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1
NEURAL NETWORK BASED 3D OBJECT
SURFACE MAPPING

TECHNICAL FIELD

The present disclosure generally relates to three-dimen-
sional (3D) computer graphics. More specifically, but not by
way of limitation, the present disclosure relates to tech-
niques for efficiently rendering an updated graphical repre-
sentation of an object based on the surface of another object.

BACKGROUND

Graphic design software applications are used for graphic
illustration, multimedia development, specialized image
development, and graphics editing. Such applications utilize
either raster or vector graphic editing methods to create, edit,
and view digital media (e.g. animations, graphics, images,
designs, media objects, etc.). Maps are arguably one of the
most fundamental ways to define and operate on surfaces
depicted as part of digital media objects with such applica-
tions. Although certain existing solutions allow graphic
designers to use maps for many core operations carried out
with graphic design software, most computational represen-
tations of surface maps do not lend themselves to compu-
tationally efficient and accurate manipulation and optimiza-
tion.

For example, consider a function of such software such as
surface-to-surface mapping, which enables defining corre-
spondences between surfaces. Such correspondences can in
turn be used to perform, as examples, shape analysis,
deformations, and the transfer of properties from one surface
to another. The target surface for surface-to-surface mapping
is typically a three-dimensional (3D) mesh. Such meshes are
combinatorial representations, meaning that combinatorial
representations of the maps must be used, resulting in a
surface-to-surface mapping process that is computationally
expensive, or produces only approximate depictions.

SUMMARY

Certain aspects and features of the present disclosure
relate to neural network based 3D object surface mapping.
For example, a computer-implemented method involves
generating a surface mapping function for mapping a first
surface of a first three-dimensional (3D) object in a 3D space
to a second surface of a second 3D object in the 3D space.
The surface mapping function is defined by a first represen-
tation of the first surface, a second representation of the
second surface, and a neural network model configured to
map a first two-dimensional (2D) representation to a second
2D representation. The first representation corresponds to a
mapping from the first 2D representation of the first surface
to the first surface of the first 3D object. The second
representation corresponds to a mapping from the second 2D
representation of the second surface to the second surface of
the second 3D object. Generating the surface mapping
function includes adjusting parameters of the neural network
model to optimize an objective function. The objective
function includes a distortion term defining distortion
between the first surface and the second surface mapped
through the surface mapping function. The method also
involves applying a feature of a first 3D mesh on the first
surface to a second 3D mesh on the second surface to
produce a modified second surface. The first 3D mesh on the
first surface maps to the second 3D mesh on the second
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surface are determined by the surface mapping function. The
method can include rendering the modified second surface.

Other embodiments of this aspect include corresponding
computer systems, apparatus, and computer programs
recorded on one or more computer storage devices, each
configured to perform the actions of the methods.

This summary is not intended to identify key or essential
features of the claimed subject matter, nor is it intended to
be used in isolation to determine the scope of the claimed
subject matter. The subject matter should be understood by
reference to appropriate portions of the entire specification
of this disclosure, any or all drawings, and each claim.

BRIEF DESCRIPTION OF THE DRAWINGS

Features, embodiments, and advantages of the present
disclosure are better understood when the following
Detailed Description is read with reference to the accom-
panying drawings, where:

FIG. 1 is a diagram showing an example of a computing
environment for neural network based 3D object surface
mapping, according to certain embodiments.

FIG. 2 is a schematic drawing of examples of surfaces and
representations as used in an example of neural network
based 3D object surface mapping, according to certain
embodiments.

FIG. 3 is a flowchart of an example of a process for neural
network based 3D object surface mapping, according to
some embodiments.

FIG. 4 is a flowchart of another example of a process for
neural network based 3D object surface mapping, according
to some embodiments.

FIG. 5 is a flowchart of an additional example of a process
for neural network based 3D object surface mapping,
according to some embodiments.

FIG. 6 is a schematic drawing of examples of surfaces as
used in an example of neural network based 3D object
surface mapping, according to certain embodiments.

FIG. 7 is a diagram of an example of a computing system
that can implement aspects of the neural network based 3D
object surface mapping, according to certain embodiments.

DETAILED DESCRIPTION

As described above, surface-to-surface mapping features
in existing applications, when used with 3D mesh target
surfaces, can result in surface-to-surface mappings that are
computationally expensive or exhibit reduced accuracy. As
an example, consider the problem of a mesh-to-mesh map-
ping in which a continuous mapping from one surface to
another is computed. The software needs to account for the
image of each source vertex, which may land on a triangle
of the target mesh, and the image of a source edge, which
may span several triangles of the target mesh. If distortion is
to be minimized, extensive bookkeeping must be carried out,
using significant memory. Further, reducing the resulting
distortion may require extensive combinatorial optimization
of'the choice of target triangle for each source vertex, which
is computationally expensive.

Embodiments herein produce at least two representations
of surfaces, where each surface is from a 3D object depicted
using a 3D mesh. One or both of these representations may
be a neural network representation. A surface mapping
function is generated for mapping one of the surfaces, a
source surface of a source 3D object, to a target surface of
a target 3D object. The surface mapping function is defined
by the representations, as well as by a neural network model
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configured to map the first representation to the second
representation. Parameters of the neural network model are
adjusted to optimize an objective function that includes a
distortion term. The surface mapping function with the
adjusted parameters can then be used to map features of the
source 3D mesh to the target 3D mesh to produce a modified
target surface.

