US 20230054341A1
a9y United States

a2y Patent Application Publication (o) Pub. No.: US 2023/0054341 A1l

Rawal et al. 43) Pub. Date: Feb. 23, 2023
(54) DISTRIBUTED DATA STORAGE AND Publication Classification
ANALYTICS SYSTEM (51) Int. CL
N . GOG6F 16/23 (2006.01)
(71) Applicant: Elastic Flash Inc., Saratoga, CA (US) GOGF 16/27 (2006.01)
(72) Inventors: Darshan Bharatkumar Rawal, (52) US. CL
Fremont, CA (US); Naoki Iwakami, CPC ... GO6F 16/2343 (2019.01); GOGF 16/27
Redwood City, CA (US); Kalyan (2019.01)
Seshu, Bengaluru (IN); Prasanta (57) ABSTRACT

SAHOO, Bengaluru (IN) In some implementations, a computer-implemented method

includes receiving a state update command. The method

(73) Assignee: Elastic Flash Inc., Saratoga, CA (US) further includes, in response to the state update command,
sending a command to perform a state update in a first server
(21) Appl. No.: 17/979,936 of a plurality of servers and queueing incoming requests for
access to the plurality of servers. The method further
(22) Filed: Nov. 3, 2022 includes receiving confirmation from the first server that the

state update was successful. The method further includes,
L after receiving the confirmation, sending a respective com-
Related U.S. Application Data mand to the plurality of servers to perform the state update

(63) Continuation of application No. 16/688,063, filed on and a scheduled update time associated with the state update.

Nov. 19, 2019, now Pat. No. 11,507,558. The method further includes receiving a respective state
update message from a subset of the plurality of servers that
(30) Foreign Application Priority Data the state update was successful and after receiving the state
update message, transmitting the queued incoming requests

Nov. 20, 2018 (IN) oo 201811043729 to the subset of the plurality of servers.

#%

| S Uptlasise Gt Tl B

SEUEE S

<3
%

US 2023/0054341 A1l

Feb. 23,2023 Sheet 1 of 5

Patent Application Publication

L

[R

aqrnnnnnnss,
S

Sy
i

Y
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
i b4
b H
f i
Y H
H H
H ;
4 ;
H Cvvorrreciirrrrsd §
%
-
v
e “ %
s T
7 » 0
i wE
z 4 %
H T
7 » P9
NI
w4 4o
: %
: s

E % :
1 7 v
; 1 o
3
3 H Fed
Mtrtirigiis. % 7 7 73
¥ aissssoss F

TN T Y T T Y e

7
'
H

% w

g :

29 ;

% i ;

% % i

el £ ps el L

v : i : el P

von £ H) .

: P % H [A
; = oy ¢ Pt oo
) % “Lassinssst ol e}
; % . &
; iy
.. H

;

/

FIG. 1

Patent Application Publication

Ristahee rogquest for am
birary front g devion

Detormine device ol

fdarditfy vode somponents nsed

Frapars bivary using dentified

vode vomuoranix 208

o
¥

Dediver binary o devive 2180

X

Rucalve data bansler raquest

o davdon inchating

o R

Feb. 23,2023 Sheet 2 of 5

US 2023/0054341 A1l

orachmtiale 313

\‘ - : ©nx) he
reatoh desvion
T sl ? 218

complate dala bansfer request

2EO
218

FIG. 2

US 2023/0054341 A1l

Feb. 23,2023 Sheet 3 of 5

Patent Application Publication

NI
H
i
i
i
i
i
i
:
7
A
%%
ko
%
s
%
;
o0
i
-
PR DO, . PR s
&
L O T T - SSUR N SRS
% : &
5 3
N 3
7 &
<<<<<<<<<<<< [lec 75
s %
[Pt
o 77 i
-t a2 0
v B
w2
i
2
@

RN
RSN

auvang

FIG. 3

US 2023/0054341 A1l

Feb. 23,2023 Sheet 4 of 5

Patent Application Publication

i 5%
o oy e
#'Z (71
K’ e i3 P 3
¥t - 4%

4
BLUBIOT

G (AR TN LA PAEY:

i

wish owp

¥ 'Oid

m..“ £ G
-wm‘n N ar . -
!] y g
£ : \.« ‘\ : \ \
m Lo Aey : .
D rumnen | uunol | S 0 i » :
£ 4 Aoy
; Lmumaied | uanol | uwnon | g
s
g -
\\\.\{.

T BT W

Patent Application Publication Feb. 23,2023 Sheet 5 of 5 US 2023/0054341 A1

2

sonygrating Device §00

Xg&\ 8\&(} \\\“\\

Processor 508

N fenen Ec e
Qpewiing System

VO rderfaceind

e\\ Q.. Neheork,
Storage, sfo) 84 Sppfinetions X8

Storage Revios 808

FIG. 5

US 2023/0054341 Al

DISTRIBUTED DATA STORAGE AND
ANALYTICS SYSTEM

RELATED PATENT APPLICATIONS

[0001] This application is a continuation of U.S. applica-
tion Ser. No. 16/688,063, filed Nov. 19, 2019, entitled
Distributed Data Storage and Analytics System, which
claims priority to Indian Provisional Patent Application No.
201811043729, filed Nov. 20, 2018, entitled, Distributed
Data Storage and Analytics System, both of which are
incorporated by reference in their entirety.

BACKGROUND

[0002] Typical security procedures involve authentication
of'a device or user, e.g., based on a username and password
combination, or other credentials) and tying it to roles
defined via access control lists (ACLs) to determine the
operations that a device or user can perform, e.g., data
transfer operations. If device or user credentials are com-
promised, such procedures fail. For example, in deploy-
ments of Internet-of-Things (IoT) devices, a very large
number of devices (e.g., millions of sensors) that send data
may be outside a trusted perimeter of the enterprise (e.g.,
that receives data from such sensors and enables data
analytics applications). Theft or other mechanisms that lead
to such devices being connected to the enterprise with
credentials that allow it to not just send data to the enterprise,
but also allow it to extract data or perform administrative
operations (e.g. delete data, etc.) can compromise security of
enterprise data stores, e.g., distributed databases, and data
customers, e.g., analytics applications, business logic appli-
cations that determine business parameters (e.g., pricing,
manufacturing volume, etc.).

[0003] Further, distributed state update (in-memory or on
persistence storage) of multiple servers (that may be geo-
graphically separated) is impossible to achieve without a
lock. In typical distributed systems, a stored critical state is
used to process data coming in from end devices (outside or
within the network) and then have the data persisted.
Updates to the stored critical state need to be performed in
a manner that makes the state effective simultaneously
across all the servers. Current distributed state update tech-
niques do not include mechanisms to perform such update,
and are error-prone.

[0004] When databases are utilized to receive and store
data from various data sources (e.g., loT sensors, point-of-
sale systems, weblogs, clickstream data from browsers or
mobile apps, etc.) such databases are configured to allow
fast writes while sacrificing read operations. Such configu-
ration limits the ability to perform real-time (or near real-
time) analyses of data. Such analyses are valuable in many
contexts, e.g., dynamic pricing or discounting, order fulfill-
ment, etc. This problem is magnified when the databases are
implemented in a distributed manner over multiple servers.
Further, current databases that permit data analytics require
data customers to develop custom code for analytical opera-
tions. Further, based on the type of analyses to be performed,
such databases may also require expensive manual configu-
ration of the distributed database and/or high costs to
provide satisfactory performance.

[0005] Implementations described herein were conceived
in the context of these problems.

