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An embedded port of a host bus adapter of a storage 
controller receives , from a driver of the host bus adapter , a 
first set of commands to quiesce I / O operations in the 
embedded port for a first period , wherein hardware resets of 
buses and other logic to which the embedded port is con 
nected are performed in the first period of quiescing of I / O 
operations . One or more commands are received to resume 
selected I / O operations in the embedded port . A second set 
of commands is received to quiesce I / O operations for a 
second period . A command is received to allow normal I / O 
operations , subsequent to the driver being reinitialized dur 
ing the second period of quiescing of I / O operations . 
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PROGRAMMING INTERFACE OPERATIONS 
IN A PORT IN COMMUNICATION WITH A 
DRIVER FOR REINITIALIZATION OF 
STORAGE CONTROLLER ELEMENTS 

BACKGROUND 
1 . Field 

[ 0001 ] Embodiments relate to the programming of inter 
face operations in a port in communication with a driver for 
reinitialization of storage controller elements . 

2 . Background 
[ 0002 ] A storage controller may control access to storage 
for one or more host computational devices that may be 
coupled to the storage controller over a network . A storage 
management application that executes in the storage con 
troller may manage a plurality of storage devices , such as 
disk drives , tape drives , flash drives , etc . , that are coupled to 
the storage controller . A host may send Input / Output ( abbre 
viated as I / O or 10 ) commands to the storage controller and 
the storage controller may execute the I / O commands to read 
data from the storage devices or write data to the storage 
devices . 
[ 0003 ] A host bus adapter ( HBA ) may comprise a circuit 
board and / or integrated circuit based adapter that may 
include components such as a Fibre Channel interface chip , 
where the Fibre Channel interface chip may be referred to as 
an embedded port . The host bus adapter may provide I / O 
processing and provide physical connectivity for the storage 
controller to a storage area network ( SAN ) , where the 
storage area network includes a Fibre Channel switched 
fabric . The storage controller ( via the host bus adapter ) may 
act as a target that receives I / O commands from the one or 
more host computational devices , where the one or more 
host computational devices act as initiators of the I / O 
commands . 
10004 ) Communication between the hosts and the storage 
controller may occur over a Fibre Channel ( FC ) network , 
where Fibre Channel refers to an integrated set of architec 
tural standards for data transfer being developed by the 
American National Standards Institute . Fibre Channel is a 
high - speed network technology primarily used for storage 
area networks . Fibre Channel Protocol ( FCP ) is a transport 
protocol that predominantly supports transports commands 
over Fibre Channel networks . 
[ 0005 ] Fibre Channel may be split into five layers : a 
Protocol - mapping layer ( FC - 4 ) , a common service layer 
( FC - 3 ) , a network layer ( FC - 2 ) , a data link layer ( FC - 1 ) , and 
a FC - O layer that defines the physical link in the system , 
including the fibre , connectors , optical and electrical param 
eters for a variety of data rates . Layers FC - 0 through FC - 2 
are also known as FC - PH , the physical layers of Fibre 
Channel , whereas FC - 3 and FC - 4 layers define how Fibre 
Channel ports interact with applications in computational 
devices . The FC - 3 level of the FC standard is intended to 
provide the common services for features such as striping , 
multicasting , etc . 
[ 0006 ] FC - 4 , the highest layer in Fibre Channel , defines 
the application interfaces that execute over Fibre Channel . 
FC - 4 specifies the mapping rules of upper layer protocols 
using the FC layers below . FC - 4 is formed by a series of 
profiles that define how to map legacy protocols to Fibre 

Channel . Fibre Channel is capable of transporting both 
network and channel information , and profiles for network 
and channel protocols , such as , Small Computer System 
Interface ( SCSI ) , Intelligent Peripheral Interface ( IPI ) , High 
Performance Parallel Interface ( HIPPI ) Framing Protocol , 
Internet Protocol ( IP ) , Link Encapsulation ( FC - LE ) , Single 
Byte Command Code Set Mapping ( SBCCS ) , etc . , may be 
specified or proposed as protocol mappings in FC - 4 . 
[ 0007 ] Fibre Connection ( FICON ) is a protocol of the fibre 
channel architecture and may also be referred to by the 
formal name of FC - SB - 5 . FICON is a protocol layer that 
builds upon the Fibre Channel transport protocol . Further 
details of Fibre Channel protocol mapping for the Single 
Byte Command Code Sets may be found in the publication , 
“ Fibre Channel Single - Byte Command Code Sets Mapping 
Protocol - 5 ( FC - SB - 5 ) ” , Rev . 2 . 0 , published by the American 
National Standards Institute on Mar . 26 , 2013 . 
[ 0008 ] The basic building blocks of a Fibre Channel 
connection are called “ Frames ” . The frames contain the 
information to be transmitted ( Payload ) , the address of the 
source ( i . e . , initiator ) and destination ( i . e . , target ) ports and 
link control information . Frames are broadly categorized as 
data frames and link control frames . Details of framing and 
signaling aspects of Fibre Channel may be found in the 
publication , “ Fibre Channel Framing and Signaling - 4 ( FC 
FS - 4 ) ” , Rev . 1 . 20 , published by the American National 
Standard for Information Technology on Jul . 21 , 2015 . 
Details of link services aspects of Fibre Channel may be 
found in the publication , “ Fibre Channel Link Services 
( FC - LS - 3 ) ” , Rev . 3 . 10 , published by the American National 
Standard for Information Technology on Feb . 1 , 2014 . The 
Fibre Channel Protocol for SCSI Fourth Version ( FCP - 4 ) 
standard describes the frame format and protocol definitions 
required to transfer commands and data between a SCSI 
( Small Computer System Interface ) initiator and target using 
the Fibre Channel family of standards . Further details of 
FCP - 4 may be found in the publication , " Information Tech 
nology - Fiber Channel Protocol for SCSI , Fourth Version 
( FCP - 4 ) , Revision 02b " published by the International Com 
mittee for Information Technology Standards , on Jan . 3 , 
2011 . 
[ 0009 ] The storage controller may include a plurality of 
host bus adapters , where each host bus adapter may include 
a Fibre Channel Interface chip that is an interface to switches 
that allow communication over a Fibre Channel network 
between the storage controller and the plurality of hosts . 

[ 0010 ] Fibre Channel storage area networks may use the 
Fibre Channel protocol ( used by the hardware to commu 
nicate ) , the SCSI protocol ( used by software applications to 
communicate to disks ) , and other protocols for communi 
cation . In Fibre channel , network connections are estab 
lished between node ports ( N _ Ports ) that are there in com 
puters , servers , storage controllers , storage devices , printers , 
etc . , and fabric ports ( F _ Ports ) that are there in the Fibre 
channel switched fabric . A Fibre Channel switched fabric 
relies on one or more switches to establish direct , point - to 
point connections between the source and target devices . 
Each Fibre Channel interface chip in the host bus adapters 
of the storage controller comprises a port that allows com 
munication of the storage controller to the hosts over the 
Fibre Channel switched fabric . 
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SUMMARY OF THE PREFERRED 
EMBODIMENTS 

Channel interface chip communicates with the host bus 
adapter over a PCIe bus in the host bus adapter . 