Certain embodiments provide improvements over exist-
ing techniques for generating surface-to-surface mapping
for 3D objects. In particular, neural networks are used to
approximate the surface map. The use of neural networks
eliminates the need of mappings between two 3D meshes,
thereby reducing the computational complexity of the map-
ping algorithm. In addition, the neural networks are differ-
entiable and composable with one another leading to a
model for efficiently defining a differentiable composition of
surface maps. As such, multiple maps (maps from 2D
representation to 3D surface, one 2D representation to
another 2D representation) can be composed and optimized
for objectives defined over the composition. A surface
mapping function can be generated and used in the surface-
to-surface mapping, where the surface mapping function is
defined by representations of the surfaces, as well as by a
neural network model. One or both surface representations
can be neural network representations. Alternatively, as an
example, a target surface can be represented by a differen-
tiable function. A neural network representation of a surface
can optionally be trained using a neural network model, for
example, the same neural network model that is used in
generating the surface mapping function. A new surface
resulting from a surface-to-surface mapping can be effi-
ciently rendered and displayed on a display device.

The following non-limiting example is provided to intro-
duce certain embodiments. In this example, a graphics
editing application transfers surface features from a source
3D graphical object to a target 3D graphical object. The
graphics editing application identifies the surface of the
source 3D graphical object and highlights a surface of the
target 3D graphical object. The graphic editing application
further performs a surface-to-surface mapping of the iden-
tified surface of the source 3D graphical object to the
selected surface of the target 3D graphical object. Either or
both surfaces can be minimal or extensive, even covering all
of the relevant 3D object.

Continuing with this example, the graphics editing appli-
cation produces and stores surface representations in
memory and generates the mapping function and the objec-
tive function with the distortion term. One or both of the
surface representations can be neural network representa-
tions. A neural network representation can be produced
using points in a 2D representation based a 3D mesh of an
object. The mapping function is defined based on the surface
representations and a neural network model. The neural
network model can include an input layer including a first
pair of nodes representing ordinates in one 2D representa-
tion and an output layer including a second pair of nodes
representing coordinates in another 2D representation. The
resulting mapping function is stored and referenced by the
graphics editing application, which uses the mapping func-
tion to efficiently map the source surface to the target
surface. The mapping function parameters are stored in
memory and adjusted, with new values being successively
stored until an objective function is optimized to provide the
mapping. The resulting surface is stored and the graphics
editing application efficiently renders and displays the
resulting surface with minimal distortion.
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By using neural networks as stored, parametric represen-
tations of surfaces, a graphical computing process can access
stored models that rely on the differentiable algebra of a
surface map. Distortion can be minimized without extensive
combinatorial representations to handle triangular meshes.
Thus, accurate renderings can be produced quickly with
relatively modest computing resources. Mapping one sur-
face onto another can provide a mechanism for efficiently
and quickly editing the target surface, for example, by
transferring textures or surface features onto the target
surface.

Aspects and features herein can treat neural networks as
parametric representations of surface maps and surfaces.
Neural networks that receive 2D points as input and output
points either in 2D or 3D can be used as representations. In
some examples, a differentiable function can alternatively be
used to represent a target surface.

FIG. 1 is a diagram showing an example of a computing
environment for neural network based 3D object surface
mapping, according to certain embodiments. The computing
environment 100 includes a computing device 101 that
executes a graphics editing application 102, a memory
device 106 configured to store graphical objects 104, and a
presentation device 108 that is controlled based on the
graphics editing application 102. In this example, the graph-
ics editing application 102 includes a mapping module 111.
The mapping module 111 can produce representations 112 of
surfaces of 3D objects in a 3D space. Graphics editing
application 102 can use these representations as well as a
surface mapping function 120 and a neural network model
122 to map a first 2D representation to a second 2D
representation by applying one or more features of a source
object to a source object 3D mesh 123 and/or applying one
or more features of a target object to a target object 3D mesh
125. The graphics editing application 102 can generate the
surface mapping function in part by adjusting neural net-
work model parameters to optimize an objective function,
subject to objective function constraints. The objective func-
tion includes one or more distortion terms defining distortion
between the first surface and the second surface mapped
through the surface mapping function 120.

The graphics editing application 102 also generates a
graphics editing interface 130. In some embodiments, the
graphics editing application 102 uses inputs related to edit-
ing tools 134 received via the graphics editing interface 130
to control one or more operations of the graphics editing
application 102. The graphics editing application 102 pro-
vides the editing interface 130 for display at a presentation
device 108, which can be a local presentation device or a
computing device that is remotely accessible over a data
network. The graphics editing application includes one or
more software modules, for example, a rendering module
(not shown) that render modified surfaces 136 for display in
the editing interface 130.

FIG. 2 is a schematic drawing of an example 200 of
surfaces and representations as used in an example of neural
network based 3D object surface mapping to show their
relationships, according to certain embodiments. Example
200 includes a first 3D object 202, a hippopotamus, with a
first surface 204, and a second 3D object 206, a cow, with
a second surface 220. 2D representation 210 corresponds to
first surface 204 and 2D representation 212 corresponds to
the second surface 220. Aspects and features herein addi-
tionally employ neural network representations of the sur-
faces to take advantage of the properties of neural networks
that make them differentiable and composable with one
another. The differentiable-geometry definition of a surface
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as a map from 2D to 3D is used, by overfitting a 2D
representation 210 to a given UV (2D) parameterization,
computed via any bijective parameterization algorithm.

