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COMMUNICATION SYSTEMS CAPABLE OF
RECEIVING AND PROCESSING DATA
USING UNEQUALLY SPACED AND
UNIFORM QUADRATURE AMPLITUDE
MODULATED 64 POINT SYMBOL
CONSTELLATIONS
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STATEMENT OF FEDERALLY SPONSORED
RESEARCH

This invention was made with Government support under
contract NAS7-03001 awarded by NASA. The Government
has certain rights in this invention.

BACKGROUND

The present invention generally relates to bandwidth
and/or power efficient digital transmission systems and more
specifically to the use of unequally spaced constellations
having increased capacity.

The term “constellation” is used to describe the possible
symbols that can be transmitted by a typical digital com-
munication system. A receiver attempts to detect the sym-
bols that were transmitted by mapping a received signal to
the constellation. The minimum distance (d,,,,,) between
constellation points is indicative of the capacity of a con-
stellation at high signal-to-noise ratios (SNRs). Therefore,
constellations used in many communication systems are
designed to maximize d,,,,. Increasing the dimensionality of
a constellation allows larger minimum distance for constant
constellation energy per dimension. Therefore, a number of
multi-dimensional constellations with good minimum dis-
tance properties have been designed.

Communication systems have a theoretical maximum
capacity, which is known as the Shannon limit. Many
communication systems attempt to use codes to increase the
capacity of a communication channel. Significant coding
gains have been achieved using coding techniques such as
turbo codes and LDPC codes. The coding gains achievable
using any coding technique are limited by the constellation
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of the communication system. The Shannon limit can be
thought of as being based upon a theoretical constellation
known as a Gaussian distribution, which is an infinite
constellation where symbols at the center of the constella-
tion are transmitted more frequently than symbols at the
edge of the constellation. Practical constellations are finite
and transmit symbols with equal likelihoods, and therefore
have capacities that are less than the Gaussian capacity. The
capacity of a constellation is thought to represent a limit on
the gains that can be achieved using coding when using that
constellation.

Prior attempts have been made to develop unequally
spaced constellations. For example, a system has been
proposed that uses unequally spaced constellations that are
optimized to minimize the error rate of an uncoded system.
Another proposed system uses a constellation with
equiprobable but unequally spaced symbols in an attempts to
mimic a Gaussian distribution.

Other approaches increases the dimensionality of a con-
stellation or select a new symbol to be transmitted taking
into consideration previously transmitted symbols. How-
ever, these constellation were still designed based on a
minimum distance criteria.

SUMMARY OF THE INVENTION

Systems and methods are described for constructing a
modulation such that the constrained capacity between a
transmitter and a receiver approaches the Gaussian channel
capacity limit first described by Shannon [ref Shannon
1948]. Traditional communications systems employ modu-
lations that leave a significant gap to Shannon Gaussian
capacity. The modulations of the present invention reduce,
and in some cases, nearly eliminate this gap. The invention
does not require specially designed coding mechanisms that
tend to transmit some points of a modulation more fre-
quently than others but rather provides a method for locating
points (in a one or multiple dimensional space) in order to
maximize capacity between the input and output of a bit or
symbol mapper and demapper respectively. Practical appli-
cation of the method allows systems to transmit data at a
given rate for less power or to transmit data at a higher rate
for the same amount of power.

One embodiment of the invention includes a transmitter
configured to transmit signals to a receiver via a communi-
cation channel, wherein the transmitter, includes a coder
configured to receive user bits and output encoded bits at an
expanded output encoded bit rate, a mapper configured to
map encoded bits to symbols in a symbol constellation, a
modulator configured to generate a signal for transmission
via the communication channel using symbols generated by
the mapper. In addition, the receiver includes a demodulator
configured to demodulate the received signal via the com-
munication channel, a demapper configured to estimate
likelihoods from the demodulated signal, a decoder that is
configured to estimate decoded bits from the likelihoods
generated by the demapper. Furthermore, the symbol con-
stellation is a capacity optimized geometrically spaced sym-
bol constellation that provides a given capacity at a reduced
signal-to-noise ratio compared to a signal constellation that
maximizes d,,,,,,.

A further embodiment of the invention includes encoding
the bits of user information using a coding scheme, mapping
the encoded bits of user information to a symbol constella-
tion, wherein the symbol constellation is a capacity opti-
mized geometrically spaced symbol constellation that pro-
vides a given capacity at a reduced signal-to-noise ratio
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compared to a signal constellation that maximizes d,,;,,
modulating the symbols in accordance with a modulation
scheme, transmitting the modulated signal via the commu-
nication channel, receiving a modulated signal, demodulat-
ing the modulated signal in accordance with the modulation
scheme, demapping the demodulated signal using the geo-
metrically shaped signal constellation to produce likeli-
hoods, and decoding the likelihoods to obtain an estimate of
the decoded bits.

Another embodiment of the invention includes selecting
an appropriate constellation size and a desired capacity per
dimension, estimating an initial SNR at which the system is
likely to operate, and iteratively optimizing the location of
the points of the constellation to maximize a capacity
measure until a predetermined improvement in the SNR
performance of the constellation relative to a constellation
that maximizes d,,,,, has been achieved.

A still further embodiment of the invention includes
selecting an appropriate constellation size and a desired
capacity per dimension, estimating an initial SNR at which
the system is likely to operate, and iteratively optimizing the
location of the points of the constellation to maximize a
capacity measure until a predetermined improvement in the
SNR performance of the constellation relative to a constel-
lation that maximizes d,,,,, has been achieved.

Still another embodiment of the invention includes select-
ing an appropriate constellation size and a desired SNR, and
optimizing the location of the points of the constellation to
maximize a capacity measure of the constellation.

A yet further embodiment of the invention includes
obtaining a geometrically shaped PAM constellation with a
constellation size that is the square root of said given
constellation size, where the geometrically shaped PAM
constellation has a capacity greater than that of a PAM
constellation that maximizes d,,,,, creating an orthogonal-
ized PAM constellation using the geometrically shaped PAM
constellation, and combining the geometrically shaped PAM
constellation and the orthogonalized PAM constellation to
produce a geometrically shaped QAM constellation.

Another further embodiment of the invention includes
transmitting information over a channel using a geometri-
cally shaped symbol constellation, and modifying the loca-
tion of points within the geometrically shaped symbol
constellation to change the target user data rate.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a conceptual illustration of a communication
system in accordance with an embodiment of the invention.

FIG. 2 is a conceptual illustration of a transmitter in
accordance with an embodiment of the invention.

FIG. 3 is a conceptual illustration of a receiver in accor-
dance with an embodiment of the invention.

FIG. 4a is a conceptual illustration of the joint capacity of
a channel.

FIG. 4b is a conceptual illustration of the parallel decod-
ing capacity of a channel.

FIG. 5 is a flow chart showing a process for obtaining a
constellation optimized for capacity for use in a communi-
cation system having a fixed code rate and modulation
scheme in accordance with an embodiment of the invention.

