
US 20180357196A1
(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2018 / 0357196 A1

Cardinell et al . (43) Pub . Date : Dec . 13 , 2018

(54) PROGRAMMING INTERFACE OPERATIONS
IN A PORT IN COMMUNICATION WITH A
DRIVER FOR REINITIALIZATION OF
STORAGE CONTROLLER ELEMENTS (52)

(71) Applicant : International Business Machines
Corporation , Armonk , NY (US)

G06F 13 / 40 (2006 . 01)
G06F 3 / 06 (2006 . 01)
G06F 13 / 28 (2006 . 01)
U . S . CI .
CPC G06F 13 / 426 (2013 . 01) ; G06F 13 / 4243

(2013 . 01) ; G06F 13 / 385 (2013 . 01) ; G06F
13 / 4022 (2013 . 01) ; G06F 13 / 4027 (2013 . 01) ;

GO6F 13 / 28 (2013 . 01) ; G06F 3 / 067
(2013 . 01) ; G06F 3 / 0659 (2013 . 01) ; GO6F

37061 (2013 . 01)

(57) ABSTRACT

(72) Inventors : Charles S . Cardinell , Tucson , AZ
(US) ; Roger G . Hathorn , Tucson , AZ
(US) ; Steven E . Klein , Tucson , AZ
(US) ; Bernhard Laubli , Green Valley ,
AZ (US)

(21) Appl . No . : 16 / 105 , 820
(22) Filed : Aug . 20 , 2018

Related U . S . Application Data
(63) Continuation of application No . 14 / 870 , 410 , filed on

Sep . 30 , 2015 , now Pat . No . 10 , 083 , 144 .
Publication Classification

(51) Int . Ci .
G06F 13 / 42 (2006 . 01)
G06F 13 / 38 (2006 . 01)

An embedded port of a host bus adapter of a storage
controller receives , from a driver of the host bus adapter , a
first set of commands to quiesce I / O operations in the
embedded port for a first period , wherein hardware resets of
buses and other logic to which the embedded port is con
nected are performed in the first period of quiescing of I / O
operations . One or more commands are received to resume
selected I / O operations in the embedded port . A second set
of commands is received to quiesce I / O operations for a
second period . A command is received to allow normal I / O
operations , subsequent to the driver being reinitialized dur
ing the second period of quiescing of I / O operations .

100 102
Storage Controller

104
Host Bus Adapter (s)
[target (s)]

120 118 118
- - 116

ASIC
(provides
memory

controller and
PC le bus

connectivity)

Host bus adapter
processor

(multi - core , etc .)
PCle
busi

114

Driver
(target driver that

supports upper level
protocols and API to
communicate with Port

Firmware)

Queues API

106 2 - 124 - 122

128
Fibre Channel Interface chip [Embedded Port]

: - 126
Processor Port Firmware

(Supports lower level
130 protocols)

Queues

- 108

Fibre Channel Fabric

. : - 110 : - 112

Host
(Initiator)

Host
(Initiator)

Patent Application Publication Dec . 13 , 2018 Sheet 1 of 12 US 2018 / 0357196 A1

100 FIG . 1 102
Storage Controller

104

Host Bus Adapter (s)
[target (s)]

118

- 116
ASIC

(provides
memory

controller and
PCle bus

connectivity)

12Wwwwwwwwwwwwwwwww Host bus adapter
processor

(multi - core , etc .)

Driver
(target driver that

supports upper level
protocols and API to
communicate with Port

Firmware) PCle www WWW bus

Queues API

L124 Lizz - 106

Fibre Channel Interface chip (Embedded Port)
126

Processor Port Firmware
(Supports lower level

protocols) - 130
Queues

- - -

Fibre Channel Fabric

- 110

Host
(Initiator)

Host
(Initiator)

Patent Application Publication Dec . 13 , 2018 Sheet 2 of 12 US 2018 / 0357196 A1

FIG . 2 200
- 202

First Quiescence Period

Reset host bus adapter hardware , such as ASIC
that provides memory controller and PCle bus

connectivity

4204

Perform hot resets of internal PCle buses to
which the embedded port is connected

(206

- 208

Second Quiescence Period

Reinitialize the internal structures and state of
the host bus adapter by reinitialization of the

driver

Patent Application Publication Dec . 13 , 2018 Sheet 3 of 12 US 2018 / 0357196 A1

FIG . 3 Driver Operations 300 302 Embedded Port
Operations

Initiate entry into a first quiescence
phase to perform hardware resets 306 (304

4308

Stop scanning of Input / Output
Control Block (IOCB) message /

response queues

310 5312
Send a message to the embedded
port to flush current trace buffers
from the port memory into driver
memory for preservation across

hardware resets

Receive the message from the driver
to flush trace buffers from the port
memory into driver memory

316 311 314

Receive response from the
embedded port that the operation
to flush trace buffers from the port
memory into driver memory is

complete

Perform the operation to flush the
trace buffers from the port memory
into the driver memory and respond
completion of the operation to the

driver

- 320
Send a quiesce message to the

embedded port to quiesce activity ,
including :

(1) processing of received frames
from the link ;
(2) latching the state of hardware
input required for subsequent
steps of the quiesce ;
(3) completing active direct
memory access (DMA) into driver
memory :
(4) deferring processing of link
transitions ;
(5) stopping all accesses to driver
memory , and
(6) dequeuing any messages
queued to be sent to the driver .

Receive the quiesce message
from the driver to quiesce

activity , including :
(1) processing of received frames
from the link ;
(2) latching the state of hardware
inputs required for subsequent
steps of the quiesce ;
(3) completing active direct
memory access (DMA) into driver
memory ;
(4) deferring processing of link
transitions ;
(5) stopping all accesses to driver
memory , and
(6) dequeuing any messages
queued to be sent to the driver ,

- 324
7322

wwwwwwwww
Respond to driver that that

activities quiesced
Receive response from embedded

port that activities quiesced
- _ - 326

Continuation block A

Patent Application Publication Dec . 13 , 2018 Sheet 4 of 12 US 2018 / 0357196 A1

FIG . 4 400
1402 Driver

Operations , Embedded Port
Operations

-

-

-

+

+

+

+

+

- Continuation block A . - - 406 - - 404 -

-

408 -

-

-

-

-

-

- Perform hardware resets including PCle hot
reset and restore configuration space

registers to the same state as before the reset
-

-

-

- 41
-

-

-

-

-

-

-

-

-

-

-

-

Receive a message from the driver to
resume normal operations including :
(1) processing of received frames from the ????????
link ;

Send a message to embedded port to
resume normal operations including :
(1) processing of received frames from the
link ;
(2) enabling of detection and processing of
link transitions ;
(3) requeuing of any held messages to the
driver ; and
(4) sending a notification message to each
response queue indicating completion of the
resume process Wwwwwwwwwwwwwwwwwwwwwww

(2) enabling of detection and processing of
link transitions ;
(3) requeuing of any held messages to the
driver ; and
4) sending a notification message to each
response queue indicating completion of
the resume process

VAPAAPAAAAAAAAAAAA
- 410 414

- - 416
wwwww

Set a count of expected resume complete
notification messages equal to the number of

response queues currently configured Respond for each response queue to the
driver of a resume complete notification

????????????? 420

Send a message to re - enable external trace
capability

Receive message from driver to re - enable
external trace capability , and in response

re - enabling external trace capability

422
424

Enter a period of quiescing I / O activity Respond to driver that external trace
capability re - enabled

-

-

-

-

-

-

-

-

-

-

-

-

Resume scanning of IOCB
message / response queues ;

For each Resume Completion Notification
message received , decrement count of
expected resume complete messages till

count decremented to zero

426

- 428

Continuation block B

Patent Application Publication Dec . 13 , 2018 Sheet 5 of 12 US 2018 / 0357196 A1

FIG . 5 500 Driver 502 Embedded Port
Operations Operations

506 - 504 428
Continuation block B

Initiate a second phase of quiescing
embedded port activity

to perform driver reinitialization

- 510 4508 - 512

Send a message to the embedded port to
flush current trace buffers to driver memory

for preservation across the driver
initialization

Receive a message from the driver to
flush trace buffers from port memory

into driver memory and performing flush
operation before responding

514 516
Send a second quiesce message to
embedded port to quiesce activity , this
message including options to allow partial
DMA activity to the driver memory and to
synchronize queue pointers , wherein the
second quiesce message requests the
embedded port to :
(1) stop processing of received frames from
the link ;
(2) complete active DMA into driver
memory ;
(3) defer processing link transitions ;
(4) stop most accesses to driver memory ,
still allowing access to memory extensions
provided to the embedded port by the
driver ; and
(5) synchronize queue pointers on request
queues by discarding any messages on
these queues and updating the request
queue out pointers .