BRIEF DESCRIPTION OF THE DRAWINGS [ 0011 ] Provided are a method , a system , and a computer 
program product in which an embedded port of a host bus 
adapter of a storage controller receives , from a driver of the 
host bus adapter , a first set of commands to quiesce I / O 
operations in the embedded port for a first period , wherein 
hardware resets of buses and other logic to which the 
embedded port is connected are performed in the first period 
of quiescing of I / O operations . One or more commands are 
received to resume selected I / O operations in the embedded 
port . A second set of commands is received to quiesce I / O 
operations for a second period . A command is received to 
allow normal I / O operations , subsequent to the driver being 
reinitialized during the second period of quiescing of I / O 
operations . 
[ 0012 ] In additional embodiments , the one or more com 
mands to resume selected I / O operations in the embedded 
port are received subsequent to configuration space registers 
of the buses and other logic being restored to a state prior to 
performing of the hardware resets . 
[ 0013 ] In further embodiments , in response to receiving 
the first set of commands , the embedded port performs : 
quiescing processing of received frames from a link ; latch 
ing states of selected hardware inputs ; completing active 
direct memory access into driver memory ; deferring pro 
cessing of link transitions ; stopping all accesses to driver 
memory ; and dequeing any messages to be sent to the driver . 
[ 0014 ] In additional embodiments , in response to receiv 
ing the one or more commands to resume selected I / O 
operations in the embedded port , the embedded port per 
forms : resuming of processing of received frames from a 
link ; enabling detection and processing of link transitions ; 
requeuing any held messages to the driver ; and sending a 
notification message to each response queue indicating 
completion of the selected I / O operations . 
[ 0015 ] In further embodiments , the second set of com 
mands comprise options to allow partial direct memory 
access ( DMA ) activity to the driver memory and to syn 
chronize queue pointers , wherein in response to the second 
set of commands the embedded port performs : stopping 
processing of received frames from a link ; completing active 
DMA into driver memory ; deferring processing of link 
transitions ; stopping a majority of accesses to driver 
memory , while allowing access to memory extensions pro 
vided to the embedded port by the driver ; and synchronizing 
queue pointers on request queues by discarding any mes 
sages on the request queues and updating the request queue 
out pointers . 
[ 0016 ] In additional embodiments , the second set of com 
mands further comprises a message to the embedded port to 
terminate any remaining exchanges , and in response to the 
second set of commands the embedded port performs : 
sending an abort sequence ( ABTS ) for every open exchange 
without sending response messages to the driver ; not send 
ing any ABTS to host systems that have been indicated in 
port control block to not receive any ABTS ; accessing host 
memory for offloaded exchanges to determine state infor 
mation ; and relinquishing control of all buffer and I / O 
control block ( IOCB ) resources associated with the driver . ] 
[ 0017 ] In yet additional embodiments , the embedded port 
is a Fibre Channel interface chip that includes port firmware 
that supports lower level Fibre Channel protocols to com 
municate over a Fibre Channel fabric , wherein the Fibre 

[ 0018 ] Referring now to the drawings in which like ref 
erence numbers represent corresponding parts throughout : 
[ 0019 ] FIG . 1 illustrates a block diagram of a computing 
environment comprising a storage controller that includes 
one or more host adapters with one or more Fibre Channel 
interface chips to couple the storage controller to a Fibre 
Channel fabric to communicate with a plurality of hosts , in 
accordance with certain embodiments ; 
[ 0020 ] FIG . 2 illustrates a first flowchart that show opera 
tions in a first and a second quiescence period of a driver and 
an embedded port using an application programming inter 
face for reinitialization of storage controller elements , in 
accordance with certain embodiments ; 
[ 0021 ] FIG . 3 illustrates a second flowchart that shows 
operations of a driver and an embedded port that use the 
application programming interface for reinitialization of 
storage controller elements , in accordance with certain 
embodiments ; 
10022 ] . FIG . 4 illustrates a third flowchart that operations 
of a driver and an embedded port that use the application 
programming interface for reinitialization of storage con 
troller elements , in accordance with certain embodiments ; 
[ 0023 ] FIG . 5 illustrates a fourth flowchart that shows 
operations of a driver and an embedded port that use the 
application programming interface for reinitialization of 
storage controller elements , in accordance with certain 
embodiments ; 
100241 . FIG . 6 illustrates a fifth flowchart that shows opera 
tions of a driver and an embedded port that use the appli 
cation programming interface for reinitialization of storage 
controller elements , in accordance with certain embodi 
ments ; 
[ 0025 ] FIG . 7 illustrates a sixth flowchart that shows 
operations of a driver and an embedded port that use the 
application programming interface for reinitialization of 
storage controller elements , in accordance with certain 
embodiments ; 
10026 ] FIG . 8 illustrates a seventh flowchart that shows 
operations of a driver that uses the application programming 
interface for reinitialization of storage controller elements , 
in accordance with certain embodiments ; 
[ 0027 ] FIG . 9 illustrates a eighth flowchart that shows 
operations of an embedded port that uses the application 
programming interface for reinitialization of storage con 
troller elements , in accordance with certain embodiments ; 
[ 0028 ] FIG . 10 illustrates a block diagram of a cloud 
computing environment , in accordance with certain embodi 
ments ; 
[ 0029 ] FIG . 11 illustrates a block diagram of further 
details of the cloud computing environment of FIG . 10 , in 
accordance with certain embodiments ; and 
[ 0030 ] FIG . 12 illustrates a block diagram of a computa 
tional system that shows certain elements that may be 
included in the storage controller , the host bus adapter , the 
embedded port , and the host shown in FIG . 1 , in accordance 
with certain embodiments . 
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DETAILED DESCRIPTION 
[ 0031 ] In the following description , reference is made to 
the accompanying drawings which form a part hereof and 
which illustrate several embodiments . It is understood that 
other embodiments may be utilized and structural and opera 
tional changes may be made . 
[ 0032 ] In enterprise storage control units , such as a storage 
controller , recovery from logic errors needs to be performed 
in a timely manner to avoid introducing noticeable increases 
in response times for recovery . In certain embodiments , a 
fast reset or warmstart process may be used to reinitialize the 
storage controller elements , such as servers and host adapt 
ers , into a known state without performing a cold reset or 
initial program load . During this reset process the impact to 
active host I / O is minimized . 
100331 Certain embodiments minimize the impact to host 
I / O when performing a fast reset on a host bus adapter , 
where the host bus adapter includes an embedded port that 
provides an interface to a Fibre Channel fabric , where the 
embedded port communicates with a driver of the host bus 
adapter . The driver of the host bus adapter may communi 
cate and control operations of the embedded port . The 
communication mechanism between the driver and the 
embedded port uses an application programming interface 
( API ) . 
[ 0034 ] In certain embodiments , a host bus adapter directed 
multistep restart uses two quiesce periods for host I / O 
operations . In a first quiesce period , the embedded port stops 
processing any incoming frames and stops direct memory 
access ( DMA ) access from the embedded port . The first 
quiesce period allows for the resetting of host adapter 
hardware such as a controller Application Specific Inte 
grated Circuits ( ASIC ) and hot resets of Peripheral Compo 
nent Interconnect Express ( PCIe ) buses to which the embed 
ded port is connected . A second quiesce process allows for 
reinitialization of the host adapter processor ' s internal struc 
tures and state by reinitialization of the driver and subse 
quently normal I / O operations are resumed for the embed 
ded port . 

