

US 20190361209A1

(19) United States (12) Patent Application Publication (10) Pub. No.: US 2019/0361209 A1 MACHIDA

Nov. 28, 2019 (43) **Pub. Date:**

(54) ZOOM OPTICAL SYSTEM, OPTICAL APPARATUS, IMAGING APPARATUS AND METHOD FOR MANUFACTURING THE ZOOM OPTICAL SYSTEM

- (71) Applicant: Nikon Corporation, Minato-ku, Tokyo (JP)
- (72) Inventor: Kosuke MACHIDA, Tokyo (JP)
- Assignee: Nikon Corporation, Minato-ku, Tokyo (73)(JP)
- (21) Appl. No.: 16/345,198
- (22)PCT Filed: Nov. 21, 2016
- (86) PCT No.: PCT/JP2016/084396 § 371 (c)(1), Aug. 1, 2019 (2) Date:

Publication Classification

(51)	Int. Cl.	
	G02B 15/14	(2006.01)
	G02B 15/20	(2006.01)
	G02B 27/64	(2006.01)

(52) U.S. Cl.

CPC ... G02B 15/144105 (2019.08); G02B 27/646 (2013.01); G02B 15/20 (2013.01)

(57) ABSTRACT

A zoom optical system comprises, in order from an object: a front lens group (GFS) having a positive refractive power; an M1 lens group (GM1) having a negative refractive power; an M2 lens group (GM2) having a positive refractive power; and an RN lens group (GRN) having a negative refractive power, wherein upon zooming, distances between the front lens group and the M1 lens group, between the M1 lens group and the M2 lens group, and between the M2 lens group and the RN lens group change, upon focusing from an infinite distant object to a short distant object, the RN lens group moves, the RN lens group comprises at least one lens having a positive refractive power, and at least one lens having a negative refractive power, and following conditional expressions are satisfied, 2.70<fFP/(-fFN)<4.50, 0.25<(-fF)/f1<0.45, where fFP: a focal length of a lens having a strongest positive refractive power in the RN lens group, fFN: a focal length of a lens having a strongest negative refractive power in the RN lens group, fF: a focal length of the RN lens group, and f1: a focal length of the front lens group.

FIG.2A

FIG.2B

FIG.4A

FIG.4B

FIG.7A

FIG.9A

FIG.9B

FIG.12A

FIG.12B

COMA ABERRATION

FIG.14B

FIG.17A

ABERRATION

FIG.19A

COMA ABERRATION

FIG.22A

FIG.22B

FIG.24B

FIG.24A

FIG.27

ZOOM OPTICAL SYSTEM, OPTICAL APPARATUS, IMAGING APPARATUS AND METHOD FOR MANUFACTURING THE ZOOM OPTICAL SYSTEM

TECHNICAL FIELD

[0001] The present invention relates to a zoom optical system, an optical apparatus and an imaging apparatus including the same, and a method for manufacturing the zoom optical system.

TECHNICAL BACKGROUND

[0002] Conventionally, zoom optical systems suitable for photographic cameras, electronic still cameras, video cameras and the like have been proposed (for example, see Patent literature 1).

PRIOR ARTS LIST

Patent Document

[0003] Patent literature 1: Japanese Laid-Open Patent Publication No. H4-293007(A)

[0004] Unfortunately, according to the conventional zoom optical system, reduction in the weight of a focusing lens group is insufficient.

SUMMARY OF THE INVENTION

[0005] A zoom optical system according to the present invention comprises, in order from an object: a front lens group having a positive refractive power; an M1 lens group having a negative refractive power; an M2 lens group having a negative refractive power; and an RN lens group having a negative refractive power; wherein upon zooming, a distance between the front lens group and the M1 lens group changes, a distance between the M1 lens group and the M2 lens group changes, and a distance between the M2 lens group and the RN lens group changes, upon focusing from an infinite distant object to a short distant object, the RN lens group moves, the RN lens group comprises at least one lens having a negative refractive power, and at least one lens having a negative refractive power, and following conditional expressions are satisfied,

2.70<fFP/(-fFN)<4.50

0.25<(-*fF*)/*f*1<0.45

[0006] where

[0007] fFP: a focal length of a lens having a strongest positive refractive power in the RN lens group,

[0008] fFN: a focal length of a lens having a strongest negative refractive power in the RN lens group,

[0009] fF: a focal length of the RN lens group, and

[0010] f1: a focal length of the front lens group.

[0011] An optical apparatus according to the present invention comprises the zoom optical system.

[0012] An imaging apparatus according to the present invention comprises: the zoom optical system; and an imaging unit that takes an image formed by the zoom optical system.

[0013] A method for manufacturing a zoom optical system according to the present invention comprising, in order from an object, a front lens group having a positive refractive power, an M1 lens group having a negative refractive power,

an M2 lens group having a positive refractive power, and an RN lens group having a negative refractive power, comprises achieving an arrangement where upon zooming, a distance between the front lens group and the M1 lens group changes, a distance between the M1 lens group and the M2 lens group changes, and a distance between the M2 lens group and the RN lens group changes, wherein upon focusing from an infinite distant object to a short distant object, the RN lens group moves, the RN lens group comprises at least one lens having a positive refractive power, and at least one lens having a negative refractive power, and following conditional expressions are satisfied,

2.70<*fFP*/(-*fFN*)<4.50

0.25<(-*fF*)/*f*1<0.45

[0014] where

[0015] fFP: a focal length of a lens having a strongest positive refractive power in the RN lens group,

[0016] fFN: a focal length of a lens having a strongest negative refractive power in the RN lens group,

[0017] fF: a focal length of the RN lens group, and

[0018] f1: a focal length of the front lens group.

BRIEF DESCRIPTION OF THE DRAWINGS

[0019] FIG. 1 shows a lens configuration of a zoom optical system according to a first example of this embodiment;

[0020] FIG. **2**A is graphs showing various aberrations of the zoom optical system according to the first example upon focusing on infinity in the wide-angle end state, and FIG. **2**B is graphs showing meridional lateral aberrations (coma aberrations) when blur correction is applied to a rotational blur by 0.30° ;

[0021] FIG. **3** is graphs showing various aberrations of the zoom optical system according to the first example upon focusing on infinity in the intermediate focal length state;

[0022] FIG. **4**A is graphs showing various aberrations of the zoom optical system according to the first example upon focusing on infinity in the telephoto end state, and FIG. **4**B is graphs showing meridional lateral aberrations when blur correction is applied to a rotational blur by 0.20°;

[0023] FIGS. **5**A, **5**B and **5**C are graphs showing various aberrations of the zoom optical system according to the first example upon focusing on a short distant object in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively;

[0024] FIG. **6** shows a lens configuration of a zoom optical system according to a second example of this embodiment; **[0025]** FIG. **7**A is graphs showing various aberrations of the zoom optical system according to the second example upon focusing on infinity in the wide-angle end state, and FIG. **7**B is graphs showing meridional lateral aberrations when blur correction is applied to a rotational blur by 0.30°; **[0026]** FIG. **8** is graphs showing various aberrations of the zoom optical system according to the second example upon focusing on infinity in the intermediate focal length state;

[0027] FIG. **9**A is graphs showing various aberrations of the zoom optical system according to the second example upon focusing on infinity in the telephoto end state, and FIG. **9**B is graphs showing meridional lateral aberrations when blur correction is applied to a rotational blur by 0.20°;

[0028] FIGS. **10**A, **10**B and **10**C are graphs showing various aberrations of the zoom optical system according to the second example upon focusing on a short distant object

in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively;

[0029] FIG. **11** shows a lens configuration of a zoom optical system according to a third example of this embodiment;

[0030] FIG. **12**A is graphs showing various aberrations of the zoom optical system according to the third example upon focusing on infinity in the wide-angle end state, and FIG. **12**B is graphs showing meridional lateral aberrations when blur correction is applied to a rotational blur by 0.30°;

[0031] FIG. **13** is graphs showing various aberrations of the zoom optical system according to the third example upon focusing on infinity in the intermediate focal length state;

[0032] FIG. **14**A is graphs showing various aberrations of the zoom optical system according to the third example upon focusing on infinity in the telephoto end state, and FIG. **14**B is graphs showing meridional lateral aberrations when blur correction is applied to a rotational blur by 0.20°;

[0033] FIGS. **15**A, **15**B and **15**C are graphs showing various aberrations of the zoom optical system according to the third example upon focusing on a short distant object in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively;

[0034] FIG. **16** shows a lens configuration of a zoom optical system according to a fourth example of this embodiment;

[0035] FIG. 17A is graphs showing various aberrations of the zoom optical system according to the fourth example upon focusing on infinity in the wide-angle end state, and FIG. 17B is graphs showing meridional lateral aberrations when blur correction is applied to a rotational blur by 0.30°; [0036] FIG. 18 is graphs showing various aberrations of the zoom optical system according to the fourth example upon focusing on infinity in the intermediate focal length state;

[0037] FIG. **19**A is graphs showing various aberrations of the zoom optical system according to the fourth example upon focusing on infinity in the telephoto end state, and FIG. **19**B is graphs showing meridional lateral aberrations when blur correction is applied to a rotational blur by 0.20°;

[0038] FIGS. **20**A, **20**B and **20**C are graphs showing various aberrations of the zoom optical system according to the fourth example upon focusing on a short distant object in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively;

[0039] FIG. **21** shows a lens configuration of a zoom optical system according to a fifth example of this embodiment;

[0040] FIG. **22**A is graphs showing various aberrations of the zoom optical system according to the fifth example upon focusing on infinity in the wide-angle end state, and FIG. **22**B is graphs showing meridional lateral aberrations when blur correction is applied to a rotational blur by 0.30°;

[0041] FIG. **23** is graphs showing various aberrations of the zoom optical system according to the fifth example upon focusing on infinity in the intermediate focal length state;

[0042] FIG. **24**A is graphs showing various aberrations of the zoom optical system according to the fifth example upon focusing on infinity in the telephoto end state, and FIG. **24**B is graphs showing meridional lateral aberrations when blur correction is applied to a rotational blur by 0.20°;

[0043] FIGS. **25**A, **25**B and **25**C are graphs showing various aberrations of the zoom optical system according to the fifth example upon focusing on a short distant object in

the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively;

[0044] FIG. **26** shows a configuration of a camera including the zoom optical system according to this embodiment; and

[0045] FIG. **27** is a flowchart showing a method for manufacturing the zoom optical system according to this embodiment.