Receive a second quiesce message from
the driver to quiesce activity , this message
including options to allow partial DMA
activity to the driver memory and to
synchronize queue pointers , and
performing :
(1) stopping processing of received frames
from the link ;
(2) completing active DMA into driver
memory ;
(3) deferring processing link transitions ;
(4) stopping most accesses to driver
memory , still allowing access to memory
extensions provided to the embedded port
by the driver ; and
(5) synchronizing queue pointers on
request queues by discarding any
messages on these queues and updating
the request queue out pointers .

518
- 520

Continuation block C Respond to the second queisce message
from the driver

Patent Application Publication Dec . 13 , 2018 Sheet 6 of 12 US 2018 / 0357196 A1

FIG . 6 600 Driver
Operations)

Embedded Port
Operations

602 606
Continuation block C 604

4520 610
608

Send a message to embedded port to
terminate any remaining exchanges including
operations to :
(1) send ABTS for every open exchange
without sending response messages to the
driver ;
(2) not send ABTS to host systems that have
been indicated in port control block to not
receive ABTS ;
(3) access host memory for offloaded
exchanges to determine their state ; and
(4) relinquish control of all buffer and IOCB
resources associated with the driver .

Receive a message from the driver to
terminate any remaining exchanges , and in
response :
(1) sending ABTS for every open exchange
without sending response messages to
the driver ;
(2) not sending ABTS to host systems that
have been indicated in port control block
to not receive ABTS ;
(3) accessing host memory for offloaded
exchanges to determine their state ; and
(4) relinquishing control of all buffer and
IOCB resources associated with the
driver ; and
Responding to terminate message from
the driver upon completion

614
612

Send message to the embedded port to
resume normal operation including :
(1) processing of received frames from the
link ;
(2) enabling of detection and processing of link
transitions , and
(3) send a notification message to each
response queue indicating completion of the
resume process

Receive a message from the driver to
resume normal operation , and performing :
(1) processing of received frames from the
link ;
(2) enabling of detection and processing of
link transitions , and
(3) sending a notification message to each
response queue indicating completion of
the resume process ; and

Responding to the resume message
request .

616

Set a count of expected resume complete
notification messages equal to the number of

response queues currently configured .

618
Continuation block D

Patent Application Publication Dec . 13 , 2018 Sheet 7 of 12 US 2018 / 0357196 A1

700 FIG . 7 7700 Driver
Operations

Embedded Port
Operations 2704 618 L702

Continuation block D - 706

- 710
- 708

Send a message to the embedded port
to re - enable

external trace capability

Receive a message from the driver to
re - enable external trace capability ;

re - enabling the external trace
capability ; and

responding to the driver when the
operation is complete

712

(1) Resume scanning of IOCB
message response queues , for each
resume completion notification
message received , and decrementing
count of expected resume complete
notification messages ; and
(2) Continue discarding messages on
each queue until a resume complete
notification is received on all queues .

714

Resume normal operation

Patent Application Publication Dec . 13 , 2018 Sheet 8 of 12 US 2018 / 0357196 A1

FIG . 8 800
Driver Operations

7802
Determining that an error has occurred in the storage controller

L

804 Transmitting a first set of commands to the embedded port of the host bus
adapter to cause the embedded port to enter into the first period of quiescing
of I / O operations , wherein the hardware resets of buses and other logic to

which the embedded port is connected are performed during the first period

806 Restoring configuration space registers of the buses and other logic to a state
prior to performing of the hardware resets

NOVIN

808 Transmitting one or more commands to the embedded port to resume
selected I / O operations in the embedded port

810 Performing reinitialization of the driver during a second period of quiescing of
I / O operations in the embedded port

wwwwwwwwwww
1 , 812 Sending a command to allow normal I / O operations in the embedded port

w

Patent Application Publication Dec . 13 , 2018 Sheet 9 of 12 US 2018 / 0357196 A1

FIG . 9 900
Embedded Port Operations

902

Receiving , from a driver of the host bus adapter , a first set of commands to
quiesce I / O operations in the embedded port for a first period , wherein hardware

resets of buses and other logic to which the embedded port is connected is
performed in the first period of quiescing of 1 / 0 operations

904
Receiving one or more commands to resume selected I / O operations in the
embedded port , wherein the one or more commands to resume selected I / O

operations in the embedded port are received subsequent to configuration space
registers of the buses and other logic being restored to a state prior to the

performing of the hardware resets

906

Receiving a second set of commands to quiesce I / O operations for a second
period

908
Receiving a command to allow normal I / O operations , subsequent to the driver

being reinitialized during the second period of quiescing of I / O operations

Patent Application Publication Dec . 13 , 2018 Sheet 10 of 12 US 2018 / 0357196 A1

FIG . 10

54C
54N

. NL

54B
OOOOO

00000

Patent Application Publication Dec . 13 , 2018 Sheet 11 of 12 US 2018 / 0357196 A1

FIG . 11

Software
Virtual Mapping / Development Data Classroom /

and and Analytics
Education Navigation Lifecycle Processing Delivery

Management)

Transaction
Processing /

Reinitialization
of Storage
Controller
Elements

Workloads

Metering Service
SLA

Planning Resource User
and Level Provisioning / Portal and Pricing Management

Fulfillment WEEEE
00001

Management

A :

Virtual Virtual Virtual Virtual Virtual
Servers Storage Networks Applications Virtualization Applications Clients

Mainframes RISC IBM IBM®
Architecture Series BladeCenter

Servers Systems Systems

Storage Networking Network Database
Application Software

Server
Software Hardware and Software

60 .

Patent Application Publication Dec . 13 , 2018 Sheet 12 of 12 US 2018 / 0357196 A1

FIG . 12

r1200
System
(e . g . , Host bus adapter , Storage Controller , Computational
Device , Embedded Port)

71202
Circuitry

- 1204 1206

Processor (s) Memory

- 1210

- 1208 Program
Logic 1212

Storage Code

US 2018 / 0357196 A1 Dec . 13 , 2018

PROGRAMMING INTERFACE OPERATIONS
IN A PORT IN COMMUNICATION WITH A
DRIVER FOR REINITIALIZATION OF
STORAGE CONTROLLER ELEMENTS

BACKGROUND
1 . Field

[0001] Embodiments relate to the programming of inter
face operations in a port in communication with a driver for
reinitialization of storage controller elements .

2 . Background
[0002] A storage controller may control access to storage
for one or more host computational devices that may be
coupled to the storage controller over a network . A storage
management application that executes in the storage con
troller may manage a plurality of storage devices , such as
disk drives , tape drives , flash drives , etc . , that are coupled to
the storage controller . A host may send Input / Output (abbre
viated as I / O or 10) commands to the storage controller and
the storage controller may execute the I / O commands to read
data from the storage devices or write data to the storage
devices .
[0003] A host bus adapter (HBA) may comprise a circuit
board and / or integrated circuit based adapter that may
include components such as a Fibre Channel interface chip ,
where the Fibre Channel interface chip may be referred to as
an embedded port . The host bus adapter may provide I / O
processing and provide physical connectivity for the storage
controller to a storage area network (SAN) , where the
storage area network includes a Fibre Channel switched
fabric . The storage controller (via the host bus adapter) may
act as a target that receives I / O commands from the one or
more host computational devices , where the one or more
host computational devices act as initiators of the I / O
commands .
10004) Communication between the hosts and the storage
controller may occur over a Fibre Channel (FC) network ,
where Fibre Channel refers to an integrated set of architec
tural standards for data transfer being developed by the
American National Standards Institute . Fibre Channel is a
high - speed network technology primarily used for storage
area networks . Fibre Channel Protocol (FCP) is a transport
protocol that predominantly supports transports commands
over Fibre Channel networks .
[0005] Fibre Channel may be split into five layers : a
Protocol - mapping layer (FC - 4) , a common service layer
(FC - 3) , a network layer (FC - 2) , a data link layer (FC - 1) , and
a FC - O layer that defines the physical link in the system ,
including the fibre , connectors , optical and electrical param
eters for a variety of data rates . Layers FC - 0 through FC - 2
are also known as FC - PH , the physical layers of Fibre
Channel , whereas FC - 3 and FC - 4 layers define how Fibre
Channel ports interact with applications in computational
devices . The FC - 3 level of the FC standard is intended to
provide the common services for features such as striping ,
multicasting , etc .
[0006] FC - 4 , the highest layer in Fibre Channel , defines
the application interfaces that execute over Fibre Channel .
FC - 4 specifies the mapping rules of upper layer protocols
using the FC layers below . FC - 4 is formed by a series of
profiles that define how to map legacy protocols to Fibre