be elements in any suitable network , such as , a storage area 
network , a wide area network , the Internet , an intranet . In 
certain embodiments , the storage controller 102 and the 
hosts 110 , 112 may be elements in a cloud computing 
environment . 
[ 0037 ] In FIG . 1 , the storage controller 102 may include 
one or more host bus adapters 104 that operate as targets of 
I / O operations initiated by one or more hosts 110 , 112 . The 
host bus adapter 104 does not have control over the arrival 
of host I / O operations . In certain embodiments , each host 
bus adapter 104 may be in the form of an adapter card that 
is plugged into the Peripheral Component Interconnect 
Express ( PCIe ) slot of the storage controller 102 . 
[ 0038 ] The host bus adapter 104 may include a PCIe bus 
114 to which a host bus adapter processor 116 and the Fibre 
Channel interface chip 106 are coupled . An ASIC 118 may 
reside in the host bus adapter 104 , where the ASIC 118 
provides a memory controller and PCIe bus connectivity . 
[ 0039 ] The host bus processor 116 may be a single - core or 
a multi - core processor . A driver 120 that supports upper 
level protocols e . g . , FCP , FICON , FC - 4 layer standards , etc . , 
executes operations on the host bus adapter processor 116 . 
The driver 120 communicates with the Fibre Channel inter 
face chip 106 by using an application programming interface 
( API ) 122 . Various data structures , such as queues 124 are 
maintained by the driver 120 . In certain embodiments , the 
driver 120 may be implemented in software , hardware , 
firmware or any combination thereof . 
[ 0040 ] The Fibre Channel Interface Chip 106 is also 
referred to as an embedded port . The embedded port 106 
includes a processor 126 and a port firmware 128 that 
supports lower level protocols like those for framing , sig 
naling , etc . In certain embodiments , functions of the port 
firmware 128 may be implemented in software , hardware , 
firmware or any combination thereof . Various data struc 
tures , such as queues 130 ( e . g . , request queues ) are main 
tained by the port firmware 128 . The embedded port 106 
supports lower level protocols of Fibre Channel and the 
driver 120 supports upper level protocols . The embedded 
port 106 that supports lower level protocols of Fibre Chan 
nel connects the host bus adapter 104 to the Fibre Channel 
fabric 108 . 
[ 0041 ] The hosts 110 , 112 may send I / O commands to the 
storage controller 102 over the Fibre Channel fabric 108 . 
The embedded port 106 receives the Fibre Channel frames 
corresponding to the request . The driver 120 which supports 
upper level protocols of Fibre Channel is in communication 
with the embedded port 106 . The driver 120 uses the 
embedded port 106 and communicates via the upper level 
protocols with the hosts 110 , 112 , and responds to I / O 
commands via the embedded port 106 . 
[ 0042 ] Therefore , FIG . 1 illustrates certain embodiments 
in which a driver 120 of a host bus adapter 104 in association 
with the port firmware 128 of an embedded port 106 allows 
the host bus adapter 104 to process and respond to I / O 
commands from one or more hosts 110 , 112 . 
10043 ) FIG . 2 illustrates a first flowchart 200 that show 
operations in a first and a second quiescence period of a 
driver 120 and an embedded port 106 using an application 
programming interface 122 for reinitialization of elements 
of the storage controller 102 , in accordance with certain 
embodiments . 
[ 0044 ] In a first quiescence period 202 , the driver 120 
requests embedded port 106 to quiesce ( i . e . , suspend ) I / O 

Exemplary Embodiments 
[ 0035 ] FIG . 1 illustrates a block diagram of a computing 
environment 100 comprising a storage controller 102 that 
includes one or more host adapters 104 with one or more 
Fibre Channel interface chips 106 to couple the storage 
controller 102 to a Fibre Channel fabric 108 , to communi 
cate with a plurality of hosts 110 , 112 , in accordance with 
certain embodiments . 
[ 0036 ] The storage controller 102 that includes the host 
bus adapter 104 may control storage devices ( not shown ) , 
and receive I / O commands from the hosts 110 , 112 . The 
storage controller 102 and the hosts 110 , 112 may comprise 
any suitable computational device including those presently 
known in the art , such as , a personal computer , a worksta 
tion , a server , a mainframe , a hand held computer , a palm top 
computer , a telephony device , a network appliance , a blade 
computer , a processing device , etc . In certain embodiments 
the storage controller 102 may be comprised of one or more 
storage servers . A plurality of storage servers may provide 
redundancy because if one storage server undergoes a failure 
from which recovery is not possible , an alternate storage 
server may perform the functions of the storage server that 
failed . The storage controller 102 and the hosts 110 , 112 may 
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operations , and during this first period of quiescence the 
driver 120 resets ( at block 204 ) host bus adapter hardware , 
such as the ASIC 118 that provides memory controller and 
PCIe bus connectivity , and performs ( at block 206 ) hot 
resets of internal PCIe buses 114 to which the embedded port 
106 is connected . Subsequently , the quiesced I / O operations 
are processed . 
10045 ) It should be noted that the operations of the first 
quiescence period 202 resets the logic and hardware 
resources that may have been affected by an error event , 
such that the logic and hardware resources are placed in a 
known state and may be used between the first quiescence 
period 202 a second quiescence period 208 to process the 
incoming 1 / 0 requests , in such a way that the number of 
incoming requests on a path from the initiator to the storage 
target are reduced . For example , control unit busy status or 
other messages such as process logout ( PRLO ) may be sent 
to initiators to slow the rate of incoming I / O requests ( or stop 
incoming I / O requests ) that may be discarded during the 
second quiescence period 208 . As a result , a reduction is 
made in I / Os during reset events . 
[ 0046 ] In a second quiescence period 108 , the driver 120 
is reinitialized and the internal structures and the storage of 
the host bus adapter 104 are reinitialized . Subsequently , 
normal processing of I / O operations is performed by the 
embedded port 106 via the port firmware 128 . 
[ 0047 ] FIG . 3 illustrates a second flowchart 300 that 
shows operations of a driver 120 and an embedded port 106 
that use the application programming interface for reinitial 
ization of storage controller elements , in accordance with 
certain embodiments . The driver operations 302 and the 
embedded port operations 304 are shown to the left and right 
of the dashed line 306 respectively . 
10048 ] Control starts at block 308 in which the driver 120 , 
in response to determining that an error has occurred in the 
storage controller 102 that needs reinitialization of storage 
controller components , initiates an entry into a first quies 
cence phase to perform hardware resets . Control proceeds to 
block 310 in which the driver 120 stops scanning of Input / 
Output Control Blocks ( IOCB ) in message / response queues . 
The driver 120 sends ( at block 311 ) a message to the 
embedded port 106 to flush current trace buffers from the 
port memory into driver memory for preservation across 
hardware resets . 
( 0049 ) The embedded port 106 receives ( at block 312 ) the 
message from the driver 120 to flush trace buffers from the 
port memory into driver memory . The embedded port 106 
performs the operation to flush the trace buffers from the 
port memory into the driver memory and responds ( at block 
314 ) completion of the operation to the driver 120 . 
[ 0050 ] The driver 120 receives ( at block 316 ) the response 
from the embedded port 106 that the operation to flush trace 
buffers from the port memory into driver memory is com 
plete . Control proceeds to block 318 in which the driver 120 
sends a quiesce message to the embedded port 106 to 
perform operations associated with quiescing , including : 
[ 0051 ] ( 1 ) the processing of received frames from the link ; 
[ 0052 ] ( 2 ) latching the state of hardware inputs needed for 
subsequent steps of the quiescing [ e . g . latching the state 
of the Auto SCSI Status Inhibit and General Purpose IO 
( ASSI GPIO ) input ] ; 

