
US 20220116213A1 
LATE IN 

( 19 ) United States 
( 12 ) Patent Application Publication ( 10 ) Pub . No .: US 2022/0116213 A1 

Pala et al . ( 43 ) Pub . Date : Apr. 14 , 2022 

Publication Classification ( 54 ) METHOD AND APPARATUS FOR 
MANAGING CRYPTOGRAPHIC KEYS 

( 2006.01 ) ( 71 ) Applicant : Robert Bosch GmbH , Stuttgart ( DE ) 
( 51 ) Int . Ci . 

H04L 9/08 
( 52 ) U.S. CI . 

CPC ( 72 ) Inventors : Diego Pala , Bochum ( DE ) ; Teona 
Tatovic , Bochum ( DE ) ; Lukas 
Riemenschneider , Shanghai ( CN ) 

H04L 9/0894 ( 2013.01 ) ; H04L 2209/84 
( 2013.01 ) 

( 57 ) ABSTRACT ( 21 ) Appl . No .: 17 / 448,277 

( 22 ) Filed : Sep. 21 , 2021 

( 30 ) Foreign Application Priority Data 

A method for managing cryptographic keys for a control 
device , in particular for a motor vehicle . The method 
includes the following steps : associating a state with at least 
one of the cryptographic keys ; using the at least one cryp 
tographic key based on the state . Oct. 9 , 2020 ( DE ) 102020212772.7 

associate state with at least one 
of the cryptographic keys 

Z1 use cryptographic key 
based on the state 

10.03 . 3.1.3 ) 

102a 
+++++++ 

leave cryptographic key 
in volatile memory 



Patent Application Publication Apr. 14 , 2022 Sheet 1 of 7 US 2022/0116213 A1 

associate state with at least one 
of the cryptographic keys 

receive request with regard to 
a cryptographic key 

Ww w 

Z 1 use cryptographic key 
based on the state 

???? KUAL 
L 

load cryptographic key in volatile 
memony 112 102a 102 

WODOWww 

w 

leave cryptographic key 
in volatile memory 

Fig . 1A Fig . 1B 

ascertain first information item 

120 
ascertain first variable that 
characterizes an unoccupied 
memory 130 

ww www . 

wave 
4w 49 

execute use of crytographic key 
based on first infomation item 122 

clear or release memory 

132 I 
WWW . wwws www WWW 

Fig . 1C Fig . 1D 3 

ascertain at least one cryptographic 
skey 

132a 
******** 

relesses memory area 

132b 
WWW 

Fig . 1E 



Patent Application Publication Apr. 14 , 2022 Sheet 2 of 7 US 2022/0116213 A1 

OOK 

I 
state machine 

ZA 

reference character 

rest 
6a 1 1 

I 
I 10 1 6b 

XXO XXX SAXO 

www Yiwe 

1 volatile memory nonvolatile memory 
dan ados 000 and ?? # mood - FTA ago 43300 ad06 

Fig . 2 

200 
computing core computing core computing 

device 590 XARXERO DXNXO # data interface 
boom 202a L. 202b 202 208 LOCS coucoooOOOOOOOS DOLOSOOOOOOOOO 1 

Latest WWW W KW242 

204a 204b SM 

7 t muna motoru pe hoor 

DAT PRG -204 PRG ? ? ws 
that Daccaccadd WOOOOO 

w ??? 

XX003 OUX ROND 200 COX ICO XOAN OLDA 06 Oppo XXX NO possono 
www . 

1 computing core 206 12.09 4444 hardware security module 206c 
ins w ?????? 

wwwww www . wwww www www www www MW www w www www WY w WWW w 

volatile memory nonvolatile memory 
WAKE 206a 206b 

DO 

MYT MY M w AMY WVVU VVV ???? YYYYYY w YYYY 

www w WW w W WWW w WW w W 

Fig . 3 



job manager 

kay loader 

HSM driver 

hardware security module 

application programi ? ? ? ? ? ? one 
B5 

B4 

B3 

B2 

wo 

Patent Application Publication 

a2 

a3 

a4 

?? I 

??? ?? ?? ?? ?? ?? ??? ???? 

a8 

B10 

load cryptographic 
key 

a 10 

a13 

a12 a14 

Apr. 14 , 2022 Sheet 3 of 7 

a 15 

execution of 
job 

a 16 a17 ???? ??? ?? ?? ??? 

??? ?? 

B11 

a18 ??? ?? ?? ?? ??? ??? ??? ????? 

a20 

a19 

US 2022/0116213 A1 

Fig . 4 



H - SM driver 

cyclically executing 
task 

application program 

job manager 

key loader 

hardware Security 
module 

B6 

B5 

B4 

B3 

B2 

B1 

to 

totas 

Patent Application Publication 

a31 

a32 

a33 

a34 

a35 1173 WARNA WALALA 

a36 

load cryptographic 
key 

B10 ' 

a37 

a38 

a39 

Apr. 14 , 2022 Sheet 4 of 7 

a40 a41 

a41 UU W W a43 

WWWWWWWCA WWW 

execution of job 

B11 

a44 

a46 

US 2022/0116213 A1 

W WAV WA 

Nun wont 

NNMAN W 

a45 

Fig . 5 



Patent Application Publication Apr. 14 , 2022 Sheet 5 of 7 US 2022/0116213 A1 

ZA 

a50 
not loaded loading a51 cal S2 

a63 
a62 a54 

loaded and in use 

a61 S5 a57 S3 
W 

waiting for unoccupied 
memory space a65 

a55 a56 

a60 

unloading loaded and not in use 

S6 S4 
W wwwww 

a59 

Fig . 6 



Patent Application Publication Apr. 14 , 2022 Sheet 6 of 7 US 2022/0116213 A1 

DOOOOO OOOOOO XOOOOOO OOOOOO OOOOOO OOOOOO OOOOOO Ooppos OOOOOO OOOOOO OOOOOO 000000 

1 manage cryptographic keys 

302 
leave in volatile memory 

306 
DOOOOOOOOOO DOOOOOOOOOO 

W W WWW 1 WW 

OOOODE VOODOOS OOOOOO DOOOOO OOOOOO 400OOOO OOOOOO OOOOOOO DOOOOO OOOOOO 000000 OOOOO OOO000 WOODOOS 0000 

use one or several cryptographic 
keys 304 oooooo I 308 

COCO00000000 OOOOOOOOOOOO 

M WW muuta W 

usetreuse cryptographic key in 
volatile inemory Fig . 7 

20 200 

1. & * 
ww w ws 

WWW 

o o 
Fig . 8 



Patent Application Publication Apr. 14 , 2022 Sheet 7 of 7 US 2022/0116213 A1 

DODOSO 

Key 2 

Key 1 
??? 0 

2 5 

Key 2 
w 

Key 1 

??? 0 

3 ? 6 

Key 2 Key 2 

??? 1 
??? 3 Key 0 

??? www 

Fig . 9 



US 2022/0116213 Al Apr. 14 , 2022 
1 

METHOD AND APPARATUS FOR 
MANAGING CRYPTOGRAPHIC KEYS 

CROSS REFERENCE 

[ 0001 ] The present application claims the benefit under 35 
U.S.C. $ 119 of German Patent Application No. 
102020212772.7 filed on Oct. 9 , 2020 , which is expressly 
incorporated herein by reference in its entirety . 

FIELD 

[ 0002 ] The present invention relates to a method for 
managing cryptographic keys . 
[ 0003 ] The present invention further relates to an appara 
tus for managing cryptographic keys . 