Channel . Fibre Channel is capable of transporting both
network and channel information , and profiles for network
and channel protocols , such as , Small Computer System
Interface (SCSI) , Intelligent Peripheral Interface (IPI) , High
Performance Parallel Interface (HIPPI) Framing Protocol ,
Internet Protocol (IP) , Link Encapsulation (FC - LE) , Single
Byte Command Code Set Mapping (SBCCS) , etc . , may be
specified or proposed as protocol mappings in FC - 4 .
[0007] Fibre Connection (FICON) is a protocol of the fibre
channel architecture and may also be referred to by the
formal name of FC - SB - 5 . FICON is a protocol layer that
builds upon the Fibre Channel transport protocol . Further
details of Fibre Channel protocol mapping for the Single
Byte Command Code Sets may be found in the publication ,
“ Fibre Channel Single - Byte Command Code Sets Mapping
Protocol - 5 (FC - SB - 5) ” , Rev . 2 . 0 , published by the American
National Standards Institute on Mar . 26 , 2013 .
[0008] The basic building blocks of a Fibre Channel
connection are called “ Frames ” . The frames contain the
information to be transmitted (Payload) , the address of the
source (i . e . , initiator) and destination (i . e . , target) ports and
link control information . Frames are broadly categorized as
data frames and link control frames . Details of framing and
signaling aspects of Fibre Channel may be found in the
publication , “ Fibre Channel Framing and Signaling - 4 (FC
FS - 4) ” , Rev . 1 . 20 , published by the American National
Standard for Information Technology on Jul . 21 , 2015 .
Details of link services aspects of Fibre Channel may be
found in the publication , “ Fibre Channel Link Services
(FC - LS - 3) ” , Rev . 3 . 10 , published by the American National
Standard for Information Technology on Feb . 1 , 2014 . The
Fibre Channel Protocol for SCSI Fourth Version (FCP - 4)
standard describes the frame format and protocol definitions
required to transfer commands and data between a SCSI
(Small Computer System Interface) initiator and target using
the Fibre Channel family of standards . Further details of
FCP - 4 may be found in the publication , " Information Tech
nology - Fiber Channel Protocol for SCSI , Fourth Version
(FCP - 4) , Revision 02b " published by the International Com
mittee for Information Technology Standards , on Jan . 3 ,
2011 .
[0009] The storage controller may include a plurality of
host bus adapters , where each host bus adapter may include
a Fibre Channel Interface chip that is an interface to switches
that allow communication over a Fibre Channel network
between the storage controller and the plurality of hosts .

[0010] Fibre Channel storage area networks may use the
Fibre Channel protocol (used by the hardware to commu
nicate) , the SCSI protocol (used by software applications to
communicate to disks) , and other protocols for communi
cation . In Fibre channel , network connections are estab
lished between node ports (N _ Ports) that are there in com
puters , servers , storage controllers , storage devices , printers ,
etc . , and fabric ports (F _ Ports) that are there in the Fibre
channel switched fabric . A Fibre Channel switched fabric
relies on one or more switches to establish direct , point - to
point connections between the source and target devices .
Each Fibre Channel interface chip in the host bus adapters
of the storage controller comprises a port that allows com
munication of the storage controller to the hosts over the
Fibre Channel switched fabric .

US 2018 / 0357196 A1 Dec . 13 , 2018

SUMMARY OF THE PREFERRED
EMBODIMENTS

Channel interface chip communicates with the host bus
adapter over a PCIe bus in the host bus adapter .

BRIEF DESCRIPTION OF THE DRAWINGS [0011] Provided are a method , a system , and a computer
program product in which an embedded port of a host bus
adapter of a storage controller receives , from a driver of the
host bus adapter , a first set of commands to quiesce I / O
operations in the embedded port for a first period , wherein
hardware resets of buses and other logic to which the
embedded port is connected are performed in the first period
of quiescing of I / O operations . One or more commands are
received to resume selected I / O operations in the embedded
port . A second set of commands is received to quiesce I / O
operations for a second period . A command is received to
allow normal I / O operations , subsequent to the driver being
reinitialized during the second period of quiescing of I / O
operations .
[0012] In additional embodiments , the one or more com
mands to resume selected I / O operations in the embedded
port are received subsequent to configuration space registers
of the buses and other logic being restored to a state prior to
performing of the hardware resets .
[0013] In further embodiments , in response to receiving
the first set of commands , the embedded port performs :
quiescing processing of received frames from a link ; latch
ing states of selected hardware inputs ; completing active
direct memory access into driver memory ; deferring pro
cessing of link transitions ; stopping all accesses to driver
memory ; and dequeing any messages to be sent to the driver .
[0014] In additional embodiments , in response to receiv
ing the one or more commands to resume selected I / O
operations in the embedded port , the embedded port per
forms : resuming of processing of received frames from a
link ; enabling detection and processing of link transitions ;
requeuing any held messages to the driver ; and sending a
notification message to each response queue indicating
completion of the selected I / O operations .
[0015] In further embodiments , the second set of com
mands comprise options to allow partial direct memory
access (DMA) activity to the driver memory and to syn
chronize queue pointers , wherein in response to the second
set of commands the embedded port performs : stopping
processing of received frames from a link ; completing active
DMA into driver memory ; deferring processing of link
transitions ; stopping a majority of accesses to driver
memory , while allowing access to memory extensions pro
vided to the embedded port by the driver ; and synchronizing
queue pointers on request queues by discarding any mes
sages on the request queues and updating the request queue
out pointers .
[0016] In additional embodiments , the second set of com
mands further comprises a message to the embedded port to
terminate any remaining exchanges , and in response to the
second set of commands the embedded port performs :
sending an abort sequence (ABTS) for every open exchange
without sending response messages to the driver ; not send
ing any ABTS to host systems that have been indicated in
port control block to not receive any ABTS ; accessing host
memory for offloaded exchanges to determine state infor
mation ; and relinquishing control of all buffer and I / O
control block (IOCB) resources associated with the driver .]
[0017] In yet additional embodiments , the embedded port
is a Fibre Channel interface chip that includes port firmware
that supports lower level Fibre Channel protocols to com
municate over a Fibre Channel fabric , wherein the Fibre

[0018] Referring now to the drawings in which like ref
erence numbers represent corresponding parts throughout :
[0019] FIG . 1 illustrates a block diagram of a computing
environment comprising a storage controller that includes
one or more host adapters with one or more Fibre Channel
interface chips to couple the storage controller to a Fibre
Channel fabric to communicate with a plurality of hosts , in
accordance with certain embodiments ;
[0020] FIG . 2 illustrates a first flowchart that show opera
tions in a first and a second quiescence period of a driver and
an embedded port using an application programming inter
face for reinitialization of storage controller elements , in
accordance with certain embodiments ;
[0021] FIG . 3 illustrates a second flowchart that shows
operations of a driver and an embedded port that use the
application programming interface for reinitialization of
storage controller elements , in accordance with certain
embodiments ;
10022] . FIG . 4 illustrates a third flowchart that operations
of a driver and an embedded port that use the application
programming interface for reinitialization of storage con
troller elements , in accordance with certain embodiments ;
[0023] FIG . 5 illustrates a fourth flowchart that shows
operations of a driver and an embedded port that use the
application programming interface for reinitialization of
storage controller elements , in accordance with certain
embodiments ;
100241 . FIG . 6 illustrates a fifth flowchart that shows opera
tions of a driver and an embedded port that use the appli
cation programming interface for reinitialization of storage
controller elements , in accordance with certain embodi
ments ;
[0025] FIG . 7 illustrates a sixth flowchart that shows
operations of a driver and an embedded port that use the
application programming interface for reinitialization of
storage controller elements , in accordance with certain
embodiments ;
10026] FIG . 8 illustrates a seventh flowchart that shows
operations of a driver that uses the application programming
interface for reinitialization of storage controller elements ,
in accordance with certain embodiments ;
[0027] FIG . 9 illustrates a eighth flowchart that shows
operations of an embedded port that uses the application
programming interface for reinitialization of storage con
troller elements , in accordance with certain embodiments ;
[0028] FIG . 10 illustrates a block diagram of a cloud
computing environment , in accordance with certain embodi
ments ;
[0029] FIG . 11 illustrates a block diagram of further
details of the cloud computing environment of FIG . 10 , in
accordance with certain embodiments ; and
[0030] FIG . 12 illustrates a block diagram of a computa
tional system that shows certain elements that may be
included in the storage controller , the host bus adapter , the
embedded port , and the host shown in FIG . 1 , in accordance
with certain embodiments .

