US 20220116213A1
a9y United States

a2y Patent Application Publication o) Pub. No.: US 2022/0116213 A1

Pala et al. 43) Pub. Date: Apr. 14, 2022
(54) METHOD AND APPARATUS FOR Publication Classification
MANAGING CRYPTOGRAPHIC KEYS
(51) Imt.CL
(71) Applicant: Robert Bosch GmbH, Stuttgart (DE) HO4L 9/08 (2006.01)
(52) US. CL
(72) Inventors: Diego Pala, Bochum (DE); Teona CPC HO4L 9/0894 (2013.01); HO4L 2209/84
Tatovic, Bochum (DE); Lukas (2013.01)
Riemenschneider, Shanghai (CN)
57 ABSTRACT
(21) Appl. No.: 17/448,277 7
(22) Filed: Sep. 21, 2021 A method for managing cryptographic keys for a control
device, in particular for a motor vehicle. The method
(30) Foreign Application Priority Data includes the following steps: associating a state with at least
one of the cryptographic keys; using the at least one cryp-
Oct. 9,2020 (DE) ooieeveieene. 102020212772.7 tographic key based on the state.

associaie siate with at least one
of the (;rypiﬁgra%hic Keys

— use cryptographic ey
Dased on the state

leave cryptographic key
in volatile memory

Patent Application Publication Apr. 14,2022 Sheet 1 of 7 US 2022/0116213 A1

associaie state with at {east one TECOIE TequB S Wil TegHa 10
ofthe ::rypicsgiiigfos, keys a cryplographic kKey
Z--‘g use cryptographic key A1

pased on the state

E“'" [_..__E oad cryptographic key in volatile
102a 402) 112
i
feave cryptographic key

in volatile memory

Fig. 1A Fig. 1

asceriain first information ftem ascentain first variable that
characterizes ;g nocoupied

jig;@l memnory ?

y G1

g execute use of crytographic key E clear or release memory

¥ e 132 |

based on first {ﬁ)ﬁnaﬁon ftem

asceriain al least one aryptographic

A 132a

relegses memoery area

132b

Fig. 1E

Patent Application Publication Apr. 14,2022 Sheet 2 of 7 US 2022/0116213 A1

mimagﬁﬁam
| ZA |
A |

L feference charaster

OGO NOOCON OOOAOM XXNAOD O0CON 0OAK0E

260

\ competing core

computing core

computing

- - g = - Ty R
2022, 202 202 208
I |
204a 304b SM
)))
{ { o
DAT PRG | | 204 || PRG j |
e e oo o
mmmmmmmmmmmmmmmmmm _
— 20
§ catmpuiing (’EKI hardware sscurity module mocsanscnone §
| 2% |
§ e T T T e §
5 2062 % 206b o
B N a0
o

B

US 2022/0116213 Al

40 BOBNIBXE

i

Eie

Apr. 14,2022 Sheet 3 of 7

Aay
owdesfodiio peoy™]

Y
oD
g
&0
i
o
]

LE

e
o m i&ii!? ii?iiwmiiig
il
i &
m v Ee
[~z

35 ¢4 X m ¥a 1415
\ t i m m wesbod
SNPOoLE AUN0OS SIBMPIBY J8AUD WISH japeot Ay sabeusw gof uoproydde

Patent Application Publication

US 2022/0116213 Al

Apr. 14,2022 Sheet 4 of 7

Patent Application Publication

Aoy
awdesboydiin peoy -

. olg

LLE

e, GOl 40

“oooagoon

2=

sinpol

AUENOHs GIRMALIBY

£ge

¢H

SBALD PSH

UORNDEKS

£d

1a0Ro) fay

gee

9ge

0ce

vy

S8

ERPIIIR

98

sbeueus qof

wpeiBoid

uaeogdde

NSEY

Supnoexs AEOHAD

Patent Application Publication Apr. 14,2022 Sheet 5 of 7 US 2022/0116213 A1
LA
a0 f/
450 ase as3
1 ¥
not fsaded inading
81 adi o s2
!
ab3d
abd 262 a54
L
caded and in use
a61 S5 aﬁ?[;; 83
LY
% Wai}ing for unoccupied &
aﬁﬁ mermory space
add |ad6
abl
i '
unicading foaded and not in use
6 » a8 S4
a5% %

Fig.

6

Patent Application Publication Apr. 14,2022 Sheet 6 of 7 US 2022/0116213 A1

300

N

' R -

0 304 | | 308 |

usefreuse crypiographic Key in

R
volatile memory F Eg ?
]

Patent Application Publication Apr. 14,2022 Sheet 7 of 7 US 2022/0116213 A1

Key 1

kel
- Key0

US 2022/0116213 Al

METHOD AND APPARATUS FOR
MANAGING CRYPTOGRAPHIC KEYS

CROSS REFERENCE

[0001] The present application claims the benefit under 35
US.C. § 119 of German Patent Application No.
102020212772.7 filed on Oct. 9, 2020, which is expressly
incorporated herein by reference in its entirety.

FIELD

[0002] The present invention relates to a method for
managing cryptographic keys.

[0003] The present invention further relates to an appara-
tus for managing cryptographic keys.

SUMMARY

[0004] Exemplifying embodiments of the present inven-
tion refer to a method for managing cryptographic keys, for
example for a control device, in particular for a motor
vehicle, having the following steps: associating a state with
at least one of the cryptographic keys; using the at least one
cryptographic key based on the state. In further exemplify-
ing embodiments this makes possible flexible utilization or
use of the at least one cryptographic key.

[0005] In further exemplifying embodiments of the pres-
ent invention, provision is made that the at least one cryp-
tographic key is storable and/or stored at least temporarily in
a volatile memory, for example a working memory or a
register memory.

[0006] In further exemplifying embodiments of the pres-
ent invention, provision is made that the at least one cryp-
tographic key is storable and/or stored at least temporarily in
a nonvolatile memory, for example a flash (EEPROM)
memory.

[0007] In further exemplifying embodiments of the pres-
ent invention, the at least one cryptographic key can also, for
instance, be copied or shifted from the nonvolatile memory
into the volatile memory, which can also be referred to, for
example, as “loading.”

[0008] In further exemplifying embodiments of the pres-
ent invention, a deletion or release for overwriting a cryp-
tographic key stored in the volatile memory can also be
referred to, for example, as “unloading.”

[0009] In further exemplifying embodiments of the pres-
ent invention, the volatile memory and/or the nonvolatile
memory can be associated, for instance, with at least one
hardware security module (HSM).

[0010] In further exemplifying embodiments of the pres-
ent invention, the volatile memory and/or the nonvolatile
memory can be integrated, for instance, into the at least one
hardware security module (HSM).

[0011] In further exemplifying embodiments of the pres-
ent invention, the HSM can be associated, for example, with
a control device or with a computing device of a control
device and, for instance, can perform cryptographic func-
tions or processes and, for instance, can manage the afore-
said cryptographic key.

