(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
30 December 2021 (30.12.2021)

(10) International Publication Number

WO 2021/262434 A1l

WIPO I PCT

(51) International Patent Classification:
GO6T 15/00 (2006.01) GO6T 7/50 (2017.01)
GO6T 15/04 (2011.01) GO6T 7/90 (2017.01)
GO6T 15/40 (2011.01)

1, 2 & 3, Boxborough, Massachusetts 01719 (US). WEI,
Tien En; ¢/o Advanced Micro Devices, Inc., 90 Central St.,
Floors 1, 2 & 3, Boxborough, Massachusetts 01719 (US).

(74) Agent: GUSHUE, Joseph P.; Volpe Koenig, 30 South 17th

(21) International Application Number: Street, Duane Morris Plaza, Suite 1800, Philadelphia, Penn-
PCT/US2021/036485 sylvania 19103 (US).

(22) International Filing Date: (81) Designated States (unless otherwise indicated, for every

08 June 2021 (08.06.2021) kind of national protection available). AE, AG, AL, AM,

(25) Filing Language: English AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,

CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,

(26) Publication Language: English Dz, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,

L HR, HU, ID, IL, IN, IR, IS, IT, JO, JP, KE, KG, KH, KN,

(30) Priority Data: KP, KR, KW, KZ. LA, LC, LK, LR, LS, LU, LY, MA, MD,

63/044,703 26 June 2020 (26.06.2020) US ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NL NO,

17/028,811 22 September 2020 (22.09.2020) US NZ. OM, PA, PE, PG, PH, PL. PT, QA. RO, RS, RU, RW,

(71) Applicant: ADVANCED MICRO DEVICES, INC. SA, SC, SD, SE, SG. SK, SL, ST, SV, SY. TH, TJ, TM, TN,

[US/US]; 2485 Augustine Drive, Santa Clara, California TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM, ZW.

95054 (US). (84) Designated States (unless otherwise indicated, for every

(72) Inventors: BRENNAN, Christopher J., c/o Advanced kind of regional protection available). ARIPO (BW, GH,

Micro Devices, Inc., 90 Central St., Floors 1, 2 & 3, Boxbor-
ough, Massachusetts 01719 (US). GHODRAT, Fatanch
F.; c/o Advanced Micro Devices, Inc., 90 Central St., Floors

GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

(54) Title: LOAD INSTRUCTION FOR MULTI SAMPLE ANTI-ALIASING

600
W

Detect instruction for multi-sample
anti-aliasing load operation

| _—602

A

y

color componen

Determine sampling rate of source data for
load operation, data storage format of source
data, and loading mode indicating whether
load operation requests same or different

| _—604

ts, or depth data

A

y

storage format, and lo
from multi-sample s

Based on determined sampling rate, data

| _—606

ading mode, load data
ource into a register

Fic. 6

wO 20217262434 A1 |0 0000 KA 0 0 0 00 0 00

(57) Abstract: Techniques for performing multi-sample anti-aliasing operations are provided. The techniques include detecting an
instruction for a multi-sample anti-aliasing load operation; determining a sampling rate of source data for the load operation, data
storage format of the source data, and loading mode indicating whether the load operation requests same or different color components,
or depth data; and based on the determined sampling rate, data storage format, and loading mode, load data from a multi-sample source
into a register.

[Continued on next page]

WO 20217262434 A | [IN 1]} 00 00000 OO0 0

EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SL SK, SM,
TR). OAPI (BF, BJ, CF, CG, CL CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

WO 2021/262434 PCT/US2021/036485

LOAD INSTRUCTION FOR MULTI SAMPLE ANTI-ALIASING

CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the benefit of U.S. Provisional application No.
63/044,703, entitled “LOAD INSTRUCTION FOR MULTI SAMPLE ANTI-ALIASING,”
filed on June 26, 2020 and U.S. Non-Provisional Application No. 17/028,811,
entitled “LOAD INSTRUCTION FOR MULTI SAMPLE ANTI-ALIASING,” filed
on September 22, 2020, the entirety of which are hereby incorporated herein by

reference.

BACKGROUND
[0002] Three-dimensional (“3D”) graphics processing pipelines perform a
series of steps to convert input geometry into a two-dimensional (“2D”) image for
display on a screen. In multi-sample anti-aliasing, a high resolution image is
generated and then “resolved” into a lower resolution image. Improvements to

this technology are constantly being made.

BRIEF DESCRIPTION OF THE DRAWINGS
[0003] A more detailed understanding can be had from the following
description, given by way of example in conjunction with the accompanying
drawings wherein:
[0004] Figure 1 is a block diagram of an example device in which one or more

features of the disclosure can be implemented;

[0005] Figure 2 illustrates details of the device of Figure 1, according to an
example;
[0006] Figure 3 is a block diagram showing additional details of the graphics

processing pipeline illustrated in Figure 2;

[0007] Figure 4 illustrates a multi sample anti-aliasing load operation 400,
according to an example;

[0008] Figures 5A-5C illustrate example variations for the multi-sample

load instruction;

WO 2021/262434 PCT/US2021/036485

[0009] Figure 5D illustrates a different data layout than that shown in
Figures 5A-5C; and
[0010] Figure 6 is a flow diagram of a method 600 for performing multi-

sample anti-aliasing operations, according to an example.

DETAILED DESCRIPTION

[0011] Techniques for performing multi-sample anti-aliasing operations are
provided. The techniques include detecting an instruction for a multi-sample anti-
aliasing load operation; determining a sampling rate of source data for the load
operation, data storage format of the source data, and loading mode indicating
whether the load operation requests same or different color components, or depth
data; and based on the determined sampling rate, data storage format, and loading
mode, load data from a multi-sample source into a register.