FIG. 6a is a chart showing a comparison of Gaussian
capacity and PD capacity for traditional PAM-2, 4, 8, 16, 32.

FIG. 65 is a chart showing a comparison between Gauss-
ian capacity and joint capacity for traditional PAM-2, 4, 8,
16, 32.
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FIG. 7 is a chart showing the SNR gap to Gaussian
capacity for the PD capacity and joint capacity of traditional
PAM-2, 4, 8, 16, 32 constellations.

FIG. 8a is a chart comparing the SNR gap to Gaussian
capacity of the PD capacity for traditional and optimized
PAM-2, 4, 8, 16, 32 constellations.

FIG. 856 is a chart comparing the SNR gap to Gaussian
capacity of the joint capacity for traditional and optimized
PAM-2, 4, 8, 16, 32 constellations.

FIG. 9 is a chart showing Frame Error Rate performance
of traditional and PD capacity optimized PAM-32 constel-
lations in simulations involving several different length
LDPC codes.

FIGS. 10a-104 are locus plots showing the location of
constellation points of a PAM-4 constellation optimized for
PD capacity and joint capacity versus user bit rate per
dimension and versus SNR.

FIGS. 11a and 115 are design tables of PD capacity and
joint capacity optimized PAM-4 constellations in accor-
dance with embodiments of the invention.

FIGS. 12a-12d are locus plots showing the location of
constellation points of a PAM-8 constellation optimized for
PD capacity and joint capacity versus user bit rate per
dimension and versus SNR.

FIGS. 13a and 135 are design tables of PD capacity and
joint capacity optimized PAM-8 constellations in accor-
dance with embodiments of the invention.

FIGS. 14a-14d are locus plots showing the location of
constellation points of a PAM-16 constellation optimized for
PD capacity and joint capacity versus user bit rate per
dimension and versus SNR.

FIGS. 154 and 155 are design tables of PD capacity and
joint capacity optimized PAM-16 constellations in accor-
dance with embodiments of the invention.

FIGS. 16a-16d are locus plots showing the location of
constellation points of a PAM-32 constellation optimized for
PD capacity and joint capacity versus user bit rate per
dimension and versus SNR.

FIGS. 17a and 175 are design tables of PD capacity and
joint capacity optimized PAM-32 constellations in accor-
dance with embodiments of the invention.

FIG. 18 is a chart showing the SNR gap to Gaussian
capacity for traditional and capacity optimized PSK con-
stellations.

FIG. 19 is a chart showing the location of constellation
points of PD capacity optimized PSK-32 constellations.

FIG. 20 is a series of PSK-32 constellations optimized for
PD capacity at different SNRs in accordance with embodi-
ments of the invention.

FIG. 21 illustrates a QAM-64 constructed from orthogo-
nal Cartesian product of two PD optimized PAM-8 constel-
lations in accordance with an embodiment of the invention.

FIGS. 22a and 225 are locus plots showing the location of
constellation points of a PAM-4 constellation optimized for
PD capacity over a fading channel versus user bit rate per
dimension and versus SNR.

FIGS. 23a and 235 are locus plots showing the location of
constellation points of a PAM-8 constellation optimized for
PD capacity over a fading channel versus user bit rate per
dimension and versus SNR.

FIGS. 24a and 245 are locus plots showing the location of
constellation points of a PAM-16 constellation optimized for
PD capacity over a fading channel versus user bit rate per
dimension and versus SNR.

DETAILED DESCRIPTION OF THE
INVENTION

Turning now to the drawings, communication systems in
accordance with embodiments of the invention are described
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that use signal constellations, which have unequally spaced
(i.e. ‘geometrically’ shaped) points. In several embodiments,
the locations of geometrically shaped points are designed to
provide a given capacity measure at a reduced signal-to-
noise ratio (SNR) compared to the SNR required by a
constellation that maximizes d,,;,. In many embodiments,
the constellations are selected to provide increased capacity
at a predetermined range of channel signal-to-noise ratios
(SNR). Capacity measures that can be used in the selection
of the location of constellation points include, but are not
limited to, parallel decode (PD) capacity and joint capacity.

In many embodiments, the communication systems utilize
capacity approaching codes including, but not limited to,
LDPC and Turbo codes. As is discussed further below, direct
optimization of the constellation points of a communication
system utilizing a capacity approaching channel code, can
yield different constellations depending on the SNR for
which they are optimized. Therefore, the same constellation
is unlikely to achieve the same coding gains applied across
all code rates; that is, the same constellation will not enable
the best possible performance across all rates. In many
instances, a constellation at one code rate can achieve gains
that cannot be achieved at another code rate. Processes for
selecting capacity optimized constellations to achieve
increased coding gains based upon a specific coding rate in
accordance with embodiments of the invention are described
below. In a number of embodiments, the communication
systems can adapt location of points in a constellation in
response to channel conditions, changes in code rate and/or
to change the target user data rate.

Communication Systems

A communication system in accordance with an embodi-
ment of the invention is shown in FIG. 1. The communica-
tion system 10 includes a source 12 that provides user bits
to a transmitter 14. The transmitter transmits symbols over
a channel to a receiver 16 using a predetermined modulation
scheme. The receiver uses knowledge of the modulation
scheme, to decode the signal received from the transmitter.
The decoded bits are provided to a sink device that is
connected to the receiver.

A transmitter in accordance with an embodiment of the
invention is shown in FIG. 2. The transmitter 14 includes a
coder 20 that receives user bits from a source and encodes
the bits in accordance with a predetermined coding scheme.
In a number of embodiments, a capacity approaching code
such as a turbo code or a LDPC code is used. In other
embodiments, other coding schemes can be used to provid-
ing a coding gain within the communication system. A
mapper 22 is connected to the coder. The mapper maps the
bits output by the coder to a symbol within a geometrically
distributed signal constellation stored within the mapper.
The mapper provides the symbols to a modulator 24, which
modulates the symbols for transmission via the channel.

A receiver in accordance with an embodiment of the
invention is illustrated in FIG. 3. The receiver 16 includes a
demodulator 30 that demodulates a signal received via the
channel to obtain symbol or bit likelihoods. The demapper
uses knowledge of the geometrically shaped symbol con-
stellation used by the transmitter to determine these likeli-
hoods. The demapper 32 provides the likelihoods to a
decoder 34 that decodes the encoded bit stream to provide a
sequence of received bits to a sink.

