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METHOD AND APPARATUS FOR 
MANAGING CRYPTOGRAPHIC KEYS 

CROSS REFERENCE 

[ 0001 ] The present application claims the benefit under 35 
U.S.C. $ 119 of German Patent Application No. 
102020212772.7 filed on Oct. 9 , 2020 , which is expressly 
incorporated herein by reference in its entirety . 

FIELD 

[ 0002 ] The present invention relates to a method for 
managing cryptographic keys . 
[ 0003 ] The present invention further relates to an appara 
tus for managing cryptographic keys . 

SUMMARY 

2 

[ 0004 ] Exemplifying embodiments of the present inven 
tion refer to a method for managing cryptographic keys , for 
example for a control device , in particular for a motor 
vehicle , having the following steps : associating a state with 
at least one of the cryptographic keys ; using the at least one 
cryptographic key based on the state . In further exemplify 
ing embodiments this makes possible flexible utilization or 
use of the at least one cryptographic key . 
[ 0005 ] In further exemplifying embodiments of the pres 
ent invention , provision is made that the at least one cryp 
tographic key is storable and / or stored at least temporarily in 
a volatile memory , for example a working memory or a 
register memory . 
[ 0006 ] In further exemplifying embodiments of the pres 
ent invention , provision is made that the at least one cryp 
tographic key is storable and / or stored at least temporarily in 
a nonvolatile memory , for example a flash ( EEPROM ) 
memory . 
[ 0007 ] In further exemplifying embodiments of the pres 
ent invention , the at least one cryptographic key can also , for 
instance , be copied or shifted from the nonvolatile memory 
into the volatile memory , which can also be referred to , for 
example , as “ loading . " 
[ 0008 ] In further exemplifying embodiments of the pres 
ent invention , a deletion or release for overwriting a cryp 
tographic key stored in the volatile memory can also be 
referred to , for example , as " unloading . ” 
[ 0009 ] In further exemplifying embodiments of the pres 
ent invention , the volatile memory and / or the nonvolatile 
memory can be associated , for instance , with at least one 
hardware security module ( HSM ) . 
[ 0010 ] In further exemplifying embodiments of the pres 
ent invention , the volatile memory and / or the nonvolatile 
memory can be integrated , for instance , into the at least one 
hardware security module ( HSM ) . 
[ 0011 ] In further exemplifying embodiments of the pres 
ent invention , the HSM can be associated , for example , with 
a control device or with a computing device of a control 
device and , for instance , can perform cryptographic func 
tions or processes and , for instance , can manage the afore 
said cryptographic key . 
[ 0012 ] In further exemplifying embodiments of the pres 
ent invention , provision is made that the state of the at least 
one cryptographic key is characterized by at least one of the 
following elements : a ) unloaded , the at least one crypto 
graphic key being , for example , not located in a or the 
volatile memory ( but instead , for example , in a or the 

nonvolatile memory ) ; b ) loaded and in use , the at least one 
cryptographic key , for example , being located in a or the 
volatile memory and currently being used , for example , by 
a computer program , for example a cryptography driver 
object ; c ) loaded and not in use , the at least one crypto 
graphic key , for example , being located in a or the volatile 
memory and not currently being used , for example not 
( even ) by a or the cryptography driver object ; d ) loading , a 
loading operation of the at least one cryptographic key , for 
example from a or the nonvolatile memory into a or the 
volatile memory , being , for example , not already complete ; 
e ) unloading , an unloading operation of the at least one 
cryptographic key , for example from a or the volatile 
memory , being , for example , not already complete ; f ) wait 
ing for unoccupied memory space in a or the volatile 
memory ( e.g. , until memory space in the volatile memory 
has been cleared , for instance by deletion or unloading of 
another key ) ; g ) updating , for example upon request by 
another unit or higher - level ( processing ) layer . In further 
exemplifying embodiments , a cryptographic key having the 
" updating ” state is not used . In further exemplifying 
embodiments , for example , it is possible instead to wait for 
a subsequent state in which updating of the cryptographic 
key is complete . 
[ 0013 ] In further exemplifying embodiments of the pres 
ent invention , one or several cryptography driver sessions or 
contexts , which can also be referred to as “ cryptography 
driver objects , ” are implemented , for example , by way of a 
cryptography driver . In further exemplifying embodiments , 
the cryptography driver contexts are independent of one 
another and , for instance , can perform different tasks at least 
partly overlappingly in time , while one cryptography driver 
context is embodied in each case , for instance , to perform 
one task . In further exemplifying embodiments , a crypto 
graphic key can be used , for instance , simultaneously by 
several different cryptography driver contexts . 
[ 0014 ] In further exemplifying embodiments of the pres 
ent invention , a quantity of cryptography driver contexts or 
cryptography driver objects is statically predefined , for 
example at a compile time ( or " translation time ” of the 
software , for instance , from a programming language into an 
object code ) , and is therefore constant during a runtime of 
the software . In further exemplifying embodiments , “ jobs ” 
are also associated statically with cryptography driver 
objects . 
[ 0015 ] In further exemplifying embodiments of the pres 
ent invention , cryptography driver contexts or cryptography 
driver objects are dynamically predefinable . 
[ 0016 ] In further exemplifying embodiments of the pres 
ent invention , a cryptography driver object is a software 
component ( computer program ) that corresponds , for 
instance , to a , for example , independent ( hardware ) device , 
for example an advanced encryption standard ( AES ) accel 
erator , to a component of a hardware security module , e.g. , 
a computing core , or to a session of a hardware security 
module which is embodied , for instance , to execute various 
cryptography primitives . 
[ 0017 ] In further exemplifying embodiments of the pres 
ent invention , the cryptography driver object is executed on 
a computing core of a or the computing device ( “ host core ” ) . 
[ 0018 ] In further exemplifying embodiments of the pres 
ent invention , a cryptographic key having the “ loaded and 
not in use ” state is , for instance , a candidate for an exchange 
with a further cryptographic key that is intended to be used a 
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currently or in the future and is therefore , for example , 
intended to be loaded into the volatile memory . 
[ 0019 ] In further exemplifying embodiments of the pres 
ent invention , provision is made that a specific crypto 
graphic key has , at a point in time under consideration , 
exactly one state ( and not , for example , several states ) . 
[ 0020 ] In further exemplifying embodiments of the pres 
ent invention , provision is made that a state machine is used 
to associate the state with at least one of the cryptographic 
keys . 
[ 0021 ] In further exemplifying embodiments of the pres 
ent invention , provision is made that the method further 
encompasses : receiving a request with regard to a crypto 
graphic key , the request being characterized , for example , in 
that the cryptographic key is to be loaded into a or the 
volatile memory ; loading the cryptographic key into the 
volatile memory . 
[ 0022 ] In further exemplifying embodiments of the pres 
ent invention , the request described above can be made , for 
instance , by a job manager . In further exemplifying embodi 
ments , the job manager is a software component ( computer 
program ) that is executable , for example , by a computing 
core of a or the computing device ( " host core ” ) and / or that 
is embodied to manage or implement an execution of 
cryptographic methods or of steps of cryptographic meth 
ods . In further exemplifying embodiments , the job manager 
is embodied , for instance , to receive requests from an 
application program and / or to output to the application 
program a status characterizing an execution of a method or 
method step . 
[ 0023 ] In further exemplifying embodiments of the pres 
ent invention , the job manager can , at least temporarily , 
execute , for example , one or several steps of the method in 
accordance with the embodiments . 
[ 0024 ] In further exemplifying embodiments of the pres 
ent invention , it is also possible , for example , to provide a 
“ key loader ” that , for instance , is also embodied as a 
software component ( computer program ) that , for example , 
is executable by a computing core of the computing device 
and / or by a computing core of the HSM ( for example , in 
some embodiments the key loader can also constitute part of 
the HSM ) , and / or that is embodied to execute , at least 
temporarily , for example , one or several steps of the method 
in accordance with the embodiments , for example loading 
and / or unloading or managing at least one cryptographic 
key , and / or managing states of at least one cryptographic 
key . 
[ 0025 ] In further exemplifying embodiments of the pres 
ent invention , the key loader can constitute part of a or the 
cryptography driver , for example similarly to the job man 
ager . In further exemplifying embodiments , the key loader 
can constitute , as already mentioned above , part of the HSM . 
[ 0026 ] In further exemplifying embodiments of the pres 
ent invention , the job manager is embodied , for example , to 
execute synchronous and / or asynchronous “ jobs , " e.g. , cryp 
tographic methods or steps of cryptographic methods , or one 
or several steps of the method in accordance with the 
embodiments . 
[ 0027 ] In further preferred embodiments of the present 
invention , the job manager is embodied to request , for 
example , the key loader to load a cryptographic key , for 
instance if the cryptographic key is not already located in the 
volatile memory . 