SUMMARY 

2 

[ 0004 ] Exemplifying embodiments of the present inven 
tion refer to a method for managing cryptographic keys , for 
example for a control device , in particular for a motor 
vehicle , having the following steps : associating a state with 
at least one of the cryptographic keys ; using the at least one 
cryptographic key based on the state . In further exemplify 
ing embodiments this makes possible flexible utilization or 
use of the at least one cryptographic key . 
[ 0005 ] In further exemplifying embodiments of the pres 
ent invention , provision is made that the at least one cryp 
tographic key is storable and / or stored at least temporarily in 
a volatile memory , for example a working memory or a 
register memory . 
[ 0006 ] In further exemplifying embodiments of the pres 
ent invention , provision is made that the at least one cryp 
tographic key is storable and / or stored at least temporarily in 
a nonvolatile memory , for example a flash ( EEPROM ) 
memory . 
[ 0007 ] In further exemplifying embodiments of the pres 
ent invention , the at least one cryptographic key can also , for 
instance , be copied or shifted from the nonvolatile memory 
into the volatile memory , which can also be referred to , for 
example , as “ loading . " 
[ 0008 ] In further exemplifying embodiments of the pres 
ent invention , a deletion or release for overwriting a cryp 
tographic key stored in the volatile memory can also be 
referred to , for example , as " unloading . ” 
[ 0009 ] In further exemplifying embodiments of the pres 
ent invention , the volatile memory and / or the nonvolatile 
memory can be associated , for instance , with at least one 
hardware security module ( HSM ) . 
[ 0010 ] In further exemplifying embodiments of the pres 
ent invention , the volatile memory and / or the nonvolatile 
memory can be integrated , for instance , into the at least one 
hardware security module ( HSM ) . 
[ 0011 ] In further exemplifying embodiments of the pres 
ent invention , the HSM can be associated , for example , with 
a control device or with a computing device of a control 
device and , for instance , can perform cryptographic func 
tions or processes and , for instance , can manage the afore 
said cryptographic key . 
[ 0012 ] In further exemplifying embodiments of the pres 
ent invention , provision is made that the state of the at least 
one cryptographic key is characterized by at least one of the 
following elements : a ) unloaded , the at least one crypto 
graphic key being , for example , not located in a or the 
volatile memory ( but instead , for example , in a or the 

nonvolatile memory ) ; b ) loaded and in use , the at least one 
cryptographic key , for example , being located in a or the 
volatile memory and currently being used , for example , by 
a computer program , for example a cryptography driver 
object ; c ) loaded and not in use , the at least one crypto 
graphic key , for example , being located in a or the volatile 
memory and not currently being used , for example not 
( even ) by a or the cryptography driver object ; d ) loading , a 
loading operation of the at least one cryptographic key , for 
example from a or the nonvolatile memory into a or the 
volatile memory , being , for example , not already complete ; 
e ) unloading , an unloading operation of the at least one 
cryptographic key , for example from a or the volatile 
memory , being , for example , not already complete ; f ) wait 
ing for unoccupied memory space in a or the volatile 
memory ( e.g. , until memory space in the volatile memory 
has been cleared , for instance by deletion or unloading of 
another key ) ; g ) updating , for example upon request by 
another unit or higher - level ( processing ) layer . In further 
exemplifying embodiments , a cryptographic key having the 
" updating ” state is not used . In further exemplifying 
embodiments , for example , it is possible instead to wait for 
a subsequent state in which updating of the cryptographic 
key is complete . 
[ 0013 ] In further exemplifying embodiments of the pres 
ent invention , one or several cryptography driver sessions or 
contexts , which can also be referred to as “ cryptography 
driver objects , ” are implemented , for example , by way of a 
cryptography driver . In further exemplifying embodiments , 
the cryptography driver contexts are independent of one 
another and , for instance , can perform different tasks at least 
partly overlappingly in time , while one cryptography driver 
context is embodied in each case , for instance , to perform 
one task . In further exemplifying embodiments , a crypto 
graphic key can be used , for instance , simultaneously by 
several different cryptography driver contexts . 
[ 0014 ] In further exemplifying embodiments of the pres 
ent invention , a quantity of cryptography driver contexts or 
cryptography driver objects is statically predefined , for 
example at a compile time ( or " translation time ” of the 
software , for instance , from a programming language into an 
object code ) , and is therefore constant during a runtime of 
the software . In further exemplifying embodiments , “ jobs ” 
are also associated statically with cryptography driver 
objects . 
[ 0015 ] In further exemplifying embodiments of the pres 
ent invention , cryptography driver contexts or cryptography 
driver objects are dynamically predefinable . 
[ 0016 ] In further exemplifying embodiments of the pres 
ent invention , a cryptography driver object is a software 
component ( computer program ) that corresponds , for 
instance , to a , for example , independent ( hardware ) device , 
for example an advanced encryption standard ( AES ) accel 
erator , to a component of a hardware security module , e.g. , 
a computing core , or to a session of a hardware security 
module which is embodied , for instance , to execute various 
cryptography primitives . 
[ 0017 ] In further exemplifying embodiments of the pres 
ent invention , the cryptography driver object is executed on 
a computing core of a or the computing device ( “ host core ” ) . 
[ 0018 ] In further exemplifying embodiments of the pres 
ent invention , a cryptographic key having the “ loaded and 
not in use ” state is , for instance , a candidate for an exchange 
with a further cryptographic key that is intended to be used a 



US 2022/0116213 A1 Apr. 14 , 2022 
2 

currently or in the future and is therefore , for example , 
intended to be loaded into the volatile memory . 
[ 0019 ] In further exemplifying embodiments of the pres 
ent invention , provision is made that a specific crypto 
graphic key has , at a point in time under consideration , 
exactly one state ( and not , for example , several states ) . 
[ 0020 ] In further exemplifying embodiments of the pres 
ent invention , provision is made that a state machine is used 
to associate the state with at least one of the cryptographic 
keys . 
[ 0021 ] In further exemplifying embodiments of the pres 
ent invention , provision is made that the method further 
encompasses : receiving a request with regard to a crypto 
graphic key , the request being characterized , for example , in 
that the cryptographic key is to be loaded into a or the 
volatile memory ; loading the cryptographic key into the 
volatile memory . 
[ 0022 ] In further exemplifying embodiments of the pres 
ent invention , the request described above can be made , for 
instance , by a job manager . In further exemplifying embodi 
ments , the job manager is a software component ( computer 
program ) that is executable , for example , by a computing 
core of a or the computing device ( " host core ” ) and / or that 
is embodied to manage or implement an execution of 
cryptographic methods or of steps of cryptographic meth 
ods . In further exemplifying embodiments , the job manager 
is embodied , for instance , to receive requests from an 
application program and / or to output to the application 
program a status characterizing an execution of a method or 
method step . 
[ 0023 ] In further exemplifying embodiments of the pres 
ent invention , the job manager can , at least temporarily , 
execute , for example , one or several steps of the method in 
accordance with the embodiments . 
[ 0024 ] In further exemplifying embodiments of the pres 
ent invention , it is also possible , for example , to provide a 
“ key loader ” that , for instance , is also embodied as a 
software component ( computer program ) that , for example , 
is executable by a computing core of the computing device 
and / or by a computing core of the HSM ( for example , in 
some embodiments the key loader can also constitute part of 
the HSM ) , and / or that is embodied to execute , at least 
temporarily , for example , one or several steps of the method 
in accordance with the embodiments , for example loading 
and / or unloading or managing at least one cryptographic 
key , and / or managing states of at least one cryptographic 
key . 
[ 0025 ] In further exemplifying embodiments of the pres 
ent invention , the key loader can constitute part of a or the 
cryptography driver , for example similarly to the job man 
ager . In further exemplifying embodiments , the key loader 
can constitute , as already mentioned above , part of the HSM . 
[ 0026 ] In further exemplifying embodiments of the pres 
ent invention , the job manager is embodied , for example , to 
execute synchronous and / or asynchronous “ jobs , " e.g. , cryp 
tographic methods or steps of cryptographic methods , or one 
or several steps of the method in accordance with the 
embodiments . 
[ 0027 ] In further preferred embodiments of the present 
invention , the job manager is embodied to request , for 
example , the key loader to load a cryptographic key , for 
instance if the cryptographic key is not already located in the 
volatile memory . 