Feb. 23, 2023

SUMMARY

[0006] Some implementations relate to a computer-imple-
mented method that includes receiving a state update com-
mand. The method further includes, in response to the state
update command, sending a command to perform a state
update in a first server of a plurality of servers and queueing
incoming requests for access to the plurality of servers. The
method further includes receiving confirmation from the first
server that the state update was successful. The method
further includes, after receiving the confirmation, sending a
respective command to the plurality of servers to perform
the state update and a scheduled update time associated with
the state update. The method further includes receiving a
respective state update message from a subset of the plu-
rality of servers that the state update was successful and after
receiving the state update message, transmitting the queued
incoming requests to the subset of the plurality of servers.
[0007] In some implementations, the state update at the
first server is persisted in a database hosted by the first
server. In some implementations, the state update at the first
server is performed without a change in a current effective
state within the first server. In some implementations, the
respective command instructs the plurality of servers to
perform the state update at the scheduled update time.
[0008] In some implementations, the method further
includes determining that no state update message was
received from a second server of the plurality of servers. In
these implementations, the method further includes, in
response to determining that no state update message was
received, sending a reboot command to the second server.
[0009] In some implementations, the plurality of servers
are time synchronized. In some implementations, the incom-
ing requests include requests to read data from a database
hosted on the plurality of servers or requests to write data to
a database hosted on the plurality of servers.

[0010] Some implementations relate to a computer-imple-
mented method that includes receiving a request for an
application binary from a device, wherein the request
includes information about the device. The method further
includes determining a device role of the device based on the
information about the device and identifying code compo-
nents based on the device role. The method further includes
preparing the application binary based on the code compo-
nents and delivering the application binary to the device.
[0011] In some implementations, the information about
the device includes one or more of a device identifier, a
device type, a network address of the device, a fingerprint,
or a geographic location of the device. In some implemen-
tations, the request is received at a server via a dynamic
handshake between the server and the device. In some
implementations, the device role is one of ingest-only,
ingest-and-extract, or administration.

[0012] In some implementations, identifying the code
components is further based on code version or device-
specific parameters.

[0013] In some implementations, preparing the applica-
tion binary includes compiling the code components into
executable code or an intermediate representation. In some
implementations, the application binary is a library that can
be incorporated into an application that executes on the
device.

[0014] In some implementations, the method further
includes receiving a data transfer request from the device,
wherein the data transfer request includes credentials. In

US 2023/0054341 Al

these implementations, the method further includes deter-
mining whether the device credentials match the device role.
The method further includes, in response to determining that
the device credentials match the device role, completing the
data transfer request. The method further includes, in
response to determining that the device credentials do not
match the device role, rejecting the data transfer request.

[0015] Some implementations relate to a computer-imple-
mented method that includes receiving a record from a data
source at a server, wherein the record includes a plurality of
fields. The method further includes processing the record
in-memory at the server, wherein the processing includes
performing data validation of the record including validation
of' bounds on at least one of the plurality fields in the record.
The method further includes, after the processing, storing
the record in a primary table of a database on a first server,
wherein the record is associated with a primary key in the
primary table that is unique to the record. The method
further includes creating a view based on the primary table.
In some implementations, the view has a different primary
key than the primary key of the primary table and includes
a subset of the plurality of fields such that at least one of the
plurality of fields is excluded from the view.

[0016] In some implementations, processing the record
further includes at least one of: appending other data to the
record, performing format conversion of one or more fields
in the record, or detecting an anomaly in the record.

[0017] In some implementations, the method further
includes receiving a declaration that specifies the subset of
the plurality of fields for the view. In some implementations,
the declaration further specifies a refresh cycle for the view.
In these implementations, the method further includes
updating the view per the refresh cycle. In some implemen-
tations, the updating comprises synchronizing the view with
the primary table.

[0018] In some implementations, the method further
includes analyzing a query access pattern for the primary
table. In these implementations, creating the view is based
on the query access pattern indicating that the subset of
fields are queried repeatedly in a particular period of time.

[0019] In some implementations, the primary table is
stored on a storage device selected based on storage tiering
parameters.

[0020] In some implementations, the method further
includes storing the view on a second server different from
the first server. In some implementations, the first server and
the second server are time synchronized. In some imple-
mentations, the method further includes creating one or
more additional views that include respective subsets of the
plurality of fields and storing the one or more additional
views on respective servers that are different from the first
server and the second server.

[0021] Some implementations include a computing device
comprising a hardware processor and a memory coupled to
the hardware processor, with instructions stored thereon
that, when executed by the hardware processor, cause the
hardware processor to perform any of the methods described
herein.

[0022] Some implementations include a non-transitory
computer-readable medium, with instructions stored thereon
that, when executed by a processor, cause the processor to
perform any of the methods described herein.

Feb. 23, 2023

BRIEF DESCRIPTION OF THE DRAWINGS

[0023] FIG. 1 is a block diagram of an example network
environment which may be used for one or more implemen-
tations described herein.

[0024] FIG. 2 is a flow diagram illustrating one example
of' a method to selectively deliver binary applications to a
device and to selectively process data transfer requests based
on device role and/or credentials, according to some imple-
mentations.

[0025] FIG. 3 illustrates time synchronized distributed
state update of a plurality of servers, according to some
implementations.

[0026] FIG. 4 illustrates an example environment with
data ingest and extract processes, and storing of data in a
distributed manner, according to some implementations.
[0027] FIG. 5is a block diagram of an example computing
device which may be used to implement one or more
features described herein.

DETAILED DESCRIPTION

[0028] FIG. 1 illustrates a block diagram of an example
network environment 100, which may be used in some
implementations described herein. Environment 100
includes data sources 110, one or more admin servers 114,
data customers 118, and one or more load balancers 122, all
coupled via network 120. Environment 100 also includes
servers 130 that are coupled to load balancer 122.

[0029] Environment 100 may include one or more devices
that act as sources of data. Data sources 110 may include, for
example, Internet-of-Things devices or sensors 110a, user
devices 1105 (e.g., mobile phones, tablets, laptops, wearable
devices, personal health devices, fitness trackers, etc.), point
of sale devices 110c¢ (e.g., in-store point of sale terminals),
servers 110d (e.g., web servers that provide data such as
clicks on particular web pages), etc. Devices 110a-110d are
collectively referred to as data sources 110 henceforth.
[0030] Each of data sources 110 may be configured with a
corresponding application 112. For example, IoT devices/
sensors 110a may include app 112a, User devices 1105 may
include app 1125, PoS devices 110¢ may include app 112¢,
and servers 1104 may include app 1124. Applications 112
may provide functionality for data generated by a data
source 110 to be sent to a distributed database for storage.
Applications 112 may also provide other functionality. In
some implementations, an application 112 may include an
application component, e.g., a library, provided by a third-
party other than a developer of application 112. For
example, the application component may be provided by a
cloud computing vendor that provides data storage and/or
analytics services. For example, the application component
may be part of a software development kit (SDK) provided
by the cloud computing vendor. Data sources 110 may be
coupled to network 120.

[0031] Insome implementations, data sources 110 may be
configured with ingest capability. In these implementations,
application 112 on a data source 110 may be configured to
send data from the data source to one or more other devices
via network 120. For example, such data may include sensor
readings from sensor 110q, data obtained by user device
1105 such as location information, user activity information
(e.g., heart rate, websites visited, etc.), sales data from PoS
device 110c¢ (e.g., transaction records, payment method used
for a transaction, SKUs of items purchased, etc.), or data

US 2023/0054341 Al

from servers 1104 (e.g., click data from a web server, logs
from a firewall, data from cameras or image sensors includ-
ing image metadata such as timestamps, location, etc.,
radar/LIDAR data, etc.).

[0032] Data sources 110 that are configured with ingest
capability can utilize an application 112 to send data to
servers 130. For example, application 112 may incorporate
a portion of a software library provided by a cloud comput-
ing vendor that manages servers 130 to send data to servers
130.

[0033] Environment 100 may also include administration
server 114. While FIG. 1 shows one administration server
114, different implementations may include one, two, or
more administration servers. In some implementations,
administration servers may be controlled by the cloud com-
puting vendor. Administration server 114 may include a
software application 112¢ and a state updater module 116.
[0034] Software application 112¢ may provide function-
ality to update state of one or more other devices in
environment 100, e.g., servers 130, described below. In
some implementations, application 112e may include one or
more components that are provided by a cloud computing
vendor, e.g., as part of an SDK. In some implementations,
application 112¢ may incorporate a portion of the software
library provided by the cloud computing vendor.