[ 0028 ] In further exemplifying embodiments of the pres 
ent invention , the key loader is embodied to load the key 
requested by the job manager or to cause the key to be 
loaded , for instance from the HSM . 
[ 0029 ] In further exemplifying embodiments of the pres 
ent invention , the key loader is embodied , for instance , to 
inform the job manager that the requested key has been 
successfully loaded , or that the requested key , for instance , 
is already contained ( i.e. , loaded ) in the volatile memory . 
[ 0030 ] In further exemplifying embodiments of the pres 
ent invention , the job manager can request a reference 
( " handle ” ) to the key in the context of the key loader , which 
reference , for instance , characterizes the copy of the corre 
sponding key in the volatile memory or a memory location 
of the copy of the corresponding key in the volatile memory . 
[ 0031 ] In further exemplifying embodiments of the pres 
ent invention , the key loader is embodied in such a way that 
it asynchronously executes or initiates the loading of one or 
several cryptographic keys , in which context a status of the 
respective loading operation can be queried , for instance , 
from various calling contexts . 
[ 0032 ] In further exemplifying embodiments of the pres 
ent invention , the method further encompasses : ascertaining 
a first information item that characterizes whether a specific 
cryptographic key is a key to be stored in exclusively 
volatile fashion ; and , optionally , executing a use of the 
specific cryptographic key based on the first information 
item , in particular refraining from nonvolatile storage of the 
specific cryptographic key . In further exemplifying embodi 
ments , security can thereby be enhanced . 
[ 0033 ] In further exemplifying embodiments of the pres 
ent invention , the method further encompasses : ascertaining 
a first variable that characterizes an unoccupied memory 
area in the volatile memory ; and , optionally , clearing or 
releasing memory in the volatile memory , for example in 
such a way that at least one further cryptographic key can be 
loaded into the volatile memory ; the clearing being 
executed , for example , based on at least one predefinable 
algorithm ; and , for example , the at least one algorithm being 
selectable , for example , during and / or before execution of 
the method . 
[ 0034 ] In further exemplifying embodiments of the pres 
ent invention , the clearing or release encompasses : ascer 
taining at least one cryptographic key that is stored in the 
volatile memory and is not currently being used ; and releas 
ing a memory area , occupied by the cryptographic key 
currently not being used , of the volatile memory , for 
example for overwriting with at least one further crypto 
graphic key . In further preferred embodiments , only those 
cryptographic keys which , for example , are ( also ) stored in 
nonvolatile fashion are overwritten . 
[ 0035 ] In further exemplifying embodiments of the pres 
ent invention , the method further encompasses : leaving the 
at least one cryptographic key in a or the volatile memory , 
for example for at least one predefinable time period . In 
further preferred embodiments , the cryptographic key can 
thereby be accessed particularly quickly , for instance if it is 
to be used again after a first utilization . In further preferred 
embodiments , it is thereby possible in particular to avoid 
comparatively slow loading operations that involve , for 
instance , copying the cryptographic key from a nonvolatile 
memory into the volatile memory . 
[ 0036 ] Further exemplifying embodiments of the present 
invention refer to an apparatus for executing the method in 



US 2022/0116213 A1 Apr. 14 , 2022 
3 

[ 0048 ] FIG . 3 schematically shows a simplified block 
diagram in accordance with further exemplifying embodi 
ments of the present invention . 
[ 0049 ] FIG . 4 schematically shows a simplified flow chart 
in accordance with further exemplifying embodiments of the 
present invention . 
[ 0050 ] FIG . 5 schematically shows a simplified flow chart 
in accordance with further exemplifying embodiments of the 
present invention . 
[ 0051 ] FIG . 6 schematically shows a simplified state dia 
gram in accordance with further exemplifying embodiments 
of the present invention . 
[ 0052 ] FIG . 7 schematically shows aspects of uses in 
accordance with further exemplifying embodiments of the 
present invention . 
[ 0053 ] FIG . 8 schematically shows a control device in a 
destination system in accordance with further exemplifying 
embodiments of the present invention . 
[ 0054 ] FIG . 9 schematically shows aspects in accordance 
with further exemplifying embodiments of the present 
invention . 

accordance with the embodiments . The apparatus can be 
embodied , for example , as a computing device and / or as a 
hardware security module ( HSM ) . 
[ 0037 ] Further exemplifying embodiments of the present 
invention refer to a computer - readable storage medium 
encompassing instructions that , upon execution by a com 
puter , cause the latter to execute the method in accordance 
with the embodiments . 
[ 0038 ] Further exemplifying embodiments of the present 
invention refer to a computer program encompassing 
instructions that , upon execution by a computer , cause the 
latter to execute the method in accordance with the embodi 
ments . 
[ 0039 ] Further exemplifying embodiments of the present 
invention refer to a data carrier signal that transfers and / or 
characterizes the computer program in accordance with the 
embodiments . 
[ 0040 ] Further exemplifying embodiments of the present 
invention refer to a use of the method in accordance with the 
embodiments and / or of the apparatus in accordance with the 
embodiments and / or of the computer - readable storage 
medium in accordance with the embodiments and / or of the 
computer program in accordance with the embodiments 
and / or of the data carrier signal in accordance with the 
embodiments for at least one of the following elements : a ) managing one or several cryptographic keys , for example for 
a control device , in particular for a motor vehicle ; b ) 
utilizing one or several cryptographic keys , for example for 
a control device , in particular for a motor vehicle , for 
example based on a state of at least one cryptographic key 
and / or based on a state of at least one volatile memory ; c ) 
leaving at least one cryptographic key in a or the volatile 
memory ; d ) using , for example reusing , at least one cryp 
tographic key that is stored in a or the volatile memory . 
[ 0041 ] Further features , potential applications , and advan 
tages of the present invention are evident from the descrip 
tion below of further exemplifying embodiments that are 
depicted in the Figures . All features described or depicted in 
that context , individually or in any combination , constitute 
the subject matter of exemplifying embodiments , regardless 
of their respective presentation or depiction in the descrip 
tion or in the figures . 