DESCRIPTION OF THE EMBODIMENTS

[0046] Hereinafter, a zoom optical system, an optical apparatus, and an imaging apparatus of this embodiment are described with reference to the drawings. As shown in FIG. 1, a zoom optical system ZL(1) that is an example of a zoom optical system (zoom lens) ZL according to this embodiment comprises, in order from an object: a front lens group GFS having a positive refractive power; an M1 lens group GM1 having a negative refractive power; an M2 lens group GM2 having a positive refractive power; and an RN lens group GRN having a negative refractive power, wherein upon zooming, a distance between the front lens group GFS and the M1 lens group GM1 changes, a distance between the M1 lens group GM1 and the M2 lens group GM2 changes, and a distance between the M2 lens group GM2 and the RN lens group GRN changes, upon focusing from an infinite distant object to a short distant object, the RN lens group GRN moves, the RN lens group GRN comprises at least one lens having a positive refractive power, and at least one lens having a negative refractive power, and the following conditional expressions (1) and (2) are satisfied,

$$2.70 \le fFP/(-fFN) \le 4.50$$
 (1)

$$0.25 < (-fF)/f1 < 0.45$$
 (2)

[0047] where

[0048] fFP: a focal length of a lens having a strongest positive refractive power in the RN lens group GRN,

[0049] fFN: a focal length of a lens having a strongest negative refractive power in the RN lens group GRN,

[0050] fF: a focal length of the RN lens group GRN, and **[0051]** f1: a focal length of the front lens group GFS.

[0052] The zoom optical system ZL according to this

embodiment may be a zoom optical system ZL(2) shown in FIG. **6**, a zoom optical system ZL(3) shown in FIG. **11**, a zoom optical system ZL(4) shown in FIG. **16**, and a zoom optical system ZL(5) shown in FIG. **21**.

[0053] The zoom optical system according to this embodiment comprises at least four lens groups, and changes the distances between lens groups upon zooming from the wide-angle end state to the telephoto end state, thereby allowing favorable aberration correction upon zooming to be facilitated. Focusing with the RN lens group GRN can reduce the size and weight of the RN lens group GRN, that is, the focusing lens group.

[0054] Furthermore, the RN lens group GRN (focusing lens group) comprises at least one lens having a positive refractive power, and at least one lens having a negative refractive power; this configuration can suppress variation in various aberrations including the spherical aberration upon focusing from an infinite distant object to a short distant object.

[0055] The conditional expression (1) defines the ratio of the focal length of the lens that is in the focusing lens group and has the strongest positive refractive power to the focal

length of the lens that is in the focusing lens group and has the strongest negative refractive power. By satisfying the conditional expression (1), variation in various aberrations including the spherical aberration upon focusing from the infinite distant object to the short distant object can be suppressed.

[0056] If the corresponding value of the conditional expression (1) exceeds the upper limit value, the refractive power of the lens that is in the focusing lens group and has the strongest negative refractive power becomes strong, and it becomes difficult to suppress variation in various aberrations including the spherical aberration upon focusing from the infinite distant object to the short distant object. Setting of the upper limit value of the conditional expression (1) to 4.40 can more securely achieve the advantageous effects of this embodiment. To further secure the advantageous effects of this embodiment, it is preferable that the upper limit value of the conditional expression (1) be 4.30.

[0057] If the corresponding value of the conditional expression (1) falls below the lower limit value, the refractive power of the lens that is in the focusing lens group and has the strongest positive refractive power becomes strong, and it becomes difficult to suppress variation in various aberrations including the spherical aberration upon focusing from the infinite distant object to the short distant object. Setting of the lower limit value of the conditional expression (1) to 2.80 can more securely achieve the advantageous effects of this embodiment. To further secure the advantageous effects of this embodiment, it is preferable that the lower limit value of the conditional expression (1) be 2.90. [0058] The conditional expression (2) defines the ratio of the focal length of the focusing lens group to the focal length of the front lens group GFS. By satisfying the conditional expression (2), variation in various aberrations including the spherical aberration upon zooming from the wide-angle end to the telephoto end can be suppressed, and variation in various aberrations including the spherical aberration upon focusing from an infinite distant object to a short distant object can be suppressed.

[0059] If the corresponding value of the conditional expression (2) exceeds the upper limit value, the refractive power of the front lens group GFS becomes strong, and it is difficult to correct various aberrations including the spherical aberration upon zooming from the wide-angle end to the telephoto end. Setting of the upper limit value of the conditional expression (2) to 0.43 can more securely achieve the advantageous effects of this embodiment. To further secure the advantageous effects of this embodiment, it is preferable that the upper limit value of the conditional expression (2) be 0.41.

[0060] If the corresponding value of the conditional expression (2) falls below the lower limit value, the refractive power of the focusing lens group becomes strong, and it becomes difficult to suppress variation in various aberrations including the spherical aberration upon focusing from the infinite distant object to the short distant object. Setting of the lower limit value of the conditional expression (2) to 0.27 can more securely achieve the advantageous effects of this embodiment. To further secure the advantageous effects of this embodiment, it is preferable that the lower limit value of the conditional expression (2) be 0.29.

[0061] According to the zoom optical system of this embodiment, reduction in size and weight of the focusing lens group can achieve high-speed AF and silence during AF

without increasing the size of the lens barrel. Furthermore, variation of aberrations upon zooming from the wide-angle end state to the telephoto end state, and variation of aberrations upon focusing from an infinite distant object to a short distant object can be favorably suppressed. The optical apparatus, the imaging apparatus, and the method for manufacturing the zoom optical system according to this embodiment can also achieve analogous advantageous effects.

[0062] In this embodiment, preferably, upon zooming from a wide-angle end state to a telephoto end state, the front lens group GFS moves toward the object. Accordingly, the entire length of the lens at the wide-angle end state can be reduced, which facilitates reduction in the size of the zoom optical system.

[0063] In this embodiment, preferably, upon zooming from a wide-angle end state to a telephoto end state, a lens group nearest to the object in the M1 lens group GM1 is fixed with respect to an image surface. Accordingly, degradation in performance due to manufacturing errors is suppressed, which can secure mass-productivity.

[0064] In this embodiment, preferably, the M2 lens group GM comprises a vibration-proof lens group disposed movably in a direction orthogonal to an optical axis to correct an imaging position displacement due to a camera shake or the like. Accordingly, degradation in performance upon blur correction can be effectively suppressed.

[0065] In this embodiment, preferably, the zoom optical system comprising the vibration-proof lens group satisfies a following conditional expression (3),

[0066] where

1

[0067] fvr: a focal length of the vibration-proof lens group, and

[0068] fTM2: a focal length of the M2 lens group GM2 in a telephoto end state.

[0069] The conditional expression (3) defines the ratio of the focal length of the vibration-proof lens group to the focal length of the M2 lens group GM2 in the telephoto end state. By satisfying the conditional expression (3), variation in various aberrations including the spherical aberration upon zooming from the wide-angle end to the telephoto end can be suppressed, and occurrence of various aberrations including the decentering coma aberration upon blur correction can be suppressed.

[0070] If the corresponding value of the conditional expression (3) exceeds the upper limit value, the refractive power of the M2 lens group GM2 in the telephoto end state becomes strong, and it is difficult to suppress variation in various aberrations including the spherical aberration upon zooming from the wide-angle end to the telephoto end. Setting of the upper limit value of the conditional expression (3) to 1.95 can more securely achieve the advantageous effects of this embodiment. To further secure the advantageous effects of this embodiment, it is preferable that the upper limit value of the conditional expression (3) be 1.90. [0071] If the corresponding value of the conditional expression (3) falls below the lower limit value, the refractive power of the vibration-proof lens group becomes strong, and it becomes difficult to suppress occurrence of various aberrations including the decentering coma aberration during blur correction. Setting of the lower limit value of the conditional expression (3) to 1.15 can more securely achieve the advantageous effects of this embodiment. To further secure the advantageous effects of this embodiment, it is preferable that the lower limit value of the conditional expression (3) be 1.20.

[0072] Preferably, the vibration-proof lens group consists of, in order from the object: a lens having a negative refractive power; and a lens having a positive refractive power. Accordingly, degradation in performance upon blur correction can be effectively suppressed.

[0073] It is desirable that the zoom optical system of this embodiment comprising the vibration-proof lens group satisfy a following conditional expression (4),

[0074] where

[0075] nvrN: a refractive index of the lens having the negative refractive power in the vibration-proof lens group, and

[0076] nvrP: a refractive index of the lens having the positive refractive power in the vibration-proof lens group. **[0077]** The conditional expression (4) defines the ratio of the refractive index of the lens that is in the vibration-proof lens group and has a negative refractive power to the refractive index of the lens that is in the vibration-proof lens group and has a positive refractive power. By satisfying the conditional expression (4), degradation in performance upon blur correction can be effectively suppressed.

[0078] If the corresponding value of the conditional expression (4) exceeds the upper limit value, the refractive index of the lens that is in the vibration-proof lens group and has a positive refractive power decreases, the decentering coma aberration caused upon blur correction excessively occurs, and it becomes difficult to correct the aberration. Setting of the upper limit value of the conditional expression (4) to 1.22 can more securely achieve the advantageous effects of this embodiment. To further secure the advantageous effects of this embodiment, it is preferable that the upper limit value of the conditional expression (4) be 1.20. [0079] If the corresponding value of the conditional expression (4) falls below the lower limit value, the refractive index of the lens that is in the vibration-proof lens group and has the negative refractive power becomes low, and it becomes difficult to correct the decentering coma aberration upon blur correction. Setting of the lower limit value of the conditional expression (4) to 1.03 can more securely achieve the advantageous effects of this embodiment. To further secure the advantageous effects of this embodiment, it is preferable that the lower limit value of the conditional expression (4) be 1.05.

[0080] It is also desirable that the zoom optical system of this embodiment comprising the vibration-proof lens group satisfy a following conditional expression (5),

[0081] where

[0082] vvrN: an Abbe number of the lens having the negative refractive power in the vibration-proof lens group, and

[0083] vvrP: an Abbe number of the lens having the positive refractive power in the vibration-proof lens group. **[0084]** The conditional expression (5) defines the ratio of the Abbe number of the lens that is in the vibration-proof lens group and has the negative refractive power to the Abbe number of the lens that is in the vibration-proof lens group and has the positive refractive power. By satisfying the conditional expression (5), degradation in performance upon blur correction can be effectively suppressed.