[0012] Figure 1 is a block diagram of an example device 100 in which one or
more features of the disclosure can be implemented. The device 100 could be one
of, but is not limited to, for example, a computer, a gaming device, a handheld
device, a set-top box, a television, a mobile phone, a tablet computer, or other
computing device. The device 100 includes a processor 102, a memory 104, a
storage 106, one or more input devices 108, and one or more output devices 110.
The device 100 also includes one or more input drivers 112 and one or more output
drivers 114. Any of the input drivers 112 are embodied as hardware, a
combination of hardware and software, or software, and serve the purpose of
controlling input devices 112 (e.g., controlling operation, receiving inputs from,
and providing data to input drivers 112). Similarly, any of the output drivers 114
are embodied as hardware, a combination of hardware and software, or software,
and serve the purpose of controlling output devices 114 (e.g., controlling operation,
receiving inputs from, and providing data to output drivers 114). It is understood
that the device 100 can include additional components not shown in Figure 1.
[0013] In various alternatives, the processor 102 includes a central
processing unit (CPU), a graphics processing unit (GPU), a CPU and GPU located

on the same die, or one or more processor cores, wherein each processor core can

9.

WO 2021/262434 PCT/US2021/036485

be a CPU or a GPU. In various alternatives, the memory 104 is located on the
same die as the processor 102, or is located separately from the processor 102. The
memory 104 includes a volatile or non-volatile memory, for example, random
access memory (RAM), dynamic RAM, or a cache.

[0014] The storage 106 includes a fixed or removable storage, for example,
without limitation, a hard disk drive, a solid state drive, an optical disk, or a flash
drive. The input devices 108 include, without limitation, a keyboard, a keypad, a
touch screen, a touch pad, a detector, a microphone, an accelerometer, a gyroscope,
a biometric scanner, or a network connection (e.g., a wireless local area network
card for transmission and/or reception of wireless IEEE 802 signals). The output
devices 110 include, without limitation, a display, a speaker, a printer, a haptic
feedback device, one or more lights, an antenna, or a network connection (e.g., a
wireless local area network card for transmission and/or reception of wireless
IEEE 802 signals).

[0015] The input driver 112 and output driver 114 include one or more
hardware, software, and/or firmware components that are configured to interface
with and drive input devices 108 and output devices 110, respectively. The input
driver 112 communicates with the processor 102 and the input devices 108, and
permits the processor 102 to receive input from the input devices 108. The output
driver 114 communicates with the processor 102 and the output devices 110, and
permits the processor 102 to send output to the output devices 110. The output
driver 114 includes an accelerated processing device (“APD”) 116 which is coupled
to a display device 118, which, in some examples, is a physical display device or a
simulated device that uses a remote display protocol to show output. The APD
116 is configured to accept compute commands and graphics rendering commands
from processor 102, to process those compute and graphics rendering commands,
and to provide pixel output to display device 118 for display. As described in
further detail below, the APD 116 includes one or more parallel processing units
configured to perform computations in accordance with a single-instruction-
multiple-data (“SIMD”) paradigm. Thus, although various functionality is

described herein as being performed by or in conjunction with the APD 116, in

-3-

WO 2021/262434 PCT/US2021/036485

various alternatives, the functionality described as being performed by the APD
116 is additionally or alternatively performed by other computing devices having
similar capabilities that are not driven by a host processor (e.g., processor 102)
and configured to provide graphical output to a display device 118. For example,
it is contemplated that any processing system that performs processing tasks in
accordance with a SIMD paradigm may be configured to perform the functionality
described herein. Alternatively, it is contemplated that computing systems that
do not perform processing tasks in accordance with a SIMD paradigm performs
the functionality described herein.

[0016] Figure 2 illustrates details of the device 100 and the APD 116,
according to an example. The processor 102 (Figure 1) executes an operating
system 120, a driver 122, and applications 126, and may also execute other
software alternatively or additionally. The operating system 120 controls various
aspects of the device 100, such as managing hardware resources, processing
service requests, scheduling and controlling process execution, and performing
other operations. The APD driver 122 controls operation of the APD 116, sending
tasks such as graphics rendering tasks or other work to the APD 116 for
processing. The APD driver 122 also includes a just-in-time compiler that
compiles programs for execution by processing components (such as the SIMD
units 138 discussed in further detail below) of the APD 116.

[0017] The APD 116 executes commands and programs for selected
functions, such as graphics operations and non-graphics operations that may be
suited for parallel processing. The APD 116 can be used for executing graphics
pipeline operations such as pixel operations, geometric computations, and
rendering an image to display device 118 based on commands received from the
processor 102. The APD 116 also executes compute processing operations that are
not directly related to graphics operations, such as operations related to video,
physics simulations, computational fluid dynamics, or other tasks, based on
commands received from the processor 102. In some examples, these compute
processing operations are performed by executing compute shaders on the SIMD

units 138.

WO 2021/262434 PCT/US2021/036485

[0018] The APD 116 includes compute units 132 that include one or more
SIMD units 138 that are configured to perform operations at the request of the
processor 102 (or another unit) in a parallel manner according to a SIMD
paradigm. The SIMD paradigm is one in which multiple processing elements
share a single program control flow unit and program counter and thus execute
the same program but are able to execute that program with different data. In
one example, each SIMD unit 138 includes sixteen lanes, where each lane executes
the same instruction at the same time as the other lanes in the SIMD unit 138 but
can execute that instruction with different data. Lanes can be switched off with
predication if not all lanes need to execute a given instruction. Predication can
also be used to execute programs with divergent control flow. More specifically,
for programs with conditional branches or other instructions where control flow is
based on calculations performed by an individual lane, predication of lanes
corresponding to control flow paths not currently being executed, and serial
execution of different control flow paths allows for arbitrary control flow.

