a2 United States Patent
Chen et al.

US011822805B2

US 11,822,805 B2
Nov. 21, 2023

(10) Patent No.:
45) Date of Patent:

(54) METHOD AND TERMINAL FOR

RECLAIMING MEMORY AFTER FREEZING

PROGRAM

(71) Applicant: HUAWEI TECHNOLOGIES CO.,
LTD., Guangdong (CN)

(72) Qiulin Chen, Shanghai (CN); Bailin

Wen, Hangzhou (CN); Xiaojun Duan,

Shenzhen (CN)

Inventors:

(73) HUAWEI TECHNOLOGIES CO.,

LTD., Guangdong (CN)

Assignee:

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 339 days.

@

(22)

Appl. No.: 16/367,646

Filed: Mar. 28, 2019

(65) Prior Publication Data

US 2019/0220216 Al Jul. 18, 2019

Related U.S. Application Data

(63) Continuation of application No.

PCT/CN2017/090005, filed on Jun. 26, 2017.

(30) Foreign Application Priority Data

Sep. 29, 2016 (CN) coeivviicene 201610872374.1

(51) Int. CL
GOGF 3/00
GOGF 3/06

(2006.01)
(2006.01)
(Continued)
(52) US. CL
CPC GO6F 3/0647 (2013.01); GOGF 3/0608
(2013.01); GO6F 3/0679 (2013.01);

(Continued)

(58) Field of Classification Search
CPC GO6F 3/0647; GOGF 3/0608; GO6F 3/0679;
GOG6F 9/44594; GOGF 9/485; GOGF
12/0253; GOGF 9/445
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS
5,717,926 A * 2/1998 Browning GOGF 9/4843
718/103

1/2006 Carter HO4L 29/06027
709/200

6,983,301 B1*

(Continued)

FOREIGN PATENT DOCUMENTS

CN
CN

101908022 A 12/2010
102768571 A 11/2012

(Continued)

OTHER PUBLICATIONS

Anonymous: “TASK_KILLABLE: New process state in Linux”,
Aug. 8, 2014, XP055738281, total 5 pages.

Primary Examiner — Jae U Yu
(74) Attorney, Agent, or Firm — WOMBLE BOND
DICKINSON (US) LLP

(57) ABSTRACT

Embodiments of the present disclosure describe a memory
reclaiming method and a terminal. As discussed with respect
to the embodiments described herein, the method may
include determining, by a terminal according to a preset rule,
a target application program in application programs run on
a background, where the target application program is an
application program that needs to be cleaned. The method
may also include freezing, by the terminal, the target appli-
cation program, and reclaiming data generated during run-
ning of a process of the target application program in
memory. The method may also include unfreezing, by the
terminal when receiving an input triggering instruction for

(Continued)

Step S201: A terminal determines, according (o a preset
rule, a target application program in application programs
run on a background

y

Step S202: The terminal freezes the target application
program, and reclaims data generated during running of a
process of the target application program in memory

Step S203: The terminal unfreezes, when receiving an input
triggering instruction for the target application program, the
target application program, and runs the target application
program

US 11,822,805 B2

Page 2

the target application program, the target application pro- 2007/0136395 Al* 6/2007 GOGF 11/1464
gram, and running the target application program. 2008/0077590 Al* 3/2008 - ... GOGF 16/1847
2008/0313656 Al* 12/2008 N i GOGF 9/545
9 Claims, 3 Drawing Sheets 719/320
2012/0324481 ALl* 12/2012 Xia .coccovvvenvccnn GOGF 9/485
719/320

2014/0179272 Al 6/2014 Zhang et al.

2015/0347181 Al 12/2015 Myrick et al.

(51) Int. CL 2016/0011782 Al* 1/2016 Kurotsuchi GOGF 11/1068
GO6F 9/48 (2006.01) 711/104
GO6F 12/02 (2006.01) 2016/0098229 Al* 4/2016 Schreiber GOGF 9/5022
GO6F 9/445 (2018.01) 711/166

(52) US. CL 2016/0371296 Al* 12/2016 Passey ... GOGF 16/1734
CPC .. GOGF 9/44594 (2013.01); GOGF 9/485 2018/0307600 Al 10/2018 Wang et al.

(2013.01); GO6F 12/0253 (2013.01); GO6F
9/445 (2013.01) FOREIGN PATENT DOCUMENTS
. CN 104281528 A 1/2015
(56) References Cited CN 104503740 A 4/2015
CN 105676993 A 6/2016
U.S. PATENT DOCUMENTS N 103677356 A 6016
. CN 105701025 A 6/2016
7,503,065 B1* 3/2009 Packingham HO4L 63/083 CN 105843367 A 8/2016
713/153 CN 106484472 A 3/2017
2007/0028240 Al* 2/2007 Hayakawa GOGF 11/3636

718/100 * cited by examiner

US 11,822,805 B2

U.S. Patent Nov. 21, 2023 Sheet 1 of 3
| N |
O™ RF circuit WiFi module - 170
190 160
Power
supply «— (Camera
120
P
/ rocessor 150 / 130
Sensor -« Memory
¢ ' Internal
* memory
* External
; 131 memaory 1=
Input device / Application []
program
Touch panel Y] 132 y o H
)) 140 perating
Another input / Dlspl'ay device / system
device Display [Otherdata [
panel
% T
130 141
FIG. 1

Step S201: A terminal determines, according to a preset
rule, a target application program in application programs

run on a background

Step S202: The terminal freezes the target application
program, and reclaims data generated during running of a
process of the target application program in memory

Step S203: The terminal unfreezes, when receiving an input
triggering instruction for the target application program, the
target application program, and runs the target application

program

FIG. 2

181

182

183

U.S. Patent Nov. 21,2023 Sheet 2 of 3 US 11,822,805 B2

00
Picture . R Browser Application
hglialry Media player 312 313 layer 310
Decision service 324
Event Application
System|| Web ||Customer processing program
service | |service| | service decision decision Flrame\évzogk
321 322 323 Service life Memory ayet
identification collection
decision decision
‘ : 3 3 4 Operating
system
L] r y ' i lg}slgr
Input/ Core Data Data Memory {Esfnel
output i compression||decompression | |collection || . “1PTaLy
service 5633206 service service service || laver330
331 333 334 335
Central Graphics _ _ .
processing unit processing unit | | Display controller driver Driver
driver driver 343 layer 340
341 342
Central Graphics
processing unit processing unit Memory 363
361 362
Hardware
. . layer 360
Input device 364 Dlspl?ég evice Sensor 366

FIG. 3

U.S. Patent Nov. 21,2023 Sheet 3 of 3 US 11,822,805 B2

/40

e 401 e 402 e 403
Determining Reclaiming Unfreezing
unit unit unit
Terminal

FIG. 4

US 11,822,805 B2

1
METHOD AND TERMINAL FOR
RECLAIMING MEMORY AFTER FREEZING
PROGRAM

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of International Appli-
cation No. PCT/CN2017/090005, filed on Jun. 26, 2017,
which claims priority to Chinese Patent Application No.
201610872374.1, filed on Sep. 29, 2016. The disclosures of
the aforementioned applications are hereby incorporated by
reference in their entireties.