[0012] In further exemplifying embodiments of the pres-
ent invention, provision is made that the state of the at least
one cryptographic key is characterized by at least one of the
following elements: a) unloaded, the at least one crypto-
graphic key being, for example, not located in a or the
volatile memory (but instead, for example, in a or the

Apr. 14,2022

nonvolatile memory); b) loaded and in use, the at least one
cryptographic key, for example, being located in a or the
volatile memory and currently being used, for example, by
a computer program, for example a cryptography driver
object; ¢) loaded and not in use, the at least one crypto-
graphic key, for example, being located in a or the volatile
memory and not currently being used, for example not
(even) by a or the cryptography driver object; d) loading, a
loading operation of the at least one cryptographic key, for
example from a or the nonvolatile memory into a or the
volatile memory, being, for example, not already complete;
e) unloading, an unloading operation of the at least one
cryptographic key, for example from a or the volatile
memory, being, for example, not already complete; f) wait-
ing for unoccupied memory space in a or the volatile
memory (e.g., until memory space in the volatile memory
has been cleared, for instance by deletion or unloading of
another key); g) updating, for example upon request by
another unit or higher-level (processing) layer. In further
exemplifying embodiments, a cryptographic key having the
“updating” state is not used. In further exemplifying
embodiments, for example, it is possible instead to wait for
a subsequent state in which updating of the cryptographic
key is complete.

[0013] In further exemplifying embodiments of the pres-
ent invention, one or several cryptography driver sessions or
contexts, which can also be referred to as “cryptography
driver objects,” are implemented, for example, by way of a
cryptography driver. In further exemplifying embodiments,
the cryptography driver contexts are independent of one
another and, for instance, can perform different tasks at least
partly overlappingly in time, while one cryptography driver
context is embodied in each case, for instance, to perform
one task. In further exemplifying embodiments, a crypto-
graphic key can be used, for instance, simultaneously by
several different cryptography driver contexts.

[0014] In further exemplifying embodiments of the pres-
ent invention, a quantity of cryptography driver contexts or
cryptography driver objects is statically predefined, for
example at a compile time (or “translation time” of the
software, for instance, from a programming language into an
object code), and is therefore constant during a runtime of
the software. In further exemplifying embodiments, “jobs”
are also associated statically with cryptography driver
objects.

[0015] In further exemplifying embodiments of the pres-
ent invention, cryptography driver contexts or cryptography
driver objects are dynamically predefinable.

[0016] In further exemplifying embodiments of the pres-
ent invention, a cryptography driver object is a software
component (computer program) that corresponds, for
instance, to a, for example, independent (hardware) device,
for example an advanced encryption standard (AES) accel-
erator, to a component of a hardware security module, e.g.,
a computing core, or to a session of a hardware security
module which is embodied, for instance, to execute various
cryptography primitives.

[0017] In further exemplifying embodiments of the pres-
ent invention, the cryptography driver object is executed on
a computing core of a or the computing device (“host core”™).
[0018] In further exemplifying embodiments of the pres-
ent invention, a cryptographic key having the “loaded and
not in use” state is, for instance, a candidate for an exchange
with a further cryptographic key that is intended to be used

US 2022/0116213 Al

currently or in the future and is therefore, for example,
intended to be loaded into the volatile memory.

[0019] In further exemplifying embodiments of the pres-
ent invention, provision is made that a specific crypto-
graphic key has, at a point in time under consideration,
exactly one state (and not, for example, several states).
[0020] In further exemplifying embodiments of the pres-
ent invention, provision is made that a state machine is used
to associate the state with at least one of the cryptographic
keys.

[0021] In further exemplifying embodiments of the pres-
ent invention, provision is made that the method further
encompasses: receiving a request with regard to a crypto-
graphic key, the request being characterized, for example, in
that the cryptographic key is to be loaded into a or the
volatile memory; loading the cryptographic key into the
volatile memory.

[0022] In further exemplifying embodiments of the pres-
ent invention, the request described above can be made, for
instance, by a job manager. In further exemplifying embodi-
ments, the job manager is a software component (computer
program) that is executable, for example, by a computing
core of a or the computing device (“host core”) and/or that
is embodied to manage or implement an execution of
cryptographic methods or of steps of cryptographic meth-
ods. In further exemplifying embodiments, the job manager
is embodied, for instance, to receive requests from an
application program and/or to output to the application
program a status characterizing an execution of a method or
method step.

[0023] In further exemplifying embodiments of the pres-
ent invention, the job manager can, at least temporarily,
execute, for example, one or several steps of the method in
accordance with the embodiments.

[0024] In further exemplifying embodiments of the pres-
ent invention, it is also possible, for example, to provide a
“key loader” that, for instance, is also embodied as a
software component (computer program) that, for example,
is executable by a computing core of the computing device
and/or by a computing core of the HSM (for example, in
some embodiments the key loader can also constitute part of
the HSM), and/or that is embodied to execute, at least
temporarily, for example, one or several steps of the method
in accordance with the embodiments, for example loading
and/or unloading or managing at least one cryptographic
key, and/or managing states of at least one cryptographic
key.

[0025] In further exemplifying embodiments of the pres-
ent invention, the key loader can constitute part of a or the
cryptography driver, for example similarly to the job man-
ager. In further exemplifying embodiments, the key loader
can constitute, as already mentioned above, part of the HSM.
[0026] In further exemplifying embodiments of the pres-
ent invention, the job manager is embodied, for example, to
execute synchronous and/or asynchronous “jobs,” e.g., cryp-
tographic methods or steps of cryptographic methods, or one
or several steps of the method in accordance with the
embodiments.

[0027] In further preferred embodiments of the present
invention, the job manager is embodied to request, for
example, the key loader to load a cryptographic key, for
instance if the cryptographic key is not already located in the
volatile memory.

Apr. 14,2022

[0028] In further exemplifying embodiments of the pres-
ent invention, the key loader is embodied to load the key
requested by the job manager or to cause the key to be
loaded, for instance from the HSM.

[0029] In further exemplifying embodiments of the pres-
ent invention, the key loader is embodied, for instance, to
inform the job manager that the requested key has been
successfully loaded, or that the requested key, for instance,
is already contained (i.e., loaded) in the volatile memory.
[0030] In further exemplifying embodiments of the pres-
ent invention, the job manager can request a reference
(“handle”) to the key in the context of the key loader, which
reference, for instance, characterizes the copy of the corre-
sponding key in the volatile memory or a memory location
of the copy of the corresponding key in the volatile memory.
[0031] In further exemplifying embodiments of the pres-
ent invention, the key loader is embodied in such a way that
it asynchronously executes or initiates the loading of one or
several cryptographic keys, in which context a status of the
respective loading operation can be queried, for instance,
from various calling contexts.

[0032] In further exemplifying embodiments of the pres-
ent invention, the method further encompasses: ascertaining
a first information item that characterizes whether a specific
cryptographic key is a key to be stored in exclusively
volatile fashion; and, optionally, executing a use of the
specific cryptographic key based on the first information
item, in particular refraining from nonvolatile storage of the
specific cryptographic key. In further exemplifying embodi-
ments, security can thereby be enhanced.

[0033] In further exemplifying embodiments of the pres-
ent invention, the method further encompasses: ascertaining
a first variable that characterizes an unoccupied memory
area in the volatile memory; and, optionally, clearing or
releasing memory in the volatile memory, for example in
such a way that at least one further cryptographic key can be
loaded into the volatile memory; the clearing being
executed, for example, based on at least one predefinable
algorithm; and, for example, the at least one algorithm being
selectable, for example, during and/or before execution of
the method.