[0035] Environment 100 may further include data custom-
ers 118. For example, data customer 118 may include
computing devices, e.g., reporting and analytics servers, that
analyze data stored on servers 130. Reporting and analytics
servers may execute software that analyzes data, including
machine-learning algorithms, applications that include busi-
ness logic to perform one or more actions based on the data,
software utilized by data scientists to perform ad-hoc data
analyses, etc. In some implementations, data customers 118
may be configured with a software application 112fIn some
implementations, application 112f'may include one or more
components that are provided by a cloud computing vendor,
e.g., as part of an SDK.

[0036] Environment 100 may further include a load bal-
ancer 122. While a single load balancer is shown in FIG. 1,
in different implementations, any number of load balancers
(e.g., one, two, or more) may be utilized. L.oad balancer 122
may be configured to receive data transfer requests from
data sources 110, data consumers 118, and administration
server 114. Further, load balancer 122 may receive com-
mands from administration server 114, e.g., commands from
application 112e that are to be sent to one or more of servers
130. Further, load balancer 122 may also receive state
update requests from state updater 116.

[0037] In some implementations, load balancer 122 may
be configured to distribute load, e.g., data transfer requests,
commands, state update requests, etc. over servers 130. For
example, load balancer 122 may distribute load based on one
or more objectives, e.g., a utilization rate of one or more of
servers 130, a power consumption of one or more servers
130, etc. In some implementations, load balancer 122 may
be configured to direct certain data transfer requests to
specific subgroups of servers 130. For example, load bal-
ancer 122 may be configured to compute a hash value from
one or more fields of a data transfer request from data
sources 110 or data customers 118 to identify one or more of
servers 130 that can fulfill the data transfer request. In some
implementations, load balancer 122 may maintain a map-
ping between hash values and identities of servers 130, e.g.,

Feb. 23, 2023

as a hashtable, and utilize the mapping to direct data transfer
requests. In implementations where there are multiple load
balancers 122, the hashtable may be a distributed hashtable.
In some implementations, load balancer 122 may be con-
figured to update the hashtable periodically, e.g., when one
or more servers 130 goes offline, when an additional server
130 comes online, etc. In some implementations, the hash-
table may indicate affinity between data transfer requests
and one or more of servers 130.

[0038] Environment 100 may further include one or more
servers 130, illustrated as servers 130a, 1305, and 1307. Any
number of servers 130 may be utilized. As illustrated in FI1G.
1, a server 130 may store data in a database (denoted “DB”).
In some implementations, the database in each server 130
may be part of a distributed database, e.g., a database that
stores data across a plurality of servers 130 in a distributed
manner. In some implementations, data in the distributed
database may be stored in a redundant manner, e.g., a single
data value may be stored in two, three, or more servers 130.
Such implementations may be beneficial, e.g., for data
resiliency (in the event of failure of one or more servers
130), for performance (e.g., enabling data values to be read
from or written to any of servers 130), etc. In some imple-
mentations, distributed databases such as Cloud BigTable or
Cloud Spanner from Google Inc., Apache Cassandra, Ama-
zon DynamoDB, etc. may be utilized to implement the
database.

[0039] In some implementations, servers 130 may be
physical servers (e.g., hardware computing devices) that are
configured as distributed database servers, or virtual servers
(e.g., virtual machines executing on hardware computing
devices). In various implementations, the hardware that are
utilized to implement servers 130 may be placed in a single
data center (co-located), in multiple data centers (geographi-
cally distributed), etc. and may be coupled by a network,
e.g., network 120 or other network.

[0040] In different implementations, servers 130 may be
synchronized in time such that a local timestamp in each
time-synchronized server 130 may be substantially identical
to that in other servers 130 at any given instant. Time
synchronization between servers 130 may be accomplished
by any available techniques, e.g., network time protocol
(NTP), Google TrueTime, or the like. In these implementa-
tions, the local timestamps in servers 130 may be utilized
when writing data to the local portion of the distributed
database, e.g., a timestamp may be stored in association with
data values indicating the time at which the values were
written to the database.

[0041] In some implementations, servers 130 include an
application 112g. Application 112g may provide function-
ality for handling of data generated by a data source 110 and
sent to a distributed database for storage. Application 112g
may be utilized by servers 130 for the maintenance of state
information 132a, 1325, . . . to 132n. Application 112g may
also provide other functionality. In some implementations,
application 112g may include an application component,
e.g., a library, provided by a third-party other than a devel-
oper of application 112g. For example, the application
component may be provided by a cloud computing vendor
that provides data storage and/or analytics services. For
example, the application component may be part of a
software development kit (SDK) provided by the cloud
computing vendor.

US 2023/0054341 Al

[0042] In some implementations, application 112g is uti-
lized to handle data received by servers 130. For example,
application 112g may incorporate a portion of a software
library provided by a cloud computing vendor that manages
servers 130 to receive data sent to servers 130.

[0043] In some implementations, one or more elements of
environment 100 may be part of a data center (e.g., of a
cloud computing provider), and other elements may be
outside the data center. For example, as illustrated in FIG. 1,
data sources 110 may be outside the data center, e.g., situated
at geographic locations distinct from that of the data center.
Such elements may be referred to as being outside the
perimeter of the data center.

[0044] In some implementations, one or more elements,
e.g., load balancer 122, servers 130 and/or administration
server 114 may be within a single data center, or multiple
data centers, e.g., managed by a cloud computing provider.
A trusted perimeter may be defined within the data center or
multiple data centers which houses elements that are rela-
tively secure and protected from external threats. The secu-
rity of such elements may arise from their physical location
(e.g. low risk of access from hackers, intruders, etc.), the
configuration of such elements, or combinations thereof.
Such elements may be referred to as being within the trusted
perimeter of the data center. The cloud computing provider
may control the elements within the trusted perimeter of the
datacenter, e.g., start/stop, reboot, disconnect from network,
etc. while the cloud computing provider does not control
elements outside the trusted perimeter.

[0045] The environment may also include various ele-
ments that lie outside the trusted perimeter. These may
include third party devices (e.g. sensors, computers, etc.)
and systems that communicate with elements within the
trusted perimeter of the data center, and which may pose a
higher security risk within the environment (e.g. sensors that
may be stolen and/or reconfigured, third party hardware and
software elements that may be hacked, etc.)

[0046] FIG. 2 is a flow diagram illustrating one example
of'a method 200 to selectively deliver binary applications to
a device and to selectively process data transfer requests
based on device role and/or credentials, according to some
implementations.

[0047] In block 202, a request is received from a device
for an application binary. The request may be received from
a device that is a data source (for example, one or more of
data sources 110 in FIG. 1), a device that is a data customer
(for example, a device depicted as a data customer 118 in
FIG. 1), or a device configured as an admin server (for
example, device 114 illustrated in FIG. 1). The request may
a request for access to a database to read from the database,
write to the database, or perform both read/write operations.
In some implementations, the request may include informa-
tion about the device that requests the application binary. For
example, such information may include a device identifier,
a device type, a network address of the device, a fingerprint
(e.g., a string hashed with a device key), a geographic
location of the device, etc. In some implementations, a
dynamic handshake may be performed between the device
that requests the binary or attempts a data transfer request,
and a server that handles the request from the device. In
some implementations, the dynamic handshake may utilize
a public/private key of the devices. The method proceeds to
block 204.

Feb. 23, 2023

[0048] In block 204, the information in the request is
analyzed to determine a role for the device. For example, the
device role may be “ingest-only” which indicates that the
device is to be configured such that it can write data to
servers 130 (e.g., to the distributed database) but not read
data from servers 130. For example, data sources 110 may
be configured as “ingest-only” devices. In another example,
the device role may be “ingest and extract” which indicates
that the device is to be configured such that it can write data
to servers 130, and read data from servers 130. For example,
data customers 118 may be configured in such a device role.
In another example, the device role may be “administration”
which indicates that the device is to be configured such that
it can perform administrative operations for servers 130. For
example, administration server 113 may be configured in
such a device role. In some implementations, the roles may
be hierarchical, e.g., a device in the “extract-and-ingest” role
can perform all operations of the “ingest” role. The method
proceeds to block 206.

