UK Patent Application .,GB ..,2587365

21) Application No: 1913769.4
(

(22) Date of Filing: 24.09.2019

(71) Applicant(s):
Canon Kabushiki Kaisha
(Incorporated Iin Japan)
30-2, Shimomaruko 3-chome, Ohta-ku,
146-8501 Tokyo, Japan

(72) Inventor(s):
Eric Nassor
Naél Ouedraogo
Fréedéric Maze
Gérald Kergourlay

(74) Agent and/or Address for Service:

SANTARELLI

49, avenue des Champs-Elysées, Paris 75008,

France (including Overseas Departments and Territori
es)

(13)A

(43)Date of A Publication 31.03.2021
(51) INT CL:
HO4N 19/30 (2014.01) HO4N 19/70 (2014.01)

(56) Documents Cited:

WO 2015/060642 A1 WO 2006/108917 A1
[JCTVC-M0205] M.M. Hannuksela et al, "MV-HEVC/
SHVC HLS: On inter-layer sample and syntax
prediction indications”, Joint Collaborative Team on
Video Coding (JCT-VC) of ITU-T SG 16 WP 3 and ISO/
IEC JTC 1/SC 29/WG 11, 13th Meeting: Incheon, KR,
18-26 Apr. 2013.

(58) Field of Search:

INT CL HO4N
Other: WPI, EPODOC, Patent Fulltext, INTERNET,
INSPEC

(54) Title of the Invention: Method, device, and computer program for coding and decoding a picture
Abstract Title: Encoding multi-layer subpicture information in video coding

(57) Encoding (or correspondingly decoding) layered video data into a bitstream by: encoding a first picture belonging to
a first layer of the video data in the form of a first set of logical units; encoding a second picture belonging to a
second layer (different to the first layer), the second picture comprising a first subpicture, where the encoding of the
second picture comprises encoding a reference between the first subpicture and at least one logical unit of the first
set of logical units. Preferably the method comprises encoding information comprising a list of layers containing
logical units referenced by subpictures of the second picture, and may further include encoding information
associated to each layer indicating whether or not the layer comprises at least one subpicture which references
logical units of another layer. In another aspect two bitstreams are merged by creating a merging layer comprising
pictures with subpictures that reference logical units in one or other of the bitstreams to be merged, by treating the
bitstreams to be merged as different layers. In embodiments the problem solved is to improve signalling of Multi-

Layer SubPictures (MLSP) in the VVC coding standard.

Layer Id = 2

Layer Id = 1

Layer Id =0

vV $9¢/8GC d9

1/8

101 102 103 105
Slice Slice Slice
{ -
.-"'" N“‘.‘
110 .- 111 R

Slice NAL

header RBSP (Raw Byte Sequence Payload)

/ 120 7/

Coding Tree Unit Coding Tree Unit

N

AN

.. - n - . - L - .. L - L
- n - . - n - . L - . LR .. - L ..
UL L L L B L L D L L L L L L L L O L O L L O L L L O L O L L L L L L L O L L
UL L L L L L L D D L L L L L L L L L D L L L O L L L L L L L L L L L L L L L L L L
UL L
-n .. -n .. -n .. L L L L

- . - n - . - n - . - - L .. L
UL L L L L L L L L L L L L L O L L L L O L) " B B R B AR B EEEEEREETSN
L " E BB R R AR EEEEEEEREDN
.I UL L L I.I LU L L D D L L D L L L "R B E NN I.C LU L l-l

LU L L L L O R L L L L L L L L L L O L L O L)
L)
-n .. -n L

-
UL
-
-
..
-
.. *
" s s EEEn
" EEEE S
" s s EEEn
-
-
-

-
-
LI
-
-n
-

- . - n - . - n - . - n - . - . - n - . - n - . -
UL L D L B D L L D L O L L L L O L L DR L O L L O L O L O L L L L L L L D D O L L D L L L L O D L L L O O L L LI L
UL LI LR L L B L
UL L L L L L L L L L L L L L L L L D L L L L L L L L L L L .I UL L B I.l UL L L L L L L L L L L L L L R) -n I. -l

a4 e

“ 4 4 a
L}

LI

- >

..

LI
an
..

.

.
a »

0‘0‘0000‘

- man
L LN
a n

LA J

- . - n - . - n - . - n - . - . - . - n - . -
UL L L L O D L O D L L L L L O L O O L L L L O L L O L O) UL L L B D DR L L L L L L L D L L O L)
UL L L L B L - E e EEERESN UL L L L L L L L L L
UL) UL)
L -n .. -n .. -n -n .. L

L}
-
*
- A
-
SRR ERRAEDN
-
-
-
..
-
..

LJ
-n
L]
LI
LJ
LI
UL L

L J
*

- mEan L}
LI I O
- man LJ

LJ

UL L
" éB B R EEDN
L L

.- s nn

- n - .

" B BB BB RN E N EEREREDN

. LI

UL L L L L L L L L L L L L L L L L
-n -n ..

- . - n - - . - n - . - n LA .. L - L LR - . L - . - . -

UL L L L L O D L L L L L L O L L O L O L O) " B B R B R AN AN EEEREETSN LU L L L L L L DR L L O L L L O L R L L L L L
L L L L L L R L L L L L L L L L L L L -n LI - UL L L L L L L N L
UL) UL L
L -n .. -n .. -n LA} L L L L -n .. -n .. -n .. L

*
4 4 3 2232332323 23232233333323232323233333323232122
an
-

- a

-

L

-

-

-

..

-

..

-

- .n

-n

..

-

..

- . - n - - . - n - . - n LA .. L - L LR - . L - . - - . - n ..
LA A A AN AN R AR AN AN AN S A I S LI I L BN I I L R E .. @ @ B B B B S EEASEE S S S S S S SRS S NSNS E SR SRR R R R R R R A E N R

*
4 2 2 2 2 2 2 2 22222222222

.
.

.
* b A

.
.

.
.

.
L

.
.

> >
.
.
L
-

*
4 2
.
4 a
.
.

.
* ke
4 2
.

‘
L
.
.
d & 4
4 a

.
4 2
.

L
.
.

.
.

.
.
4 2 2 2 2 2 2222222222222
.

Layer Id =1

Layerid =0

Layer Id = 2

Layer Id = 1

Layer Ild =0

500

Encoding a first picture of a first layer

510

Encoding a second picture of a second layer

520

Encoding a reference to elements
of the first picture

5/8

ON

--

2POW 5 dIN .

P d
Ov9 S3A

‘‘‘‘‘‘‘‘

aDI|S PaouUIa)aY

GEY

7~ ON

v

¢ [YTVN
LON dSTA

\\\\\\\\\\\

OLS
A 19podep dnisg
209

apoo2go)sq |

(1oplo chvOUmﬁ ui)
9POIB(JO] SAT) 91BUSIBIUOY)

€90
9P022QOLSAD | (s)2p022goLSAD
. UOIIDBIIXS WEU1SHT-ONS, SS9201d
¢0¢ |
IsiplioAennabae] p11y¥saybiy SAD

3p023p O] SIoAeT]
1O 195 B 103[8S

vvv

v

L = [¢]p1 JeAel 21dgng

Buipooap 10edw| L = []p1 JeAe| 21dgng

40)A

L 1ofel 0 Joke| S1dIN

L -PISdd | | -PI Sdd
L:plJaAe| | L:p! JeAg

L -PI'Sdd
L Pl JaAg)

L Pl Sdd
L Pl JaAg)

L PISdd | O0-PISdd | O-P'Sdd | O -PISdd | 0 P! Sdd
0:p! JeAg

0:p! JeAg)

0:pl JeAe| | 0:p! JoAg

L Pl JoAg) 00/

P @0lIS £ 20lIS ¢ 9IS L 99lIS Sdd

¢ S0lS L ©9lIS S 1dIA

Sdd

Vel €CL ¢cClL LC/. 0c/ CclLL LLL OlLL 10L

7/8

Layer Id = 1

Layerid =0

Fig. 8

901 902 903

90

/

904 905 906
200

Fig. 9

10

15

20

25

30

METHOD, DEVICE, AND COMPUTER PROGRAM FOR CODING AND DECODING A
PICTURE

FIELD OF THE INVENTION
The present invention relates to a method, a device, and a computer program

for encoding and decoding pictures.

BACKGROUND OF THE INVENTION

To encode an image, a technique often used iIs to partition it into picture
portions which are then encoded independently of each other. The whole is then grouped
together to form the encoded image. The decoding of the image Is then carried out in the
opposite direction by decoding the encoded picture portions and then assembling the
result of the decoding to reconstitute the initial image.