Geometrically Shaped Constellations

Transmitters and receivers in accordance with embodi-
ments of the invention utilize geometrically shaped symbol
constellations. In several embodiments, a geometrically
shaped symbol constellation is used that optimizes the
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capacity of the constellation. Various geometrically shaped
symbol constellations that can be used in accordance with
embodiments of the invention, techniques for deriving geo-
metrically shaped symbol constellations are described
below.
Selection of a Geometrically Shaped Constellation

Selection of a geometrically shaped constellation for use
in a communication system in accordance with an embodi-
ment of the invention can depend upon a variety of factors
including whether the code rate is fixed. In many embodi-
ments, a geometrically shaped constellation is used to
replace a conventional constellation (i.e. a constellation
maximized for d,,,) in the mapper of transmitters and the
demapper of receivers within a communication system.
Upgrading a communication system involves selection of a
constellation and in many instances the upgrade can be
achieved via a simple firmware upgrade. In other embodi-
ments, a geometrically shaped constellation is selected in
conjunction with a code rate to meet specific performance
requirements, which can for example include such factors as
a specified bit rate, a maximum transmit power. Processes
for selecting a geometric constellation when upgrading
existing communication systems and when designing new
communication systems are discussed further below.
Upgrading Existing Communication Systems

A geometrically shaped constellation that provides a
capacity, which is greater than the capacity of a constellation
maximized for d,,,,,, can be used in place of a conventional
constellation in a communication system in accordance with
embodiments of the invention. In many instances, the sub-
stitution of the geometrically shaped constellation can be
achieved by a firmware or software upgrade of the trans-
mitters and receivers within the communication system. Not
all geometrically shaped constellations have greater capacity
than that of a constellation maximized for d,,, One
approach to selecting a geometrically shaped constellation
having a greater capacity than that of a constellation maxi-
mized for d,,, is to optimize the shape of the constellation
with respect to a measure of the capacity of the constellation
for a given SNR. Capacity measures that can be used in the
optimization process can include, but are not limited to, joint
capacity or parallel decoding capacity.
Joint Capacity and Parallel Decoding Capacity

A constellation can be parameterized by the total number
of constellation points, M, and the number of real dimen-
sions, N ... In systems where there are no belief propagation
iterations between the decoder and the constellation demap-
per, the constellation demapper can be thought of as part of
the channel. A diagram conceptually illustrating the portions
of a communication system that can be considered part of
the channel for the purpose of determining PD capacity is
shown in FIG. 4a. The portions of the communication
system that are considered part of the channel are indicated
by the ghost line 40. The capacity of the channel defined as
such is the parallel decoding (PD) capacity, given by:

-1

Crp =Y 1(Xi3Y)

i=0

where X, is the ith bit of the I-bits transmitted symbol, and
Y is the received symbol, and I(A;B) denotes the mutual
information between random variables A and B.
Expressed another way, the PD capacity of a channel can
be viewed in terms of the mutual information between the
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output bits of the encoder (such as an LDPC encoder) at the
transmitter and the likelihoods computed by the demapper at
the receiver. The PD capacity is influenced by both the
placement of points within the constellation and by the
labeling assignments.

With belief propagation iterations between the demapper
and the decoder, the demapper can no longer be viewed as
part of the channel, and the joint capacity of the constellation
becomes the tightest known bound on the system perfor-
mance. A diagram conceptually illustrating the portions of a
communication system that are considered part of the chan-
nel for the purpose of determining the joint capacity of a
constellation is shown in FIG. 4b. The portions of the
communication system that are considered part of the chan-
nel are indicated by the ghost line 42. The joint capacity of
the channel is given by:

Cropvr=IX:Y)

Joint capacity is a description of the achievable capacity
between the input of the mapper on the transmit side of the
link and the output of the channel (including for example
AWGN and Fading channels). Practical systems must often
‘demap’ channel observations prior to decoding. In general,
the step causes some loss of capacity. In fact it can be proven
that C;=C,,n7=<Cpp. That is, C,,7 upper bounds the
capacity achievable by Cpp,. The methods of the present
invention are motivated by considering the fact that practical
limits to a given communication system capacity are limited
by C o and Cpp. In several embodiments of the inven-
tion, geometrically shaped constellations are selected that
maximize these measures.

Selecting a Constellation Having an Optimal Capacity

Geometrically shaped constellations in accordance with
embodiments of the invention can be designed to optimize
capacity measures including, but not limited to PD capacity
or joint capacity. A process for selecting the points, and
potentially the labeling, of a geometrically shaped constel-
lation for use in a communication system having a fixed
code rate in accordance with an embodiment of the inven-
tion is shown in FIG. 5. The process 50 commences with the
selection (52) of an appropriate constellation size M and a
desired capacity per dimension 7). In the illustrated embodi-
ment, the process involves a check (52) to ensure that the
constellation size can support the desired capacity. In the
event that the constellation size could support the desired
capacity, then the process iteratively optimizes the M-ary
constellation for the specified capacity. Optimizing a con-
stellation for a specified capacity often involves an iterative
process, because the optimal constellation depends upon the
SNR at which the communication system operates. The SNR
for the optimal constellation to give a required capacity is
not known a priori. Throughout the description of the
present invention SNR is defined as the ratio of the average
constellation energy per dimension to the average noise
energy per dimension. In most cases the capacity can be set
to equal the target user bit rate per symbol per dimension. In
some cases adding some implementation margin on top of
the target user bit rate could result in a practical system that
can provide the required user rate at a lower rate. The margin
is code dependent. The following procedure could be used to
determine the target capacity that includes some margin on
top of the user rate. First, the code (e.g. LDPC or Turbo) can
be simulated in conjunction with a conventional equally
spaced constellation. Second, from the simulation results the
actual SNR of operation at the required error rate can be
found. Third, the capacity of the conventional constellation
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at that SNR can be computed. Finally, a geometrically
shaped constellation can be optimized for that capacity.

In the illustrated embodiment, the iterative optimization
loop involves selecting an initial estimate of the SNR at
which the system is likely to operate (i.e. SNR,,). In several
embodiments the initial estimate is the SNR required using
a conventional constellation. In other embodiments, other
techniques can be used for selecting the initial SNR. An
M-ary constellation is then obtained by optimizing (56) the
constellation to maximize a selected capacity measure at the
initial SNR,;, estimate. Various techniques for obtaining an
optimized constellation for a given SNR estimate are dis-
cussed below.

The SNR at which the optimized M-ary constellation
provides the desired capacity per dimension n (SNR,,,) is
determined (57). A determination (58) is made as to whether
the SNR,,, and SNR,, have converged. In the illustrated
embodiment convergence is indicated by SNR_,, equaling
SNR,,.. In a number of embodiments, convergence can be
determined based upon the difference between SNR_,,, and
SNR,,, being less than a predetermined threshold. When
SNR,,,, and SNR,, have not converged, the process performs
another iteration selecting SNR_,,, as the new SNR, (55).
When SNR_,, and SNR,, have converged, the capacity
measure of the constellation has been optimized. As is
explained in more detail below, capacity optimized constel-
lation at low SNRs are geometrically shaped constellations
that can achieve significantly higher performance gains
(measured as reduction in minimum required SNR) than
constellations that maximize d,,,,,.