US 2018 / 0357196 A1 Dec . 13 , 2018

DETAILED DESCRIPTION
[0031] In the following description , reference is made to
the accompanying drawings which form a part hereof and
which illustrate several embodiments . It is understood that
other embodiments may be utilized and structural and opera
tional changes may be made .
[0032] In enterprise storage control units , such as a storage
controller , recovery from logic errors needs to be performed
in a timely manner to avoid introducing noticeable increases
in response times for recovery . In certain embodiments , a
fast reset or warmstart process may be used to reinitialize the
storage controller elements , such as servers and host adapt
ers , into a known state without performing a cold reset or
initial program load . During this reset process the impact to
active host I / O is minimized .
100331 Certain embodiments minimize the impact to host
I / O when performing a fast reset on a host bus adapter ,
where the host bus adapter includes an embedded port that
provides an interface to a Fibre Channel fabric , where the
embedded port communicates with a driver of the host bus
adapter . The driver of the host bus adapter may communi
cate and control operations of the embedded port . The
communication mechanism between the driver and the
embedded port uses an application programming interface
(API) .
[0034] In certain embodiments , a host bus adapter directed
multistep restart uses two quiesce periods for host I / O
operations . In a first quiesce period , the embedded port stops
processing any incoming frames and stops direct memory
access (DMA) access from the embedded port . The first
quiesce period allows for the resetting of host adapter
hardware such as a controller Application Specific Inte
grated Circuits (ASIC) and hot resets of Peripheral Compo
nent Interconnect Express (PCIe) buses to which the embed
ded port is connected . A second quiesce process allows for
reinitialization of the host adapter processor ' s internal struc
tures and state by reinitialization of the driver and subse
quently normal I / O operations are resumed for the embed
ded port .

be elements in any suitable network , such as , a storage area
network , a wide area network , the Internet , an intranet . In
certain embodiments , the storage controller 102 and the
hosts 110 , 112 may be elements in a cloud computing
environment .
[0037] In FIG . 1 , the storage controller 102 may include
one or more host bus adapters 104 that operate as targets of
I / O operations initiated by one or more hosts 110 , 112 . The
host bus adapter 104 does not have control over the arrival
of host I / O operations . In certain embodiments , each host
bus adapter 104 may be in the form of an adapter card that
is plugged into the Peripheral Component Interconnect
Express (PCIe) slot of the storage controller 102 .
[0038] The host bus adapter 104 may include a PCIe bus
114 to which a host bus adapter processor 116 and the Fibre
Channel interface chip 106 are coupled . An ASIC 118 may
reside in the host bus adapter 104 , where the ASIC 118
provides a memory controller and PCIe bus connectivity .
[0039] The host bus processor 116 may be a single - core or
a multi - core processor . A driver 120 that supports upper
level protocols e . g . , FCP , FICON , FC - 4 layer standards , etc . ,
executes operations on the host bus adapter processor 116 .
The driver 120 communicates with the Fibre Channel inter
face chip 106 by using an application programming interface
(API) 122 . Various data structures , such as queues 124 are
maintained by the driver 120 . In certain embodiments , the
driver 120 may be implemented in software , hardware ,
firmware or any combination thereof .
[0040] The Fibre Channel Interface Chip 106 is also
referred to as an embedded port . The embedded port 106
includes a processor 126 and a port firmware 128 that
supports lower level protocols like those for framing , sig
naling , etc . In certain embodiments , functions of the port
firmware 128 may be implemented in software , hardware ,
firmware or any combination thereof . Various data struc
tures , such as queues 130 (e . g . , request queues) are main
tained by the port firmware 128 . The embedded port 106
supports lower level protocols of Fibre Channel and the
driver 120 supports upper level protocols . The embedded
port 106 that supports lower level protocols of Fibre Chan
nel connects the host bus adapter 104 to the Fibre Channel
fabric 108 .
[0041] The hosts 110 , 112 may send I / O commands to the
storage controller 102 over the Fibre Channel fabric 108 .
The embedded port 106 receives the Fibre Channel frames
corresponding to the request . The driver 120 which supports
upper level protocols of Fibre Channel is in communication
with the embedded port 106 . The driver 120 uses the
embedded port 106 and communicates via the upper level
protocols with the hosts 110 , 112 , and responds to I / O
commands via the embedded port 106 .
[0042] Therefore , FIG . 1 illustrates certain embodiments
in which a driver 120 of a host bus adapter 104 in association
with the port firmware 128 of an embedded port 106 allows
the host bus adapter 104 to process and respond to I / O
commands from one or more hosts 110 , 112 .
10043) FIG . 2 illustrates a first flowchart 200 that show
operations in a first and a second quiescence period of a
driver 120 and an embedded port 106 using an application
programming interface 122 for reinitialization of elements
of the storage controller 102 , in accordance with certain
embodiments .
[0044] In a first quiescence period 202 , the driver 120
requests embedded port 106 to quiesce (i . e . , suspend) I / O

Exemplary Embodiments
[0035] FIG . 1 illustrates a block diagram of a computing
environment 100 comprising a storage controller 102 that
includes one or more host adapters 104 with one or more
Fibre Channel interface chips 106 to couple the storage
controller 102 to a Fibre Channel fabric 108 , to communi
cate with a plurality of hosts 110 , 112 , in accordance with
certain embodiments .
[0036] The storage controller 102 that includes the host
bus adapter 104 may control storage devices (not shown) ,
and receive I / O commands from the hosts 110 , 112 . The
storage controller 102 and the hosts 110 , 112 may comprise
any suitable computational device including those presently
known in the art , such as , a personal computer , a worksta
tion , a server , a mainframe , a hand held computer , a palm top
computer , a telephony device , a network appliance , a blade
computer , a processing device , etc . In certain embodiments
the storage controller 102 may be comprised of one or more
storage servers . A plurality of storage servers may provide
redundancy because if one storage server undergoes a failure
from which recovery is not possible , an alternate storage
server may perform the functions of the storage server that
failed . The storage controller 102 and the hosts 110 , 112 may

US 2018 / 0357196 A1 Dec . 13 , 2018

operations , and during this first period of quiescence the
driver 120 resets (at block 204) host bus adapter hardware ,
such as the ASIC 118 that provides memory controller and
PCIe bus connectivity , and performs (at block 206) hot
resets of internal PCIe buses 114 to which the embedded port
106 is connected . Subsequently , the quiesced I / O operations
are processed .
10045) It should be noted that the operations of the first
quiescence period 202 resets the logic and hardware
resources that may have been affected by an error event ,
such that the logic and hardware resources are placed in a
known state and may be used between the first quiescence
period 202 a second quiescence period 208 to process the
incoming 1 / 0 requests , in such a way that the number of
incoming requests on a path from the initiator to the storage
target are reduced . For example , control unit busy status or
other messages such as process logout (PRLO) may be sent
to initiators to slow the rate of incoming I / O requests (or stop
incoming I / O requests) that may be discarded during the
second quiescence period 208 . As a result , a reduction is
made in I / Os during reset events .
[0046] In a second quiescence period 108 , the driver 120
is reinitialized and the internal structures and the storage of
the host bus adapter 104 are reinitialized . Subsequently ,
normal processing of I / O operations is performed by the
embedded port 106 via the port firmware 128 .
[0047] FIG . 3 illustrates a second flowchart 300 that
shows operations of a driver 120 and an embedded port 106
that use the application programming interface for reinitial
ization of storage controller elements , in accordance with
certain embodiments . The driver operations 302 and the
embedded port operations 304 are shown to the left and right
of the dashed line 306 respectively .
10048] Control starts at block 308 in which the driver 120 ,
in response to determining that an error has occurred in the
storage controller 102 that needs reinitialization of storage
controller components , initiates an entry into a first quies
cence phase to perform hardware resets . Control proceeds to
block 310 in which the driver 120 stops scanning of Input /
Output Control Blocks (IOCB) in message / response queues .
The driver 120 sends (at block 311) a message to the
embedded port 106 to flush current trace buffers from the
port memory into driver memory for preservation across
hardware resets .
(0049) The embedded port 106 receives (at block 312) the
message from the driver 120 to flush trace buffers from the
port memory into driver memory . The embedded port 106
performs the operation to flush the trace buffers from the
port memory into the driver memory and responds (at block
314) completion of the operation to the driver 120 .
[0050] The driver 120 receives (at block 316) the response
from the embedded port 106 that the operation to flush trace
buffers from the port memory into driver memory is com
plete . Control proceeds to block 318 in which the driver 120
sends a quiesce message to the embedded port 106 to
perform operations associated with quiescing , including :
[0051] (1) the processing of received frames from the link ;
[0052] (2) latching the state of hardware inputs needed for
subsequent steps of the quiescing [e . g . latching the state
of the Auto SCSI Status Inhibit and General Purpose IO
(ASSI GPIO) input] ;