The compression of video relying on block-based video encoding is used In
most coding systems like HEVC (High Efficiency Video Coding), or the emerging VVC
(Versatile Video Coding) standards.

In these encoding systems, a video Is composed of a sequence of frames or
pictures or images or samples which may be displayed at several different times. In the
case of multilayer video (for example scaleable, stereo, 3D videos), several pictures may
be decoded to compose the resulting image to display at one Instant, the pictures
belonging to different layers. A picture can also be composed of different image

components. For instance, for encoding the luminance, the chrominance or depth

iInformation.

The result of the encoding process Is a bitstream defined as a sequence of
bits, that forms the representation of coded pictures and associated data forming one or
more coded video sequences (CVSs). The sequence of bits i1s organized in the form of
a stream of “network abstraction layer (NAL) units,” NALUs, which are syntax structures
containing an indication of the type of data to follow and bytes containing that data.

Typically, these encoding systems rely on several partitioning technigues for
each picture. VVC has introduced a partitioning concept called subpicture. A subpicture
IS defined as a rectangular region of one or more slices within a picture. A slice Is an

Integer number of bricks of a picture that are exclusively contained into a single NALU.

10

15

20

25

30

Consequently, in a multilayer video, a subpicture belongs to a picture which belongs to

a layer.

SUMMARY OF THE INVENTION

However, the subpictures may also be useful in a scenario where a picture
may use Iinformation from a layer different from the layer of the picture. For instance, it
may be useful to reduce the bitstream size by avoiding copying identical data belonging
to different layers.

The present invention has been devised to address one or more of the
foregoing concerns.

In a first example embodiment, a method for encoding video data into a bitstream of
logical units, said video data comprising pictures, comprises:

encoding into the bitstream a first picture belonging to a first layer in the form of
a first set of logical units;

encoding Into the bitstream a second picture belonging to a second layer
different from the first layer, said encoded second picture comprising a first subpicture,
the encoding of the second picture comprising encoding a first reference between the
first subpicture and at least one logical unit of the first set of logical units.

Accordingly, the method advantageously authorises a picture to be defined
partly by reference to data from another layer, avoiding to copy the same picture
elements in all layers.

This embodiment may comprise other features, alone or in combination, such
as

- the method further comprises encoding into the bitstream a third picture

IN the form of a second set of logical units, the third picture belonging to
a third layer different from the second layer, and the encoding of the
second picture further comprises encoding a second reference between
a second subpicture of the second picture and at least one logical unit of
the second set of logical units;

- the method further comprises encoding into the bitstream information

associated with the second layer, said information comprising a list of the
layers containing logical units referenced by the subpictures of the

second picture;

10

15

20

25

30

- the method further comprises encoding information associated to each
layer indicating If each layer comprises or not at least one picture having
a subpicture referencing logical units of another layer:;

- the encoded pictures are further grouped Into access units, one access
unit grouping pictures with a same timing, and wherein the first picture

and the second picture belong to the same access unit or to two

correlated access units;

- the encoding of the second picture further comprises encoding a second
subpicture of the second picture in the form of logical units belonging to
the second layer, the second subpicture being different from the first
subpicture;

- encoding the first reference comprises:

- encoding a first sub-reference between the first subpicture and a slice
address,

- encoding a second sub-reference between the slice address and the at
least one logical unit of the first set of logical units.

Among the advantages of these features, elements may be referenced from
any layer, without limitation on the layer number; the layers referenced by the second
layer being known as soon as the layer header Is read, the decoder may limit its analysis
to these layers; a picture may be a combination of “classically” coded elements and of
referenced elements.

According to a second aspect of the invention, there 1s provided a method
for merging at least two bitstreams of logical units of video data, comprising:

assigning at least one merged layer to the logical units of each bitstream;

defining a merging layer:;

encoding a merging picture belonging to the merging layer, saild merging
picture comprising at least, per merged layer, a subpicture and an associated reference
between the subpicture and logical units of the merged layer:;

merging Into one encoded bitstream the merging picture and the logical units
of the merged bitstream.

According to a third aspect of the invention, there is provided method for
decoding video data from a bitstream of logical units, said video data comprising pictures,

the method comprising:

10

15

20

25

30

35

detecting that a first picture of a first layer comprises a subpicture, said
subpicture comprising a reference to logical units of a second picture belonging to a
second layer;

selecting the referenced logical units;

decoding the referenced logical units to obtain the said subpicture;

INnto the decoded first picture.

This embodiment may comprise other features, such as the method here
above comprises beforehand:

- analysing a header associated with the first layer;

- detecting that the first layer uses logical units from at least a second layer;

- filtering logical units to keep logical units associated with the first layer

and the at least second layer.

According to a fourth aspect of the invention, there Is provided a computer
program product for a programmable apparatus, the computer program product
comprises a sequence of instructions for implementing each of the steps of the methods
here above when loaded into and executed by the programmable apparatus.

According to a fifth aspect of the invention, there Is provided a non-transitory
computer-readable storage medium storing instructions of a computer program for
Implementing each of the steps of the methods described above.

According to a sixth aspect of the invention, there iIs provided a device
comprising a processing unit configured for carrying out some or all of the steps of the
methods described above.

According to a seventh aspect of the invention, there is provided a signal
carrying encoded video data as a bitstream of logical units, said video data comprising
pictures, as resulting from the method described above.

According to an eighth aspect of the invention, there is provided a media
storage device storing a signal carrying encoded video data as a bitstream of logical
units, said video data comprising pictures, as resulting from the method described above.

The second, third, fourth, fifth, sixth, seventh and eighth aspects of the
present invention have advantages similar to the first above-mentioned aspect.

At least parts of the methods according to the invention may be computer
Implemented. Accordingly, the present invention may take the form of an entire hardware
embodiment, an entire software embodiment (including firmware, resident software,
microcode) or an embodiment combining software and hardware aspects that may all

b 11

generally be referred to herein as a “circuit”, "module” or “system”. Furthermore, the

10

15

20

25

30

present invention may take the form of a computer program product embodied Iin any
tangible medium of expression having computer usable program code embodied In the
medium.

Since the present invention can be implemented in software, the present
Invention can be embodied as computer-readable code for provision to a programmable
apparatus on any suitable carrier medium. A tangible carrier medium may comprise a
storage medium such as a floppy disk, a CD-ROM, a hard disk drive, a magnetic tape
device or a solid-state memory device and the like. A transient carrier medium may
INclude a signal such as an electrical signal, an electronic signal, an optical signal, an
acoustic signal, a magnetic signal or an electromagnetic signal, €.g., a microwave or RF
signal.

BRIEF DESCRIPTION OF THE DRAWINGS

The embodiments of the invention will now be described, by way of example
only, and with reference to the following drawings in which:

Figure 1 illustrates an access unit;

Figure 2 illustrates an image structure with subpictures;

Figure 3 illustrates region scaleability by using subpictures of another layer;

Figure 4 illustrates a bitstream merging;

Figure 5 illustrates the main processing steps of an encoder;

Figure 6 illustrates the main processing steps of a decoder;

Figure 7 Illustrates a bitstream as a result of the encoding process of
Figure 5;

Figure 8 illustrates a variant of region scaleability; and,

Figure 9 illustrates a schematic block diagram of a computing device.

DETAILED DESCRIPTION OF THE INVENTION

Figure 1 illustrates a bitstream structure and particularly an access unit.

Images with the same timing (from one or several layers) are generated In
the bitstream In the same Access Unit. It could also be possible to generate encoded
pictures from different independent layers but at same timing in several correlated
access units. The correlated access units may have different Picture Order Count (POC)
but the same timing information. This may allow decoding several independent layers

with only one decoder.

10

15

20

25

30

The bitstream for an Access Unit Is then composed of NAL units which can
be parsed independently. The NAL units may contain parameter set(s) (Video Parameter
Set VPS 101, Sequence Parameter Set SPS 102, Picture Parameter Set PPS 103) or
slices 105. A NALU has a header 110 describing its content and an end marker allowing
the decoder to resynchronize in case of a bitstream error. The decoder parses the NAL
unit syntax and then decodes its content. In case of a slice NALU, the payload contains
data of the picture elements composing the slice (bricks and coding tree units).

Figure 2 illustrates an image structure.