[ 0053 ] ( 3 ) completing active direct memory access 
( DMA ) into driver memory ; 

[ 0054 ] ( 4 ) deferring processing of link transitions ; 

[ 0055 ] ( 5 ) stopping all accesses to driver memory ; and 
[ 0056 ] ( 6 ) dequeuing any messages queued to be sent to 

the driver . 
[ 0057 ] Control proceeds to block 320 , which the embed 
ded port 106 receives the quiesce message from the driver 
106 to perform quiesce activities , including : 
[ 0058 ] ( 1 ) processing of received frames from the link ; 
[ 0059 ] ( 2 ) latching the state of hardware inputs needed for 

subsequent steps of the quiescing ; 
[ 0060 ] ( 3 ) completing active direct memory access 

( DMA ) into driver memory ; 
[ 0061 ] ( 4 ) deferring processing of link transitions ; 
10062 ] ( 5 ) stopping all accesses to driver memory ; and 
[ 0063 ] ( 6 ) dequeuing any messages queued to be sent to 

the driver . 
[ 0064 ] The embedded port 106 then responds ( at block 
322 ) to the driver 120 that the activities have been quiesced . 
The driver 120 receives ( at block 324 ) the response from the 
embedded port 106 that activities have been quiesced and 
control proceeds to continuation block A 326 which contin 
ues the flowchart in a subsequent figure . 
10065 ) FIG . 4 illustrates a third flowchart 400 that shows 
operations of a driver 120 and an embedded port 106 that use 
the application programming interface for reinitialization of 
storage controller elements , in accordance with certain 
embodiments . The driver operations 402 and the embedded 
port operations 404 are shown to the left and right of the 
dashed line 406 respectively . 
[ 0066 ] From continuation block 326 control proceeds to 
block 408 in which the driver 120 performs hardware resets 
including PCIe hot reset and restores configuration space 
registers of the PCIe bus , etc . , to the same state as before the 
reset . The driver 120 sends ( at block 410 ) a message to the 
embedded port 120 to resume normal operations including : 
[ 0067 ] ( 1 ) processing of received frames from the link ; 
[ 0068 ] ( 2 ) enabling of detection and processing of link 

transitions ; 
[ 0069 ] ( 3 ) requeuing of any held messages to the driver ; 
and 

[ 0070 ] ( 4 ) sending a notification message to each response 
queue indicating completion of the resume process . 

10071 ] Control proceeds to block 412 in which the embed 
ded port 106 receives the message from the driver 120 to 
resume normal operations including : 
[ 0072 ] ( 1 ) processing of received frames from the link ; 
[ 0073 ] ( 2 ) enabling of detection and processing of link 

transitions ; 
[ 0074 ] ( 3 ) requeuing of any held messages to the driver ; 

and 
[ 0075 ] ( 4 ) sending a notification message to each response 
queue indicating completion of the resume process . 

[ 0076 ] The embedded port 106 responds ( at block 416 ) for 
each response queue to the driver 120 of the resume com 
plete notification . 
[ 0077 ] From block 410 control also proceeds to block 414 
in which the driver 120 sets a count of expected resume 
complete notification messages equal to the number of 
response queues currently configured . The driver 120 sends 
( at block 418 ) a message to re - enable ( i . e . , enable once 
again ) external trace capability . It may be noted that external 
trace goes into memory outside of the embedded port 106 . 
The embedded port 106 receives ( at block 420 ) the message 
from the driver 120 to re - enable external trace capability , 
and in response re - enables external trace capability and 
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responds ( at block 422 ) that external trace capability has 
been re - enabled . Control proceeds to block 424 in which the 
driver 120 enters a period of quiescing I / O activity . 
[ 0078 ] From block 424 control proceeds to block 426 in 
which the driver 120 resumes scanning of I / O control block 
( IOCB ) message / response queues , and for each resume 
completion notification received , decrements count of 
expected resume complete messages till the count is decre 
mented to zero . Control then proceeds to continuation block 
B 428 which continues the flowchart in a subsequent figure . 
[ 0079 ] FIG . 5 illustrates a fourth flowchart 500 that shows 
operations of a driver 120 and an embedded port 106 that use 
the application programming interface for reinitialization of 
storage controller elements , in accordance with certain 
embodiments . The driver operations 502 and the embedded 
port operations 504 are shown to the left and right of the 
dashed line 506 respectively . 
10080 ] From continuation block 428 control proceeds to 
block 508 in which the driver 120 initiates a second phase 
of quiescing embedded port activity to perform driver reini 
tialization . The driver 120 sends ( at block 510 ) a message to 
the embedded port 106 to flush current trace buffers to driver 
memory for preservation across the driver initialization . The 
embedded port 106 receives the message from the driver 120 
to flush trace buffers from port memory into driver memory , 
and the embedded port 106 performs the flush operation 
before responding ( at block 512 ) . Control proceeds to block 
514 in which the driver 120 sends a second quiesce message 
to the embedded port 106 to quiesce activity , this message 
including options to allow partial direct memory access 
( DMA ) activity to the driver memory and to synchronize 
queue pointers , where the second quiesce message requests 
the embedded port to : 
[ 0081 ] ( 1 ) stop processing of received frames from the 

link ; 
[ 0082 ] ( 2 ) complete active DMA into driver memory ; 
[ 0083 ] ( 3 ) defer processing of link transitions ; 
[ 0084 ] ( 4 ) stop most accesses to driver memory , still 

allowing access to memory extensions provided to the 
embedded port by the driver ; and 

[ 0085 ) ( 5 ) synchronize queue pointers on request queues 
by discarding any messages on these queues and updating 
the request queue out pointers . 

[ 0086 ] The embedded port 106 receives ( at block 516 ) the 
second quiesce message from the driver 120 to quiesce 
activity , this message including options to allow partial 
DMA activity to the driver memory and to synchronize 
queue pointers , and performs : 
[ 0087 ] ( 1 ) stopping processing of received frames from 

the link ; 
[ 0088 ] ( 2 ) completing active DMA into driver memory ; 
[ 0089 ] ( 3 ) deferring processing of link transitions ; 
[ 0090 ] ( 4 ) stopping most accesses to driver memory , still 

allowing access to memory extensions provided to the 
embedded port by the driver ; and 

[ 0091 ] ( 5 ) synchronizing queue pointers on request queues 
by discarding any messages on these queues and updating 
the request queue out pointers . 

10092 ] The embedded port 106 then responds ( at block 
518 ) to the second quiesce message from the driver 120 and 
control proceeds to continuation block C 520 which contin 
ues the flowchart in a subsequent figure . 
[ 0093 ] FIG . 6 illustrates a fifth flowchart 600 that shows 
operations of a driver 120 and an embedded port 106 that use 

the application programming interface for reinitialization of 
storage controller elements , in accordance with certain 
embodiments . The driver operations 602 and the embedded 
port operations 604 are shown to the left and right of the 
dashed line 606 respectively . 
[ 0094 ] Control proceeds from continuation block C 520 
block 608 in which the driver 120 sends a message to 
embedded port 106 to terminate any remaining exchanges 
including operations to : 
[ 0095 ] ( 1 ) send an abort sequence ( ABTS ) for every open 

exchange without sending response messages to the 
driver ; 

[ 0096 ] ( 2 ) not send ABTS to host systems that have been 
indicated in port control block to not receive ABTS ; 

[ 0097 ] ( 3 ) access host memory for offloaded exchanges to 
determine their state ; and 

[ 0098 ] ( 4 ) relinquish control of all buffer and IOCB 
resources associated with the driver . 

