described in claim 4 further including
receiving data configuring the set of attributes.

6. The method as described in claim 1 further including
updating the machine learning scoring model.

US 11,888,883 B2

19

7. The method as described in claim 1, further comprising:

providing a confidence level associated with the TDS; and

responsive to the confidence level reaching a threshold,
automatically performing a set of one or more actions
to respond to the security threat.

8. The method as described in claim 1 wherein the further
handling is one of: closing the security threat as a false
positive, and escalating the security threat.

9. An apparatus, comprising:

a processor;

computer memory holding computer program instructions

executed by the processor for threat disposition analy-

sis, the computer program instructions operative to:

retrieve a threat disposition score (TDS) in response to
receipt of a security threat identified in an alert, the
threat disposition score generated from a machine
learning scoring model built from information about
historical security threats, including historical dispo-
sition of one or more alerts associated with the
historical security threats, the TDS based in part on
an effectiveness of a prior calculated TDS to predict
a particular historical disposition associated with the
alert;

augment the alert to include the threat disposition score
to generate an enriched alert; and

present the enriched alert for further handling;

wherein the historical disposition of at least one alert
comprises feedback from a second security analyst
on handling of the at least one alert by a first security
analyst.

10. The apparatus as described in claim 9 wherein
enriched alert also includes historical information about how
the security threat has been handled previously.

11. The apparatus as described in claim 9 wherein the
feedback is generated following the at least one alert having
been escalated from the first security analyst to the second
security analyst.

12. The apparatus as described in claim 9 wherein the
computer program instructions are further operative to build
the machine learning scoring model, wherein the machine
learning scoring model also is built from a set of attributes
regarding an alert.

13. The apparatus as described in claim 12 wherein the
computer program instructions also are operative to receive
data configuring the set of attributes.

14. The apparatus as described in claim 9 wherein the
computer program instructions also are operative to update
the machine learning scoring model.

15. The apparatus as described in claim 9 wherein the
computer program instructions also are operative to:

provide a confidence level associated with the TDS; and

responsive to the confidence level reaching a threshold,
automatically perform a set of one or more actions to
respond to the security threat.

16. The apparatus as described in claim 9 wherein the
further handling is one of: closing the security threat as a
false positive, and escalating the security threat.

17. A computer program product in a non-transitory
computer readable medium for use in a data processing
system for threat disposition analysis, the computer program
product holding computer program instructions that, when
executed by the data processing system, are operative to:

retrieve a threat disposition score (TDS) in response to

receipt of a security threat identified in an alert, the
threat disposition score generated from a machine
learning scoring model built from information about
historical security threats, including historical disposi-

10

15

20

25

30

35

40

45

50

55

60

20

tion of one or more alerts associated with the historical
security threats, the TDS based in part on an effective-
ness of a prior calculated TDS to predict a particular
historical disposition associated with the alert;

augment the alert to include the threat disposition score to
generate an enriched alert; and

present the enriched alert for further handling;

wherein the historical disposition of at least one alert

comprises feedback from a second security analyst on
handling of the at least one alert by a first security
analyst.

18. The computer program product as described in claim
17 wherein enriched alert also includes historical informa-
tion about how the security threat has been handled previ-
ously.

19. The computer program product as described in claim
17 wherein the feedback is generated following the at least
one alert having been escalated from the first security
analyst to the second security analyst.

20. The computer program product as described in claim
17 wherein the computer program instructions are further
operative to build the machine learning scoring model,
wherein the machine learning scoring model also is built
from a set of attributes regarding an alert.

21. The computer program product as described in claim
20 wherein the computer program instructions also are
operative to receive data configuring the set of attributes.

22. The computer program product as described in claim
17 wherein the computer program instructions also are
operative to update the machine learning scoring model.

23. The computer program product as described in claim
17 wherein the computer program instructions also are
operative to:

provide a confidence level associated with the TDS; and

responsive to the confidence level reaching a threshold,

automatically perform a set of one or more actions to
respond to the security threat.

24. The computer program product as described in claim
17 wherein the further handling is one of: closing the
security threat as a false positive, and escalating the security
threat.

25. A security threat analysis platform, comprising:

one or more hardware processors;

a data store holding a knowledge base of alert data, and

historical alert disposition handling information; and

computer memory storing computer program instructions

configured to;

compute a scoring model by applying machine learning
to information derived from the knowledge base, the
information including historical security threats,
including historical disposition of one or more alerts
associated with the historical security threats;

respond to receipt of a new security threat, using the
scoring model to generate an alert having an asso-
ciated threat disposition score and confidence level,
the threat disposition score based in part on an
effectiveness of a prior calculated threat disposition
score to predict a particular historical disposition
associated with the alert;

receive and respond to handling information for the
alert;

wherein the historical disposition of the alert comprises
feedback from a second security analyst on handling
of the alert by a first security analyst.

26. The security threat analysis platform as described in
claim 25, the alert having been escalated to the second
security analyst from the first security analyst, and wherein

US 11,888,883 B2

21

the computer program instructions configured to receive and
respond to handling information for the alert comprise
computer program instructions further configured to:
present the alert to the first security analyst responsible for
addressing the new security threat;
receive data indicating a response by the first security
analyst to the alert, the response based at least in part
on inclusion of the threat disposition score; and
update the scoring model based at least in part on the
response by the first security analyst to the alert;
wherein inclusion of the threat disposition score reduces
an alert disposition error rate associated with the first
security analyst.

#* #* #* #* #*

10

22