[0049] Inblock 206, code components are identified based
on the device role determined in block 204. In some imple-
mentations, other factors such as code version, device-
specific parameters (e.g., device OS, processor type, capa-
bility to perform secure data transfer, etc.) may also be
utilized in determining the code components. For example,
code components (e.g., of the SDK) may be stored in a code
library. For example, code components may correspond to
device roles. The method proceeds to block 208.

[0050] In block 208, the code components identified in
block 206 are utilized to prepare an application binary. For
example, the code components may be compiled into
executable code or an intermediate representation (e.g.,
bytecode). In some implementations, the application binary
may be prepared as a library, e.g., that can be incorporated
into an application 112 that executes on a device that
requests the application binary. The method proceeds to
block 210.

[0051] Inblock 210, the application binary is delivered to
the device that sent the request received in block 202. For
example, the application binary may sent over network 120.
The method proceeds to block 212.

[0052] In block 212, a data transfer request, e.g., to write
data to the distributed database, or read data from the
distributed database, is received. In some implementations,
the data transfer request may include credentials, e.g., of a
user associated with the distributed database. For example,
credentials may include login information, a security token,
etc. The method proceeds to block 214.

[0053] At block 214, it is determined whether device
authentication for the device has expired. If the device
authentication has expired, the method proceeds to block
220. If the device authentication has not expired, the method
proceeds to block 216.

[0054] At block 216, device credentials are verified and
matched against a role for the device. In some implemen-
tations, device role information is provided by the device
along with the data request. In some implementations, the
device role may be associated with an identifier supplied by
the device.

[0055] Upon successful verification of the device role (e.g.
determination that the device credential matches the device
role), the method proceeds to block 218 and the data transfer
request from the device is processed, e.g., data from a data
source is received and ingested, or data is provided to the

US 2023/0054341 Al

device (e.g., a data customer). In some implementations, the
data transfer may be facilitated by providing binaries that are
specifically associated with the device role. For example, a
sensor device that makes a data transfer request and is
authorized to write data to the distributed database (autho-
rized for ingest operation) may receive a binary that enables
data write to the database. Similarly, a data analytics appli-
cation authorized to extract data (authorized to query the
database) may receive a binary that enable data read opera-
tions from the distributed database. The method proceeds to
block 212 to receive a next data transfer request.

[0056] If verification of the device role fails, the method
proceeds to block 220, and the data transfer request is
rejected. For example, unsuccessful verification may be due
to an incorrect or invalid credential provided by the device,
due to a mismatch between device role and the type of
request, etc. The method proceeds to block 212 to receive a
next data transfer request. Repeated or multiple failures in
device role verification may cause an alert to be raised, e.g.,
indicating that the device that attempted the data transfer
request may be malicious, misconfigured, etc.

[0057] Indifferent implementations, one or more blocks of
the method of FIG. 2 may be combined, skipped, or per-
formed in a different order. In some implementations, blocks
202-210 may be performed once to provide appropriate
binary to a device, while blocks 212-220 may be performed
multiple times once the device receives the binary. In some
implementations, portions of method 200 may be performed
by different servers, e.g., binary provision may be performed
by a software validation/distribution server, while data trans-
fers may be performed by a load balancer, a distributed
database, or a combination. In some implementations,
devices may be preconfigured with appropriate binaries by
performing blocks 202-210 prior to shipping the device to a
device user. In these implementations, data transfer requests
may be handled by performing blocks 212-220.

[0058] FIG. 3 illustrates time synchronized distributed
state update of a plurality of servers, according to some
implementations.

[0059] As illustrated in FIG. 3, state updater 302, load
balancer 304, and server 1, server 2, and server 3 (306, 308,
and 310) are deployed in an example setting. While three
servers (e.g., servers 130 described with reference to FIG. 1)
are illustrated in this example, there may be a greater or
lesser number of servers deployed in various implementa-
tions.

[0060] In operation, state updater 302 may issue a state
update command 312 to load balancer 304. The state update
command may include a record associated with the state
update. In some implementations, the record associated with
the state update may be included in the state update com-
mand. In some implementations, the record associated with
the state update and the state update may be sent as separate
transmissions.

[0061] Upon receipt of the state update command, load
balancer 304 may update the state within a first server (in
this illustrative example, the state is updated in server 1
(306). In some implementations, the state update is persisted
into the database by the server. In some implementations,
state update performed in a plurality of servers, e.g., two or
more servers, wherein the plurality of servers excludes one
or more servers, e.g., 2 out of N servers, 3 out of N servers,
etc. In some implementations, the update to the state within
a server is performed without a change in a current effective

Feb. 23, 2023

state within that server, such that operation of the server does
not take into account the updated state. Upon successful
completion of the state update, server 1 (306) may provide
a confirmation of successful completion 316 of the state
update to load balancer 304.

[0062] Upon receipt of the confirmation, load balancer
304 sends (318) the new state and a scheduled update time
to the N servers. In the example illustrated in FIG. 3, the new
state and the scheduled update is sent to server 1 306 server
2 308 and server 3 310. In different implementations, load
balancer may perform the send operation as a broadcast,
multicast, or unicast operation. Further, load balancer 304
may queue incoming requests (e.g., data transfer requests or
other state update requests) that are received until the
scheduled update is completed (320).

[0063] Each server that receives the new state, e.g., server
1 (306), server 2 (308), and server 3 (310) (which are time
synchronized) may perform state updates within their
respective databases at the scheduled update time. In the
illustrative example shown in FIG. 3, server 1 306 success-
fully updates to the new state (322) and server 2 308
successfully updates (324) to the new state, whereas server
3 310 fails (326) to update to the new state. For example,
server 1 306 may change the effective state from a previous
effective state to the state indicated in the state update
command at the scheduled update time. Upon successful
updates, server 1 (306) and server 2 (308) transmit respec-
tive messages (330 and 332) to load balancer 304 confirming
that local state information has been successfully updated.
[0064] Upon receipt of a successful state update message
from one or more servers, load balancer 304 may transmit
(334) queued requests to the servers that indicated success-
ful state updates. In some implementations, load balancer
304 may queue incoming requests until the receipt at load
balancer 304 of confirmation of a successful state update
from at least one of the servers. For example, incoming
requests may be requests to read data from or write data to
a database hosted on the one or more servers.

[0065] In some implementations, a reboot command may
be sent (336) by load balancer 304 to a server from which
a state update confirmation was not received by load bal-
ancer 304. Alternatively, a server that fails to perform the
state update may be configured to reboot itself upon such
failure. In the example illustrated in FIG. 3, a confirmation
message associated with a state update is not received by
load balancer 304 from server 3 310.

[0066] Upon reboot (338), server 3 310 may request a new
state (340) from other servers, e.g., server 1 (306) or may
retrieve such state from the local database, e.g., if the state
value was stored previously in the local database (as
described with reference to storing and confirmation steps
314 and 316). The new state is provided (342) by server 1
(306) or retrieved from local persistent database and may be
utilized to configure the rebooted server 3 (310). Upon
successful configuration with the new state, server 3 may be
utilized to process data transfer requests.

[0067] FIG. 4 illustrates an example environment 400 with
data ingest and extract processes, and storing of data in a
distributed manner, according to some implementations.
[0068] It is appreciated that many data sources such as
Internet of Things (IoT) sensors (e.g., home thermostats,
industrial sensors, wearable sensors such as heart rate moni-
tors, pedometers, etc.), online trackers (e.g., cookies, click-
fraud detection tools, etc.) point-of-sale (PoS) systems,

US 2023/0054341 Al

security software and hardware (e.g., intrusion detection
software, smart locks, etc.) generate a large volume of data
during operation. A very large number of such sensors has
already been deployed and the number is growing rapidly.
For example, such data can run into several petabytes per
day.