[ 0099 ] Control proceeds to block 610 in which the embed 
ded port 120 receives a message from the driver to terminate 
any remaining exchanges , and in response performs : 
( 0100 ] ( 1 ) sending ABTS for every open exchange without 

sending response messages to the driver ; 
f0101 ( 2 ) not sending ABTS to host systems that have 
been indicated in port control block to not receive ABTS ; 

[ 0102 ] ( 3 ) accessing host memory for offloaded exchanges 
to determine their state ; and 

[ 0103 ] ( 4 ) relinquishing control of all buffer and IOCB 
resources associated with the driver , and then the embed 
ded port 106 responds to the terminate message from the 
driver 120 upon completion . 

[ 0104 ] The driver 120 sends ( at block 612 ) a message to 
the embedded port 120 to resume normal operation includ 
ing 
[ 0105 ] ( 1 ) processing of received frames from the link ; 
[ 0106 ] ( 2 ) enabling of detection and processing of link 

transitions ; and 
?0107 ] ( 3 ) send a notification message to each response 

queue indicating completion of the resume process . 
0108 ] The embedded port 106 receives ( at block 614 ) a 
message from the driver 120 to resume normal operation , 
and performs : 
[ 0109 ] ( 1 ) processing of received frames from the link ; 
[ 0110 ] ( 2 ) enabling of detection and processing of link 

transitions ; and 
[ 0111 ] ( 3 ) sending a notification message to each response 
queue indicating completion of the resume process . 

[ 0112 ] The embedded port 106 also responds ( at block 
614 ) to the resume normal operation message request from 
the driver 120 . The driver 120 sets ( at block 616 ) a count of 
expected resume complete notification messages equal to the 
number of response queues currently configured . Control 
proceeds to continuation block D 618 which continues the 
flowchart in a subsequent figure . 
[ 0113 ] FIG . 7 illustrates a sixth flowchart 700 that shows 
operations of a driver 120 and an embedded port 106 that use 
the application programming interface for reinitialization of 
storage controller elements , in accordance with certain 
embodiments . The driver operations 602 and the embedded 
port operations 604 are shown to the left and right of the 
dashed line 606 respectively . 
[ 0114 ] From continuation block D 702 control proceeds to 
block 708 in which the driver 120 sends a message to the 
embedded port 106 to re - enable ( i . e . , enable once again ) 
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( 0124 ] The embedded port 106 receives ( at block 904 ) one 
or more commands to resume selected I / O operations in the 
embedded port 106 , where the one or more commands to 
resume selected I / O operations in the embedded port 106 are 
received subsequent to configuration space registers of the 
buses 114 and other logic 118 being restored to a state prior 
to the performing of the hardware resets . 
[ 0125 ] Control proceeds to block 906 in which the embed 
ded port 106 receives a second set of commands to quiesce 
I / O operations for a second period . The embedded port 
receives a command to allow normal I / O operations , sub 
sequent to the driver 120 being initialized during the second 
period of quiescing of I / O operations . 
[ 0126 ] Therefore , FIG . 9 illustrates certain operations per 
formed by the port 106 for reinitialization of storage con 
troller elements with minimal impact to I / O operations . 
[ 0127 ) FIGS . 1 - 9 illustrate certain embodiments in which 
the impact to host I / O when performing a fast reset on a host 
bus adapter 104 is minimized . Two quiesce periods are used 
for host I / O operations . In a first quiesce period , the embed 
ded port 106 stops processing any incoming frames and 
stops direct memory access ( DMA ) access from the embed 
ded port 106 . The first quiesce period allows for the resetting 
of host adapter hardware such as a controller ASIC 118 and 
hot resets of PCIe buses 114 to which the embedded port 106 
is connected . A second quiesce process allows for reinitial 
ization of the host adapter processor ' s 116 internal structures 
and state by reinitialization of the driver 120 and subse 
quently normal I / O operations are resumed for the embed 
ded port 106 . 

external trace capability , The embedded port 106 receives ( at 
block 710 ) a message from the driver 120 to re - enable 
external trace capability , re - enables the external trace capa 
bility , and responds to the driver 120 when the operation is 
complete . 
[ 0115 ) Control proceeds to block 712 in which the driver 
120 resumes scanning of I / O control block ( IOCB ) message 
response queues , for each resume completion notification 
message received , and decrements the count of expected 
resume complete notification messages . The driver 120 
continues discarding messages on each queue until a resume 
complete notification is received on all queues . The driver 
106 then resumes ( at block 714 ) normal operation and the 
embedded port 120 also resumes normal operation in 
response to a command from the driver 106 . 
[ 0116 ] Therefore FIGS . 3 - 7 illustrate operations per 
formed by the driver 120 and the embedded port 106 to 
perform the reinitialization of storage controller components 
in two quiescing periods to minimize disruption to I / O 
activity in the host bus adapter 104 that is in communication 
with the hosts 110 , 112 . 
[ 0117 ] FIG . 8 illustrates a seventh flowchart 800 that 
shows operations of a driver 120 that uses the application 
programming interface 122 for reinitialization of storage 
controller elements , in accordance with certain embodi 
ments . 
[ 0118 ] Control starts at block 802 , in which the driver 120 
determines that an error has occurred in the storage control 
ler 102 that requires a reinitialization ( i . e . , a initialization 
once again ) of storage controller elements . The driver 120 
transmits ( at block 804 ) a first set of commands to the 
embedded port 106 of the host bus adapter 104 to cause the 
embedded port 106 to enter into the first period of quiescing 
of I / O operations , where the hardware resets of buses 114 
and other logic ( e . g . , ASIC 118 ) to which the embedded port 
106 is connected are performed during the first period . 
[ 0119 ] The driver 120 then restores ( at block 806 ) the 
configuration space registers of the buses 114 and other logic 
118 to a state that the configuration space registers were in 
prior to the performing of the hardware resets . The driver 
120 then transmits ( at block 808 ) one or more commands to 
the embedded port 106 to resume selected I / O operations in 
the embedded port 106 . 
10120 ] Control proceeds to block 810 , in which the driver 
120 is reinitialized during a second period of quiescing of 
I / O operations in the embedded port 106 . The driver 120 
then sends ( at block 812 ) a command to allow normal I / O 
operations in the embedded port 106 . 
10121 ] Therefore , FIG . 8 illustrates certain operations per 
formed by the driver 120 for reinitialization of storage 
controller elements with minimal impact to I / O operations . 
[ 0122 ] FIG . 9 illustrates a eighth flowchart 900 that shows 
operations of an embedded port 106 that uses the application 
programming interface 122 for reinitialization of storage 
controller elements , in accordance with certain embodi 
ments . 
[ 0123 ] Control starts at block 902 in which the embedded 
port 106 receives from a driver 120 of the host bus adapter 
104 , a first set of commands to quiesce I / O operations in the 
embedded port 106 for a first period , wherein hardware 
resets of buses 114 and other logic 118 to which the 
embedded port 106 is connected is performed in the first 
period of quiescing of I / O operations . 