[0034] In further exemplifying embodiments of the pres-
ent invention, the clearing or release encompasses: ascer-
taining at least one cryptographic key that is stored in the
volatile memory and is not currently being used; and releas-
ing a memory area, occupied by the cryptographic key
currently not being used, of the volatile memory, for
example for overwriting with at least one further crypto-
graphic key. In further preferred embodiments, only those
cryptographic keys which, for example, are (also) stored in
nonvolatile fashion are overwritten.

[0035] In further exemplifying embodiments of the pres-
ent invention, the method further encompasses: leaving the
at least one cryptographic key in a or the volatile memory,
for example for at least one predefinable time period. In
further preferred embodiments, the cryptographic key can
thereby be accessed particularly quickly, for instance if it is
to be used again after a first utilization. In further preferred
embodiments, it is thereby possible in particular to avoid
comparatively slow loading operations that involve, for
instance, copying the cryptographic key from a nonvolatile
memory into the volatile memory.

[0036] Further exemplifying embodiments of the present
invention refer to an apparatus for executing the method in

US 2022/0116213 Al

accordance with the embodiments. The apparatus can be
embodied, for example, as a computing device and/or as a
hardware security module (HSM).

[0037] Further exemplifying embodiments of the present
invention refer to a computer-readable storage medium
encompassing instructions that, upon execution by a com-
puter, cause the latter to execute the method in accordance
with the embodiments.

[0038] Further exemplifying embodiments of the present
invention refer to a computer program encompassing
instructions that, upon execution by a computer, cause the
latter to execute the method in accordance with the embodi-
ments.

[0039] Further exemplifying embodiments of the present
invention refer to a data carrier signal that transfers and/or
characterizes the computer program in accordance with the
embodiments.

[0040] Further exemplifying embodiments of the present
invention refer to a use of the method in accordance with the
embodiments and/or of the apparatus in accordance with the
embodiments and/or of the computer-readable storage
medium in accordance with the embodiments and/or of the
computer program in accordance with the embodiments
and/or of the data carrier signal in accordance with the
embodiments for at least one of the following elements: a)
managing one or several cryptographic keys, for example for
a control device, in particular for a motor vehicle; b)
utilizing one or several cryptographic keys, for example for
a control device, in particular for a motor vehicle, for
example based on a state of at least one cryptographic key
and/or based on a state of at least one volatile memory; ¢)
leaving at least one cryptographic key in a or the volatile
memory; d) using, for example reusing, at least one cryp-
tographic key that is stored in a or the volatile memory.
[0041] Further features, potential applications, and advan-
tages of the present invention are evident from the descrip-
tion below of further exemplifying embodiments that are
depicted in the Figures. All features described or depicted in
that context, individually or in any combination, constitute
the subject matter of exemplifying embodiments, regardless
of their respective presentation or depiction in the descrip-
tion or in the figures.

BRIEF DESCRIPTION OF THE DRAWINGS

[0042] FIG. 1A schematically shows a simplified flow
chart in accordance with exemplifying embodiments of the
present invention.

[0043] FIG. 1B schematically shows a simplified flow
chart in accordance with further exemplifying embodiments
of the present invention.

[0044] FIG. 1C schematically shows a simplified flow
chart in accordance with further exemplifying embodiments
of the present invention.

[0045] FIG. 1D schematically shows a simplified flow
chart in accordance with further exemplifying embodiments
of the present invention.

[0046] FIG. 1E schematically shows a simplified flow
chart in accordance with further exemplifying embodiments
of the present invention.

[0047] FIG. 2 schematically shows a simplified block
diagram in accordance with further exemplifying embodi-
ments of the present invention.

Apr. 14,2022

[0048] FIG. 3 schematically shows a simplified block
diagram in accordance with further exemplifying embodi-
ments of the present invention.

[0049] FIG. 4 schematically shows a simplified flow chart
in accordance with further exemplifying embodiments of the
present invention.

[0050] FIG. 5 schematically shows a simplified flow chart
in accordance with further exemplifying embodiments of the
present invention.

[0051] FIG. 6 schematically shows a simplified state dia-
gram in accordance with further exemplifying embodiments
of the present invention.

[0052] FIG. 7 schematically shows aspects of uses in
accordance with further exemplifying embodiments of the
present invention.

[0053] FIG. 8 schematically shows a control device in a
destination system in accordance with further exemplifying
embodiments of the present invention.

[0054] FIG. 9 schematically shows aspects in accordance
with further exemplifying embodiments of the present
invention.

DETAILED DESCRIPTION OF EXAMPLE
EMBODIMENTS

[0055] FIG. 1A schematically shows a simplified flow
chart of a method for managing cryptographic keys in
accordance with exemplifying embodiments. The method
can be used, for example, for a control device 20 (see FIG.
8), in particular for a motor vehicle 1, but in further
exemplifying embodiments is not limited thereto. The
method has the following steps (see FIG. 1A): associating
100 a state Z_1 with at least one of the cryptographic keys;
using 102 the at least one cryptographic key based on state
Z_1. In further exemplitfying embodiments, flexible use or
utilization of the at least one cryptographic key is thereby
made possible.

[0056] FIG. 2 shows, by way of example, several crypto-
graphic keys 10, one of which is labeled with the reference
character 10_1. Cryptographic keys 10 can be managed, for
example, by way of the method in accordance with FIG. 1A.
[0057] In further exemplifying embodiments, provision is
made that the at least one cryptographic key 10_1 is storable
and/or stored at least temporarily in a volatile memory 6a,
for example in a working memory or a register memory.
[0058] In further exemplifying embodiments, provision is
made that the at least one cryptographic key 10_1 is storable
and/or stored at least temporarily in a nonvolatile memory
65, for example in a flash (EEPROM) memory.

[0059] In further exemplifying embodiments, the at least
one cryptographic key 10_1 can also, for instance, be copied
or shifted from nonvolatile memory 64 into volatile memory
6a, which can also be referred to, for example, as “loading.”
[0060] In further exemplitfying embodiments, a deletion or
release for overwriting a cryptographic key 10_1 stored in
volatile memory 6a can also be referred to, for example, as
“unloading.”

[0061] In further exemplifying embodiments, an optional
state machine ZA can be provided in order to influence, in
particular to control, the state of one or several keys 10.
[0062] Further exemplifying embodiments (see FIG. 3)
refer to an apparatus 200 for executing the method in
accordance with the embodiments. Apparatus 200 has a
computing device (“computer”) 202 having at least one
computing core 202a, and has a storage device 204, asso-

US 2022/0116213 Al

ciated with computing device 202, for at least temporary
storage of at least one of the following elements: a) data
DAT; b) computer program PRG, in particular for executing
a method in accordance with the embodiments.

[0063] In further preferred embodiments, storage device
204 has a volatile memory 204a (e.g., working memory
(RAM)) and/or a nonvolatile memory 2046 (e.g., flash
EEPROM).

[0064] In further preferred embodiments, computing
device 202 has at least one of the following elements or is
embodied as at least one of said elements: microprocessor
(uP); microcontroller (uC); application-specific integrated
circuit (ASIC); system on chip (SoC); programmable logic
module (e.g., field programmable gate array (FPGA)); hard-
ware circuit; or any combinations thereof.