DETAILED DESCRIPTION OF EXAMPLE 
EMBODIMENTS 

a 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0055 ] FIG . 1A schematically shows a simplified flow 
chart of a method for managing cryptographic keys in 
accordance with exemplifying embodiments . The method 
can be used , for example , for a control device 20 ( see FIG . 
8 ) , in particular for a motor vehicle 1 , but in further 
exemplifying embodiments is not limited thereto . The 
method has the following steps ( see FIG . 1A ) : associating 
100 a state Z_1 with at least one of the cryptographic keys ; 
using 102 the at least one cryptographic key based on state 
Z_1 . In further exemplifying embodiments , flexible use or 
utilization of the at least one cryptographic key is thereby 
made possible . 
[ 0056 ] FIG . 2 shows , by way of example , several crypto 
graphic keys 10 , one of which is labeled with the reference 
character 10_1 . Cryptographic keys 10 can be managed , for 
example , by way of the method in accordance with FIG . 1A . 
[ 0057 ] In further exemplifying embodiments , provision is 
made that the at least one cryptographic key 10_1 is storable 
and / or stored at least temporarily in a volatile memory 6a , 
for example in a working memory or a register memory . 
[ 0058 ] In further exemplifying embodiments , provision is 
made that the at least one cryptographic key 10_1 is storable 
and / or stored at least temporarily in a nonvolatile memory 
6b , for example in a flash ( EEPROM ) memory . 
[ 0059 ] In further exemplifying embodiments , the at least 
one cryptographic key 10_1 can also , for instance , be copied 
or shifted from nonvolatile memory 6b into volatile memory 
6a , which can also be referred to , for example , as “ loading . " 
[ 0060 ] In further exemplifying embodiments , a deletion or 
release for overwriting a cryptographic key 10_1 stored in 
volatile memory ba can also be referred to , for example , as 
" unloading . " 
[ 0061 ] In further exemplifying embodiments , an optional 
state machine ZA can be provided in order to influence , in 
particular to control , the state of one or several keys 10 . 
[ 0062 ] Further exemplifying embodiments ( see FIG . 3 ) 
refer to an apparatus 200 for executing the method in 
accordance with the embodiments . Apparatus 200 has a 
computing device ( “ computer ” ) 202 having at least one 
computing core 202a , and has a storage device 204 , asso 

( 0042 ] FIG . 1A schematically shows a simplified flow 
chart in accordance with exemplifying embodiments of the 
present invention . 
[ 0043 ] FIG . 1B schematically shows a simplified flow 
chart in accordance with further exemplifying embodiments 
of the present invention . 
[ 0044 ] FIG . 1C schematically shows a simplified flow 
chart in accordance with further exemplifying embodiments 
of the present invention . 
[ 0045 ] FIG . 1D schematically shows a simplified flow 
chart in accordance with further exemplifying embodiments 
of the present invention . 
[ 0046 ] FIG . 1E schematically shows a simplified flow 
chart in accordance with further exemplifying embodiments 
of the present invention . 
[ 0047 ] FIG . 2 schematically shows a simplified block 
diagram in accordance with further exemplifying embodi 
ments of the present invention . 
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ciated with computing device 202 , for at least temporary 
storage of at least one of the following elements : a ) data 
DAT ; b ) computer program PRG , in particular for executing 
a method in accordance with the embodiments . 
[ 0063 ] In further preferred embodiments , storage device 
204 has a volatile memory 204a ( e.g. , working memory 
( RAM ) ) and / or a nonvolatile memory 204b ( e.g. , flash 
EEPROM ) . 
[ 0064 ] In further preferred embodiments , computing 
device 202 has at least one of the following elements or is 
embodied as at least one of said elements : microprocessor 
( UP ) ; microcontroller ( UC ) ; application - specific integrated 
circuit ( ASIC ) ; system on chip ( SOC ) ; programmable logic 
module ( e.g. , field programmable gate array ( FPGA ) ) ; hard 
ware circuit ; or any combinations thereof . 
[ 0065 ] Further preferred embodiments refer to a com 
puter - readable storage medium SM encompassing instruc 
tions PRG that , upon execution by a computer 202 , cause the 
latter to execute the method in accordance with the embodi 
ments . 
[ 0066 ] Further preferred embodiments refer to a computer 
program PRG encompassing instructions that , upon execu 
tion of the program by a computer 202 , cause the latter to 
execute the method in accordance with the embodiments . 
[ 0067 ] Further preferred embodiments refer to a data 
carrier signal DCS that characterizes and / or transfers the 
computer program PRG in accordance with the embodi 
ments . Data carrier signal DCS is , for example , receivable 
via an optional data interface 208 of apparatus 200 . 
[ 0068 ] In further exemplifying embodiments , apparatus 
200 itself can be embodied as a hardware security module 
( HSM ) , a computing core 2026 being , for instance , embod 
ied as an HSM core . 
[ 0069 ] In further exemplifying embodiments , apparatus 
200 can also , for instance , have an optional hardware 
security module 206 that , for instance , can have a computing 
core 206c as well as , for instance , a volatile memory 206a , 
for instance similar to volatile memory 6a in accordance 
with FIG . 2 , and , for instance , a nonvolatile memory 206b , 
for instance similar to nonvolatile memory 6b in accordance 
with FIG . 2 . 
[ 0070 ] In other words , in further preferred embodiments 
volatile memory ba ( FIG . 2 ) and / or nonvolatile memory 6b 
can , for instance , be associated with at least one hardware 
security module 206 ( FIG . 3 ) and / or can be integrated into 
hardware security module 206 . 
[ 0071 ] In further exemplifying embodiments , an optional 
computing core 202b ( “ HSM core ” ) of computing device 
200 can execute or have the function of HSM 206 or of 
computing core 206c of HSM 206. In this case , in further 
preferred embodiments , for instance , the optional separate 
HSM 206 or its core 206c can be omitted . 
[ 0072 ] In further exemplifying embodiments , apparatus 
200 and / or HSM 206 can , for example , be associated with 
control device 20 ( FIG . 8 ) or , in the case of HSM 206 , with 
a computing device 202 of control device 20 and , for 
instance , can perform cryptographic functions or methods 
and , for instance , can manage the aforesaid cryptographic 
keys 10 ( FIG . 3 ) . 
[ 0073 ] In further exemplifying embodiments , computing 
device 202 ( FIG . 3 ) of apparatus 200 can also have one or 
several computing cores 202a for executing application 
programs ( " host cores ” ) , which use , for instance , crypto 
graphic functions . In further preferred embodiments , com 

puting device 202 can have at least one computing core 2025 
that is , for instance , physically separate from host cores 
202a ( “ HSM core ” ) , which is embodied , for instance , for the 
execution of cryptographic functions ( for instance , creating 
message authentication codes ( MACs ) , ascertaining and / or 
checking signatures and / or hash values ) , for example for the 
host core or cores 202a . In further preferred embodiments , 
HSM core 202b can , for instance , also execute management 
of cryptographic keys in accordance with the embodiments . 
[ 0074 ] In further exemplifying embodiments , host cores 
202a and HSM core 202b can , for instance , communicate 
directly with one another , for instance by message exchange 
( “ message passing ” ) and / or by way of shared memory areas , 
for instance of RAM 204a . 
[ 0075 ] In further preferred embodiments it is possible to 
ensure , for instance by way of hardware - based security 
mechanisms , that host cores 202a , for instance , cannot 
access cryptographic keys 10 ( FIG . 2 ) that are managed by 
HSM core 202b , or corresponding memory areas in which 
those cryptographic keys 10 are stored . 
[ 0076 ] In further exemplifying embodiments , at least one 
of the programs below can be executed by apparatus 200 : 
[ 0077 ] 1. Host application PRG ( see also , for instance , 
block B5 of FIG . 4 ) , i.e. , for instance , an application that , 
for instance , is executable by host core or cores 202a and 
that uses the cryptographic functions that can be furnished 
by HSM 206 or by HSM core 202b ; 

