
US 20180373546A1
(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2018 / 0373546 A1

ABIEZZI et al . (43) Pub . Date : Dec . 27 , 2018

(54) HYBRID SOFTWARE AND GPU ENCODING
FOR UI REMOTING

(71) Applicant : VMware , Inc . , Palo Alto , CA (US)
(72) Inventors : Salim ABIEZZI , Sammamish , WA

(US) ; Sandro MOIRON , Palo Alto ,
CA (US)

(21) Appl . No . : 15 / 630 , 556

(52) U . S . CI .
CPC GO6F 9 / 4445 (2013 . 01) ; H04L 67 / 42

(2013 . 01) ; G06T 2200 / 24 (2013 . 01) ; G06T
9 / 00 (2013 . 01) ; G06T 15 / 005 (2013 . 01)

(57) ABSTRACT
Frames of a virtual desktop are encoded using a hybrid
approach that combines the strength of software encoding by
a central processing unit (CPU) and hardware encoding by
a graphics processing unit (GPU) . A method of encoding
frame data of one or more virtual desktops in hardware and
in software and transmitting the encoded frame data to one
or more client devices , includes the steps of encoding a first
portion of the frame data in the GPU to generate a first
encoded frame data , encoding a second portion of the frame
data in software , i . e . , programmed CPU , during encoding of
the first portion , to generate a second encoded frame data ,
and transmitting the first encoded frame data and the second
encoded frame data from a host computer of the one or more
virtual desktops to the one or more client devices as separate
video streams .

(22) Filed : Jun . 22 , 2017

(51)
Publication Classification

Int . Ci .
GOOF 9 / 44 (2006 . 01)
H04L 29 / 06 (2006 . 01)
G06T 15 / 00 (2006 . 01)
G06T 9 / 00 (2006 . 01)

YARALANAMALALALANLAMALKALANANLALALALALAMALAR ALKALANLAMALALA TANAMALAALAMAN

Client Computing System 200 Client Computing System 200
VDI Client 220

Client Computing System 200
VDI Client 220

WOOOO 10oooooooo

VDI Client 220
ma mannannammmmmmmmm

OS 210 OS 210 nananananananananana OS 210
Sonaxono nanoanornandono honorxonnarann o PORODU KOROKORRAK

GPU
240

Display
250

CPU
230

Display
250

CPU
230 wwwwwwwww GPU 240

Display
250 0

o d bonament nomor

BPANNENUDNINGE
N

Network 230

Host Computing System 100

VM 1221

Application Layer 136 VMX wwwwwww L

VMX
1231

wwwwww
peammmmmmmmmmmm

VMX
1239 1222 1232 122N

Guest OS 134
ww

pannamme gennem
7

Virtual Machine Monitor 140 , VMM 140
1 Potom MALABANANANDABAAAAAAAAAAAA EXPLOKALIPURDUR BAIE

Virtual Hardware Platform 124 .
CPU CPU GPU vdisk | NIC www Crono 1242

*

w LALARARAMALABANAN an u on on

face 124 .
X

X wwwwwwwww IX e
o

126 ?? ??

?

Lourosakkaavakasukakke oorsaakod
o ovou 1 2 DOO u

? ????????????????
SU U U ovo

Lan n anna
wwwmo

Hypervisor 116
hmm

???

Storage Multi - Core Processor 104
CPU CPU
114 2 114

CPU 1 YUVA NIC ANLAMALALANANLALALALA GPU
106 www

Frame
Buffer
107

VF nonam
System
Memory

112 LANLARA wew 110 108
wwwwwwwwwwwwwwwwww

Hardware Platform 102
bevovovreverseverancevovovanevasevereauverovaveevoerekosueveravamerepuverovereteraanvoverenverovou

Figure 1
A NAKAKAKUUAWANAHAWANAWAKE WANAWAKE WAKAKUURAKARAKARAKARARANAWAKALA KWA WAARAAN AURAWATAN MAK

Hardware Platform 102

801 L
P

112
Memory
System wwwwwwwwwwww OIT

OIN
107

Buffer
Frame

KARALAR 106
GPU Www th wwwwwwww EXAMYMWYX +

OR XALAM

CPU CPU CPU
Multi - Core Processor 104 Storage

.

+ + + IIIIIIE + + + UUUU .

www wwwwwwwwwwwwwwwwwwwwwwwww
VAKKAKAKKUKK

ITT JOSAODAH
* * * W
MMXXXXXXXXX

* * * * - * * * * * * ??? * * * *
XXXXXXXXXXXXXXXXYYUMMY MWAKA

WWWWWW M

124N * XXXXXXXXXXXX * * * * * MwWwwWw wWMN 1242 MW
128 127

IGPU vdisk | NIC
Virtual Hardware Platform 1241 wwwwwwwwww AANMAN TALAJJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA NOFT WNA OVT WWAT Virtual Machine Monitor 140 ,

* A * * * * * * * * T PARA A A

VRAAAAARINXAXXIMAAAAAAAKMAN YYYYYTY y Try the K ARA USHAHAHAHAU

wwwwwwwwwww wwwwwwwwwwwwww

DET SO isang
. ARRARAARSLARARARANNARRARA NETT

XWA
1 . 2 . 22 wwwwwwwwwwwwwwwwwwwwwwwwwwwwww Wwwwwwwwwwwwwwwwwwwwwwwww 122N

VM
. . . MARRIALINDIRULLIHULIITTO kakatan EZT

XWA
EZT
XWA . Application layer 136

.