[0065] Further preferred embodiments refer to a com-
puter-readable storage medium SM encompassing instruc-
tions PRG that, upon execution by a computer 202, cause the
latter to execute the method in accordance with the embodi-
ments.

[0066] Further preferred embodiments refer to a computer
program PRG encompassing instructions that, upon execu-
tion of the program by a computer 202, cause the latter to
execute the method in accordance with the embodiments.
[0067] Further preferred embodiments refer to a data
carrier signal DCS that characterizes and/or transfers the
computer program PRG in accordance with the embodi-
ments. Data carrier signal DCS is, for example, receivable
via an optional data interface 208 of apparatus 200.

[0068] In further exemplifying embodiments, apparatus
200 itself can be embodied as a hardware security module
(HSM), a computing core 2025 being, for instance, embod-
ied as an HSM core.

[0069] In further exemplifying embodiments, apparatus
200 can also, for instance, have an optional hardware
security module 206 that, for instance, can have a computing
core 206¢ as well as, for instance, a volatile memory 206a,
for instance similar to volatile memory 6a in accordance
with FIG. 2, and, for instance, a nonvolatile memory 2065,
for instance similar to nonvolatile memory 64 in accordance
with FIG. 2.

[0070] In other words, in further preferred embodiments
volatile memory 6a (FIG. 2) and/or nonvolatile memory 65
can, for instance, be associated with at least one hardware
security module 206 (FIG. 3) and/or can be integrated into
hardware security module 206.

[0071] In further exemplifying embodiments, an optional
computing core 2026 (“HSM core”) of computing device
200 can execute or have the function of HSM 206 or of
computing core 206c of HSM 206. In this case, in further
preferred embodiments, for instance, the optional separate
HSM 206 or its core 206¢ can be omitted.

[0072] In further exemplifying embodiments, apparatus
200 and/or HSM 206 can, for example, be associated with
control device 20 (FIG. 8) or, in the case of HSM 206, with
a computing device 202 of control device 20 and, for
instance, can perform cryptographic functions or methods
and, for instance, can manage the aforesaid cryptographic
keys 10 (FIG. 3).

[0073] In further exemplifying embodiments, computing
device 202 (FIG. 3) of apparatus 200 can also have one or
several computing cores 202a for executing application
programs (“host cores”), which use, for instance, crypto-
graphic functions. In further preferred embodiments, com-

Apr. 14,2022

puting device 202 can have at least one computing core 2025
that is, for instance, physically separate from host cores
202a (“HSM core”), which is embodied, for instance, for the
execution of cryptographic functions (for instance, creating
message authentication codes (MACs), ascertaining and/or
checking signatures and/or hash values), for example for the
host core or cores 202a. In further preferred embodiments,

HSM core 2025 can, for instance, also execute management

of cryptographic keys in accordance with the embodiments.

[0074] In further exemplifying embodiments, host cores

202a and HSM core 2025 can, for instance, communicate

directly with one another, for instance by message exchange

(“message passing”) and/or by way of shared memory areas,

for instance of RAM 204a.

[0075] In further preferred embodiments it is possible to

ensure, for instance by way of hardware-based security

mechanisms, that host cores 202a, for instance, cannot
access cryptographic keys 10 (FIG. 2) that are managed by

HSM core 2025, or corresponding memory areas in which

those cryptographic keys 10 are stored.

[0076] In further exemplifying embodiments, at least one

of the programs below can be executed by apparatus 200:

[0077] 1. Host application PRG (see also, for instance,
block B5 of FIG. 4), i.e., for instance, an application that,
for instance, is executable by host core or cores 202a and
that uses the cryptographic functions that can be furnished
by HSM 206 or by HSM core 2025;

[0078] 2. HSM driver (see also, for instance, block B2 of
FIG. 4), a software component or computer program that
is executable by host core or cores 202a and constitutes an
interface for the cryptographic functions of HSM 206 or
of HSM core 20254. In further preferred embodiments, for
example, the host application can communicate or inter-
act, in particular exclusively, via the HSM driver with
HSM 206 or with HSM core 2025;

[0079] 3. HSM software; this is, for instance, a computer
program that is executable on HSM core 206¢, 2025 (i.e.,
for instance, in an environment secured with respect to
host cores 202q) and that, for instance, executes the
cryptographic functions and/or management, for instance,
of cryptographic keys 10.

[0080] In further exemplifying embodiments, provision is

made that state Z_1 (FIG. 1) of the at least one cryptographic

key 10_1 is characterized by at least one of the following
elements: a) unloaded, the at least one cryptographic key

10_1 being, for example, not located in a or the volatile

memory 6a, 206a (but instead, for example, in a or the

nonvolatile memory 65, 2065); b) loaded and in use, the at
least one cryptographic key 10_1, for example, being
located in volatile memory 6a, 206a and currently being
used, for example, by a computer program PRG, for
example a cryptography driver object; ¢) loaded and not in
use, the at least one cryptographic key 10_1, for example,
being located in a or the volatile memory 6a, 2064 and not
currently being used, for example not (even) by a or the
cryptography driver object; d) loading, a loading operation
of'the at least one cryptographic key 10_1, for example from
nonvolatile memory 6b, 2065 into volatile memory 6a,
206a, being, for example, not already complete; e) unload-
ing, an unloading operation of the at least one cryptographic
key 10_1, for example from volatile memory 6a, 206a,
being, for example, not already complete; f) waiting for
unoccupied memory space in volatile memory 6a, 206a
(e.g., until memory space in volatile memory 6a, 2064 has

US 2022/0116213 Al

been cleared, for instance by deletion or unloading of
another key); g) updating, for example upon request by
another unit or higher-level (processing) layer. In further
exemplifying embodiments, a cryptographic key having the
“updating” state is not used. In further exemplifying
embodiments, for example, it is possible instead to wait for
a subsequent state in which updating of the cryptographic
key is complete.

[0081] In further exemplifying embodiments, a crypto-
graphic key having the “loaded and not in use” state is, for
instance, a candidate for exchange with a further crypto-
graphic key that is to be used currently or in the future and
is therefore, for example, to be loaded into volatile memory
6a, 206a.

[0082] In further exemplifying embodiments, provision is
made that a specific cryptographic key has, at a point in time
under consideration, exactly one state (and not, for example,
several states).

[0083] In further exemplifying embodiments, provision is
made that state machine ZA (FIG. 2) is used to associate
state Z_1 (FIG. 1) with at least one of cryptographic keys 10.
[0084] In further exemplifying embodiments (see FIG.
1B), provision is made that the method further encompasses:
receiving 110 a request Al with regard to a cryptographic
key 10_1, request Al being characterized, for example, in
that cryptographic key 10_1 is to be loaded into a or the
volatile memory 6a, 206a; loading 112 cryptographic key
10_1 into volatile memory 6a, 206a.

[0085] In further exemplifying embodiments, request Al
described above can be made, for instance, by a job manager
(see, for instance, block B4 of FIG. 4). In further exempli-
fying embodiments, the job manager is a computer program
that is executable, for example, by HSM 206 (FIG. 3) or by
a computing core 206¢ of HSM 206 (or by a host core 202a)
and/or that is embodied to manage an execution of crypto-
graphic methods or of steps of cryptographic methods. In
further exemplifying embodiments, the job manager is
embodied, for instance, to receive requests from an appli-
cation program B5 (FIG. 4) and/or to output to application
program BS5 a status characterizing an execution of a method
or method step.