The picture 201 Is composed of 2 sub-pictures 210 and 220 with the wide
black border. The picture pixels are also partitioned In slices (for example 230). The
subpicture corresponds to a group of one or several slices (the subpicture 210 Is
composed of the slices 1 and 2). The border of a subpicture corresponds to the border
of slices. The slices are groups of bricks or tiles. A brick and a tile are sub portions of an
Image but with different spatial forms. Here, the picture is composed of a grid of 4 by 4
tiles.

Each brick (or tile) has its own entropy coding context, so the brick stops the
entropy coding dependencies. Depending on options, the brick may also stop the spatial
dependencies: pixels from one brick are not predicted from another brick. The group of
bricks encoded in a slice generates a NALU. So a NALU can be decoded with no
reference to another NALU In the same image. Depending on options, subpictures can
be encoded independently: pixels from a subpicture are coded with no reference to other
subpictures from the same picture or from previous images.

In the following embodiments, a subpicture may also be a group of slices
coded with no reference to another subpicture and no constraints on the form of the
region (could be non-rectangular or even composed of several disjoined regions).

Subpictures may be used for example for bitstream merging: to generate a
new bitstream easily from the merging of several bitstreams without needing to decode
and encode again the bitstreams. Subpictures may also be used for example for
viewport-dependent streaming to easily change the position of the subpictures In the
Image without needing to decode and encode again the bitstream.

The problem addressed here is how to reuse a subpicture from one layer In
another layer without duplication of the encoded data describing the subpicture. The
following embodiments have the advantage to propose a way to support view

scaleabllity, viewport dependent omnidirectional video as well as bitstream merging.

10

15

20

25

30

35

Figure 3 illustrates an example of region scaleabllity. The layer with Layerld
= 1 defines 4 subpictures with a low quality. The layer with Layerld = O provides a higher
quality for 2 subpictures and reuses the 3rd and 4th subpictures of lower quality from
layer 1. When decoded, the layer O would thus provide an image with regions of higher
quality.

Figure 4 illustrates a merge operation between two independent layers with
layer 1d respectively equal to 1 and 2. A 3rd layer Is added with a layer 1d equal to O.
This merging layer O references subpictures from the other layers: slices from the
layers 1 and 2 are reused to compose the new image for layer 0. This allows a simple
merge process between different bitstreams.

To support these different operations, In the following embodiments, a
reference Is included In the bitstream. The reference belongs to a layer and points to a
slice of a picture belonging to another layer.

In its broadest acceptation, Figure 5, a method for encoding video data into

a bitstream of logical units, said video data comprising pictures, comprises:

e Encoding, step 500, into the bitstream a first picture belonging to a first layer in the

form of a first set of logical units;

e Encoding, step 510, into the bitstream a second picture belonging to a second layer

different from the first layer, said encoded second picture comprising a first subpicture,
the encoding of the second picture comprising encoding, step 520, a first reference
between the first subpicture and at least one logical unit of the first set of logical units.
The method is particularly suitable for the VVC standard and the following
detalled embodiments are based on this standard. However, the method may be
transposed to other similar video methods which encode video data into a structured
bitstream.
Inside the VVC standard, the following elements may be defined:

1. A Multi-Layer SubPictures (MLSP) layer, which may be called reference layer,
that allows building decoded pictures by referencing and directly integrating the
subpictures, or slices, from other layers, also called referenced layers.

2. A signalling syntax elements In the bitstream describing the new dependency
relationship between Multi-Layer SubPictures layer and its referenced layers. The
“reference” dependency may be provided in the Video Parameter Set (VPS).

3. A signalling syntax element In the bitstream describing the mapping from
subpictures of the Multi-Layer SubPictures layer to pictures from referenced

layers. This description may be located inside the Picture Parameter Set (PPS)

10

15

20

25

30

35

or the Sequence Parameter Set (SPS). This syntax element may be considered
as the reference of the method of Figure 5 for the VVC standard.

4. A specific VCL NALU with no coded data: its goal is to indicate the modified
decoding parameters for the VCL NAL units from the referenced layers.

5. A decoding process that allows reusing encoded NALUs from one layer In
another layer.

Consequently, by using these elements, the method of Figure 5 may be
written as: in a bitstream of NALUs, encoding a first picture belonging to a referenced
layer In the form of a first set of NALUs, comprising slice NALUs, encoding a second
picture belonging to a referencing layer, the second picture having a subpicture, a
signalling syntax element describing/referencing the mapping from the subpicture of the
second image of the second/Multi-Layer SubPictures layer to slices from referenced
layers.

These elements are thus centred around a special layer, the MLSP layer,
with its associated signalling elements indicating which slices from other layers are
reused by the MLSP layer.

Now, different detailed embodiments with variants will be disclosed based on
the current VCC specification.

In the specification, at elementary bitstream, it is possible to define
Independent layers which means layers that are coded completely independently in the
bitstream. Inside these layers, independently coded regions, the subpictures may be
defined.

In the disclosed embodiment, a new type of layer is defined: A Multi-Layer
SubPictures layer, or MLSP layer.

An MLSP layer is an independent layer allowing cross-layer subpicture
decoding, from slices from other independent layers. This MLSP layer references the
coded data (VCL NAL units) from at least one other layer. Let’'s denote the MLSP layer
as ‘reference layer” and the layers from which the slices are referenced as “referenced
layers.”

The current VCC specification does not define such a reference layer. In the
specification, a layer and a layer access unit are defined as follows: “(...)

« A layer is a set of VCL NAL units that all have a particular value of
nuh layer id and the associated non-VCL NAL units.

« A layer access unit is a set of NAL units for which the VCL NAL units all

have a particular value of nuh layer id, that are associated with each other according to

10

15

20

25

30

35

a specified classification rule, that are consecutive in decoding order, and that contain
exactly one coded picture.

(--)"

The reference, or MLSP, layer is defined by:

« Multi-layer subpictures (MLSP) layer access unit: A layer access unit in
which the coded picture is an MLSP picture.

« Multi-layer subpictures (MLSP) picture: A coded picture for which the first
VCL NAL unit has nal _unit type equal to MLSP _NUT and for which the decoding
process may directly decode VCL NAL units from a slice, of other coded pictures within
the same access unit.

In other words, an MLSP layer may contain MLSP pictures and an MLSP
picture is defined by having one NAL unit of a new type MLSP NUT. Its decoding will use
NAL units from the pictures of the referenced layers. In embodiment 1, the layer id of the
referenced layers Is higher than the layer i1d of the reference layer. This allows to keep
the current constraint on the order of the NAL units in the bitstream which is described
In VVC specification, but other embodiments release this constraint.

An MLSP picture may also contain subpictures defined in the MLSP picture
and not copied from another layer. In the example of Figure 3, the layer O contains the
NAL units for subpictures 1 and 2 at high quality and references subpictures 3 and 4
from layer 1. In a more formal way, an MLSP picture may include zero or more VCL NAL
units having a different nal unit type.

The MLSP layer decoding process will use VCL NAL units that can have
different values of nuh layer Id corresponding to the nuh layer Id values of the

referenced layer(s) and the associated non-VCL NAL units.

It can be useful to have In the bitstream an indication of the reference
dependencies between the reference layer and the referenced layers. This indication
allows a simpler decoding process.

A new Kkind of dependency Is Iintroduced: a “reference dependency”. The
“reference” dependency is provided in the VPS to indicate for each MLSP layer, the list
of layers It references.

The VPS syntax includes new syntax elements to specify that the coded
video sequence may Iinclude such kind of new inter layer subpicture referencing.

TABLE 1 discloses the new VPS syntax.

Three embodiments for the new VPS syntax are discussed under reference

Embodiment 1, Embodiment 2 and Embodiment 3.

10

15

20

25

30

35

10

Embodiment 1

vps multi layer subpicture flag[1] equal to 1 specifies that the layer with
Index 1 may reference slices from another layer and indicates the presence of
vps subpicture reference layerldx minus1 flag [1]. vps multi layer subpicture flag|
| | equal to O specifies that the layer with index | does not reference slices from another

layer and indicates the absence of vps subpicture reference layerldx minus1 flag[1].

vps subpicture reference layerldx minus1 flag[1]|] | equal to O
specifies that the subpicture from the layer with index | does not reference slices of the
layer with index | + 1. vps subpicture reference layerldx minus1 flag[i1][]] equal to 1
specifies that the subpicture from the layer with index | may reference slices of the layer
with Index |+ 1. When vps subpicture reference layerldx minus1 flag [1][]] 1s not
present for I In the range of 0 to vps max layers minus1 - 1 and j in the range of O to
vps max layers minus1, inclusive, it is inferred to be equal to O.