[ 0078 ] 2. HSM driver ( see also , for instance , block B2 of 
FIG . 4 ) , a software component or computer program that 
is executable by host core or cores 202a and constitutes an 
interface for the cryptographic functions of HSM 206 or 
of HSM core 202b . In further preferred embodiments , for 
example , the host application can communicate or inter 
act , in particular exclusively , via the HSM driver with 
HSM 206 or with HSM core 202b ; 

[ 0079 ] 3. HSM software ; this is , for instance , a computer 
program that is executable on HSM core 206c , 202b ( i.e. , 
for instance , in an environment secured with respect to 
host cores 202a ) and that , for instance , executes the 
cryptographic functions and / or management , for instance , 
of cryptographic keys 10 . 

[ 0080 ] In further exemplifying embodiments , provision is 
made that state Z_1 ( FIG . 1 ) of the at least one cryptographic 
key 10_1 is characterized by at least one of the following 
elements : a ) unloaded , the at least one cryptographic key 
10_1 being , for example , not located in a or the volatile 
memory 6a , 206a ( but instead , for example , in a or the 
nonvolatile memory 6b , 206b ) ; b ) loaded and in use , the at 
least one cryptographic key 10_1 , for example , being 
located in volatile memory 6a , 206? and currently being 
used , for example , by a computer program PRG , for 
example a cryptography driver object ; c ) loaded and not in 
use , the at least one cryptographic key 10_1 , for example , 
being located in a or the volatile memory 6a , 206? and not 
currently being used , for example not ( even ) by a or the 
cryptography driver object ; d ) loading , a loading operation 
of the at least one cryptographic key 10_1 , for example from 
nonvolatile memory 6b , 206b into volatile memory 6a , 
206a , being , for example , not already complete ; e ) unload 
ing , an unloading operation of the at least one cryptographic 
key 10_1 , for example from volatile memory 6a , 206a , 
being , for example , not already complete ; f ) waiting for 
unoccupied memory space in volatile memory 6a , 206a 
( e.g. , until memory space in volatile memory 6a , 206a has 

. 
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been cleared , for instance by deletion or unloading of 
another key ) ; g ) updating , for example upon request by 
another unit or higher - level ( processing ) layer . In further 
exemplifying embodiments , a cryptographic key having the 
" updating ” state is not used . In further exemplifying 
embodiments , for example , it is possible instead to wait for 
a subsequent state in which updating of the cryptographic 
key is complete . 
[ 0081 ] In further exemplifying embodiments , a crypto 
graphic key having the “ loaded and not in use ” state is , for 
instance , a candidate for exchange with a further crypto 
graphic key that is to be used currently or in the future and 
is therefore , for example , to be loaded into volatile memory 
?? , 206? . 
[ 0082 ] In further exemplifying embodiments , provision is 
made that a specific cryptographic key has , at a point in time 
under consideration , exactly one state ( and not , for example , 
several states ) . 
[ 0083 ] In further exemplifying embodiments , provision is 
made that state machine ZA ( FIG . 2 ) is used to associate 
state Z_1 ( FIG . 1 ) with at least one of cryptographic keys 10 . 
[ 0084 ] In further exemplifying embodiments ( see FIG . 
1B ) , provision is made that the method further encompasses : 
receiving 110 a request A1 with regard to a cryptographic 
key 10_1 , request A1 being characterized , for example , in 
that cryptographic key 10_1 is to be loaded into a or the 
volatile memory 6a , 206a ; loading 112 cryptographic key 
10_1 into volatile memory 6a , 206a . 
[ 0085 ] In further exemplifying embodiments , request A1 
described above can be made , for instance , by a job manager 
( see , for instance , block B4 of FIG . 4 ) . In further exempli 
fying embodiments , the job manager is a computer program 
that is executable , for example , by HSM 206 ( FIG . 3 ) or by 
a computing core 206c of HSM 206 ( or by a host core 202a ) 
and / or that is embodied to manage an execution of crypto 
graphic methods or of steps of cryptographic methods . In 
further exemplifying embodiments , the job manager is 
embodied , for instance , to receive requests from an appli 
cation program B5 ( FIG . 4 ) and / or to output to application 
program B5 a status characterizing an execution of a method 
or method step . 
[ 0086 ] In further exemplifying embodiments , the job man 
ager can , at least temporarily , execute one or several steps of 
the method in accordance with the embodiments . 
[ 0087 ] In further exemplifying embodiments it is also 
possible , for example , to provide a key loader B3 ( see , for 
instance , FIG . 4 ) that , for instance , is also embodied as a 
computer program that , for example , is executable by a host 
core 202a , and / or that is embodied to execute , at least 
temporarily , for example , one or several steps of the method 
in accordance with the embodiments , for example loading 
and / or unloading or managing at least one cryptographic key 
10_1 . 
[ 0088 ] In further exemplifying embodiments , the job man 
ager is embodied , for example , to execute synchronous 
and / or asynchronous jobs , e.g. , cryptographic methods or 
steps of cryptographic methods , or one or several steps of 
the method in accordance with the embodiments . 
[ 0089 ] In further preferred embodiments , the job manager 
is embodied , for example , to instruct the key loader to load 
a cryptographic key or cause it to be loaded , for instance if 
the cryptographic key is not already located in the volatile 
memory . 