[0086] In further exemplifying embodiments, the job man-
ager can, at least temporarily, execute one or several steps of
the method in accordance with the embodiments.

[0087] In further exemplifying embodiments it is also
possible, for example, to provide a key loader B3 (see, for
instance, FIG. 4) that, for instance, is also embodied as a
computer program that, for example, is executable by a host
core 202a, and/or that is embodied to execute, at least
temporarily, for example, one or several steps of the method
in accordance with the embodiments, for example loading
and/or unloading or managing at least one cryptographic key
10_1.

[0088] In further exemplifying embodiments, the job man-
ager is embodied, for example, to execute synchronous
and/or asynchronous jobs, e.g., cryptographic methods or
steps of cryptographic methods, or one or several steps of
the method in accordance with the embodiments.

[0089] In further preferred embodiments, the job manager
is embodied, for example, to instruct the key loader to load
a cryptographic key or cause it to be loaded, for instance if
the cryptographic key is not already located in the volatile
memory.

Apr. 14,2022

[0090] In further exemplifying embodiments, the key
loader is embodied to load the key requested by the job
manager or to cause the key to be loaded.

[0091] In further exemplifying embodiments, the key
loader is embodied, for instance, to inform the job manager
that the requested key has been successfully loaded, or that
the requested key, for instance, is already contained (i.e.,
loaded) in the volatile memory.

[0092] In further exemplifying embodiments, the job man-
ager can request a reference (“handle”) to the key in the
context of the key loader, which reference, for instance,
characterizes the copy of the corresponding key in the
volatile memory.

[0093] In further exemplifying embodiments, the key
loader is embodied in such a way that it asynchronously
executes or initiates the loading of one or several crypto-
graphic keys, in which context a status of the respective
loading operation can be queried, for instance, from various
invoking contexts.

[0094] In further exemplifying embodiments (see FIG.
1C), the method further encompasses: ascertaining 120 a
first information item 11 that characterizes whether a specific
cryptographic key 10_1 is a key to be stored in exclusively
volatile fashion; and, optionally, executing 122 a use of the
specific cryptographic key based on first information item
11, in particular, for instance, refraining from nonvolatile
storage of the specific cryptographic key. In further exem-
plifying embodiments, security can thereby be enhanced.

[0095] In further exemplifying embodiments (see FIG.
1D), the method further encompasses: ascertaining 130 a
first variable G1 that characterizes an unoccupied memory in
volatile memory 6a, 206a; and, optionally, clearing 132 or
releasing memory in volatile memory 6a, 2064, for example
in such a way that at least one further cryptographic key can
be loaded into volatile memory 6a, 206a.

[0096] In further exemplifying embodiments (see FIG.
1E), the clearing or release encompasses: ascertaining 132a
at least one cryptographic key that is stored in volatile
memory 6a, 206a and is not currently being used; and
releasing 1326 a memory area, occupied by the crypto-
graphic key currently not being used, of volatile memory 6a,
206a, for example for overwriting with at least one further
cryptographic key.

[0097] In further exemplifying embodiments (see FIG.
1A), the method further encompasses: leaving 102a the at
least one cryptographic key 10_1 in a or the volatile memory
6a, 206a, for example for at least one predefinable time
period. In further preferred embodiments, cryptographic key
10_1 can thereby be accessed particularly quickly, for
instance if it is to be used again after a first utilization. In
further preferred embodiments, it is thereby possible in
particular to avoid comparatively slow loading operations
that involve, for instance, copying cryptographic key 10_1
from a nonvolatile memory 6b, 2065 into volatile memory
6a, 206a.

[0098] FIG. 4 schematically shows a simplified flow chart
for, for instance, synchronous processing of jobs in accor-
dance with further exemplifying embodiments. Block Bl
symbolizes a hardware security module (see also, for
instance, reference character 206 of FIG. 3), block B2
symbolizes an HSM driver, block B3 symbolizes a key
loader, block B4 symbolizes a job manager, and block B5
symbolizes an application program.

US 2022/0116213 Al

[0099] Arrow al symbolizes a request of application pro-
gram B5 to job manager B4 to execute a job. Job manager
B4 instructs key loader B3 (see arrow a2) to load a crypto-
graphic key (usable, for example, for the job to be executed)
and, if applicable, to lock it with respect to overwriting (e.g.,
in order to recover unoccupied memory space in the volatile
memory). Key loader B3 signals to HSM B1 via HSM driver
B2, by way of arrows a3, a4, that a loading operation for a
cryptographic key 10_1 (FIG. 2) is to be executed.

[0100] In further exemplifying embodiments, element a2
(and, for instance, also element a31 in accordance with FIG.
5; see below) does not provide that the cryptographic key is
locked in the sense that it is not usable, for instance, at least
temporarily in chronologically overlapping fashion by other
cryptography driver objects. Element a2 (and, for instance,
also element a31 in accordance with FIG. 5; see below)
instead provides, for instance, that the cryptographic key is
locked in the sense that it is not selectable for release, for
instance if the volatile memory for the cryptographic keys is
full and a release of memory space therein is therefore
desirable.

[0101] In further exemplifying embodiments it is therefore
possible, for instance, that, for instance, as soon as a key is
loaded, a simultaneous or at least partly chronologically
overlapping use of that key occurs, for instance, by different
cryptography driver objects.

[0102] In further exemplifying embodiments one or sev-
eral, for instance all, cryptography drivers or cryptography
driver objects can set a respective lock with respect to a key
(the locks are, for instance, not mutually exclusive). In
further preferred embodiments this has the effect that a key,
for instance once it has been loaded, remains in use as long
as the total number of locks has a non-negligible value
(greater than zero).

[0103] In further exemplifying embodiments, a key can
transition into the “loaded and not in use” state (see FIG. 6
below) when the last lock has been removed. In further
preferred embodiments, the relevant key can then, for
instance, also be overwritten again, for instance in order to
release memory.

[0104] Block B10 correspondingly symbolizes the loading
of cryptographic key 10_1, for instance, from nonvolatile
memory 2065 into volatile memory 206a (FIG. 3).

[0105] In further exemplifying embodiments, HSM driver
B2 signals to key loader B3 (see arrow a5) that the crypto-
graphic key is currently being loaded and the cryptographic
key thus has the “loading” state. In further preferred embodi-
ments, the situation is comparable for components B3, B4
(see arrow a6).

[0106] In further exemplifying embodiments, job manager
B4 queries the current state of the cryptographic key (see
arrows a7, a8), and components B2, B3 correspondingly
report back a current status (e.g., “key (still) loading™) (see
arrows a9, al0).

[0107] In further exemplifying embodiments, arrow al3
symbolizes the fact that HSM B1 signals the “key loaded”
state to HSM driver B2. In further preferred embodiments
this “key loaded” state can correspondingly be reported,
after a new request all by job manager B4 (see also request
al2 of key loader B3), to components B3, B4 in the form of
signals al4, al5.