In Embodiment 1, the MLSP layer has a layer id lower than the layer id of the
referenced layers. Thus the value vps subpicture reference layerldx minusi1 flag[i1][}
] 1s equal to O when | Is lower than I.

The variable SubPicReferencedLayerldx[1][|], specifying the j-th layer
referenced by subpictures of the I-th layer, Is derived as follows:

for(1=0;1<vps max layers minus1 - 1; 1++)

If(vps multi layer subpicture flag[i])
for(J]=1,k=0;) < vps max layers minus1; |++) (7 3)
If(vps subpicture reference layerldx minusi1 flag[1][]])
SubPicReferencedLayerldx[1][k++] =]+ 1

Embodiment 2

In the Embodiment 2, the MLSP layer has a layer id higher than the layer id
of the referenced layers.

vps multi_layer subpicture flag[i] equal to 1 specifies that the layer with
Index | may reference slices from another layer and indicates the presence of
vps subpicture reference flag [1]. vps multl layer subpicture flagl |] equal to O
specifies that the layer with index | does not reference slices from another layer and
Indicates the absence of vps subpicture reference flag[1].

vps subpicture reference flag[1 |[|] equal to O specifies that the
subpicture from the layer with index | does not reference slices of the layer with index J.
vps subpicture reference flag [1][]] equal to 1 specifies that the subpicture from the

layer with index 1 may reference slices of the layer with Index |. When

10

15

20

25

30

11

vps subpicture reference flag[1][| | 1s not present for | and | In the range of O to
vps max layers minus1, inclusive, it is inferred to be equal to O.

The new syntax elements are similar to the previous embodiment but in this
case the value vps subpicture reference flag[i1][]]is equal to O when j is higher than
.

The variable SubPicReferencedLayerldx[1][j], specifying the j-th layer
referenced by subpictures of the I-th layer, Is derived as follows:

for(1=1;1<vps_max_layers_minus1; - —)

If(vps_multi_layer _subpicture flag[i1])
for(j=1,k=0;) >=0;]—-—-) (7 2)
If(vps subpicture reference flag[i1][]])
SubPicReferencedLayerldx[1][k++] = |

In Embodiment 3, the layer reference dependencies are not explicitly
described in the VPS. In this case, when there is a dependency between an MLSP layer
| and a referenced layer |, the existing syntax element vps_direct dependency flag[i1][}
| should be set to 1. In this case the MLSP layer can only reference layers with a lower

layer id. It is then not possible to infer the reference dependencies from the VPS. These

dependencies will be computed from the subpicture utilisation declaration.

Another syntax element indicates for each subpicture inside an MLSP
picture, If a slice from a referenced layer should be used and identifying the layer
containing the slices to use.

In this embodiment the syntax indicates the layers from which the slices
should be used. There is no indication of subpictures In the referenced layers so that the
referenced layers may have different subpicture partitioning or even no subpictures. Only
the slice ids should be identical between the description of the slices in the PPS of the
MLSP layer and the slice addresses indicated in the slice header.

A flag in the Sequence Parameter Set is added, TABLE 2.

subpics multi layer flag equal to 1 indicates that subpictures of coded
pictures referring to the SPS may reference coded slices from another coded pictures
with a different nuh layer id within the same access unit and indicates the presence of
subpic layer 1d flag[1]. subpics multli layer flag equal to O indicates that subpictures
of coded pictures referring to the SPS does not reference coded slices from another

coded pictures with a different nuh layer I1d within the same access unit and indicates

10

15

20

25

30

12

the absence of subpic layer i1d flag[i]. WWhen sps video parameter set idis equal to O,
the value of subpics multi _layer flag is inferred to be equal to O.

The subpicture dependency may be Implemented with different
embodiments. Two of them, called Embodiment 4 and Embodiment 5, are discussed.

In Embodiment 4, the subpicture dependency may be included in the Picture

Parameter Set.

The new syntax elements indicate whether the slices of a subpicture
reference slices of another layer. When one subpicture references another layer, the
syntax specifies the identifier of the referenced layer. This information is sufficient for the
new decoding process described in the following section, TABLE 3.

subpic layer 1d flag[i] equal to 1 Indicates the presence of
subpic layer id[1] and that the i-th subpicture of each coded picture in CVS references
coded slices with nuh layer 1d equal to subpic layer Id[1]. subpic layer id flag[I]
equal to O indicates the absence of subpic layer 1d[|] and that the I-th subpicture of
each coded picture in CVS does not reference coded slices from coded pictures with a
different nuh_layer Id.

subpic layer id[i]] when present specifies the nuh layer 1d of the coded
slices referenced by the I-th subpicture. When not present, subpic layer id[1] is inferred
equal to the nuh_layer id of the current PPS parameter set NAL unit.

With these syntax elements, it is possible for a decoder to determine the VCL
NAL units of each subpicture as follows.

The decoder determines the subpicture index | for each slice defined in the
PPS. When the subpicture i has subpic layer id _flag[i] equal to O, the decoder decodes
the slice with slice _address as defined in PPS and with a nuh_layer id equal to the
identifier of the current layer. Otherwise, if subpic layer id flag[i] is equal to 1, the
decoder decodes the slice with slice address as defined in PPS and with a nuh_layer id
equal to the value subpic layer id[1], so the decoder decodes the selected slices of the
referenced layer subpic layer id[i] to obtain the subpicture | of the MLSP layer.

Embodiment 4 has the following advantage: the subpicture pattern may not
change very often (stable SPS) but the mapping may change at each picture (new PPS
at each picture). This can be useful for example in the context of OMAF (omnidirectional
video: the direction of the viewer can change rapidly and thus the mapping of the
subpictures quality can change at each image).

In Embodiment 5, the same information is included into the SPS, TABLE 4.

10

15

20

25

30

35

13

subpic layer i1d flag] 1] equal to 1 Indicates the presence of
subpic layer i1d[i] and that the i-th subpicture of each coded picture in CVS references
coded slices with nuh layer 1d equal to subpic layer id[1]. subpic layer id flag[I]
equal to O indicates the absence of subpic layer Id[| | and that the I-th subpicture of
each coded picture in CVS does not reference coded slices from coded pictures with a

different nuh layer id.

subpic layer 1d[| | when present specifies the nuh layer i1d of the coded
slices referenced by the I-th subpicture. When not present, subpic layer id[1] Is inferred
equal to the nuh_layer id of the current SPS parameter set NAL unit.

With the proposed syntax elements, it Is possible for a decoder to determine
the VCL NAL units of each subpicture as follows.

The decoder determines the subpicture index | for each slice defined In the
PPS. When the subpicture | has subpic _layer id flag[i] equal to 0 in the associated
SPS, the decoder decodes the slice with slice address as defined in PPS and with a
nuh layer id equal to the identifler of the current Ilayer. Otherwise, If
subpic layer id flag[i]equal to 1 in the associated SPS, the decoder decodes the slice
with slice address as defined in PPS and with a nuh layer id equal to the value
subpic layer 1d[1], so the decoder decodes the selected slices of the referenced layer
subpic layer i1d[i] to obtain the subpicture | of the MLSP layer.

This syntax has the advantage to group the definition of the subpictures and
their mapping between layers in one same place. This simplifies the decoder.

Remark in the case of the Embodiment 3, where no explicit dependency Is
described in the VPS, it is possible to deduce the reference dependency between layers
from the values of subpic layer id[i]. If the PPS from one layer | contains a description
of subpicture | with the value subpic layer id[I] indicating a layer k, this means that the
MLSP layer j is referring the layer k and thus there is a reference dependency from j to
K.

The bitstream of the encoded video iIs composed of NAL units. Each NAL
unit contains a header and then an RBSP payload (Raw Byte Sequence Payload). The
header contains the layer id and the NAL unit type. The payload content depends of the
NAL unit type.

A new type of NAL unit MLSP _NUT is added in order to allow the decoding
of MLSP layer. This new NAL unit should be the first NAL unit of an access unit in an
MLSP layer.

10

15

20

25

30

14

The list of NALU types is updated as in TABLE 5.

The payload of the new MLSP_NUT NAL unit has thus the same definition
as slice NAL units.

The syntax of the slice layer RBSP syntax is disclosed TABLE 6.

The goal of such VCL NALU is to overload the “PPS in use” (according to the

decoding process) when a VCL NALU is used by reference from a reference layer. Thus,

all the slice data content may be skipped.