TECHNICAL FIELD

The present invention relates to the field of computer
technologies, and in particular, to a memory reclaiming
method and a terminal.

BACKGROUND

Mobile device operating systems, such as Android™, are
typically multitasking systems on which a plurality of appli-
cation programs can be run simultaneously. In Android, for
example, when a user completes use of an application
program, the application program is usually not closed, but
instead started processes of the application program con-
tinue to be run in a background. Next time the user uses the
application program, the user does not need to restart these
processes, which reduces time spent in restarting the appli-
cation program. Running of each process in the background
occupies corresponding memory, and a continuous increase
in processes run in the background can cause insufficient
memory. Consequently, normal running the mobile device
operating system is affected. When memory is less than a
value, a low memory killer (LMK) may reclaim memory
occupied when some processes are run, to ensure normal
running of the mobile device operating system.

However, after the memory is reclaimed, some processes
are automatically started. As a result, memory is occupied
again, causing a bad memory reclaiming effect.

SUMMARY

Embodiments of the present invention disclose a memory
reclaiming method and a terminal, to improve a memory
reclaiming effect.

According to a first aspect, an embodiment of the present
invention provides a memory reclaiming method. The
embodiment of the method includes: determining, by a
terminal according to a preset rule, a target application
program in application programs run on a background,
where the target application program is an application pro-
gram that needs to be cleaned; freezing, by the terminal, the
target application program to cause a process of the target
application program to be in an uninterruptible sleep state,
and reclaiming data generated during running of the process
of the target application program in memory; and unfreez-
ing, by the terminal when receiving an input triggering
instruction for the target application program, the target
application program to cause the process of the target
application program to be in an interruptible sleep state, and
running the target application program after the target appli-
cation program is unfrozen.

By performing the foregoing operations, when reclaiming
the target application program, the terminal freezes the

15

20

30

40

45

65

2

target application program, so that the terminal unfreezes the
target application program only when the terminal receives
the triggering instruction that is input by a user for the target
application program. This prevents the memory from being
occupied again when the process of the target application
program is automatically started, and improves a memory
reclaiming effect.

With reference to the first aspect, in a first possible
embodiment of the first aspect, the determining, by a ter-
minal according to a preset rule, a target application program
in application programs run on a background includes:
determining that a residual amount of the memory is greater
than a preset memory threshold; and determining the target
application program according to the preset rule.

It may be understood that, the terminal performs a related
operation of cleaning the application program only when the
terminal enters a preset idle state, so that no interference is
caused to the user; and performing the related operation of
cleaning the application program when the residual amount
of the memory is greater than the memory threshold may
ensure a smooth cleaning procedure.

With reference to the first aspect or the first possible
embodiment of the first aspect, in a second possible embodi-
ment of the first aspect, the reclaiming data generated during
running of the process of the target application program in
memory includes: migrating the data generated during the
running of the process of the target application program
from the memory to preset storage space. The running the
target application program after the target application pro-
gram is unfrozen includes: loading, after the target applica-
tion program is unfrozen, the generated data from the
storage space to the memory to start the target application
program.

It may be understood that, migration of the data generated
during the running of the process from the memory to the
storage space not only makes space for the memory, but also
ensures that the data is not lost. That is, this manner not only
ensures that the memory is smoothly reclaimed, but also
ensures that next time the user uses the target application
program, the user may directly enter an interface on which
the user exits the target application last time, to improve user
experience.

With reference to the second possible embodiment of the
first aspect, in a third possible embodiment of the first
aspect, the method further includes: determining, by the
terminal, a residual amount of writable data of the storage
space. The migrating the data generated during the running
of the process of the target application program from the
memory to storage space includes: migrating the generated
data from the memory to the preset storage space when the
data generated during the running of the target application
program is not greater than the residual amount of the
writable data.

With reference to the third possible embodiment of the
first aspect, in a fourth possible embodiment of the first
aspect, the determining, by the terminal, a residual amount
of writable data of the storage space includes: calculating a
total amount of average everyday writable data of the
storage space based on a pre-obtained total amount of the
writable data of the storage space; and calculating a residual
amount of daily writable data of the storage space based on
a total amount of daily writable data and a total amount of
daily written data.

It may be understood that, control over a total amount of
everyday written data of the storage space may ensure that

US 11,822,805 B2

3

the storage space is not broken down within a pre-estimated
life cycle because a quantity of writing times is relatively
large.

With reference to the first aspect, the first possible
embodiment of the first aspect, the second possible embodi-
ment of the first aspect, the third possible embodiment of the
first aspect, or the fourth possible embodiment of the first
aspect, in a fifth possible embodiment of the first aspect, the
target application program is such an application program
that time required to start the application program in a start
manner of cold start exceeds a preset time threshold.

It may be understood that, such an application program
that a relatively long time is consumed to start the applica-
tion program in a cold start manner usually occupies rela-
tively large memory, and relatively large memory may be
released by selecting such application program to be
cleaned. Additionally, data generated during running of a
process of such application program is first migrated to the
storage space, and then migrated back to the memory when
the target application program is restarted later, so that time
for restarting the target application program can be short-
ened significantly.

With reference to the first aspect, the first possible
embodiment of the first aspect, the second possible embodi-
ment of the first aspect, the third possible embodiment of the
first aspect, the fourth possible embodiment of the first
aspect, or the fifth possible embodiment of the first aspect,
in a sixth possible embodiment of the first aspect, the
freezing, by the terminal, the target application program to
cause a process of the target application program to be in an
uninterruptible sleep state includes: setting the process of the
target application program to a TASK_UNINTERRUPT-
IBLE state; and the unfreezing the target application pro-
gram to cause the process of the target application program
to be in an interruptible sleep state includes: setting the
process of the target application program to a TASK_IN-
TERRUPTIBLE state.

According to a second aspect, an embodiment of the
present invention provides a terminal. The terminal includes
a determining unit, a reclaiming unit, and an unfreezing unit.
The determining unit is configured to determine, according
to a preset rule, a target application program in application
programs run on a background, where the target application
program is an application program that needs to be cleaned;
the reclaiming unit is configured to freeze the target appli-
cation program to cause a process of the target application
program to be in an uninterruptible sleep state, and reclaim
data generated during running of the process of the target
application program in memory; and the unfreezing unit is
configured to unfreeze, when an input triggering instruction
for the target application program is received, the target
application program to cause the process of the target
application program to be in an interruptible sleep state, and
run the target application program after the target application
program is unfrozen.

By running the foregoing units, when reclaiming the
target application program, the terminal freezes the target
application program, so that the terminal unfreezes the target
application program only when the terminal receives the
triggering instruction that is input by a user for the target
application program. This prevents the memory from being
occupied again when the process of the target application
program is automatically started, and improves a memory
reclaiming effect.

With reference to the second aspect, in a first possible
embodiment of the second aspect, the determining unit is
specifically configured to determine that a residual amount

10

15

20

25

30

35

40

45

55

60

65

4

of the memory is greater than a preset memory threshold,
and determine the target application program according to
the preset rule.