[0108] In further exemplitying embodiments, job manager
B4 asks key loader B3 for a reference (“handle”) to the
loaded cryptographic key (see arrow al6). In further pre-

Apr. 14,2022

ferred embodiments, key loader B3 signals the reference to
the loaded cryptographic key to job manager B4 (see arrow
al7). Block B11 symbolizes, by way of example, execution
of the job characterized by arrow al, for instance using the
cryptographic key that has meanwhile been loaded.

[0109] In further exemplifying embodiments, the crypto-
graphic key is unloaded or released again (see arrow al8)
after execution B11 of the job; for instance, a memory area
of the volatile memory which since then has been occupied
by the cryptographic key can also be released and is thus
usable, if applicable, for another key. Optionally, a lock that
may have been applied to the key (see arrow a2) can also be
canceled. By way of signal al8, job manager B4 can signal
to key loader B3, for example, that the relevant key is not
being used at present. If, for example, the relevant key is not
being used by any of the, if applicable, several HSM driver
objects, the relevant key can assume, for instance, the
“loaded and not in use” state.

[0110] Arrow al9 symbolizes an optional confirmation of
release al8 on the part of key loader B3.

[0111] In further exemplifying embodiments, job manager
B4 can signal to application program BS that the job has
been executed (see arrow a20).

[0112] In further exemplifying embodiments, job manager
B4 can check, for instance after receiving inquiry al,
whether a cryptographic key is necessary or indicated for
execution of the job. In further preferred embodiments, for
example, cryptographic services or functions that do not
require a cryptographic key for their execution, for instance
the calculation of hash values, can also be provided and/or
used. If a cryptographic key is necessary or indicated for
execution of the job, job manager B4 requests loading from
key loader B3 (see arrow a2).

[0113] In further exemplifying embodiments, key loader
B3 can manage the state of at least one cryptographic key
10_1 (FIG. 2), for example of several or all cryptographic
keys 10. For example, after receiving request a2, key loader
B3 can ascertain, in accordance with FIG. 4, that the
cryptographic key to be used for execution of the job is not
already present in the volatile memory, and can therefore
initiate the loading operation (see arrow a3), the loading
operation being executed, for instance, asynchronously by
HSM B1 (see also, for instance, HSM cores 206¢, 2025).

[0114] In further exemplifying embodiments, job manager
B4 can query the state of the loading operation (see, for
instance, arrows a7, all), for instance until the key is loaded.

[0115] FIG. 5 schematically shows a simplified flow chart
for, for instance, asynchronous processing of jobs in accor-
dance with further exemplifying embodiments. Block Bl
symbolizes a hardware security module (see also, for
instance, reference character 206 of FIG. 3), block B2
symbolizes an HSM driver, block B3 symbolizes a key
loader, block B4 symbolizes a job manager, block BS'
symbolizes an application program, and block B6 symbol-
izes a cyclically executed task, i.e., for instance a cyclically
executed process.

[0116] Arrow a30 symbolizes a request by application
program BS' to job manager B4 to execute a job. Job
manager B4 instructs key loader B3 (see arrow a31) to load
(or cause the loading of) a cryptographic key (for example,
one usable for the job to be executed) and, if applicable, to
lock it, for example in order to protect it from overwriting.
Key loader B3 signals to HSM B1, via HSM driver B2 by

US 2022/0116213 Al

way of arrows a32, a33, that a loading operation for a
cryptographic key 10_1 (FIG. 2) is to be executed.

[0117] Block B10' correspondingly symbolizes the load-
ing of cryptographic key 10_1, for instance, from nonvola-
tile memory 20654 into volatile memory 206a (FIG. 3).
[0118] Arrows a34, a35 symbolize signaling to compo-
nents B3, B4 with regard to the current state of the loading
of the cryptographic key, and arrow a36 comparably sym-
bolizes signaling of the status of execution of the job to
application program B5'.

[0119] In further exemplifying embodiments, HSM B1
signals a return code regarding loading B10' (see arrow a37)
to HSM driver B2.

[0120] In further exemplifying embodiments, task B6 sig-
nals the execution of a planned function to job manager B4
(see arrow a38), which then queries the loading state of the
previously requested cryptographic key (see arrows a39,
a40). HSM driver B2 signals that the cryptographic key has
now been loaded (see arrows ad1, a4l").

[0121] In further exemplifying embodiments, job manager
B4 asks key loader B3 for a reference (“handle”) to the
loaded cryptographic key (see arrow a42). In further pre-
ferred embodiments, key loader B3 signals the reference to
the loaded cryptographic key to job manager B4 (see arrow
a43). Block B11' symbolizes, by way of example, execution
of the job characterized by arrow a30, for instance using the
cryptographic key that has meanwhile been loaded.

[0122] In further exemplifying embodiments, the crypto-
graphic key is unloaded or released again (see arrow ad4)
after execution B11' of the job; a memory area of the volatile
memory which since then has been occupied by the cryp-
tographic key can also, for instance, be released and is thus
usable, if applicable, for another key. Arrow a45 symbolizes
an optional confirmation of release a44 on the part of key
loader B3. Arrow a46 symbolizes, by way of example,
completion of the planned function.

[0123] In further exemplifying embodiments, in the con-
text of the exemplifying asynchronous execution of the task
in accordance with FIG. 5, the latter can be started by way
of request a30 while a further execution is being performed,
for instance by way of cyclic task B6. In further preferred
embodiments, the principle of loading a cryptographic key
can correspond to the steps described by way of example
with reference to FIG. 4.

[0124] In further exemplifying embodiments, computing
time on a host core 202¢ (FIG. 3) that, for instance, is
executing application program B5, BS', which time host core
202a would otherwise need to use, for instance, for a
blocking polling loop, for instance in order itself to wait for
completion of the loading of the cryptographic key, can be
saved by the procedure described by way of example above.
[0125] In further exemplifying embodiments, a through-
put of host core 202a, for instance in an automotive open
system architecture (AUTOSAR) system, can therefore be
increased by way of the procedure described by way of
example above.

[0126] Utilization of the management of cryptographic
keys in accordance with the embodiments makes possible, at
least temporarily and/or at least in some embodiments, a
reduction in latency in the execution of jobs, for instance by
the fact that at least some keys can be left in the compara-
tively fast volatile memory even when a job that has used the
key or keys has been completed, for example in contradis-
tinction to constant deletion of the keys from the volatile