Another embodiment would be to change the slice payload to indicate only
the new PPS id as described in TABLE 7.

In these two embodiments, all VCL NAL units associated with an MLSP
picture (except the first VCL NAL unit with nal_unit type equal to MLSP _NUT) either
directly part of the MLSP picture (i.e., having same nuh layer id as MLSP picture
nuh_layer id) or referenced by an MLSP picture (i.e., having a different nuh_layer id)
may have nal unit _type consistent with the definition of one of the other types of picture
(CRA, GDR, IDR, RADL, RASL, STSA).

For decoding process purpose, the MLSP picture may be considered as
being a CRA or GDR or IDR or RADL or RASL or STSA picture according to the
nal unit type of its associated VCL NAL units.

Another embodiment would be to have no new NAL unit type. In this case
another method must be used to determine the PPS id used by the MLSP layer. A
solution can be to define the PPS in use by the MLSP layer as equal to the PPS in use
from another layer In the same access unit.

This solution has the advantage to simplify the syntax by avoiding a new NAL
unit type but it iImposes to have in the bitstream at least one NAL unit from another layer
before any NAL unit from the MLSP layer and from any referenced layer.

In a variant, a new flag IsSMLSPSIice is added inside the slice header or inside
the slice data indicating that the slice is a MLSP slice. If the value of the flag is 1, all the
remaining slice data can be skipped. The MLSP slice should be the first NAL unit of an
access unit in an MLSP layer. The goal of the MLSP slice is to change the “PPS in use”
similarly as the MLSP_NUT NAL unit of the previous embodiment.

This solution has the advantage to simplify the syntax by avoiding a new NAL
unit type and it does not impose to have In the bitstream at least one NAL unit from

another layer before any NAL unit from the MLSP layer and from any referenced layer

10

15

20

25

30

35

15

In order to handle the cross-layer decoding, a number of modifications in the
decoding process are required. The flow chart of Figure 6 shows the process of slice
data decoding from a video bitstream, composed of an MLSP layer and different
subpictures from one or several referenced layers.

The main steps are described below.

Step 601: Select a set of layers to decode

The output of this step Is a list of target layers: TargetLayerldList.

ldeally if the target layer is an MLSP layer, only the MLSP layer and the
referenced layer should be kept. This can be Initialised by some external means: a
command line parameter to the decoder, or the initialisation of the decoder in a streaming
client. This process can also be Initialised from the list of reference dependencies
indicated in the VPS.

Otherwise all the layers are included in the list of target layers.

Step 602: Process “sub-bitstream extraction.”

For each CVS (Coded Video Stream) in the bitstream, the sub-bitstream
extraction process is applied with the CVS, TargetLayerldList, and HighestTid - which
identifies the highest temporal sub-layer to be decoded - as inputs, and the output Is
assigned to a bitstream referred to as CvsToDecode. This step allows keeping only the
bitstream corresponding to the layers to decode.

Step 603: Concatenate CvsToDecode (in decoding order)

The instances of CvsToDecode of all the CVSs are concatenated, In
decoding order, and the result is assigned to the bitstream BSToDecode. This step
allows concatenating several bitstream to decode.

It Is assumed in the following steps that the bitstream to decode contains only
one MLSP layer to decode and at least all the referenced layers.

Step 604: Setup decoder

The decoder 1s then Initialised and start to read all the NALU from the
bitstream BSToDecode.

Step 610: Decode NALUHeader:

Inputs to this process are the NAL units of the current bitstream BSToDecode
and their associated non-VCL NAL units.

The decoding process for each NAL unit extracts the NAL unit type, the layer
id (nuh_layer id) the RBSP syntax structure from the NAL unit and then parses the
RBSP syntax structure.

10

15

20

25

30

35

16

The variable iIsSMLSPPIc is set equal to O to indicate that the decoder is In
normal state (not for MLSP subpicture).

Step 620: MLSP_NUT NALU?

This step checks if the current NALU if of type MLSP_NUT. If Yes, it goes to
step 625: Update decoder status, iIf No, goes to step 630.

Step 625: update decoder status

The variable iIsSMLSPPIc is set equal to 1 to indicate that the decoder is
decoding an MLSP picture.

The decoder memorises the current layer id and PPS id:

« The variable MLSPNalulLayerld is set equal to nuh layer id of VCL NAL
unit.

« The variable MiIspPpsldinUse Is set equal to slice pic parameter set Id
of VCL NAL unit.

Based on the value MIspPpsldinUse the decoder can obtain the table of the
imported subpicture layers (subpic layer id[i]) which can be in the PPS or the SPS
referenced by the PPS.

Step 630: referenced layer test

This step tests if the NALU is a VCL NAL unit with nuh_layer id not equal to
MLSPNalulLayerld: is it a slice (video coding layer) which is not in the MLSP layer?

In case the response is no (the NALU is part of the MLSP layer, for example
for parameter sets, or the slice defined in the MLSP layer) the decoder will decode the
NAL unit in a normal way (step 645). Otherwise (the NAL unit is part of a referenced
layer) It goes to step 635.

Step 635: Referenced by MLSP layer?

This step checks if the current slice NAL unit is referenced by the MLSP
layer.

The variable isReferencedByMLSPPicture is derived as follows:

iIsSReferencedByMLSPPicture = 0;

SubPicldx = CtbToSubPicldx] CtbAddrBsToRs| FirstCtbAddrBs|
SliceBrickldx[O]1]]

If (nuh_layer 1d == subpic layer id[SubPicldx])
iIsSReferencedByMLSPPicture = 1

The decoder determines what the subpicture 1d of the slice Is. To obtain the

subpicture id of the slice, the decoder must read the slide address which is indicated In

the slice header. The slice address is then used with the brick decomposition described

10

15

20

25

30

35

17

In the PPS from the MLSP layer (and not the initial value of slice pic_parameter set id
IN the slice header: the decoder is not using the PPS of the referenced layer). If the slice
address is not present in the PPS, the slice is not used (isReferencedByMLSPPIcture =
0).

If the slice address is present in the PPS, the decoder obtains the index of
the first brick in the slice (SliceBrickldx[0]). The address of the brick is transformed in a
CTB index with the table FirstCtbAddrBs. The index of the CTB is transformed from brick
scan order to raster scan order by using the table CtbAddrBsToRs. The CTB index is
then converted to a subpicture index using the table CtbToSubPicldx which is computed
from the subpicture positions in the SPS of the MLSP layer.

In another embodiment, the association between the slice addresses and the
subpicture index could be described explicitly for example in the PPS. In this case the
decoder could use this table from the PPS of the MLSP layer to obtain the subpicture
iIndex associated with the slice address of the NAL unit in the MLSP layer.

Then the decoder uses this subpicture i1d with the table of the imported
subpicture layers from the MLSP layer (memorised in step 625). The decoder verifies
that the subpicture 1d i1s iImported from the layer nuh layer i1d indicated in the NAL unit
header to determine If the NAL unit should be decoded to obtain the content of the

subpicture.

If the slice is referenced by the MLSP picture, the process goes to Step 640
(VCL NAL units for which isReferencedByMLSPPIcture is equal to 1 are decoded in the
context of the MLSP picture).

If No, the decoder goes to Step 650: Next NALU? (VCL NAL units for which
IsSReferencedByMLSPPIcture is equal to O are skipped).

Step 640: MLSP Mode

VCL NAL units referenced by the MLSP layer should be decoded with
nuh_layer 1d equal to MLSPNalulLayerld and the PPS in use is MiIspPpsldinUse. In order
to do this the variable isSMLSPPIc is set equal to 1 to indicate that the decoder is decoding
an MLSP picture and the nuh_layer id value is set to MLSPNalulLayerld.

Step 645: Decode NALUPayload

This 1s the normal decoding process of a NAL unit except that the step iIs
modified when the slice picture parameter set id Is read In the following way:

slice pic _parameter set id specifies the value of

pps_pic_parameter_set id for the PPS in use. The value of slice _pic_parameter set id

10

15

20

25

30

35

18

shall be in the range of 0 to 63, inclusive. When the variable isMLSPPic is equal to 1,
slice pic parameter set Id Is ignored and the value of pps pic parameter set id for
the PPS in use is set to MIspPpsldinUse.

Step 650: Next NALU?

This step checks if the current NALU Is followed by a next one. If Yes, it goes
to step 610: Decode NALUPayload, if No, goes to step 660: end

step 660: end.

The decoder has completed the decoding.