The process illustrated in FIG. 5 can maximize PD
capacity or joint capacity of an M-ary constellation for a
given SNR. Although the process illustrated in FIG. 5 shows
selecting an M-ary constellation optimized for capacity, a
similar process could be used that terminates upon genera-
tion of an M-ary constellation where the SNR gap to
Gaussian capacity at a given capacity is a predetermined
margin lower than the SNR gap of a conventional constel-
lation, for example 0.5 db. Alternatively, other processes that
identify M-ary constellations having capacity greater than
the capacity of a conventional constellation can be used in
accordance with embodiments of the invention. A geometri-
cally shaped constellation in accordance with embodiments
of the invention can achieve greater capacity than the
capacity of a constellation that maximizes d,,, without
having the optimal capacity for the SNR range within which
the communication system operates.

We note that constellations designed to maximize joint
capacity may also be particularly well suited to codes with
symbols over GF(q), or with multi-stage decoding. Con-
versely constellations optimized for PD capacity could be
better suited to the more common case of codes with
symbols over GF(2).

Optimizing the Capacity of an M-Ary Constellation at a
Given SNR

Processes for obtaining a capacity optimized constellation
often involve determining the optimum location for the
points of an M-ary constellation at a given SNR. An opti-
mization process, such as the optimization process 56 shown
in FIG. 5, typically involves unconstrained or constrained
non-linear optimization. Possible objective functions to be
maximized are the Joint or PD capacity functions. These
functions may be targeted to channels including but not
limited to Additive White Gaussian Noise (AWGN) or
Rayleigh fading channels. The optimization process gives
the location of each constellation point identified by its
symbol labeling. In the case where the objective is joint
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capacity, point bit labelings are irrelevant meaning that
changing the bit labelings doesn’t change the joint capacity
as long as the set of point locations remains unchanged.

The optimization process typically finds the constellation
that gives the largest PD capacity or joint capacity at a given
SNR. The optimization process itself often involves an
iterative numerical process that among other things consid-
ers several constellations and selects the constellation that
gives the highest capacity at a given SNR. In other embodi-
ments, the constellation that requires the least SNR to give
a required PD capacity or joint capacity can also be found.
This requires running the optimization process iteratively as
shown in FIG. 5.

Optimization constraints on the constellation point loca-
tions may include, but are not limited to, lower and upper
bounds on point location, peak to average power of the
resulting constellation, and zero mean in the resulting con-
stellation. It can be easily shown that a globally optimal
constellation will have zero mean (no DC component).
Explicit inclusion of a zero mean constraint helps the
optimization routine to converge more rapidly. Except for
cases where exhaustive search of all combinations of point
locations and labelings is possible it will not necessarily
always be the case that solutions are provably globally
optimal. In cases where exhaustive search is possible, the
solution provided by the non-linear optimizer is in fact
globally optimal.

The processes described above provide examples of the
manner in which a geometrically shaped constellation hav-
ing an increased capacity relative to a conventional capacity
can be obtained for use in a communication system having
a fixed code rate and modulation scheme. The actual gains
achievable using constellations that are optimized for capac-
ity compared to conventional constellations that maximize
d,,, are considered below.

Gains Achieved by Optimized Geometrically Spaced Con-
stellations

The ultimate theoretical capacity achievable by any com-
munication method is thought to be the Gaussian capacity,
C which is defined as:

Cs=Y2log,(1+SNR)

Where signal-to-noise (SNR) is the ratio of expected
signal power to expected noise power. The gap that remains
between the capacity of a constellation and C; can be
considered a measure of the quality of a given constellation
design.

The gap in capacity between a conventional modulation
scheme in combination with a theoretically optimal coder
can be observed with reference to FIGS. 6a and 65. FIG. 6a
includes a chart 60 showing a comparison between Gaussian
capacity and the PD capacity of conventional PAM-2, 4, 8,
16, and 32 constellations that maximize d,,,,,, Gaps 62 exist
between the plot of Gaussian capacity and the PD capacity
of the various PAM constellations. FIG. 65 includes a chart
64 showing a comparison between Gaussian capacity and
the joint capacity of conventional PAM-2, 4, 8, 16, and 32
constellations that maximize d,,,,,, Gaps 66 exist between the
plot of Gaussian capacity and the joint capacity of the
various PAM constellations. These gaps in capacity repre-
sent the extent to which conventional PAM constellations
fall short of obtaining the ultimate theoretical capacity i.e.
the Gaussian capacity.

In order to gain a better view of the differences between
the curves shown in FIGS. 64 and 65 at points close to the
Gaussian capacity, the SNR gap to Gaussian capacity for
different values of capacity for each constellation are plotted
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in FIG. 7. It is interesting to note from the chart 70 in FIG.
7 that (unlike the joint capacity) at the same SNR, the PD
capacity does not necessarily increase with the number of
constellation points. As is discussed further below, this is not
the case with PAM constellations optimized for PD capacity.

FIGS. 8a and 85 summarize performance of constella-
tions for PAM-4, 8, 16, and 32 optimized for PD capacity
and joint capacity (it should be noted that BPSK is the
optimal PAM-2 constellation at all code rates). The constel-
lations are optimized for PD capacity and joint capacity for
different target user bits per dimension (i.e. code rates). The
optimized constellations are different depending on the
target user bits per dimension, and also depending on
whether they have been designed to maximize the PD
capacity or the joint capacity. All the PD optimized PAM
constellations are labeled using a gray labeling which is not
always the binary reflective gray labeling. It should be noted
that not all gray labels achieve the maximum possible PD
capacity even given the freedom to place the constellation
points anywhere on the real line. FIG. 8a shows the SNR gap
for each constellation optimized for PD capacity. FIG. 85
shows the SNR gap to Gaussian capacity for each constel-
lation optimized for joint capacity. Again, it should be
emphasized that each ‘+’ on the plot represents a different
constellation.

Referring to FIG. 8a, the coding gain achieved using a
constellation optimized for PD capacity can be appreciated
by comparing the SNR gap at a user bit rate per dimension
of 2.5 bits for PAM-32. A user bit rate per dimension of 2.5
bits for a system transmitting 5 bits per symbol constitutes
a code rate of 1/2. At that code rate the constellation
optimized for PD capacity provides an additional coding
gain of approximately 1.5 dB when compared to the con-
ventional PAM-32 constellation.

The SNR gains that can be achieved using constellations
that are optimized for PD capacity can be verified through
simulation. The results of a simulation conducted using a
rate 1/2 LDPC code in conjunction with a conventional
PAM-32 constellation and in conjunction with a PAM-32
constellation optimized for PD capacity are illustrated in
FIG. 9. A chart 90 includes plots of Frame Error Rate
performance of the different constellations with respect to
SNR and using different length codes (i.e. k=4,096 and
k=16,384). Irrespective of the code that is used, the constel-
lation optimized for PD capacity achieves a gain of approxi-
mately 1.3 dB, which closely approaches the gain predicted
from FIG. 8a.