[0085] If the corresponding value of the conditional expression (5) exceeds the upper limit value, the Abbe number of the lens that is in the vibration-proof lens group and has the positive refractive power decreases, and it becomes difficult to correct the chromatic aberration caused upon blur correction. Setting of the upper limit value of the conditional expression (5) to 0.85 can more securely achieve the advantageous effects of this embodiment. To further secure the advantageous effects of this embodiment, it is preferable that the upper limit value of the conditional expression (5) be 0.80.

[0086] If the corresponding value of the conditional expression (5) falls below the lower limit value, the Abbe number of the lens that is in the vibration-proof lens group and has the negative refractive power decreases, and it becomes difficult to correct the chromatic aberration caused upon blur correction. Setting of the lower limit value of the conditional expression (5) to 0.35 can more securely achieve the advantageous effects of this embodiment. To further secure the advantageous effects of this embodiment, it is preferable that the lower limit value of the conditional expression (5) be 0.40.

[0087] It is desirable that the zoom optical system according to this embodiment satisfy a following conditional expression (6),

$$0.15 < (-fTM1)/f1 < 0.35$$
 (6)

[0088] where

(5)

[0089] fTM1: a focal length of the M1 lens group GM1 in a telephoto end state.

[0090] The conditional expression (6) defines the ratio of the focal length of the M1 lens group GM1 to the focal length of the front lens group GFS in the telephoto end state. By satisfying the conditional expression (6), variation in various aberrations including the spherical aberration upon zooming from the wide-angle end to the telephoto end can be suppressed.

[0091] If the corresponding value of the conditional expression (6) exceeds the upper limit value, the refractive power of the front lens group GFS becomes strong, and it is difficult to correct various aberrations including the spherical aberration upon zooming from the wide-angle end to the telephoto end. Setting of the upper limit value of the conditional expression (6) to 0.33 can more securely achieve the advantageous effects of this embodiment. To further secure the advantageous effects of this embodiment, it is preferable that the upper limit value of the conditional expression (6) be 0.31.

[0092] If the corresponding value of the conditional expression (6) falls below the lower limit value, the refractive power of the M1 lens group GM1 becomes strong, and it is difficult to suppress variation in various aberrations including the spherical aberration upon zooming from the wide-angle end to the telephoto end. Setting of the lower limit value of the conditional expression (6) to 0.16 can more securely achieve the advantageous effects of this embodiment. To further secure the advantageous effects of this embodiment, it is preferable that the lower limit value of the conditional expression (6) be 0.17.

[0093] It is desirable that the zoom optical system according to this embodiment satisfy a following conditional expression (7),

0.20<*fTM*2/*f*1<0.40

[0094] where

(7)

[0095] fTM2: a focal length of the M2 lens group GM2 in a telephoto end state.

[0096] The conditional expression (7) defines the ratio of the focal length of the M2 lens group GM2 to the focal length of the front lens group GFS in the telephoto end state. By satisfying the conditional expression (7), variation in various aberrations including the spherical aberration upon zooming from the wide-angle end to the telephoto end can be suppressed.

[0097] If the corresponding value of the conditional expression (7) exceeds the upper limit value, the refractive power of the front lens group GFS becomes strong, and it is difficult to correct various aberrations including the spherical aberration upon zooming from the wide-angle end to the telephoto end. Setting of the upper limit value of the conditional expression (7) to 0.37 can more securely achieve the advantageous effects of this embodiment. To further secure the advantageous effects of this embodiment, it is preferable that the upper limit value of the conditional expression (7) be 0.34.

[0098] If the corresponding value of the conditional expression (7) falls below the lower limit value, the refractive power of the M2 lens group GM2 becomes strong, and it is difficult to suppress variation in various aberrations including the spherical aberration upon zooming from the wide-angle end to the telephoto end. Setting of the lower limit value of the conditional expression (7) to 0.22 can more securely achieve the advantageous effects of this embodiment. To further secure the advantageous effects of this embodiment, it is preferable that the lower limit value of the conditional expression (7) be 0.24.

[0099] Preferably, the zoom optical system according to this embodiment comprises a negative meniscus lens that has a concave surface facing the object, and is adjacent to an image side of the RN lens group GRN. The zoom optical system may comprise, in order from the object: a lens having a negative refractive power; and a lens having a positive refractive power, the lenses being adjacent to an image side of the RN lens group. Accordingly, various aberrations including the coma aberration can be effectively corrected. **[0100]** It is preferable that the zoom optical system according to this embodiment satisfy a following conditional expression (8),

$$0.70 < (-fN)/fP < 2.00$$

(8)

[0101] where

[0102] fN: a focal length of a lens having a strongest negative refractive power among lenses adjacent to the image side of the RN lens group GRN, and

[0103] fP: a focal length of a lens having a strongest positive refractive power among lenses adjacent to the image side of the RN lens group GRN.

[0104] The conditional expression (8) defines the ratio of the focal length of the lens that has the strongest negative refractive power among the lenses adjacent to the image side of the RN lens group GRN to the focal length of the lens that has the strongest positive refractive power among the lenses adjacent to the image side of the RN lens group GRN. By satisfying the conditional expression (8), various aberrations including the corresponding value of the conditional expression (8) exceeds the upper limit value, the refractive

power of the lens that is on the image side of the focusing lens group and has the positive refractive power becomes strong, and the coma aberration occurs excessively. Setting of the upper limit value of the conditional expression (8) to 1.90 can more securely achieve the advantageous effects of this embodiment. To further secure the advantageous effects of this embodiment, it is preferable that the upper limit value of the conditional expression (8) be 1.80.

[0106] If the corresponding value of the conditional expression (8) falls below the lower limit value, the refractive power of the lens that is on the image side of the focusing lens group and has the negative refractive power is strong, and the coma aberration is excessively corrected. Setting of the lower limit value of the conditional expression (8) to 0.80 can more securely achieve the advantageous effects of this embodiment. To further secure the advantageous effects of this embodiment, it is preferable that the lower limit value of the conditional expression (8) be 0.90. **[0107]** It is preferable that the zoom optical system according to this embodiment satisfy a following conditional expression (9),

$$1.80 \le f 1 / f w \le 3.50$$
 (9)

[0108] where

[0109] fw: a focal length of the zoom optical system in a wide-angle end state.

[0110] The conditional expression (9) defines the ratio of the focal length of the front lens group GFS to the focal length of the zoom optical system in the wide-angle end state. By satisfying the conditional expression (9), the size of the lens barrel can be prevented from increasing, and variation in various aberrations including the spherical aberration upon zooming from the wide-angle end to the telephoto end can be suppressed.

[0111] If the corresponding value of the conditional expression (9) exceeds the upper limit value, the refractive power of the front lens group GFS becomes weak, and the size of lens barrel increases. Setting of the upper limit value of the conditional expression (9) to 3.30 can more securely achieve the advantageous effects of this embodiment. To further secure the advantageous effects of this embodiment, it is preferable to set the upper limit value of the conditional expression (9) to 3.10.

[0112] If the corresponding value of the conditional expression (9) falls below the lower limit value, the refractive power of the front lens group GFS becomes strong, and it is difficult to correct various aberrations including the spherical aberration upon zooming from the wide-angle end to the telephoto end. Setting of the lower limit value of the conditional expression (9) to 1.90 can more securely achieve the advantageous effects of this embodiment. To further secure the advantageous effects of this embodiment, it is preferable to set the lower limit value of the conditional expression (9) to 2.00, and it is more preferable to set the lower limit value of the conditional expression (9) to 2.10. **[0113]** It is preferable that the zoom optical system according to this embodiment satisfy a following conditional expression (10),

(10)

[0114] where

3.70<*f*1/(-*fTM*1)<5.00

[0115] fTM1: a focal length of the M1 lens group GM1 in a telephoto end state.

[0116] The conditional expression (10) defines the ratio of the focal length of the front lens group GFS to the focal

length of the M1 lens group GM1. By satisfying the conditional expression (10), variation in various aberrations including the spherical aberration upon zooming from the wide-angle end to the telephoto end can be suppressed.

[0117] If the corresponding value of the conditional expression (10) exceeds the upper limit value, the refractive power of the M1 lens group GM1 becomes strong, and it is difficult to suppress variation in various aberrations including the spherical aberration upon zooming from the wide-angle end to the telephoto end. Setting of the upper limit value of the conditional expression (10) to 4.90 can more securely achieve the advantageous effects of this embodiment. To further secure the advantageous effects of this embodiment, it is preferable to set the upper limit value of the conditional expression (10) to 4.80.

[0118] If the corresponding value of the conditional expression (10) falls below the lower limit value, the refractive power of the front lens group GFS becomes strong, and it is difficult to correct various aberrations including the spherical aberration upon zooming from the wide-angle end to the telephoto end. Setting of the lower limit value of the conditional expression (10) to 3.90 can more securely achieve the advantageous effects of this embodiment. To further secure the advantageous effects of the embodiment, it is preferable to set the lower limit value of the conditional expression (10) to 3.95.

[0119] It is preferable that the zoom optical system according to this embodiment satisfy a following conditional expression (11),

$$3.20 \le f1/fTM2 \le 5.00$$
 (11)

[0120] where

[0121] fTM2: a focal length of the M2 lens group GM2 in a telephoto end state.

[0122] The conditional expression (11) defines the ratio of the focal length of the front lens group GFS to the focal length of the M2 lens group GM2. By satisfying the conditional expression (11), variation in various aberrations including the spherical aberration upon zooming from the wide-angle end to the telephoto end can be suppressed.

[0123] If the corresponding value of the conditional expression (11) exceeds the upper limit value, the refractive power of the M2 lens group GM2 becomes strong, and it is difficult to suppress variation in various aberrations including the spherical aberration upon zooming from the wide-angle end to the telephoto end. Setting of the upper limit value of the conditional expression (11) to 4.80 can more securely achieve the advantageous effects of this embodiment. To further secure the advantageous effects of this embodiment, it is preferable to set the upper limit value of the conditional expression (11) to 4.60.

[0124] If the corresponding value of the conditional expression (11) falls below the lower limit value, the refractive power of the front lens group GFS becomes strong, and it is difficult to correct various aberrations including the spherical aberration upon zooming from the wide-angle end to the telephoto end. Setting of the lower limit value of the conditional expression (11) to 3.40 can more securely achieve the advantageous effects of this embodiment. To further secure the advantageous effects of the conditional expression (11) to 3.60.