[ 0090 ] In further exemplifying embodiments , the key 
loader is embodied to load the key requested by the job 
manager or to cause the key to be loaded . 
[ 0091 ] In further exemplifying embodiments , the key 
loader is embodied , for instance , to inform the job manager 
that the requested key has been successfully loaded , or that 
the requested key , for instance , is already contained ( i.e. , 
loaded ) in the volatile memory . 
[ 0092 ] In further exemplifying embodiments , the job man 
ager can request a reference ( “ handle ” ) to the key in the 
context of the key loader , which reference , for instance , 
characterizes the copy of the corresponding key in the 
volatile memory . 
[ 0093 ] In further exemplifying embodiments , the key 
loader is embodied in such a way that it asynchronously 
executes or initiates the loading of one or several crypto 
graphic keys , in which context a status of the respective 
loading operation can be queried , for instance , from various 
invoking contexts . 
[ 0094 ] In further exemplifying embodiments ( see FIG . 
1C ) , the method further encompasses : ascertaining 120 a 
first information item 11 that characterizes whether a specific 
cryptographic key 10_1 is a key to be stored in exclusively 
volatile fashion ; and , optionally , executing 122 a use of the 
specific cryptographic key based on first information item 
I1 , in particular , for instance , refraining from nonvolatile 
storage of the specific cryptographic key . In further exem 
plifying embodiments , security can thereby be enhanced . 
[ 0095 ] In further exemplifying embodiments ( see FIG . 
1D ) , the method further encompasses : ascertaining 130 a 
first variable G1 that characterizes an unoccupied memory in 
volatile memory 6a , 206a ; and , optionally , clearing 132 or 
releasing memory in volatile memory 6a , 206a , for example 
in such a way that at least one further cryptographic key can 
be loaded into volatile memory 6a , 206a . 
[ 0096 ] In further exemplifying embodiments ( see FIG . 
1E ) , the clearing or release encompasses : ascertaining 132a 
at least one cryptographic key that is stored in volatile 
memory 6a , 206a and is not currently being used ; and 
releasing 132b a memory area , occupied by the crypto 
graphic key currently not being used , of volatile memory 6a , 
206a , for example for overwriting with at least one further 
cryptographic key . 
[ 0097 ] In further exemplifying embodiments ( see FIG . 
1A ) , the method further encompasses : leaving 102a the at 
least one cryptographic key 10_1 in a or the volatile memory 
6a , 206a , for example for at least one predefinable time 
period . In further preferred embodiments , cryptographic key 
10_1 can thereby be accessed particularly quickly , for 
instance if it is to be used again after a first utilization . In 
further preferred embodiments , it is thereby possible in 
particular to avoid comparatively slow loading operations 
that involve , for instance , copying cryptographic key 10_1 
from a nonvolatile memory 6b , 206b into volatile memory 
?? , 206? . 
[ 0098 ] FIG . 4 schematically shows a simplified flow chart 
for , for instance , synchronous processing of jobs in accor 
dance with further exemplifying embodiments . Block B1 
symbolizes a hardware security module ( see also , for 
instance , reference character 206 of FIG . 3 ) , block B2 
symbolizes an HSM driver , block B3 symbolizes a key 
loader , block B4 symbolizes a job manager , and block B5 
symbolizes an application program . 

a 
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[ 0099 ] Arrow al symbolizes a request of application pro 
gram B5 to job manager B4 to execute a job . Job manager 
B4 instructs key loader B3 ( see arrow a2 ) to load a crypto 
graphic key ( usable , for example , for the job to be executed ) 
and , if applicable , to lock it with respect to overwriting ( e.g. , 
in order to recover unoccupied memory space in the volatile 
memory ) . Key loader B3 signals to HSM B1 via HSM driver 
B2 , by way of arrows a3 , a4 , that a loading operation for a 
cryptographic key 10_1 ( FIG . 2 ) is to be executed . 
[ 0100 ] In further exemplifying embodiments , element a2 
( and , for instance , also element a31 in accordance with FIG . 
5 ; see below ) does not provide that the cryptographic key is 
locked in the sense that it is not usable , for instance , at least 
temporarily in chronologically overlapping fashion by other 
cryptography driver objects . Element a2 ( and , for instance , 
also element a31 in accordance with FIG . 5 ; see below ) 
instead provides , for instance , that the cryptographic key is 
locked in the sense that it is not selectable for release , for 
instance if the volatile memory for the cryptographic keys is 
full and a release of memory space therein is therefore 
desirable . 
[ 0101 ] In further exemplifying embodiments it is therefore 
possible , for instance , that , for instance , as soon as a key is 
loaded , a simultaneous or at least partly chronologically 
overlapping use of that key occurs , for instance , by different 
cryptography driver objects . 
[ 0102 ] In further exemplifying embodiments one or sev 
eral , for instance all , cryptography drivers or cryptography 
driver objects can set a respective lock with respect to a key 
( the locks are , for instance , not mutually exclusive ) . In 
further preferred embodiments this has the effect that a key , 
for instance once it has been loaded , remains in use as long 
as the total number of locks has a non - negligible value 
( greater than zero ) . 
[ 0103 ] In further exemplifying embodiments , a key can 
transition into the “ loaded and not in use ” state ( see FIG . 6 
below ) when the last lock has been removed . In further 
preferred embodiments , the relevant key can then , for 
instance , also be overwritten again , for instance in order to 
release memory . 
[ 0104 ] Block B10 correspondingly symbolizes the loading 
of cryptographic key 10_1 , for instance , from nonvolatile 
memory 206b into volatile memory 206a ( FIG . 3 ) . 
[ 0105 ] In further exemplifying embodiments , HSM driver 
B2 signals to key loader B3 ( see arrow a5 ) that the crypto 
graphic key is currently being loaded and the cryptographic 
key thus has the “ loading ” state . In further preferred embodi 
ments , the situation is comparable for components B3 , B4 
( see arrow a6 ) . 
[ 0106 ] In further exemplifying embodiments , job manager 
B4 queries the current state of the cryptographic key ( see 
arrows a7 , a8 ) , and components B2 , B3 correspondingly 
report back a current status ( e.g. , “ key ( still ) loading ” ) ( see 
arrows a9 , a10 ) . 
[ 0107 ] In further exemplifying embodiments , arrow a13 
symbolizes the fact that HSM B1 signals the “ key loaded ” 
state to HSM driver B2 . In further preferred embodiments 
this “ key loaded ” state can correspondingly be reported , 
after a new request all by job manager B4 ( see also request 
a12 of key loader B3 ) , to components B3 , B4 in the form of 
signals a14 , a15 . 
[ 0108 ] In further exemplifying embodiments , job manager 
B4 asks key loader B3 for a reference ( “ handle " ) to the 
loaded cryptographic key ( see arrow a16 ) . In further pre 