Capacity Optimized Pam Constellations

Using the processes outlined above, locus plots of PAM
constellations optimized for capacity can be generated that
show the location of points within PAM constellations
versus SNR. Locus plots of PAM-4, 8, 16, and 32 constel-
lations optimized for PD capacity and joint capacity and
corresponding design tables at various typical user bit rates
per dimension are illustrated in FIGS. 104-176. The locus
plots and design tables show PAM-4, 8, 16, 32 constellation
point locations and labelings from low to high SNR corre-
sponding to a range of low to high spectral efficiency.

In FIG. 10a, a locus plot 100 shows the location of the
points of PAM-4 constellations optimized for Joint capacity
plotted against achieved capacity. A similar locus plot 105
showing the location of the points of Joint capacity opti-
mized PAM-4 constellations plotted against SNR is included
in FIG. 105. In FIG. 10c. the location of points for PAM-4
optimized for PD capacity is plotted against achievable
capacity and in FIG. 10d the location of points for PAM-4
for PD capacity is plotted against SNR. At low SNRs, the PD
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capacity optimized PAM-4 constellations have only 2
unique points, while the Joint optimized constellations have
3. As SNR is increased, each optimization eventually pro-
vides 4 unique points. This phenomenon is explicitly
described in FIG. 11a and FIG. 115 where vertical slices of
FIGS. 10ab and 10¢d are captured in tables describing some
PAM-4 constellations designs of interest. The SNR slices
selected represent designs that achieve capacities={0.5,
0.75, 1.0, 1.25, 1.5} bits per symbol (bps). Given that
PAM-4 can provide at most log,(4)=2 bps, these design
points represent systems with information code rates R={1/
4, 3/8, 1/2, 5/8, 3/4} respectively.

FIGS. 12ab and 12c¢d present locus plots of PD capacity
and joint capacity optimized PAM-8 constellation points
versus achievable capacity and SNR. FIGS. 134 and 1354
provide slices from these plots at SNRs corresponding to
achievable capacities n={0.5, 1.0, 1.5,2.0, 2.5} bps. Each of
these slices correspond to systems with code rate R=m
bps/log,(8), resulting in R={1/6, 1/3, 1/2, 2/3, 5/6}. As an
example of the relative performance of the constellations in
these tables, consider FIG. 135 which shows a PD capacity
optimized PAM-8 constellation optimized for SNR=9.00
dB, or 1.5 bps. We next examine the plot provided in FIG.
8a and see that the gap of the optimized constellation to the
ultimate, Gaussian, capacity (CG) is approximately 0.5 dB.
At the same spectral efficiency, the gap of the traditional
PAM-8 constellation is approximately 1.0 dB. The advan-
tage of the optimized constellation is 0.5 dB for the same
rate (in this case R=1/2). This gain can be obtained by only
changing the mapper and demapper in the communication
system and leaving all other blocks the same.

Similar information is presented in FIGS. 14abcd, and
15ab which provide loci plots and design tables for PAM-16
PD capacity and joint capacity optimized constellations.
Likewise FIGS. 16abcd, 17ab provide loci plots and design
tables for PAM-32 PD capacity and joint capacity optimized
constellations.

Capacity Optimized PSK Constellations

Traditional phase shift keyed (PSK) constellations are
already quite optimal. This can be seen in the chart 180
comparing the SNR gaps of tradition PSK with capacity
optimized PSK constellations shown in FIG. 18 where the
gap between PD capacity and Gaussian capacity is plotted
for traditional PSK-4, 8, 16, 32 and for PD capacity opti-
mized PSK-4, 8, 16, 32.

The locus plot of PD optimized PSK-32 points across
SNR is shown in FIG. 19, which actually characterizes all
PSKSs with spectral efficiency n=<5. This can be seen in FIG.
20. Note that at low SNR (0.4 dB) the optimal PSK-32
design is the same as traditional PSK-4, at SNR=8.4 dB
optimal PSK-32 is the same as traditional PSK-8, at
SNR=14.8 dB optimal PSK-32 is the same as traditional
PSK-16, and finally at SNRs greater than 20.4 dB optimized
PSK-32 is the same as traditional PSK-32. There are SNRs
between these discrete points (for instance SNR=2 and 15.
dB) for which optimized PSK-32 provides superior PD
capacity when compared to traditional PSK constellations.

We note now that the locus of points for PD optimized
PSK-32 in FIG. 19 in conjunction with the gap to Gaussian
capacity curve for optimized PSK-32 in FIG. 18 implies a
potential design methodology. Specifically, the designer
could achieve performance equivalent or better than that
enabled by traditional PSK-4, 8, 16 by using only the
optimized PSK-32 in conjunction with a single tuning
parameter that controlled where the constellation points
should be selected from on the locus of FIG. 19. Such an
approach would couple a highly rate adaptive channel code

5

10

15

20

25

30

35

40

45

50

55

60

65

12

that could vary its rate, for instance, rate 4/5 to achieve and
overall (code plus optimized PSK-32 modulation) spectral
efficiency of 4 bits per symbol, down to 1/5 to achieve an
overall spectral efficiency of 1 bit per symbol. Such an
adaptive modulation and coding system could essentially
perform on the optimal continuum represented by the right-
most contour of FIG. 18.

Adaptive Rate Design

In the previous example spectrally adaptive use of PSK-
32 was described. Techniques similar to this can be applied
for other capacity optimized constellations across the link
between a transmitter and receiver. For instance, in the case
where a system implements quality of service it is possible
to instruct a transmitter to increase or decrease spectral
efficiency on demand. In the context of the current invention
a capacity optimized constellation designed precisely for the
target spectral efficiency can be loaded into the transmit
mapper in conjunction with a code rate selection that meets
the end user rate goal. When such a modulation/code rate
change occurred a message could propagated to the receiver
so that the receiver, in anticipation of the change, could
select a demapper/decoder configuration in order to match
the new transmit-side configuration.

Conversely, the receiver could implement a quality of
performance based optimized constellation/code rate pair
control mechanism. Such an approach would include some
form of receiver quality measure. This could be the receiv-
er’s estimate of SNR or bit error rate. Take for example the
case where bit error rate was above some acceptable thresh-
old. In this case, via a backchannel, the receiver could
request that the transmitter lower the spectral efficiency of
the link by swapping to an alternate capacity optimized
constellation/code rate pair in the coder and mapper modules
and then signaling the receiver to swap in the complemen-
tary pairing in the demapper/decoder modules.
Geometrically Shaped QAM Constellations

Quadrature amplitude modulation (QAM) constellations
can be constructed by orthogonalizing PAM constellations
into QAM inphase and quadrature components. Constella-
tions constructed in this way can be attractive in many
applications because they have low-complexity demappers.