[0125] An optical apparatus and an imaging apparatus according to this embodiment comprise the zoom optical

system having the configuration described above. As a specific example, a camera (corresponding to the imaging apparatus of the invention of the present application) including the aforementioned zoom optical system ZL is described with reference to FIG. 26. As shown in FIG. 26, this camera 1 has a lens assembly configuration including a replaceable imaging lens 2. The zoom optical system having the configuration described above is provided in the imaging lens 2. That is, the imaging lens 2 corresponds to the optical apparatus of the invention of the present application. The camera 1 is a digital camera. Light from an object (subject), not shown, is collected by the imaging lens 2, and reaches an imaging element 3. Accordingly, the light from the subject is imaged by the imaging element 3, and recorded as a subject image in a memory, not shown. As described above, a photographer can take an image of the subject through the camera 1. Note that this camera may be a mirrorless camera, or a single-lens reflex type camera including a quick return mirror.

[0126] According to the configuration described above, the camera 1 mounted with the zoom optical system ZL described above in the imaging lens 2 can achieve high-speed AF and silence during AF without increasing the size of the lens barrel by reducing the size and weight of the focusing lens group. Furthermore, variation of aberrations upon zooming from the wide-angle end state to the telephoto end state, and variation of aberrations upon focusing from an infinite distant object to a short distant object can be favorably suppressed, and a favorable optical performance can be achieved.

[0127] Subsequently, referring to FIG. 27, an overview of a method for manufacturing the aforementioned zoom optical system ZL is described. First, arrange, in order from an object, a front lens group GFS having a positive refractive power, an M1 lens group GM1 having a negative refractive power, an M2 lens group GM2 having a positive refractive power, and an RN lens group GRN having a negative refractive power (step ST1). Then, achieve a configuration such that upon zooming, a distance between the front lens group GFS and the M1 lens group GM1 changes, a distance between the M1 lens group GM1 and the M2 lens group GM2 changes, and a distance between the M2 lens group GM2 and the RN lens group GRN changes (step ST2). In this case, the RN lens group GRN is configured to move upon focusing from an infinite distant object to a short distant object (step ST3), and the RN lens group GRN is configured to include at least one lens having a positive refractive power, and at least one lens having a negative refractive power (step ST4). Furthermore, arrange the lens so as to satisfy a predetermined conditional expression (step ST5).

EXAMPLES

[0128] Hereinafter, zoom optical systems (zoom lens) ZL according to the examples of this embodiment are described with reference to the drawings. FIGS. **1**, **6**, **11**, **16** and **21** are sectional views showing the configurations and refractive power distributions of the zoom optical systems ZL $\{ZL(1) \text{ to } ZL(5)\}$ according to first to fifth examples. At lower parts of the sectional views of the zoom optical systems ZL(1) to ZL(5), the movement direction of each lens group along the optical axis during zooming from the wide-angle end state (W) to the telephoto end state (T) is indicated by a corresponding arrow. Furthermore, the movement direction during duri

ing focusing the focusing group GRN from infinity to a short distant object is indicated by an arrow accompanied by characters "FOCUSING."

[0129] FIGS. **1**, **6**, **11**, **16** and **21** show each lens group by a combination of a symbol G and a numeral or alphabet (s), and show each lens by a combination of a symbol L and a numeral. In this case, to prevent the types and numbers of symbols and numerals from increasing and being complicated, the lens groups and the like are indicated using the combinations of symbols and numerals independently on an example-by-example basis. Accordingly, even though the same combinations of symbols and numerals are used among the examples, the combinations do not mean the same configurations.

[0130] Tables 1 to 5 are hereinafter shown below. Tables 1 to 5 are tables representing various data in the first to fifth examples. In each example, d-line (wavelength 587.562 nm) and g-line (wavelength 435.835 nm) are selected as calculation targets of aberration characteristics.

[0131] In [Lens data] tables, the surface number denotes the order of optical surfaces from the object along a light beam traveling direction, R denotes the radius of curvature (a surface whose center of curvature is nearer to the image is assumed to have a positive value) of each optical surface, D denotes the surface distance, which is the distance on the optical axis from each optical surface to the next optical surface (or the image surface), nd denotes the refractive index of the material of an optical element for the d-line, and vd denotes the Abbe number of the material of an optical element with reference to the d-line. The object surface denotes the surface of an object. "" of the radius of curvature indicates a flat surface or an aperture. (Stop S) indicates an aperture stop S. The image surface indicates an image surface I. The description of the air refractive index nd=1.00000 is omitted.

[0132] In [Various data] tables, f denotes the focal length of the entire zoom lens, FNO denotes the f-number, 2ω denotes the angle of view (represented in units of ° (degree); w denotes the half angle of view), and Ymax denotes the maximum image height. TL denotes the distance obtained by adding BF to the distance on the optical axis from the lens forefront surface to the lens last surface upon focusing on infinity. BF denotes the distance (back focus) on the optical axis from the lens last surface I upon focusing on infinity. Note that these values are represented for zooming states of the wide-angle end (W), the intermediate focal length (M), and the telephoto end (T).

[0133] [Variable distance data] tables show the surface distances at surface numbers (e.g., surface numbers 5, 13, 25 and 29 in First Example) to which the surface distance of "Variable" in the table representing [Lens data] correspond. This shows the surface distances in the zooming states of the wide-angle end (W), the intermediate focal length (M) and the telephoto end (T) upon focusing on infinity and a short distant object.

[0134] [Lens group data] tables show the starting surfaces (the surfaces nearest to the object) and the focal lengths of the first to fifth lens groups (or the first to fourth lens groups, or the first to sixth lens groups).

[0135] [Conditional expression corresponding value] tables show values corresponding to the conditional expressions (1) to (11) described above.

[0136] Hereinafter, for all the data values, the listed focal length f, radius of curvature R, surface distance D, other

lengths and the like are typically represented in "mm" if not otherwise specified. However, the optical system can exert equivalent optical performances even if being proportionally magnified or proportionally reduced. Consequently, the representation is not limited thereto.

[0137] The above descriptions of the tables are common to all the examples. Hereinafter, redundant description is omitted.

First Example

[0138] The first example is described with reference to FIG. 1 and Table 1. FIG. 1 shows a lens configuration of a zoom optical system according to the first example of this embodiment. The zoom optical system ZL(1) according to this example consists of, in order from the object: a first lens group G1 having a positive refractive power; a second lens group G2 having a negative refractive power; a fourth lens group G4 having a negative refractive power; and a fifth lens group G5 having a positive refractive power. The sign (+) or (-) assigned to each lens group symbol indicates the refractive power of the corresponding lens group. This similarly applies to all the following examples.

[0139] In relation to the embodiment described above, in this configuration, the first lens group G1 corresponds to the front lens group GFS, the second lens group G2 corresponds to the M1 lens group GM1, the third lens group G3 corresponds to the M2 lens group GM2, and the fourth lens group G4 corresponds to the RN lens group GRN.

[0140] The first lens group G1 consists of, in order from the object: a positive convexo-planar lens L11 having a convex surface facing the object; and a positive cemented lens consisting of a negative meniscus lens L12 having a convex surface facing the object, and a positive meniscus lens L13 having a convex surface facing the object.

[0141] The second lens group G2 consists of, in order from the object: a negative meniscus lens L21 having a convex surface facing the object; a positive biconvex lens L22; a negative biconcave lens L23; and a negative meniscus lens L24 having a concave surface facing the object.

[0142] The third lens group G3 consists of, in order from the object: a positive cemented lens consisting of a negative meniscus lens L31 having a convex surface facing the object, and a positive biconvex lens L32; a positive cemented lens consisting of a positive biconvex lens L33, and a negative biconcave lens L34; an aperture stop S; a negative cemented lens consisting of a negative meniscus lens L35 having a convex surface facing the object, and a positive biconvex lens L36; and a positive biconvex lens L37.

[0143] The fourth lens group G4 consists of, in order from the object: a positive meniscus lens L41 having a concave surface facing the object; and a negative biconcave lens L42. [0144] The fifth lens group G5 consists of, in order from the object: a negative meniscus lens L51 having a concave surface facing the object; and a positive biconvex lens L52. [0145] In the optical system according to this example, focusing from a long distant object to a short distant object is performed by moving the fourth lens group G4 in the image surface direction.

[0146] The zoom optical system according to this example corrects the imaging position displacement due to a camera shake or the like by moving the positive cemented lens that consists of the negative meniscus lens L**31** having the

convex surface facing the object and the positive biconvex lens L32 in a direction orthogonal to the optical axis.

[0147] To correct a rotational blur with an angle θ at a lens having the focal length f of the entire system and a vibration proof coefficient K (the ratio of the amount of image movement on the image forming surface to the amount of movement of the movable lens group upon blur correction), the movable lens group for blur correction may be moved in a direction orthogonal to the optical axis by (f tan θ)/K. At the wide-angle end in the first example, the vibration proof

coefficient is 1.65, and the focal length is 72.1 mm. Accordingly, the amount of movement of the vibration-proof lens group to correct a rotational blur by 0.30° is 0.23 mm. In the telephoto end state in the first example, the vibration proof coefficient is 2.10, and the focal length is 292.0 mm. Accordingly, the amount of movement of the vibration-proof lens group to correct a rotational blur by 0.20° is 0.49 mm.

[0148] The following Table 1 lists the values of data on the optical system according to this example. In Table 1, f denotes the focal length, and BF denotes the back focus.