VM 122

Host Computing System 100
RUHHHHHHHHHHHHHHHHHHHHH W WWWWWWWWWWWWWWW

Network 230

* * * * * * * * * * + + + + * + * + + * + + + + + + + +

. AAAANNNN XXX annant

250 017 067 w

250
Display

230
CPU

250
Display

230
CPU Aejdsial GPU GPU

SAR
TEXFXXXXXXX XXXXXXXXX WMN WAKALALAKAKAK U RULU
017 SO WWWWWWWWW OTZ SO OTZ SO

wwwwwwwwwwwww wwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww

wwwwwwwwwwwwww
wwwwwwwwwwww

VDI Client 220 VDI Client 220
Client Computing System 2002

HEKA + KLIKKAA

VDI Client 220
Client Computing System 200 ,

+

Client Computing System 200

US 2018 / 0373546 A1 Dec . 27 , 2018 Sheet 1 of 5 Patent Application Publication

Patent Application Publication Dec . 27 , 2018 Sheet 2 of 5 US 2018 / 0373546 A1

VM 122
Application Layer 136

Guest OS 134
w wwwwwwwwww

AALAAAAAAAAAA

UI Remoting (UIR) Server 153 wees van VDI Client 220
MAULAN wwwww YURT

* *

* *

* *

* Video Encoder 152 Video Decoder 252 *

* * wwwwww *

* * *

VMX 123 Client Computing System 200
WWWWWWWWWWWWWWWWWWWWWWWWWwwww wwwwwwwww w wwwwwwwwwwwwwwwww

Figure 2
300

KUKKAKAKKU W AMEKUWA WAUUUUUUUUUU

3D image 310 Non - 3D image 330
(e . g . , Windows UI) SAMARKALARMAA

KILKULKUKKXXXX Video 320

BERE OR

A

1 Background Image 340
REA

* *

w w

??? ?????
*

X
* * * *

* *

* 3D Rendering
Pipeline 115

Video
Decoder 116 SHITETTIILITE ?? ???? ???? ????

* * *

NEWCA www wwww known woon naman kami wwww www winan
m

Video Encoder 152 0

Video Encoder 117 nxxhimi GPU 1061 CPU 114 MAAAAA
+ + + + + + + + + + + + + + + + + + +

to 153 to 153

Figure 3 i

Patent Application Publication Dec . 27 , 2018 Sheet 3 of 5 US 2018 / 0373546 A1

Start

Launch virtual desktop client
$ 410

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww

Send credentials for login and
establish connection

S420

w

Receive and decode frame
data of virtual desktop

S430

ww

Display decoded data
S440

No Is there any
user manipulation of UI

Element ?
$ 450

Yes

Transmit information of user
manipulation of Ul to host

5460

Figure 4

Patent Application Publication Dec . 27 , 2018 Sheet 4 of 5 US 2018 / 0373546 A1

User Login

WILLIAM ORONONCIME
is desktop

display updated ?
S510

Yes

Yes
Desktop

display include 3D
images and video ?

$ 520

Encode 3D images and video using
GPU and others using CPU

S540
WWW .

WMMWWMM
tant .

Encode frame data using CPU
5530

??? WWWWWWWWWWWWWWWWWWWWWWWW Transmit encoded frame data
to client
5550

+ + Figure 5

Patent Application Publication Dec . 27 , 2018 Sheet 5 of 5 US 2018 / 0373546 A1

User Login

* * * *

Now *

Is desktop
display updated ? * * * * * *

0195

HAAAAAAWWARWWXXAAAWALAUW . MAAAAAAWWWWWWAAA Desktop
display include 3D
images and video ?

Yes Yes Hardware
una encoding flag = 17 martin

5625 OZIS

No A AAAAAAHHMAKAAWWUWUWWAAAAAAWAH Tanner
Encode frame data using CPU

S630

Encode 3D images
and video using GPU
and others using CPU

S640 MAAMUWAAAAAAAAAAAA ARUTETORKA
WAKAARAW Transmit encoded frame data

to client
S650

Encode frame
data using GPU

5626 ANIWWAAAAA
WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

Figure 6

US 2018 / 0373546 A1 Dec . 27 , 2018

HYBRID SOFTWARE AND GPU ENCODING
FOR UI REMOTING

BACKGROUND

computing system to the client computing system and user
inputs from the client computing system to the host com
puting system .
10008] FIG . 3 illustrates an example of a virtual desktop
displayed on a client computing system and components for
carrying out video encoding according to an embodiment .
[0009] FIG . 4 depicts a flow diagram of an operation
carried out at a client computing system to access a virtual
machine running on the host computing system and display
a virtual desktop generated by the virtual machine on a
display of the client computing system .
[0010] FIG . 5 depicts a flow diagram of a hybrid approach
for encoding frames of the virtual desktop according to a
first embodiment .
[0011] FIG . 6 depicts a flow diagram of a hybrid approach
for encoding frames of the virtual desktop according to a
second embodiment .