[0069] When data is ingested from such sensors, e.g., for
storage by one or more servers (e.g., cloud-based servers),
some techniques attempt to implement optimizations that
allow the data to be written fast while sacrificing read use
cases. This problem is magnified when distributed databases
(which rely on distributed hash-table principles as an
anchor) are utilized to store such data. The lack of ability (or
optimization) for read or search operations can be detrimen-
tal in many use contexts. For example, online stores benefit
from real-time (or near real-time) data analyses that enable
adjustment of pricing, discounts, warehouse management
etc. In another example, online advertising providers, air-
lines, hotels, etc. that have rapidly diminishing inventory
can benefit from quick information on purchase patterns and
inventory. In another example, security functions such as
intrusion detection or detection and remediation of denial-
of-service attacks, are more effective when incoming data
can be analyzed quickly. Implementations of data ingest and
extract processes, as described with reference to FIG. 4,
were conceived in light of at least some of these problems.

[0070] Data is received from data sources 401 by a server
402 that executes an ingest process 404. Data sources 401
may be any type of data sources, e.g., any of data sources
110. Data may be received over a network, e.g., via an
upload from a data source 401. For example, a data source
may send data periodically (e.g., once every 5 seconds, once
every minute, etc.) or upon occurrence of certain events
(e.g., a customer purchase transaction, an anomalous sensor
reading, a detected security breach or suspicious activity,
etc.). In another example, server 402 may request data from
a data source 401, e.g., periodically, during a high availabil-
ity period of server 402, etc. In different implementations,
server 402 may provide an application programming inter-
face (API) that may be utilized by a data source 401 to send
data to server 402. For example, the API may allow data
source 401 to indicate a type of one or more fields in the
data, a periodicity with which the data source sends data,
size of data being sent, reliability requirements for the data,
etc. In some implementations, a software application or
firmware that executes on data source 401 may incorporate
a software development kit (SDK) component that enables
data source 401 to send data to server 402.

[0071] Data received from a data source 401 is provided to
an ingest process 404. Ingest process 404 may be imple-
mented as a software application. In some implementations,
ingest process 404 may be implemented via dedicated
hardware, e.g., a field-programmable gate array (FPGA), an
application specific integrated circuit (ASIC), a co-processor
or accelerator, etc. Ingest process 404 receives the data and
inserts the data into a primary table for storage. For example,
the primary table may be stored on one or more hosts 410.
For example, ingest process 404 may store data from a first
data source in a first set of tables, data from a second data
source in a second set of tables, and so on. In some
implementations, a single host 410 may store the primary
table from a particular data source. In different implemen-
tations, the primary table may be implemented as a set of
tuples (rows) of a relational database structure, as key-value

Feb. 23, 2023

pairs, etc. Each tuple or key-value pair may correspond to a
single data observation received from a data source. A single
data observation may include any number of fields, e.g., one
field (e.g., current temperature), two fields (e.g., current
pressure and temperature) or more than two fields (e.g.,
current temperature, pressure, location, humidity level, etc.)
[0072] In some implementations, each data observation
(record) received from a data source 401 may be assigned a
primary key. In some implementations, the primary key may
be assigned during the ingest process. In some implemen-
tations, the data source that sends the data may indicate a
particular field that is to be used as a primary key during the
ingest process. For example, FIG. 4 shows a primary key
(values 1, 2, 3, ..., 99). The primary key is unique to each
tuple of the stored data.

[0073] Values of the fields received in the data observation
(record) may be stored in columns of the primary table, e.g.,
columns 1, 2, . .., N, as shown in FIG. 4. The number of
columns may correspond to the number of fields in the data
observation. In some implementations, ingest process 404
may include additional columns for other fields, e.g., time-
stamp, data source identifier, etc., in addition to the fields in
the data observation.

[0074] In some implementations, the ingest process may
perform validation of incoming data observations. For
example, the ingest process may validate that the data
observation includes an appropriate number of fields, that
values for each field match a predefined data type for the
field, etc.

[0075] In some implementations, data received from data
sources is processed in memory of server 402 that executes
the ingest process. In-memory processing can include any of
several different types of operations. For example, in some
implementations, in-memory processing includes validation
of bounds on the received data values, e.g., confirming that
data values are not missing, data is within predefined bounds
(e.g., defined for a particular data source) etc. For example,
predefined bounds for data from an in-home temperature
sensor may specify a range of temperatures that correspond
to an operational range for the sensor.

[0076] In some implementations, in-memory processing
may include appending other data (e.g., contextually rel-
evant data) to data received from a data source prior to
writing the data to the primary table or performing view
updates. For example, such contextual appends may include
joining the IP address of the data source with geographic
location information, joining a stock-keeping unit identifier
(SKU) to a price field in the received data, etc. In some
implementations, the contextual data may be cached in
memory and persisted in the stored data. In some imple-
mentations, techniques described with reference to FIG. 3
may be utilized to ensure that contextual data is consistent
across a plurality of servers that are utilized for data ingest,
e.g., by utilizing the time synchronized update techniques to
update contextual data cached or stored by the plurality of
servers.

[0077] In some implementations, in-memory processing
may include format conversion of data received a data
source, e.g., from an inefficient format such as string to an
efficient format such as enums. In some implementations,
in-memory processing may include detection of anomalies
in data values and provide warning or alarms to data
customers, if necessary. For example, anomalies may be
detected based on historical values, based on predefined

US 2023/0054341 Al

valid range of values, variation in data values from the same
data source over a period of time, etc. When in-memory
processing is utilized, such processing may be carried out
prior to inserting data into the primary table and updating
views based on the data.

[0078] In some implementations, ingest process 404 may
be implemented as a multithreaded process with different
threads handling incoming data observations from different
data sources, In some implementations, ingest process 404
may be implemented in a distributed manner, e.g., on a
plurality of servers, which may be beneficial, e.g., when
there are a large number of data sources 401, when data
sources are geographically distributed, etc. For example,
ingest process 404 may be implemented on multiple servers
such that incoming data observations from geographically
distributed data sources are ingested by a ingest process 404
that executes on a server that is physically proximate to the
data source that provided the data observation. In some
implementations, distributed implementations of ingest pro-
cess 404 may be based on values of incoming data obser-
vations (e.g., partitioning by range of data values), by the
rate at which data ingest requests are received, etc. In some
implementations, additional servers that execute ingest pro-
cess 404 may be spawned in response to an increase in the
rate of data ingest requests. Implementation of ingest pro-
cess 404 in this manner facilitates high velocity ingestion
such that incoming data observations are inserted into the
primary table (e.g., stored on host 410) without delay.
[0079] In some implementations, an extract process (408)
may be executed on a server (406) concurrent with the ingest
process 404. While a single extract process and server are
shown in FIG. 4, it will be appreciated that any number of
extract processes executing on a plurality of servers may be
utilized, in a manner similar to ingest process 404 described
above.

[0080] In some implementations, extract process 408 may
be implemented as a software application. In some imple-
mentations, extract process 408 may be implemented via
dedicated hardware, e.g., a field-programmable gate array
(FPGA), an application specific integrated circuit (ASIC), a
co-processor or accelerator, etc. Extract process 408 is
configured to access hosts (e.g., host 1 410) that stores the
primary table, generated by ingest process 404.

[0081] In some implementations, extract process 408 may
be configured to create one or more views based on the
primary table. Based on the application, extract process 408
may access the primary table during execution of the ingest
process 404 (e.g., ingest process 404 may directly provide
data observations to extract process 408; an insert into the
primary table may trigger extract process 408, etc.), peri-
odically (e.g., once a minute, once an hour, etc.), or in
on-demand manner (e.g. when a view created by the extract
process 408 is accessed).

