US 20170177315A1

a2y Patent Application Publication o) Pub. No.: US 2017/0177315 A1l

a9y United States

Buckley et al.

43) Pub. Date: Jun. 22, 2017

(54) COMPOSING A MODULE SYSTEM AND A
NON-MODULE SYSTEM

(71) Applicant: Oracle International Corporation,
Redwood Shores, CA (US)

(72) Inventors: Alexander R. Buckley, Cupertino, CA
(US); Mark B. Reinhold, Menlo Park,
CA (US); Jonathan J. Gibbons,
Mountain View, CA (US); Alan E.
Bateman, Dublin (IE); Mandy L.
Chung, Saratoga, CA (US)

(73) Assignee: Oracle International Corporation,
Redwood Shores, CA (US)

(21) Appl. No.: 15/446,332
(22) Filed: Mar. 1, 2017

Related U.S. Application Data

(63) Continuation of application No. 14/808,590, filed on
Jul. 24, 2015, now Pat. No. 9,626,171.

System 101 Standard
ﬁ Module
114
Standard Standard °
Module Module °
106 l1(‘)8 []
l Standard Standard
[Module Module
M 110 112 |
L

£I_+

Bridge Module Bridge Module

Publication Classification

(51) Int. CL
GOGF 9/445 (2006.01)
GOGF 9/45 (2006.01)
GOGF 9/44 (2006.01)
(52) US.CL
CPC oo GOGF 8/54 (2013.01); GOGF 8/20

(2013.01); GOGF 8/41 (2013.01); GOGF 8/71
(2013.01); GOGF 9/44505 (2013.01)

(57) ABSTRACT

A bridge module is generated to bridge standard modules in
a module system and non-module code in a non-module
system. The bridge module includes explicit dependencies
associated with a namespace, such as a dependency path
corresponding to the non-module code. The bridge module
exposes packages of the non-module code at least to the
standard modules. Operations are performed on a code base
that uses standard modules, bridge modules, and non-mod-
ule code.

Moduie

Environment Modularized Modularized

102 Code Code
133 — 135

Non-Module

Environmant
130

Non-Module
Code
140

Non-Moduie
Code
146

Non-Module
Code
144

Non-Module
Code
142

System 102 j
Bridge Module Bridge Module

Module
Envir Modularized Modularized
102 Code Code

— 133 135
Non-Module
Environment
130

Non-Moduie
Code
140

Non-Module
Code
146

Non-Module

Code
Non-Module 144 []
Code L4
142 [

Patent Application Publication

Jun. 22,2017 Sheet 1 of 9

US 2017/0177315 Al

System 100 Standard FIGURE 1A
j Module _
104 Prior Art
| ¢ '
\] v
Standard Standard °®
Module Module)
106 108 | o
l Standard Standard
® Module Module
o 110 112

Moduie

Environment

102

-

v

Standard modules cannot explicitly
depend on non-module code

Mon-Module
Environment
130

Mon-Module

Hon-Module
Code
132

Mon-Module
Code
140

Mon-Module
Cade

Mon-Module
Code
134

Non-Moduls
Code
146

144

Code
142

Patent Application Publication Jun. 22, 2017 Sheet 2 of 9 US 2017/0177315 A1
System 101 .
j Standard FIGURE 1B
Module
184
| |
v v v
Standard Standard P
Module Module ®
186 liﬁs : ®
l Standard Standard lg——
o Module Module
: 110 112 €

I T

Bridge Module ‘Bridge Module

122 124
Module
Environment Modularized Modularized
102 Code Code

135

133

Hon-Module
Environment
130

Non-Module
Code

1480
Mon-Module

Code
146

Mon-Module
Code
144

NMon-Module
Code
142

Patent Application Publication Jun. 22, 2017 Sheet 3 of 9 US 2017/0177315 A1

FIGURE 1C
System 102 j
Bridge Module ‘Bridge Module
122 124
Module
Environment Modularized Modularized
102 Code Code