[ 0028 ] In further exemplifying embodiments of the pres 
ent invention , the key loader is embodied to load the key 
requested by the job manager or to cause the key to be 
loaded , for instance from the HSM . 
[ 0029 ] In further exemplifying embodiments of the pres 
ent invention , the key loader is embodied , for instance , to 
inform the job manager that the requested key has been 
successfully loaded , or that the requested key , for instance , 
is already contained ( i.e. , loaded ) in the volatile memory . 
[ 0030 ] In further exemplifying embodiments of the pres 
ent invention , the job manager can request a reference 
( " handle ” ) to the key in the context of the key loader , which 
reference , for instance , characterizes the copy of the corre 
sponding key in the volatile memory or a memory location 
of the copy of the corresponding key in the volatile memory . 
[ 0031 ] In further exemplifying embodiments of the pres 
ent invention , the key loader is embodied in such a way that 
it asynchronously executes or initiates the loading of one or 
several cryptographic keys , in which context a status of the 
respective loading operation can be queried , for instance , 
from various calling contexts . 
[ 0032 ] In further exemplifying embodiments of the pres 
ent invention , the method further encompasses : ascertaining 
a first information item that characterizes whether a specific 
cryptographic key is a key to be stored in exclusively 
volatile fashion ; and , optionally , executing a use of the 
specific cryptographic key based on the first information 
item , in particular refraining from nonvolatile storage of the 
specific cryptographic key . In further exemplifying embodi 
ments , security can thereby be enhanced . 
[ 0033 ] In further exemplifying embodiments of the pres 
ent invention , the method further encompasses : ascertaining 
a first variable that characterizes an unoccupied memory 
area in the volatile memory ; and , optionally , clearing or 
releasing memory in the volatile memory , for example in 
such a way that at least one further cryptographic key can be 
loaded into the volatile memory ; the clearing being 
executed , for example , based on at least one predefinable 
algorithm ; and , for example , the at least one algorithm being 
selectable , for example , during and / or before execution of 
the method . 
[ 0034 ] In further exemplifying embodiments of the pres 
ent invention , the clearing or release encompasses : ascer 
taining at least one cryptographic key that is stored in the 
volatile memory and is not currently being used ; and releas 
ing a memory area , occupied by the cryptographic key 
currently not being used , of the volatile memory , for 
example for overwriting with at least one further crypto 
graphic key . In further preferred embodiments , only those 
cryptographic keys which , for example , are ( also ) stored in 
nonvolatile fashion are overwritten . 
[ 0035 ] In further exemplifying embodiments of the pres 
ent invention , the method further encompasses : leaving the 
at least one cryptographic key in a or the volatile memory , 
for example for at least one predefinable time period . In 
further preferred embodiments , the cryptographic key can 
thereby be accessed particularly quickly , for instance if it is 
to be used again after a first utilization . In further preferred 
embodiments , it is thereby possible in particular to avoid 
comparatively slow loading operations that involve , for 
instance , copying the cryptographic key from a nonvolatile 
memory into the volatile memory . 
[ 0036 ] Further exemplifying embodiments of the present 
invention refer to an apparatus for executing the method in 



US 2022/0116213 A1 Apr. 14 , 2022 
3 

[ 0048 ] FIG . 3 schematically shows a simplified block 
diagram in accordance with further exemplifying embodi 
ments of the present invention . 
[ 0049 ] FIG . 4 schematically shows a simplified flow chart 
in accordance with further exemplifying embodiments of the 
present invention . 
[ 0050 ] FIG . 5 schematically shows a simplified flow chart 
in accordance with further exemplifying embodiments of the 
present invention . 
[ 0051 ] FIG . 6 schematically shows a simplified state dia 
gram in accordance with further exemplifying embodiments 
of the present invention . 
[ 0052 ] FIG . 7 schematically shows aspects of uses in 
accordance with further exemplifying embodiments of the 
present invention . 
[ 0053 ] FIG . 8 schematically shows a control device in a 
destination system in accordance with further exemplifying 
embodiments of the present invention . 
[ 0054 ] FIG . 9 schematically shows aspects in accordance 
with further exemplifying embodiments of the present 
invention . 

accordance with the embodiments . The apparatus can be 
embodied , for example , as a computing device and / or as a 
hardware security module ( HSM ) . 
[ 0037 ] Further exemplifying embodiments of the present 
invention refer to a computer - readable storage medium 
encompassing instructions that , upon execution by a com 
puter , cause the latter to execute the method in accordance 
with the embodiments . 
[ 0038 ] Further exemplifying embodiments of the present 
invention refer to a computer program encompassing 
instructions that , upon execution by a computer , cause the 
latter to execute the method in accordance with the embodi 
ments . 
[ 0039 ] Further exemplifying embodiments of the present 
invention refer to a data carrier signal that transfers and / or 
characterizes the computer program in accordance with the 
embodiments . 
[ 0040 ] Further exemplifying embodiments of the present 
invention refer to a use of the method in accordance with the 
embodiments and / or of the apparatus in accordance with the 
embodiments and / or of the computer - readable storage 
medium in accordance with the embodiments and / or of the 
computer program in accordance with the embodiments 
and / or of the data carrier signal in accordance with the 
embodiments for at least one of the following elements : a ) managing one or several cryptographic keys , for example for 
a control device , in particular for a motor vehicle ; b ) 
utilizing one or several cryptographic keys , for example for 
a control device , in particular for a motor vehicle , for 
example based on a state of at least one cryptographic key 
and / or based on a state of at least one volatile memory ; c ) 
leaving at least one cryptographic key in a or the volatile 
memory ; d ) using , for example reusing , at least one cryp 
tographic key that is stored in a or the volatile memory . 
[ 0041 ] Further features , potential applications , and advan 
tages of the present invention are evident from the descrip 
tion below of further exemplifying embodiments that are 
depicted in the Figures . All features described or depicted in 
that context , individually or in any combination , constitute 
the subject matter of exemplifying embodiments , regardless 
of their respective presentation or depiction in the descrip 
tion or in the figures . 

DETAILED DESCRIPTION OF EXAMPLE 
EMBODIMENTS 

a 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0055 ] FIG . 1A schematically shows a simplified flow 
chart of a method for managing cryptographic keys in 
accordance with exemplifying embodiments . The method 
can be used , for example , for a control device 20 ( see FIG . 
8 ) , in particular for a motor vehicle 1 , but in further 
exemplifying embodiments is not limited thereto . The 
method has the following steps ( see FIG . 1A ) : associating 
100 a state Z_1 with at least one of the cryptographic keys ; 
using 102 the at least one cryptographic key based on state 
Z_1 . In further exemplifying embodiments , flexible use or 
utilization of the at least one cryptographic key is thereby 
made possible . 
[ 0056 ] FIG . 2 shows , by way of example , several crypto 
graphic keys 10 , one of which is labeled with the reference 
character 10_1 . Cryptographic keys 10 can be managed , for 
example , by way of the method in accordance with FIG . 1A . 
[ 0057 ] In further exemplifying embodiments , provision is 
made that the at least one cryptographic key 10_1 is storable 
and / or stored at least temporarily in a volatile memory 6a , 
for example in a working memory or a register memory . 
[ 0058 ] In further exemplifying embodiments , provision is 
made that the at least one cryptographic key 10_1 is storable 
and / or stored at least temporarily in a nonvolatile memory 
6b , for example in a flash ( EEPROM ) memory . 
[ 0059 ] In further exemplifying embodiments , the at least 
one cryptographic key 10_1 can also , for instance , be copied 
or shifted from nonvolatile memory 6b into volatile memory 
6a , which can also be referred to , for example , as “ loading . " 
[ 0060 ] In further exemplifying embodiments , a deletion or 
release for overwriting a cryptographic key 10_1 stored in 
volatile memory ba can also be referred to , for example , as 
" unloading . " 
[ 0061 ] In further exemplifying embodiments , an optional 
state machine ZA can be provided in order to influence , in 
particular to control , the state of one or several keys 10 . 
[ 0062 ] Further exemplifying embodiments ( see FIG . 3 ) 
refer to an apparatus 200 for executing the method in 
accordance with the embodiments . Apparatus 200 has a 
computing device ( “ computer ” ) 202 having at least one 
computing core 202a , and has a storage device 204 , asso 

( 0042 ] FIG . 1A schematically shows a simplified flow 
chart in accordance with exemplifying embodiments of the 
present invention . 
[ 0043 ] FIG . 1B schematically shows a simplified flow 
chart in accordance with further exemplifying embodiments 
of the present invention . 
[ 0044 ] FIG . 1C schematically shows a simplified flow 
chart in accordance with further exemplifying embodiments 
of the present invention . 
[ 0045 ] FIG . 1D schematically shows a simplified flow 
chart in accordance with further exemplifying embodiments 
of the present invention . 
[ 0046 ] FIG . 1E schematically shows a simplified flow 
chart in accordance with further exemplifying embodiments 
of the present invention . 
[ 0047 ] FIG . 2 schematically shows a simplified block 
diagram in accordance with further exemplifying embodi 
ments of the present invention . 