[0082] Views created by extract process 408 may be
accessible by various other applications. For example, a
report generation application, a dashboard application, an
analytics application, etc. may utilize an application pro-
graming interface (API) to access the views. In some imple-
mentations, such applications may utilize the API by incor-
porating one or more components of a software development
kit (SDK).

[0083] In different implementations, views created by
extract process 408 may be orthogonal to the primary table,
e.g., have different primary key than the primary table.

Feb. 23, 2023

Further, the views can (optionally) duplicate one or more
fields of the primary table, e.g., to facilitate fast reads, since
any application that accesses the view can obtain the data
directly, without accessing the primary table. In some imple-
mentations, a view may hold a reference to a primary data
element (e.g., a tuple of the primary table), e.g., as shown in
the view stored by host 2 (420). As shown in FIG. 2, the
view stored on host 2 utilizes values from column 1 of the
primary table as its primary key, and stores the correspond-
ing identifiers (e.g., primary key values 1, 2,3, ..., 99) in
columns of the view. Still further, a view may combine one
or more values in different columns of the primary table into
a single column. For example, the view stored by host 3
(430) utilizes values from column 2 of the primary table (S1,
S2,...)its primary key and combines the primary key and
column 1 of the primary table into a single field (e.g., values
in column 1 include “1,A”, “2,B” etc.) In some implemen-
tations, a view may aggregate values (e.g., summing values,
counting of values, etc. grouped by one or more fields) from
a plurality of tuples of the primary table (not shown). In
some implementations, derivations from one or more cre-
ated views may be created as additional views.

[0084] Views created by extract process 408 may be stored
on one or more servers. For example, FIG. 4 shows servers
420 and 430 that each hold a corresponding view generated
by extract process 408. While single servers 420 and 430 are
shown in FIG. 4, it will be appreciated that the views may
be stored in multiple servers in a distributed manner, and
may be partitioned based on application-specific context.
For example, views by different dimensions (e.g., that utilize
different fields as their primary keys) may be hashed to
different servers.

[0085] In some implementations, extract process 408 may
create views based on a specification provided by a customer
application (e.g., a reporting application, analytics applica-
tion, etc.) In these implementations, the SDK may provide
a mechanism for the application to provide declarations
corresponding to a view. For example, the declaration may
specify fields of the primary table that are to be duplicated
in the view, fields that are to be combined in the view, a
refresh cycle for the view (e.g., real-time, periodic, or
on-demand), etc. In some implementations, extract process
408 is implemented to analyze the declarations provided by
a customer application to create the specified views.
[0086] In some implementations, extract process 408 may
create views based on analysis of query access patterns that
access data from the primary table or from one or more
views. For example, such analysis may be performed using
pattern-recognition techniques, machine-learning tech-
niques, etc. In some implementations, extract process 408
may store a count of queries that hit the primary table or one
or more views, and a corresponding list of fields for each
query to enable detection of patterns. In some implementa-
tions, such stored information may be based on a particular
period of queries, e.g., queries in the past hour, queries in the
past day, queries in the past year, etc.

[0087] Ifitis determined based on the analysis that certain
dimensions (fields) of the primary table are queried repeat-
edly (e.g., in a particular period of time), extract process 408
may automatically create a view that includes those dimen-
sions, such that future queries may be served directly from
the view, without accessing the primary table. In another
example, if it is determined that certain primary tables (or
fields) are queried within a very short interval of data ingest,

US 2023/0054341 Al

extract process 408 may create a view in real-time and use
multidimensional hashing (e.g., within a load balancer).
[0088] The query API provided to customers (e.g., for
reporting and analytics applications) may be implemented
such that customers can provide queries without an explicit
reference to particular servers or stored data structures (e.g.,
primary table, views). In this manner, the complexity of
back-end implementations of tables and views may be
hidden from customers that access data.

[0089] In different implementations, automatic creation of
views may not be performed, e.g., if the available servers are
storage-constrained, incoming queries may be processed by
accessing the primary table directly, even if the queries have
recognizable patterns. Alternatively, when applications indi-
cate that quick and up-to-data results to queries are impor-
tant and when the corresponding server infrastructure is
available, more views may be automatically created based
on recognized query patterns. In different implementations,
a threshold may be set for automatic creation of views based
on available storage, query pattern, relative costs of serving
a query from the primary table vs. a query-specific view,
agreements with customer with respect to quality-of-service
(e.g., response time or data freshness guarantees) for que-
ries, etc.

[0090] In some implementations, data customers may
specify a quality of service requirement, e.g., for one or
more predefined queries, or for dynamically generated que-
ries, and indicate a price per query that the data customer is
willing to pay. In some implementations, data customers
may indicate a query volume for data extract queries and a
corresponding budget. Further, in some implementations,
data customers may provide hints (e.g., via configuration
settings, as part of queries, etc. Such customer-provided
parameters may be utilized in determining whether to create
one or more views, a refresh interval for the created views,
etc.

[0091] In some implementations, further optimizations of
the primary table may be performed. For example, ingest
process 404 may determine, based on queries received via
extract process 408 (e.g., to access the primary table to fulfill
queries from a customer application or to create views) that
certain columns are not utilized in queries (or are utilized
infrequently). In these implementations, ingest process 404
may compact such columns of the primary table into a
binary large object (BLOB) representation. Such conversion
(or merging) of one or more columns of the primary table
may change a schema-oriented field into a schemaless
structure. Such conversion may reduce ingestion costs and/
or storage costs to store such data. At a later time, if one or
more of the fields in a BLOB representation are accessed
repeatedly (in a pattern that meets a conversion threshold),
such fields may be converted into columns of the primary
table.

[0092] In some implementations, ingest process 404 and/
or extract process 408 may utilize storage tiering when
storing data for the different columns of the primary table
and one or more of the views. For example, server 410 that
stores the primary table or servers 420 and 430 that store
different views may include different types of storage hard-
ware, each with an associated cost. Such storage hardware
may include, e.g., in-memory storage (e.g., data being stored
in DRAM or SRAM), storage on high-speed hardware (e.g.,
3D XPoint memory, flash memory, etc.), storage on hard
disk drives, tape drives, etc. Further, a plurality of servers

Feb. 23, 2023

410 may be utilized, each with a different cost and speed
tradeoff (e.g., dedicated high-speed storage servers, lower
cost servers, etc.). Storage tiering may be adjusted dynami-
cally, e.g., based on rate of receipt of data observations from
data sources 401, queries from customer applications, qual-
ity-of-service guarantees, and cost.

[0093] In some implementations, storage tiering may
enable ingest process 404 and/or extract process 408 to
perform age-based time-to-live on various elements of the
primary table and/or views. For example, if the data obser-
vations correspond to point-of-sale (PoS) transactions, and a
reporting application is determined to access data over the
past 3 hours (in a rolling window fashion), data observations
that are older than 3 hours may be moved to a lower-cost
storage tier (e.g., from in-memory to flash, or from flash to
hard disk driver storage) with a corresponding increase in
the time necessary to respond to a query. In another example,
columns of the primary table that are not used in queries may
be stored on lower cost storage tiers after a particular time,
while other columns may be retained on higher cost storage.
[0094] In different implementations, consistency of the
views created by extract process 408 may be ensured by
utilizing time-synchronized distributed state update tech-
niques described with reference to FIG. 3 above. For
example, such techniques may be utilized in periodic cre-
ation (or update) of views. In some implementations, multi-
dimensional load balancer hashing may be utilized in real-
time creation of views. In these implementations, the views
may be created in real time, via the load balancer sending a
first request to a first server (or set of servers) to hash data
by one or more first dimensions, and a second request to a
second server (or set of servers) to hash data by one or more
second dimensions.