1358

133

Non-Module
Environment
130

Non-Module
Code
140

NMon-Module
Code
146

Non-Module
Code
144

Non-Module
Code
142

Patent Application Publication Jun. 22, 2017 Sheet 4 of 9 US 2017/0177315 A1

FIGURE 2
Detect a triggering event for modularizing

non-module code
202

Y

RN
= \\\\\\
s N
Does N

A

- S .
" non-module code \\\\\\\\ Cannot modularize
& .) o -
N\ meet requirements for S——No—P non-moduds code
AN ot =
“Unedularization? o 206

o

N e
\\\\\\\ 284 \\‘\\\“\\\“\\

\\1‘\\\

Yes

Generate a bridge module
at least by defining a modude descriptor

208
Reau icit Reguire standard
equure ex? o Regquire all other maodules that are
dependencies to .
bridge modules observable, allowed,
dependancy patiy
208b and/or necessary
208a
208¢
Declare package tdentify a;ny
aniry point
exports <
208 {main class)
£08s

Concurrently use standard modules, bridge
maodules, and non-module code
210

Patent Application Publication Jun. 22, 2017 Sheet 5 of 9 US 2017/0177315 A1

Code Description FIGURE 34
304

A.jar includes class a.AA

a.AA recilss "new b.BB{)
a. AL recites "new ¢.CC{"
a.AA recites "new d.DD{)”

B.jar includes class b.BB

C.jar includes class ¢.CC
¢.CC extends 4.DD

D.iar includes class d.DD

Initial Operational State at Time TO

Find B.jar

; Find C.jar
via CLASSPATH via CLASSPATH D.jar
340

B.jar
310

Dependency Path
350

CLASSPATH A.jar;B.jar;C.jar;D.jar

Patent Application Publication Jun. 22, 2017 Sheet 6 of 9 US 2017/0177315 A1

Operational State at Time T1 FIGURE 3B
{after modularization of D.jar)

Bridge
Module D
342

Find 4.DD via export of .
d.DD by bridge module D - %i%f

A.dar

320 exports d.DD

Find b.BB in B.jar - o
via CLASSPATH Find ¢.CC in C.jar

via CLASSPATH o {4.0D via export of

] d.00 by bridge module D
B.jar .
310 Q:}Eﬁ"
330

Dependency Path
350
CLASSPATH A.jar:Bjar;Ciar

Listing
35%
MODULEPATH D.jar
{results in modularization of D.jar to
generate system-~-defined Bridge Module D)

Patent Application Publication Jun. 22, 2017 Sheet 7 of 9 US 2017/0177315 A1

Operational State at Time T2 ‘
FIGURE
{after modularization of D.jar and A.jar} GURE 3¢

Bridge
Module A
322

- ~Find d.DD via Bridge
A.jar export of A.DD Module D
320 bybridge P 343

module D
exports a.AA D.jar
340

reguires
HFCLASSPATH [expgrtg d.0D

requires public
module D

N

Find b.BB in B.iar Find ¢.CC in Cljar Find d4.D0 via export of
via CLASSPATH via CLASSPATH d.DD by bridge module D

B.iar
310

Bependency Path
350
CLASSPATH B.jar;C.jar

Listing
355)
MODULEPATH D.jar;Ajar
{results in modularization of D.jar to
generate system~defined Bridge Module D
and modularization of A.jar to generate
system~defined Bridge Module 4}

Patent Application Publication Jun. 22, 2017 Sheet 8 of 9 US 2017/0177315 A1

Operational State at Time T3
{and addition of standard modules} FIGURE 3D
° Standard
Standard 4 Module
Module ° 370
360 T
Reqguires Module D)

Reguires Module A

Uses 4.DD

Uses 8.A4

Find 2.A4 via export of

a.AA by bridge module A Find d.DD via export of

d.DD by bridge module D

Bridge

Module A F;nd d.Db Bridgs
335 via export of Module D
__d.DD by bridge—pp{ " CoulE

Module Aar module D 342

Environment -3 .

302 320 D.jar
344G

axporis a.A4A

Non-Module exports d.DD
Environment requires
304 #CLASSPATH

reguires public
module E3’\ Find d.DD via export of

Find b.BB in Bjar Find .CCin Cjar 00" by bridge module D

via CLASSPATH via CLASSPATH

B.jar
310
Dependency Path

350

Listing CLASSPATH B.jar;C.jar

355
MODULEPATH D.jar:A.jar
{results in modularization of D.jar to
generate system~defined Bridge Module D
and modularization of A.jar o generate
system-defined Bridge Module A)

US 2017/0177315 Al

Jun. 22,2017 Sheet 9 of 9

Patent Application Publication

9y

o

8cy

ey
1SOH
Ocy
743
MNIT
MHOMLAN
W00 NHOMLAN
dsl
LINH3LNI
137
d3AY3S

9y
TOMINOD
¥0SHND

<

2 e—
Iy —
JOV4HILNI vOv
NOILYDINNWNOD 40SS3004dd
0
sng
(%% 30V 0%
30IA3d AHOWAN
3OVd0LS NOY NIV

iy
301A3Q LNdN

157
AV1dSId

¥ "Old

US 2017/0177315 Al

COMPOSING A MODULE SYSTEM AND A
NON-MODULE SYSTEM

PRIORITY CLAIM; INCORPORATION BY
REFERENCE

[0001] This application is a continuation application of
U.S. Non-Provisional patent application Ser. No. 14/808,
590, filed Jul. 24, 2015, which is hereby incorporated by
reference.