US 2022/0116213 A1 Apr. 14 , 2022 
4 

ciated with computing device 202 , for at least temporary 
storage of at least one of the following elements : a ) data 
DAT ; b ) computer program PRG , in particular for executing 
a method in accordance with the embodiments . 
[ 0063 ] In further preferred embodiments , storage device 
204 has a volatile memory 204a ( e.g. , working memory 
( RAM ) ) and / or a nonvolatile memory 204b ( e.g. , flash 
EEPROM ) . 
[ 0064 ] In further preferred embodiments , computing 
device 202 has at least one of the following elements or is 
embodied as at least one of said elements : microprocessor 
( UP ) ; microcontroller ( UC ) ; application - specific integrated 
circuit ( ASIC ) ; system on chip ( SOC ) ; programmable logic 
module ( e.g. , field programmable gate array ( FPGA ) ) ; hard 
ware circuit ; or any combinations thereof . 
[ 0065 ] Further preferred embodiments refer to a com 
puter - readable storage medium SM encompassing instruc 
tions PRG that , upon execution by a computer 202 , cause the 
latter to execute the method in accordance with the embodi 
ments . 
[ 0066 ] Further preferred embodiments refer to a computer 
program PRG encompassing instructions that , upon execu 
tion of the program by a computer 202 , cause the latter to 
execute the method in accordance with the embodiments . 
[ 0067 ] Further preferred embodiments refer to a data 
carrier signal DCS that characterizes and / or transfers the 
computer program PRG in accordance with the embodi 
ments . Data carrier signal DCS is , for example , receivable 
via an optional data interface 208 of apparatus 200 . 
[ 0068 ] In further exemplifying embodiments , apparatus 
200 itself can be embodied as a hardware security module 
( HSM ) , a computing core 2026 being , for instance , embod 
ied as an HSM core . 
[ 0069 ] In further exemplifying embodiments , apparatus 
200 can also , for instance , have an optional hardware 
security module 206 that , for instance , can have a computing 
core 206c as well as , for instance , a volatile memory 206a , 
for instance similar to volatile memory 6a in accordance 
with FIG . 2 , and , for instance , a nonvolatile memory 206b , 
for instance similar to nonvolatile memory 6b in accordance 
with FIG . 2 . 
[ 0070 ] In other words , in further preferred embodiments 
volatile memory ba ( FIG . 2 ) and / or nonvolatile memory 6b 
can , for instance , be associated with at least one hardware 
security module 206 ( FIG . 3 ) and / or can be integrated into 
hardware security module 206 . 
[ 0071 ] In further exemplifying embodiments , an optional 
computing core 202b ( “ HSM core ” ) of computing device 
200 can execute or have the function of HSM 206 or of 
computing core 206c of HSM 206. In this case , in further 
preferred embodiments , for instance , the optional separate 
HSM 206 or its core 206c can be omitted . 
[ 0072 ] In further exemplifying embodiments , apparatus 
200 and / or HSM 206 can , for example , be associated with 
control device 20 ( FIG . 8 ) or , in the case of HSM 206 , with 
a computing device 202 of control device 20 and , for 
instance , can perform cryptographic functions or methods 
and , for instance , can manage the aforesaid cryptographic 
keys 10 ( FIG . 3 ) . 
[ 0073 ] In further exemplifying embodiments , computing 
device 202 ( FIG . 3 ) of apparatus 200 can also have one or 
several computing cores 202a for executing application 
programs ( " host cores ” ) , which use , for instance , crypto 
graphic functions . In further preferred embodiments , com 

puting device 202 can have at least one computing core 2025 
that is , for instance , physically separate from host cores 
202a ( “ HSM core ” ) , which is embodied , for instance , for the 
execution of cryptographic functions ( for instance , creating 
message authentication codes ( MACs ) , ascertaining and / or 
checking signatures and / or hash values ) , for example for the 
host core or cores 202a . In further preferred embodiments , 
HSM core 202b can , for instance , also execute management 
of cryptographic keys in accordance with the embodiments . 
[ 0074 ] In further exemplifying embodiments , host cores 
202a and HSM core 202b can , for instance , communicate 
directly with one another , for instance by message exchange 
( “ message passing ” ) and / or by way of shared memory areas , 
for instance of RAM 204a . 
[ 0075 ] In further preferred embodiments it is possible to 
ensure , for instance by way of hardware - based security 
mechanisms , that host cores 202a , for instance , cannot 
access cryptographic keys 10 ( FIG . 2 ) that are managed by 
HSM core 202b , or corresponding memory areas in which 
those cryptographic keys 10 are stored . 
[ 0076 ] In further exemplifying embodiments , at least one 
of the programs below can be executed by apparatus 200 : 
[ 0077 ] 1. Host application PRG ( see also , for instance , 
block B5 of FIG . 4 ) , i.e. , for instance , an application that , 
for instance , is executable by host core or cores 202a and 
that uses the cryptographic functions that can be furnished 
by HSM 206 or by HSM core 202b ; 

[ 0078 ] 2. HSM driver ( see also , for instance , block B2 of 
FIG . 4 ) , a software component or computer program that 
is executable by host core or cores 202a and constitutes an 
interface for the cryptographic functions of HSM 206 or 
of HSM core 202b . In further preferred embodiments , for 
example , the host application can communicate or inter 
act , in particular exclusively , via the HSM driver with 
HSM 206 or with HSM core 202b ; 

[ 0079 ] 3. HSM software ; this is , for instance , a computer 
program that is executable on HSM core 206c , 202b ( i.e. , 
for instance , in an environment secured with respect to 
host cores 202a ) and that , for instance , executes the 
cryptographic functions and / or management , for instance , 
of cryptographic keys 10 . 

[ 0080 ] In further exemplifying embodiments , provision is 
made that state Z_1 ( FIG . 1 ) of the at least one cryptographic 
key 10_1 is characterized by at least one of the following 
elements : a ) unloaded , the at least one cryptographic key 
10_1 being , for example , not located in a or the volatile 
memory 6a , 206a ( but instead , for example , in a or the 
nonvolatile memory 6b , 206b ) ; b ) loaded and in use , the at 
least one cryptographic key 10_1 , for example , being 
located in volatile memory 6a , 206? and currently being 
used , for example , by a computer program PRG , for 
example a cryptography driver object ; c ) loaded and not in 
use , the at least one cryptographic key 10_1 , for example , 
being located in a or the volatile memory 6a , 206? and not 
currently being used , for example not ( even ) by a or the 
cryptography driver object ; d ) loading , a loading operation 
of the at least one cryptographic key 10_1 , for example from 
nonvolatile memory 6b , 206b into volatile memory 6a , 
206a , being , for example , not already complete ; e ) unload 
ing , an unloading operation of the at least one cryptographic 
key 10_1 , for example from volatile memory 6a , 206a , 
being , for example , not already complete ; f ) waiting for 
unoccupied memory space in volatile memory 6a , 206a 
( e.g. , until memory space in volatile memory 6a , 206a has 

. 