It may be understood that, the terminal performs a related
operation of cleaning the application program only when the
terminal enters a preset idle state, so that no interference is
caused to the user; and performing the related operation of
cleaning the application program when the residual amount
of the memory is greater than the memory threshold may
ensure a smooth cleaning procedure.

With reference to the second aspect or the first possible
embodiment of the second aspect, in a second possible
embodiment of the second aspect, the reclaiming unit is
specifically configured to migrate the data generated during
the running of the process of the target application program
from the memory to preset storage space; and the running,
by the unfreezing unit, the target application program after
the target application program is unfrozen is specifically:
loading, after the target application program is unfrozen, the
generated data from the storage space to the memory to start
the target application program.

It may be understood that, migration of the data generated
during the running of the process from the memory to the
storage space not only makes space for the memory, but also
ensures that the data is not lost. That is, this manner not only
ensures that the memory is smoothly reclaimed, but also
ensures that next time the user uses the target application
program, the user may directly enter an interface on which
the user exits the target application last time, to improve user
experience.

With reference to the second possible embodiment of the
second aspect, in a third possible embodiment of the second
aspect, the terminal further includes: a calculation unit,
configured to determine a residual amount of writable data
of the storage space; and the migrating, by the reclaiming
unit, the data generated during the running of the process of
the target application program from the memory to preset
storage space is specifically: migrating the generated data
from the memory to the storage space when the data
generated during the running of the target application pro-
gram is not greater than the residual amount of the writable
data.

With reference to the third possible embodiment of the
second aspect, in a fourth possible embodiment of the
second aspect, the calculation unit is specifically configured
to calculate a total amount of average everyday writable data
of' the storage space based on a pre-obtained total amount of
the writable data of the storage space; and calculate a
residual amount of daily writable data of the storage space
based on a total amount of daily writable data and a total
amount of daily written data.

It may be understood that, control over a total amount of
everyday written data of the storage space may ensure that
the storage space is not broken down within a pre-estimated
life cycle because a quantity of writing times is relatively
large.

With reference to the second aspect, the first possible
embodiment of the second aspect, the second possible
embodiment of the second aspect, the third possible embodi-
ment of the second aspect, or the fourth possible embodi-
ment of the second aspect, in a fifth possible embodiment of
the second aspect, the target application program is such an
application program that time required to start the applica-
tion program in a start manner of cold start exceeds a preset
time threshold.

It may be understood that, such an application program
that a relatively long time is consumed to start the applica-

US 11,822,805 B2

5

tion program in a cold start manner usually occupies rela-
tively large memory, and relatively large memory may be
released by selecting such application program to be
cleaned. Additionally, data generated during running of a
process of such application program is first migrated to the
storage space, and then migrated back to the memory when
the target application program is restarted later, so that time
for restarting the target application program can be short-
ened significantly.

With reference to the second aspect, the first possible
embodiment of the second aspect, the second possible
embodiment of the second aspect, the third possible embodi-
ment of the second aspect, the fourth possible embodiment
of'the second aspect, or the fifth possible embodiment of the
second aspect, in a sixth possible embodiment of the second
aspect, the reclaiming unit is specifically configured to set
the process of the target application program to a
TASK_UNINTERRUPTIBLE state; and the unfreezing unit
is specifically configured to set the process of the target
application program to a TASK_INTERRUPTIBLE state.

According to a third aspect, an embodiment of the present
invention provides a terminal. The terminal includes a
processor, a memory, and a system bus. The memory is
configured to store a computer executable instruction, the
processor and the memory are connected to each other by
using the system bus, and when a computer runs, the
processor executes the computer executable instruction
stored in the memory, so that the computer performs the
memory reclaiming method according to the first aspect or
any embodiment of the first aspect.

For details of a description of a technical effect of the third
aspect, refer to a related description of a technical effect of
the first aspect or any embodiment of the first aspect. Details
are not described herein again.

According to a fourth aspect, an embodiment of the
present invention provides a storage medium. The storage
medium is configured to store an instruction, and when the
instruction is run on a terminal, the terminal is caused to
perform the method according to the first aspect or any
embodiment of the first aspect.

By implementing the embodiments of the present inven-
tion, when reclaiming the target application program, the
terminal freezes the target application program, so that the
terminal unfreezes the target application program only when
the terminal receives the triggering instruction that is input
by the user for the target application program. This prevents
the memory from being occupied again when the process of
the target application program is automatically started, and
improves the memory reclaiming effect.

BRIEF DESCRIPTION OF DRAWINGS

Accompanying drawings that need to be used in the
background or embodiments are simply described below.

FIG. 1 is a schematic structural diagram of a terminal
according to an embodiment of the present invention;

FIG. 2 is a schematic flowchart of a memory reclaiming
method according to an embodiment of the present inven-
tion;

FIG. 3 is a schematic structural diagram of another
terminal according to an embodiment of the present inven-
tion; and

FIG. 4 is a schematic structural diagram of still another
terminal according to an embodiment of the present inven-
tion.

10

15

20

25

30

35

40

45

50

55

60

65

6
DESCRIPTION OF EMBODIMENTS

The following describes the technical solutions in the
embodiments of the present invention with reference to the
accompanying drawings in the embodiments of the present
invention.

A memory reclaiming method provided in the embodi-
ments of the present invention is mainly applied to a
terminal device. The terminal may also be referred to as user
equipment (UE), a mobile station (MS), a mobile terminal,
or the like. Optionally, the terminal may have a capability of
communicating with one or more core networks through a
radio access network (RAN). For example, the terminal may
be a mobile phone (or referred to as a “cellular” phone), or
a computer with mobility. For example, the terminal may
also be a portable, pocket-sized, handheld, computer built-
in, or in-vehicle mobile apparatus. In addition to the termi-
nal, the memory reclaiming method provided in the embodi-
ments of the present invention may also be applied to other
types of computer systems.

Referring to FIG. 1, FIG. 1 is a schematic structural
diagram of a terminal 100 to which an embodiment of the
present invention is applied. As shown in FIG. 1, the
terminal 100 includes a memory 180, a processor 150, and
a display device 140. The memory 180 stores a computer
program, and the computer program includes an operating
system program 182, an application program 181, and the
like. The processor 150 is configured to read the computer
program in the memory 180, and then perform a method
defined by the computer program. For example, the proces-
sor 150 reads the operating system program 182, thereby
running an operating system on the terminal 100 and imple-
menting various functions of the operating system, or reads
one or more application programs 181, thereby running an
application on the terminal.

The processor 150 may include one or more processors.
For example, the processor 150 may include one or more
central processing units, or include one central processing
unit and one graphics processing unit. When the processor
150 includes a plurality of processors, the plurality of
processors may be integrated on a same chip, or may
respectively be independent chips. One processor may
include one or more processing cores. In each of the
following embodiments, a plurality of cores are used as an
example to perform description, but a memory reclaiming
method provided in the embodiments of the present inven-
tion may also be applied to a single-core processor.