[0053] (3) completing active direct memory access
(DMA) into driver memory ;

[0054] (4) deferring processing of link transitions ;

[0055] (5) stopping all accesses to driver memory ; and
[0056] (6) dequeuing any messages queued to be sent to

the driver .
[0057] Control proceeds to block 320 , which the embed
ded port 106 receives the quiesce message from the driver
106 to perform quiesce activities , including :
[0058] (1) processing of received frames from the link ;
[0059] (2) latching the state of hardware inputs needed for

subsequent steps of the quiescing ;
[0060] (3) completing active direct memory access

(DMA) into driver memory ;
[0061] (4) deferring processing of link transitions ;
10062] (5) stopping all accesses to driver memory ; and
[0063] (6) dequeuing any messages queued to be sent to

the driver .
[0064] The embedded port 106 then responds (at block
322) to the driver 120 that the activities have been quiesced .
The driver 120 receives (at block 324) the response from the
embedded port 106 that activities have been quiesced and
control proceeds to continuation block A 326 which contin
ues the flowchart in a subsequent figure .
10065) FIG . 4 illustrates a third flowchart 400 that shows
operations of a driver 120 and an embedded port 106 that use
the application programming interface for reinitialization of
storage controller elements , in accordance with certain
embodiments . The driver operations 402 and the embedded
port operations 404 are shown to the left and right of the
dashed line 406 respectively .
[0066] From continuation block 326 control proceeds to
block 408 in which the driver 120 performs hardware resets
including PCIe hot reset and restores configuration space
registers of the PCIe bus , etc . , to the same state as before the
reset . The driver 120 sends (at block 410) a message to the
embedded port 120 to resume normal operations including :
[0067] (1) processing of received frames from the link ;
[0068] (2) enabling of detection and processing of link

transitions ;
[0069] (3) requeuing of any held messages to the driver ;
and

[0070] (4) sending a notification message to each response
queue indicating completion of the resume process .

10071] Control proceeds to block 412 in which the embed
ded port 106 receives the message from the driver 120 to
resume normal operations including :
[0072] (1) processing of received frames from the link ;
[0073] (2) enabling of detection and processing of link

transitions ;
[0074] (3) requeuing of any held messages to the driver ;

and
[0075] (4) sending a notification message to each response
queue indicating completion of the resume process .

[0076] The embedded port 106 responds (at block 416) for
each response queue to the driver 120 of the resume com
plete notification .
[0077] From block 410 control also proceeds to block 414
in which the driver 120 sets a count of expected resume
complete notification messages equal to the number of
response queues currently configured . The driver 120 sends
(at block 418) a message to re - enable (i . e . , enable once
again) external trace capability . It may be noted that external
trace goes into memory outside of the embedded port 106 .
The embedded port 106 receives (at block 420) the message
from the driver 120 to re - enable external trace capability ,
and in response re - enables external trace capability and

US 2018 / 0357196 A1 Dec . 13 , 2018

responds (at block 422) that external trace capability has
been re - enabled . Control proceeds to block 424 in which the
driver 120 enters a period of quiescing I / O activity .
[0078] From block 424 control proceeds to block 426 in
which the driver 120 resumes scanning of I / O control block
(IOCB) message / response queues , and for each resume
completion notification received , decrements count of
expected resume complete messages till the count is decre
mented to zero . Control then proceeds to continuation block
B 428 which continues the flowchart in a subsequent figure .
[0079] FIG . 5 illustrates a fourth flowchart 500 that shows
operations of a driver 120 and an embedded port 106 that use
the application programming interface for reinitialization of
storage controller elements , in accordance with certain
embodiments . The driver operations 502 and the embedded
port operations 504 are shown to the left and right of the
dashed line 506 respectively .
10080] From continuation block 428 control proceeds to
block 508 in which the driver 120 initiates a second phase
of quiescing embedded port activity to perform driver reini
tialization . The driver 120 sends (at block 510) a message to
the embedded port 106 to flush current trace buffers to driver
memory for preservation across the driver initialization . The
embedded port 106 receives the message from the driver 120
to flush trace buffers from port memory into driver memory ,
and the embedded port 106 performs the flush operation
before responding (at block 512) . Control proceeds to block
514 in which the driver 120 sends a second quiesce message
to the embedded port 106 to quiesce activity , this message
including options to allow partial direct memory access
(DMA) activity to the driver memory and to synchronize
queue pointers , where the second quiesce message requests
the embedded port to :
[0081] (1) stop processing of received frames from the

link ;
[0082] (2) complete active DMA into driver memory ;
[0083] (3) defer processing of link transitions ;
[0084] (4) stop most accesses to driver memory , still

allowing access to memory extensions provided to the
embedded port by the driver ; and

[0085) (5) synchronize queue pointers on request queues
by discarding any messages on these queues and updating
the request queue out pointers .

[0086] The embedded port 106 receives (at block 516) the
second quiesce message from the driver 120 to quiesce
activity , this message including options to allow partial
DMA activity to the driver memory and to synchronize
queue pointers , and performs :
[0087] (1) stopping processing of received frames from

the link ;
[0088] (2) completing active DMA into driver memory ;
[0089] (3) deferring processing of link transitions ;
[0090] (4) stopping most accesses to driver memory , still

allowing access to memory extensions provided to the
embedded port by the driver ; and

[0091] (5) synchronizing queue pointers on request queues
by discarding any messages on these queues and updating
the request queue out pointers .

10092] The embedded port 106 then responds (at block
518) to the second quiesce message from the driver 120 and
control proceeds to continuation block C 520 which contin
ues the flowchart in a subsequent figure .
[0093] FIG . 6 illustrates a fifth flowchart 600 that shows
operations of a driver 120 and an embedded port 106 that use

the application programming interface for reinitialization of
storage controller elements , in accordance with certain
embodiments . The driver operations 602 and the embedded
port operations 604 are shown to the left and right of the
dashed line 606 respectively .
[0094] Control proceeds from continuation block C 520
block 608 in which the driver 120 sends a message to
embedded port 106 to terminate any remaining exchanges
including operations to :
[0095] (1) send an abort sequence (ABTS) for every open

exchange without sending response messages to the
driver ;

[0096] (2) not send ABTS to host systems that have been
indicated in port control block to not receive ABTS ;

[0097] (3) access host memory for offloaded exchanges to
determine their state ; and

[0098] (4) relinquish control of all buffer and IOCB
resources associated with the driver .

[0099] Control proceeds to block 610 in which the embed
ded port 120 receives a message from the driver to terminate
any remaining exchanges , and in response performs :
(0100] (1) sending ABTS for every open exchange without

sending response messages to the driver ;
f0101 (2) not sending ABTS to host systems that have
been indicated in port control block to not receive ABTS ;

[0102] (3) accessing host memory for offloaded exchanges
to determine their state ; and

[0103] (4) relinquishing control of all buffer and IOCB
resources associated with the driver , and then the embed
ded port 106 responds to the terminate message from the
driver 120 upon completion .

[0104] The driver 120 sends (at block 612) a message to
the embedded port 120 to resume normal operation includ
ing
[0105] (1) processing of received frames from the link ;
[0106] (2) enabling of detection and processing of link

transitions ; and
?0107] (3) send a notification message to each response

queue indicating completion of the resume process .
0108] The embedded port 106 receives (at block 614) a
message from the driver 120 to resume normal operation ,
and performs :
[0109] (1) processing of received frames from the link ;
[0110] (2) enabling of detection and processing of link

transitions ; and
[0111] (3) sending a notification message to each response
queue indicating completion of the resume process .