Neural network model h is configured to generate the 2D
representation 212 of the surface 220 based on the 2D
representation 210 of the surface 204. Given first surface
representation (@), the second surface representation (),
and the neural network model h, the mapping function f can
be derived to map one surface (surface 204) to another
(surface 220), resulting in a modified second surface 220.
Mapping function f can be derived through distortion mini-
mizing and may be subject to constraints, for example,
constraints to match corresponding portions of the objects
202 and 206 such as feet 224 of the hippopotamus to feet 226
of the cow. Additional or alternative constraints may be
provided, for example, for facial features of the animals.
These objects, surfaces, and surface representations based
on ¢ and ¢} will be referenced as an example below in
discussing the flowcharts of FIG. 3, FIG. 4, and FIG. 5.

FIG. 3 is a flowchart of an example of a process 300 for
neural network based 3D object surface mapping, according
to some embodiments. In this example, a computing device
carries out the process by executing suitable program code,
for example, computer program code for a graphics editing
application, for example, graphics editing application 102.
At block 302, the computing device generates a surface
mapping function f for mapping the first surface to the
second surface. The computing device produces a first
representation of a first surface of a first 3D object in a 3D
space, for example, surface 204 of object 202, both of FIG.
2. The first representation corresponds to a mapping from a
first 2D representation of the first surface to the first surface
of the first 3D object. The first 2D representation, as
examples, may within a unit square or a unit circle. In terms
of'the example of FIG. 2, first representation ¢ is configured
to map a 2D representation 210 of the surface 204 of the
object 202 to the surface 204. As an example, a first
representation may be a neural network representation, for
example, one represented by the function:

fR2-R=

The second representation corresponds to a mapping from
the second 2D representation of the second surface to the
second surface of the second 3D object 206. In terms of the
example of FIG. 2, the second representation 1 is configured
to map the 2D representation 212 of the original surface 220
of object 206 to the surface 220. The representations can be
stored in the computing device 101.

The surface mapping function is defined by the first
representation ¢, the second representation 1, and a neural
network model h configured to map the first 2D represen-
tation 210 to the second 2D representation 212, for example:

Fop =yt

As referenced herein, a neural network representation, such
as ¢ or 1 of a surface and the neural network model h are
each neural networks. The neural network model is a neural
network that serves as an intermediary between a neural
network representation of a surface and a representation of
another surface, which may be another neural network
representation. A neural network representation represents a
surface of a 3D object through overfitting. Generating the
surface mapping function includes adjusting parameters of
the neural network model to optimize an objective function.
The objective function includes a distortion term defining
distortion between the first surface and the second surface
mapped through the surface mapping function.

20

25

35

40

45

55

6

At block 304 of process 300, the computing device
applies one or more features of a first 3D mesh on the first
surface to a second 3D mesh on the second surface to
produce a modified second surface as determined by the
surface mapping function. The 3D meshes may be stored in
computing device 101, for example, as 3D meshes 123. In
terms of the example of FIG. 2, surface 220 of object 206 has
similar features, such as the color patterns, as surface 204 of
object 202, and is a modified second surface. This modified
second surface can be rendered at block 306 for display in
editing interface 130 on presentation device 108.

FIG. 4 is a flowchart of another example of a process 400
for neural network based 3D object surface mapping,
according to some embodiments. In process 400, both the
first surface representation and the second surface represen-
tation are neural network representations. These represen-
tations may be stored in computing device 101, for example,
as surface representations 112. In this example, a computing
device carries out the process by executing suitable program
code, for example, computer program code for a graphics
editing application such as graphics editing application 102.
The term neural surface map and similar terms used herein
may to refer to any neural network considered as a function,
for example:

¢:R2- R~

where the output dimension n is two or three. This ensures
the map’s image is always a 3D surface, and, assuming the
map is non-singular, also a 2-manifold map. Neural surface
maps can be seen as an alternative method to represent a
surface map that provides the advantages of differentiability,
and the ability to be composed with other neural maps.
Neural surface maps enable compositions, for example,
oy, and define an objective over the composition o0
(porp), which can be differentiated and optimized via stan-
dard deep-learning libraries and optimizers. The operator o
represents the composition of one map with the other, for
example, taking the output of 1 and plugging in as the input
of ¢. o (po) is the equivalent of (). Any size of
architecture and activation function can be used, and the
universal approximation theorem will ensure that a given
network is capable of approximating a given surface func-
tion.

At block 402 of process 400, the computing device
generates a first 2D representation based on a first 3D mesh
of a first 3D object. The 2D representation can be obtained
by computing a parameterization of the 3D mesh into 2D
using scalable, locally injective mappings, providing a one-
to-one map from 2D to 3D. Its inverse is treated as a ground
truth representation of the 3D surface (a map of 2D points
to 3D). A neural network is then overfit to that (inverse) map
and treated as the neural representation of the surface, which
can then be composed with other neural maps. At block 404,
the computing device selects a set of points in the first 2D
representation. The set of points includes points correspond-
ing to the vertex points in the first 3D mesh. In some
examples, the set of points can also include points corre-
sponding to internal points (points falling inside the triangles
or polygons) of the first 3D mesh. At block 405, the
computing device generates a first neural network represen-
tation based on the selected set of points with an input layer
including two nodes representing two ordinates of a point in
the first 2D representation and an output layer representing
three coordinates of a point in 3D space. The neural network
is trained. As an example, representation of FIG. 2 can be a
first neural network representation of surface 204 of object
202. The neural network representation is trained by adjust-
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ing parameters to minimize a loss function. The loss func-
tion is defined based on Euclidean distances between output
points of the neural network model using the previously
defined set of points as input, and ground truth points of the
set of points in 3D space. At block 406, the computing
device generates a second neural network representation of
a second surface of a second 3D object in 3D space in a
similar manner. An advantage of this representation’s com-
posability is that it enables representing maps between a pair
of surfaces, using a common domain. Two overfitted neural
maps, Q—>R> can respectively represent two surfaces S,
T so that the maps can be used to define and optimize a
mapping between two 3D surfaces f:T — & . Representing
the 3D surfaces using neural network models allows the
representations to be associated more closely.