Surface No. Object surface 1 2	R ∞ 109.4870	[Lens data D	nd	vd	
Surface No. Object surface 1 2	R ∞ 109.4870	D	nd	vd	
Object surface 1 2	∞ 109.4870				
1 2	109.4870				
2		4.600	1.48749	70.31	
-	8	0.200			
3	101.1800	1.800	1.62004	36.40	
4	49.8109	7.200	1.49700	81.61	
5	385.8166	Variable			
6	176.0187	1.700	1.69680	55.52	
7	31.3680	5.150			
8	32.6087	5.500	1.78472	25.64	
9	-129.7634	1.447	1 77250	40.62	
10	-415.4105	1.300	1.77250	49.62	
11	34.3083	4.300	1.05006	22.25	
12	-33.1502	1.200 Mariah la	1.85026	32.33	
13	-203.5644	Variable	1.00100	24.02	
14	70.9040	1.200	1.80100	34.92	
15	30.2785	5.900	1.64000	60.20	
16	-70.1396	1.500			
17	34.0885	6.000	1.48749	70.31	
18	-42.6106	1.300	1.80610	40.97	
19	401.2557	2.700			
20	8	14.110			(Stop S)
21	350.0000	1.200	1.83400	37.18	
22	30.1592	4.800	1.51680	63.88	
23	-94.9908	0.200			
24	66.3243	2.800	1.80100	34.92	
25	-132.5118	Variable			
26	-92.0997	2.200	1.80518	25.45	
27	-44.0090	6.500			
28	-36.9702	1.000	1.77250	49.62	
29	68.3346	Variable			
30	-24.5000	1.400	1.62004	36.40	
31	-41.1519	0.200			
32	106.0000	3.800	1.67003	47.14	
33	-106.0000	BF			
Image surface	8				
		[Various dat	ta]		

	2001	ing late hee	
	W	М	Т
f	72.1	100.0	292.0
FNO	4.49	4.86	5.88
2ω	33.96	24.48	8.44
Ymax	21.60	21.60	21.60
TL	190.13	205.07	245.82
BF	39.12	46.45	67.12

TABLE 1

			First	Example		
			[Variable	distance data]		
	W Infinity	M Infinity	T Infinity	W Short distance	M Short distance	T Short distance
d5 d13 d25 d29	6.204 30.000 2.180 21.418	21.150 22.666 3.742 19.856	61.895 2.000 3.895 19.703	6.204 30.000 2.837 20.761	21.150 22.666 4.562 19.036	61.895 2.000 5.614 17.984
			[Lens g	roup data]		
Group			Start surfa	ing ace		f
G1 G2 G3 G4 G5		1 6 14 26 30			145 -29 38 -48 322	5.319 9.546 3.298 3.034 4.470

TABLE 1-continued

[Conditional expression corresponding value]

 $\begin{array}{l} (1) \ fFP/(-fFN) = 3.317 \\ (2) \ (-fF)/f1 = 0.331 \\ (3) \ fvr/fTM2 = 1.755 \\ (4) \ nvrN/nvrP = 1.098 \\ (5) \ vvrN/vvrP = 0.580 \\ (6) \ (-fTM1)/f1 = 0.203 \\ (7) \ fTM2/f1 = 0.264 \\ (8) \ (-fN)/fP = 1.266 \\ (9) \ f1/fw = 2.016 \\ (10) \ f1/(-fTM1) = 4.918 \\ (11) \ f1/TfM2 = 3.794 \end{array}$

[0149] FIGS. 2A and 2B are graphs showing various aberrations of the zoom optical system having the vibrationproof function according to the first example upon focusing on infinity in the wide-angle end state, and graphs showing meridional lateral aberrations when blur correction is applied to a rotational blur by 0.30°, respectively. FIG. 3 is graphs showing various aberrations of the zoom optical system having the vibration-proof function according to the first example upon focusing on infinity in the intermediate focal length state. FIGS. 4A and 4B are graphs showing various aberrations of the zoom optical system having the vibration-proof function according to the first example upon focusing on infinity in the telephoto end state, and graphs showing meridional lateral aberrations when blur correction is applied to a rotational blur by 0.20°, respectively. FIGS. 5A, 5B and 5C are graphs showing various aberrations of the zoom optical system according to the first example upon focusing on a short distant object in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively.

[0150] In the aberration graphs of FIGS. **2** to **5**, FNO denotes the f-number, NA denotes the numerical aperture, and Y denotes the image height. Note that the spherical aberration graph shows the value of the f-number or the numerical aperture corresponding to the maximum aperture. The astigmatism graph and the distortion graph show the maximum value of the image height. The coma aberration graph shows the value of each image height. d denotes the d-line (λ =587.6 nm), and g denotes the g-line (λ =435.8 nm). In the astigmatism graph, solid lines indicate sagittal image

surfaces, and broken lines indicate meridional image surfaces. Note that symbols analogous to those in this example are used also in the aberration graphs in the following examples.

[0151] The graphs showing various aberrations show that the zoom optical system according to this example favorably corrects the various aberrations and has excellent image forming performances from the wide-angle end state to the telephoto end state, and further has excellent image forming performances also upon focusing on a short distant object.

Second Example

[0152] FIG. **6** shows a lens configuration of a zoom optical system according to the second example of this embodiment. The zoom optical system according to this example consists of, in order from the object: a first lens group G1 having a positive refractive power; a second lens group G2 having a negative refractive power; a third lens group G3 having a negative refractive power; a fifth lens group G4 having a positive refractive power; a fifth lens group G5 having a negative refractive power; and a sixth lens group G6 having a positive refractive power.

[0153] In relation to the embodiment described above, in this configuration, the first lens group G1 corresponds to the front lens group GFS, the second lens group G2 and the third lens group G3 correspond to the M1 lens group GM1, the fourth lens group G4 corresponds to the M2 lens group GM2, and the fifth lens group G5 corresponds to the RN lens group GRN.

[0154] The first lens group G1 consists of, in order from the object: a positive convexo-planar lens L11 having a convex surface facing the object; and a positive cemented lens consisting of a negative meniscus lens L12 having a convex surface facing the object, and a positive meniscus lens L13 having a convex surface facing the object.

[0155] The second lens group G2 consists of, in order from the object: a negative meniscus lens L21 having a convex surface facing the object; a positive biconvex lens L22; and a negative biconcave lens L23.

[0156] The third lens group G3 consists of a negative meniscus lens L31 having a concave surface facing the object.

[0157] The fourth lens group G4 consists of, in order from the object: a positive cemented lens consisting of a negative meniscus lens L41 having a convex surface facing the object, and a positive biconvex lens L42; a positive cemented lens consisting of a positive biconvex lens L43, and a negative biconcave lens L44; an aperture stop S; a negative cemented lens consisting of a negative meniscus lens L45 having a convex surface facing the object, and a positive biconvex lens L46; and a positive biconvex lens L47.

[0158] The fifth lens group G5 consists of, in order from the object: a positive meniscus lens L51 having a concave surface facing the object; and a negative biconcave lens L52. **[0159]** The sixth lens group G6 consists of, in order from the object: a negative meniscus lens L61 having a concave surface facing the object; and a positive biconvex lens L62. **[0160]** In the optical system according to this example, focusing from a long distant object to a short distant object is performed by moving the fifth lens group G5 in the image surface direction. The imaging position displacement due to a camera shake or the like is corrected by moving the positive cemented lens that consists of the negative meniscus lens L41 having the convex surface facing the object and the positive biconvex lens L42 in a direction orthogonal to the optical axis.

[0161] Note that to correct a rotational blur with an angle θ at a lens having the focal length f of the entire system and a vibration proof coefficient K (the ratio of the amount of image movement on the image forming surface to the amount of movement of the movable lens group upon blur correction), the movable lens group for blur correction is moved in a direction orthogonal to the optical axis by (f tan θ /K. At the wide-angle end in the second example, the vibration proof coefficient is 1.66, and the focal length is 72.1 mm. Accordingly, the amount of movement of the vibration-proof lens group to correct a rotational blur by 0.30° is 0.23 mm. In the telephoto end state in the second example, the vibration proof coefficient is 2.10, and the focal length is 292.0 mm. Accordingly, the amount of movement of the vibration-proof lens group to correct a rotational blur by 0.20° is 0.49 mm.

[0162] The following Table 2 lists the values of data on the optical system according to this example.

TABLE 2

	Second Example						
		[Lens dat	a]				
Surface No.	R	D	nd	vd			
Object surface	8						
1	107.5723	4.600	1.48749	70.32			
2	8	0.200					
3	96.9007	1.800	1.62004	36.40			
4	47.8324	7.200	1.49700	81.61			
5	361.3792	Variable					
6	139.8663	1.700	1.69680	55.52			
7	33.7621	6.806					
8	33.5312	5.500	1.78472	25.64			
9	-139.8348	0.637					
10	-492.0620	1.300	1.80400	46.60			
11	35.1115	Variable					
12	-34.6163	1.200	1.83400	37.18			
13	-377.1306	Variable					
14	74.8969	1.200	1.80100	34.92			
15	31.6202	5.900	1.64000	60.19			
16	-69.0444	1.500					
17	34.2668	6.000	1.48749	70.32			
18	-42.8334	1.300	1.80610	40.97			
19	434.9585	2.700					
20	8	14.312			(Stop S)		
21	350.0000	1.200	1.83400	37.18			
22	30.4007	4.800	1.51680	63.88			
23	-98.0361	0.200					
24	68.9306	2.800	1.80100	34.92			
25	-129.3404	Variable					
26	-90.5065	2.200	1.80518	25.45			
27	-44.1796	6.500					
28	-37.6907	1.000	1.77250	49.62			
29	68.3000	Variable					
30	-24.5545	1.400	1.62004	36.40			
31	-41 7070	0.200					

TABLE 2-continued

			Seco	nd Example		
Ima	32 33 age surface	106.00 −106.00 ∞	00 3.8 00 B	00 1.670 F	03 47.14	
			[Va Zoomi	rious data] ng ratio 4.05		
			W	N	1	Т
f FNO 2ω Ymax TL BF		3 2 19 3	72.1 4.53 33.98 21.60 90.82 39.12	100 4 24 21 206 46	.0 .89 .48 .60 .02 .27	292.0 5.88 8.44 21.60 245.82 66.46
			[Variable	e distance data]		
	W Infinity	M Infinity	T Infinity	W Short distance	M Short distance	T Short distance
d5 dll d13 d25 d29	2.861 5.727 30.500 2.246 22.411	18.057 5.812 23.259 3.634 21.023	57.861 6.883 2.000 3.634 21.023	2.861 5.727 30.500 2.888 21.770	18.057 5.812 23.259 4.436 20.221	57.861 6.883 2.000 5.329 19.329
			[Lens	group data]		
Group	1		Sta sur	rting face		f
G1 G2 G3 G4 G5 G6				1 6 12 14 26 30	14 -10 -4 -4 -4 -4 -4	41.867 04.910 45.774 38.681 48.266 40.779
[Cond	itional expre	ssion corresp	onding value]		
(1) fl (2) (- (3) fv (4) n (5) v (6) (-	FP/(-fFN) = -fF)/f1 = 0.3 vr/fTM2 = 1. vrN/nvrP = 1 vrN/vvrP = (-fTM1)/f1 =	3.352 40 764 1.098 0.580 0.208				

(0) (-11)(11) = 0.203(7) fTM2/f1 = 0.273 (8) (-fN)/fP = 1.248(9) f1/fw = 1.968

(10) f1/(-fTM1) = 4.804

(11) f1/fTM2 = 3.668

[0163] FIGS. 7A and 7B are graphs showing various aberrations of the zoom optical system having the vibrationproof function according to the second example upon focusing on infinity in the wide-angle end state, and graphs showing meridional lateral aberrations when blur correction is applied to a rotational blur by 0.30°, respectively. FIG. 8 is graphs showing various aberrations of the zoom optical system having the vibration-proof function according to the second example upon focusing on infinity in the intermediate focal length state. FIGS. 9A and 9B are graphs showing various aberrations of the zoom optical system having the vibration-proof function according to the second example upon focusing on infinity in the telephoto end state, and graphs showing meridional lateral aberrations when blur correction is applied to a rotational blur by 0.20°, respectively. FIGS. 10A, 10B and 10C are graphs showing various aberrations of the zoom optical system according to the second example upon focusing on a short distant object in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively.