[0095] Determination of whether to proceed with the
periodic creation of views or real-time creation of views
may be performed using various mechanisms. For example,
atime lag between an ingest operation that includes data that
requires modification of a particular view and an extract
operation (e.g., in response to an API call from a data
customer) that accesses the view may be determined for
such determination. If the time lag is lower than threshold,
automatic creation and refresh of views may be performed
in real-time, and otherwise, automatic creation and refresh
may be performed periodically, e.g., in a batch manner.
[0096] The described techniques enable quick ingest of
data (e.g., writes to the primary table) while also allowing
for query or search operations to be performed simultane-
ously. By utilizing views that may be stored on servers
different from the servers that store the primary table, the
techniques can reduce or eliminate the performance impact
that read operations have on write operations and vice-versa.
Further, automatic creation of the primary table, automatic
compacting of unutilized fields into BLOB storage, and
automatic (or user-guided) creation of views reduces the
burden on software developers (e.g., that develop reporting
or analytics applications, or software for data sources) since
such software can utilize the API provided by ingest process
404 and extract process 408, without needing to account for
server-side implementation of tables and views.

[0097] While server (host) 410 is shown as storing the
primary table and servers (hosts) 420 and 430 are shown as
storing views that are illustrated in a tabular form, in
different implementations, the primary table and/or the
views may be sparse, e.g., different rows of the table or view

US 2023/0054341 Al

may include different numbers of columns. Further, it will be
understood that the data structures used to store the data may
include database tuples (e.g., of a relational database),
key-value pairs, or any other type of suitable data structure.

[0098] The described techniques provide distributed data
storage with flexible data ingest and extract that enable
selection of appropriate trade-offs of speed and cost for
ingestion of data from data sources, data cleansing and
validation, and data storage (including in tables and views
that store data in different dimensions allowing for efficient
queries and searches. Data ingest and extract as described
with reference to FIG. 4 combines data creation and storage,
and querying/searching into a single system, instead of
different systems for the individual operations. Further, by
flexibly (and automatically) creating views that match query
patterns, and allowing customers to specify views by use of
simple declarative statements, the techniques enable report-
ing and data analytics with low operating expense and
minimal involvement from software developers.

[0099] FIG. 5 is a block diagram of an example computing
device 500 which may be used to implement one or more
features described herein. In one example, device 500 may
be used to implement a computer device, e.g., a storage
optimization device, and perform appropriate method imple-
mentations described herein. Device 500 can be any suitable
computer system, server, or other electronic or hardware
device. For example, the device 500 can be a mainframe
computer, server computer, desktop computer, workstation,
portable computer, or medical device. In some implemen-
tations, device 500 includes a processor 502, input/output
(I/O) interface 504, one or more storage devices 506, and a
memory 510.

[0100] Processor 502 can be one or more processors
and/or processing circuits to execute program code and
control basic operations of the device 500. A “processor”
includes any suitable hardware and/or software system,
mechanism or component that processes data, signals or
other information. A processor may include a system with a
general-purpose central processing unit (CPU), multiple
processing units, dedicated circuitry for achieving function-
ality, or other systems. Processing need not be limited to a
particular geographic location or have temporal limitations.
For example, a processor may perform its functions in
“real-time,” “offline,” in a “batch mode,” etc. Portions of
processing may be performed at different times and at
different locations, by different (or the same) processing
systems. A computer may be any processor in communica-
tion with a memory.

[0101] Memory 510 is typically provided in device 500 for
access by the processor 502 and may be any suitable
processor-readable storage medium, e.g., random access
memory (RAM), read-only memory (ROM), Electrical
Erasable Read-only Memory (EEPROM), Flash memory,
etc., suitable for storing instructions for execution by the
processor, and located separate from processor 502 and/or
integrated therewith. Memory 510 can store software oper-
ating on the server device 500 by the processor 502, includ-
ing an operating system 512, one or more applications 514,
and application data 520. In some implementations, appli-
cations 514 can include instructions that enable processor
502 to perform the functions described herein, e.g., some or
all of the methods of FIG. 2 and/or FIG. 3, and the functions

Feb. 23, 2023

described with reference to FIG. 4. Memory 510 also stores
application data 520, e.g., ingested data, application code
components, etc.

[0102] For example, applications 514 can include one or
more applications that provide functionality to selectively
deliver binary applications to a device and to selectively
process data transfer requests based on device role and/or
credentials, as described with reference to FIG. 2, time
synchronized distributed state update of a plurality of serv-
ers, as described with reference to FIG. 3, and/or data ingest
and extract and storing of data in a distributed manner, as
described with reference to FIG. 5.

[0103] Any of software in memory 510 can alternatively
be stored on any other suitable storage location or computer-
readable medium. In addition, memory 510 (and/or other
connected storage device(s)) can store other instructions and
data used in the features described herein. Memory 510 and
any other type of storage (magnetic disk, optical disk,
magnetic tape, or other tangible media) can be considered
“storage” or “storage devices.”

[0104] In various implementations, applications 514 can
include a machine-learning application. The machine-learn-
ing application may utilize Bayesian classifiers, support
vector machines, neural networks, or other learning tech-
niques. In some implementations, machine-learning appli-
cation may include a trained model, an inference engine, and
data. In some implementations, data may include training
data, e.g., data used to generate trained model. For example,
training data may include historical data on data extract
patterns by one or more customer applications (e.g., report-
ing applications, data analytics applications, data-scientist
guided data exploration or analysis applications, etc. Train-
ing data may be obtained from any source, e.g., a data
repository specifically marked for training.

[0105] In some implementations, the machine-learning
application excludes data. For example, in these implemen-
tations, the trained model may be generated, e.g., on a
different device, and be provided as part of machine-learning
application. In various implementations, the trained model
may be provided as a data file that includes a model structure
or form, and associated weights. The inference engine may
read the data file for a trained model and implement a neural
network with node connectivity, layers, and weights based
on the model structure or form specified in the trained
model.

[0106] Machine-learning application also includes a
trained model. In some implementations, the trained model
may include one or more model forms or structures. For
example, model forms or structures can include any type of
neural-network, such as a linear network, a deep neural
network that implements a plurality of layers (e.g., “hidden
layers” between an input layer and an output layer, with each
layer being a linear network), a convolutional neural net-
work (e.g., a network that splits or partitions input data into
multiple parts or tiles, processes each tile separately using
one or more neural-network layers, and aggregates the
results from the processing of each tile), a sequence-to-
sequence neural network (e.g., a network that takes as input
sequential data, such as words in a sentence, frames in a
video, etc. and produces as output a result sequence), etc.
The model form or structure may specify connectivity
between various nodes and organization of nodes into layers.
For example, nodes of a first layer (e.g., input layer) may
receive data as input data or application data, e.g., data

US 2023/0054341 Al

extract patterns from a customer software application. Sub-
sequent intermediate layers may receive as input output of
nodes of a previous layer per the connectivity specified in
the model form or structure. These layers may also be
referred to as hidden layers. A final layer (e.g., output layer)
produces an output of the machine-learning application, e.g.,
one or more view definitions for views to be created.

[0107] I/O interface 504 can provide functions to enable
interfacing the computing device 500 with other systems and
devices. For example, network communication devices,
external storage devices, and other input/output devices can
communicate via interface 504. In some implementations,
the /O interface 504 can connect to interface devices
including input devices (keyboard, pointing device, touch-
screen, microphone, camera, scanner, etc.) and/or output
devices (display device, speaker devices, printer, motor,
etc.).

[0108] Storage device 506 is one example of a storage
device, e.g., a solid-state storage device, a hard disk drive,
etc. that can be used by operating system 512 and/or one or
more applications 514. Storage device 506 is a direct
attached storage device, e.g., coupled to processor 502 and
directly controlled by processor 502. Processor 502 is
coupled to I/O interface(s) 504, storage device 506, and
memory 510 via local connections (e.g., a PCI bus, or other
type of local interface) and/or via networked connections.