The decoder reads and decodes the bitstream sequentially. It iIs impossible
for the decoder to go back in the bitstream to read again a previous part of the bitstream.
It Is also Impossible for the decoder to change the bitstream. These constraints have
been considered In the disclosed syntax elements and decoding process. This Is very
different from the operations which can be done In the system encapsulation and file
format.

In current VVC specification, there is a constraint on the order of the layers
from an access unit in the bitstream: an access unit consists of an access unit delimiter
NAL unit and one or more layer access units in increasing order of nuh layer id. In
disclosed embodiments this constraint has been kept in order to be more compatible with
existing decoder architecture.

An example of bitstream Is represented on Figure 7. The figure represents
a possible bitstream 700 for one Access Unit corresponding to the MLSP example
presented in figure 3. In this example it iIs assumed, there is only 1 slice per subpicture.
The access unit bitstream Is composed of 4 NAL units for layer O and then 5 NAL units
for layer 1. The layer O contains the Picture Parameter Set unit 701 with a pps-id of
value 0, the MLSP NAL Unit 710 indicating that the PPS for the MLSP layer O is the
PPS 0. The PPS 0 also contains the subpicture mapping 702 which indicates that the
subpictures 3 and 4 should be read from the layer 1.

Then the coded data for subpictures 1 and 2 in layer 0 at high quality Is given
IS NAL units 711 and 712. The layer 1 is then coded with Picture Parameter Set of value

pps Id 1 and 4 NAL units giving the content of the 4 subpictures at low quality.

When decoding the MLSP layer following the algorithm from the previous
section, the decoder will read the MLSP NAL unit and update the decoder status by

memorising the layer id and pps 1d. The normal decoding process is applied to slice 1

10

15

20

29

30

19

and 2 from layer 0. Then the slices 1 and 2 from layer 1 are skipped and finally the
slices 3 and 4 from layer 1 are decoded in the context of the MLSP layer: the layer id
and the PPS id from the slice are ignored and instead the layer id used is O and the
pps Id usedis O.

For merging two bitstream and add an MLSP layer representing the merged
video (as in the example of Figure 4), it is necessary to add an MLSP layer of lower value
(layer O In the example). It is thus useful to keep some low values of layers not used
during the encoding of an independent video If we want to simplify the merge operation.

It could be useful to release the constraint on the order of the layers In the
access unit bitstream. This would provide several advantages: this is necessary to
describe the layer dependencies in another way as in embodiments 2 and 3.

But it I1s also useful even with the layer dependencies described In other
embodiments. Indeed, a relaxed layer constraint is useful to simplify the operation of
merging of bitstream: it is easier to add a new layer representing the merge of two
different bitstreams even If all low values of layer id have been used.

But even if it is authorised to mixed NAL units from different layers, the MLSP
NAL unit is positioned in the bitstream before any NAL unit from the referenced layers In
order that the decoder be able to apply the updated decoding process when reading the

slice from the referenced layer.

In current VVC specification (v14), there are several constraints on the
subpictures: It Is a requirement of bitstream conformance that the following constraints
apply:

- “For any two subpictures subpicA and subpicB, when the index of

SubpicA is less than the index of subpicB, any coded NAL unit of subPicA
shall be located before any coded NAL unit of subPicB in decoding order;

- The shapes of the subpictures shall be such that each subpicture, when

decoded, shall have its entire left boundary and entire top boundary
consisting of picture boundaries or consisting of boundaries of previously

decoded subpictures.”

The first constraint is related to the order of the NAL unit in the bitstream.
This constraint does not apply to NAL units from different layers and thus in the case of

the MLSP layer as the NAL units from a subpicture are referenced from another layer,

10

15

20

25

30

20

they do not need to respect this constraint. However, it would be better to remove this
constraint.

The second constraint is related to the position of the decoded subpicture In
the image. This constraint is necessary in VVC when a subpicture has a spatial
dependency with subpictures located at the top or left of the subpicture. This is the case
If the Image uses a filtering at its border (in loop filtering or deblocking filter).

In the case of the MLSP layer, it is proposed that the subpictures are totally
Independent: they should have no filter at their border
(loop filter across subpic enabled flag[i] == 0 && subpic treated as pic flag == 1).
The constraint on the order of the sub picture should not apply In this case.

The previous embodiments could be applied in a few cases without removing
this constraint. (As for example In the case of Figure 3) but in a new embodiment the
constraint on the subpicture shapes is modified in the following way:

“The shapes of the subpictures shall be such that each subpicture which
does not have (loop filter across subpic enabled flagli] == 0 &&
subpic treated as pic flag == 1), when decoded, shall have its entire left boundary and
entire top boundary consisting of picture boundaries or consisting of boundaries of
previously decoded subpictures.”

Relaxing this constraint has several advantages: it is possible to reuse any
subpicture from any referenced layer and add subpicture in the MLSP layer. For
example, in Figure 3, without removing the constraint it would be impossible to add the
subpicture 4 at high quality in the MLSP layer O.

Another advantage iIs that it Is possible to change the position of the
referenced subpicture in the MLSP layer. For example, in Figure 8, the MLSP layer
change the positions of the subpictures in its SPS so that it shuffles the location of
subpictures compared to their original positions.

A similar constraint exists for the slices In current specification:

“The shapes of the slices of a picture shall be such that each brick, when
decoded, shall have its entire left boundary and entire top boundary consisting of a
picture boundary or consisting of boundaries of previously decoded brick(s).”

This rule may be replaced by:

-The shapes of the slices of a picture shall be such that each brick, when
decoded, shall have its entire left boundary and entire top boundary consisting of a

picture boundary or subpicture boundary with (loop filter across subpic enabled flag|i]

10

15

20

25

30

35

21

== 0 && subpic treated as pic flag == 1) or consisting of boundaries of previously
decoded brick(s).

The disclosed embodiments can be used In an encoder receiving one or
several image streams and encoding a video with several layers: each layer can
correspond to one image stream, or to different qualities. This device can be for example
a video camera, or a network camera with several sensors for 360° image capture.

Another usage Is inside a device which receives several compressed video
streams and merge them In a new video stream with several layers. This can be useful
for video edition either offline or in real time during the broadcasting of a video.

The embodiments can also be used In a streaming server which receives
requests for different videos and can compose the video stream to send to one or several
clients.

They may also be used In the client which receives the composed video
stream and can decode it or select which version of the video It can decode.

Figure 9 i1s a schematic block diagram of a computing device 900 for the
Implementation of one or more embodiments of the invention. The computing device 900
may be a device such as a microcomputer, a workstation or a light portable device. The
computing device 900 comprises a communication bus 902 connected to:

—a central processing unit (CPU) 904, such as a microprocessor:;

—a random access memory (RAM) 908 for storing the executable code of
the method of embodiments of the invention as well as the registers adapted to record
variables and parameters necessary for mplementing the method for encoding pictures,
the memory capacity thereof can be expanded by an optional RAM connected to an
expansion port, for example;

—a read-only memory (ROM) 906 for storing computer programs for
Implementing embodiments of the invention;

—a hnetwork Interface 912 that iIs, In turn, typically connected to a
communication network 914 over which digital data to be processed are transmitted or
recelived. The network interface 912 can be a single network interface, or composed of
a set of different network Interfaces (for instance wired and wireless interfaces, or
different kinds of wired or wireless interfaces). Data are written to the network interface
for transmission or are read from the network interface for reception under the control of
the software application running in the CPU 904;

—a user Interface (Ul) 916 for receiving inputs from a user or to display

Information to a user;

10

15

20

25

30

35

22

—a hard disk (HD) 910;

—an /O module 918 for receiving/sending data from/to external devices
such as a video source or display.

The executable code may be stored in read only memory 906, on the hard
disk 910 or on a removable digital medium for example such as a disk. According to a
variant, the executable code of the programs can be received by means of a
communication network, via the network interface 912, in order to be stored in one of the
storage means of the communication device 900, such as the hard disk 910, before
being executed.

The central processing unit 904 |s adapted to control and direct the execution
of the instructions or portions of software code of the program or programs according to
embodiments of the invention, which instructions are stored in one of the aforementioned
storage means. After powering on, the CPU 904 is capable of executing instructions from
main RAM 908 relating to a software application after those instructions have been
loaded from the program ROM 906 or the hard disk (HD) 910, for example. Such a
software application, when executed by the CPU 904, causes the steps of the flow charts
shown In the previous figures to be performed.