Additionally, the memory 180 further stores other data
183 other than the computer program, the other data 183
may include data generated after the operating system 182 or
the application program 181 is run, and the data includes
system data (for example, a configuration parameter of the
operating system) and user data (for example, data generated
during running of a process). The data generated during the
running of the process is also an object reclaimed in this
embodiment of the present invention.

The memory 180 usually includes an internal memory and
an external memory. The internal memory may be a random
access memory (RAM), a read-only memory (ROM), a
cache, or the like. Preset storage space described in this
embodiment of the present invention belongs to the external
memory, and the storage space may include a flash memory
(flash), a hard disk, an optical disk, a USB flash drive, a
floppy disk, a tape drive, or the like. The computer program
is usually stored in the external memory, and before per-
forming processing, the processor loads the computer pro-
gram from the external memory to the internal memory. An

US 11,822,805 B2

7

application program in this embodiment of the present
invention is usually stored in the external memory, and when
the processor runs the application program, the application
program needs to be loaded to the internal memory.

The operating system program 182 includes the computer
program that may implement the memory reclaiming
method provided in the embodiments of the present inven-
tion, so that the operating system may be equipped with a
memory reclaiming function provided in the embodiments
of the present invention after the processor 150 reads the
operating system program 182 and runs the operating sys-
tem. Further, the operating system may open a call interface
of the memory reclaiming function to an upper-layer appli-
cation, and after the processor 150 reads the application
program 181 from the memory 180 and runs the application
program, the memory reclaiming function provided in the
operating system may be called by using the call interface,
thereby implementing memory reclaiming.

The terminal 100 may further include an input device 130,
configured to receive digital information, character infor-
mation, or a contact touch operation/non-contact gesture that
is input, and generate a signal input and the like related to
user setting and function control of the terminal 100. Spe-
cifically, in this embodiment of the present invention, the
input device 130 may include a touch panel 131. The touch
panel 131, also referred to as a touchscreen, may collect a
touch operation performed by a user on or nearby the touch
panel 131 (for example, an operation performed by the user
on the touch panel 131 or near the touch panel 131 by using
any suitable object or accessory such as a finger or a stylus),
and drive a corresponding connection apparatus based on a
preset program. Optionally, the touch panel 131 may include
two parts: a touch detection apparatus and a touch controller.
The touch detection apparatus detects a touch direction of
the user, detects a signal generated from the touch operation,
and transfers the signal to the touch controller. The touch
controller receives touch information from the touch detec-
tion apparatus, converts the touch information into touch
point coordinates, and then sends the touch point coordi-
nates to the processor 150. Moreover, the touch controller
can receive and execute a command sent from the processor
150. For example, the user clicks an icon of an application
program by using a finger on the touch panel 131, the touch
detection apparatus detects this signal brought by this click
and then transfers the signal to the touch controller, the touch
controller then converts this signal into coordinates and
sends the coordinates to the processor 150, and the processor
150 performs a related processing operation on the applica-
tion program based on the coordinates and a type (click or
double-click) of the signal, and finally displays an interface
of the application program by using the display panel 141.

The touch panel 131 may be implemented in a plurality of
types such as a resistive type, a capacitive type, infrared, and
a surface acoustic wave. Besides the touch panel 131, the
input device 130 may further include another input device
132. The another input device 132 may include, but is not
limited to, one or more of a physical keyboard, a function
key (for example, a volume control key or a switch key), a
track ball, a mouse, a joystick, and the like.

The terminal 100 may further include the display device
140, and the display device 140 includes the display panel
141, configured to display information entered by the user or
information provided to the user, various menu interfaces of
the terminal 100, and the like. In this embodiment of the
present invention, the display panel 141 is mainly config-
ured to display a related interface of each application pro-
gram. The display device 140 may include the display panel

30

35

40

45

50

55

60

65

8

141. Optionally, the display panel 141 may be configured in
a form such as a liquid crystal display (LCD) or an organic
light-emitting diode (OLED) display. In some other embodi-
ments, the touch panel 131 may cover the display panel 141,
to form a touch display screen.

Besides the foregoing, the terminal 100 may further
include a power supply 190 configured to supply power to
another module, and a camera 160 configured to take a
photograph or a video. The terminal 100 may further include
one or more sensors 120 such as an acceleration sensor or a
light sensor. The terminal 100 may further include a radio
frequency (RF) circuit 110, configured to perform network
communication with a wireless network device, and may
further include a WiFi module 170, configured to perform
WiFi communication with another device.

In the following embodiment, a memory reclaiming
method of the embodiments of the present invention is
described by using an example in which memory occupied
by a process run on a background is reclaimed, and the
memory reclaiming method may be implemented in the
operating system program 182 shown in FIG. 1.

Referring to FIG. 2, FIG. 2 is a schematic flowchart of a
memory reclaiming method according to an embodiment of
the present invention. The method may be implemented by
the foregoing terminal 100, and the method includes but is
not limited to the following steps.

Step S201: A terminal determines, according to a preset
rule, a target application program in application programs
run in a background.

Specifically, the target application program is an applica-
tion program that needs to be cleaned, and the preset rule
may be set based on an actual need. For example, the
determining, by a terminal according to a preset rule, a target
application program in application programs run on a back-
ground is: comparing memory sizes occupied by the appli-
cation programs run on the background, and then determin-
ing an application program occupying largest memory as an
application program that needs to be cleaned. As another
example, the determining, by a terminal according to a
preset rule, a target application program in application
programs run on a background is: collecting statistics on
time for which the application programs run on the back-
ground have not been continuously used, and then deter-
mining such an application program that time for which the
application program has not been continuously used exceeds
a preset time value as an application program that needs to
be cleaned. As yet another example, the determining, by a
terminal according to a preset rule, a target application
program in application programs run on a background is:
determining, in the application programs run on the back-
ground, such an application program that time required to
start the application program in a cold start manner exceeds
a preset time threshold as an application program that needs
to be cleaned (for example, determining such an application
program that time consumed to start the application program
in the cold start manner exceeds 2.5 seconds as an applica-
tion program that needs to be cleaned). In embodiments of
an actual application, a manner of starting an application
program includes cold start and hot start. With a cold start,
the terminal does not run a related process of a to-be-started
application program in the background, so that when the
application program is started, an Application type is first
created and initialized, then a MainActivity type (which
includes a series of measurement, deployment, drawing, and
the like) is created and initialized, and then information
related to the application program is output to a user. By
contrast, with a hot start, the terminal runs a related process

US 11,822,805 B2

9

of'a to-be-started application program on the background, so
that when the application program is started, an Application
type does not need to be created and initialized, but instead
MainActivity is directly created and initialized, and then
information related to the application program is output to
the user. The preset rule further has other possibilities, and
examples are not listed herein one by one.