In FIG. 21 we provide an example of a Quadrature
Amplitude Modulation constellation constructed from a
Pulse Amplitude Modulation constellation. The illustrated
embodiment was constructed using a PAM-8 constellation
optimized for PD capacity at user bit rate per dimension of
1.5 bits (corresponds to an SNR of 9.0 dB) (see FIG. 135).
The label-point pairs in this PAM-8 constellation are {(000,
-1.72), (001, -0.81), (010, 1.72), (011, -0.62), (100, 0.62),
(101, 0.02), (110, 0.81), (111, =0.02)}. Examination of FIG.
21 shows that the QAM constellation construction is
achieved by replicating a complete set of PAM-8 points in
the quadrature dimension for each of the 8 PAM-8 points in
the in-phase dimension. Labeling is achieved by assigning
the PAM-8 labels to the LSB range on the in-phase dimen-
sion and to the MSB range on the quadrature dimension. The
resulting 8x8 outer product forms a highly structured QAM-
64 for which very low-complexity de-mappers can be con-
structed. Due to the orthogonality of the in-phase and
quadrature components the capacity characteristics of the
resulting QAM-64 constellation are identical to that of the
PAM-8 constellation on a per-dimension basis.
N-Dimensional Constellation Optimization

Rather than designing constellations in 1-D (PAM for
instance) and then extending to 2-D (QAM), it is possible to
take direct advantage in the optimization step of the addi-
tional degree of freedom presented by an extra spatial
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dimension. In general it is possible to design N-dimensional
constellations and associated labelings. The complexity of
the optimization step grows exponentially in the number of
dimensions as does the complexity of the resulting receiver
de-mapper. Such constructions constitute embodiments of
the invention and simply require more ‘run-time’ to produce.
Capacity Optimized Constellations for Fading Channels

Similar processes to those outlined above can be used to
design capacity optimized constellations for fading channels
in accordance with embodiments of the invention. The
processes are essentially the same with the exception that the
manner in which capacity is calculated is modified to
account for the fading channel. A fading channel can be
described using the following equation:

Y=a(tyX+N

where X is the transmitted signal, N is an additive white
Gaussian noise signal and a(t) is the fading distribution,
which is a function of time.
In the case of a fading channel, the instantaneous SNR at
the receiver changes according to a fading distribution. The
fading distribution is Rayleigh and has the property that the
average SNR of the system remains the same as in the case
of the AWGN channel, E[X?]/E[N?]. Therefore, the capacity
of the fading channel can be computed by taking the
expectation of AWGN capacity, at a given average SNR,
over the Rayleigh fading distribution of a that drives the
distribution of the instantaneous SNR.
Many fading channels follow a Rayleigh distribution.
FIGS. 22a-24b are locus plots of PAM-4, 8, and 16 con-
stellations that have been optimized for PD capacity on a
Rayleigh fading channel. Locus plots versus user bit rate per
dimension and versus SNR are provided. Similar processes
can be used to obtain capacity optimized constellations that
are optimized using other capacity measures, such as joint
capacity, and/or using different modulation schemes.
What is claimed is:
1. A communication system, comprising:
a sink device capable of receiving data bits;
a receiver capable of receiving signals via a communica-
tion channel having a channel signal-to-noise ratio
(SNR) and providing data bits to the sink device,
wherein the receiver comprises:
a demodulator capable of demodulating a received
signal into a demodulated signal;
a demapper, coupled to the demodulator, capable of
determining likelihoods using the demodulated sig-
nal and a symbol constellation selected from a set of
symbol constellations comprising:
an unequally spaced Quadrature Amplitude Modu-
lated 64 point (QAM-64) symbol constellation;
and

a uniformly spaced QAM-64 signal constellation;
and

a decoder, coupled to the demapper, capable of using
the likelihoods determined by the demapper to pro-
vide a sequence of received bits based upon a low
density parity check (LDPC) code selected from a set
of LDPC codes having different code rates;

wherein use of the unequally spaced QAM-64 symbol
constellation in combination with any LDPC code from
the set of LDPC codes provides a greater SNR gain
than is obtained when utilizing the uniformly spaced

QAM-64 symbol constellation in combination with that

particular LDPC code; and

wherein use of a specific LDPC code having a code rate
that is greater than 1/2 from the set of LDPC codes in
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combination with the unequally spaced QAM-64 sym-
bol constellation provides a larger SNR gain than the
SNR gains achieved using the unequally spaced QAM-
64 symbol constellation in combination with any of the
other LDPC codes from the set of LDPC codes.

2. The communication system of claim 1, wherein the
uniformly spaced QAM-64 symbol constellation utilizes a
Gray labeling.

3. The communication system of claim 1, wherein the
specific LDPC code has a code rate that is greater than 1/2
and is less than 5/6.

4. The communication system of claim 1, wherein the
specific LDPC code has a code rate of at least 2/3.

5. The communication system of claim 1, wherein the
specific LDPC code has a code rate of at least 5/6.

6. The communication system of claim 1, wherein:

the receiver is capable of receiving signals that employ

interleaved modulation;
the decoder is configured to perform a parallel decoding
process that considers each bit-level separately; and

the unequally spaced QAM-64 symbol constellation is
characterized in that use of the unequally spaced QAM-
64 symbol constellation in combination with the spe-
cific LDPC code provides an SNR gain of at least 0.2
dB compared to use of the uniformly spaced QAM-64
symbol constellation in combination with the specific
LDPC code.

7. The communication system of claim 1, wherein the
unequally spaced QAM-64 symbol constellation is charac-
terized in that use of the unequally spaced QAM-64 symbol
constellation in combination with the specific LDPC code
provides an SNR gain of at least 0.5 dB compared to use of
the uniformly spaced QAM-64 symbol constellation in
combination with the specific LDPC code.

8. The communication system of claim 1, wherein the
communication channel is an AWGN channel.

9. The communication system of claim 1, wherein the
communication channel is a Rayleigh fading channel.

10. The communication system of claim 1, wherein the
unequally spaced QAM-64 symbol constellation is charac-
terized by the assignment of labels and the spacing of the 64
points of the constellation so as to provide greater capacity
across a range of SNRs compared to the uniformly spaced
QAM-64 symbol constellation.

11. The communication system of claim 1, wherein the
receiver is capable of utilizing the unequally spaced QAM-
64 symbol constellation to receive data at a channel SNR
that is below 15.93 dB.

12. The communication system of claim 1, wherein the
unequally spaced QAM-64 symbol constellation is charac-
terized by the assignment of labels and the spacing of the
points of the constellation so as to maximize capacity at a
specific SNR.

13. The communication system of claim 12, wherein the
specific SNR is an SNR at which the receiver is capable of
using the unequally spaced QAM-64 symbol constellation to
receive data at a frame error rate (FER) of 1072 or lower.

14. The communication system of claim 12, wherein the
unequally spaced QAM-64 symbol constellation is further
characterized by the assignment of labels and the spacing of
the points of the constellation to provide greater capacity
across a range of SNRs compared to the uniformly spaced
QAM-64 symbol constellation.

15. The communication system of claim 1, wherein the
unequally spaced QAM-64 symbol constellation is capable
of being obtained by performing a multidimensional opti-
mization of the locations of 64 constellation points in both
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the in-phase and quadrature dimensions to maximize a
capacity measure at a given SNR.