ferred embodiments , key loader B3 signals the reference to 
the loaded cryptographic key to job manager B4 ( see arrow 
a17 ) . Block B11 symbolizes , by way of example , execution 
of the job characterized by arrow al , for instance using the 
cryptographic key that has meanwhile been loaded . 
[ 0109 ] In further exemplifying embodiments , the crypto 
graphic key is unloaded or released again ( see arrow al8 ) 
after execution B11 of the job ; for instance , a memory area 
of the volatile memory which since then has been occupied 
by the cryptographic key can also be released and is thus 
usable , if applicable , for another key . Optionally , a lock that 
may have been applied to the key ( see arrow a2 ) can also be 
canceled . By way of signal a18 , job manager B4 can signal 
to key loader B3 , for example , that the relevant key is not 
being used at present . If , for example , the relevant key is not 
being used by any of the , if applicable , several HSM driver 
objects , the relevant key can assume , for instance , the 
" loaded and not in use ” state . 
[ 0110 ] Arrow a19 symbolizes an optional confirmation of 
release al8 on the part of key loader B3 . 
[ 0111 ] In further exemplifying embodiments , job manager 
B4 can signal to application program B5 that the job has 
been executed ( see arrow a20 ) . 
[ 0112 ] In further exemplifying embodiments , job manager 
B4 can check , for instance after receiving inquiry al , 
whether a cryptographic key is necessary or indicated for 
execution of the job . In further preferred embodiments , for 
example , cryptographic services or functions that do not 
require a cryptographic key for their execution , for instance 
the calculation of hash values , can also be provided and / or 
used . If a cryptographic key is necessary or indicated for 
execution of the job , job manager B4 requests loading from 
key loader B3 ( see arrow a2 ) . 
[ 0113 ] In further exemplifying embodiments , key loader 
B3 can manage the state of at least one cryptographic key 
10_1 ( FIG . 2 ) , for example of several or all cryptographic 
keys 10. For example , after receiving request a2 , key loader 
B3 can ascertain , in accordance with FIG . 4 , that the 
cryptographic key to be used for execution of the job is not 
already present in the volatile memory , and can therefore 
initiate the loading operation ( see arrow a3 ) , the loading 
operation being executed , for instance , asynchronously by 
HSM B1 ( see also , for instance , HSM cores 206c , 202b ) . 
[ 0114 ] In further exemplifying embodiments , job manager 
B4 can query the state of the loading operation ( see , for 
instance , arrows a7 , all ) , for instance until the key is loaded . 
[ 0115 ] FIG . 5 schematically shows a simplified flow chart 
for , for instance , asynchronous processing of jobs in accor 
dance with further exemplifying embodiments . Block B1 
symbolizes a hardware security module ( see also , for 
instance , reference character 206 of FIG . 3 ) , block B2 
symbolizes an HSM driver , block B3 symbolizes a key 
loader , block B4 symbolizes a job manager , block B5 ' 
symbolizes an application program , and block B6 symbol 
izes a cyclically executed task , i.e. , for instance a cyclically 
executed process . 
[ 0116 ] Arrow a30 symbolizes a request by application 
program B5 ' to job manager B4 to execute a job . Job 
manager B4 instructs key loader B3 ( see arrow a31 ) to load 
( or cause the loading of ) a cryptographic key ( for example , 
one usable for the job to be executed ) and , if applicable , to 
lock it , for example in order to protect it from overwriting . 
Key loader B3 signals to HSM B1 , via HSM driver B2 by 
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way of arrows a32 , a33 , that a loading operation for a 
cryptographic key 10_1 ( FIG . 2 ) is to be executed . 
[ 0117 ] Block B10 ' correspondingly symbolizes the load 
ing of cryptographic key 10_1 , for instance , from nonvola 
tile memory 206b into volatile memory 206a ( FIG . 3 ) . 
[ 0118 ] Arrows a34 , a35 symbolize signaling to compo 
nents B3 , B4 with regard to the current state of the loading 
of the cryptographic key , and arrow a36 comparably sym 
bolizes signaling of the status of execution of the job to 
application program B5 ' . 
[ 0119 ] In further exemplifying embodiments , HSM B1 
signals a return code regarding loading B10 ' ( see arrow a37 ) 
to HSM driver B2 . 
[ 0120 ] In further exemplifying embodiments , task B6 sig 
nals the execution of a planned function to job manager B4 
( see arrow a38 ) , which then queries the loading state of the 
previously requested cryptographic key ( see arrows a39 , 
a40 ) . HSM driver B2 signals that the cryptographic key has 
now been loaded ( see arrows a41 , a41 ' ) . 
0121 ] In further exemplifying embodiments , job manager 
B4 asks key loader B3 for a reference ( “ handle " ) to the 
loaded cryptographic key ( see arrow a42 ) . In further pre 
ferred embodiments , key loader B3 signals the reference to 
the loaded cryptographic key to job manager B4 ( see arrow 
a43 ) . Block B11 ' symbolizes , by way of example , execution 
of the job characterized by arrow a30 , for instance using the 
cryptographic key that has meanwhile been loaded . 
[ 0122 ] In further exemplifying embodiments , the crypto 
graphic key is unloaded or released again ( see arrow a44 ) 
after execution Bll ' of the job ; a memory area of the volatile 
memory which since then has been occupied by the cryp 
tographic key can also , for instance , be released and is thus 
usable , if applicable , for another key . Arrow a45 symbolizes 
an optional confirmation of release a44 on the part of key 
loader B3 . Arrow a46 symbolizes , by way of example , 
completion of the planned function . 
[ 0123 ] In further exemplifying embodiments , in the con 
text of the exemplifying asynchronous execution of the task 
in accordance with FIG . 5 , the latter can be started by way 
of request a 30 while a further execution is being performed , 
for instance by way of cyclic task B6 . In further preferred 
embodiments , the principle of loading a cryptographic key 
can correspond to the steps described by way of example 
with reference to FIG . 4 . 
[ 0124 ] In further exemplifying embodiments , computing 
time on a host core 202a ( FIG . 3 ) that , for instance , is 
executing application program B5 , B5 ' , which time host core 
202a would otherwise need to use , for instance , for a 
blocking polling loop , for instance in order itself to wait for 
completion of the loading of the cryptographic key , can be 
saved by the procedure described by way of example above . 
[ 0125 ] In further exemplifying embodiments , a through 
put of host core 202a , for instance in an automotive open 
system architecture ( AUTOSAR ) system , can therefore be 
increased by way of the procedure described by way of 
example above . 
[ 0126 ] Utilization of the management of cryptographic 
keys in accordance with the embodiments makes possible , at 
least temporarily and / or at least in some embodiments , a 
reduction in latency in the execution of jobs , for instance by 
the fact that at least some keys can be left in the compara 
tively fast volatile memory even when a job that has used the 
key or keys has been completed , for example in contradis 
tinction to constant deletion of the keys from the volatile 

memory directly after use , and constant reloading of the 
keys . This means , for instance , that a subsequent job that is 
intended to use the key or keys finds the key or keys , for 
instance , already in the volatile memory ( provided it has not , 
for instance , already been overwritten in accordance with 
further exemplifying embodiments ) , so that the key or keys 
does / do not first need to be loaded into the volatile memory . 
[ 0127 ] In further exemplifying embodiments , various 
methods for exchanging or overwriting keys can be pro 
vided , which are embodied to retain or leave in the volatile 
memory those keys that will be ( re ) used in the future with 
the highest probability and / or , for instance , the keys having 
a highest priority ; this offers a performance advantage and 
increases the throughput ( characterizable , for instance , by a 
number of jobs executed in a predefinable time ) of a system . 
[ 0128 ] In further exemplifying embodiments , several jobs 
can be executed simultaneously or at least in part in chrono 
logically overlapping fashion , for example by HSM driver 
B2 ( FIGS . 4 , 5 ) . 
[ 0129 ] While the exemplifying embodiments in accor 
dance with FIGS . 4 , 5 describe possible scenarios in which 
a cryptographic key is loaded , for instance , from a nonvola 
tile memory into a volatile memory , in further exemplifying 
embodiments one or several of the situations recited below , 
inter alia , can also occur . 
[ 0130 ] In further exemplifying embodiments , a crypto 
graphic key can already be present in the volatile memory , 
for instance because it has already been loaded earlier . In 
further preferred embodiments , a cryptographic key can be 
embodied , for instance , as a " startup ” key that is loaded into 
the volatile memory upon startup of HSM 206 . 
[ 0131 ] In further exemplifying embodiments , a crypto 
graphic key can be embodied , for instance , as a key to be 
stored ( for instance , only ) in volatile fashion , and can thus , 
for instance , already be present ( for instance , only ) in the 
volatile memory . 
[ 0132 ] In further exemplifying embodiments , the unoccu 
pied memory space in the volatile memory may no longer be 
sufficient for loading of a ( for instance , further ) crypto 
graphic key , in which context , if applicable , at least one of 
the cryptographic keys located in the volatile memory can be 
unloaded or released . In further preferred embodiments , 
provision can be made that one or several of the crypto 
graphic keys present in the volatile memory must not be 
unloaded ; this can be , for instance , a key to be stored ( for 
instance , only ) in volatile fashion , and / or a " startup ” key , 
and / or a cryptographic key that is currently being used by 
another HSM driver object . 
[ 0133 ] In further exemplifying embodiments , key loader 
B3 can furnish or execute one or several of the following 
aspects : 
[ 0134 ] a ) loading a cryptographic key stored in the non 

volatile memory into the volatile memory , for instance 
when job manager B4 requests it ( see , for instance , arrow 
a2 of FIG . 4 ) ; 

[ 0135 ] b ) ascertaining which keys are keys to be stored in 
volatile fashion , in particular in order to prevent them 
from being unloaded ; 

[ 0136 ] c ) releasing volatile memory so that a new key can 
be loaded , in which context , for example , no key currently 
being used is unloaded ; 

[ 0137 ] d ) ascertaining which keys are " startup " keys , in 
particular in order to prevent them from being unloaded ; 

> 
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[ 0138 ] e ) ascertaining which keys are being used , for 
instance , by each of the possibly several HSM driver 
objects . 