Further, when entering a preset idle state, the terminal
may further determine that a residual amount of memory is
greater than a preset memory threshold; and then determine
the target application program according to the preset rule.
The idle state herein is a state in which the user has not
operated the terminal, and representation forms of having
not operated the terminal include that a display screen of the
terminal is off, a display screen of the terminal is locked, the
terminal enters a standby state, and so on. The memory
threshold is a preset value used to represent a memory size.
Additionally, whether the residual amount of the memory is
less than another threshold may be further determined. If the
residual amount of the memory is less than the another
threshold, it indicates that the memory may be inadequate
subsequently. Therefore, only when the residual amount of
the memory is greater than the preset memory threshold and
less than the another threshold, an application program that
needs to be cleaned and that is of the application programs
run on the background is determined according to the preset
rule. For example, when the terminal is a mobile phone, the
memory threshold may be set to 600 M, and the another
threshold is set to 1 G. Therefore, when memory of the
mobile phone is greater than 600 M and less than 1 G, an
application program that needs to be cleaned and that is of
the application programs run on the background may be
determined according to the preset rule. It may be under-
stood that, the terminal performs a related operation of
cleaning the application program only when the terminal
enters the preset idle state, so that no interference is caused
to the user; and performing the related operation of cleaning
the application program when the residual amount of the
memory is greater than the memory threshold may ensure a
smooth cleaning procedure.

Step S202: The terminal freezes the target application
program to cause a process of the target application program
to be in an uninterruptible sleep state, and reclaims data
generated during running of the process of the target appli-
cation program in memory.

Specifically, the determined application program that
needs to be cleaned may be referred to as the target appli-
cation program, a technology used for freezing may be a
process freezing technology (freezing of tasks) in a Linux™
system, and a procedure of freezing a process to cause the
process to enter an uninterruptible sleep state may be: 1. A
TIF_SIGPENDING flag of the process is set in a kernel; and
2. In the process, a flag bit is detected in user mode, and if
the TIF_SIGPENDING flag is set at the flag bit, the process
is set to a TASK_UNINTERRUPTIBLE state. A person
skilled in the art may understand that, in a derived system
based on a Linux™ kernel, for example, an Android™
system, a process may be frozen based on the foregoing
manner. In a specific implementation, because of a related
change of the derived system, names of flag bits for setting
uninterruptible and interruptible sleep states may change,
but this name change does not affect technical essence when
the technical solutions of the present invention are imple-
mented. However, in another system (for example, a Win-
dows™ system), the target application may also be frozen as

10

15

20

25

30

40

45

50

55

60

65

10

discussed above in the Linux System™, so that the process
of the target application enters the uninterruptible sleep
state.

After the target application program is frozen, the process
of the target application program is started only after human
triggering, thereby preventing the memory from being occu-
pied again because the process of the application program is
frequently automatically started after the memory is
reclaimed. Optionally, the data generated during the running
of the process of the target application program described
herein may be specifically data generated by all processes of
the target application program that are being run. In a
specific operation, a user identifier (UID) of the target
application program may be first determined, and then a
process whose UID of UlDs included in processes that are
currently being run is the same as the UID of the target
application program is determined as a process of the target
application program that is being run. It should be noted that,
data generated during running of a process of the target
application program may include an anonymous memory
page and a file memory page generated during the running
of the process. The anonymous memory page includes
memory of a heap and a stack occupied by a program of the
process, and memory that has no corresponding backup file
in a file system. The file memory page includes memory
occupied by a file in a buffer when the process is run to
read/write the file. In an optional solution, the reclaiming
data generated during running of the process of the target
application program in memory may be: migrating the data
generated during the running of the process of the target
application program from the memory to preset storage
space. Specifically, after the target application program is
frozen, the data generated during the running of the process
of the target application program may be migrated from the
memory to the storage space, to make space for the memory
and ensure that the data generated during the running of the
process of the target application program is not lost. The
storage space herein may be a storage medium, or a part of
space in a storage medium, for example, a swap in ZSwap.
Further, the storage space has a corresponding useful life.
For example, it is required that a loss of some storage space
within three years cannot exceed 5%. If the loss of the
storage space needs to be controlled, a total amount of
written data of the storage space needs to be controlled. In
this embodiment of the present invention, the total amount
of the written data of the storage space is controlled in the
following manner.

The terminal calculates a residual amount of writable data
of' the storage space based on a pre-obtained total amount of
the writable data of the storage space and a total amount of
the written data of the storage space. In this way, the
migrating the data generated during the running of the
process of the target application program in the memory
from the memory to storage space may be: migrating the
generated data from the memory to the storage space when
the data generated during the running of the target applica-
tion program is not greater than the residual amount of the
writable data. Furthermore, an amount of data written to the
storage space everyday may be further limited. That is, the
calculating, by the terminal, a residual amount of writable
data of the storage space based on a pre-obtained total
amount of the writable data of the storage space and a total
amount of the written data of the storage space is specifi-
cally: calculating a total amount of average everyday writ-
able data of the storage space based on a pre-obtained total
amount of the writable data of the storage space; and
calculating a residual amount of daily writable data of the

US 11,822,805 B2

11

storage space based on a total amount of daily writable data
and a total amount of daily written data. For example, if a
condition that a loss of the storage space within three years
does not exceed 5% needs to be satisfied, a total amount of
written data of the storage space needs to be controlled not
to exceed 1095 G. If the 1095 G is split to each day within
the three years, the total amount of the everyday writable
data is 1095+3+365=1 G. If the total amount of the daily
written data of the terminal is 0.8 G, the residual amount of
the daily writable data is 1-0.8=0.2 G.

After the residual amount of the daily writable data is
calculated, the terminal first determines whether the data
generated during the running of the process of the target
application program is not greater than the residual amount
of the daily writable data. If the data generated during the
running of the process of the target application program is
not greater than the residual amount of the daily writable
data, the data generated during the running of the process of
the target application program is migrated to the storage
space. If the data generated during the running of the process
of the target application program is not greater than the
residual amount of the daily writable data, the data generated
during the running of the process of the target application
program is not migrated to the storage space, but instead the
data generated during the running of the process of the target
application program is cleared from the memory. Optionally,
a file in the storage space may be mounted again by using a
tempfs file system, to prevent the file in the storage space
from being exposed to the user, ensuring security of data
stored in the storage space.

Step S203: The terminal unfreezes, when receiving an
input triggering instruction for the target application pro-
gram, the target application program to cause the process of
the target application program to be in an interruptible sleep
state, and runs the target application program after the target
application program is unfrozen.

Specifically, the user may input the triggering instruction
for the target application program to the terminal in a
manner such as touching a virtual key, sound control, or
gesture control. Correspondingly, the terminal receives the
triggering instruction, then unfreezes the target application
program based on the triggering instruction, and runs the
target application program. The unfreezing the target appli-
cation program is specifically unfreezing frozen processes of
the target application program, to cause these processes to
enter the interruptible sleep state.

In a Linux™ system, for example, a procedure of unfreez-
ing a frozen process to cause the process to enter the
interruptible sleep state may be: clearing, based on the
triggering instruction input by the user, the TIF_SIGPEND-
ING flag of the process of the target application program that
is set in the kernel, setting the process to the TASK_IN-
TERRUPTIBLE state, and receiving, in user mode, a wake-
up event sent when the process is set to the TASK_INTER-
RUPTIBLE state. So far, the target application program is
awakened, that is, the target application program is unfro-
zen. In another system (for example, a Windows™ system),
the target application may also be unfrozen as discussed
above in the Linux System™, so that the process of the
target application enters the interruptible sleep state.