16. The communication system of claim 15, wherein:

the specific SNR is an SNR at which the receiver is
capable of using the unequally spaced QAM-64 symbol
constellation to receive data at a frame error rate (FER)
of 1072 or lower;

the capacity measure is parallel decoding capacity; and

the demapper is a two dimensional (2D) demapper.

17. The communication system of claim 1, wherein the
demapper is a two dimensional (2D) demapper.

18. The communication system of claim 1, wherein the
unequally spaced QAM-64 symbol constellation is capable
of being obtained by:

generating an unequally spaced Pulse Amplitude Modu-
lation eight point (PAM-8) symbol constellation by
optimizing locations of eight constellation points in one
dimension (1D) to maximize a capacity measure at a
specific SNR; and

orthogonalizing the unequally spaced PAM-8 symbol
constellation to create an unequally spaced QAM-64
symbol constellation.

19. The communication system of claim 18, wherein:

the specific SNR is an SNR at which the receiver is
capable of using the unequally spaced QAM-64 symbol
constellation to receive data at a frame error rate (FER)
of 1072 or lower;

the capacity measure is parallel decoding capacity; and

the demapper utilizes a one dimensional (1D) demapper.
20. The communication system of claim 1, wherein the
demapper utilizes a one dimensional (1D) demapper.
21. The communication system of claim 1, wherein the
receiver is further capable of enabling the unequally spaced
QAM-64 symbol constellation by an upgrade to at least one
of software and firmware of the receiver.
22. The communication system of claim 1, wherein the
receiver is further capable of sending a request to use a
specific code rate, where the specific code rate is selected by
the receiver based on a quality measurement made by the
receiver.
23. The communication system of claim 1, wherein the
receiver is further capable of receiving a message indicating
a code rate and configuring the mapper and decoder of the
receiver in response to the received message.
24. A communication system, comprising:
a sink device capable of receiving data bits;
a receiver that receives signals via a communication
channel having a channel signal-to-noise ratio (SNR)
and providing data bits to the sink device, wherein the
receiver comprises:
a demodulator that demodulates a received signal into
a demodulated signal;
a demapper that determines likelihoods using the
demodulated signal and a symbol constellation
selected from a set of symbol constellations com-
prising:
an unequally spaced Quadrature Amplitude Modu-
lated 64 point (QAM-64) symbol constellation;
and

a uniformly spaced QAM-64 signal constellation
that maximizes the minimum distance, d,,,,,
between the constellation points; and

a decoder that uses the likelihoods determined by the
demapper to provide a sequence of received bits
based upon a low density parity check (LDPC) code
selected from a set of LDPC codes having different
code rates;
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wherein the demapper is interposed between the demodu-
lator and the decoder, and the demapper receives infor-
mation from the demodulator and provides information
to the decoder; and

wherein use of a specific LDPC code having a code rate

that is greater than 1/2 from the set of LDPC codes in
combination with the unequally spaced QAM-64 sym-
bol constellation provides a larger SNR gain than the
SNR gains achieved using the unequally spaced QAM-
64 symbol constellation in combination with any of the
other LDPC codes from the set of LDPC codes.

25. The communication system of claim 24, wherein use
of the unequally spaced QAM-64 symbol constellation in
combination with any LDPC code from the set of LDPC
codes provides a greater SNR gain than is obtained when
utilizing the uniformly spaced QAM-64 symbol constella-
tion in combination with that particular LDPC code.

26. The communication system of claim 24, wherein the
uniformly spaced QAM-64 symbol constellation utilizes a
Gray labeling.

27. The communication system of claim 24, wherein the
specific LDPC code has a code rate that is greater than 1/2
and is less than 5/6.

28. The communication system of claim 24, wherein the
specific LDPC code has a code rate of at least 2/3.

29. The communication system of claim 24, wherein the
specific LDPC code has a code rate of at least 5/6.

30. The communication system of claim 24, wherein:

the receiver is capable of receiving signals that employ

interleaved modulation;

the decoder is configured to perform a parallel decoding

process that considers each bit-level separately; and
the unequally spaced QAM-64 symbol constellation is
characterized in that use of the unequally spaced QAM-
64 symbol constellation in combination with the spe-
cific LDPC code provides an SNR gain that is 0.2 dB
greater than the SNR gain obtained when utilizing the
uniformly spaced QAM-64 symbol constellation in
combination with the specific LDPC code.

31. The communication system of claim 24, wherein the
unequally spaced QAM-64 symbol constellation is charac-
terized in that use of the unequally spaced QAM-64 symbol
constellation in combination with the specific LDPC code
provides an SNR gain of at least 0.5 dB compared to use of
the uniformly spaced QAM-64 symbol constellation in
combination with the specific LDPC code.

32. The communication system of claim 24, wherein the
communication channel is an AWGN channel.

33. The communication system of claim 24, wherein the
communication channel is a Rayleigh fading channel.

34. The communication system of claim 24, wherein the
unequally spaced QAM-64 symbol constellation is charac-
terized by the assignment of labels and the spacing of the 64
points of the constellation so as to provide greater capacity
across a range of SNRs compared to the uniformly spaced
QAM-64 symbol constellation.

35. The communication system of claim 24, wherein the
receiver is capable of utilizing the unequally spaced QAM-
64 symbol constellation to receive data at a channel SNR
that is below 15.93 dB.

36. The communication system of claim 24, wherein the
unequally spaced QAM-64 symbol constellation is charac-
terized by the assignment of labels and the spacing of the
points of the constellation so as to maximize capacity at a
specific SNR.

37. The communication system of claim 36, wherein the
specific SNR is an SNR at which the receiver is capable of
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using the unequally spaced QAM-64 symbol constellation to
receive data at a frame error rate (FER) of 1072 or lower.

38. The communication system of claim 36, wherein the
unequally spaced QAM-64 symbol constellation is further
characterized by the assignment of labels and the spacing of
the points of the constellation to provide greater capacity
across a range of SNRs compared to the uniformly spaced
QAM-64 symbol constellation.

39. The communication system of claim 24, wherein the
unequally spaced QAM-64 symbol constellation is capable
of being obtained by performing a multidimensional opti-
mization of the locations of 64 constellation points in both
the in-phase and quadrature dimensions to maximize a
capacity measure at a given SNR.

40. The communication system of claim 39, wherein:

the specific SNR is an SNR at which the receiver is
capable of using the unequally spaced QAM-64 symbol
constellation to receive data at a frame error rate (FER)
of 1072 or lower;

the capacity measure is parallel decoding capacity; and

the demapper is a two dimensional (2D) demapper.

41. The communication system of claim 24, wherein the
demapper is a two dimensional (2D) demapper.

42. The communication system of claim 24, wherein the
unequally spaced QAM-64 symbol constellation is capable
of being obtained by:

generating an unequally spaced Pulse Amplitude Modu-
lation eight point (PAM-8) symbol constellation by
optimizing locations of eight constellation points in one
dimension (1D) to maximize a capacity measure at a
specific SNR; and

orthogonalizing the unequally spaced PAM-8 symbol
constellation to create an unequally spaced QAM-64
symbol constellation.