[0019] The basic unit of execution in compute units 132 is a work-item. Each
work-item represents a single instantiation of a program that is to be executed in
parallel in a particular lane. Work-items can be executed simultaneously (or
partially simultaneously and partially sequentially) as a “wavefront’ on a single
SIMD processing unit 138. One or more wavefronts are included in a “work
group,” which includes a collection of work-items designated to execute the same
program. A work group can be executed by executing each of the wavefronts that
make up the work group. In alternatives, the wavefronts are executed on a single
SIMD unit 138 or on different SIMD units 138. Wavefronts can be thought of as
the largest collection of work-items that can be executed simultaneously (or
pseudo-simultaneously) on a single SIMD unit 138. “Pseudo-simultaneous”
execution occurs in the case of a wavefront that is larger than the number of lanes
in a SIMD unit 138. In such a situation, wavefronts are executed over multiple
cycles, with different collections of the work-items being executed in different

cycles. An APD scheduler 136 is configured to perform operations related to

WO 2021/262434 PCT/US2021/036485

scheduling various workgroups and wavefronts on compute units 132 and SIMD
units 138.

[0020] The parallelism afforded by the compute units 132 is suitable for
graphics related operations such as pixel value calculations, vertex
transformations, and other graphics operations. Thus in some instances, a
graphics pipeline 134, which accepts graphics processing commands from the
processor 102, provides computation tasks to the compute units 132 for execution
in parallel.

[0021] The compute units 132 are also used to perform computation tasks
not related to graphics or not performed as part of the “normal’ operation of a
graphics pipeline 134 (e.g., custom operations performed to supplement processing
performed for operation of the graphics pipeline 134). An application 126 or other
software executing on the processor 102 transmits programs that define such
computation tasks to the APD 116 for execution.

[0022] Figure 3 is a block diagram showing additional details of the graphics
processing pipeline 134 illustrated in Figure 2. The graphics processing pipeline
134 includes stages that each performs specific functionality of the graphics
processing pipeline 134. Each stage is implemented partially or fully as shader
programs executing in the programmable compute units 132, or partially or fully
as fixed-function, non-programmable hardware external to the compute units 132.
[0023] The input assembler stage 302 reads primitive data from user-filled
buffers (e.g., buffers filled at the request of software executed by the processor 102,
such as an application 126) and assembles the data into primitives for use by the
remainder of the pipeline. The input assembler stage 302 can generate different
types of primitives based on the primitive data included in the user-filled buffers.
The input assembler stage 302 formats the assembled primitives for use by the
rest of the pipeline.

[0024] The vertex shader stage 304 processes vertices of the primitives
assembled by the input assembler stage 302. The vertex shader stage 304
performs various per-vertex operations such as transformations, skinning,

morphing, and per-vertex lighting. Transformation operations include various

-6-

WO 2021/262434 PCT/US2021/036485

operations to transform the coordinates of the vertices. These operations include
one or more of modeling transformations, viewing transformations, projection
transformations, perspective division, and viewport transformations, which
modify vertex coordinates, and other operations that modify non-coordinate
attributes.

[0025] The vertex shader stage 304 is implemented partially or fully as
vertex shader programs to be executed on one or more compute units 132. The
vertex shader programs are provided by the processor 102 and are based on
programs that are pre-written by a computer programmer. The driver 122
compiles such computer programs to generate the vertex shader programs having
a format suitable for execution within the compute units 132.

[0026] The hull shader stage 306, tessellator stage 308, and domain shader
stage 310 work together to implement tessellation, which converts simple
primitives into more complex primitives by subdividing the primitives. The hull
shader stage 306 generates a patch for the tessellation based on an input
primitive. The tessellator stage 308 generates a set of samples for the patch. The
domain shader stage 310 calculates vertex positions for the vertices corresponding
to the samples for the patch. The hull shader stage 306 and domain shader stage
310 can be implemented as shader programs to be executed on the compute units
132 that are compiled by the driver 122 as with the vertex shader stage 304.
[0027] The geometry shader stage 312 performs vertex operations on a
primitive-by-primitive basis. A variety of different types of operations can be
performed by the geometry shader stage 312, including operations such as point
sprite expansion, dynamic particle system operations, fur-fin generation, shadow
volume generation, single pass render-to-cubemap, per-primitive material
swapping, and per-primitive material setup. In some instances, a geometry
shader program that is compiled by the driver 122 and that executes on the
compute units 132 performs operations for the geometry shader stage 312.

[0028] The rasterizer stage 314 accepts and rasterizes simple primitives

(triangles) generated upstream from the rasterizer stage 314. Rasterization

WO 2021/262434 PCT/US2021/036485

consists of determining which screen pixels (or sub-pixel samples) are covered by
a particular primitive. Rasterization is performed by fixed function hardware.
[0029] The pixel shader stage 316 calculates output values for screen pixels
based on the primitives generated upstream and the results of rasterization. The
pixel shader stage 316 may apply textures from texture memory. Operations for
the pixel shader stage 316 are performed by a pixel shader program that is
compiled by the driver 122 and that executes on the compute units 132.

[0030] The output merger stage 318 accepts output from the pixel shader
stage 316 and merges those outputs into a target surface, performing operations
such as z-testing and alpha blending to determine the final color for the screen
pixels. A target surface is the eventual target for a frame of the rendering
operations within the graphics processing pipeline 134. The target surface may
be at any location in memory (such as within a memory of the APD 116, or in
memory 104).

[0031] The rasterizer stage 314 accepts triangles from earlier stages and
performs scan conversion on the triangles to generate fragments. The fragments
are data for individual pixels of a render target and include information such as
location, depth, and coverage data, and later, after the pixel shader stage, shading
data such as colors. The render target is the destination image to which rendering
is occurring (i.e., colors or other values are being written). If the render target is
a multi-sample image, then each pixel has multiple sample locations. The
fragments that are generated by the rasterizer stage 314 are transmitted to the
pixel shader stage 316, which determines color values for those fragments, and
may determine other values as well.