In an optional solution, when the data generated during
the running of the process of the target application program
is migrated from the memory to the preset storage space, the
running the target application program after the target appli-
cation program is unfrozen may be: loading the generated
data from the storage space to the memory to start the target
application program. Optionally, the data generated during

10

25

30

35

40

45

55

60

12

the running of the process of the target application program
may be loaded from the storage space to the memory while
the target application program is unfrozen, instead of load-
ing the data generated during the running of the process of
the target application program from the storage space to the
memory only when the process of the target application
program is read from the memory and a missing page is
found after the target application program is unfrozen.
Optionally, a priority of a read/write operation generated
because of the missing page in the process may be further set
to be higher than a priority of another read/write operation
of the process, so that when a plurality of read/write opera-
tions need to be processed simultaneously, the read/write
operation generated because of the missing page is prefer-
ably processed. In this way, the target application program
may be started relatively smoothly.

It should be noted that, in a procedure in which the data
generated during the running of the process of the target
application program is migrated from the memory to a
magnetic disk, an anonymous memory page generated when
each process is run may be compressed by using a process
as a unit, then data obtained after a plurality of anonymous
memory pages are compressed forms a new page, then the
new page is migrated to the storage space, the new page may
be migrated to the memory when the target application
program needs to be run again subsequently, the new page
is decompressed in the memory to restore the foregoing
plurality of anonymous memory pages, and then the plural-
ity of anonymous memory pages are read to run the target
application program. For example, a unit of a page is usually
4 K. If a compression ratio of an anonymous memory page
is 50%, each anonymous memory page has a size of 2 K
after being compressed, and two anonymous memory pages
have a size of 2K+2K=4K after being compressed. There-
fore, data obtained after two anonymous memory pages are
compressed may form a new page, a structure of the new
page is tagged to distinguish parts in the new page that
respectively correspond to the two anonymous memory
pages, and the two anonymous memory pages may be
restored based on information about a tag when the new
page is decompressed subsequently. It may be understood
that, migration of the anonymous memory page after being
compressed to the storage space may reduce read/write
overheads of the storage space, thereby improving a useful
life of the storage space.

It should be noted that, when memory is reclaimed, an
anonymous memory page of a process that has not been used
for a relatively short time may be stored in a buffer, and an
anonymous memory page of a process that has not been used
for a relatively long time may be migrated to the storage
space. A probability that the terminal runs the process that
has not been used for a relatively short time is relatively
large. Therefore, such practice may greatly probably
improve efficiency of reading an anonymous memory page
by the terminal.

In the method described in FIG. 2, when reclaiming the
target application program, the terminal freezes the target
application program, so that the terminal unfreezes the target
application program only when the terminal receives the
triggering instruction that is input by the user for the target
application program, to prevent the memory from being
occupied again because the process of the target application
program is automatically started, and improve a memory
reclaiming effect.

The specific process of the method provided in the
embodiments of the present invention is mainly described
above, and an implementation location and a running status

US 11,822,805 B2

13

of the method provided in the embodiments of the present
invention are described below with reference to FIG. 3 by
using an Android operating system as an example. For a
more specific method process, refer to the foregoing
embodiment.

Referring to FIG. 3, FIG. 3 is a schematic structural
diagram of a terminal 300 according to an embodiment of
the present invention. The terminal 300 includes an appli-
cation layer 310 and an operating system layer 350, and the
operating system may be an Android operating system. The
operating system layer 350 is further divided into a frame-
work layer 320, a kernel library layer 330, and a driver layer
340. The operating system layer 350 in FIG. 3 may be
considered as a specific implementation of the operating
system 182 in FIG. 1, and the application layer 310 in FIG.
3 may be considered as a specific implementation of the
application program 181 in FIG. 1. The driver layer 340
includes a CPU driver 341, a GPU driver 342, a display
controller driver 343, and the like. The kernel library layer
330 is a core part of the operating system, and includes an
input/output service 331, a core service 332, a data com-
pression service 333, a data decompression service 334, a
memory reclaiming service 335, and the like. The data
compression service 333 is used to compress data reclaimed
during memory reclaiming, the data decompression service
334 is used to decompress data read from storage space and
then load the decompressed data to memory for running, and
the memory reclaiming service 335 is used to reclaim data
generated during running of a process of an application
program. The framework layer 320 may include a decision
service 324, a system service 321, a web service 322, a
customer service 323, and the like. The decision service 324
may include an event processing decision, an application
program decision, a service life identification decision, a
memory reclaiming decision, and the like. The event pro-
cessing decision is used to define effects of various events,
the application program decision is used to determine an
application program that needs to be cleaned (for example,
determine such an application program that time consumed
to start the application program in a cold start manner
exceeds 2.5 seconds as an application program that needs to
be cleaned), the service life identification decision is used to
obtain a useful life of storage space, and the memory
reclaiming decision defines a memory reclaiming manner
(for example, reclaiming memory by using an application
program as a unit). The application layer 310 may include a
picture library 311, a media player 312, a browser 313, and
the like.

Additionally, under the driver layer 340, the terminal 300
further includes a hardware layer 360. The hardware layer of
the terminal 300 may include a central processing unit
(CPU) 361 and a graphics processing unit (GPU) 362 (which
is equivalent to a specific implementation of the processor
150 in FIG. 1), may further include a memory 363 (which is
equivalent to the memory 180 in FIG. 1), including an
internal memory and an external memory, may further
include an input device 364 (which is equivalent to the input
device 132 in FIG. 1) and a display device 365 (which is
equivalent to the display device 140 in FIG. 1) such as a
liquid crystal display (LCD), holographic imaging, or a
projector, and may further include one or more sensors 366
(which are equivalent to the sensor 120 in FIG. 1). Certainly,
in addition, the hardware layer 360 may further include the
power supply, the camera, the RF circuit, and the WiFi
module that are shown in FIG. 1, and may further include
other hardware modules not shown in FIG. 1, for example,
a memory controller and a display controller.

10

15

20

25

30

35

40

45

50

55

60

65

14

The method in the embodiments of the present invention
is described in detail above. For ease of better implementing
the foregoing solutions in the embodiments of the present
invention, an apparatus in an embodiment of the present
invention is correspondingly provided in the following.

Referring to FIG. 4, FIG. 4 is a schematic structural
diagram of a terminal 40 according to an embodiment of the
present invention. The terminal 40 may include a determin-
ing unit 401, a reclaiming unit 402, and an unfreezing unit
403. The determining unit 401 is configured to determine,
according to a preset rule, a target application program in
application programs run on a background, where the target
application program is an application program that needs to
be cleaned. The reclaiming unit 402 is configured to freeze
the target application program to cause a process of the
target application program to be in an uninterruptible sleep
state, and reclaim data generated during running of the
process of the target application program in memory. The
unfreezing unit 403 is configured to unfreeze, when an input
triggering instruction for the target application program is
received, the target application program to cause the process
of the target application program to be in an interruptible
sleep state, and run the target application program after the
target application program is unfrozen.