43. The communication system of claim 42, wherein:

the specific SNR is an SNR at which the receiver is
capable of using the unequally spaced QAM-64 symbol
constellation to receive data at a frame error rate (FER)
of 1072 or lower;

the capacity measure is parallel decoding capacity; and

the demapper utilizes a one dimensional (1D) demapper.

44. The communication system of claim 24, wherein the
demapper utilizes a one dimensional (1D) demapper.

45. The communication system of claim 24, wherein the
receiver is further capable of enabling the unequally spaced
QAM-64 symbol constellation by an upgrade to at least one
of software and firmware of the receiver.

46. The communication system of claim 24, wherein the
receiver is further capable of sending a request to use a
specific code rate, where the specific code rate is selected by
the receiver based on a quality measurement made by the
receiver.

47. The communication system of claim 24, wherein the
receiver is further capable of receiving a message indicating
a code rate and configuring the mapper and decoder of the
receiver in response to the received message.

48. A communication system, comprising:

a sink device capable of receiving data bits;

a receiver that receives signals via a communication
channel having a channel signal-to-noise ratio (SNR)
and provides data bits to the sink device;

wherein the receiver uses a symbol constellation selected
from a set of symbol constellations and a low density
parity check (LDPC) code selected from a set of LDPC
codes having different code rates to transform the
received signals into received bits;

wherein the set of symbol constellations comprises:
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an unequally spaced Quadrature Amplitude Modulated
64 point (QAM-64) symbol constellation; and

a uniformly spaced QAM-64 signal constellation that
maximizes the minimum distance, d,,,,, between the
constellation points;

wherein use of a specific LDPC code having a code rate

that is greater than 1/2 from the set of LDPC codes in
combination with the unequally spaced QAM-64 sym-
bol constellation provides a larger gain than the gains
achieved using the unequally spaced QAM-64 symbol
constellation in combination with any of the other
LDPC codes from the set of LDPC codes.

49. The communication system of claim 48, wherein use
of the unequally spaced QAM-64 symbol constellation in
combination with any LDPC code from the set of LDPC
codes provides a greater gain than is obtained when utilizing
the uniformly spaced QAM-64 symbol constellation in
combination with that particular LDPC code.

50. The communication system of claim 48, wherein the
uniformly spaced QAM-64 symbol constellation utilizes a
Gray labeling.

51. The communication system of claim 48, wherein the
specific LDPC code has a code rate that is greater than 1/2
and is less than 5/6.

52. The communication system of claim 48, wherein the
specific LDPC code has a code rate of at least 2/3.

53. The communication system of claim 48, wherein the
specific LDPC code has a code rate of at least 5/6.

54. The communication system of claim 48, wherein:

the receiver is capable of receiving signals that employ

interleaved modulation;
the receiver is configured to perform a parallel decoding
process that considers each bit-level separately; and

the unequally spaced QAM-64 symbol constellation is
characterized in that use of the unequally spaced QAM-
64 symbol constellation in combination with the spe-
cific LDPC code provides a gain of at least 0.2 dB
compared to use of the uniformly spaced QAM-64
symbol constellation in combination with the specific
LDPC code.

55. The communication system of claim 48, wherein the
unequally spaced QAM-64 symbol constellation is charac-
terized in that use of the unequally spaced QAM-64 symbol
constellation in combination with the specific LDPC code
provides a gain of at least 0.5 dB compared to use of the
uniformly spaced QAM-64 symbol constellation in combi-
nation with the specific LDPC code.

56. The communication system of claim 48, wherein the
communication channel is an AWGN channel.

57. The communication system of claim 48, wherein the
communication channel is a Rayleigh fading channel.

58. The communication system of claim 48, wherein the
unequally spaced QAM-64 symbol constellation is charac-
terized by the assignment of labels and the spacing of the 64
points of the constellation so as to provide greater capacity
across a range of SNRs compared to the uniformly spaced
QAM-64 symbol constellation.

59. The communication system of claim 48, wherein the
receiver is capable of utilizing the unequally spaced QAM-
64 symbol constellation to receive data at a channel SNR
that is below 15.93 dB.

60. The communication system of claim 48, wherein the
unequally spaced QAM-64 symbol constellation is charac-
terized by the assignment of labels and the spacing of the
points of the constellation so as to maximize capacity at a
specific SNR.
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61. The communication system of claim 60, wherein the
specific SNR is an SNR at which the receiver is capable of
using the unequally spaced QAM-64 symbol constellation to
receive data at a frame error rate (FER) of 1072 or lower.

62. The communication system of claim 60, wherein the
unequally spaced QAM-64 symbol constellation is further
characterized by the assignment of labels and the spacing of
the points of the constellation to provide greater capacity
across a range of SNRs compared to the uniformly spaced
QAM-64 symbol constellation.

63. The communication system of claim 48, wherein the
unequally spaced QAM-64 symbol constellation is capable
of being obtained by performing a multidimensional opti-
mization of the locations of 64 constellation points in both
the in-phase and quadrature dimensions to maximize a
capacity measure at a given SNR.

64. The communication system of claim 63, wherein:

the specific SNR is an SNR at which the receiver is

capable of using the unequally spaced QAM-64 symbol
constellation to receive data at a frame error rate (FER)
of 1072 or lower;

the capacity measure is parallel decoding capacity; and

receiver comprises a two dimensional (2D) demapper.

65. The communication system of claim 48, wherein the
receiver comprises a two dimensional (2D) demapper.

66. The communication system of claim 48, wherein the
unequally spaced QAM-64 symbol constellation is capable
of being obtained by:

generating an unequally spaced Pulse Amplitude Modu-

lation eight point (PAM-8) symbol constellation by
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optimizing locations of eight constellation points in one
dimension (1D) to maximize a capacity measure at a
specific SNR; and

orthogonalizing the unequally spaced PAM-8 symbol

constellation to create an unequally spaced QAM-64
symbol constellation.

67. The communication system of claim 66, wherein:

the specific SNR is an SNR at which the receiver is

capable of using the unequally spaced QAM-64 symbol
constellation to receive data at a frame error rate (FER)
of 1072 or lower;

the capacity measure is parallel decoding capacity; and

the receiver comprises a one dimensional (1D) demapper.

68. The communication system of claim 48, wherein the
receiver comprises a one dimensional (1D) demapper.

69. The communication system of claim 48, wherein the
receiver is further capable of enabling the unequally spaced
QAM-64 symbol constellation by an upgrade to at least one
of software and firmware of the receiver.

70. The communication system of claim 48, wherein the
receiver is further capable of sending a request to use a
specific code rate, where the specific code rate is selected by
the receiver based on a quality measurement made by the
receiver.

71. The communication system of claim 48, wherein the
receiver is further capable of receiving a message indicating
a code rate and configuring a mapper and a decoder of the
receiver in response to the received message.
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