[0032] Figure 4 illustrates a multi sample anti-aliasing load operation 400,
according to an example. Anti-aliasing is a technique whereby data is generated
for each of multiple samples of each pixel of a multi-sample render target. A multi-
sample resolve operation, which can be performed in any manner (such as by
software, hardware circuitry, or a combination thereof), but in some
implementations is performed by a shader program executing on the compute

units 132, down-samples the information of the multi-sample render target to

.8-

WO 2021/262434 PCT/US2021/036485

generate a full-resolution image. In an example where the multi-sample rate is
4%, the graphics processing pipeline 134 generates a multi-sample image having
four samples per pixel. Then, a multi-sample resolve operation down-samples the
multi-sample image to generate a full-resolution image. The number of samples
for each pixel of the full-resolution image is one quarter of the number of samples
of the multi-sample render target. The term “sample” includes one or more of color
information (including one or more color components), depth information, and/or
other information. In some examples, a sample in a multi-sample image has four
color components and one depth component.

[0033] As described elsewhere, the compute units 132 include SIMD units
138 that perform operations in a single-instruction-multiple-data manner. More
specifically, each active lane 402 executes the same instruction as all other lanes
402 in the SIMD unit 138 in any given clock cycle. Thus, when the SIMD unit 138
executes the multi-sample load operation, each active lane 402 of the SIMD unit
138 performs that load operation.

[0034] For any particular lane 402, the load operation involves fetching
multiple elements 408 for one or more samples from a cache 404 into a vector
register per lane 402. A number of different versions of the multi-sample load
operation are disclosed herein. In general, these different versions vary based on
what data is requested. In some examples, a single load operation for a single lane
402 loads the same color component (e.g., “R’ for an “RGB” color scheme) for
different samples into a single vector register 406 for the lane 402. In other
examples, a single load operation for a single lane 402 loads multiple (such as all)
color components for a single sample into a vector register 406 for that lane 402.
In yet other examples, a single load operation for a single lane 402 loads one depth
value for multiple samples into a vector register 406 for that lane 402. In any case,
the elements 408 refer to individual data elements (such as color components or
depth values) loaded by the load operation.

[0035] The illustrated cache 404 is a cache in a memory hierarchy from
which the SIMD unit 138 fetches data into registers such as the vector register
406. In various examples, the cache 404 is within the SIMD unit 138, within a

.0.

WO 2021/262434 PCT/US2021/036485

compute unit 132 but outside of a SIMD unit 138, or within the APD 116 but
outside of a compute unit 132. It should be understood that a miss in the cache
404 would result in the cache performing a cache line fill from higher up in the
memory hierarchy.

[0036] To summary, the multi sample anti-alias load is an instruction that
is executed by each active lane 402 of a SIMD unit 138. The instruction is
performed at the request of a shader program executed on a SIMD unit 138. For
any particular lane 402, the instruction specifies which elements of a multi-sample
surface are loaded into a vector register 406 associated with that lane 402. In
some examples, the elements loaded for one lane 402 are the same color component
from different samples in the same pixel. In other examples, the elements are
different color components from the same sample in a pixel. In other examples,
the elements are depth values for different samples within the same pixel. A load
instruction includes an indication of whether color components or depth
components are loaded, as well as whether the same color component or different
color components are loaded. Based on the sampling rate of the surface, and the
organization of the stored data, the SIMD unit 138 selects a stride and loads the
elements requested into a vector register 406 based on that stride.

[0037] In the situation that the load operation is to load the same component
of different samples of a pixel, the number of samples of each pixel is, in some
situations, different than the number of elements actually loaded by a particular
load operation, where the number of elements loaded is, in some instances,
determined by the size of the vector register 406 destination in comparison to the
size of the color components. (For example, if the size of a vector register 406 is
the same as the size of four elements, then a load operation loads for elements).
In situations where the number of samples is lower than the number of elements
to be loaded, the load operation loads the same component for different samples
into a portion of the vector register 406. The load operation handles the remaining
portion of the vector register 406 in any technically feasible manner, such as by
repeating elements actually loaded into that portion, storing a constant into that

portion, or placing any other value into that portion of the vector register 406. In

-10-

WO 2021/262434 PCT/US2021/036485

situations where the sampling rate is greater than the number of elements to be
loaded, the load operation operations in two or more phases. In each phase, the
same component for a different set of samples (e.g., samples 1-4, samples 5-8, etc.)
is loaded. In some implementations, the load instruction includes a flag that
indicates the phase (thus allowing a programmer or other author of a program
(which is in some instances a shader program) to specify which sets of samples are
loaded at any particular time. In other implementations, a single load instruction
specifies two or more vector registers 406 and the SIMD unit 138 fetches the same
color component for different sets of samples the data to those two or more vector
registers 406. This “phasing” also applies to depth buffer loads for sampling rates
higher than the vector register size, as illustrated, for example, in Figure 5C.
[0038] The load operation 400 is illustrated in the context of the SIMD unit
138 and in the context of SIMD processing, but operation of the load instruction
outside of a SIMD context is contemplated in this disclosure as well.

[0039] Figures 5A-5C illustrate example variations for the multi-sample
load instruction. Each of the operations illustrated in Figures 5A-5C assume a
data format for the color buffer (the source from which the color components are
loaded) where the color components for each individual sample are stored together,
in one continuous chunk.

[0040] Figure HA illustrates examples involving a multi-sample render
target having 4 samples 502 per pixel 504. In a first example load operation — the
color buffer load — same component operation 506(1), the SIMD unit 138 loads
elements of the same color component for the pixel 504. As described above, based
on the sample rate of the data from which the load is fetching elements, and on
whether the load operation is for the same component or the same sample, the
SIMD unit 138 selects a stride 508. The stride indicates 508 the number of
elements in a cache data set 510 that are advanced over when obtaining the
elements for the load operation. In Figure 5A, the number is 4. This is because
in the cache data set 510(1) illustrated, the color data is arranged such that color
components for the same pixel are in consecutive memory positions. Note that the

color components are indicated with the notation SXCY, where X is the sample

-11-

WO 2021/262434 PCT/US2021/036485

number and Y is the component number. The stride 508 of 4 allows the load
operation 506(1) to collect each of the same component for four different samples.
[0041] In a second example, color buffer load — same sample 506(2), the load
has a stride of 1 due to the components for each sample being consecutive. This
allows the load to obtain all components of a single sample 502 where, again, the
color data is arranged as shown.