At block 408 of process 400, the computing device
defines a distortion term, based on pairwise comparison of
the surfaces. The distortion term is based on a Jacobian of f
for mappings to provide multiple distortion terms. The
Jacobian of f can be derived from the Jacobian of y and the
inverted Jacobian of ¢. At block 410, the neural network
model is defined. The neural network model includes an
input layer with a first pair of nodes representing ordinates
in the first 2D representation and an output layer with at least
a second pair of nodes representing ordinates in the second
2D representation

Still referring to FIG. 4, at block 414 of process 400, the
computing device generates a surface mapping function f
for mapping the first surface to the second surface. The
surface mapping function is defined by the first neural
network representation, the second neural network repre-
sentation, and the neural network model configured to map
the first 2D representation to the second 2D representation.
Generating the surface mapping function can include adjust-
ing parameters of the neural network model to optimize an
objective function. The objective function includes a distor-
tion term defining distortion between the first surface and the
second surface mapped through the surface mapping func-
tion as previously described. In this example, the parameters
are adjusted within constraints, as examples, positive,
boundary, and/or keypoint-based constraints. These con-
straints may be stored and retrieved by computing device
101. The mapping function f can be defined such that for
any point peQ, f is implicitly defined the map satisfying fo®
2 y", with @ and y shown in FIG. 2, or for any point peQ,
f matches the image of p under ¢" with the image of p
mapped through h and then through y in FIG. 2. Q is the 2D
domain that is mapped to the entire surface. The 2D unit
circle is used in the examples described herein. The func-
tions included in block 408 through block 414 and discussed
with respect to FIG. 4 can be used in implementing a step for
generating a surface mapping function for mapping the first
surface to the second surface, wherein the surface mapping
function is defined by the first representation, the second
representation, and a neural network model configured to
map the first 2D representation to the second 2D represen-
tation.

The representation of 3D geometries is, in this example,
via an overfitted neural surface map ¢: Q— R ? that approxi-
mates a given map f. ¢ can be treated as a de-facto
representation of the geometry. Optimization of the map
with traditional techniques may be non-trivial since it will
immediately change the 3D geometry. To overcome this, an
intermediate neural network, neural network model h: Q—Q.
is produced to define a new map, ¢"=0ch. As long as the
process 400 solely optimizes h and insures h maps onto Q,
the image of 0" will correspond to the image of ¢, i.e., will
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respect the original surface. The distortion of ¢* can be
optimized by optimizing h and keeping ¢ fixed, thereby
finding a map from Q to &, which is at least a local
minimizer of the distortion. The distortion in this example
can be measured by:

min D(g").

The distortion is a differentiable property of the map, and
hence is readily available, e.g., via automatic differentiation.

Returning to FIG. 4, at block 416 of process 400, the
computing device applies one or more features of a first 3D
mesh on the first surface to a second 3D mesh on the second
surface to produce a modified second surface. This modified
second surface can be rendered at block 418 for display in
editing interface 130 on presentation device 108.

For overfitting the neural surface maps, Q=[-1,1]c R?
is a unit circle. In this example, the neural maps make use
of Q as a canonical domain. Given any map f: Q—R", the
map can be approximated via neural surface map ¢ by using
black-box methods to train the neural network and overfit it
to replicate f. The least-square deviation of ¢ from f and the
surface normal deviation can be approximated by minimiz-
ing the integrated error:

1
Lonepe = f 12 = 6P + 2, f (L M
peQ) peQ)

where n,,, is the estimated normal at p, and n, is the ground
truth normal. In case f describes a continuous map, for
example a piecewise-linear map for mapping triangles to
triangles, the objective function can be optimized by
approximating the integral in Monte-Carlo fashion, for
example, by summing the integrand at random sample
points. To use neural surface maps to represent surfaces, the
ground truth map f is computed to overfit to a UV param-
eterization of the mesh into 2D, computed via any bijective
parameterization algorithm. Examples include Tutte’s
embedding, and scalable, locally injected mappings, by
which an injective map of the mesh onto Q< R? can be
achieved. Treating the inverse of this map, which maps back
into the 3D mesh &, as the input f: Q— S, and overfitting
0 to it by minimizing Equation 1, a neural network repre-
sentation of the surface can be obtained. More specifically,
a mapping into the surface is obtained, where the mapping
is endowed with specific UV coordinates, with point ¢(x,y)
having UV coordinates x.y.

In order to optimize several energies related to the neural
surface maps, for a neural network map ¢: Q—R"”, the
Jacobian of ¢ can be denoted by J 0 R 72 the matrix of
partial derivatives at point pe Q. The Jacobian quantifies the
local deformation at a point. For isometric distortion, letting
M,=J pTJ ,» the symmetric Dirichlet energy can be quantified
as,

D=l otrace(M, yrace((M,+eD ") )

where I is the identity matrix, added with a small constant

(V100) to regularize the inverse. Likewise, a measure of
conformal distortion can be defined via,

Deonr = f
o

trace(Mp)M ~ 2 ()]

2 P
|EEA
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The integrals can be accounted for by random sampling of
the function in the domain.