US 2022/0116213 A1 Apr. 14 , 2022 
5 

been cleared , for instance by deletion or unloading of 
another key ) ; g ) updating , for example upon request by 
another unit or higher - level ( processing ) layer . In further 
exemplifying embodiments , a cryptographic key having the 
" updating ” state is not used . In further exemplifying 
embodiments , for example , it is possible instead to wait for 
a subsequent state in which updating of the cryptographic 
key is complete . 
[ 0081 ] In further exemplifying embodiments , a crypto 
graphic key having the “ loaded and not in use ” state is , for 
instance , a candidate for exchange with a further crypto 
graphic key that is to be used currently or in the future and 
is therefore , for example , to be loaded into volatile memory 
?? , 206? . 
[ 0082 ] In further exemplifying embodiments , provision is 
made that a specific cryptographic key has , at a point in time 
under consideration , exactly one state ( and not , for example , 
several states ) . 
[ 0083 ] In further exemplifying embodiments , provision is 
made that state machine ZA ( FIG . 2 ) is used to associate 
state Z_1 ( FIG . 1 ) with at least one of cryptographic keys 10 . 
[ 0084 ] In further exemplifying embodiments ( see FIG . 
1B ) , provision is made that the method further encompasses : 
receiving 110 a request A1 with regard to a cryptographic 
key 10_1 , request A1 being characterized , for example , in 
that cryptographic key 10_1 is to be loaded into a or the 
volatile memory 6a , 206a ; loading 112 cryptographic key 
10_1 into volatile memory 6a , 206a . 
[ 0085 ] In further exemplifying embodiments , request A1 
described above can be made , for instance , by a job manager 
( see , for instance , block B4 of FIG . 4 ) . In further exempli 
fying embodiments , the job manager is a computer program 
that is executable , for example , by HSM 206 ( FIG . 3 ) or by 
a computing core 206c of HSM 206 ( or by a host core 202a ) 
and / or that is embodied to manage an execution of crypto 
graphic methods or of steps of cryptographic methods . In 
further exemplifying embodiments , the job manager is 
embodied , for instance , to receive requests from an appli 
cation program B5 ( FIG . 4 ) and / or to output to application 
program B5 a status characterizing an execution of a method 
or method step . 
[ 0086 ] In further exemplifying embodiments , the job man 
ager can , at least temporarily , execute one or several steps of 
the method in accordance with the embodiments . 
[ 0087 ] In further exemplifying embodiments it is also 
possible , for example , to provide a key loader B3 ( see , for 
instance , FIG . 4 ) that , for instance , is also embodied as a 
computer program that , for example , is executable by a host 
core 202a , and / or that is embodied to execute , at least 
temporarily , for example , one or several steps of the method 
in accordance with the embodiments , for example loading 
and / or unloading or managing at least one cryptographic key 
10_1 . 
[ 0088 ] In further exemplifying embodiments , the job man 
ager is embodied , for example , to execute synchronous 
and / or asynchronous jobs , e.g. , cryptographic methods or 
steps of cryptographic methods , or one or several steps of 
the method in accordance with the embodiments . 
[ 0089 ] In further preferred embodiments , the job manager 
is embodied , for example , to instruct the key loader to load 
a cryptographic key or cause it to be loaded , for instance if 
the cryptographic key is not already located in the volatile 
memory . 

[ 0090 ] In further exemplifying embodiments , the key 
loader is embodied to load the key requested by the job 
manager or to cause the key to be loaded . 
[ 0091 ] In further exemplifying embodiments , the key 
loader is embodied , for instance , to inform the job manager 
that the requested key has been successfully loaded , or that 
the requested key , for instance , is already contained ( i.e. , 
loaded ) in the volatile memory . 
[ 0092 ] In further exemplifying embodiments , the job man 
ager can request a reference ( “ handle ” ) to the key in the 
context of the key loader , which reference , for instance , 
characterizes the copy of the corresponding key in the 
volatile memory . 
[ 0093 ] In further exemplifying embodiments , the key 
loader is embodied in such a way that it asynchronously 
executes or initiates the loading of one or several crypto 
graphic keys , in which context a status of the respective 
loading operation can be queried , for instance , from various 
invoking contexts . 
[ 0094 ] In further exemplifying embodiments ( see FIG . 
1C ) , the method further encompasses : ascertaining 120 a 
first information item 11 that characterizes whether a specific 
cryptographic key 10_1 is a key to be stored in exclusively 
volatile fashion ; and , optionally , executing 122 a use of the 
specific cryptographic key based on first information item 
I1 , in particular , for instance , refraining from nonvolatile 
storage of the specific cryptographic key . In further exem 
plifying embodiments , security can thereby be enhanced . 
[ 0095 ] In further exemplifying embodiments ( see FIG . 
1D ) , the method further encompasses : ascertaining 130 a 
first variable G1 that characterizes an unoccupied memory in 
volatile memory 6a , 206a ; and , optionally , clearing 132 or 
releasing memory in volatile memory 6a , 206a , for example 
in such a way that at least one further cryptographic key can 
be loaded into volatile memory 6a , 206a . 
[ 0096 ] In further exemplifying embodiments ( see FIG . 
1E ) , the clearing or release encompasses : ascertaining 132a 
at least one cryptographic key that is stored in volatile 
memory 6a , 206a and is not currently being used ; and 
releasing 132b a memory area , occupied by the crypto 
graphic key currently not being used , of volatile memory 6a , 
206a , for example for overwriting with at least one further 
cryptographic key . 
[ 0097 ] In further exemplifying embodiments ( see FIG . 
1A ) , the method further encompasses : leaving 102a the at 
least one cryptographic key 10_1 in a or the volatile memory 
6a , 206a , for example for at least one predefinable time 
period . In further preferred embodiments , cryptographic key 
10_1 can thereby be accessed particularly quickly , for 
instance if it is to be used again after a first utilization . In 
further preferred embodiments , it is thereby possible in 
particular to avoid comparatively slow loading operations 
that involve , for instance , copying cryptographic key 10_1 
from a nonvolatile memory 6b , 206b into volatile memory 
?? , 206? . 
[ 0098 ] FIG . 4 schematically shows a simplified flow chart 
for , for instance , synchronous processing of jobs in accor 
dance with further exemplifying embodiments . Block B1 
symbolizes a hardware security module ( see also , for 
instance , reference character 206 of FIG . 3 ) , block B2 
symbolizes an HSM driver , block B3 symbolizes a key 
loader , block B4 symbolizes a job manager , and block B5 
symbolizes an application program . 

a 



US 2022/0116213 A1 Apr. 14 , 2022 
6 

[ 0099 ] Arrow al symbolizes a request of application pro 
gram B5 to job manager B4 to execute a job . Job manager 
B4 instructs key loader B3 ( see arrow a2 ) to load a crypto 
graphic key ( usable , for example , for the job to be executed ) 
and , if applicable , to lock it with respect to overwriting ( e.g. , 
in order to recover unoccupied memory space in the volatile 
memory ) . Key loader B3 signals to HSM B1 via HSM driver 
B2 , by way of arrows a3 , a4 , that a loading operation for a 
cryptographic key 10_1 ( FIG . 2 ) is to be executed . 
[ 0100 ] In further exemplifying embodiments , element a2 
( and , for instance , also element a31 in accordance with FIG . 
5 ; see below ) does not provide that the cryptographic key is 
locked in the sense that it is not usable , for instance , at least 
temporarily in chronologically overlapping fashion by other 
cryptography driver objects . Element a2 ( and , for instance , 
also element a31 in accordance with FIG . 5 ; see below ) 
instead provides , for instance , that the cryptographic key is 
locked in the sense that it is not selectable for release , for 
instance if the volatile memory for the cryptographic keys is 
full and a release of memory space therein is therefore 
desirable . 
[ 0101 ] In further exemplifying embodiments it is therefore 
possible , for instance , that , for instance , as soon as a key is 
loaded , a simultaneous or at least partly chronologically 
overlapping use of that key occurs , for instance , by different 
cryptography driver objects . 
[ 0102 ] In further exemplifying embodiments one or sev 
eral , for instance all , cryptography drivers or cryptography 
driver objects can set a respective lock with respect to a key 
( the locks are , for instance , not mutually exclusive ) . In 
further preferred embodiments this has the effect that a key , 
for instance once it has been loaded , remains in use as long 
as the total number of locks has a non - negligible value 
( greater than zero ) . 
[ 0103 ] In further exemplifying embodiments , a key can 
transition into the “ loaded and not in use ” state ( see FIG . 6 
below ) when the last lock has been removed . In further 
preferred embodiments , the relevant key can then , for 
instance , also be overwritten again , for instance in order to 
release memory . 
[ 0104 ] Block B10 correspondingly symbolizes the loading 
of cryptographic key 10_1 , for instance , from nonvolatile 
memory 206b into volatile memory 206a ( FIG . 3 ) . 
[ 0105 ] In further exemplifying embodiments , HSM driver 
B2 signals to key loader B3 ( see arrow a5 ) that the crypto 
graphic key is currently being loaded and the cryptographic 
key thus has the “ loading ” state . In further preferred embodi 
ments , the situation is comparable for components B3 , B4 
( see arrow a6 ) . 
[ 0106 ] In further exemplifying embodiments , job manager 
B4 queries the current state of the cryptographic key ( see 
arrows a7 , a8 ) , and components B2 , B3 correspondingly 
report back a current status ( e.g. , “ key ( still ) loading ” ) ( see 
arrows a9 , a10 ) . 
[ 0107 ] In further exemplifying embodiments , arrow a13 
symbolizes the fact that HSM B1 signals the “ key loaded ” 
state to HSM driver B2 . In further preferred embodiments 
this “ key loaded ” state can correspondingly be reported , 
after a new request all by job manager B4 ( see also request 
a12 of key loader B3 ) , to components B3 , B4 in the form of 
signals a14 , a15 . 
[ 0108 ] In further exemplifying embodiments , job manager 
B4 asks key loader B3 for a reference ( “ handle " ) to the 
loaded cryptographic key ( see arrow a16 ) . In further pre 