[0042] In a third example, depth buffer load 507(1), the stride is 1, because
the depth data has only one component. Thus the depth buffer load 507(1) loads
depth data for 4 different samples with a single instruction.

[0043] Figure 5B illustrates a different example mode of operation, where
each pixel 524 has two samples 522 instead of 4 (i.e., the sampling rate is 2x). In
this mode of operation, color buffer load operation — same component 526(1) has a
stride of 4, since this operation obtains the same color component from different
samples, and the format of the data being loaded is such that different color
components of the same sample are consecutive in memory. However, because
there are only two samples in a pixel, the load operation 526(1) obtains only two
color components and not four. When writing data into the vector register 406, in
various implementations, the load operation 526(1) repeats the two components of
data, fills two elements of the vector register 406 with O's or another constant, or
places any other data into those two elements.

[0044] Color buffer load — same sample 526(2) loads consecutive data items.
In the example shown, these consecutive data items are the four color components
for a single sample 522. Depth buffer load operation 527(1) loads consecutive
depth values, one for each sample, as illustrated.

[0045] Figure 5C illustrates another example, where each pixel has 8
samples 522. In this example, a color buffer load operation that loads the same
number of elements into the same size vector register 406 as with the 4 sample
and 2 sample examples is not able to load all of the same component for every
sample in a pixel into such a vector register 406. Thus the load operation operates
in two different phases. In the first phase, shown as color buffer load — same

component, first phase 546(1), the load operation 546(1) loads the same color

-12-

WO 2021/262434 PCT/US2021/036485

component for a first four samples 522. In the second phase, shown as color buffer
load same component, second phase 546(2), the load operation 546(2) loads the
same color component for a second set of different samples. In the example
illustrated, load operation 546(1) loads color component C1 for samples S1-S4 and
load operation 546(2) loads color component C1 for samples S5-S8. Load operation
546(1) and load operation 546(2) each have a stride of 4, reflecting that four
components are skipped over for each element obtained by the load operation 546,

so that the same component for each sample is loaded.

[0046] For color buffer load — same sample 546(3), the load operation 546(3)
loads with stride 1, meaning consecutive color components are loaded, as
illustrated.

[0047] For the depth buffer load, two phases are illustrated. In one mode,

depth buffer load, first phase 547(1), the load instruction 547(1) loads a depth
component for a first set of samples, with stride 1. In another mode, depth buffer
load, second phase 547(2), the load instruction 547(2) loads a depth component for
a second set of samples, with stride 1. In the examples, the first set of samples are
samples S1-S4 and the second set of samples are samples S5-S8.

[0048] Figure 5D illustrates a different data layout 560 than that shown in
Figures 5A-5C. Instead of the data set being arranged such that all color
components of a single sample are consecutive, in Figure 5D, the same color
component for different samples are consecutive. It should be understood that the
example of Figure 5D is for a 4 sample render target and that other sampling rates
are of course possible.

[0049] The ordering of the data in the data set 560 of Figure 5D illustrates
that the versions of the load operations illustrated in Figures 5A-5C performs
different operations depending on how the data being loaded is organized. In
Figure 5A, with the data as shown in that Figure, load 506(1), which operates with
stride 4, loads the same color component of different samples. However, if the
color load 506(1) were to operate with the data as shown in Figure 5D, then the
load 506(1) would instead fetch four color components of a single sample (thus

having stride 1). Similarly, load 506(2), which operates with stride 1, would fetch

.13-

WO 2021/262434 PCT/US2021/036485

the same component of a single sample when operated on for the data of Figure
5D, thus having stride 4.

[0050] Note that the various numbers of items (e.g., color components,
samples per pixel, vector register size, and the like) illustrated in Figures 5A-5D
are exemplary in nature, and that variations in one or more of these numbers are
contemplated by the present disclosure. For example, in some variations, the
number of components for sample colors is different than four. In some variations,
the number of elements (components or depth values) that can fit into a vector
register 406 is different than four. In some variations, sample rates other than
2x, 4%, or 8x are possible. Many other variations are possible. In some examples,
the stride is other than four. For example, where there are five components per
color and the components for each sample are consecutive in memory, a load of the
same color component for different samples has a stride of five. In some examples,
the stride in such a situation is equal to the number of components per color. In
other examples where the load operation loads non-consecutive elements, the
stride is set to match the spacing of those non-consecutive elements.

[0051] Note that the load operations described, in some situations, gain
cache efficiency as compared with operations where individual samples or depth
values are loaded from the cache one at a time. More specifically, it is possible for
a cache line to be evicted in between load operations. Thus with more data being
loaded at the same time, fewer cache evictions will occur as data is being loaded.
[0052] Figure 6 is a flow diagram of a method 600 for performing multi-
sample anti-aliasing operations, according to an example. Although described
with respect to Figures 1-5D, those of skill in the art will understand that any
system, configured to perform the steps of method 600 in any technically feasible
order, falls within the scope of the present disclosure.

[0053] The method 600 begins at step 602, where a processor such as a SIMD
unit 138 detects a multi-sample anti-aliasing load instruction. In various
examples, the load instruction is part of an instruction set architecture for a

processor such as the SIMD units 138. More specifically, the SIMD units 138

-14-

WO 2021/262434 PCT/US2021/036485

execute shader programs that include instructions, some of which are the multi-
sample anti-aliasing load instructions.

[0054] The multi-sample load operation specifies which buffer to load from,
where the term “buffer” means a portion of memory storing data to be loaded. In
some examples, the buffer is a render target storing color data or storing depth
data. In some examples, the load operation explicitly specifies whether the data
of the buffer is color data or depth data. In other examples, the SIMD unit 138
determines, by examining the buffer itself, or metadata for the buffer, whether the
data of the buffer is color data or depth data.

[0055] At step 604, the SIMD unit 138 determines the sampling rate of the
source data for the load operation, the data storage format of the source data if
color data is being loaded, and the loading mode indicating whether the load
operation requests the same color components of different samples, different color
components of the same sample, or depth data. The sampling rate is the number
of samples per pixel. The data storage format indicates whether different color
components of the same sample are consecutive or the same component of different
samples are consecutive.