Even though f itself is not tangible for optimization, as it
is implicitly defined by the neural network model h, the
differential quantity from f used in this example to compute
the distortion is the Jacobian of § denoted J_J" at point q=¢p.
Using differential calculus, J_f can be derived to be:

T S=1 0,07, )

which is composed of the Jacobian of y and the inverted
Jacobian of ¢ at point p, both readily determinable. Hence,
to optimize the distortion of f, Equation 4 can be used as the
Jacobian to define M, which can be denoted as D({).

In order for h to well-define a surface map, it needs to map
bijectively (1-to-1, and onto) the source domain of ¢, which
is Q. This can be assured by ensuring that h has a positive-
determinant Jacobian everywhere, and maps to the target
surface boundary injectively. h can be optimized to map the
boundary onto itself, via the energy,

B()=Dgfc0(h(p). o)

where G is the squared signed distance function to the
boundary of Q. Note that the boundary map is free to slide
along the boundary of Q during optimization, enabling the
boundary map to change. This is true for all points on the
boundary except those mapped to the four corners, which are
fixed in place and serve as keypoint constraints between the
map models. h is also optimized to encourage its Jacobians
determinant to be positive, via,

G=\,, Jmax(=sign(lJ,Dexp(=17,),0). 6)

Optimization can be subject to keypoint constraints.
When corresponding keypoints on the two surfaces are
known, it may be desirable to require that the mapping
function f maps those points to one another. For example,
the feet 224 of the hippopotamus and the feet 226 of the cow
in FIG. 2 may be treated as keypoints subject to keypoint
constraints. Given keypoints on &, in a preprocess before
optimization, the system can access or determine their
pre-images in £, to obtain a set of points P s.t. ¢ (P,) that
maps to the i-th keypoint. Likewise, pre-images of the
keypoints from T and their pre-images Q under ¥ cam be
obtained. If mapping these keypoints to one another between
the two surfaces is required by f, requiring h(P,)=Q; can
guarantee that the induced function f associates the points
correctly. This equality can be optimized by reducing its
least-squares error:

Cy =Ac Y Ihe) - Oll. @

To compute the surface-to-surface map, distortion of f
can be optimized with regard to h, while ensuring that h
respects the mapping constraints, as given by:

mhinD(f) + C(h)+ B(h) + G(h). ®)

The above yields a model h that maps onto the unit circle,
and represents a distortion-minimizing surface mapping
function f that maps the given sets of corresponding key-
points correctly.

FIG. 5 is a flowchart of an additional example of a process
500 for neural network based 3D object surface mapping,
according to some embodiments. In process 500, the second
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surface representation is a differentiable function that maps
the second 2D representation to the second 3D surface. The
representations may be stored in computing device 101, for
example, as surface representations 112. In this example, a
computing device carries out the process by executing
suitable program code, for example, computer program code
for a graphics editing application, for example, graphics
editing application 102.

At block 502 of process 500, the computing device
generates a first 2D representation based on a first 3D mesh
of a first 3D object. The representation can be obtained as
previously described. At block 504, the computing device
selects a set of points in the first 2D representation. The set
of points includes points corresponding to the vertex points
in the first 3D mesh. In some examples, the set of points can
also include points corresponding to internal points (points
falling inside the triangles or polygons) of the first 3D mesh.
At block 505, the computing device generates a first neural
network representation based on the selected set of points
with an input layer including two nodes representing two
ordinates of a point in the first 2D representation and an
output layer representing three coordinates of a point in 3D
space. The neural network is trained. At block 506, the
computing device defines a differential function to represent
a second surface of a second 3D object in 3D space, wherein
the differentiable function maps a second 2D representation
to the second 3D surface.

At block 508 of process 500, the computing device
defines a distortion term. The distortion term is based on a
Jacobian for mappings to provide multiple distortion terms
as previously described. At block 510, the neural network
model is defined. The neural network model includes an
input layer with a first pair of nodes representing ordinates
in the first 2D representation and an output layer with at least
a second pair of nodes representing call ordinates in the
second 2D representation.

Still referring to FIG. 5, at block 514 of process 500, the
computing device generates a surface mapping function f
for mapping the first surface to the second surface. The
surface mapping function is defined by the neural network
representation, the differentiable function, and the neural
network model configured to map the first 2D representation
to the second 2D representation. Generating the surface
mapping function can include adjusting parameters of the
neural network model to optimize an objective function. The
objective function includes the distortion term defining
distortion between the first surface and the second surface
mapped through the surface mapping function as previously
described. In this example, the parameters are adjusted
within constraints as previously described. The functions
included in block 508 through block 514 and discussed with
respect to FIG. 5 can be used in implementing a step for
generating a surface mapping function for mapping the first
surface to the second surface, wherein the surface mapping
function is defined by the first representation, the second
representation, and a neural network model configured to
map the first 2D representation to the second 2D represen-
tation.

At block 516 of process 500, the computing device
applies one or more features of a first 3D mesh on the first
surface to a second 3D mesh on the second surface to
produce a modified second surface as previously described.
This modified second surface can be rendered at block 518
for display in editing interface 130 on presentation device
108.

Either the process of FIG. 4 or the process of FIG. 5 can
be extended to k surfaces §,, §,, ..., &, represented
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respectively via neural network maps ¢,, ¢, . . . , ¢,. For
example, in order to extend process 400 of FIG. 4, a
cycle-consistent set of surface maps can be produced by
considering k additional neural network maps, h;; Q—=€,
defining the composition ¢,"=¢,0h,, and then defining the
surface-to-surface maps F, & ,— 5 via Fiejoq)ihé ¢jh.
This definition facilitates extraction of a set of mutually
consistent maps while additionally optimizing for all pairs of
surface-to-surface maps. Achieving similar qualities via
traditional processes is significantly challenging, and makes
it difficult to optimize for distortion minimization over the
entire collection of surfaces without using significant com-
puting resources.