[ 0139 ] FIG . 6 is a schematic simplified state diagram in 
accordance with further exemplifying embodiments which 
illustrates some possible states of a cryptographic key 10_1 
( FIG . 2 ) in accordance with further exemplifying embodi 
ments . The states that are depicted by way of example can 
correspond , for example , to a subset of states controllable by 
way of a state machine ZA ' ( see also state machine ZA for 
controlling states of cryptographic key 10 in accordance 
with FIG . 2 ) . For example , state machine ZA in accordance 
with FIG . 2 can have the configuration ZA ' in accordance 
with FIG . 6 . 
[ 0140 ] Block So symbolizes an initial state from which a 
change is made , by way of state transition a50 , to the 
" unloaded ” or “ not loaded ” state S1 . 
[ 0141 ] From state S1 , “ not loaded , ” in further preferred 
embodiments a change can be made by way of state tran 
sition a51 to state S2 , “ loading . ” This can be the case , for 
instance , when key loader B3 ( FIG . 4 ) requests from HSM 
driver B2 the loading of a cryptographic key ( see arrow a3 
of FIG . 4 ) . 
[ 0142 ] In further preferred embodiments , a state transition 
a52 characterizes a change from state S2 back to state S1 , for 
instance if loading has not been successfully executed . In 
further preferred embodiments , this state transition a52 can 
also occur if it is not possible to find a key that can be 
unloaded . 
[ 0143 ] In further preferred embodiments , a state transition 
a53 symbolizes the retention of state S2 , thus characterizing , 
for instance , the fact that loading of the cryptographic key is 
continuing 
[ 0144 ] In further preferred embodiments , a state transition 
a54 characterizes a change from state S2 to state S3 , “ in use ” 
or " loaded and in use . " 
[ 0145 ] In further preferred embodiments , state transition 
a55 characterizes a change from state S3 to state S4 , “ loaded 
and not in use . " 
[ 0146 ] In further preferred embodiments , a state transition 
a56 characterizes a change from state S4 to state S3 , in 
which the relevant cryptographic key can be locked , for 
instance so that it cannot be selected for release , for instance 
if the volatile memory for the cryptographic keys is full and 
a release of memory space therein is desirable . 
[ 0147 ] In further preferred embodiments , a state transition 
a57 symbolizes the retention of state S3 , thus characterizing , 
for instance , the fact that the cryptographic key is still 
" loaded and in use . " 
[ 0148 ] In further preferred embodiments , a state transition 
a58 characterizes a change from state S4 to state S6 , 
" unloading , ” in which the relevant cryptographic key or the 
memory area of the , for instance , volatile memory used by 
it is released 
[ 0149 ] In further preferred embodiments , a state transition 
a59 characterizes a change from state S6 back to state S4 , for 
example if release of the key or of the associated memory 
area cannot be executed successfully . 
[ 0150 ] In further preferred embodiments , a state transition 
a60 symbolizes the retention of state S6 , thus characterizing , 
for instance , the fact that unloading or release is continuing . 
[ 0151 ] In further preferred embodiments , a state transition 
a61 characterizes a change from state S6 to state Si , for 

instance when release of the key or of the associated 
memory area has been completed . 
[ 0152 ] In further preferred embodiments , a state transition 
a62 characterizes a change from state S2 to state S5 , 
" waiting for unoccupied memory space , for instance , in the 
volatile memory , ” for instance if a unoccupied memory area 
for the key to be loaded first needs to be created for loading 
from state S2 . 
[ 0153 ] A state transition a65 from state S5 to state S5 itself 
symbolizes the retention of state S5 in accordance with 
further exemplifying embodiments , for instance when the 
release of a memory area for acceptance of a new key to be 
loaded is continuing . 
[ 0154 ] In further exemplifying embodiments , a state tran 
sition a63 characterizes a change from state S5 to state S2 , 
for instance when unoccupied memory space for the key to 
be loaded has been created for loading in accordance with 
state S2 . 
[ 0155 ] In further preferred embodiments , further states in 
addition to those illustrated here by way of example in FIG . 
6 can be provided and , for instance , can be associated at least 
temporarily with at least one of cryptographic keys 10 ( FIG . 
2 ) . 
[ 0156 ] In further exemplifying embodiments , provision is 
made that state machine ZA ( FIG . 2 ) is used in order to 
associate the respective state S1 , S2 , etc. with at least one of 
cryptographic keys 10. By way of example , the state labeled 
by way of example with the reference character Z_1 in FIG . 
1A can correspond at least temporarily to at least one of 
states S1 , S2 , etc. illustrated here by way of example in FIG . 
6 . 
[ 0157 ] In further preferred embodiments , it may happen 
that several jobs that are being executed at least in part in 
chronologically overlapping fashion use the same crypto 
graphic key . In further preferred embodiments , no conflicts 
arise in this context because key loader B3 ( FIG . 4 ) assigns 
a respectively corresponding state , e.g. , " loading , ” to the key 
that is to be loaded . 
[ 0158 ] In further preferred embodiments , it is possible to 
provide a selection method that can be used to ascertain 
which of , if applicable , several unused loaded cryptographic 
keys is to be unloaded or to be unloaded first , for instance 
when unoccupied memory is required in volatile memory 
6a , 206a for loading new keys . 
[ 0159 ] In further preferred embodiments , the selection 
method can be embodied configurably , for instance config 
urably in a pre - compile phase . 
[ 0160 ] In further preferred embodiments , the selection 
method can be based on information that is available , for 
instance , at a runtime of apparatus 200 , 206 , for instance : 
[ 0161 ] a ) unloading the key that , of all the loaded keys , has 

not been used for the longest time ; 
[ 0162 ] b ) unloading the key that has been used least often ; 
[ 0163 ] c ) unloading a key selected on a random or pseudo 
random basis . 