[0056] At step 606, based on the information determined at step 604 the
SIMD unit 138 loads the data requested by the load operation. More specifically,
the SIMD unit 138 selects a stride based on that information, obtains the data
elements based on the characteristics of the operation determined at step 604, and
obtains the elements from memory based on the stride. Technique for performing
such a load based on this information are described above with respect to Figures
4-5D.

[0057] Once loaded, the data is used in any technically feasible manner. In
one example, a shader program executing in the SIMD unit 138 performs a resolve
operation, generating a lower resolution image from the multi-sample images. In
an example, each work-item (which corresponds to a lane 402) of the shader
program resolves the four samples loaded by the load operation into a single
sample. Although any technique may be used, one example technique involves

averaging the values loaded.

-15-

WO 2021/262434 PCT/US2021/036485

[0058] Each of the functional units illustrated in the figures represent
hardware circuitry configured to perform the operations described herein,
software configured to perform the operations described herein, or a combination
of software and hardware configured to perform the steps described herein. A non-
exclusive list of such units includes the storage 106, the processor 102, the output
driver 114, the APD 116, the memory 104, the input driver 112, the input devices
106, the output devices 110, the display device 118, the operating system 120, the
driver 122, the applications 126, the APD scheduler 136, the graphics processing
pipeline 134, the compute units 132, the SIMD units 138, any of the stages of the
graphics processing pipeline 134, the lanes 402 of the SIMD unit 138, the cache
404, and the vector registers 406.

[0059] It should be understood that many variations are possible based on
the disclosure herein. Although features and elements are described above in
particular combinations, each feature or element can be used alone without the
other features and elements or in various combinations with or without other
features and elements.

[0060] The methods provided can be implemented in a general purpose
computer, a processor, or a processor core. Suitable processors include, by way of
example, a general purpose processor, a special purpose processor, a conventional
processor, a digital signal processor (DSP), a plurality of microprocessors, one or
more microprocessors in association with a DSP core, a controller, a
microcontroller, Application Specific Integrated Circuits (ASICs), Field
Programmable Gate Arrays (FPGAs) circuits, any other type of integrated circuit
(IC), and/or a state machine. Such processors can be manufactured by configuring
a manufacturing process using the results of processed hardware description
language (HDL) instructions and other intermediary data including netlists (such
instructions capable of being stored on a computer readable media). The results of
such processing can be maskworks that are then used in a semiconductor
manufacturing process to manufacture a processor which implements features of

the disclosure.

-16-

WO 2021/262434 PCT/US2021/036485

[0061] The methods or flow charts provided herein can be implemented in a
computer program, software, or firmware incorporated in a non-transitory
computer-readable storage medium for execution by a general purpose computer
or a processor. Examples of non-transitory computer-readable storage mediums
include a read only memory (ROM), a random access memory (RAM), a register,
cache memory, semiconductor memory devices, magnetic media such as internal
hard disks and removable disks, magneto-optical media, and optical media such

as CD-ROM disks, and digital versatile disks (DVDs).

-17-

WO 2021/262434 PCT/US2021/036485

CLAIMS

What is claimed is:

1. A method for performing multi-sample anti-aliasing operations, the
method comprising:

detecting an instruction for a multi-sample anti-aliasing load operation;

determining a sampling rate of source data for the load operation, a data
storage format of the source data, and a loading mode for the load operation,
wherein the loading mode indicates whether the load operation requests same
color components, different color components, or depth data; and

based on the determined sampling rate, data storage format, and loading

mode, loading data from a multi-sample source into a register.

2. The method of claim 1, wherein the data storage format indicates

different color components of samples are consecutive.

3. The method of claim 2, wherein:

the loading mode indicates that the load operation requests the same color
components; and

loading the data from the multi-sample source includes loading with a

stride that is greater than 1.

4. The method of claim 2, wherein:

the loading mode indicates that the load operation requests different color
components of the same sample; and

loading the data from the multi-sample source includes loading with a

stride of 1.

5. The method of claim 1, wherein the data storage format indicates the

same color component of different samples are consecutive.

-18-

WO 2021/262434 PCT/US2021/036485

6. The method of claim 5, wherein:

the loading mode indicates that the load operation requests the same color
components; and

loading the data from the multi-sample source includes loading with a

stride of 1.

7. The method of claim 5, wherein:

the loading mode indicates that the load operation requests different color
components of the same sample; and

loading the data from the multi-sample source includes loading with a

stride that is greater than 1.

8. The method of claim 1, wherein:

a sampling rate of the source data is greater than a number of elements
that fit into the register; and

loading the data includes loading less than all samples of a pixel into the

register.

9. The method of claim 1, wherein:
a sampling rate of the source data is less than a number of elements that
fit into the register; and

loading the data includes repeating loaded data in the register.

10. A system for performing multi-sample anti-aliasing operations, the
system comprising:

a register; and

a processor configured to:

detect an instruction for a multi-sample anti-aliasing load operation;

determine a sampling rate of source data for the load operation, a data

storage format of the source data, and a loading mode for the load operation,

-19-

WO 2021/262434 PCT/US2021/036485

wherein the loading mode indicates whether the load operation requests same
color components, different color components, or depth data; and
based on the determined sampling rate, data storage format, and loading

mode, load data from a multi-sample source into a register.

11. The system of claim 10, wherein the data storage format indicates

different color components of samples are consecutive.

12, The system of claim 11, wherein:

the loading mode indicates that the load operation requests the same color
components; and

loading the data from the multi-sample source includes loading with a

stride that is greater than 1.

13. The system of claim 11, wherein:

the loading mode indicates that the load operation requests different color
components of the same sample; and

loading the data from the multi-sample source includes loading with a

stride of 1.

14. The system of claim 10, wherein the data storage format indicates

the same color component of different samples are consecutive.