In this embodiment, the apparatus I1s a programmable apparatus which uses
software to implement the invention. However, alternatively, the present invention may
be implemented in hardware (for example, in the form of an Application Specific
Integrated Circuit or ASIC).

Although the present invention has been described herein above with
reference to specific embodiments, the present invention is not limited to the specific
embodiments, and modifications will be apparent to a person skilled in the art which lies

within the scope of the present invention.

Many further modifications and variations will suggest themselves to those
versed In the art upon making reference to the foregoing illustrative embodiments, which
are given by way of example only and which are not intended to limit the scope of the
iInvention, that being determined solely by the appended claims. In particular, the
different features from different embodiments may be interchanged or combined, where

appropriate.

In the claims, the word “comprising” does not exclude other elements or
steps, and the indefinite article “a” or "and” does not exclude a plurality. The mere fact
that different features are recited in mutually different dependent claims does not indicate

that a combination of these features cannot be advantageously used.

10

15

23

APPENDIX

video parameter set rbsp() { Descriptor
vps video parameter set 1d u(4)
vps_max_layers minusl u(6)
if(vps_max_layers minusl > 0)
vps_all independent layers flag u(l)
for(1=0;1<=vps max layers minusl; 1++) {
vps_layer id| 1] u(6)
if(1>0 && !vps all independent layers flag) {
vps independent layer flag|1|] u(l)
if('vps independent layer flag[1])
for(j=0;) <1)++)
vps direct dependency flag|1][]] u(l)
§
EMBODIMENT 2
if(1>0 && (vps all independent layers flag || vps independent layer flag|1 |
)
vps multi layer subpicture flag|1 | u(l)
if('vps multi layer subpicture flag[i])
for(j=0;) <1 J++)
vps subpicture reference flag|[1]]] u(l)

24

EMBODIMENT 1

if(1>0 && (vps all independent layers flag || vps independent layer flag[1]))

vps_multi layer subpicture flag| 1 |

if('vps multi layer subpicture flag[1])

for(j =1,) <vps_max layers minusl; j++)

vps_subpicture reference layerldx minusl flag[1][]]

;

if(vps max layers minusl >0) {

vps output layers mode u(2)

it(vps output layers mode ==2)

for(1=10;1<vps max layers minusl; i++)

vps output layer flag|1 | u(l)
§
vps constraint info present flag u(l)
vps_reserved zero 7bits u(7)

if(vps constraint info present flag)

general constraint info()

vps extension flag u(l)

if(vps_extension flag)

while(more rbsp data())

vps_extension data flag u(l)

tbsp trailing bits()

TABLE 1

29

seq parameter set rbsp() { Descriptor
sps decoding parameter set id u(4)
sps_video parameter set 1d u(4)
sps max sub layers minusl u(3)
sps_reserved zero Sbits u(d)
profile tier level(sps max sub layers minusl)
odr enabled flag u(l)
Sps_seq_parameter set id ue(v)
chroma format idc ue(v)
if(chroma format idc == 3)
separate_colour plane flag u(l)
pic width max in luma samples ue(v)
pic_height max in luma samples ue(v)
subpics present flag u(l)
if(subpics present flag) {
subpics multi _layer flag u(l)
max_subpics minusl u(8)
subpic_grid col width minusl u(v)
subpic_grid row_height minusl wv)
for(1= 0; 1 < NumSubPicGridRows; 1++)
for(1 = 0; 1 < NumSubPicGridCols; j++)
subpic grid 1dx|1][)] u(v)
for(1= 0; 1 <= NumSubPics; 1++) {
subpic treated as pic flag|1] u(l)
loop filter across subpic enabled flag|1 | u(l)

TABLE 2

26

pic parameter set rbsp() § Descriptor
pps pic parameter set id ue(v)
pps seq parameter set id ue(v)
pic width in luma samples ue(v)
pic_height in luma samples ue(v)
conformance window flag u(l)
if(conformance window flag) {
conf win left offset ue(v)
conf win right offset ue(v)
conf win top offset ue(v)
conf win bottom offset ue(v)
§
output flag present flag u(l)
single tile in pic flag u(l)
if(!single tile in pic flag) §{
uniform tile spacing flag u(l)
if(uniform tile spacing flag) {
tile cols width minusl ue(v)
tile rows height minusl ue(v)
}else {
num_tile columns minus1 ue(v)
num_tile rows minusl ue(v)
for(1=0;1<num tile columns minusl; 1++)
tile_column_width minus1[i | ue(v)
for(1=0;1<num tile rows minusl; i++)
tile row height minus1[i] ue(v)
5
brick splitting present flag u(l)
if(umiform tile spacing flag && brick splitting present flag)
num tiles in pic minusl ue(v)
for(1= 0; brick splitting present flag && 1 <= num tiles in pic minusl + 1;1++) {
if(RowHeight[1]> 1)
brick split flag[i] u(l)
if(brick split flag[1]) {
if(RowHeight| 1] > 2)
uniform brick spacing flag[1] u(l)
if(umiform brick spacing flag|1])
brick_height minus1][i] ue(v)
else {
num_brick rows minus2| i | ue(v)
for(1=0;) <=num brick rows minus2[1]; j++)
brick row height minus1[i][j] ue(v)

21

§
single brick per slice flag u(l)
if(!'single brick per slice flag)
rect slice flag u(l)
if(rect slice flag && !single brick per slice flag) §
num slices in pic minus1 ue(v)
bottom_right brick idx length minus1 ue(v)
for(1=0;1 <num_slices 1n pic_minusl; 1++) {
bottom_right brick idx delta[i] uw(v)
brick idx_delta_sign flag[1i] u(l)
§
§
loop filter across bricks enabled flag u(l)
if(loop filter across bricks enabled flag)
loop filter across slices enabled flag u(l)
§
EMBODIMENT 4 (mapping subpic <-> layer 1d in PPS)
if(subpics multi layer flag) §
for(1 = 0; 1 <= NumSubPics; 1++) {
subpic layer 1d flag|1 | u(l)
if(subpic layer 1d flag[1])
subpic layer 1d| 1 | u(6)
§
§
END EMBODIMENT 4 (mapping subpic <-> layer 1d in PPS)
if(rect slice flag) {
signalled slice id flag u(l)
if(signalled slice 1d flag) {
signalled slice id length minusl ue(v)
for(1=0;1<=num slices in pic minusl; 1++)
slice id[1i] u(v)
§
§

rbsp trailing bits()

TABLE 3

23

seq parameter set rbsp() { Descriptor
sps decoding parameter set id u(4)
sps_video parameter set 1d u(4)
sps max sub layers minusl u(3)
sps_reserved zero Sbits u(d)
profile tier level(sps max sub layers minusl)
odr enabled flag u(l)
Sps_seq_parameter set id ue(v)
chroma format idc ue(v)
if(chroma format idc == 3)
separate_colour plane flag u(l)
pic width max in luma samples ue(v)
pic_height max in luma samples ue(v)
subpics present flag u(l)
if(subpics present flag) {
subpics multi _layer flag u(l)
max_subpics minusl u(8)
subpic_grid _col width_minusl1 uw(v)
subpic_grid row_height minusl wv)
for(1=0; 1 < NumSubPicGridRows: 1++)
for(j = 0; 1 < NumSubPicGridCols; j++)
subpic grid 1dx|1][)] u(v)
for(1= 0; 1 <= NumSubPics; 1++) {
subpic treated as pic flag|1] u(l)
loop filter across subpic _enabled flag| 1] u(l)
EMBODIMENT 5 (mapping subpic <-> layer 1d in SPS)
if(subpics multi layer flag) {
subpic layer 1d flag|1] u(l)
if(subpic layer i1d flag[1])
subpic_layer 1d[1 | u(6)
h
END EMBODIMENT 5 (mapping subpic <-> layer 1d in SPS)
h
§