[0112] The embedded port 106 also responds (at block
614) to the resume normal operation message request from
the driver 120 . The driver 120 sets (at block 616) a count of
expected resume complete notification messages equal to the
number of response queues currently configured . Control
proceeds to continuation block D 618 which continues the
flowchart in a subsequent figure .
[0113] FIG . 7 illustrates a sixth flowchart 700 that shows
operations of a driver 120 and an embedded port 106 that use
the application programming interface for reinitialization of
storage controller elements , in accordance with certain
embodiments . The driver operations 602 and the embedded
port operations 604 are shown to the left and right of the
dashed line 606 respectively .
[0114] From continuation block D 702 control proceeds to
block 708 in which the driver 120 sends a message to the
embedded port 106 to re - enable (i . e . , enable once again)

US 2018 / 0357196 A1 Dec . 13 , 2018

(0124] The embedded port 106 receives (at block 904) one
or more commands to resume selected I / O operations in the
embedded port 106 , where the one or more commands to
resume selected I / O operations in the embedded port 106 are
received subsequent to configuration space registers of the
buses 114 and other logic 118 being restored to a state prior
to the performing of the hardware resets .
[0125] Control proceeds to block 906 in which the embed
ded port 106 receives a second set of commands to quiesce
I / O operations for a second period . The embedded port
receives a command to allow normal I / O operations , sub
sequent to the driver 120 being initialized during the second
period of quiescing of I / O operations .
[0126] Therefore , FIG . 9 illustrates certain operations per
formed by the port 106 for reinitialization of storage con
troller elements with minimal impact to I / O operations .
[0127) FIGS . 1 - 9 illustrate certain embodiments in which
the impact to host I / O when performing a fast reset on a host
bus adapter 104 is minimized . Two quiesce periods are used
for host I / O operations . In a first quiesce period , the embed
ded port 106 stops processing any incoming frames and
stops direct memory access (DMA) access from the embed
ded port 106 . The first quiesce period allows for the resetting
of host adapter hardware such as a controller ASIC 118 and
hot resets of PCIe buses 114 to which the embedded port 106
is connected . A second quiesce process allows for reinitial
ization of the host adapter processor ' s 116 internal structures
and state by reinitialization of the driver 120 and subse
quently normal I / O operations are resumed for the embed
ded port 106 .

external trace capability , The embedded port 106 receives (at
block 710) a message from the driver 120 to re - enable
external trace capability , re - enables the external trace capa
bility , and responds to the driver 120 when the operation is
complete .
[0115) Control proceeds to block 712 in which the driver
120 resumes scanning of I / O control block (IOCB) message
response queues , for each resume completion notification
message received , and decrements the count of expected
resume complete notification messages . The driver 120
continues discarding messages on each queue until a resume
complete notification is received on all queues . The driver
106 then resumes (at block 714) normal operation and the
embedded port 120 also resumes normal operation in
response to a command from the driver 106 .
[0116] Therefore FIGS . 3 - 7 illustrate operations per
formed by the driver 120 and the embedded port 106 to
perform the reinitialization of storage controller components
in two quiescing periods to minimize disruption to I / O
activity in the host bus adapter 104 that is in communication
with the hosts 110 , 112 .
[0117] FIG . 8 illustrates a seventh flowchart 800 that
shows operations of a driver 120 that uses the application
programming interface 122 for reinitialization of storage
controller elements , in accordance with certain embodi
ments .
[0118] Control starts at block 802 , in which the driver 120
determines that an error has occurred in the storage control
ler 102 that requires a reinitialization (i . e . , a initialization
once again) of storage controller elements . The driver 120
transmits (at block 804) a first set of commands to the
embedded port 106 of the host bus adapter 104 to cause the
embedded port 106 to enter into the first period of quiescing
of I / O operations , where the hardware resets of buses 114
and other logic (e . g . , ASIC 118) to which the embedded port
106 is connected are performed during the first period .
[0119] The driver 120 then restores (at block 806) the
configuration space registers of the buses 114 and other logic
118 to a state that the configuration space registers were in
prior to the performing of the hardware resets . The driver
120 then transmits (at block 808) one or more commands to
the embedded port 106 to resume selected I / O operations in
the embedded port 106 .
10120] Control proceeds to block 810 , in which the driver
120 is reinitialized during a second period of quiescing of
I / O operations in the embedded port 106 . The driver 120
then sends (at block 812) a command to allow normal I / O
operations in the embedded port 106 .
10121] Therefore , FIG . 8 illustrates certain operations per
formed by the driver 120 for reinitialization of storage
controller elements with minimal impact to I / O operations .
[0122] FIG . 9 illustrates a eighth flowchart 900 that shows
operations of an embedded port 106 that uses the application
programming interface 122 for reinitialization of storage
controller elements , in accordance with certain embodi
ments .
[0123] Control starts at block 902 in which the embedded
port 106 receives from a driver 120 of the host bus adapter
104 , a first set of commands to quiesce I / O operations in the
embedded port 106 for a first period , wherein hardware
resets of buses 114 and other logic 118 to which the
embedded port 106 is connected is performed in the first
period of quiescing of I / O operations .

Cloud Computing Environment
[0128] Cloud computing is a model for enabling conve
nient , on - demand network access to a shared pool of con
figurable computing resources (e . g . , networks , servers , stor
age , applications , and services) that can be rapidly
provisioned and released with minimal management effort
or service provider interaction .
[0129] Referring now to FIG . 10 , an illustrative cloud
computing environment 50 is depicted . As shown , cloud
computing environment 50 comprises one or more cloud
computing nodes 10 with which local computing devices
used by cloud consumers , such as , for example , personal
digital assistant (PDA) or cellular telephone 54A , desktop
computer 54B , laptop computer 54C , and / or automobile
computer system 54N may communicate . Nodes 10 may
communicate with one another . They may be grouped (not
shown) physically or virtually , in one or more networks ,
such as Private , Community , Public , or Hybrid clouds as
described hereinabove , or a combination thereof . This
allows cloud computing environment 50 to offer infrastruc
ture , platforms and / or software as services for which a cloud
consumer does not need to maintain resources on a local
computing device . It is understood that the types of com
puting devices 54A - N shown in FIG . 10 are intended to be
illustrative only and that computing nodes 10 and cloud
computing environment 50 can communicate with any type
of computerized device over any type of network and / or
network addressable connection (e . g . , using a web browser) .
[0130] Referring now to FIG . 11 , a set of functional
abstraction layers provided by cloud computing environ
ment 50 (FIG . 10) is shown . It should be understood in
advance that the components , layers , and functions shown in

US 2018 / 0357196 A1 Dec . 13 , 2018

FIG . 11 are intended to be illustrative only and embodiments
of the invention are not limited thereto .
[0131] Hardware and software layer 60 includes hardware
and software components . Examples of hardware compo
nents include mainframes , in one example IBM zSeries *
systems ; RISC (Reduced Instruction Set Computer) archi
tecture based servers , in one example IBM pSeries * sys
tems ; IBM xSeries * systems ; IBM BladeCenter * systems ;
storage devices ; networks and networking components .
Examples of software components include network appli
cation server software , in one example IBM WebSphere *
application server software ; and database software , in one
example IBM DB2 * database software .
* IBM , zSeries , pSeries , xSeries , BladeCenter , WebSphere , and DB2 are
trademarks of International Business Machines Corporation registered in
many jurisdictions worldwide .
[0132] Virtualization layer 62 provides an abstraction
layer from which the following examples of virtual entities
may be provided : virtual servers ; virtual storage ; virtual
networks , including virtual private networks ; virtual appli
cations and operating systems ; and virtual clients .
[0133] In one example , management layer 64 may provide
the functions described below . Resource provisioning pro
vides dynamic procurement of computing resources and
other resources that are utilized to perform tasks within the
cloud computing environment . Metering and Pricing pro
vide cost tracking as resources are utilized within the cloud
computing environment , and billing or invoicing for con
sumption of these resources . In one example , these resources
may comprise application software licenses . Security pro
vides identity verification for cloud consumers and tasks , as
well as protection for data and other resources . User portal
provides access to the cloud computing environment for
consumers and system administrators . Service level man
agement provides cloud computing resource allocation and
management such that required service levels are met .
Service Level Agreement (SLA) planning and fulfillment
provide pre - arrangement for , and procurement of , cloud
computing resources for which a future requirement is
anticipated in accordance with an SLA .
[0134] Workloads layer 66 provides examples of function
ality for which the cloud computing environment may be
utilized . Examples of workloads and functions which may
be provided from this layer include : mapping and naviga
tion ; software development and lifecycle management ; vir
tual classroom education delivery ; data analytics processing ;
transaction processing ; and the reinitialization of storage
controller elements 68 as shown in FIGS . 1 - 9 .