[0001] Desktop virtualization is software technology that
separates the desktop environment and associated applica
tion software from a client computing device that is used to
access it . Virtual desktop infrastructure (VDI) implements
desktop virtualization using virtual machines (VMs) . In
VDI , the desktop environment and associated application
software are executed in a VM which runs on a remote host
computer . The virtual desktop is generated at the host
computer and display frames of the virtual desktop are
transmitted from the host computer to the client computing
device so that they can be displayed at the client computing
device . User inputs are made at the client computing device
and such inputs are transmitted to the host computer for
processing by the host computer .
[0002] Remote display protocols for efficiently delivering
the frames of the virtual desktop from the host computer to
client computing devices have been developed . PC over IP
(PCoIP) is one such remote display protocol . According to
PCoIP , the frames are encoded at the host computer , typi
cally using a central processing unit (CPU) of the host
computer , to capture only regions of the virtual desktop that
have changed , and the encoded frame data is transmitted to
the client computing device as a pixel stream .
[0003] VMware Blast® is another remote display proto
col . The VMware Blast encodes the frames according to the
H . 264 video encoding standard and the encoded data is
transmitted to the client computing device as a standard
video stream instead of a pixel stream . The VMware Blast
protocol can be implemented on either the CPU or a graphics
processing unit (GPU) of the host computer .

SUMMARY

[0004] One or more embodiments provide a hybrid
approach for encoding frames of the virtual desktop that
combines the strength of both software encoding by the CPU
and hardware encoding by the GPU . According to one
embodiment , a method of encoding frame data of one or
more virtual desktops in hardware and in software and
transmitting the encoded frame data to one or more client
devices , is provided . The method includes the steps of
encoding a first portion of the frame data in the GPU to
generate a first encoded frame data , encoding a second
portion of the frame data in software , i . e . , programmed CPU ,
during encoding of the first portion , to generate a second
encoded frame data , and transmitting the first encoded frame
data and the second encoded frame data from a host com
puter of the one or more virtual desktops to the one or more
client devices as separate video streams .
[0005) Further embodiments include , without limitation , a
non - transitory computer - readable storage medium that
includes instructions for a processor to carry out the above
method , and a computer system that includes a processor
programmed to carry out the above method .

DETAILED DESCRIPTION
[0012] Reference will now be made in detail to several
embodiments , examples of which are illustrated in the
accompanying figures . It is noted that wherever practicable
similar or like reference numbers may be used in the figures
and may indicate similar or like functionality . The figures
depict embodiments for purposes of illustration only . One
skilled in the art will readily recognize from the following
description that alternative embodiments of the structures
and method illustrated herein may be employed without
departing from the principles described herein .
[0013] FIG . 1 is a block diagram of a host computing
system 100 that provides a virtual desktop infrastructure
(VDI) to one or more client computing systems 200 , - 2007
that are connected to the host computing system 100 through
a network 230 . The host computer system 100 may be
constructed on a desktop , laptop , or server grade hardware
platform 102 such as an x86 architecture platform . The
hardware platform 102 includes a multi - core processor 104 ,
a graphic processing unit (GPU) 106 , a frame buffer 107 , a
storage interface 108 , such as host bus adapter by which a
connection is made to storage device (e . g . , a hard disk drive
or a solid state drive) , a network adapter (NIC) 110 , a system
memory 112 , and other I / O devices such as , for example and
without limitation , a mouse and keyboard (not shown in
FIG . 1) . The multi - core processor 104 includes a plurality of
central processing units (CPUs) 114 , to 114 , which can
operate concurrently and can read and write data to the
system memory 112 .
[0014] A virtualization software layer , also referred to
hereinafter as a hypervisor 116 , is installed on top of the
hardware platform 102 . The hypervisor 116 supports a
virtual machine execution environment in which one or
more VMs (depicted in FIG . 1 as VMs 122 - 122y , herein
after individually or collectively referred to as VM 122) may
be concurrently instantiated and executed . In the embodi
ment depicted herein , the virtualization execution environ
ment is provided through both a user mode process execut
ing in a less privileged state , referred to as the VMX process
(e . g . , VMX processes 123 , - 123y) and a virtual machine
monitor (VMM) executing in a more privileged state (e . g . ,
VMM 140 , - 1403) . Each VM 122 effectively executes in the
process space of its respective VMX process 123 (i . e . , its
memory is mapped to each respective VMX process) .
[0015] In addition , for each VM 122 , the hypervisor 116
manages a corresponding virtual hardware platform (i . e . ,

BRIEF DESCRIPTION OF THE DRAWINGS
[0006] FIG . 1 is a block diagram of a virtual desktop
infrastructure in which embodiments may be implemented .
[0007] FIG . 2 is a block diagram of components that
enable transmission of encoded frame data from the host