Cloud Computing Environment 
[ 0128 ] Cloud computing is a model for enabling conve 
nient , on - demand network access to a shared pool of con 
figurable computing resources ( e . g . , networks , servers , stor 
age , applications , and services ) that can be rapidly 
provisioned and released with minimal management effort 
or service provider interaction . 
[ 0129 ] Referring now to FIG . 10 , an illustrative cloud 
computing environment 50 is depicted . As shown , cloud 
computing environment 50 comprises one or more cloud 
computing nodes 10 with which local computing devices 
used by cloud consumers , such as , for example , personal 
digital assistant ( PDA ) or cellular telephone 54A , desktop 
computer 54B , laptop computer 54C , and / or automobile 
computer system 54N may communicate . Nodes 10 may 
communicate with one another . They may be grouped ( not 
shown ) physically or virtually , in one or more networks , 
such as Private , Community , Public , or Hybrid clouds as 
described hereinabove , or a combination thereof . This 
allows cloud computing environment 50 to offer infrastruc 
ture , platforms and / or software as services for which a cloud 
consumer does not need to maintain resources on a local 
computing device . It is understood that the types of com 
puting devices 54A - N shown in FIG . 10 are intended to be 
illustrative only and that computing nodes 10 and cloud 
computing environment 50 can communicate with any type 
of computerized device over any type of network and / or 
network addressable connection ( e . g . , using a web browser ) . 
[ 0130 ] Referring now to FIG . 11 , a set of functional 
abstraction layers provided by cloud computing environ 
ment 50 ( FIG . 10 ) is shown . It should be understood in 
advance that the components , layers , and functions shown in 
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FIG . 11 are intended to be illustrative only and embodiments 
of the invention are not limited thereto . 
[ 0131 ] Hardware and software layer 60 includes hardware 
and software components . Examples of hardware compo 
nents include mainframes , in one example IBM zSeries * 
systems ; RISC ( Reduced Instruction Set Computer ) archi 
tecture based servers , in one example IBM pSeries * sys 
tems ; IBM xSeries * systems ; IBM BladeCenter * systems ; 
storage devices ; networks and networking components . 
Examples of software components include network appli 
cation server software , in one example IBM WebSphere * 
application server software ; and database software , in one 
example IBM DB2 * database software . 
* IBM , zSeries , pSeries , xSeries , BladeCenter , WebSphere , and DB2 are 
trademarks of International Business Machines Corporation registered in 
many jurisdictions worldwide . 
[ 0132 ] Virtualization layer 62 provides an abstraction 
layer from which the following examples of virtual entities 
may be provided : virtual servers ; virtual storage ; virtual 
networks , including virtual private networks ; virtual appli 
cations and operating systems ; and virtual clients . 
[ 0133 ] In one example , management layer 64 may provide 
the functions described below . Resource provisioning pro 
vides dynamic procurement of computing resources and 
other resources that are utilized to perform tasks within the 
cloud computing environment . Metering and Pricing pro 
vide cost tracking as resources are utilized within the cloud 
computing environment , and billing or invoicing for con 
sumption of these resources . In one example , these resources 
may comprise application software licenses . Security pro 
vides identity verification for cloud consumers and tasks , as 
well as protection for data and other resources . User portal 
provides access to the cloud computing environment for 
consumers and system administrators . Service level man 
agement provides cloud computing resource allocation and 
management such that required service levels are met . 
Service Level Agreement ( SLA ) planning and fulfillment 
provide pre - arrangement for , and procurement of , cloud 
computing resources for which a future requirement is 
anticipated in accordance with an SLA . 
[ 0134 ] Workloads layer 66 provides examples of function 
ality for which the cloud computing environment may be 
utilized . Examples of workloads and functions which may 
be provided from this layer include : mapping and naviga 
tion ; software development and lifecycle management ; vir 
tual classroom education delivery ; data analytics processing ; 
transaction processing ; and the reinitialization of storage 
controller elements 68 as shown in FIGS . 1 - 9 . 

having computer readable program instructions thereon for 
causing a processor to carry out aspects of the present 
embodiments . 
[ 0136 ] The computer readable storage medium can be a 
tangible device that can retain and store instructions for use 
by an instruction execution device . The computer readable 
storage medium may be , for example , but is not limited to , 
an electronic storage device , a magnetic storage device , an 
optical storage device , an electromagnetic storage device , a 
semiconductor storage device , or any suitable combination 
of the foregoing . A non - exhaustive list of more specific 
examples of the computer readable storage medium includes 
the following : a portable computer diskette , a hard disk , a 
random access memory ( RAM ) , a read - only memory 
( ROM ) , an erasable programmable read - only memory 
( EPROM or Flash memory ) , a static random access memory 
( SRAM ) , a portable compact disc read - only memory ( CD 
ROM ) , a digital versatile disk ( DVD ) , a memory stick , a 
floppy disk , a mechanically encoded device such as punch 
cards or raised structures in a groove having instructions 
recorded thereon , and any suitable combination of the fore 
going . A computer readable storage medium , as used herein , 
is not to be construed as being transitory signals per se , such 
as radio waves or other freely propagating electromagnetic 
waves , electromagnetic waves propagating through a wave 
guide or other transmission media ( e . g . , light pulses passing 
through a fiber - optic cable ) , or electrical signals transmitted 
through a wire . 
[ 0137 ) Computer readable program instructions described 
herein can be downloaded to respective computing / process 
ing devices from a computer readable storage medium or to 
an external computer or external storage device via a net 
work , for example , the Internet , a local area network , a wide 
area network and / or a wireless network . The network may 
comprise copper transmission cables , optical transmission 
fibers , wireless transmission , routers , firewalls , switches , 
gateway computers and / or edge servers . A network adapter 
card or network interface in each computing / processing 
device receives computer readable program instructions 
from the network and forwards the computer readable 
program instructions for storage in a computer readable 
storage medium within the respective computing / processing 
device . 
[ 0138 ] Computer readable program instructions for carry 
ing out operations of the present embodiments may be 
assembler instructions , instruction - set - architecture ( ISA ) 
instructions , machine instructions , machine dependent 
instructions , microcode , firmware instructions , state - setting 
data , or either source code or object code written in any 
combination of one or more programming languages , 
including an object oriented programming language such as 
Smalltalk , C + + or the like , and conventional procedural 
programming languages , such as the “ C ” programming 
language or similar programming languages . The computer 
readable program instructions may execute entirely on the 
user ' s computer , partly on the user ' s computer , as a stand 
alone software package , partly on the user ' s computer and 
partly on a remote computer or entirely on the remote 
computer or server . In the latter scenario , the remote com 
puter may be connected to the user ' s computer through any 
type of network , including a local area network ( LAN ) or a 
wide area network ( WAN ) , or the connection may be made 
to an external computer ( for example , through the Internet 
using an Internet Service Provider ) . In some embodiments , 