having computer readable program instructions thereon for
causing a processor to carry out aspects of the present
embodiments .
[0136] The computer readable storage medium can be a
tangible device that can retain and store instructions for use
by an instruction execution device . The computer readable
storage medium may be , for example , but is not limited to ,
an electronic storage device , a magnetic storage device , an
optical storage device , an electromagnetic storage device , a
semiconductor storage device , or any suitable combination
of the foregoing . A non - exhaustive list of more specific
examples of the computer readable storage medium includes
the following : a portable computer diskette , a hard disk , a
random access memory (RAM) , a read - only memory
(ROM) , an erasable programmable read - only memory
(EPROM or Flash memory) , a static random access memory
(SRAM) , a portable compact disc read - only memory (CD
ROM) , a digital versatile disk (DVD) , a memory stick , a
floppy disk , a mechanically encoded device such as punch
cards or raised structures in a groove having instructions
recorded thereon , and any suitable combination of the fore
going . A computer readable storage medium , as used herein ,
is not to be construed as being transitory signals per se , such
as radio waves or other freely propagating electromagnetic
waves , electromagnetic waves propagating through a wave
guide or other transmission media (e . g . , light pulses passing
through a fiber - optic cable) , or electrical signals transmitted
through a wire .
[0137) Computer readable program instructions described
herein can be downloaded to respective computing / process
ing devices from a computer readable storage medium or to
an external computer or external storage device via a net
work , for example , the Internet , a local area network , a wide
area network and / or a wireless network . The network may
comprise copper transmission cables , optical transmission
fibers , wireless transmission , routers , firewalls , switches ,
gateway computers and / or edge servers . A network adapter
card or network interface in each computing / processing
device receives computer readable program instructions
from the network and forwards the computer readable
program instructions for storage in a computer readable
storage medium within the respective computing / processing
device .
[0138] Computer readable program instructions for carry
ing out operations of the present embodiments may be
assembler instructions , instruction - set - architecture (ISA)
instructions , machine instructions , machine dependent
instructions , microcode , firmware instructions , state - setting
data , or either source code or object code written in any
combination of one or more programming languages ,
including an object oriented programming language such as
Smalltalk , C + + or the like , and conventional procedural
programming languages , such as the “ C ” programming
language or similar programming languages . The computer
readable program instructions may execute entirely on the
user ' s computer , partly on the user ' s computer , as a stand
alone software package , partly on the user ' s computer and
partly on a remote computer or entirely on the remote
computer or server . In the latter scenario , the remote com
puter may be connected to the user ' s computer through any
type of network , including a local area network (LAN) or a
wide area network (WAN) , or the connection may be made
to an external computer (for example , through the Internet
using an Internet Service Provider) . In some embodiments ,

Additional Embodiment Details
[0135] The described operations may be implemented as a
method , apparatus or computer program product using stan
dard programming and / or engineering techniques to produce
software , firmware , hardware , or any combination thereof .
Accordingly , aspects of the embodiments may take the form
of an entirely hardware embodiment , an entirely software
embodiment (including firmware , resident software , micro
code , etc .) or an embodiment combining software and
hardware aspects that may all generally be referred to herein
as a “ circuit , " " module " or " system . ” Furthermore , aspects
of the embodiments may take the form of a computer
program product . The computer program product may
include a computer readable storage medium (or media)

US 2018 / 0357196 A1 Dec . 13 , 2018

electronic circuitry including , for example , programmable
logic circuitry , field - programmable gate arrays (FPGA) , or
programmable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of the computer readable program instructions to personalize
the electronic circuitry , in order to perform aspects of the
present embodiments .
[0139] Aspects of the present embodiments are described
herein with reference to flowchart illustrations and / or block
diagrams of methods , apparatus (systems) , and computer
program products according to embodiments of the inven
tion . It will be understood that each block of the flowchart
illustrations and / or block diagrams , and combinations of
blocks in the flowchart illustrations and / or block diagrams ,
can be implemented by computer readable program instruc
tions .
[0140] These computer readable program instructions may
be provided to a processor of a general purpose computer ,
special purpose computer , or other programmable data pro
cessing apparatus to produce a machine , such that the
instructions , which execute via the processor of the com
puter or other programmable data processing apparatus ,
create means for implementing the functions / acts specified
in the flowchart and / or block diagram block or blocks . These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer , a programmable data processing apparatus , and /
or other devices to function in a particular manner , such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function / act
specified in the flowchart and / or block diagram block or
blocks .
[0141] The computer readable program instructions may
also be loaded onto a computer , other programmable data
processing apparatus , or other device to cause a series of
operational steps to be performed on the computer , other
programmable apparatus or other device to produce a com
puter implemented process , such that the instructions which
execute on the computer , other programmable apparatus , or
other device implement the functions / acts specified in the
flowchart and / or block diagram block or blocks .
[0142] The flowchart and block diagrams in the figures
illustrate the architecture , functionality , and operation of
possible implementations of systems , methods , and com
puter program products according to various embodiments
of the present invention . In this regard , each block in the
flowchart or block diagrams may represent a module , seg
ment , or portion of instructions , which comprises one or
more executable instructions for implementing the specified
logical function (s) . In some alternative implementations , the
functions noted in the block may occur out of the order noted
in the figures . For example , two blocks shown in succession
may , in fact , be executed substantially concurrently , or the
blocks may sometimes be executed in the reverse order ,
depending upon the functionality involved . It will also be
noted that each block of the block diagrams and / or flowchart
illustration , and combinations of blocks in the block dia
grams and / or flowchart illustration , can be implemented by
special purpose hardware - based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instruction .
[0143] FIG . 12 illustrates a block diagram that shows
certain elements that may be included in the host bus adapter

104 , the storage controller 102 , the embedded port 106 , or
other computational devices in accordance with certain
embodiments . The system 1200 may include a circuitry
1202 that may in certain embodiments include at least a
processor 1204 . The system 1200 may also include a
memory 1206 (e . g . , a volatile memory device) , and storage
1208 . The storage 1208 may include a non - volatile memory
device (e . g . , EEPROM , ROM , PROM , flash , firmware ,
programmable logic , etc .) , magnetic disk drive , optical disk
drive , tape drive , etc . The storage 1208 may comprise an
internal storage device , an attached storage device and / or a
network accessible storage device . The system 1200 may
include a program logic 1210 including code 1212 that may
be loaded into the memory 1206 and executed by the
processor 1204 or circuitry 1202 . In certain embodiments ,
the program logic 1210 including code 1212 may be stored
in the storage 1208 . In certain other embodiments , the
program logic 1210 may be implemented in the circuitry
1202 . Therefore , while FIG . 12 shows the program logic
1210 separately from the other elements , the program logic
1210 may be implemented in the memory 1206 and / or the
circuitry 1202 .
0144) Certain embodiments may be directed to a method
for deploying computing instruction by a person or auto
mated processing integrating computer - readable code into a
computing system , wherein the code in combination with
the computing system is enabled to perform the operations
of the described embodiments .
[0145] The terms “ an embodiment " , " embodiment ” ,
" embodiments ” , “ the embodiment ” , “ the embodiments ” ,
“ one or more embodiments ” , " some embodiments ” , and
“ one embodiment ” mean “ one or more (but not all) embodi
ments of the present invention (s) ” unless expressly specified
otherwise .
[0146] The terms “ including ” , “ comprising ” , “ having ”
and variations thereof mean “ including but not limited to ” ,
unless expressly specified otherwise .
[0147] The enumerated listing of items does not imply that
any or all of the items are mutually exclusive , unless
expressly specified otherwise .
[0148] The terms “ a ” , “ an ” and “ the ” mean “ one or more ” ,
unless expressly specified otherwise .
101491 Devices that are in communication with each other
need not be in continuous communication with each other ,
unless expressly specified otherwise . In addition , devices
that are in communication with each other may communi
cate directly or indirectly through one or more intermediar
ies .
[0150] A description of an embodiment with several com
ponents in communication with each other does not imply
that all such components are required . On the contrary a
variety of optional components are described to illustrate the
wide variety of possible embodiments of the present inven
tion .
[0151] Further , although process steps , method steps ,
algorithms or the like may be described in a sequential order ,
such processes , methods and algorithms may be configured
to work in alternate orders . In other words , any sequence or
order of steps that may be described does not necessarily
indicate a requirement that the steps be performed in that
order . The steps of processes described herein may be
performed in any order practical . Further , some steps may be
performed simultaneously .