15. The system of claim 14, wherein:

the loading mode indicates that the load operation requests the same color
components; and

loading the data from the multi-sample source includes loading with a

stride of 1.

WO 2021/262434 PCT/US2021/036485

16. The system of claim 14, wherein:

the loading mode indicates that the load operation requests different color
components of the same sample; and

loading the data from the multi-sample source includes loading with a

stride that is greater than 1.

17. The system of claim 10, wherein:

a sampling rate of the source data is greater than a number of elements
that fit into the register; and

loading the data includes loading less than all samples of a pixel into the

register.

18. The system of claim 10, wherein:
a sampling rate of the source data is less than a number of elements that
fit into the register; and

loading the data includes repeating loaded data in the register.

19. An accelerated processing device for performing multi-sample anti-
aliasing operations, the accelerated processing device comprising:
a register; and
a single instruction multiple data processing unit configured to:
detect an instruction for a multi-sample anti-aliasing load operation;
determine a sampling rate of source data for the load operation, a
data storage format of the source data, and a loading mode for the load
operation, wherein the loading mode indicates whether the load operation
requests same color components, different color components, or depth data;
and
based on the determined sampling rate, data storage format, and

loading mode, load data from a multi-sample source into a register.

WO 2021/262434 PCT/US2021/036485

20. The accelerated processing device of claim 19, wherein:
the data storage format indicates different color components of samples are
consecutive, or the data storage format indicates the same color component of

different samples are consecutive.

PCT/US2021/036485

WO 2021/262434

1/7

40IA3d AV1dSId

8kl

S30I1A3d 1NdLNO

~
(197

f;

ddv

| 914

d3ARA LNdLNO

AJONIN

S30IA3d 1NaNI

v

v0l

d40SS300ud

—~
MW 801

f;

d3ARA LNdNI

JOVHOLS

PCT/US2021/036485

WO 2021/262434

2/7

¢ 914

t "t t ?
Hun Hun Hun
€L awis €L awis €L awis
. oo e . .
Hun Hun Hun
€L awis €L awis €L awis
FA S Hun andwon FA S Hun sindwon FA S Hun andwon
1 .o 1 T —
> 154 2
| JsNpayos
—» V€I auljadid Buissesold solydels) ddv
X)
> 9| | @oneQ Buissedold pajels|eooy
« \ 2 3 >
—_— == —_— walsAg
2l suoneo|ddy cl 18AUad ¢l Bunelsadp
ol Aowasy

PCT/US2021/036485

WO 2021/262434

€ Ol

I~
/
(09
8L€ 91L€ I€ 42 oLe 0€ 90¢ v0€ ¢0€
abeig abeig abeig abeig & 9be1s ebeis | @©beis
RETONETIY] lapeys abeig lapeys Japeys abeig Jopeys | |tepeys| [|Jo|qwessy
indino |[ox1d Jozusisey| |Answoen| |urewoq| |s101e|9888L IINH XOUaA nduy)
€1 ©ouladid buisseooid solydels

WO 2021/262434 PCT/US2021/036485

400 ~ 4/7

SIMD Unit 138

Lane 1 402(1) | Lane 2402(2) | Lane 3402(3) | Lane 4 402(4)

Element 1 Element 3 MU”i'SZfSB'e |Oa\d/i
408(1) 408(3)
Element 2 Element 4 Cache 404
408(2) 408(4)
4 —

=y ®

A\ J
Y

Vector Register

406(1) (Lane 1)

Vector Register

406(2) (Lane 2)

Vector Register

406(3) (Lane 3)

Fic. 4

Vector Register

406(4) (Lane 4)

WO 2021/262434

PCT/US2021/036485

5/7
Sample 1 4 Samples Sample 2
502(1) _\O __
502(2)
O,\ Pixel
/\/
Samole 3 504
amp'e NP=Q) Sample 4
502(3) o[502(4)
Color Buffer Load - Same ,StrideA 508‘ [— 51 0(1)
Component 506(1) R : : :
s1ls1|s1]s1]s2|s2]s2ls2|s3]s3[s3]s3|s4|54]54 |54
C1|C2|C3|C4|C1|C2|C3|C4|C|C2|C3|C4|C1)C2|C3|C4
Color Buffer Load - Same <
| | |]
sample 506(2) s1[s1[s1[s1[s2[s2]s2[s2[s3]s3[s3[s3]s4[s4]s4]s4
C1|C2|C3|C4|C1|C2|C3|C4|C|C2|C3|C4|C1)C2|C3|C4
Depth Buffer Load - — T \—
507(1) s1ls2|s3|s4 510(2)
p|D|D|D
FiG. 5A
Sample 1 2 Samples
522(1) _‘C)
Pixel
/\/
524
Sample 2
O/— 522(2)
Color Buffer Load - Same <
| |
Component 526(1) s1[s1[s1[s1[s2]s2]s2]s2
C1|C2|C3|C4|C1|C2|C3|C4
Color Buffer Load - Same <
| | |]
sample 526(2) s1[s1[s1[s1[s2]s2]s2]s2
C1|C2|C3|C4|C1|C2|C3|C4
Depth Buffer Load
527(1) I 8'1 S'2|
D|D
FiG. 5B