US 2018 / 0373546 A1 Dec . 27 , 2018

virtual hardware platforms 124 , - 124y implemented in
VMMs 140 , - 140x , respectively) that includes emulated
hardware elements such as multiple virtual CPUs 126 , to
126x , a virtual disk (vdisk) 128 , a virtual NIC 130 , and a
virtual RAM 132 . For example , the virtual hardware plat
form 124 , may function as an equivalent of a standard x86
hardware architecture , such that any x86 supported operat
ing system , e . g . , Microsoft Windows® , Linux® , Solaris®
x86 , NetWare , FreeBSD , etc . , may be installed as a guest
operating system 134 to execute any supported applications
in an application layer 136 for the VM 122 . The guest
operating system 134 of the VM 122 includes device
drivers (e . g . , pre - existing device drivers available for the
guest operating system 134 etc .) that interact with emulated
hardware elements in the virtual hardware platform 124 , as
if such emulated hardware elements were actual physical
devices . The hypervisor 116 is responsible for transforming
requests from device drivers in the guest operating system
134 that are received by emulated hardware elements in the
virtual platform 124 , into corresponding requests directed to
corresponding physical devices in the hardware platform
102 .
[0016) The host computing system 100 is connected to one
or more client computing systems 200 , - 200x (individually
or collectively referred to as client computing system 200)
through the network 230 or further through a connection
broker (not shown) that may be provided between the host
computing system 100 and the client computing systems
2004 - 2007 . Each of the client computing systems 2002 - 200M
can be of a variety of type of computing devices , such as cell
phones , tablets , PCs , smart TVs , and includes an operating
system (OS) 210 running thereon and a VDI client software
program (also referred to as “ VDI client ” for short) , e . g . ,
VDI client 220 that runs on the OS 210 . The VDI client 220
provides an interface for an end user to access the virtual
desktop , which may be running in one of the VMs 1221
112y in a data center that is remote from the user location .
The term , " desktop ” refers to the instance of an interactive
operating environment provided by a computer operating
system and software applications , typically in the form of a
display and sound output and keyboard and mouse input .
With the VDI client 220 , the end user can access the virtual
desktop running in a remote data center through the network
230 , from any location , using a general purpose computer
running a commodity operating system and a VDI client
software program such as VMware® ViewTM , or a special
purpose thin client such as those available from Dell , HP ,
NEC , Sun Microsystems , Wyse , and others . In one embodi
ment , a browser can be used as the VDI client software
program based on JavaScript . This browser - type VDI client
software program enables cloud - based computing devices ,
such as chromebooks , to be used as thin clients . The client
computing system 200 also includes , as hardware elements ,
a CPU 230 and a display 250 on which the virtual desktop
is displayed . Some of the client computing system 200 may
further include a GPU 240 that can be used to decode the
encoded frame data of the virtual desktop transmitted from
the host computing system 100 on which the corresponding
VM 122 runs . If there is no GPU 240 on the client side , the
CPU 240 instead handles such decoding tasks on the client
side .
[0017] It should be recognized that the various terms ,
layers , and categorizations used to describe the virtualiza
tion software and hardware components in FIG . 1 may be

referred to differently without departing from their function
ality or the spirit or scope of the invention . For example , the
virtual hardware platforms 124 , - 124y may be considered to
be part of the virtual machine monitors (VMM) 140 , - 140x
which implement the virtual system support needed to
coordinate operations between the hypervisor 116 and their
respective VMs . Alternatively , the virtual hardware plat
forms 124 , - 124y may also be considered to be separate from
the VMMs 140 , - 140y , and the VMMs 140 , - 140y may be
considered to be separate from the hypervisor 116 . One
example of the hypervisor 116 that may be used is included
as a component of VMware ' s ESXTM product , which is
commercially available from VMware , Inc . of Palo Alto ,
Calif . It should further be recognized that other virtualized
computer system architectures may be used consistent with
the teachings herein , such as hosted virtual machine sys
tems , where the hypervisor is designed to run on top of a
host operating system , or a shared storage array network
(SAN) that is shared among various virtualized computer
systems (e . g . , clusters) in order to store virtual disks .
[0018] . In addition , the embodiments described above
employ a hardware abstraction layer installed on top of the
hardware platform 102 . The hardware abstraction layer
allows multiple contexts or virtual computing instances to
share the hardware resource . In one embodiment , these
virtual computing instances are isolated from each other ,
each having at least a user application running therein . The
hardware abstraction layer thus provides benefits of resource
isolation and allocation among the virtual computing
instances . In the foregoing embodiments , the virtual
machines (VMs) 122 are used as an example for the virtual
computing instances and the hypervisor 116 as an example
for the hardware abstraction layer . As described above , each
virtual machine 122 includes a guest operating system 134
in which at least one application runs . It should be noted that
these embodiments may also apply to other examples of
virtual computing instances , such as containers not includ
ing a guest operating system , which is referred to as “ OS
less containers . ”

[0019] FIG . 2 is a block diagram of components that
enable transmission of encoded frame data from the host
computing system to the client computing system and user
inputs from the client computing system to the host com
puting system . These components include the VM 122
which generates frames of the virtual desktop in response
user inputs that are transmitted from the client computing
system 200 to the host computing system 100 . As frames of
the virtual desktop are generated , the VMX process 123
carries out software encoding of the frames using a video
encoder 152 and / or hardware encoding of the frames using
a video encoder 117 implemented in the GPU 106 (shown in
FIG . 3) , and a UI remoting (UIR) server 153 transmits the
encoded frame data to the client computing system 200 .
Upon receipt , the client computing system 200 decodes the
encoded frame data through a video decoder 252 and
displays the decoded frames locally at display of the client
computing system 200 .
[0020] In one embodiment , the functionality of the video
encoder 117 is accessed by invoking API (application pro
gramming interface) commands that are exposed by a driver
for the GPU 106 . Thus , when carrying out hardware encod
ing of the frames using the video encoder 117 , the VMX
process 123 issues an API command that instructs the video