ferred embodiments , key loader B3 signals the reference to 
the loaded cryptographic key to job manager B4 ( see arrow 
a17 ) . Block B11 symbolizes , by way of example , execution 
of the job characterized by arrow al , for instance using the 
cryptographic key that has meanwhile been loaded . 
[ 0109 ] In further exemplifying embodiments , the crypto 
graphic key is unloaded or released again ( see arrow al8 ) 
after execution B11 of the job ; for instance , a memory area 
of the volatile memory which since then has been occupied 
by the cryptographic key can also be released and is thus 
usable , if applicable , for another key . Optionally , a lock that 
may have been applied to the key ( see arrow a2 ) can also be 
canceled . By way of signal a18 , job manager B4 can signal 
to key loader B3 , for example , that the relevant key is not 
being used at present . If , for example , the relevant key is not 
being used by any of the , if applicable , several HSM driver 
objects , the relevant key can assume , for instance , the 
" loaded and not in use ” state . 
[ 0110 ] Arrow a19 symbolizes an optional confirmation of 
release al8 on the part of key loader B3 . 
[ 0111 ] In further exemplifying embodiments , job manager 
B4 can signal to application program B5 that the job has 
been executed ( see arrow a20 ) . 
[ 0112 ] In further exemplifying embodiments , job manager 
B4 can check , for instance after receiving inquiry al , 
whether a cryptographic key is necessary or indicated for 
execution of the job . In further preferred embodiments , for 
example , cryptographic services or functions that do not 
require a cryptographic key for their execution , for instance 
the calculation of hash values , can also be provided and / or 
used . If a cryptographic key is necessary or indicated for 
execution of the job , job manager B4 requests loading from 
key loader B3 ( see arrow a2 ) . 
[ 0113 ] In further exemplifying embodiments , key loader 
B3 can manage the state of at least one cryptographic key 
10_1 ( FIG . 2 ) , for example of several or all cryptographic 
keys 10. For example , after receiving request a2 , key loader 
B3 can ascertain , in accordance with FIG . 4 , that the 
cryptographic key to be used for execution of the job is not 
already present in the volatile memory , and can therefore 
initiate the loading operation ( see arrow a3 ) , the loading 
operation being executed , for instance , asynchronously by 
HSM B1 ( see also , for instance , HSM cores 206c , 202b ) . 
[ 0114 ] In further exemplifying embodiments , job manager 
B4 can query the state of the loading operation ( see , for 
instance , arrows a7 , all ) , for instance until the key is loaded . 
[ 0115 ] FIG . 5 schematically shows a simplified flow chart 
for , for instance , asynchronous processing of jobs in accor 
dance with further exemplifying embodiments . Block B1 
symbolizes a hardware security module ( see also , for 
instance , reference character 206 of FIG . 3 ) , block B2 
symbolizes an HSM driver , block B3 symbolizes a key 
loader , block B4 symbolizes a job manager , block B5 ' 
symbolizes an application program , and block B6 symbol 
izes a cyclically executed task , i.e. , for instance a cyclically 
executed process . 
[ 0116 ] Arrow a30 symbolizes a request by application 
program B5 ' to job manager B4 to execute a job . Job 
manager B4 instructs key loader B3 ( see arrow a31 ) to load 
( or cause the loading of ) a cryptographic key ( for example , 
one usable for the job to be executed ) and , if applicable , to 
lock it , for example in order to protect it from overwriting . 
Key loader B3 signals to HSM B1 , via HSM driver B2 by 



US 2022/0116213 A1 Apr. 14 , 2022 
7 

a 

way of arrows a32 , a33 , that a loading operation for a 
cryptographic key 10_1 ( FIG . 2 ) is to be executed . 
[ 0117 ] Block B10 ' correspondingly symbolizes the load 
ing of cryptographic key 10_1 , for instance , from nonvola 
tile memory 206b into volatile memory 206a ( FIG . 3 ) . 
[ 0118 ] Arrows a34 , a35 symbolize signaling to compo 
nents B3 , B4 with regard to the current state of the loading 
of the cryptographic key , and arrow a36 comparably sym 
bolizes signaling of the status of execution of the job to 
application program B5 ' . 
[ 0119 ] In further exemplifying embodiments , HSM B1 
signals a return code regarding loading B10 ' ( see arrow a37 ) 
to HSM driver B2 . 
[ 0120 ] In further exemplifying embodiments , task B6 sig 
nals the execution of a planned function to job manager B4 
( see arrow a38 ) , which then queries the loading state of the 
previously requested cryptographic key ( see arrows a39 , 
a40 ) . HSM driver B2 signals that the cryptographic key has 
now been loaded ( see arrows a41 , a41 ' ) . 
0121 ] In further exemplifying embodiments , job manager 
B4 asks key loader B3 for a reference ( “ handle " ) to the 
loaded cryptographic key ( see arrow a42 ) . In further pre 
ferred embodiments , key loader B3 signals the reference to 
the loaded cryptographic key to job manager B4 ( see arrow 
a43 ) . Block B11 ' symbolizes , by way of example , execution 
of the job characterized by arrow a30 , for instance using the 
cryptographic key that has meanwhile been loaded . 
[ 0122 ] In further exemplifying embodiments , the crypto 
graphic key is unloaded or released again ( see arrow a44 ) 
after execution Bll ' of the job ; a memory area of the volatile 
memory which since then has been occupied by the cryp 
tographic key can also , for instance , be released and is thus 
usable , if applicable , for another key . Arrow a45 symbolizes 
an optional confirmation of release a44 on the part of key 
loader B3 . Arrow a46 symbolizes , by way of example , 
completion of the planned function . 
[ 0123 ] In further exemplifying embodiments , in the con 
text of the exemplifying asynchronous execution of the task 
in accordance with FIG . 5 , the latter can be started by way 
of request a 30 while a further execution is being performed , 
for instance by way of cyclic task B6 . In further preferred 
embodiments , the principle of loading a cryptographic key 
can correspond to the steps described by way of example 
with reference to FIG . 4 . 
[ 0124 ] In further exemplifying embodiments , computing 
time on a host core 202a ( FIG . 3 ) that , for instance , is 
executing application program B5 , B5 ' , which time host core 
202a would otherwise need to use , for instance , for a 
blocking polling loop , for instance in order itself to wait for 
completion of the loading of the cryptographic key , can be 
saved by the procedure described by way of example above . 
[ 0125 ] In further exemplifying embodiments , a through 
put of host core 202a , for instance in an automotive open 
system architecture ( AUTOSAR ) system , can therefore be 
increased by way of the procedure described by way of 
example above . 
[ 0126 ] Utilization of the management of cryptographic 
keys in accordance with the embodiments makes possible , at 
least temporarily and / or at least in some embodiments , a 
reduction in latency in the execution of jobs , for instance by 
the fact that at least some keys can be left in the compara 
tively fast volatile memory even when a job that has used the 
key or keys has been completed , for example in contradis 
tinction to constant deletion of the keys from the volatile 