WO 2021/262434

PCT/US2021/036485

Sample 1 8 Samples Pixel
522(1) ~—— 544
Sample2 | © O_,S5azmzp('g ;
522(2)~+—"0 O—~\/Sample 4
Sample 5 S 522(4)
__Sample 7
522(5)—" O S N
Sample 6 /‘O O Sample 8
522(6) 522(8)
< | | | |
Color Buffer Load - Same s1[s1[s1]s1[s2]s2[s2]s2[s3]s3[s3]s3[s4]s4]s4]s4
Component, First Phase c1lc2lcslcalcilcaleslcalcilcaleslcalcilcalcslca
546(1) s5|s5|s5[s5]s6|s6[s6]s6[S7[S7]S7]S7[S8]S8]S8]S8
c1lc2lcslcalcilcaleslcalcilcaleslcalcilcalcslca
] s1[s1[s1]s1[s2]s2[s2]s2[s3]s3[s3]s3[s4]s4]s4]s4
c%ﬂ!%Lﬁiﬁ?rsfofndii";Se c1lcales|calcilcaleslcalc1lezlcslcalcilco|cslca
546(2) s5|s5|s5[s5]s6|s6[s6]s6[S7[S7]S7]S7[S8]S8]S8]S8
c1lc2lcslcalcilcaleslcalcilcaleslcalcilcalcslca
< | | |]
< | | | |
Color Buffer Load - Same s1]s1[s1[s1]s2[s2[s2]s2[s3ls3]s3]s3[s4]s4]s4]4
sample 546(3) c1lc2lcslcalcilcaleslcalcilcaleslcalcilcalcslca
s5|s5|s5[s5]s6|s6[s6]s6[S7[S7]S7]S7[S8]S8]S8]S8
FIG SC c1lc2lcslcalcilcaleslcalcilcaleslcalcilcalcslca
[
Depth Buffer Load, < I — —
First Phase s1[s2[s3[s4[ss5[s6][s7[ss
547(1) p|lplp|plpol|plplb
Depth Buffer Load, << 1T T 1
Second Phase s1[s2[s3[s4[ss5[s6][s7]ss
547(2) p|lplp|plpol|plplp
s1[s2[s3]s4[s1]s2[s3]s4[s1]s2[s3]s4[s1]s2]s3]S4
560 cilcilcilet|c2lcalealcz|cales|cales|calcalcalca

FiG. 5D

WO 2021/262434

PCT/US2021/036485

71/77

600
N\

Detect instruction for multi-sample
anti-aliasing load operation

l

Determine sampling rate of source data for
load operation, data storage format of source
data, and loading mode indicating whether
load operation requests same or different
color components, or depth data

l

Based on determined sampling rate, data
storage format, and loading mode, load data
from multi-sample source into a register

FIG. 6

INTERNATIONAL SEARCH REPORT International application No.

PCT/US2021/036485

A. CLASSIFICATION OF SUBJECT MATTER
GO6T 15/00(2006.01)i; GO6T 15/04(2011.01)i; GO6T 15/40(2011.01)i; GO6T 7/50(2017.01)i; GO6T 7/90(2017.01)i

According to International Patent Classification (IPC) or to both national classification and [PC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6T 15/00(2006.01); GO6T 1/20(2006.01); GO6T 1/60(2006.01); GO6T 15/50(2006.01); GO6T 7/13(2017.01);
GO6T 9/00(2006.01)

Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

eKOMPASS(KIPO internal) & keywords: multi-sample anti-aliasing, load, operation, color, component, register

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

US 2018-0182058 Al (APPLE INC.) 28 June 2018 (2018-06-28)

Y paragraphs [0043], [0091]-[0095], [0101]-[0102], [0109]; and figures 6-7 1-20
US 2015-0091918 Al (SAMSUNG ELECTRONICS CO., LTD.) 02 April 2015 (2015-04-02)

Y paragraphs [0105], [0115]-[0116], [0120]; and figures 10A-14C 1-20
US 2018-0308211 Al (INTEL CORPORATION) 25 October 2018 (2018-10-25)

A claims 1-10 1-20
US 2019-0392631 Al (FILIP STRUGAR) 26 December 2019 (2019-12-26)

A claims 1-12 1-20
US 10223809 B2 (INTEL CORPORATION) 05 March 2019 (2019-03-05)

A claims 1-7; and figure 3 1-20

D Further documents are listed in the continuation of Box C.

See patent family annex.

«p” document published prior to the international filing date but later than
the priority date claimed

Special categories of cited documents: «1> later document published after the international filing date or priority

document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand the

to be of particular relevance principle or theory underlying the invention

document cited by the applicant in the international application «X” document of particular relevance; the claimed invention cannot be

earlier application or patent but published on or after the international considered novel or cannot be considered to involve an inventive step

filing date when the document is taken alone

document which may throw doubts on priority claim(s) or which is “Y” document of particular relevance; the claimed invention cannot be

cited to establish the publication date of another citation or other considered to involve an inventive step when the document is

special reason (as specified) combined with one or more other such documents, such combination
“0” document referring to an oral disclosure, use, exhibition or other being obvious to a person skilled in the art

means «&” document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

35208, Republic of Korea
Facsimile No. +82-42-481-8578

24 September 2021 27 September 2021
Name and mailing address of the ISA/KR Authorized officer
Korean Intellectual Property Office
189 Cheongsa-ro, Seo-gu, Daejeon YANG, JEONG ROK

Telephone No. +82-42-481-5709

Form PCT/ISA/210 (second sheet) (July 2019)

INTERNATIONAL SEARCH REPORT
Information on patent family members

International application No.

PCT/US2021/036485

Patent document

Publication date

Patent family member(s)

Publication date

cited in search report (day/month/year) (day/month/year)
us 2018-0182058 Al 28 June 2018 CN 109964244 A 02 July 2019
uUs 10445852 B2 15 October 2019
WO 2018-118363 Al 28 June 2018
us 2015-0091918 Al 02 April 2015 KR 10-2015-0035161 A 06 April 2015
KR 10-2152735 BI1 21 September 2020
us 9207936 B2 08 December 2015
us 2018-0308211 Al 25 October 2018 uUsS 10297047 B2 21 May 2019
us 10810764 B2 20 October 2020
us 2019-0244393 Al 08 August 2019
us 2021-0118187 Al 22 April 2021
uUsS 2019-0392631 Al 26 December 2019 CN 110634106 A 31 December 2019
KR 10-2019-0143803 A 31 December 2019
us 10902605 B2 26 January 2021
us 10223809 B2 05 March 2019 uUsS 2017-0345186 Al 30 November 2017
WO 2017-205005 Al 30 November 2017

Form PCT/ISA/210 (patent family annex) (July 2019)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - wo-search-report
	Page 33 - wo-search-report