FIG. 6 is a schematic drawing of an example 600 of
surfaces as used in an example of neural network based 3D
object surface mapping with a cycle-consistent set of surface
maps. The surface mapping function maps a first surface in
a collection of surfaces, for example, the surface of object
602 to a second surface in the collection of surfaces, for
example, the surfaces of object 604. Similarly, another
mapping function maps the second surface to a third surface
in the collection, such as the surface of object 606. A third
mapping function maps the third surface to the first surface
in the collection. In this example, the distortion term can be
defined pairwise for each of the mappings to provide mul-
tiple distortion terms and the distortion terms are added for
optimization. Mapping takes place from one object to
another using the neural network model. Cycle consistency
is assured by construction.

FIG. 7 depicts a computing system 700 that executes the
graphics editing application 102 with the capability of
carrying neural network based 3D object surface mapping
according to embodiments described herein. System 700
includes a processor 702 communicatively coupled to one or
more memory devices 704. The processor 702 executes
computer-executable program code stored in the memory
device 704. Examples of the processor 702 include a micro-
processor, an application-specific integrated circuit
(“ASIC”), a field-programmable gate array (“FPGA”), or
any other suitable processing device. The processor 702 can
include any number of processing devices, including a
single processing device. The memory device 704 includes
any suitable non-transitory computer-readable medium for
storing data, program code, or both. A computer-readable
medium can include any electronic, optical, magnetic, or
other storage device capable of providing a processor with
computer-readable instructions or other program code. Non-
limiting examples of a computer-readable medium include a
magnetic disk, a memory chip, a ROM, a RAM, an ASIC,
optical storage, magnetic tape or other magnetic storage, or
any other medium from which a processing device can read
instructions. The instructions may include processor-specific
instructions generated by a compiler or an interpreter from
code written in any suitable computer-programming lan-
guage, including, for example, C, C++, C#, Visual Basic,
Java, Python, Perl, JavaScript, and ActionScript.

Still referring to FIG. 7, the computing system 700 may
also include a number of external or internal devices, for
example, input or output devices. For example, the comput-
ing system 700 is shown with one or more input/output
(“I/0”) interfaces 706. An 1/O interface 706 can receive
input from input devices or provide output to output devices
(not shown). One or more buses 708 are also included in the
computing system 700. The bus 708 communicatively
couples one or more components of a respective one of the
computing system 700. The processor 702 executes program
code that configures the computing system 700 to perform
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one or more of the operations described herein. The program
code includes, for example, graphics editing application
102, or other suitable applications that perform one or more
operations described herein. The program code may be
resident in the memory device 704 or any suitable computer-
readable medium and may be executed by the processor 702
or any other suitable processor. Memory device 704, during
operation of the computing system, executable portions of
the graphics editing application, for example, mapping mod-
ule 111, and editing interface 130 can access portions as
needed. Memory device 704 is also used to temporarily store
a surface mapping function 120, a neural network model
122, surface representations 112, 3D meshes 123, and 3D
meshes 125, as well as other information or data structures,
shown or not shown in FIG. 7, as needed. Memory device
704 also stores graphical objects 104 or portions thereof for
the specific graphics editing job in progress. A graphical
object in some examples is a data structure enabling repre-
sentation and rendering of a 3D object, for example, object
202 and/or object 206 of FIG. 2.

The system 700 of FIG. 7 also includes a network
interface device 712. The network interface device 712
includes any device or group of devices suitable for estab-
lishing a wired or wireless data connection to one or more
data networks. Non-limiting examples of the network inter-
face device 712 include an Ethernet network adapter, a
wireless network adapter, and/or the like. The system 700 is
able to communicate with one or more other computing
devices (e.g., another computing device executing other
software, not shown) via a data network (not shown) using
the network interface device 712. Network interface device
712 can also be used to communicate with network or cloud
storage used as a repository for stored media clips for use
with the media editing application 102. Such network or
cloud storage can also include updated or archived versions
of the media editing application for distribution and instal-
lation.

Staying with FIG. 7, in some embodiments, the comput-
ing system 700 also includes the presentation device 715
depicted in FIG. 7. A presentation device 715 can include
any device or group of devices suitable for providing visual,
auditory, or other suitable sensory output. In examples,
presentation device 715 displays graphical objects and sur-
faces. Non-limiting examples of the presentation device 715
include a touchscreen, a monitor, a separate mobile com-
puting device, etc. In some aspects, the presentation device
715 can include a remote client-computing device that
communicates with the computing system 700 using one or
more data networks. System 700 may be implemented as a
unitary computing device, for example, a notebook or
mobile computer. Alternatively, as an example, the various
devices included in system 700 may be distributed and
interconnected by interfaces or a network, with a central or
main computing device including one or more processors.

In addition to the surface-to-surface mapping described
herein, neural network representations of surfaces and map-
pings can be used in various other mapping scenarios.
Neural network representations as described herein can
capture even very detailed features of the original shape with
high fidelity. Neural network mapping as described herein
can also be used for, as examples, surface parameterization,
composition with analytical maps, cycle-consistent mapping
for collections of surfaces, and baseline comparisons.