TABLE 4

29

nal unit type Name of Content of NAL unit and RBSP syntax structure NAL unit
nal unit_type type class
0 TRAIL NUT Coded slice of a trailing picture VCL
slice layer rbsp()
1 STSA NUT Coded slice of an STSA picture VCL
slice layer rbsp()
2 RASL NUT Coded slice of a RASL picture VCL
slice layer rbsp()
3 RADL NUT Coded slice of a RADL picture VCL
slice layer rbsp()
4 MLSP NUT Coded slice of a MLSP picture VCL
slice layer rbsp()
S..7 RSV_VCL 5.. Reserved non-IRAP VCL NAL unit types VCL
RSV _VCL 7
8 IDR W_RADL Coded slice of an IDR picture VCL
? IDR_N_LP slice_layer _rbsp()
10 CRA NUT Coded slice of a CRA picture VCL
silce layer rbsp()
11 GDR NUT Coded slice of a GDR picture VCL
slice layer rbsp()
12 RSV IRAP VC(CLI1 Reserved IRAP VCL NAL unit types VCL
13 2
RSV IRAP VCLI1
3
14..15 RSV _VCLI14.. Reserved non-IRAP VCL NAL unit types VCL
RSV _VCLI15
16 SPS NUT Sequence parameter set non-VCL
seq parameter set rbsp()
17 PPS NUT Picture parameter set non-VCL
pic_parameter set rbsp()
18 APS NUT Adaptation parameter set non-VCL
adaptation parameter set rbsp()
19 AUD NUT Access unit delimiter non-VCL
access unit delimiter rbsp()
20 EOS NUT End of sequence non-VCL
end of seq rbsp()
21 EOB NUT End of bitstream non-VCL
end of bitstream rbsp()
22,23 PREFIX SEI NUT Supplemental enhancement information non-VCL
SUFFIX SEI NUT sei rbsp()
24 DPS NUT Decoding parameter set non-VCL
decoding parameter set rbsp()
25..27 RSV _NVC(CL25.. Reserved non-VCL NAL unit types non-VCL

RSV NVCL27

30

28..31

UNSPEC28..
UNSPEC31

Unspecified non-VCL NAL unit types

non-VCL

TABLE 5

31

slice layer rbsp() ¢ Descriptor

slice header()

if (nal unmt type != MLSP NUT)

slice data()

tbsp slice trailing bits()

TABLE 6

32

slice layer rbsp() ¢ Descriptor

if(nal unit type = MLSP NUT) {

slice header()

slice data()

} else

slice_pic_parameter set_id ue(v)

tbsp slice trailing bits()

TABLE 7

10

15

20

25

30

35

33

CLAIMS

1. A method for encoding video data into a bitstream of logical units, said video data
comprising pictures, the method comprising:

encoding into the bitstream a first picture belonging to a first layer in the form of
a first set of logical units;

encoding Into the bitstream a second picture belonging to a second layer
different from the first layer, said encoded second picture comprising a first subpicture,
the encoding of the second picture comprising encoding a first reference between the

first subpicture and at least one logical unit of the first set of logical units.

2. The method according to claim 1, wherein the method further comprises encoding into
the bitstream a third picture in the form of a second set of logical units, the third picture
belonging to a third layer different from the second layer, and the encoding of the second
picture further comprises encoding a second reference between a second subpicture of

the second picture and at least one |logical unit of the second set of logical units.

3. The method according to claim 1 or 2, wherein the method further comprises encoding
INto the bitstream Information associated with the second layer, said Iinformation
comprising a list of the layers containing logical units referenced by the subpictures of

the second picture.

4. The method according to claim 3, wherein the method further comprises encoding

Information associated to each layer indicating if each layer comprises or not at least one

picture having a subpicture referencing logical units of another layer.

9. The method according to any one of claims 1 to 4, wherein the encoded pictures are
further grouped Into access units, one access unit grouping pictures with a same timing,
and wherein the first picture and the second picture belong to the same access unit or to

two correlated access units.

6. The method according to any one of claims 1 to 5, wherein the encoding of the second
picture further comprises encoding a second subpicture of the second picture in the form
of logical units belonging to the second layer, the second subpicture being different from

the first subpicture.

10

15

20

29

30

35

34

7. The method according to any one of claims 1 to 6, wherein encoding the first reference
COMPprises:
encoding a first sub-reference between the first subpicture and a slice address,
encoding a second sub-reference between the slice address and the at least one

logical unit of the first set of logical units.

8. A method for merging at least two bitstreams of logical units of video data, comprising:
assigning at least one merged layer to the logical units of each bitstream:;
defining a merging layer;
encoding a merging picture belonging to the merging layer, said merging picture

comprising at least, per merged layer, a subpicture and an associated reference between

the subpicture and logical units of the merged layer;
merging into one encoded bitstream the merging picture and the logical units of

the merged bitstream.

9. A method for decoding video data from a bitstream of logical units, said video data
comprising pictures, the method comprising:

detecting that a first picture of a first layer comprises a subpicture, said
subpicture comprising a reference to logical units of a second picture belonging to a
second layer;

selecting the referenced logical units;

decoding the referenced logical units to obtain the said subpicture.

10. The method according to claim 9, wherein the method comprises beforehand:
analysing a header associated with the first layer;
detecting that the first layer uses logical units from at least a second layer;

filtering logical units to keep logical units associated with the first layer and the

at least second layer.

11. A computer program product for a programmable apparatus, the computer program
product comprising a sequence of instructions for implementing each of the steps of the
methods according to any one of the claims 1 to 10 when loaded into and executed by

the programmable apparatus.

10

15

39

12. A non-transitory computer-readable storage medium storing instructions of a
computer program for implementing each of the steps of the methods according to any

one of the claims 1 to 10.

13. A device comprising a processing unit configured for carrying out each of the steps

of the methods according to any one of the claims 1 to 10.

14. A signal carrying encoded video data as a bitstream of logical units, said video data

comprising pictures, as resulting from the method according to any one of the claims 1
to 10.

15. A media storage device storing a signal carrying encoded video data as a bitstream
of logical units, said video data comprising pictures, as resulting from the method

according to any one of the claims 1 to 10.

Intellectual

Property
Office

Application No:

Claims searched:

36

GB1913769.4 Examiner: Dr Andrew Rose
1-15 Date of search: 16 March 2020

Patents Act 1977: Search Report under Section 17

Documents considered to be relevant:

Category |Relevant

Identity of document and passage or figure of particular relevance

X 1,2.5.6
and 9-15

X 1-3, 5,6
and 9-15

to claims
X 1-3, 5-7 | [JCTVC-M0205] M.M. Hannuksela et al, "MV-HEVC/SHVC HLS: On
and 9-15 | inter-layer sample and syntax prediction indications", Joint Collaborative

Team on Video Coding (JCT-VC) of ITU-T SG 16 WP 3 and ISO/IEC
JTC 1/SC 29/WG 11, 13th Meeting: Incheon, KR, 18-26 Apr. 2013.

Available at http://phenix.int-evry fr/jct/

WO 2015/060642 Al
(KT CORP) See Figure 6 1n particular.

WO 2006/108917 Al
(NOKIA) See Table 1 1n particular.

Categories:
X Document indicating lack of novelty or inventive A Document indicating technological background and/or state
step of the art.
Y Document indicating lack of mventive step it P Document published on or after the declared priority date but
combined with one or more other documents of betore the filing date of this imnvention.

same category.

& Member of the same patent family E Patent document published on or after, but with priority date

earlier than, the filing date of this application.

Field of Search:

Scarch of GB, EP, WO & US patent documents classified in the following areas of the UKC*

Worldwide search of patent documents classified in the following areas of the IPC

HO4N

The following online and other databases have been used in the preparation of this search report

WPIL. EPODOC, Patent Fulltext, INTERNET, INSPEC

International Classification:

Subclass Subgroup Valid From
HO4N 0019/30 01/01/2014
HO4N 0019/70 01/01/2014

Intellectual Property Office is an operating name of the Patent Office www.gov.uk/ipo

	Page 1 - BIBLIOGRAPHY
	Page 2 - DRAWINGS
	Page 3 - DRAWINGS
	Page 4 - DRAWINGS
	Page 5 - DRAWINGS
	Page 6 - DRAWINGS
	Page 7 - DRAWINGS
	Page 8 - DRAWINGS
	Page 9 - DRAWINGS
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - DESCRIPTION
	Page 27 - DESCRIPTION
	Page 28 - DESCRIPTION
	Page 29 - DESCRIPTION
	Page 30 - DESCRIPTION
	Page 31 - DESCRIPTION
	Page 32 - DESCRIPTION
	Page 33 - DESCRIPTION
	Page 34 - DESCRIPTION
	Page 35 - DESCRIPTION
	Page 36 - DESCRIPTION
	Page 37 - DESCRIPTION
	Page 38 - DESCRIPTION
	Page 39 - DESCRIPTION
	Page 40 - DESCRIPTION
	Page 41 - DESCRIPTION
	Page 42 - CLAIMS
	Page 43 - CLAIMS
	Page 44 - CLAIMS
	Page 45 - SEARCH_REPORT