By running the foregoing units, when reclaiming the
target application program, the terminal freezes the target
application program, so that the terminal unfreezes the target
application program only when the terminal receives the
triggering instruction that is input by a user for the target
application program, to prevent the memory from being
occupied again because the process of the target application
program is automatically started, and improve a memory
reclaiming effect.

In an optional solution, the determining unit is specifically
configured to determine that a residual amount of the
memory is greater than a preset memory threshold, and
determine the target application program according to the
preset rule.

It may be understood that, the terminal performs a related
operation of cleaning the application program only when the
terminal enters a preset idle state, so that no interference is
caused to the user; and performing the related operation of
cleaning the application program when the residual amount
of the memory is greater than the memory threshold may
ensure a smooth cleaning procedure.

In another optional solution, the reclaiming unit 402 is
specifically configured to migrate the data generated during
the running of the process of the target application program
from the memory to preset storage space; and the running,
by the unfreezing unit 403, the target application program
after the target application program is unfrozen is specifi-
cally: loading, after the target application program is unfro-
zen, the generated data from the storage space to the
memory to start the target application program.

It may be understood that, migration of the data generated
during the running of the process from the memory to the
storage space not only makes space for the memory, but also
ensures that the data is not lost. That is, this manner not only
ensures that the memory is smoothly reclaimed, but also
ensures that next time the user uses the target application
program, the user may directly enter an interface on which
the user exits the target application last time, to improve user
experience.

In another optional solution, the storage space includes a
swap used to store data generated during running of each
process, and the terminal 40 further includes a calculation
unit. The calculation unit is configured to determine a

US 11,822,805 B2

15

residual amount of writable data of the storage space; and
the migrating, by the reclaiming unit, the data generated
during the running of the process of the target application
program from the memory to preset storage space is spe-
cifically: migrating the generated data from the memory to
the preset storage space when the data generated during the
running of the target application program is not greater than
the residual amount of the writable data.

In another optional solution, the calculation unit is spe-
cifically configured to calculate a total amount of average
everyday writable data of the storage space based on a
pre-obtained total amount of the writable data of the storage
space; and calculate a residual amount of daily writable data
of'the storage space based on a total amount of daily writable
data and a total amount of daily written data.

It may be understood that, control over a total amount of
everyday written data of the storage space may ensure that
the storage space is not broken down within a pre-estimated
life cycle because a quantity of writing times is relatively
large.

In another optional solution, the target application pro-
gram is such an application program that time required to
start the application program in a start manner of cold start
exceeds a preset time threshold.

It may be understood that, such an application program
that a relatively long time is consumed to start the applica-
tion program in a cold start manner usually occupies rela-
tively large memory, and relatively large memory may be
released by selecting such application program to be
cleaned. Additionally, data generated during running of a
process of such application program is first migrated to the
storage space, and then migrated back to the memory when
the target application program is restarted later, so that time
for restarting the target application program can be short-
ened significantly.

In another optional solution, the reclaiming unit 402 is
specifically configured to set the process of the target
application program to a TASK_UNINTERRUPTIBLE
state; and the unfreezing unit 403 is specifically configured
to set the process of the target application program to a
TASK_INTERRUPTIBLE state.

For specific implementations of the units in this embodi-
ment of the present invention, further correspondingly refer
to the corresponding description of the method embodiment
shown in FIG. 2.

In the terminal 40 described in FIG. 4, when reclaiming
the target application program, the terminal 40 freezes the
target application program, so that the terminal unfreezes the
target application program only when the terminal receives
the triggering instruction that is input by the user for the
target application program, to prevent the memory from
being occupied again because the process of the target
application program is automatically started, and improve
the memory reclaiming effect.

To sum up, by implementing the embodiments of the
present invention, when reclaiming the target application
program, the terminal freezes the target application program,
so that the terminal unfreezes the target application program
only when the terminal receives the triggering instruction
that is input by the user for the target application program,
to prevent the memory from being occupied again because
the process of the target application program is automati-
cally started, and improve the memory reclaiming effect.

A person of ordinary skill in the art may understand that
all or some of the processes of the methods in the embodi-
ments may be implemented by a computer program instruct-
ing relevant hardware. The program may be stored in a

10

15

20

25

30

35

40

45

50

55

60

65

16

computer readable storage medium. When the program runs,
the processes of the methods in the embodiments are per-
formed. The foregoing storage medium includes: any
medium that can store program code, such as a ROM, a
RAM, a magnetic disk, or an optical disc.
The invention claimed is:
1. A memory reclaiming method, comprising:
determining, by a terminal according to a preset rule, a
target application program in application programs run
in a background, wherein the target application pro-
gram is an application program that needs to be
cleaned;
freezing, by the terminal, the target application program
to cause a process of the target application program to
be in an uninterruptible sleep state, and reclaiming data
generated during running of the process of the target
application program in memory; and
unfreezing, by the terminal when receiving an input
triggering instruction from a user for the target appli-
cation program, the target application program to cause
the process of the target application program to be in an
interruptible sleep state, and running the target appli-
cation program after the target application program is
unfrozen;
wherein
the freezing, by the terminal, the target application pro-
gram to cause the process of the target application
program to be in the uninterruptible sleep state com-
prises: setting a TIF_SIGPENDING flag of the process
of the target application program in a kernel indicating
a pending signal and preventing the target application
program from running a background process, detecting
the set TIF_SIGPENDING flag in a user mode, and
when the TIF_SIGPENDING flag is set in the user
mode, setting the process of the target application
program to a TASK_UNINTERRUPTIBLE state; and
the unfreezing the target application program to cause the
process of the target application program to be in the
interruptible sleep state comprises:
determining a user identifier (UID) associated with the
target application,
determining, from among a plurality of processes each
associated with one or more UlIDs, that the UID
associated with the target application program
matches a UID associated with the process, and
clearing, based on the input triggering instruction and
the determination of a UID match, the TIF_SIG-
PENDING flag of the process of the target applica-
tion program that is set in the kernel, setting the
process to the TASK_INTERRUPTIBLE state when
the TIF_SIGPENDING flag is cleared, and receiv-
ing, in the user mode, a wake-up event sent when the
process is set to the TASK_INTERRUPTIBLE state;
wherein the reclaiming data generated during running of
the process of the target application program in
memory comprises:
migrating the data generated during the running of the
process of the target application program from the
memory to preset storage space; and
the running the target application program after the target
application program is unfrozen comprises:
loading, after the target application program is unfrozen,
the generated data from the storage space to the
memory to start the target application program;
wherein the method further comprises:
determining, by the terminal, a residual amount of
writable data of the storage space by: calculating a

US 11,822,805 B2

17

total amount of average everyday writable data of the
storage space based on a pre-obtained total amount
of the writable data of the storage space, and calcu-
lating a residual amount of daily writable data of the
storage space based on a total amount of daily
writable data and a total amount of daily written data,
wherein when a condition that a loss of the storage
space within a predetermined time period is not to
exceed a proportion of the storage space is to be
satisfied, a total amount of written data of the storage
space is controlled not to exceed a predetermined
maximum amount; and

the migrating the data generated during the running of
the process of the target application program from
the memory to preset storage space comprises:

migrating the generated data from the memory to the
preset storage space when the data generated during
the running of the target application program is not
greater than the residual amount of the writable data.