In an example implementation, neural network represen-
tations and/or neural network models as described herein
include ten-layer, residual, fully connected networks, with
256 units per layer. Initial meshes can be uniformly sampled
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with 500,000 points. Since the networks are fully optimized,
they can be trained until the gradient’s normal drops below
a threshold of 0.1. Optimization can be initialized with a
learning rate of 10™* and a momentum of 0.9 and a step size
modulated with stochastic gradient descent with warm
restarts. Surface maps can include four-layer, fully con-
nected networks of 128 hidden units.

Numerous specific details are set forth herein to provide
a thorough understanding of the claimed subject matter.
However, those skilled in the art will understand that the
claimed subject matter may be practiced without these
specific details. In other instances, methods, apparatuses, or
systems that would be known by one of ordinary skill have
not been described in detail so as not to obscure claimed
subject matter.

Unless specifically stated otherwise, it is appreciated that
throughout this specification discussions utilizing terms
such as “processing,” “computing,” “determining,” and
“identifying” or the like refer to actions or processes of a
computing device, such as one or more computers or a
similar electronic computing device or devices, that manipu-
late or transform data represented as physical electronic or
magnetic quantities within memories, registers, or other
information storage devices, transmission devices, or dis-
play devices of the computing platform.

The system or systems discussed herein are not limited to
any particular hardware architecture or configuration. A
computing device can include any suitable arrangement of
components that provide a result conditioned on one or more
inputs. Suitable computing devices include multi-purpose
microprocessor-based computer systems accessing stored
software that programs or configures the computing system
from a general purpose computing apparatus to a specialized
computing apparatus implementing one or more implemen-
tations of the present subject matter. Any suitable program-
ming, scripting, or other type of language or combinations of
languages may be used to implement the teachings con-
tained herein in software to be used in programming or
configuring a computing device.

Embodiments of the methods disclosed herein may be
performed in the operation of such computing devices. The
order of the blocks presented in the examples above can be
varied—for example, blocks can be re-ordered, combined,
and/or broken into sub-blocks. Certain blocks or processes
can be performed in parallel.

The use of “configured to” herein is meant as open and
inclusive language that does not foreclose devices adapted to
or configured to perform additional tasks or steps. Headings,
lists, and numbering included herein are for ease of expla-
nation only and are not meant to be limiting.

While the present subject matter has been described in
detail with respect to specific embodiments thereof, it will be
appreciated that those skilled in the art, upon attaining an
understanding of the foregoing, may readily produce altera-
tions to, variations of, and equivalents to such embodiments.
Accordingly, it should be understood that the present dis-
closure has been presented for purposes of example rather
than limitation, and does not preclude inclusion of such
modifications, variations, and/or additions to the present
subject matter as would be readily apparent to one of
ordinary skill in the art.

What is claimed is:

1. A computer-implemented method comprising:

generating a surface mapping function for mapping a first

surface of a first three-dimensional (3D) object in a 3D
space to a second surface of a second 3D object in the
3D space, wherein the surface mapping function is
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defined by a first representation of the first surface, a
second representation of the second surface, and a
neural network model configured as an intermediary
between the first representation and the second repre-
sentation to map a first two-dimensional (2D) repre-
sentation to a second 2D representation;

selecting a set of points in the first 2D representation, the

set of points comprising vertex points and internal

points of a first 3D mesh, wherein:

the first representation of the first surface is produced
by minimizing a loss function defined based on
Euclidean distances between (a) output points of the
neural network model using the set of points as input
and (b) ground-truth points of the set of points in the
3D space, so that the first representation of the first
surface corresponds to a mapping from the first 2D
representation of the first surface to the first surface
of the first 3D object;

the second representation corresponds to a mapping
from the second 2D representation of the second
surface to the second surface of the second 3D
object; and

generating the surface mapping function comprises
adjusting parameters of the neural network model to
optimize an objective function, wherein the objective
function comprises a distortion term defining distor-
tion between the first surface and the second surface
mapped through the surface mapping function;

applying a feature of the first 3D mesh on the first surface

to a second 3D mesh on the second surface to produce

a modified second surface, wherein the first 3D mesh

on the first surface maps to the second 3D mesh on the

second surface as determined by the surface mapping

function; and

rendering, by a rendering module, the modified second

surface.

2. The computer-implemented method of claim 1,
wherein the first representation of the first surface comprises
a first neural network representation and the second repre-
sentation of the second surface comprises a second neural
network representation.

3. The computer-implemented method of claim 2,
wherein producing the first neural network representation
comprises:

generating the first 2D representation based on the first 3D

mesh of the first 3D object; and

training the first neural network representation by adjust-

ing the parameters of the first neural network repre-
sentation to minimize the loss function;

wherein the first neural network representation has an

input layer with two nodes representing two ordinates
of a point in the first 2D representation and an output
layer with three nodes representing three ordinates of a
point in the 3D space.

4. The computer-implemented method of claim 1,
wherein the first representation of the first surface comprises
a neural network representation and the second representa-
tion of the second surface comprises a differentiable func-
tion that maps the second 2D representation to the second
surface.

5. The computer-implemented method of claim 1,
wherein the neural network model comprises an input layer
including a first pair of nodes representing ordinates in the
first 2D representation and an output layer including a
second pair of nodes representing coordinates in the second
2D representation.
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6. The computer-implemented method of claim 1,
wherein the distortion term is defined based on a Jacobian
quantifying at least one of local deformation or conformal
distortion.

7. The computer-implemented method of claim 1,
wherein the objective function further comprises at least one
of:

a positive constraint;

a boundary constraint for mapping a first boundary of the
first 2D representation to a second boundary of the
second 2D representation; or

a keypoint-based constraint.