[0164] The graphs showing various aberrations show that the zoom optical system according to this example favorably corrects the various aberrations and has excellent image forming performances from the wide-angle end state to the telephoto end state, and further has excellent image forming performances also upon focusing on a short distant object.

Third Example

[0165] FIG. **11** shows a lens configuration of a zoom optical system according to the third example of this embodiment. The zoom optical system according to this example consists of, in order from the object: a first lens

group G1 having a positive refractive power; a second lens group G2 having a negative refractive power; a third lens group G3 having a positive refractive power; a fourth lens group G4 having a positive refractive power; a fifth lens group G5 having a negative refractive power; and a sixth lens group having a positive refractive power.

[0166] In relation to the embodiment described above, in this configuration, the first lens group G1 corresponds to the front lens group GFS, the second lens group G2 corresponds to the M1 lens group GM1, the third lens group G3 and the fourth lens group G4 correspond to the M2 lens group GM2, and the fifth lens group G5 corresponds to the RN lens group GRN.

[0167] The first lens group G1 consists of, in order from the object: a positive convexo-planar lens L11 having a convex surface facing the object; and a positive cemented lens consisting of a negative meniscus lens L12 having a convex surface facing the object, and a positive meniscus lens L13 having a convex surface facing the object.

[0168] The second lens group G2 consists of, in order from the object: a negative meniscus lens L21 having a convex surface facing the object; a positive biconvex lens L22; a negative biconcave lens L23; and a negative meniscus lens L24 having a concave surface facing the object.

[0169] The third lens group G3 consists of, in order from the object: a positive cemented lens consisting of a negative meniscus lens L31 having a convex surface facing the object, and a positive biconvex lens L32; a positive cemented lens consisting of a positive biconvex lens L33, and a negative biconcave lens L34; and an aperture stop S. [0170] The fourth lens group G4 consists of, in order from the object: a negative cemented lens consisting of a negative meniscus lens L41 having a convex surface facing the object, and a positive biconvex lens L42; and a positive biconvex lens L43. **[0171]** The fifth lens group G5 consists of, in order from the object: a positive meniscus lens L51 having a concave surface facing the object; and a negative biconcave lens L52.

[0172] The sixth lens group G6 consists of, in order from the object: a negative meniscus lens L61 having a concave surface facing the object; and a positive biconvex lens L62.

[0173] In the optical system according to this example, focusing from a long distant object to a short distant object is performed by moving the fifth lens group G5 in the image surface direction. The imaging position displacement due to a camera shake or the like is corrected by moving the positive cemented lens that consists of the negative meniscus lens L31 having the convex surface facing the object and the positive biconvex lens L32 in a direction orthogonal to the optical axis.

[0174] Note that to correct a rotational blur with an angle θ at a lens having the focal length f of the entire system and a vibration proof coefficient K (the ratio of the amount of image movement on the image forming surface to the amount of movement of the movable lens group upon blur correction), the movable lens group for blur correction is moved in a direction orthogonal to the optical axis by (f tan θ /K. At the wide-angle end in the third example, the vibration proof coefficient is 1.65, and the focal length is 72.1 mm. Accordingly, the amount of movement of the vibration-proof lens group to correct a rotational blur by 0.30° is 0.23 mm. In the telephoto end state in the third example, the vibration proof coefficient is 2.10, and the focal length is 292.0 mm. Accordingly, the amount of movement of the vibration-proof lens group to correct a rotational blur by 0.20° is 0.49 mm.

[0175] The following Table 3 lists the values of data on the optical system according to this example.

TABLE 3

		Third Ex	ample		
		[Lens d	lata]		
Surface No.	R	D	nd	vd	
Object surface	8				
1	106.7563	4.600	1.48749	70.32	
2	8	0.200			
3	99.4635	1.800	1.62004	36.40	
4	49.2336	7.200	1.49700	81.61	
5	332.7367	Variable			
6	152.3830	1.700	1.69680	55.52	
7	31.0229	5.695			
8	32.0867	5.500	1.78472	25.64	
9	-139.5695	1.399			
10	-403.4713	1.300	1.77250	49.62	
11	33.8214	4.300			
12	-34.0003	1.200	1.85026	32.35	
13	-235.0206	Variable			
14	69.3622	1.200	1.80100	34.92	
15	29.8420	5.900	1.64000	60.19	
16	-71.2277	1.500			
17	34.4997	6.000	1.48749	70.32	
18	-43.1246	1.300	1.80610	40.97	
19	382.2412	2.700			
20	8	Variable			(Stop S)
21	350.0000	1.200	1.83400	37.18	· · · ·
22	30.6178	4.800	1.51680	63.88	
23	-88 2508	0.200	1.0 1000	00.00	
23	66 4312	2.800	1.80100	34 02	
25	-142 7832	Variable	1.00100	5 1.72	
	1 121/032	+ min(010			

			TABLE	3-continued		
			Third	Example		
	26 27	-93.6206 -44.3477	2.200 6.500	1.80518	25.45	
	28 29	-37.1859 68.3000	1.000 Variabl	1.77250 e	49.62	
	30 31	-24.9508 -42.7086	1.400 0.200	1.62004	36.40	
	32 33	106.0000 -106.0000	3.800 BF	1.67003	47.14	
Ima	ge surface	8				
			[Vari Zoomin	ous data] g ratio 4.05		
		W		М		Т
NO) max		72.1 4.4 33.9 21.6	9 18 10	100.0 4.85 24.48 21.60 205.79		292.0 5.88 8.44 21.60 245.82
F		39.1	2	46.10		67.12
			[Variable	distance data]		
	W Infinity	M Infinity	T Infinity	W Short distance	M Short distance	T Short distance
5 13 20 25 29	5.981 30.000 14.365 2.202 21.004	21.510 23.014 14.107 3.476 19.988	61.535 2.000 14.196 3.676 19.700	5.981 30.000 14.365 2.867 20.339	21.510 23.014 14.107 4.301 19.163	61.535 2.000 14.196 5.396 17.979
			[Lens §	group data]		
roup			Sta sui	rting rface		f
1 2 3 4 5 6				1 6 14 21 26 30	1 - 3	45.335 29.607 48.974 62.364 48.296 36.791
Condi	tional expre	ssion corresp	onding valu	le]		
(1) fF (2) (- (3) fv (4) nv (5) v	P/(-fFN) = fF)/f1 = 0.3 r/fTM2 = 1. rN/nvrP = 1 rN/vvrP = 0	3.306 32 747 1.098				

TABLE 3-continued

[0176] FIGS. **12**A and **12**B are graphs showing various aberrations of the zoom optical system having a vibration-proof function according to the third example upon focusing on infinity in the wide-angle end state, and graphs showing meridional lateral aberrations when blur correction is applied to a rotational blur by 0.30°, respectively. FIG. **13** is graphs showing various aberrations of the zoom optical system having the vibration-proof function according to the third example upon focusing on infinity in the intermediate focal length state. FIGS. **14**A and **14**B are graphs showing various aberrations of the zoom optical system having a vibration-proof function according to the third example upon focusing to the third example various aberrations of the zoom optical system having a vibration-proof function according to the third example

(6) (-fTM1)/f1 = 0.204
(7) fTM2/f1 = 0.264
(8) (-fN)/fP = 1.253
(9) f1/fw = 2.016
(10) f1/(-fTM1) = 4.909
(11) f1/fTM2 = 3.786

upon focusing on infinity in the telephoto end state, and graphs showing meridional lateral aberrations when blur correction is applied to a rotational blur by 0.20°, respectively. FIGS. **15**A, **15**B and **15**C are graphs showing various aberrations of the zoom optical system according to the third example upon focusing on a short distant object in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively.

[0177] The graphs showing various aberrations show that the zoom optical system according to this example favorably corrects the various aberrations and has excellent image forming performances from the wide-angle end state to the telephoto end state, and further has excellent image forming performances also upon focusing on a short distant object.

Fourth Example

[0178] FIG. **16** shows a lens configuration of a zoom optical system according to the fourth example of this embodiment. The zoom optical system according to this example consists of, in order from the object: a first lens group G1 having a positive refractive power; a second lens group G2 having a negative refractive power; and a fourth lens group G4 having a negative refractive power.

[0179] In relation to the embodiment described above, in this configuration, the first lens group G1 corresponds to the front lens group GFS, the second lens group G2 corresponds to the M1 lens group GM1, the third lens group G3 corresponds to the M2 lens group GM2, and the fourth lens group G4 corresponds to the RN lens group GRN.

[0180] The first lens group G1 consists of, in order from the object: a positive convexo-planar lens L11 having a convex surface facing the object; and a positive cemented lens consisting of a negative meniscus lens L12 having a convex surface facing the object, and a positive biconvex lens L13.

[0181] The second lens group G2 consists of, in order from the object: a negative meniscus lens L21 having a convex surface facing the object; a positive biconvex lens L22; a negative biconcave lens L23; and a negative meniscus lens L24 having a concave surface facing the object.

[0182] The third lens group G3 consists of, in order from the object: a positive cemented lens consisting of a negative meniscus lens L31 having a convex surface facing the object, and a positive biconvex lens L32; a positive cemented lens consisting of a positive biconvex lens L33,

and a negative meniscus lens L34 having a concave surface facing the object; an aperture stop S; a negative cemented lens consisting of a negative meniscus lens L35 having a convex surface facing the object, and a positive biconvex lens L36; and a positive biconvex lens L37.

[0183] The fourth lens group G4 consists of, in order from the object: a positive meniscus lens L41 having a concave surface facing the object; and a negative biconcave lens L42. **[0184]** In the optical system according to this example, focusing from a long distant object to a short distant object is performed by moving the fourth lens group G4 in the image surface direction.

[0185] The zoom optical system according to this example corrects the imaging position displacement due to a camera shake or the like by moving the positive cemented lens consisting of the negative meniscus lens L31 having the convex surface facing the object and the positive biconvex lens L32, in a direction orthogonal to the optical axis.