memory directly after use , and constant reloading of the 
keys . This means , for instance , that a subsequent job that is 
intended to use the key or keys finds the key or keys , for 
instance , already in the volatile memory ( provided it has not , 
for instance , already been overwritten in accordance with 
further exemplifying embodiments ) , so that the key or keys 
does / do not first need to be loaded into the volatile memory . 
[ 0127 ] In further exemplifying embodiments , various 
methods for exchanging or overwriting keys can be pro 
vided , which are embodied to retain or leave in the volatile 
memory those keys that will be ( re ) used in the future with 
the highest probability and / or , for instance , the keys having 
a highest priority ; this offers a performance advantage and 
increases the throughput ( characterizable , for instance , by a 
number of jobs executed in a predefinable time ) of a system . 
[ 0128 ] In further exemplifying embodiments , several jobs 
can be executed simultaneously or at least in part in chrono 
logically overlapping fashion , for example by HSM driver 
B2 ( FIGS . 4 , 5 ) . 
[ 0129 ] While the exemplifying embodiments in accor 
dance with FIGS . 4 , 5 describe possible scenarios in which 
a cryptographic key is loaded , for instance , from a nonvola 
tile memory into a volatile memory , in further exemplifying 
embodiments one or several of the situations recited below , 
inter alia , can also occur . 
[ 0130 ] In further exemplifying embodiments , a crypto 
graphic key can already be present in the volatile memory , 
for instance because it has already been loaded earlier . In 
further preferred embodiments , a cryptographic key can be 
embodied , for instance , as a " startup ” key that is loaded into 
the volatile memory upon startup of HSM 206 . 
[ 0131 ] In further exemplifying embodiments , a crypto 
graphic key can be embodied , for instance , as a key to be 
stored ( for instance , only ) in volatile fashion , and can thus , 
for instance , already be present ( for instance , only ) in the 
volatile memory . 
[ 0132 ] In further exemplifying embodiments , the unoccu 
pied memory space in the volatile memory may no longer be 
sufficient for loading of a ( for instance , further ) crypto 
graphic key , in which context , if applicable , at least one of 
the cryptographic keys located in the volatile memory can be 
unloaded or released . In further preferred embodiments , 
provision can be made that one or several of the crypto 
graphic keys present in the volatile memory must not be 
unloaded ; this can be , for instance , a key to be stored ( for 
instance , only ) in volatile fashion , and / or a " startup ” key , 
and / or a cryptographic key that is currently being used by 
another HSM driver object . 
[ 0133 ] In further exemplifying embodiments , key loader 
B3 can furnish or execute one or several of the following 
aspects : 
[ 0134 ] a ) loading a cryptographic key stored in the non 

volatile memory into the volatile memory , for instance 
when job manager B4 requests it ( see , for instance , arrow 
a2 of FIG . 4 ) ; 

[ 0135 ] b ) ascertaining which keys are keys to be stored in 
volatile fashion , in particular in order to prevent them 
from being unloaded ; 

[ 0136 ] c ) releasing volatile memory so that a new key can 
be loaded , in which context , for example , no key currently 
being used is unloaded ; 

[ 0137 ] d ) ascertaining which keys are " startup " keys , in 
particular in order to prevent them from being unloaded ; 

> 



US 2022/0116213 A1 Apr. 14 , 2022 
8 

a 

a 

[ 0138 ] e ) ascertaining which keys are being used , for 
instance , by each of the possibly several HSM driver 
objects . 

[ 0139 ] FIG . 6 is a schematic simplified state diagram in 
accordance with further exemplifying embodiments which 
illustrates some possible states of a cryptographic key 10_1 
( FIG . 2 ) in accordance with further exemplifying embodi 
ments . The states that are depicted by way of example can 
correspond , for example , to a subset of states controllable by 
way of a state machine ZA ' ( see also state machine ZA for 
controlling states of cryptographic key 10 in accordance 
with FIG . 2 ) . For example , state machine ZA in accordance 
with FIG . 2 can have the configuration ZA ' in accordance 
with FIG . 6 . 
[ 0140 ] Block So symbolizes an initial state from which a 
change is made , by way of state transition a50 , to the 
" unloaded ” or “ not loaded ” state S1 . 
[ 0141 ] From state S1 , “ not loaded , ” in further preferred 
embodiments a change can be made by way of state tran 
sition a51 to state S2 , “ loading . ” This can be the case , for 
instance , when key loader B3 ( FIG . 4 ) requests from HSM 
driver B2 the loading of a cryptographic key ( see arrow a3 
of FIG . 4 ) . 
[ 0142 ] In further preferred embodiments , a state transition 
a52 characterizes a change from state S2 back to state S1 , for 
instance if loading has not been successfully executed . In 
further preferred embodiments , this state transition a52 can 
also occur if it is not possible to find a key that can be 
unloaded . 
[ 0143 ] In further preferred embodiments , a state transition 
a53 symbolizes the retention of state S2 , thus characterizing , 
for instance , the fact that loading of the cryptographic key is 
continuing 
[ 0144 ] In further preferred embodiments , a state transition 
a54 characterizes a change from state S2 to state S3 , “ in use ” 
or " loaded and in use . " 
[ 0145 ] In further preferred embodiments , state transition 
a55 characterizes a change from state S3 to state S4 , “ loaded 
and not in use . " 
[ 0146 ] In further preferred embodiments , a state transition 
a56 characterizes a change from state S4 to state S3 , in 
which the relevant cryptographic key can be locked , for 
instance so that it cannot be selected for release , for instance 
if the volatile memory for the cryptographic keys is full and 
a release of memory space therein is desirable . 
[ 0147 ] In further preferred embodiments , a state transition 
a57 symbolizes the retention of state S3 , thus characterizing , 
for instance , the fact that the cryptographic key is still 
" loaded and in use . " 
[ 0148 ] In further preferred embodiments , a state transition 
a58 characterizes a change from state S4 to state S6 , 
" unloading , ” in which the relevant cryptographic key or the 
memory area of the , for instance , volatile memory used by 
it is released 
[ 0149 ] In further preferred embodiments , a state transition 
a59 characterizes a change from state S6 back to state S4 , for 
example if release of the key or of the associated memory 
area cannot be executed successfully . 
[ 0150 ] In further preferred embodiments , a state transition 
a60 symbolizes the retention of state S6 , thus characterizing , 
for instance , the fact that unloading or release is continuing . 
[ 0151 ] In further preferred embodiments , a state transition 
a61 characterizes a change from state S6 to state Si , for 

instance when release of the key or of the associated 
memory area has been completed . 
[ 0152 ] In further preferred embodiments , a state transition 
a62 characterizes a change from state S2 to state S5 , 
" waiting for unoccupied memory space , for instance , in the 
volatile memory , ” for instance if a unoccupied memory area 
for the key to be loaded first needs to be created for loading 
from state S2 . 
[ 0153 ] A state transition a65 from state S5 to state S5 itself 
symbolizes the retention of state S5 in accordance with 
further exemplifying embodiments , for instance when the 
release of a memory area for acceptance of a new key to be 
loaded is continuing . 
[ 0154 ] In further exemplifying embodiments , a state tran 
sition a63 characterizes a change from state S5 to state S2 , 
for instance when unoccupied memory space for the key to 
be loaded has been created for loading in accordance with 
state S2 . 
[ 0155 ] In further preferred embodiments , further states in 
addition to those illustrated here by way of example in FIG . 
6 can be provided and , for instance , can be associated at least 
temporarily with at least one of cryptographic keys 10 ( FIG . 
2 ) . 
[ 0156 ] In further exemplifying embodiments , provision is 
made that state machine ZA ( FIG . 2 ) is used in order to 
associate the respective state S1 , S2 , etc. with at least one of 
cryptographic keys 10. By way of example , the state labeled 
by way of example with the reference character Z_1 in FIG . 
1A can correspond at least temporarily to at least one of 
states S1 , S2 , etc. illustrated here by way of example in FIG . 
6 . 
[ 0157 ] In further preferred embodiments , it may happen 
that several jobs that are being executed at least in part in 
chronologically overlapping fashion use the same crypto 
graphic key . In further preferred embodiments , no conflicts 
arise in this context because key loader B3 ( FIG . 4 ) assigns 
a respectively corresponding state , e.g. , " loading , ” to the key 
that is to be loaded . 
[ 0158 ] In further preferred embodiments , it is possible to 
provide a selection method that can be used to ascertain 
which of , if applicable , several unused loaded cryptographic 
keys is to be unloaded or to be unloaded first , for instance 
when unoccupied memory is required in volatile memory 
6a , 206a for loading new keys . 
[ 0159 ] In further preferred embodiments , the selection 
method can be embodied configurably , for instance config 
urably in a pre - compile phase . 
[ 0160 ] In further preferred embodiments , the selection 
method can be based on information that is available , for 
instance , at a runtime of apparatus 200 , 206 , for instance : 
[ 0161 ] a ) unloading the key that , of all the loaded keys , has 

not been used for the longest time ; 
[ 0162 ] b ) unloading the key that has been used least often ; 
[ 0163 ] c ) unloading a key selected on a random or pseudo 
random basis . 