2. The method according to claim 1, wherein the deter-
mining, by the terminal according to the preset rule, the
target application program in application programs run in
the background comprises:

determining that a residual amount of the memory is

greater than a preset memory threshold; and
determining the target application program according to
the preset rule.

3. The method according to claim 1, wherein a time
required to restart the target application program with a cold
start exceeds a preset time threshold.

4. The method according to claim 1, wherein the prede-
termined time period comprises a number of years, the
proportion of the storage space comprises a percentage of
the storage space, and the predetermined maximum amount
comprises a predetermined number of gigabytes of data.

5. The method according to claim 1, wherein the number
of years comprises three years, the proportion of the storage
space comprises 5% of the storage space, and the predeter-
mined number of gigabytes of data comprises 1095 giga-
bytes.

6. A terminal, comprising:

a memory; and

a processor coupled with the memory configured to

perform operations comprising:
determining, according to a preset rule, a target applica-
tion program in application programs run in a back-
ground, wherein the target application program is an
application program that needs to be cleaned;

freezing the target application program to cause a process
of the target application program to be in an uninter-
ruptible sleep state, and reclaiming data generated
during running of the process of the target application
program in the memory; and

unfreezing, when an input triggering instruction for the

target application program is received from a user, the

target application program to cause the process of the

target application program to be in an interruptible

sleep state, and running the target application program

after the target application program is unfrozen;
wherein

the freezing the target application program to cause the

process of the target application program to be in the
uninterruptible sleep state comprises: setting a
TIF_SIGPENDING flag of the process of the target
application program in a kernel indicating a pending
signal and preventing the target application program
from running a background process, detecting the set

5

25

30

40

45

50

55

60

18

TIF_SIGPENDING flag in a user mode, and when the

TIF_SIGPENDING flag is set in the user mode, setting

the process of the target application program to a

TASK_UNINTERRUPTIBLE state; and

the freezing the target application program to cause the

process of the target application program to be in the

interruptible sleep state comprises:

determining a user identifier (UID) associated with the
target application,

determining, from among a plurality of processes each
associated with one or more UlIDs, that the UID
associated with the target application program
matches a UID associated with the process, and

clearing, based on the input triggering instruction and
the determination of a UID match, the TIF_SIG-
PENDING flag of the process of the target applica-
tion program that is set in the kernel, setting the
process to the TASK_INTERRUPTIBLE state when
the TIF_SIGPENDING flag is cleared, and receiv-
ing, in the user mode, a wake-up event sent when the
process is set to the TASK_INTERRUPTIBLE state;

wherein the processor is further configured to perform

operations, comprising:

migrating the data generated during the running of the

process of the target application program from the
memory to preset storage space; and

the running the target application program after the target

application program is unfrozen comprises loading,
after the target application program is unfrozen, the
generated data from the storage space to the memory to
start the target application program;

wherein the processor is further configured to perform

operations, comprising:

determining a residual amount of writable data of the

storage space by: calculating a total amount of average
everyday writable data of the storage space based on a
pre-obtained total amount of the writable data of the
storage space, and calculating a residual amount of
daily writable data of the storage space based on a total
amount of daily writable data and a total amount of
daily written data, wherein when a condition that a loss
of the storage space within a predetermined time period
is not to exceed a proportion of the storage space is to
be satisfied, a total amount of written data of the storage
space is controlled not to exceed a predetermined
maximum amount; and

the migrating the data generated during the running of the

process of the target application program from the
memory to preset storage space further comprises:
migrating the generated data from the memory to the
preset storage space when the data generated during the
running of the target application program is not greater
than the residual amount of the writable data.

7. The terminal according to claim 6, wherein the pro-
cessor is further configured to perform operations, compris-
ing: determining that a residual amount of the memory is
greater than a preset memory threshold, and determining the
target application program according to the preset rule.

8. The terminal according to claim 6, wherein a time
required to restart the target application program with a cold
start exceeds a preset time threshold.

9. A non-transitory storage medium, having an instruction
stored thereon, which when executed on a terminal, the
terminal performs operations comprising:

determining, by the terminal according to a preset rule, a

target application program in application programs run

US 11,822,805 B2

19

in a background, wherein the target application pro-
gram is an application program that needs to be
cleaned;
freezing, by the terminal, the target application program
to cause a process of the target application program to
be in an uninterruptible sleep state, and reclaiming data
generated during running of the process of the target
application program in memory; and
unfreezing, by the terminal when receiving an input
triggering instruction from a user for the target appli-
cation program, the target application program to cause
the process of the target application program to be in an
interruptible sleep state, and running the target appli-
cation program after the target application program is
unfrozen;
wherein
the freezing, by the terminal, the target application pro-
gram to cause the process of the target application
program to be in the uninterruptible sleep state com-
prises: setting a TIF_SIGPENDING flag of the process
of the target application program in a kernel indicating
a pending signal and preventing the target application
program from running a background process, detecting
the set TIF_SIGPENDING flag in a user mode, and
when the TIF_SIGPENDING flag is set in the user
mode, setting the process of the target application
program to a TASK_UNINTERRUPTIBLE state; and
the unfreezing the target application program to cause the
process of the target application program to be in the
interruptible sleep state comprises:
determining a user identifier (UID) associated with the
target application,
determining, from among a plurality of processes each
associated with one or more UlDs, that the UID
associated with the target application program
matches a UID associated with the process, and
clearing, based on the input triggering instruction and
the determination of a UID match, the TIF_SIG-
PENDING flag of the process of the target applica-

10

15

20

25

30

35

20
tion program that is set in the kernel, setting the
process to the TASK_INTERRUPTIBLE state when
the TIF_SIGPENDING flag is cleared, and receiv-
ing, in the user mode, a wake-up event sent when the
process is set to the TASK_INTERRUPTIBLE state;
wherein the reclaiming data generated during running of
the process of the target application program in
memory comprises:
migrating the data generated during the running of the
process of the target application program from the
memory to preset storage space; and
the running the target application program after the target
application program is unfrozen comprises:
loading, after the target application program is unfrozen,
the generated data from the storage space to the
memory to start the target application program;
wherein the operations further comprises:
determining, by the terminal, a residual amount of
writable data of the storage space by: calculating a
total amount of average everyday writable data of the
storage space based on a pre-obtained total amount
of the writable data of the storage space, and calcu-
lating a residual amount of daily writable data of the
storage space based on a total amount of daily
writable data and a total amount of daily written data,
wherein when a condition that a loss of the storage
space within a predetermined time period is not to
exceed a proportion of the storage space is to be
satisfied, a total amount of written data of the storage
space is controlled not to exceed a predetermined
maximum amount; and
the migrating the data generated during the running of
the process of the target application program from
the memory to preset storage space comprises:
migrating the generated data from the memory to the
preset storage space when the data generated during the
running of the target application program is not greater
than the residual amount of the writable data.

#* #* #* #* #*