US 2018 / 0373546 A1 Dec . 27 , 2018

encoder 117 to encode frame data identified in the command
and return encoded frame data .
[0021] FIG . 3 is a conceptual diagram that illustrates
frame encoding carried out at the host computing system
according to an embodiment . The frame encoding according
to the embodiment employs a hybrid approach . Portions of
the frame data are encoded in hardware by the GPU 106 by
the video encoder 117 and the remaining portions of the
frame data are encoded in software by the CPU 114 execut
ing the video encoder 152 . The two encoded video streams
are transmitted to and displayed at the client computing
system 200 .
[0022] In general , since GPUs can be configured to carry
out a specific video encoding , GPUs can carry out the video
encoding at a faster rate in comparison to CPUs executing a
software video encoder . On the other hand , the software
based CPU encoding is more flexible . Therefore , the hybrid
encoding technique according to embodiments combines the
strength of both hardware encoding by GPUs and software
encoding by CPUs .
[0023] One example of the software - based video encoder
152 is VMware Blast® , which is commercially available
from VMware , Inc . of Palo Alto , Calif . According to
VMware Blast® , the video encoding is carried out using
H . 264 video encoding for pixel remoting , and a pixel steam
is transmitted to the client computing system 200 as a
standard video stream . According to H . 264 video encoding ,
pixel data of a portion of a frame that is unchanged from
previous frames are reused , and pixel data of a portion a
frame that is changed but has been previously encoded are
also reused for more efficient encoding . In addition , the
video encoding by VMware Blast includes several opti
mizations specific to the nature of user interfaces (UIS) that
can be included in the virtual desktop . For example , user
interface (UI) elements such as text input , scrolling , or
pull - down menus tend to result in localized pixel changes ,
and large portions of a virtual desktop image remain
unchanged and do not need to be re - encoded . For each
frame , the changed portions are determined and change - map
information is used for the frame encoding . For these
reasons , the software - based CPU encoding is effective in
encoding static portions of a virtual desktop and portions
that change in a predetermined manner , such as application
UIs . Other specific features that can be achieved by the
software - based CPU encoding for the virtual desktop are
disclosed in U . S . Patent Publication No . 2014 / 0029676 and
U . S . Patent Publication No . 2014 / 0176583 , and the entire
contents of both publications are incorporated herein by
reference . The software - based CPU encoding according to
the present disclosure is not limited to VMware Blast® , and
any appropriate software - based video encoding protocols ,
including PC over IP (PCoIP) and virtual desktop protocol
(RDP) , may be employed .
[0024] On the other hand , the hardware - based GPU
encoding is more effective for 3D applications (e . g . , com
puter - aided design applications , virtual reality (VR) appli
cations , virtual medical operation applications) or video
applications (e . g . , video streaming applications) in compari
son to the above - described software - based CPU encoding .
This is because , as set forth above , the GPU can be config
ured in hardware to operate as a 3D rendering pipeline , a
video decoder , and a video encoder . As a result , pixels of 3D
images that are generated using the 3D rendering pipeline
are readily available for encoding by the video encoder

seamlessly . Similarly , pixels of video that are generated
using the video decoder are readily available for encoding
by the video encoder seamlessly . Some non - limiting
examples of the encoding scheme used for hardware - based
GPU encoding include H . 265 and VP9 , both of which are
more suitable for encoding 3D images and video , compared
to H . 264 . That is , the encoding scheme for the hardware
based GPU encoding may be different from the one
employed for the software - based CPU encoding . As used
herein , “ 3D images ” include stereoscopic images . Also ,
" video " includes video images generated using a video data
format , such as MPEG (e . g . , H . 264 , H . 265) , WMV , VP9 ,
and QuickTime , and are to be distinguished from static
images generated using a still image data format , such as
JPEG , PDF , and GIF .
0025] . In view of such different benefits of the software
based CPU encoding and the hardware - based GPU encod
ing , one of the software - based CPU encoding and the
hardware - based GPU encoding is selectively carried out
depending on the type of content to be displayed on the
virtual desktop . For example , a portion of each frame of a
virtual desktop that corresponds to video or a 3D image is
encoded using the hardware - based GPU encoding (i . e . ,
using the GPU 106) , and a portion of each frame of the
virtual desktop that corresponds to a non - 3D image , such as
an application UI or a background of the virtual desktop , is
encoded using the software - based CPU encoding .
[0026] The hybrid encoding approach according to
embodiments can be applied to a situation in which the host
computing system 100 provides multiple virtual desktops to
multiple end users , respectively . In one such example where
multiple virtual desktops are generated for multiple end
users , the software - based CPU encoding is carried out with
respect each virtual desktop that only has 2D images , and the
hardware - based GPU encoding is carried out with respect to
each virtual desktop that includes video or a 3D image .
Alternatively , with respect to each virtual desktop that
includes video or a 3D image , the video encoding can be
carried out using the hybrid encoding approach , using a
combination of the software - based CPU encoding and the
hardware - based GPU encoding .
[0027] For example , it is assumed that each of the CPUs
114 of the multi - core processor 104 can host multiple end
users to generate the virtual desktop through the software
based CPU encoding , as long as the end users use text
applications (i . e . , ordinary Uls , such as Microsoft Excel ,
Word , PowerPoint , and Outlook) , and not use video or 3D
applications . If , no hardware - based GPU encoding is
employed and one of the end users starts to use a video or
3D application , the CPU 114 (i . e . , the entire single core) may
entirely need to operate for that end user to sustain the video
decoding or 3D rendering in addition to UI remote encoding ,
and the remote processing for the other end users may need
to slow down or temporarily stop . However , according to the
hybrid encoding approach , the additional processing
requirement of the end user who started the video or 3D
application can be absorbed by the GPU 106 , and thus the
CPU 114 can continue to host the multiple end users without
interruption . For example , an Intel E3 CPU with four x86
cores and an integrated GPU can sustain 28 users (seven
users per core) , even with use of video or 3D application by
the users , because the 3D rendering , video decoding , and
video encoding requirements therefor can be absorbed by
the GPU . In contrast , without use of the GPU , the seven