Apr. 14,2022

memory directly after use, and constant reloading of the
keys. This means, for instance, that a subsequent job that is
intended to use the key or keys finds the key or keys, for
instance, already in the volatile memory (provided it has not,
for instance, already been overwritten in accordance with
further exemplifying embodiments), so that the key or keys
does/do not first need to be loaded into the volatile memory.
[0127] In further exemplifying embodiments, various
methods for exchanging or overwriting keys can be pro-
vided, which are embodied to retain or leave in the volatile
memory those keys that will be (re)used in the future with
the highest probability and/or, for instance, the keys having
a highest priority; this offers a performance advantage and
increases the throughput (characterizable, for instance, by a
number of jobs executed in a predefinable time) of a system.
[0128] In further exemplifying embodiments, several jobs
can be executed simultaneously or at least in part in chrono-
logically overlapping fashion, for example by HSM driver
B2 (FIGS. 4, 5).
[0129] While the exemplifying embodiments in accor-
dance with FIGS. 4, 5 describe possible scenarios in which
a cryptographic key is loaded, for instance, from a nonvola-
tile memory into a volatile memory, in further exemplitying
embodiments one or several of the situations recited below,
inter alia, can also occur.
[0130] In further exemplifying embodiments, a crypto-
graphic key can already be present in the volatile memory,
for instance because it has already been loaded earlier. In
further preferred embodiments, a cryptographic key can be
embodied, for instance, as a “startup” key that is loaded into
the volatile memory upon startup of HSM 206.
[0131] In further exemplifying embodiments, a crypto-
graphic key can be embodied, for instance, as a key to be
stored (for instance, only) in volatile fashion, and can thus,
for instance, already be present (for instance, only) in the
volatile memory.
[0132] In further exemplifying embodiments, the unoccu-
pied memory space in the volatile memory may no longer be
sufficient for loading of a (for instance, further) crypto-
graphic key, in which context, if applicable, at least one of
the cryptographic keys located in the volatile memory can be
unloaded or released. In further preferred embodiments,
provision can be made that one or several of the crypto-
graphic keys present in the volatile memory must not be
unloaded; this can be, for instance, a key to be stored (for
instance, only) in volatile fashion, and/or a “startup” key,
and/or a cryptographic key that is currently being used by
another HSM driver object.

[0133] In further exemplifying embodiments, key loader

B3 can furnish or execute one or several of the following

aspects:

[0134] a) loading a cryptographic key stored in the non-
volatile memory into the volatile memory, for instance
when job manager B4 requests it (see, for instance, arrow
a2 of FIG. 4);

[0135] b) ascertaining which keys are keys to be stored in
volatile fashion, in particular in order to prevent them
from being unloaded;

[0136] c) releasing volatile memory so that a new key can
be loaded, in which context, for example, no key currently
being used is unloaded;

[0137] d) ascertaining which keys are “startup” keys, in
particular in order to prevent them from being unloaded;

US 2022/0116213 Al

[0138] e) ascertaining which keys are being used, for
instance, by each of the possibly several HSM driver
objects.

[0139] FIG. 6 is a schematic simplified state diagram in
accordance with further exemplifying embodiments which
illustrates some possible states of a cryptographic key 10_1
(FIG. 2) in accordance with further exemplifying embodi-
ments. The states that are depicted by way of example can
correspond, for example, to a subset of states controllable by
way of a state machine ZA' (see also state machine ZA for
controlling states of cryptographic key 10 in accordance
with FIG. 2). For example, state machine ZA in accordance
with FIG. 2 can have the configuration ZA' in accordance
with FIG. 6.
[0140] Block S0 symbolizes an initial state from which a
change is made, by way of state transition a50, to the
“unloaded” or “not loaded” state S1.
[0141] From state S1, “not loaded,” in further preferred
embodiments a change can be made by way of state tran-
sition a51 to state S2, “loading.” This can be the case, for
instance, when key loader B3 (FIG. 4) requests from HSM
driver B2 the loading of a cryptographic key (see arrow a3
of FIG. 4).
[0142] In further preferred embodiments, a state transition
a52 characterizes a change from state S2 back to state S1, for
instance if loading has not been successfully executed. In
further preferred embodiments, this state transition a52 can
also occur if it is not possible to find a key that can be
unloaded.

[0143] In further preferred embodiments, a state transition

a53 symbolizes the retention of state S2, thus characterizing,

for instance, the fact that loading of the cryptographic key is
continuing.

[0144] In further preferred embodiments, a state transition

a54 characterizes a change from state S2 to state S3, “in use”

or “loaded and in use.”

[0145] In further preferred embodiments, state transition

a55 characterizes a change from state S3 to state S4, “loaded

and not in use.”

[0146] In further preferred embodiments, a state transition

a56 characterizes a change from state S4 to state S3, in

which the relevant cryptographic key can be locked, for
instance so that it cannot be selected for release, for instance
if the volatile memory for the cryptographic keys is full and

a release of memory space therein is desirable.

[0147] In further preferred embodiments, a state transition

a57 symbolizes the retention of state S3, thus characterizing,

for instance, the fact that the cryptographic key is still

“loaded and in use.”

[0148] In further preferred embodiments, a state transition
a58 characterizes a change from state S4 to state S6,
“unloading,” in which the relevant cryptographic key or the
memory area of the, for instance, volatile memory used by
it is released.

[0149] In further preferred embodiments, a state transition
a59 characterizes a change from state S6 back to state S4, for
example if release of the key or of the associated memory
area cannot be executed successfully.

[0150] In further preferred embodiments, a state transition
a60 symbolizes the retention of state S6, thus characterizing,
for instance, the fact that unloading or release is continuing.
[0151] In further preferred embodiments, a state transition
a6l characterizes a change from state S6 to state S1, for

Apr. 14,2022

instance when release of the key or of the associated
memory area has been completed.
[0152] In further preferred embodiments, a state transition
a62 characterizes a change from state S2 to state S5,
“waiting for unoccupied memory space, for instance, in the
volatile memory,” for instance if a unoccupied memory area
for the key to be loaded first needs to be created for loading
from state S2.
[0153] A state transition a65 from state S5 to state S5 itself
symbolizes the retention of state S5 in accordance with
further exemplifying embodiments, for instance when the
release of a memory area for acceptance of a new key to be
loaded is continuing.
[0154] In further exemplifying embodiments, a state tran-
sition a63 characterizes a change from state S5 to state S2,
for instance when unoccupied memory space for the key to
be loaded has been created for loading in accordance with
state S2.
[0155] In further preferred embodiments, further states in
addition to those illustrated here by way of example in FIG.
6 can be provided and, for instance, can be associated at least
temporarily with at least one of cryptographic keys 10 (FIG.
2).
[0156] In further exemplifying embodiments, provision is
made that state machine ZA (FIG. 2) is used in order to
associate the respective state S1, S2, etc. with at least one of
cryptographic keys 10. By way of example, the state labeled
by way of example with the reference character Z_1 in FIG.
1A can correspond at least temporarily to at least one of
states S1, S2, etc. illustrated here by way of example in FIG.
6.
[0157] In further preferred embodiments, it may happen
that several jobs that are being executed at least in part in
chronologically overlapping fashion use the same crypto-
graphic key. In further preferred embodiments, no conflicts
arise in this context because key loader B3 (FIG. 4) assigns
arespectively corresponding state, e.g., “loading,” to the key
that is to be loaded.
[0158] In further preferred embodiments, it is possible to
provide a selection method that can be used to ascertain
which of, if applicable, several unused loaded cryptographic
keys is to be unloaded or to be unloaded first, for instance
when unoccupied memory is required in volatile memory
6a, 206a for loading new keys.
[0159] In further preferred embodiments, the selection
method can be embodied configurably, for instance config-
urably in a pre-compile phase.
[0160] In further preferred embodiments, the selection
method can be based on information that is available, for
instance, at a runtime of apparatus 200, 206, for instance:
[0161] a)unloading the key that, of all the loaded keys, has
not been used for the longest time;
[0162] b) unloading the key that has been used least often;
[0163] c)unloading a key selected on a random or pseudo-
random basis.
[0164] In further preferred embodiments, the selection
method can be based on an individual priority of the
cryptographic keys, which is assigned, for instance, stati-
cally to the keys. In further preferred embodiments, for
instance, the key that is currently unused, having the lowest
priority, can correspondingly be unloaded.
[0165] Further exemplifying embodiments (see FIG. 7)
refer to a use 300 of the method in accordance with the
embodiments and/or of the apparatus in accordance with the

US 2022/0116213 Al

embodiments and/or of the computer-readable memory
medium in accordance with the embodiments and/or of the
computer program in accordance with the embodiments
and/or of the data carrier signal in accordance with the
embodiments for at least one of the following elements: a)
managing 302 one or several cryptographic keys 10, 10_1,
for example for a control device 20, in particular for a motor
vehicle 1; b) using 304 one or several cryptographic keys,
for example for a control device, in particular for a motor
vehicle, for example based on a state Z_1 of at least one
cryptographic key and/or based on a state of at least one
volatile memory 6a, 206a; c) leaving 306 at least one
cryptographic key in a or the volatile memory; d) using 308,
for example reusing, at least one cryptographic key that is
stored in a or the volatile memory.