Additional Embodiment Details 
[ 0135 ] The described operations may be implemented as a 
method , apparatus or computer program product using stan 
dard programming and / or engineering techniques to produce 
software , firmware , hardware , or any combination thereof . 
Accordingly , aspects of the embodiments may take the form 
of an entirely hardware embodiment , an entirely software 
embodiment ( including firmware , resident software , micro 
code , etc . ) or an embodiment combining software and 
hardware aspects that may all generally be referred to herein 
as a “ circuit , " " module " or " system . ” Furthermore , aspects 
of the embodiments may take the form of a computer 
program product . The computer program product may 
include a computer readable storage medium ( or media ) 
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electronic circuitry including , for example , programmable 
logic circuitry , field - programmable gate arrays ( FPGA ) , or 
programmable logic arrays ( PLA ) may execute the computer 
readable program instructions by utilizing state information 
of the computer readable program instructions to personalize 
the electronic circuitry , in order to perform aspects of the 
present embodiments . 
[ 0139 ] Aspects of the present embodiments are described 
herein with reference to flowchart illustrations and / or block 
diagrams of methods , apparatus ( systems ) , and computer 
program products according to embodiments of the inven 
tion . It will be understood that each block of the flowchart 
illustrations and / or block diagrams , and combinations of 
blocks in the flowchart illustrations and / or block diagrams , 
can be implemented by computer readable program instruc 
tions . 
[ 0140 ] These computer readable program instructions may 
be provided to a processor of a general purpose computer , 
special purpose computer , or other programmable data pro 
cessing apparatus to produce a machine , such that the 
instructions , which execute via the processor of the com 
puter or other programmable data processing apparatus , 
create means for implementing the functions / acts specified 
in the flowchart and / or block diagram block or blocks . These 
computer readable program instructions may also be stored 
in a computer readable storage medium that can direct a 
computer , a programmable data processing apparatus , and / 
or other devices to function in a particular manner , such that 
the computer readable storage medium having instructions 
stored therein comprises an article of manufacture including 
instructions which implement aspects of the function / act 
specified in the flowchart and / or block diagram block or 
blocks . 
[ 0141 ] The computer readable program instructions may 
also be loaded onto a computer , other programmable data 
processing apparatus , or other device to cause a series of 
operational steps to be performed on the computer , other 
programmable apparatus or other device to produce a com 
puter implemented process , such that the instructions which 
execute on the computer , other programmable apparatus , or 
other device implement the functions / acts specified in the 
flowchart and / or block diagram block or blocks . 
[ 0142 ] The flowchart and block diagrams in the figures 
illustrate the architecture , functionality , and operation of 
possible implementations of systems , methods , and com 
puter program products according to various embodiments 
of the present invention . In this regard , each block in the 
flowchart or block diagrams may represent a module , seg 
ment , or portion of instructions , which comprises one or 
more executable instructions for implementing the specified 
logical function ( s ) . In some alternative implementations , the 
functions noted in the block may occur out of the order noted 
in the figures . For example , two blocks shown in succession 
may , in fact , be executed substantially concurrently , or the 
blocks may sometimes be executed in the reverse order , 
depending upon the functionality involved . It will also be 
noted that each block of the block diagrams and / or flowchart 
illustration , and combinations of blocks in the block dia 
grams and / or flowchart illustration , can be implemented by 
special purpose hardware - based systems that perform the 
specified functions or acts or carry out combinations of 
special purpose hardware and computer instruction . 
[ 0143 ] FIG . 12 illustrates a block diagram that shows 
certain elements that may be included in the host bus adapter 

104 , the storage controller 102 , the embedded port 106 , or 
other computational devices in accordance with certain 
embodiments . The system 1200 may include a circuitry 
1202 that may in certain embodiments include at least a 
processor 1204 . The system 1200 may also include a 
memory 1206 ( e . g . , a volatile memory device ) , and storage 
1208 . The storage 1208 may include a non - volatile memory 
device ( e . g . , EEPROM , ROM , PROM , flash , firmware , 
programmable logic , etc . ) , magnetic disk drive , optical disk 
drive , tape drive , etc . The storage 1208 may comprise an 
internal storage device , an attached storage device and / or a 
network accessible storage device . The system 1200 may 
include a program logic 1210 including code 1212 that may 
be loaded into the memory 1206 and executed by the 
processor 1204 or circuitry 1202 . In certain embodiments , 
the program logic 1210 including code 1212 may be stored 
in the storage 1208 . In certain other embodiments , the 
program logic 1210 may be implemented in the circuitry 
1202 . Therefore , while FIG . 12 shows the program logic 
1210 separately from the other elements , the program logic 
1210 may be implemented in the memory 1206 and / or the 
circuitry 1202 . 
0144 ) Certain embodiments may be directed to a method 
for deploying computing instruction by a person or auto 
mated processing integrating computer - readable code into a 
computing system , wherein the code in combination with 
the computing system is enabled to perform the operations 
of the described embodiments . 
[ 0145 ] The terms “ an embodiment " , " embodiment ” , 
" embodiments ” , “ the embodiment ” , “ the embodiments ” , 
“ one or more embodiments ” , " some embodiments ” , and 
“ one embodiment ” mean “ one or more ( but not all ) embodi 
ments of the present invention ( s ) ” unless expressly specified 
otherwise . 
[ 0146 ] The terms “ including ” , “ comprising ” , “ having ” 
and variations thereof mean “ including but not limited to ” , 
unless expressly specified otherwise . 
[ 0147 ] The enumerated listing of items does not imply that 
any or all of the items are mutually exclusive , unless 
expressly specified otherwise . 
[ 0148 ] The terms “ a ” , “ an ” and “ the ” mean “ one or more ” , 
unless expressly specified otherwise . 
101491 Devices that are in communication with each other 
need not be in continuous communication with each other , 
unless expressly specified otherwise . In addition , devices 
that are in communication with each other may communi 
cate directly or indirectly through one or more intermediar 
ies . 
[ 0150 ] A description of an embodiment with several com 
ponents in communication with each other does not imply 
that all such components are required . On the contrary a 
variety of optional components are described to illustrate the 
wide variety of possible embodiments of the present inven 
tion . 
[ 0151 ] Further , although process steps , method steps , 
algorithms or the like may be described in a sequential order , 
such processes , methods and algorithms may be configured 
to work in alternate orders . In other words , any sequence or 
order of steps that may be described does not necessarily 
indicate a requirement that the steps be performed in that 
order . The steps of processes described herein may be 
performed in any order practical . Further , some steps may be 
performed simultaneously . 
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[ 0152 ] When a single device or article is described herein , 
it will be readily apparent that more than one device / article 
( whether or not they cooperate ) may be used in place of a 
single device / article . Similarly , where more than one device 
or article is described herein ( whether or not they cooperate ) , 
it will be readily apparent that a single device / article may be 
used in place of the more than one device or article or a 
different number of devices / articles may be used instead of 
the shown number of devices or programs . The functionality 
and / or the features of a device may be alternatively embod 
ied by one or more other devices which are not explicitly 
described as having such functionality / features . Thus , other 
embodiments of the present invention need not include the 
device itself . 
[ 0153 ] At least certain operations that may have been 
illustrated in the figures show certain events occurring in a 
certain order . In alternative embodiments , certain operations 
may be performed in a different order , modified or removed . 
Moreover , steps may be added to the above described logic 
and still conform to the described embodiments . Further , 
operations described herein may occur sequentially or cer 
tain operations may be processed in parallel . Yet further , 
operations may be performed by a single processing unit or 
by distributed processing units . 
[ 0154 ] The foregoing description of various embodiments 
of the invention has been presented for the purposes of 
illustration and description . It is not intended to be exhaus 
tive or to limit the invention to the precise form disclosed . 
Many modifications and variations are possible in light of 
the above teaching . It is intended that the scope of the 
invention be limited not by this detailed description , but 
rather by the claims appended hereto . The above specifica 
tion , examples and data provide a complete description of 
the manufacture and use of the composition of the invention . 
Since many embodiments of the invention can be made 
without departing from the spirit and scope of the invention , 
the invention resides in the claims hereinafter appended . 
affiliates . 