[0186] Note that to correct a rotational blur with an angle θ at a lens having the focal length f of the entire system and a vibration proof coefficient K (the ratio of the amount of image movement on the image forming surface to the amount of movement of the movable lens group upon blur correction), the movable lens group for blur correction may be moved in a direction orthogonal to the optical axis by $(f \cdot tan \theta)/K$. At the wide-angle end in the fourth example, the vibration proof coefficient is 1.64, and the focal length is 72.1 mm. Accordingly, the amount of movement of the vibration-proof lens group to correct a rotational blur by 0.30° is 0.23 mm. In the telephoto end state in the fourth example, the vibration proof coefficient is 2.10, and the focal length is 292.0 mm. Accordingly, the amount of movement of the vibration-proof lens group to correct a rotational blur by 0.20° is 0.48 mm.

[0187] The following Table 4 lists the values of data on the optical system according to this example.

TABLE 4

		Fourth Examp	le		
		[Lens data]			
Surface No.	R	D	nd	vd	
Object surface	8				
1	124.8083	4.600	1.48749	70.32	
2	8	0.200			
3	111.5077	1.800	1.62004	36.40	
4	51.2894	7.200	1.49700	81.61	
5	-4057.4569	Variable			
6	1232.8716	1.700	1.69680	55.52	
7	32.6209	3.624			
8	33.1180	5.224	1.78472	25.64	
9	-126.9611	1.768			
10	-243.6400	1.300	1.77250	49.62	
11	37.7537	4.300			
12	-33.1285	1.200	1.85026	32.35	
13	-124.4232	Variable			
14	80.2408	1.200	1.80100	34.92	
15	32.8582	5.862	1.64000	60.19	
16	-70.9140	1.500			
17	40.5722	6.000	1.48749	70.32	
18	-43.0594	1.300	1.80610	40.97	
19	-2388.6437	2.700			
20	8	18.922			(Stop S)
21	812.4602	1.200	1.83400	37.18	(I)
22	34,5376	5.275	1.51680	63.88	
23	-59,1982	0.200			
24	75,5608	3.209	1.80100	34.92	

TABLE 4-continued

			Fourth	Example			
Imaş	25 26 27 28 29 ge surface	-197.1038 -76.9453 -41.7537 -33.9973 132.3165 \$\overline\$	Var: 2.2 6.4 1.0 E	iable 263 500 000 BF	1.80518 1.77250	25.45 49.62	
			[Vario Zooming	ous data] g ratio 4.05			
		W		1	M		Т
f FNO 2ω Ymax TL BF		72.1 4.68 33.78 21.60 189.82 64.99		100 2: 2: 210 69).0 4.90 3.92 1.60).78 9.56	29. 2 24. 8	2.0 6.19 8.22 1.60 5.82 9.99
			[Variable of	distance da	ta]		
	W Infinity	M Infinity	T Infinity	W Short distance	M Short distance	d	T Short listance
d5 d13 d25	2.000 30.000 2.777	22.956 25.721 2.495	58.000 2.000 5.785	2.000 30.000 3.449	22.956 25.721 3.343	:	58.000 2.000 7.497
			[Lens g	group data]			
Group	,		Start surfa	ing 1ce		f	
G1 G2 G3 G4			1 6 14 26	5		139.52 -29.73 41.59 -54.88	3 3 7 5
[Cond	itional expr	ression correspo	nding valu	e]			
(1) f. (2) (- (3) f (4) n (5) v (6) (- (7) f (9) f (10) f (11) f.	FP/(-fFN) = -fF)/f1 = 0. vr/fTM2 = vrN/vrP = -fTM1)/f1 = TM2/f1 = 0 1/fw = 1.93 1/(-fTM1) = 1/fTM2 = 3	= 3.156 393 1.728 1.098 0.580 = 0.213 .298 5 = 4.693 .354					

[0188] FIGS. 17A and 17B are graphs showing various aberrations of the zoom optical system having a vibrationproof function according to the fourth example upon focusing on infinity in the wide-angle end state, and graphs showing meridional lateral aberrations when blur correction is applied to a rotational blur by 0.30°, respectively. FIG. 18 is graphs showing various aberrations of the zoom optical system having the vibration-proof function according to the fourth example upon focusing on infinity in the intermediate focal length state. FIGS. 19A and 19B are graphs showing various aberrations of the zoom optical system having the vibration-proof function according to the fourth example upon focusing on infinity in the telephoto end state, and graphs showing meridional lateral aberrations when blur correction is applied to a rotational blur by 0.20°, respectively. FIGS. 20A, 20B and 20C are graphs showing various aberrations of the zoom optical system according to the fourth example upon focusing on a short distant object in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively.

[0189] The graphs showing various aberrations show that the zoom optical system according to this example favorably corrects the various aberrations and has excellent image forming performances from the wide-angle end state to the telephoto end state, and further has excellent image forming performances also upon focusing on a short distant object.

Fifth Example

[0190] FIG. **21** shows a lens configuration of a zoom optical system according to the fifth example of this embodiment. The zoom optical system according to this example consists of, in order from the object: a first lens group G1 having a positive refractive power; a second lens group G2 having a negative refractive power; a third lens group G3 having a positive refractive power; a fourth lens group G4

having a negative refractive power; and a fifth lens group G5 having a positive refractive power.

[0191] In relation to the embodiment described above, in this configuration, the first lens group G1 corresponds to the front lens group GFS, the second lens group G2 corresponds to the M1 lens group GM1, the third lens group G3 corresponds to the M2 lens group GM2, and the fourth lens group G4 corresponds to the RN lens group GRN.

[0192] The first lens group G1 consists of, in order from the object: a positive convexo-planar lens L11 having a convex surface facing the object; and a positive cemented lens consisting of a negative meniscus lens L12 having a convex surface facing the object, and a positive meniscus lens L13 having a convex surface facing the object.

[0193] The second lens group G2 consists of, in order from the object: a negative meniscus lens L21 having a convex surface facing the object; a positive biconvex lens L22; a negative biconcave lens L23; and a negative meniscus lens L24 having a concave surface facing the object.

[0194] The third lens group G3 consists of, in order from the object: a positive cemented lens consisting of a negative meniscus lens L31 having a convex surface facing the object, and a positive biconvex lens L32; a positive cemented lens consisting of a positive biconvex lens L33, and a negative biconcave lens L34; an aperture stop S; a negative cemented lens consisting of a negative meniscus lens L35 having a convex surface facing the object, and a positive biconvex lens L36; and a positive biconvex lens L37.

[0195] The fourth lens group G4 consists of, in order from the object: a positive meniscus lens L41 having a concave surface facing the object; and a negative biconcave lens L42.

[0196] The fifth lens group G5 consists of, in order from the object: a negative meniscus lens L51 having a concave surface facing the object; a positive biconvex lens L52; and a positive meniscus lens L53 having a convex surface facing the object.

[0197] In the optical system according to this example, focusing from a long distant object to a short distant object is performed by moving the fourth lens group G4 in the image surface direction. The imaging position displacement due to a camera shake or the like is corrected by moving the positive cemented lens that consists of the negative meniscus lens L31 having the convex surface facing the object and the positive biconvex lens L32 in a direction orthogonal to the optical axis.

 $[019\bar{8}]$ Note that to correct a rotational blur with an angle θ at a lens having the focal length f of the entire system and a vibration proof coefficient K (the ratio of the amount of image movement on the image forming surface to the amount of movement of the movable lens group upon blur correction), the movable lens group for blur correction is moved in a direction orthogonal to the optical axis by (f tan θ)/K. At the wide-angle end in the fourth example, the vibration proof coefficient is 1.65, and the focal length is 72.1 mm. Accordingly, the amount of movement of the vibration-proof lens group to correct a rotational blur by 0.30° is 0.23 mm. In the telephoto end state in the fourth example, the vibration proof coefficient is 2.10, and the focal length is 292.0 mm. Accordingly, the amount of movement of the vibration-proof lens group to correct a rotational blur by 0.20° is 0.49 mm.

[0199] The following Table 5 lists the values of data on the optical system according to this example.

TABLE 5

Fifth Example							
		[Lens d	lata]				
Surface No.	R	D	nd	vd			
Object surface	8						
1	109.5099	4.600	1.48749	70.32			
2	8	0.200					
3	101.8486	1.800	1.62004	36.40			
4	49.8873	7.200	1.49700	81.61			
5	403.0130	Variable					
6	166.1577	1.700	1.69680	55.52			
7	31.1882	3.953					
8	32.0256	5.500	1.78472	25.64			
9	-139.5816	1.553					
10	-767.2482	1.300	1.77250	49.62			
11	33.9202	4.300					
12	-32.8351	1.200	1.85026	32.35			
13	-256.2484	Variable					
14	69.5902	1.200	1.80100	34.92			
15	29.9877	5.900	1.64000	60.19			
16	-70.0411	1.500					
17	36.2271	6.000	1.48749	70.32			
18	-39.9358	1.300	1.80610	40.97			
19	820.8027	2.700					
20	8	14.092			(Stop S)		
21	427.1813	1.200	1.83400	37.18			
22	31.7606	4.800	1.51680	63.88			
23	-89.4727	0.200					
24	73.5865	2.800	1.80100	34.92			
25	-110.0493	Variable					
26	-83.7398	2.200	1.80518	25.45			
27	-42,9999	6,500					
28	-36.8594	1.000	1.77250	49.62			
29	73.0622	Variable					

(7) fTM2/f1 = 0.264(8) (-fN)/fP = 0.947(9) f1/fw = 2.011(10) f1/(-fTM1) = 4.906(11) f1/fTM2 = 3.793

			IAB	LE 5-C	ontinued		
			I	Fifth Exa	mple		
	30	-26.0	662 1	.400	1.62004	36.4	
	32	-40.4 143.0	108 0 144 3	.035	1.67003	47.14	
	33 34 35	-220.8	402 0 330 2 325	.200 .145 DE	1.79002	47.32	
Imag	35 ge surface	170 . 3. ∞	525	БГ			
			[Zoo	Various oming ra	data] tio 4.05		
		,	W		М		Т
f FNO 2ω Ymax TL BF		72 2 33 21 190 39	2.1 4.48 6.94 6.0 9.21 9.12		100.0 4.85 24.44 21.60 205.27 46.37		292.0 5.87 8.42 21.60 245.82 67.13
			[Varia	able dist	ance data]		
	W Infinity	M Infinity	T Infinity	W Sho dista	ort nce	M Short distance	T Short distance
d5 d13 d25 d29	5.892 30.000 2.212 21.306	20.953 22.752 3.707 19.811	61.502 2.000 3.900 19.618	5.3 30.0 2.3 20.0	892 000 864 654	20.953 22.752 4.521 18.997	61.502 2.000 5.606 17.912
			[L	ens grou	p data]		
Group			St. su	arting Irface			f
G1 G2 G3 G4 G5				1 6 14 26 30		14 	45.022 29.562 38.233 48.257 18.066
[Condit	tional expre	ession corr	esponding	value]			
(1) fF. (2) (-: (3) fvi (4) nv (5) vv (6) (-:	P/(-fFN) = fF)/f1 = 0.3 r/fTM2 = 1 rN/nvrP = rN/vvrP = fTM1)/f1 =	3.393 333 .738 1.098 0.580 • 0.204					

hod	5 contin	L.	TADI	
ned	2-contin	.HC	TABL	

25A, **25**B and **25**C are graphs showing various aberrations of the zoom optical system according to the fifth example upon focusing on a short distant object in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively.