[ 0164 ] In further preferred embodiments , the selection 
method can be based on an individual priority of the 
cryptographic keys , which is assigned , for instance , stati 
cally to the keys . In further preferred embodiments , for 
instance , the key that is currently unused , having the lowest 
priority , can correspondingly be unloaded . 
[ 0165 ] Further exemplifying embodiments ( see FIG . 7 ) 
refer to a use 300 of the method in accordance with the 
embodiments and / or of the apparatus in accordance with the 

> 
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embodiments and / or of the computer - readable memory 
medium in accordance with the embodiments and / or of the 
computer program in accordance with the embodiments 
and / or of the data carrier signal in accordance with the 
embodiments for at least one of the following elements : a ) 
managing 302 one or several cryptographic keys 10 , 10_1 , 
for example for a control device 20 , in particular for a motor 
vehicle 1 ; b ) using 304 one or several cryptographic keys , 
for example for a control device , in particular for a motor 
vehicle , for example based on a state Z_1 of at least one 
cryptographic key and / or based on a state of at least one 
volatile memory 6a , 206a ; c ) leaving 306 at least one 
cryptographic key in a or the volatile memory ; d ) using 308 , 
for example reusing , at least one cryptographic key that is 
stored in a or the volatile memory . 
[ 0166 ] FIG . 9 schematically shows aspects in accordance 
with further exemplifying embodiments which refer , for 
instance , to an unloading of keys from the volatile memory 
or a replacement or overwriting . 
[ 0167 ] If the memory for the keys , for instance volatile 
memory 6a , 206a , is full , for instance does not have suffi 
cient unoccupied memory space for loading or storing a new 
key , then in accordance with further exemplifying embodi 
ments one or several keys present in memory 6a , 206a are 
unloaded . In further preferred embodiments , the key loader 
ascertains or indicates which key or keys is / are to be 
unloaded , for instance based on a selected algorithm . 
[ 0168 ] In further preferred embodiments , the key loader 
can , for instance , unload successive keys , for instance , until 
sufficient unoccupied memory is ( again ) present in volatile 
memory ba , 206a , for instance in order to load at least one 
new key or to store it at least temporarily in volatile memory 
?? , 206? . 
[ 0169 ] FIG . 9 shows , by way of example , a diagram for 
the unloading of keys in accordance with further exempli 
fying embodiments ; in step 1 a job 0 requires “ Key 0 , " and 
" Key 0 , ” is therefore loaded , for instance , from a nonvolatile 
memory into volatile memory 6a , 206a . In FIG . 9 , occu 
pancy of the volatile memory is symbolized by the " table ” 
having five rows and one column . 
[ 0170 ] In step 2 , a job 1 requires “ Key 1 , ” and “ Key 1 ” is 
therefore also loaded . In step 3 , a job 2 requires “ Key 2 , " and 
“ Key 2 ” is therefore also loaded . “ Key 2 ” is , for instance , 
twice the size of the “ Key 0 ” and “ Key 1 ” keys . 
[ 0171 ] It is assumed by way of example that proceeding 
from the state shown in step 3 of FIG . 9 , a further job is 
intended to use a further key ( “ Key 3 " ) for which sufficient 
unoccupied memory in the volatile memory is not available . 
For example , the further “ Key 3 ” has the same size as “ Key 
2. ” In further embodiments , loading of the further “ Key 3 ” 
can therefore fail , and in accordance with further exempli 
fying embodiments the key loader can unload one or several 
of the loaded keys ( “ Key 0 , ” “ Key 1 " ) . 
[ 0172 ] In further preferred embodiments , in which the 
selected algorithm provides , for unloading , that the key to be 
unloaded is the one that ( with reference to the further loaded 
keys ) has not been used for the longest time ( “ least recently 
used ” ) , the key loader will thus , for instance , unload “ Key 
O ” or release its memory space in the volatile memory ( see 
step 4 of FIG.9 ) , and if applicable will attempt again to load 
the further key ( " Key 3 ” ) . In step 4 , however , sufficient 
unoccupied continuous memory is still not available for this . 
In step 5 , the key loader therefore also unloads “ Key 1. " In 
step 6 , the key loader once again loads the further key ( “ Key 

3 ” ) , this time successfully , since sufficient continuous unoc 
cupied memory is now available . In further preferred 
embodiments , the further job that is using the further key 
( “ Key 3 ” ) can then be executed . 
What is claimed is : 
1. A method for managing cryptographic keys , compris 

ing the following steps : 
associating a state with at least one of the cryptographic 

keys ; 
using the at least one cryptographic key based on the state . 
2. The method as recited in claim 1 , wherein the managing 

of the cryptographic keys is for a control device of a motor 
vehicle . 

3. The method as recited in claim 1 , wherein : a ) the at 
least one cryptographic key is storable and / or stored at least 
temporarily in a volatile memory ; and / or b ) the at least one 
cryptographic key is storable and / or stored at least tempo 
rarily in a nonvolatile memory . 

4. The method as recited in claim 1 , wherein the state is 
characterized by at least one of the following elements : a ) 
unloaded , the at least one cryptographic key being not 
located in a volatile memory ; b ) loaded and in use , the at 
least one cryptographic key being located in the volatile 
memory and currently being used ; c ) loaded and not in use , 
the at least one cryptographic key being located in the 
volatile memory and not currently being used ; d ) loading , a 
loading operation of the at least one cryptographic key from 
a nonvolatile memory into the volatile memory being not 
already complete ; e ) unloading , an unloading operation of 
the at least one cryptographic key from the volatile memo 
not already complete ; f ) waiting for unoccupied memory 
space in the volatile memory ; g ) updating . 

5. The method as recited in claim 1 , wherein a state 
machine is used to associate the state with the at least one of 
the cryptographic keys . 

6. The method as recited in claim 1 , further comprising : 
receiving a request with regard to a cryptographic key , the 

request being to load the cryptographic key into a 
volatile memory ; and 

loading the cryptographic key into the volatile memory . 
7. The method as recited in claim 1 , further comprising : 
ascertaining a first information item that characterizes 

whether a specific cryptographic key is a key to be 
stored in exclusively volatile fashion . 

8. The method as recited in claim 7 , further comprising : 
executing a use of the specific cryptographic key based on 

the first information item including refraining from 
nonvolatile storage of the specific cryptographic key . 

9. The method as recited in claim 1 , further comprising : 
ascertaining a first variable that characterizes an unoccu 

pied memory area in the volatile memory . 
10. The method as recited in claim 9 , further comprising : 
clearing memory in the volatile memory in such a way 

that at least one further cryptographic key can be 
loaded into the volatile memory , the clearing being 
executed based on at least one predefinable algorithm ; 
the at least one algorithm being selectable during 
and / or before execution of the method . 

11. The method as recited in claim 10 , wherein the 
clearing includes : 

ascertaining at least one cryptographic key that is stored 
in the volatile memory and is not currently being used ; 
and 
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releasing a memory area occupied by the cryptographic 
key currently not being used of the volatile memory for 
overwriting with at least one further cryptographic key . 

12. The method as recited in claim 1 , further comprising : 
leaving the at least one cryptographic key in a volatile 
memory for at least one predefinable time period . 

13. An apparatus configured to manage cryptographic 
keys , the apparatus configured to : 

associate a state with at least one of the cryptographic 
keys ; 

use the at least one cryptographic key based on the state . 
14. A non - transitory computer - readable storage medium 

on which are stored instructions for managing cryptographic 
keys , the instructions , when executed by a computer , caus 
ing the computer to perform the following steps : 

associating a state with at least one of the cryptographic 
keys ; 

using the at least one cryptographic key based on the state . 
15. The method as recited in claim 1 , wherein the method 

is used for at least one of the following : 
a ) managing one or several cryptographic keys for a 

control device for a motor vehicle ; 
b ) utilizing one or several cryptographic keys for a control 

device for a motor vehicle based on a state of at least 
one of the cryptographic keys and / or based on a state of 
at least one volatile memory ; 

c ) leaving at least one cryptographic key in the volatile 
memory ; 

d ) using or reusing at least one cryptographic key that is 
stored in the volatile memory . 

* 