US 2018 / 0373546 A1 Dec . 27 , 2018

user - per - core relationship may need to be compromised
even when no end user uses the video or 3D application ,
because the provisioning ratio needs to be based on worst
case usage scenario (e . g . , where all end users use the video
or 3D application) .
[0028] Further , in the example in which the host comput
ing system 100 provides multiple virtual desktops to mul
tiple end users , respectively , the GPU 106 can be allocated
among the VMs that are generating the virtual desktop
according to processing requirements of the VMs (e . g . ,
frame rates , resolutions , and play lengths) . The techniques
for allocating the GPU resources among the VMs are
disclosed in U . S . Patent Publication No . 2014 / 017658 , U . S .
Patent Publication No . 2014 / 0181806 , and U . S . Patent Pub
lication No . 2014 / 0181807 , and the entire contents of each
of these applications are incorporated herein by reference .
[0029] FIG . 4 depicts a flow diagram of method steps
carried out at a client computing system to access a virtual
machine running on the host computing system and display
a virtual desktop generated by the virtual machine on a
display of the client computing system . The method starts at
step S410 , where the end user launches the virtual desktop
at the client computing system 200 . At step S420 , the client
computing system 200 transmits login credentials received
from the user to a connection server (not shown) in order to
log the user into a VM that is running on the host computing
system 100 and hosting the virtual desktop . Then , upon
authentication of the login credentials by the connection
server , a connection between the client computing system
200 and the VM is established . At step S430 , the client
computing system 200 receives encoded frame data of the
virtual desktop from the host computing system 100 and
decodes the received frame data . The client computing
system 200 performs the decoding of the received frame
data either through software - based CPU decoding or hard
ware - based GPU decoding (if the GPU is installed in the
client computing system) in accordance with the appropriate
decoding protocol corresponding to the encoding protocol .
For example , when H . 264 encoding is employed on the side
of the host computing system 100 , H . 264 decoding is carried
out on the side of the client computing system 200 .
[0030] At step S440 , the client computing system 200
displays the virtual desktop using the decoded frame data . At
step S450 , the client computing system 200 determines
whether or not the user has made any inputs to the virtual
desktop through input devices of the client computing
system 200 (e . g . , mouse and / or keyboard) . Upon detecting
the user inputs (Yes at step S450) , the client computing
system 200 transmits the user inputs to the host computing
system 100 at step S460 , and the process returns to step
S430 . If there are no user inputs (No at step S450) , the
process returns to S440 . Steps S430 - S460 are carried out
until the user logs out of the VM hosting the virtual desktop .
[0031] FIG . 5 depicts a flow diagram of a hybrid approach
for encoding frames of the virtual desktop according to a
first embodiment . The steps illustrated in FIG . 5 are carried
out after a user logs into the VM supporting the virtual
desktop and a connection is established between the client
computing system 200 and the host computing system 100 ,
in particular the VM supporting the virtual desktop .
[0032] At step S510 , the VMX process 123 checks to see
if the virtual desktop has been updated . If the virtual desktop
has been updated , the VMX process 123 determines whether
or not the updated virtual desktop includes video or a 3D

image . If the determination at step S520 is negative (No at
step S520) , step S530 is executed , where the software video
encoder 152 executes encoding of the frame data of the
entire virtual desktop using the CPU 114 . Then , at step S550 ,
the UIR server 153 transmits the encoded frame data to the
client computing system 200 as a video stream , e . g . , H . 264
encoded stream .
[0033] If , on the other hand , the determination at step
S520 is positive (Yes at step S520) , step S540 is executed ,
where the VMX process 123 executes hardware encoding of
the frame data of the portions of the virtual desktop that
includes either video or a 3D image by issuing an API
command that instructs the video encoder 117 to encode the
frame data containing video data or 3D image data in the
video encoder 117 of the GPU 106 and return encoded frame
data . In addition , while the hardware encoding is being
carried out in the video encoder 117 of the GPU 106 , the
software video encoder 152 at step S540 executes encoding
of the frame data of the remaining portions of the virtual
desktop using the CPU 114 . Then , at step S550 , the UIR
server 153 transmits the software encoded frame data and
the hardware encoded frame data to the client computing
system 200 as two separate video streams . In one embodi
ment , the two video streams are encoded in the H . 264
format . In another embodiment , the two video streams are
encoded in different formats , e . g . , H . 264 format for the
software encoded video stream and H . 265 format for the
hardware encoded video stream .
[0034] FIG . 6 depicts a flow diagram of a hybrid approach
for encoding frames of the virtual desktop according to a
second embodiment . The steps illustrated in FIG . 6 are
carried out after a user logs into the VM supporting the
virtual desktop and a connection is established between the
client computing system 200 and the host computing system
100 , in particular the VM supporting the virtual desktop .
[0035] At step S610 , the VMX process 123 checks to see
if the virtual desktop has been updated . If the virtual desktop
has been updated , the VMX process 123 determines whether
or not the updated virtual desktop includes video or a 3D
image . If the determination at step S620 is negative (No at
step S620) , step S630 is executed , where the software video
encoder 152 executes encoding of the frame data of the
entire virtual desktop using the CPU 114 . Then , at step S650 ,
the UIR server 153 transmits the encoded frame data to the
client computing system 200 as a video stream , e . g . , H . 264
encoded stream .
[0036] If , on the other hand , the determination at step
S620 is positive (Yes at step S620) , step S625 is executed ,
where the VMX process 123 checks the value of a hardware
encoding flag . The hardware encoding flag is a user setting
that is communicated from the VDI client 220 to the UIR
server 153 , and is set to 0 or 1 . When the flag is set to 1 , the
hardware encoding is carried out on an all or nothing basis .
In other words , if the virtual desktop contains any video or
3D image , hardware encoding is carried out in the video
encoder 117 of the GPU 106 on the frame data of the entire
virtual desktop . On other hand , when the flag is set to 0 , the
hardware encoding is carried out in the video encoder 117 of
the GPU 106 only on the frame data of portions of the virtual
desktop that contains video or 3D image .
[0037] Thus , if the hardware encoding flag is set to 1 , the
VMX process 123 at step S626 executes hardware encoding
of the frame data of the entire virtual desktop . On the other
hand , if the hardware encoding flag is set to 0 , the VMX