[0201] The graphs showing various aberrations show that the zoom optical system according to this example favorably corrects the various aberrations and has excellent image forming performances from the wide-angle end state to the telephoto end state, and further has excellent image forming performances also upon focusing on a short distant object.

fifth example upon focusing on infinity in the intermediate focal length state. FIGS. **24**A and **24**B are graphs showing various aberrations of the zoom optical system having a vibration-proof function according to the fifth example upon focusing on infinity in the telephoto end state, and graphs showing meridional lateral aberrations when blur correction is applied to a rotational blur by 0.20°, respectively. FIGS.

[0200] FIGS. 22A and 22B are graphs showing various

aberrations of the zoom optical system having a vibration-

proof function according to the fifth example upon focusing

on infinity in the wide-angle end state, and graphs showing

meridional lateral aberrations when blur correction is

applied to a rotational blur by 0.30°, respectively. FIG. 23 is

graphs showing various aberrations of the zoom optical

system having the vibration-proof function according to the

[0202] According to each of the examples described above, reduction in size and weight of the focusing lens group can achieve high-speed AF and silence during AF

without increasing the size of the lens barrel, and the zoom optical system can be achieved that favorably suppresses variation of aberrations upon zooming from the wide-angle end state to the telephoto end state, and variation of aberrations upon focusing from an infinite distant object to a short distant object.

[0203] Here, each of the examples described above represents a specific example of the invention of the present application. The invention of the present application is not limited thereto.

[0204] Note that the following details can be appropriately adopted in a range without impairing the optical performance of the zoom optical system of the present application. [0205] The four-group configurations, five-group configurations and the six-group configurations have been described as the numeric examples of the zoom optical systems of the present application. However, the present application is not limited thereto. Zoom optical systems having other group configurations (for example, seven-group ones and the like) can also be configured. Specifically, a zoom optical system having a configuration where a lens or a lens group is added to the zoom optical system of the present application at a position nearest to the object or to the image surface may be configured. Note that the lens group indicates a portion that has at least one lens and is separated by air distances varying upon zooming.

[0206] According to the zoom optical system of the present application, the imaging position displacement due to a camera shake or the like is not necessarily corrected by moving some lenses.

[0207] The lens surfaces of the lenses constituting the zoom optical system of the present application may be spherical surfaces, plane surfaces, or aspherical surfaces. A case where the lens surface is a spherical surface or a plane surface facilitates lens processing and assembly adjustment, and can prevent the optical performance from being reduced owing to the errors in lens processing or assembly adjustment. Consequently, the case is preferable. It is also preferable because reduction in depiction performance is small even when the image surface deviates. In a case where the lens surface is an aspherical surface, the surface may be an aspherical surface made by a grinding process, a glass mold aspherical surface made by forming glass into an aspherical shape with a mold, or a composite type aspherical surface made by forming resin provided on the glass surface into an aspherical shape. The lens surface may be a diffractive surface. The lens may be a gradient index lens (GRIN lens) or a plastic lens.

[0208] An antireflection film having a high transmissivity over a wide wavelength range may be applied to the lenss surfaces of the lenses constituting the zoom optical system of the present application. This reduces flares and ghosts, and can achieve a high optical performance having a high contrast.

[0209] According to the configurations described above, this camera 1 mounted with the zoom optical system according to the first example as the imaging lens 2 can achieve high-speed AF and silence during AF without increasing the size of the lens barrel, by reducing the size and weight of the focusing lens group, can favorably suppresses variation of aberrations upon zooming from the wide-angle end state to the telephoto end state, and variation of aberrations upon focusing from an infinite distant object to a short distant object, and can achieve a favorable optical performance.

Note that possible configurations of cameras mounted with the zoom optical systems according to the second to fifth examples described above as the imaging lens 2 can also exert the advantageous effects analogous to those of the camera 1 described above.

EXPLANATION OF NUMERALS AND CHARACTERS

[0210]

G1 G3 G5 GM1 GRN	First lens group Third lens group Fifth lens group M1 lens group RN lens group	G2 G4 GFS GM2	Second lens group Fourth lens group Front lens group M2 lens group
GRN I	KN lens group Image surface	S	Aperture stop

1. A zoom optical system comprising, in order from an object:

- a front lens group having a positive refractive power;
- an M1 lens group having a negative refractive power;
- an M2 lens group having a positive refractive power; and an RN lens group having a negative refractive power,
- wherein upon zooming, a distance between the front lens group and the M1 lens group changes, a distance between the M1 lens group and the M2 lens group changes, and a distance between the M2 lens group and the RN lens group changes,
- upon focusing from an infinite distant object to a short distant object, the RN lens group moves,
- the RN lens group comprises at least one lens having a positive refractive power, and at least one lens having a negative refractive power, and
- following conditional expressions are satisfied,
 - 2.70<*fFP*/(-*fFN*)<4.50

0.25<(-*fF*)/*f*1<0.45

where

- fFP: a focal length of a lens having a strongest positive refractive power in the RN lens group,
- fFN: a focal length of a lens having a strongest negative refractive power in the RN lens group,
- fF: a focal length of the RN lens group, and
- f1: a focal length of the front lens group.
- 2. The zoom optical system according to claim 1, wherein
- upon zooming from a wide-angle end state to a telephoto end state, the front lens group moves toward the object.
- 3. The zoom optical system according to claim 1, wherein
- upon zooming, a lens group nearest to the object in the M1 lens group is fixed with respect to an image surface.
- 4. The zoom optical system according to claim 1, wherein
- the M2 lens group comprises a vibration-proof lens group movable in a direction orthogonal to an optical axis to correct an imaging position displacement due to a camera shake or the like.
- 5. The zoom optical system according to claim 4, wherein
- a following conditional expression is satisfied,

1.10<*fvr/fTM*2<2.00

where

- fvr: a focal length of the vibration-proof lens group, and fTM2: a focal length of the M2 lens group in a telephoto
 - end state.

- **6**. The zoom optical system according to claim **4**, wherein the vibration-proof lens group consists of, in order from the object: a lens having a negative refractive power
- and a lens having a positive refractive power.
- 7. The zoom optical system according to claim 6, wherein

a following conditional expression is satisfied,

 $1.00 \le nvrN/nvrP \le 1.25$

where

- nvrN: a refractive index of the lens having the negative refractive power in the vibration-proof lens group, and
- nvrP: a refractive index of the lens having the positive refractive power in the vibration-proof lens group.
- **8**. The zoom optical system according to claim **6**, wherein a following conditional expression is satisfied,

0.30<vvrN/vvrP<0.90

where

- vvrN: an Abbe number of the lens having the negative refractive power in the vibration-proof lens group, and vvrP: an Abbe number of the lens having the positive
- refractive power in the vibration-proof lens group.
- **9**. The zoom optical system according to claim **1**, wherein a following conditional expression is satisfied,

following conditional expression

0.15 < (-fTM1)/f1 < 0.35

where

fTM1: a focal length of the M1 lens group in a telephoto end state.

10. The zoom optical system according to claim 1, wherein

a following conditional expression is satisfied,

0.20<*fTM*2/*f*1<0.40

where

fTM2: a focal length of the M2 lens group in a telephoto end state.

11. The zoom optical system according to claim 1, further comprising a negative meniscus lens that has a concave surface facing the object, and is adjacent to an image side of the RN lens group.

12. The zoom optical system according to claim **1**, further comprising, in order from the object:

a lens having a negative refractive power; and

a lens having a positive refractive power, the lenses being adjacent to an image side of the RN lens group.

13. The zoom optical system according to claim 11, wherein

a following conditional expression is satisfied,

0.70<(-fN)/fP<2.00

where

- fN: a focal length of a lens having a strongest negative refractive power among lenses adjacent to the image side of the RN lens group, and
- fP: a focal length of a lens having a strongest positive refractive power among lenses adjacent to the image side of the RN lens group.

14. The zoom optical system according to claim 1, wherein

a following conditional expression is satisfied,

1.80<f1/fw<3.50

- where
- fw: a focal length of the zoom optical system in a wide-angle end state.

15. The zoom optical system according to claim 1, wherein

a following conditional expression is satisfied,

3.70<*f*1/(-*fTM*1)<5.00

where

fTM1: a focal length of the M1 lens group in a telephoto end state.

16. The zoom optical system according to claim 1, wherein

a following conditional expression is satisfied,

3.20<*f*1/*fTM*2<5.00

where

fTM2: a focal length of the M2 lens group in a telephoto end state.

17. An optical apparatus comprising the zoom optical system according to claim 1.

18. An imaging apparatus comprising:

- the zoom optical system according to claim 1; and
- an imaging unit that takes an image formed by the zoom optical system.

19. A method for manufacturing a zoom optical system comprising, in order from an object, a front lens group having a positive refractive power, an M1 lens group having a negative refractive power, an M2 lens group having a positive refractive power, and an RN lens group having a negative refractive power,

- the method comprising achieving an arrangement where upon zooming, a distance between the front lens group and the M1 lens group changes, a distance between the M1 lens group and the M2 lens group changes, and a distance between the M2 lens group and the RN lens group changes,
- wherein upon focusing from an infinite distant object to a short distant object, the RN lens group moves,
- the RN lens group comprises at least one lens having a positive refractive power, and at least one lens having a negative refractive power, and

following conditional expressions are satisfied,

2.70<*fFP*/(-*fFN*)<4.50

0.25<(-*fF*)/*f*1<0.45

where

- fFP: a focal length of a lens having a strongest positive refractive power in the RN lens group,
- fFN: a focal length of a lens having a strongest negative refractive power in the RN lens group,
- fF: a focal length of the RN lens group, and
- f1: a focal length of the front lens group.

* * * * *