US 2018 / 0357196 A1 Dec . 13 , 2018

[0152] When a single device or article is described herein ,
it will be readily apparent that more than one device / article
(whether or not they cooperate) may be used in place of a
single device / article . Similarly , where more than one device
or article is described herein (whether or not they cooperate) ,
it will be readily apparent that a single device / article may be
used in place of the more than one device or article or a
different number of devices / articles may be used instead of
the shown number of devices or programs . The functionality
and / or the features of a device may be alternatively embod
ied by one or more other devices which are not explicitly
described as having such functionality / features . Thus , other
embodiments of the present invention need not include the
device itself .
[0153] At least certain operations that may have been
illustrated in the figures show certain events occurring in a
certain order . In alternative embodiments , certain operations
may be performed in a different order , modified or removed .
Moreover , steps may be added to the above described logic
and still conform to the described embodiments . Further ,
operations described herein may occur sequentially or cer
tain operations may be processed in parallel . Yet further ,
operations may be performed by a single processing unit or
by distributed processing units .
[0154] The foregoing description of various embodiments
of the invention has been presented for the purposes of
illustration and description . It is not intended to be exhaus
tive or to limit the invention to the precise form disclosed .
Many modifications and variations are possible in light of
the above teaching . It is intended that the scope of the
invention be limited not by this detailed description , but
rather by the claims appended hereto . The above specifica
tion , examples and data provide a complete description of
the manufacture and use of the composition of the invention .
Since many embodiments of the invention can be made
without departing from the spirit and scope of the invention ,
the invention resides in the claims hereinafter appended .
affiliates .

1 - 20 . (Canceled)
21 . A method performed by an embedded port of a host

bus adapter of a storage controller , the method comprising :
receiving , from a driver of the host bus adapter , a first set

of commands to quiesce I / O operations in the embed
ded port for a first period , wherein hardware resets of
buses and other logic to which the embedded port is
coupled are performed in the first period of quiescing of
I / O operations ;

receiving one or more commands to resume selected I / O
operations in the embedded port ;

receiving a second set of commands to quiesce I / O
operations for a second period , wherein the second set
of commands comprise options to allow partial direct
memory access (DMA) activity to driver memory and
to synchronize queue pointers ; and

receiving a command to allow normal I / O operations ,
subsequent to the driver being reinitialized during the
second period of quiescing of I / O operations .

22 . The method of claim 21 , wherein the one or more
commands to resume selected I / O operations in the embed
ded port are received subsequent to configuration space
registers of the buses and other logic being restored to a state
prior to performing of the hardware resets .

23 . The method of claim 21 , wherein in response to the
second set of commands the embedded port performs :

stopping processing of received frames from a link ;
completing active DMA into driver memory ;
deferring processing of link transitions ;
stopping a majority of accesses to driver memory , while

allowing access to memory extensions provided to the
embedded port by the driver ; and

synchronizing queue pointers on request queues by dis
carding any messages on the request queues and updat
ing the request queue out pointers .

24 . The method of claim 21 , wherein the second set of
commands further comprises a message to the embedded
port to terminate any remaining exchanges .

25 . The method of claim 24 , wherein in response to the
second set of commands the embedded port performs :

sending an abort sequence (ABTS) for every open
exchange without sending response messages to the
driver ;

not sending any ABTS to host systems that have been
indicated in port control block to not receive any
ABTS ;

accessing host memory for offloaded exchanges to deter
mine state information ; and

relinquishing control of all buffer and I / O control block
(IOCB) resources associated with the driver .

26 . The method of claim 21 , wherein the embedded port
is a Fibre Channel interface chip that includes port firmware
that supports lower level Fibre Channel protocols to com
municate over a Fibre Channel fabric , and wherein the Fibre
Channel interface chip communicates with the host bus
adapter over a PCIe bus in the host bus adapter .

27 . A system comprising an embedded port coupled to a
host bus adapter of a storage controller , the system further
comprising :

a memory ; and
a processor coupled to the memory , wherein the processor
performs operations , the operations comprising :

receiving , from a driver of the host bus adapter , a first set
of commands to quiesce I / O operations in the embed
ded port for a first period , wherein hardware resets of
buses and other logic to which the embedded port is
coupled are performed in the first period of quiescing of
I / O operations ;

receiving one or more commands to resume selected I / O
operations in the embedded port ;

receiving a second set of commands to quiesce I / O
operations for a second period , wherein the second set
of commands comprise options to allow partial direct
memory access (DMA) activity to driver memory and
to synchronize queue pointers ; and

receiving a command to allow normal I / O operations ,
subsequent to the driver being reinitialized during the
second period of quiescing of I / O operations .

28 . The system of claim 27 , wherein the one or more
commands to resume selected I / O operations in the embed
ded port are received subsequent to configuration space
registers of the buses and other logic being restored to a state
prior to performing of the hardware resets .

29 . The system of claim 27 , wherein in response to the
second set of commands the embedded port performs :

stopping processing of received frames from a link ;
completing active DMA into driver memory ;
deferring processing of link transitions ;

US 2018 / 0357196 A1 Dec . 13 , 2018
10

stopping a majority of accesses to driver memory , while
allowing access to memory extensions provided to the
embedded port by the driver ; and

synchronizing queue pointers on request queues by dis
carding any messages on the request queues and updat
ing the request queue out pointers .

30 . The system of claim 27 , wherein the second set of
commands further comprises a message to the embedded
port to terminate any remaining exchanges .

31 . The system of claim 30 , wherein in response to the
second set of commands the embedded port performs :

sending an abort sequence (ABTS) for every open
exchange without sending response messages to the
driver ;

not sending any ABTS to host systems that have been
indicated in port control block to not receive any
ABTS ;

accessing host memory for offloaded exchanges to deter
mine state information ; and

relinquishing control of all buffer and I / O control block
(IOCB) resources associated with the driver .

32 . The system of claim 27 , wherein the embedded port
is a Fibre Channel interface chip that includes port firmware
that supports lower level Fibre Channel protocols to com
municate over a Fibre Channel fabric , and wherein the Fibre
Channel interface chip communicates with the host bus
adapter over a PCIe bus in the host bus adapter .

33 . A computer program product , the computer program
product comprising a computer readable storage medium
having computer readable program code embodied there
with , the computer readable program code configured to
perform operations , the operations comprising :

receiving , from a driver of a host bus adapter , a first set of
commands to quiesce I / O operations in an embedded
port for a first period , wherein hardware resets of buses
and other logic to which the embedded port is coupled
are performed in the first period of quiescing of I / O
operations ;

receiving one or more commands to resume selected I / O
operations in the embedded port ;

receiving a second set of commands to quiesce I / O
operations for a second period , wherein the second set
of commands comprise options to allow partial direct
memory access (DMA) activity to driver memory and
to synchronize queue pointers ; and

receiving a command to allow normal I / O operations ,
subsequent to the driver being reinitialized during the
second period of quiescing of I / O operations .

34 . The computer program product of claim 33 , wherein
the one or more commands to resume selected I / O opera
tions in the embedded port are received subsequent to
configuration space registers of the buses and other logic
being restored to a state prior to performing of the hardware
resets .

35 . The computer program product of claim 33 , wherein
in response to the second set of commands the embedded
port performs :

stopping processing of received frames from a link ;
completing active DMA into driver memory ;
deferring processing of link transitions ;
stopping a majority of accesses to driver memory , while

allowing access to memory extensions provided to the
embedded port by the driver ; and

synchronizing queue pointers on request queues by dis
carding any messages on the request queues and updat
ing the request queue out pointers .

36 . The computer program product of claim 33 , wherein
the second set of commands further comprises a message to
the embedded port to terminate any remaining exchanges .

37 . The computer program product of claim 36 , wherein
in response to the second set of commands the embedded
port performs :

sending an abort sequence (ABTS) for every open
exchange without sending response messages to the
driver ;

not sending any ABTS to host systems that have been
indicated in port control block to not receive any
ABTS ;

accessing host memory for offloaded exchanges to deter
mine state information , and

relinquishing control of all buffer and 1 / 0 control block
(IOCB) resources associated with the driver .

38 . The computer program product of claim 33 , wherein
the embedded port is a Fibre Channel interface chip that
includes port firmware that supports lower level Fibre Chan
nel protocols to communicate over a Fibre Channel fabric ,
and wherein the Fibre Channel interface chip communicates
with the host bus adapter over a PCIe bus in the host bus
adapter .