8. The computer-implemented method of claim 1,
wherein the surface mapping function maps at least the first
surface to each of a collection of surfaces, the method
further comprising:

defining the distortion term pairwise for each of a plural-
ity of mappings to provide a plurality of distortion
terms; and

adding the plurality of distortion terms for optimization.

9. A system comprising:

a processor; and

a memory device configured to store a first representation
of a first surface, a second representation of a second
surface, and a modified second surface, the memory
device further storing a graphics editing application
executable by the processor for performing operations
comprising:
generating a surface mapping function for mapping a

first surface of a first three-dimensional (3D) object
in a 3D space to a second surface of a second 3D
object in the 3D space, wherein the surface mapping
function is defined by the first representation of the
first surface, the second representation of the second
surface, and a neural network model configured as an
intermediary between the first representation and the
second representation to map a first two-dimensional
(2D) representation to a second 2D representation;
selecting a set of points in the first 2D representation,
the set of points comprising vertex points and inter-
nal points of a first 3D mesh, wherein:
the first representation of the first surface is produced
by minimizing a loss function defined based on
Euclidean distances between (a) output points of
the neural network model using the set of points as
input and (b) ground-truth points of the set of
points in the 3D space, so that the first represen-
tation of the first surface corresponds to a mapping
from the first 2D representation of the first surface
to the first surface of the first 3D object;
the second representation corresponds to a mapping
from the second 2D representation of the second
surface to the second surface of the second 3D
object; and
generating the surface mapping function includes
using an objective function comprising a distor-
tion term defining distortion between the first
surface and the second surface mapped through
the surface mapping function;
applying a feature of the first 3D mesh on the first
surface to a second 3D mesh on the second surface
to produce the modified second surface, wherein the
first 3D mesh on the first surface maps to the second
3D mesh on the second surface as determined by the
surface mapping function; and
rendering the modified second surface.
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10. The system of claim 9, wherein the first representation
of the first surface comprises a first neural network repre-
sentation and the second representation of the second sur-
face comprises a second neural network representation.

11. The system of claim 10, wherein the operation of
producing the first neural network representation comprises:

generating the first 2D representation based on the first 3D
mesh of the first 3D object; and

training the first neural network representation by adjust-
ing the parameters of the first neural network repre-
sentation to minimize the loss function;

wherein the first neural network representation has an
input layer with two nodes representing two ordinates
of a point in the first 2D representation and an output
layer with three nodes representing three ordinates of a
point in the 3D space.

12. The system of claim 9, wherein the first representation
of the first surface comprises a neural network representa-
tion and the second representation of the second surface
comprises a differentiable function that maps the second 2D
representation to the second surface.

13. The system of claim 9, wherein the neural network
model comprises an input layer including a first pair of
nodes representing ordinates in the first 2D representation
and an output layer including a second pair of nodes
representing coordinates in the second 2D representation.

14. The system of claim 9, wherein the distortion term is
defined based on a Jacobian quantifying at least one of local
deformation or conformal distortion.

15. The system of claim 9, wherein the objective function
further comprises at least one of:

a positive constraint;

a boundary constraint for mapping a first boundary of the
first 2D representation to a second boundary of the
second 2D representation; or

a keypoint-based constraint.

16. The system of claim 9, wherein the surface mapping
function is configured to map at least the first surface to each
of a collection of surfaces, the operations further compris-
ing:

defining the distortion term pairwise for each of a plural-
ity of mappings to provide a plurality of distortion
terms; and

adding the plurality of distortion terms for optimization.

17. A non-transitory computer-readable medium storing
program code executable by a processor to perform opera-
tions, the operations comprising:

a step for generating a surface mapping function for
mapping a first surface of a first three-dimensional (3D)
object in a 3D space to a second surface of a second 3D
object in the 3D space, wherein the surface mapping
function is defined by a first representation of the first
surface, a second representation of the second surface,
and a neural network model configured as an interme-
diary between the first representation and the second
representation to map a first two-dimensional (2D)
representation to a second 2D representation;

selecting a set of points in the first 2D representation, the
set of points comprising vertex points and internal
points of a first 3D mesh, wherein:
the first representation of the first surface is produced

by minimizing a loss function defined based on
Euclidean distances between (a) output points of the
neural network model using the set of points as input
and (b) ground-truth points of the set of points in the
3D space, so that the first representation of the first
surface corresponds to a mapping from the first 2D
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representation of the first surface to the first surface 19. The non-transitory computer-readable medium of
of the first 3D object; and claim 18, wherein the operation of producing the first neural

network representation comprises:

the second representation corresponds to a mapping generating the first 2D representation based on the first 3D

from the second 2D representation of the second

5 mesh of the first 3D object; and
suljface to the second surface of the second 3D training the first neural network representation by adjust-
object; ing the parameters of the first neural network repre-
applying a feature of the first 3D mesh on the first surface sentation to minimize the loss function; )
to a second 3D mesh on the second surface to produce wherein the first neural network representation has an
a modified second surface, wherein the first 3D mesh 1o input layer with two nodes representing two ordinates

of a point in the first 2D representation and an output
layer with three nodes representing three ordinates of a
point in the 3D space.

20. The non-transitory computer-readable medium of

on the first surface maps to the second 3D mesh on the
second surface as determined by the surface mapping
function; and

rendering the modified second surface. claim 17, wherein the first representation of the first surface
18. The non-transitory computer-readable medium of 15 comprises a neural network representation and the second
claim 17, wherein the first representation of the first surface representation of the second surface comprises a differen-

tiable function that maps the second 2D representation to the

comprises a first neural network representation and the
second 3D surface.

second representation of the second surface comprises a
second neural network representation. I T S