1 - 20 . ( Canceled ) 
21 . A method performed by an embedded port of a host 

bus adapter of a storage controller , the method comprising : 
receiving , from a driver of the host bus adapter , a first set 

of commands to quiesce I / O operations in the embed 
ded port for a first period , wherein hardware resets of 
buses and other logic to which the embedded port is 
coupled are performed in the first period of quiescing of 
I / O operations ; 

receiving one or more commands to resume selected I / O 
operations in the embedded port ; 

receiving a second set of commands to quiesce I / O 
operations for a second period , wherein the second set 
of commands comprise options to allow partial direct 
memory access ( DMA ) activity to driver memory and 
to synchronize queue pointers ; and 

receiving a command to allow normal I / O operations , 
subsequent to the driver being reinitialized during the 
second period of quiescing of I / O operations . 

22 . The method of claim 21 , wherein the one or more 
commands to resume selected I / O operations in the embed 
ded port are received subsequent to configuration space 
registers of the buses and other logic being restored to a state 
prior to performing of the hardware resets . 

23 . The method of claim 21 , wherein in response to the 
second set of commands the embedded port performs : 

stopping processing of received frames from a link ; 
completing active DMA into driver memory ; 
deferring processing of link transitions ; 
stopping a majority of accesses to driver memory , while 

allowing access to memory extensions provided to the 
embedded port by the driver ; and 

synchronizing queue pointers on request queues by dis 
carding any messages on the request queues and updat 
ing the request queue out pointers . 

24 . The method of claim 21 , wherein the second set of 
commands further comprises a message to the embedded 
port to terminate any remaining exchanges . 

25 . The method of claim 24 , wherein in response to the 
second set of commands the embedded port performs : 

sending an abort sequence ( ABTS ) for every open 
exchange without sending response messages to the 
driver ; 

not sending any ABTS to host systems that have been 
indicated in port control block to not receive any 
ABTS ; 

accessing host memory for offloaded exchanges to deter 
mine state information ; and 

relinquishing control of all buffer and I / O control block 
( IOCB ) resources associated with the driver . 

26 . The method of claim 21 , wherein the embedded port 
is a Fibre Channel interface chip that includes port firmware 
that supports lower level Fibre Channel protocols to com 
municate over a Fibre Channel fabric , and wherein the Fibre 
Channel interface chip communicates with the host bus 
adapter over a PCIe bus in the host bus adapter . 

27 . A system comprising an embedded port coupled to a 
host bus adapter of a storage controller , the system further 
comprising : 

a memory ; and 
a processor coupled to the memory , wherein the processor 
performs operations , the operations comprising : 

receiving , from a driver of the host bus adapter , a first set 
of commands to quiesce I / O operations in the embed 
ded port for a first period , wherein hardware resets of 
buses and other logic to which the embedded port is 
coupled are performed in the first period of quiescing of 
I / O operations ; 

receiving one or more commands to resume selected I / O 
operations in the embedded port ; 

receiving a second set of commands to quiesce I / O 
operations for a second period , wherein the second set 
of commands comprise options to allow partial direct 
memory access ( DMA ) activity to driver memory and 
to synchronize queue pointers ; and 

receiving a command to allow normal I / O operations , 
subsequent to the driver being reinitialized during the 
second period of quiescing of I / O operations . 

28 . The system of claim 27 , wherein the one or more 
commands to resume selected I / O operations in the embed 
ded port are received subsequent to configuration space 
registers of the buses and other logic being restored to a state 
prior to performing of the hardware resets . 

29 . The system of claim 27 , wherein in response to the 
second set of commands the embedded port performs : 

stopping processing of received frames from a link ; 
completing active DMA into driver memory ; 
deferring processing of link transitions ; 
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stopping a majority of accesses to driver memory , while 
allowing access to memory extensions provided to the 
embedded port by the driver ; and 

synchronizing queue pointers on request queues by dis 
carding any messages on the request queues and updat 
ing the request queue out pointers . 

30 . The system of claim 27 , wherein the second set of 
commands further comprises a message to the embedded 
port to terminate any remaining exchanges . 

31 . The system of claim 30 , wherein in response to the 
second set of commands the embedded port performs : 

sending an abort sequence ( ABTS ) for every open 
exchange without sending response messages to the 
driver ; 

not sending any ABTS to host systems that have been 
indicated in port control block to not receive any 
ABTS ; 

accessing host memory for offloaded exchanges to deter 
mine state information ; and 

relinquishing control of all buffer and I / O control block 
( IOCB ) resources associated with the driver . 

32 . The system of claim 27 , wherein the embedded port 
is a Fibre Channel interface chip that includes port firmware 
that supports lower level Fibre Channel protocols to com 
municate over a Fibre Channel fabric , and wherein the Fibre 
Channel interface chip communicates with the host bus 
adapter over a PCIe bus in the host bus adapter . 

33 . A computer program product , the computer program 
product comprising a computer readable storage medium 
having computer readable program code embodied there 
with , the computer readable program code configured to 
perform operations , the operations comprising : 

receiving , from a driver of a host bus adapter , a first set of 
commands to quiesce I / O operations in an embedded 
port for a first period , wherein hardware resets of buses 
and other logic to which the embedded port is coupled 
are performed in the first period of quiescing of I / O 
operations ; 

receiving one or more commands to resume selected I / O 
operations in the embedded port ; 

receiving a second set of commands to quiesce I / O 
operations for a second period , wherein the second set 
of commands comprise options to allow partial direct 
memory access ( DMA ) activity to driver memory and 
to synchronize queue pointers ; and 

receiving a command to allow normal I / O operations , 
subsequent to the driver being reinitialized during the 
second period of quiescing of I / O operations . 

34 . The computer program product of claim 33 , wherein 
the one or more commands to resume selected I / O opera 
tions in the embedded port are received subsequent to 
configuration space registers of the buses and other logic 
being restored to a state prior to performing of the hardware 
resets . 

35 . The computer program product of claim 33 , wherein 
in response to the second set of commands the embedded 
port performs : 

stopping processing of received frames from a link ; 
completing active DMA into driver memory ; 
deferring processing of link transitions ; 
stopping a majority of accesses to driver memory , while 

allowing access to memory extensions provided to the 
embedded port by the driver ; and 

synchronizing queue pointers on request queues by dis 
carding any messages on the request queues and updat 
ing the request queue out pointers . 

36 . The computer program product of claim 33 , wherein 
the second set of commands further comprises a message to 
the embedded port to terminate any remaining exchanges . 

37 . The computer program product of claim 36 , wherein 
in response to the second set of commands the embedded 
port performs : 

sending an abort sequence ( ABTS ) for every open 
exchange without sending response messages to the 
driver ; 

not sending any ABTS to host systems that have been 
indicated in port control block to not receive any 
ABTS ; 

accessing host memory for offloaded exchanges to deter 
mine state information , and 

relinquishing control of all buffer and 1 / 0 control block 
( IOCB ) resources associated with the driver . 

38 . The computer program product of claim 33 , wherein 
the embedded port is a Fibre Channel interface chip that 
includes port firmware that supports lower level Fibre Chan 
nel protocols to communicate over a Fibre Channel fabric , 
and wherein the Fibre Channel interface chip communicates 
with the host bus adapter over a PCIe bus in the host bus 
adapter . 