US 2018 / 0373546 A1 Dec . 27 , 2018

process 123 at step S640 executes hardware encoding of the
frame data of the portions of the virtual desktop that includes
either video or a 3D image by issuing an API command that
instructs the video encoder 117 to encode the frame data
containing video data or 3D image data in the video encoder
117 of the GPU 106 and return encoded frame data . In
addition , while the hardware encoding is being carried out in
the video encoder 117 of the GPU 106 , the software video
encoder 152 at step S640 executes encoding of the frame
data of the remaining portions of the virtual desktop using
the CPU 114 . Then , at step S650 , the UIR server 153
transmits the hardware encoded frame data to the client
computing system 200 as one video stream and the software
encoded frame data , if any , as another video stream .
[0038] While the foregoing is directed to embodiments of
the present invention , other and further embodiments of the
invention may be devised without departing from the basic
scope thereof . For example , the categorization of tasks to be
handled through the software - based CPU encoding and the
hardware - based GPU encoding may not be made based on
whether or not the task involves the 3D images or video
images . Some of 3D images or video images may require
only a low frame rate transmission or the resolution of the
images may be sufficiently low . Also , in some of 3D images
or video images (e . g . , security camera images) , majority of
the images may be unchanged portion , and only a minor
portion of the images may changes every frame . In such a
case , the encoding of these types of 3D images or video
images may be carried out by the software - based CPU
encoding . That is , depending on the type of the 3D and video
images (e . g . , frame rate , resolution , play length , a ratio of
changed portion to unchanged portion , and so on) , one of the
software - based CPU encoding and the hardware - based GPU
encoding may be selected .
[0039] The various embodiments described herein may
employ various computer - implemented operations involv
ing data stored in computer systems . For example , these
operations may require physical manipulation of physical
quantities — usually , though not necessarily , these quantities
may take the form of electrical or magnetic signals , where
they or representations of them are capable of being stored ,
transferred , combined , compared , or otherwise manipulated .
Further , such manipulations are often referred to in terms ,
such as producing , identifying , determining , or comparing .
Any operations described herein that form part of one or
more embodiments of the invention may be useful machine
operations . In addition , one or more embodiments of the
invention also relate to a device or an apparatus for per
forming these operations . The apparatus may be specially
constructed for specific required purposes , or it may be a
general purpose computer selectively activated or config
ured by a computer program stored in the computer . In
particular , various general purpose machines may be used
with computer programs written in accordance with the
teachings herein , or it may be more convenient to construct
a more specialized apparatus to perform the required opera
tions .
10040] The various embodiments described herein may be
practiced with other computer system configurations includ
ing hand - held devices , microprocessor systems , micropro
cessor - based or programmable consumer electronics , mini
computers , mainframe computers , and the like .
[0041] One or more embodiments of the present invention
may be implemented as one or more computer programs or

as one or more computer program modules embodied in one
or more computer readable media . The term computer
readable medium refers to any data storage device that can
store data which can thereafter be input to a computer
system / computer readable media may be based on any
existing or subsequently developed technology for embody
ing computer programs in a manner that enables them to be
read by a computer . Examples of a computer readable
medium include a hard drive , network attached storage
(NAS) , read - only memory , random - access memory (e . g . , a
flash memory device) , a CD (Compact Discs) CD - ROM , a
CD - R , or a CD - RW , a DVD (Digital Versatile Disc) , a
magnetic tape , and other optical and non - optical data storage
devices . The computer readable medium can also be dis
tributed over a network coupled computer system so that the
computer readable code is stored and executed in a distrib
uted fashion .
10042] . Although one or more embodiments of the present
invention have been described in some detail for clarity of
understanding , it will be apparent that certain changes and
modifications may be made within the scope of the claims .
Accordingly , the described embodiments are to be consid
ered as illustrative and not restrictive , and the scope of the
claims is not to be limited to details given herein , but may
be modified within the scope and equivalents of the claims .
In the claims , elements and / or steps do not imply any
particular order of operation , unless explicitly stated in the
claims .
10043] Virtualization systems in accordance with the vari
ous embodiments may be implemented as hosted embodi
ments , non - hosted embodiments or as embodiments that
tend to blur distinctions between the two , are all envisioned .
Furthermore , various virtualization operations may be
wholly or partially implemented in hardware . For example ,
a hardware implementation may employ a look - up table for
modification of storage access requests to secure non - disk
data .
[0044] Many variations , modifications , additions , and
improvements are possible , regardless the degree of virtu
alization . The virtualization software can therefore include
components of a host , console , or guest operating system
that performs virtualization functions . Plural instances may
be provided for components , operations or structures
described herein as a single instance . Finally , boundaries
between various components , operations and data stores are
somewhat arbitrary , and particular operations are illustrated
in the context of specific illustrative configurations . Other
allocations of functionality are envisioned and may fall
within the scope of the invention (s) . In general , structures
and functionality presented as separate components in exem
plary configurations may be implemented as a combined
structure or component . Similarly , structures and function
ality presented as a single component may be implemented
as separate components . These and other variations , modi
fications , additions , and improvements may fall within the
scope of the appended claim (s) .