[ 0164 ] In further preferred embodiments , the selection 
method can be based on an individual priority of the 
cryptographic keys , which is assigned , for instance , stati 
cally to the keys . In further preferred embodiments , for 
instance , the key that is currently unused , having the lowest 
priority , can correspondingly be unloaded . 
[ 0165 ] Further exemplifying embodiments ( see FIG . 7 ) 
refer to a use 300 of the method in accordance with the 
embodiments and / or of the apparatus in accordance with the 

> 



US 2022/0116213 A1 Apr. 14 , 2022 
9 

a 

embodiments and / or of the computer - readable memory 
medium in accordance with the embodiments and / or of the 
computer program in accordance with the embodiments 
and / or of the data carrier signal in accordance with the 
embodiments for at least one of the following elements : a ) 
managing 302 one or several cryptographic keys 10 , 10_1 , 
for example for a control device 20 , in particular for a motor 
vehicle 1 ; b ) using 304 one or several cryptographic keys , 
for example for a control device , in particular for a motor 
vehicle , for example based on a state Z_1 of at least one 
cryptographic key and / or based on a state of at least one 
volatile memory 6a , 206a ; c ) leaving 306 at least one 
cryptographic key in a or the volatile memory ; d ) using 308 , 
for example reusing , at least one cryptographic key that is 
stored in a or the volatile memory . 
[ 0166 ] FIG . 9 schematically shows aspects in accordance 
with further exemplifying embodiments which refer , for 
instance , to an unloading of keys from the volatile memory 
or a replacement or overwriting . 
[ 0167 ] If the memory for the keys , for instance volatile 
memory 6a , 206a , is full , for instance does not have suffi 
cient unoccupied memory space for loading or storing a new 
key , then in accordance with further exemplifying embodi 
ments one or several keys present in memory 6a , 206a are 
unloaded . In further preferred embodiments , the key loader 
ascertains or indicates which key or keys is / are to be 
unloaded , for instance based on a selected algorithm . 
[ 0168 ] In further preferred embodiments , the key loader 
can , for instance , unload successive keys , for instance , until 
sufficient unoccupied memory is ( again ) present in volatile 
memory ba , 206a , for instance in order to load at least one 
new key or to store it at least temporarily in volatile memory 
?? , 206? . 
[ 0169 ] FIG . 9 shows , by way of example , a diagram for 
the unloading of keys in accordance with further exempli 
fying embodiments ; in step 1 a job 0 requires “ Key 0 , " and 
" Key 0 , ” is therefore loaded , for instance , from a nonvolatile 
memory into volatile memory 6a , 206a . In FIG . 9 , occu 
pancy of the volatile memory is symbolized by the " table ” 
having five rows and one column . 
[ 0170 ] In step 2 , a job 1 requires “ Key 1 , ” and “ Key 1 ” is 
therefore also loaded . In step 3 , a job 2 requires “ Key 2 , " and 
“ Key 2 ” is therefore also loaded . “ Key 2 ” is , for instance , 
twice the size of the “ Key 0 ” and “ Key 1 ” keys . 
[ 0171 ] It is assumed by way of example that proceeding 
from the state shown in step 3 of FIG . 9 , a further job is 
intended to use a further key ( “ Key 3 " ) for which sufficient 
unoccupied memory in the volatile memory is not available . 
For example , the further “ Key 3 ” has the same size as “ Key 
2. ” In further embodiments , loading of the further “ Key 3 ” 
can therefore fail , and in accordance with further exempli 
fying embodiments the key loader can unload one or several 
of the loaded keys ( “ Key 0 , ” “ Key 1 " ) . 
[ 0172 ] In further preferred embodiments , in which the 
selected algorithm provides , for unloading , that the key to be 
unloaded is the one that ( with reference to the further loaded 
keys ) has not been used for the longest time ( “ least recently 
used ” ) , the key loader will thus , for instance , unload “ Key 
O ” or release its memory space in the volatile memory ( see 
step 4 of FIG.9 ) , and if applicable will attempt again to load 
the further key ( " Key 3 ” ) . In step 4 , however , sufficient 
unoccupied continuous memory is still not available for this . 
In step 5 , the key loader therefore also unloads “ Key 1. " In 
step 6 , the key loader once again loads the further key ( “ Key 

3 ” ) , this time successfully , since sufficient continuous unoc 
cupied memory is now available . In further preferred 
embodiments , the further job that is using the further key 
( “ Key 3 ” ) can then be executed . 
What is claimed is : 
1. A method for managing cryptographic keys , compris 

ing the following steps : 
associating a state with at least one of the cryptographic 

keys ; 
using the at least one cryptographic key based on the state . 
2. The method as recited in claim 1 , wherein the managing 

of the cryptographic keys is for a control device of a motor 
vehicle . 

3. The method as recited in claim 1 , wherein : a ) the at 
least one cryptographic key is storable and / or stored at least 
temporarily in a volatile memory ; and / or b ) the at least one 
cryptographic key is storable and / or stored at least tempo 
rarily in a nonvolatile memory . 

4. The method as recited in claim 1 , wherein the state is 
characterized by at least one of the following elements : a ) 
unloaded , the at least one cryptographic key being not 
located in a volatile memory ; b ) loaded and in use , the at 
least one cryptographic key being located in the volatile 
memory and currently being used ; c ) loaded and not in use , 
the at least one cryptographic key being located in the 
volatile memory and not currently being used ; d ) loading , a 
loading operation of the at least one cryptographic key from 
a nonvolatile memory into the volatile memory being not 
already complete ; e ) unloading , an unloading operation of 
the at least one cryptographic key from the volatile memo 
not already complete ; f ) waiting for unoccupied memory 
space in the volatile memory ; g ) updating . 

5. The method as recited in claim 1 , wherein a state 
machine is used to associate the state with the at least one of 
the cryptographic keys . 

6. The method as recited in claim 1 , further comprising : 
receiving a request with regard to a cryptographic key , the 

request being to load the cryptographic key into a 
volatile memory ; and 

loading the cryptographic key into the volatile memory . 
7. The method as recited in claim 1 , further comprising : 
ascertaining a first information item that characterizes 

whether a specific cryptographic key is a key to be 
stored in exclusively volatile fashion . 

8. The method as recited in claim 7 , further comprising : 
executing a use of the specific cryptographic key based on 

the first information item including refraining from 
nonvolatile storage of the specific cryptographic key . 

9. The method as recited in claim 1 , further comprising : 
ascertaining a first variable that characterizes an unoccu 

pied memory area in the volatile memory . 
10. The method as recited in claim 9 , further comprising : 
clearing memory in the volatile memory in such a way 

that at least one further cryptographic key can be 
loaded into the volatile memory , the clearing being 
executed based on at least one predefinable algorithm ; 
the at least one algorithm being selectable during 
and / or before execution of the method . 

11. The method as recited in claim 10 , wherein the 
clearing includes : 

ascertaining at least one cryptographic key that is stored 
in the volatile memory and is not currently being used ; 
and 



US 2022/01 16213 A1 Apr. 14 , 2022 
10 

releasing a memory area occupied by the cryptographic 
key currently not being used of the volatile memory for 
overwriting with at least one further cryptographic key . 

12. The method as recited in claim 1 , further comprising : 
leaving the at least one cryptographic key in a volatile 
memory for at least one predefinable time period . 

13. An apparatus configured to manage cryptographic 
keys , the apparatus configured to : 

associate a state with at least one of the cryptographic 
keys ; 

use the at least one cryptographic key based on the state . 
14. A non - transitory computer - readable storage medium 

on which are stored instructions for managing cryptographic 
keys , the instructions , when executed by a computer , caus 
ing the computer to perform the following steps : 

associating a state with at least one of the cryptographic 
keys ; 

using the at least one cryptographic key based on the state . 
15. The method as recited in claim 1 , wherein the method 

is used for at least one of the following : 
a ) managing one or several cryptographic keys for a 

control device for a motor vehicle ; 
b ) utilizing one or several cryptographic keys for a control 

device for a motor vehicle based on a state of at least 
one of the cryptographic keys and / or based on a state of 
at least one volatile memory ; 

c ) leaving at least one cryptographic key in the volatile 
memory ; 

d ) using or reusing at least one cryptographic key that is 
stored in the volatile memory . 

* 