[0109] For ease of illustration, FIG. 5 shows one block for
each of processor 502, I/O interface 5046, storage device
506, and memory 510 with software blocks 512, 514, and
520. These blocks may represent one or more processors or
processing circuitries, operating systems, memories, 1/O
interfaces, applications, and/or software modules. In other
implementations, device 500 may not have all of the com-
ponents shown and/or may have other elements including
other types of elements instead of, or in addition to, those
shown herein. Any suitable component or combination of
components of system 102 or similar system, or any suitable
processor or processors associated with such a system, may
perform the operations described, e.g., with reference to
FIGS. 2 and 4.

[0110] A user device can also implement and/or be used
with features described herein. Example user devices can be
computer devices including some similar components as the
computing device 500. An operating system, software and
applications suitable for the client device can be provided in
memory and used by the processor. The /O interface for a
client device can be connected to network communication
devices, as well as to input and output devices, e.g., a
microphone for capturing sound, a camera for capturing
images or video, audio speaker devices for outputting sound,
a display device for outputting images or video, or other
output devices.

[0111] One or more methods described herein (e.g.,
method 200) can be implemented by computer program
instructions or code, which can be executed on a computer.
For example, the code can be implemented by one or more
digital processors (e.g., microprocessors or other processing
circuitry), and can be stored on a computer program product
including a non-transitory computer-readable medium (e.g.,
storage medium), e.g., a magnetic, optical, electromagnetic,
or semiconductor storage medium, including semiconductor
or solid state memory, magnetic tape, a removable computer
diskette, a random access memory (RAM), a read-only

Feb. 23, 2023

memory (ROM), flash memory, a rigid magnetic disk, an
optical disk, a solid-state memory drive, etc.

[0112] The program instructions can also be contained in,
and provided as, an electronic signal, for example in the
form of software as a service (SaaS) delivered from a server
(e.g., a distributed system and/or a cloud computing system).
Alternatively, one or more methods can be implemented in
hardware (logic gates, etc.), or in a combination of hardware
and software. Example hardware can be programmable
processors (e.g. Field-Programmable Gate Array (FPGA),
Complex Programmable Logic Device), general purpose
processors, graphics processing units (or GPUs) Application
Specific Integrated Circuits (ASICs), and the like. One or
more methods can be performed as part of or component of
an application running on the system, or as an application or
software running in conjunction with other applications and
operating system.

[0113] One or more methods described herein can be run
in a standalone program that can be run on any type of
computing device, a program run in a web browser, a server
application that executes on a single computer, a distributed
application that executes on multiple computers, etc. In one
example, a client/server architecture can be used, e.g., a
mobile computing device (as a client device) sends user
input data to a server device and receives from the server the
final output data for output (e.g., for display). In another
example, computations can be split between the mobile
computing device and one or more server devices.

[0114] Although the description has been described with
respect to particular implementations thereof, these particu-
lar implementations are merely illustrative, and not restric-
tive. Concepts illustrated in the examples may be applied to
other examples and implementations. Note that the func-
tional blocks, operations, features, methods, devices, and
systems described in the present disclosure may be inte-
grated or divided into different combinations of systems,
devices, and functional blocks as would be known to those
skilled in the art. Any suitable programming language and
programming techniques may be used to implement the
routines of particular implementations. Different program-
ming techniques may be employed, e.g., procedural or
object-oriented. The routines may execute on a single pro-
cessing device or multiple processors. Although the steps,
operations, or computations may be presented in a specific
order, the order may be changed in different particular
implementations. In some implementations, multiple steps
or operations shown as sequential in this specification may
be performed at the same time.

1. A computer-implemented method comprising:

receiving a record from a data source at a server, wherein

the record includes a plurality of fields processing the
record at the server, wherein the processing includes
performing data validation of the record;

after the processing, storing the record in a primary table

of a database on a first server, wherein the record is
associated with a primary key in the primary table that
is unique to the record; and

creating a view based on the primary table.

2. The computer-implemented method of claim 1,
wherein the view has a different primary key than the
primary key of the primary table and includes a subset of the
plurality of fields such that at least one of the plurality of
fields is excluded from the view.

US 2023/0054341 Al

3. The computer-implemented method of claim 1,
wherein processing the record further includes at least one
of: appending other data to the record, performing format
conversion of one or more fields in the record, or detecting
an anomaly in the record.

4. The computer-implemented method of claim 1, further
comprising receiving a declaration that specifies a subset of
the plurality of fields for the view.

5. The computer-implemented method of claim 4,
wherein the declaration further specifies a refresh cycle for
the view, and further comprising:

updating the view per the refresh cycle.

6. The computer-implemented method of claim 5,
wherein the updating comprises synchronizing the view with
the primary table.

7. The computer-implemented method of claim 1, further
comprising analyzing a query access pattern for the primary
table, wherein creating the view is based on the query access
pattern indicating that a subset of fields is queried repeatedly
in a particular period of time.

8. The computer-implemented method of claim 1,
wherein the primary table is stored on a storage device
selected based on storage tiering parameters.

9. The computer-implemented method of claim 1, further
comprising:

storing the view on a second server different from the first

server, the first server and the second server are time
synchronized.

10. The computer-implemented method of claim 1, fur-
ther comprising:

creating one or more additional views that include respec-

tive subsets of the plurality of fields; and

storing the one or more additional views on respective

servers that are different from the first server and the
second server.

11. A computing device comprising:

a hardware processor; and

a memory coupled to the hardware processor, with

instructions stored thereon that, when executed by the

hardware processor, cause the hardware processor to

perform operations comprising:

receiving a record from a data source at a server,
wherein the record includes a plurality of fields

processing the record at the server, wherein the pro-
cessing includes performing data validation of the
record;

after the processing, storing the record in a primary
table of a database on a first server, wherein the
record is associated with a primary key in the pri-
mary table that is unique to the record; and

creating a view based on the primary table.

12. The computing device of claim 11, wherein process-
ing the record further includes at least one of: appending

Feb. 23, 2023

other data to the record, performing format conversion of
one or more fields in the record, or detecting an anomaly in
the record.

13. The computing device of claim 11, wherein the
operations further comprise:

receiving a declaration that specifies a subset of the

plurality of fields for the view.

14. The computing device of claim 11, wherein the
operations further comprise analyzing a query access pattern
for the primary table, wherein creating the view is based on
the query access pattern indicating that a subset of fields are
queried repeatedly in a particular period of time.

15. The computing device of claim 11, wherein the
operations further comprise:

creating one or more additional views that include respec-

tive subsets of the plurality of fields; and

storing the one or more additional views on respective
servers that are different from the first server and the
second server.

16. A non-transitory computer-readable medium, with
instructions stored thereon that, when executed by a proces-
sor, cause the processor to perform operations comprising:

receiving a record from a data source at a server, wherein

the record includes a plurality of fields
processing the record at the server, wherein the processing
includes performing data validation of the record;

after the processing, storing the record in a primary table
of a database on a first server, wherein the record is
associated with a primary key in the primary table that
is unique to the record; and

creating a view based on the primary table.

17. The non-transitory computer-readable medium of
claim 16, wherein processing the record further includes at
least one of: appending other data to the record, performing
format conversion of one or more fields in the record, or
detecting an anomaly in the record.

18. The non-transitory computer-readable medium of
claim 16, wherein the operations further comprise receiving
a declaration that specifies a subset of the plurality of fields
for the view.

19. The non-transitory computer-readable medium of
claim 16, wherein the operations further comprise analyzing
a query access pattern for the primary table, wherein creat-
ing the view is based on the query access pattern indicating
that a subset of fields are queried repeatedly in a particular
period of time.

20. The non-transitory computer-readable medium of
claim 16, wherein the operations further comprise:

creating one or more additional views that include respec-

tive subsets of the plurality of fields; and

storing the one or more additional views on respective

servers that are different from the first server and the
second server.

	Page 1 - Bibliography/Abstract
	Page 2 - Drawings
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Drawings
	Page 7 - Description
	Page 8 - Description
	Page 9 - Description
	Page 10 - Description
	Page 11 - Description
	Page 12 - Description
	Page 13 - Description
	Page 14 - Description
	Page 15 - Description
	Page 16 - Description/Claims
	Page 17 - Claims