[0166] FIG. 9 schematically shows aspects in accordance
with further exemplifying embodiments which refer, for
instance, to an unloading of keys from the volatile memory
or a replacement or overwriting.

[0167] If the memory for the keys, for instance volatile
memory 6a, 206a, is full, for instance does not have suffi-
cient unoccupied memory space for loading or storing a new
key, then in accordance with further exemplifying embodi-
ments one or several keys present in memory 6a, 206a are
unloaded. In further preferred embodiments, the key loader
ascertains or indicates which key or keys is/are to be
unloaded, for instance based on a selected algorithm.
[0168] In further preferred embodiments, the key loader
can, for instance, unload successive keys, for instance, until
sufficient unoccupied memory is (again) present in volatile
memory 6a, 206a, for instance in order to load at least one
new key or to store it at least temporarily in volatile memory
6a, 206a.

[0169] FIG. 9 shows, by way of example, a diagram for
the unloading of keys in accordance with further exempli-
fying embodiments; in step 1 a job 0 requires “Key 0,” and
“Key 0,” is therefore loaded, for instance, from a nonvolatile
memory into volatile memory 6a, 206a. In FIG. 9, occu-
pancy of the volatile memory is symbolized by the “table”
having five rows and one column.

[0170] In step 2, a job 1 requires “Key 1,” and “Key 17 is
therefore also loaded. In step 3, ajob 2 requires “Key 2,” and
“Key 2” is therefore also loaded. “Key 2” is, for instance,
twice the size of the “Key 0” and “Key 1” keys.

[0171] It is assumed by way of example that proceeding
from the state shown in step 3 of FIG. 9, a further job is
intended to use a further key (“Key 3”) for which sufficient
unoccupied memory in the volatile memory is not available.
For example, the further “Key 3” has the same size as “Key
2.” In further embodiments, loading of the further “Key 3”
can therefore fail, and in accordance with further exempli-
fying embodiments the key loader can unload one or several
of the loaded keys (“Key 0,” “Key 17).

[0172] In further preferred embodiments, in which the
selected algorithm provides, for unloading, that the key to be
unloaded is the one that (with reference to the further loaded
keys) has not been used for the longest time (“least recently
used”), the key loader will thus, for instance, unload “Key
0 or release its memory space in the volatile memory (see
step 4 of FIG. 9), and if applicable will attempt again to load
the further key (“Key 3”). In step 4, however, sufficient
unoccupied continuous memory is still not available for this.
In step 5, the key loader therefore also unloads “Key 1.” In
step 6, the key loader once again loads the further key (“Key

Apr. 14,2022

3”), this time successfully, since sufficient continuous unoc-
cupied memory is now available. In further preferred
embodiments, the further job that is using the further key
(“Key 3”) can then be executed.

What is claimed is:

1. A method for managing cryptographic keys, compris-
ing the following steps:

associating a state with at least one of the cryptographic

keys;

using the at least one cryptographic key based on the state.

2. The method as recited in claim 1, wherein the managing
of the cryptographic keys is for a control device of a motor
vehicle.

3. The method as recited in claim 1, wherein: a) the at
least one cryptographic key is storable and/or stored at least
temporarily in a volatile memory; and/or b) the at least one
cryptographic key is storable and/or stored at least tempo-
rarily in a nonvolatile memory.

4. The method as recited in claim 1, wherein the state is
characterized by at least one of the following elements: a)
unloaded, the at least one cryptographic key being not
located in a volatile memory; b) loaded and in use, the at
least one cryptographic key being located in the volatile
memory and currently being used; ¢) loaded and not in use,
the at least one cryptographic key being located in the
volatile memory and not currently being used; d) loading, a
loading operation of the at least one cryptographic key from
a nonvolatile memory into the volatile memory being not
already complete; e) unloading, an unloading operation of
the at least one cryptographic key from the volatile memory
not already complete; f) waiting for unoccupied memory
space in the volatile memory; g) updating.

5. The method as recited in claim 1, wherein a state
machine is used to associate the state with the at least one of
the cryptographic keys.

6. The method as recited in claim 1, further comprising:

receiving a request with regard to a cryptographic key, the

request being to load the cryptographic key into a
volatile memory; and

loading the cryptographic key into the volatile memory.

7. The method as recited in claim 1, further comprising:

ascertaining a first information item that characterizes

whether a specific cryptographic key is a key to be
stored in exclusively volatile fashion.

8. The method as recited in claim 7, further comprising:

executing a use of the specific cryptographic key based on

the first information item including refraining from
nonvolatile storage of the specific cryptographic key.

9. The method as recited in claim 1, further comprising:

ascertaining a first variable that characterizes an unoccu-

pied memory area in the volatile memory.

10. The method as recited in claim 9, further comprising:

clearing memory in the volatile memory in such a way

that at least one further cryptographic key can be
loaded into the volatile memory, the clearing being
executed based on at least one predefinable algorithm;
the at least one algorithm being selectable during
and/or before execution of the method.

11. The method as recited in claim 10, wherein the
clearing includes:

ascertaining at least one cryptographic key that is stored

in the volatile memory and is not currently being used;
and

US 2022/0116213 Al Apr. 14,2022
10

releasing a memory area occupied by the cryptographic
key currently not being used of the volatile memory for
overwriting with at least one further cryptographic key.

12. The method as recited in claim 1, further comprising:

leaving the at least one cryptographic key in a volatile
memory for at least one predefinable time period.

13. An apparatus configured to manage cryptographic

keys, the apparatus configured to:

associate a state with at least one of the cryptographic
keys;

use the at least one cryptographic key based on the state.

14. A non-transitory computer-readable storage medium

on which are stored instructions for managing cryptographic
keys, the instructions, when executed by a computer, caus-
ing the computer to perform the following steps:
associating a state with at least one of the cryptographic
keys;

using the at least one cryptographic key based on the state.

15. The method as recited in claim 1, wherein the method

is used for at least one of the following:

a) managing one or several cryptographic keys for a
control device for a motor vehicle;

b) utilizing one or several cryptographic keys for a control
device for a motor vehicle based on a state of at least
one of the cryptographic keys and/or based on a state of
at least one volatile memory;

¢) leaving at least one cryptographic key in the volatile
memory;

d) using or reusing at least one cryptographic key that is
stored in the volatile memory.

#* #* #* #* #*