1 . A method of encoding frame data of one or more virtual
desktops in hardware and in software and transmitting the
encoded frame data to one or more client devices , said
method comprising :

determining that a first portion of the frame data contains
either a video or a 3D image ;

encoding the first portion of the frame data in hardware to
generate a first encoded frame data ;

US 2018 / 0373546 A1 Dec . 27 , 2018

during encoding of the first portion , encoding a second
portion of the frame data in software to generate a
second encoded frame data ; and

transmitting the first encoded frame data and the second
encoded frame data from a host computer of the one or
more virtual desktops to the one or more client devices
as separate data streams .

2 . The method of claim 1 , wherein the host computer
includes a central processing unit (CPU) and a graphics
processing unit (GPU) , and the first portion is encoded in
hardware by the GPU and the second portion is encoded by
software being executed by the CPU .

3 . The method of claim 2 , wherein the first and second
portions of the frame data are portions of a single virtual
desktop .

4 . (canceled)
5 . The method of claim 2 , wherein the video is decoded

in hardware by the GPU and the 3D image is rendered in
hardware by the GPU and the decoded video and the
rendered 3D image are encoded in hardware by the GPU to
generate the first encoded frame data .

6 . The method of claim 2 , wherein the first and second
portions of the frame data are portions of different virtual
desktops .

7 . The method of claim 6 , wherein the different virtual
desktops include a first virtual desktop and a second virtual
desktop , and the first portion includes frame data of the
entire first virtual desktop and the second portion includes
frame data of the entire second virtual desktop .

8 . The method of claim 1 , wherein the encoding of the
first and second portions is carried out using the same video
encoding format .

9 . The method of claim 1 , wherein the encoding of the
first portion is carried out using a first video encoding format
and the encoding of the second portion is carried out using
a second video encoding format that is different from the
first video encoding format .

10 . A non - transitory computer readable medium compris
ing instructions executable in a host computer in which
virtual desktops are running , wherein the instructions when
executed in the host computer cause the host computer to
perform a method of encoding frame data of one or more of
the virtual desktops in hardware and in software and trans
mitting the encoded frame data to one or more client
devices , said method comprising :

determining that a first portion of the frame data contains
either a video or a 3D image ;

encoding the first portion of the frame data in hardware to
generate a first encoded frame data ;

during encoding of the first portion , encoding a second
portion of the frame data in software to generate a
second encoded frame data ; and

transmitting the first encoded frame data and the second
encoded frame data from the host computer to the one
or more client devices as separate video streams .

11 . The non - transitory computer readable medium of
claim 10 , wherein the host computer includes a central
processing unit (CPU) and a graphics processing unit

(GPU) , and the first portion is encoded in hardware by the
GPU and the second portion is encoded by software being
executed by the CPU .

12 . The non - transitory computer readable medium of
claim 11 , wherein the first and second portions of the frame
data are portions of a single virtual desktop .

13 . (canceled)
14 . The non - transitory computer readable medium of

claim 11 , wherein the video is decoded in hardware by the
GPU and the 3D image is rendered in hardware by the GPU
and the decoded video and the rendered 3D image are
encoded in hardware by the GPU to generate the first
encoded frame data .

15 . The non - transitory computer readable medium of
claim 11 , wherein the first and second portions of the frame
data are portions of different virtual desktops .

16 . The non - transitory computer readable medium of
claim 15 , wherein the different virtual desktops include a
first virtual desktop and a second virtual desktop , and the
first portion includes frame data of the entire first virtual
desktop and the second portion includes frame data of the
entire second virtual desktop .

17 . The non - transitory computer readable medium of
claim 10 , wherein the encoding of the first and second
portions is carried out using the same video encoding
format .

18 . The non - transitory computer readable medium of
claim 10 , wherein the encoding of the first portion is carried
out using a first video encoding format and the encoding of
the second portion is carried out using a second video
encoding format that is different from the first video encod
ing format .

19 . A computer system connected to a plurality of client
devices over a network , the computer system comprising :

a central processing unit (CPU) programmed to generate
frame data of one or more virtual desktops of one or
more of the client devices ;

a graphics processing unit (GPU) configured to encode
portions of the frame data ; and

a network interface controller (NIC) ,
wherein the CPU is programmed to determine that a first

portion of the frame data contains either a video or a 3D
image , to instruct the GPU to encode the first portion of
the frame data in hardware to generate a first encoded
frame data , to encode a second portion of the frame
data in software to generate a second encoded frame
data , and to instruct the NIC to transmit the first
encoded frame data and the second encoded frame data
to the one or more client devices as separate video
streams .

20 . The computer system of claim 19 , wherein the first
and second portions of the frame data are portions of a single
virtual desktop , and the first portion of the frame data
corresponds to a portion of the virtual desktop that contains
either video that is decoded in hardware by the GPU or a 3D
image that is rendered in hardware by the GPU and the
decoded video or the rendered 3D image is encoded in
hardware by the GPU to generate the first encoded frame
data .

* * * *