[0002] The Applicant hereby rescinds any disclaimer of
claim scope in the parent application(s) or the prosecution
history thereof and advises the USPTO that the claims in this
application may be broader than any claim in the parent
application(s).

TECHNICAL FIELD

[0003] The present disclosure relates to module systems
and non-module systems. In particular, the present disclo-
sure relates to techniques for composing a module system
and a non-module system.

BACKGROUND

[0004] Computing platforms for developing and maintain-
ing software generally rely on one of two kinds of systems:
non-module systems and module systems.

[0005] A non-module system refers to a system in which
dependencies between different pieces of code are not
strictly declared or restricted. An industry-defined term
“JAR hell” refers to example uses of Java Archive (JAR)
files in a non-module system which result in problems, for
example, with the class loading process.

[0006] A module system includes a collection of standard
modules and defines how the collection of standard modules
work together. Each particular standard module in the col-
lection of standard modules may explicitly define depen-
dencies on other standard modules (or the contents thereof).
However, standard modules are typically restricted from
explicitly depending on any non-module code.

[0007] FIG. 1A illustrates a system 100 with components
of a module environment 102 and components of a non-
module environment 130. The non-module environment 130
includes non-module code 132-146. Dependencies between
different non-module code are not required to be explicitly
declared. Accordingly, when a first non-module code
depends on a second non-module code, the software devel-
opment environment must search for the second non-module
code in all files of a set of files associated with all of the
code. The dependencies between different non-module code
(which may not be explicitly declared) are illustrated in FIG.
1A using arrows. For example, the dependency of non-
module code 132 on non-module code 140 is illustrated
using an arrow beginning at non-module code 132 and
ending at non-module code 140. Furthermore, a dependency
of non-module code 140 on non-module code 142 and
non-module code 144 is illustrated using two arrow begin-
ning at non-module code 140 and ending at non-module
code 142 and non-module code 144, respectively.

[0008] The module environment 102 includes a set of
standard modules (e.g., standard modules 104-112). Depen-
dencies between different standard modules in a module
environment, such as module environment 102, are explic-
itly declared by the modules. An explicitly declared depen-
dency may be referred to herein as an “explicit dependency.”

Jun. 22,2017

The explicit dependencies between different standard mod-
ules (or contents thereof) in module environment 102 are
also illustrated using arrows. For example, the explicit
dependency of standard module 104 on standard module 108
is illustrated using an arrow starting at standard module 104
and ending at standard module 108. Further, the explicit
dependency of standard module 108 on standard module 110
is illustrated using an arrow starting at standard module 108
and ending at standard module 110.

[0009] As illustrated in FIG. 1A, there is a partition
between module environment 102 and non-module environ-
ment 130. Specifically, standard modules cannot explicitly
depend on non-module code. For example, standard module
110 cannot explicitly depend on either non-module code 132
or on non-module code 134. As a result, module environ-
ments comprising standard modules cannot be built on top
of non-module environments comprising non-module code.
The approaches described in this section are approaches that
could be pursued, but not necessarily approaches that have
been previously conceived or pursued. Therefore, unless
otherwise indicated, it should not be assumed that any of the
approaches described in this section qualify as prior art
merely by virtue of their inclusion in this section.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] The embodiments are illustrated by way of
example and not by way of limitation in the figures of the
accompanying drawings. It should be noted that references
to “an” or “one” embodiment in this disclosure are not
necessarily to the same embodiment, and they mean at least
one. In the drawings:

[0011] FIG. 1A illustrates standard modules in a module
environment and non-module code in a non-module envi-
ronment;

[0012] FIGS. 1B and 1C illustrate systems in accordance
with one or more embodiments;

[0013] FIG. 2 illustrates a set of operations for generating
a bridge module in accordance with one or more embodi-
ments; and

[0014] FIGS. 3A-3D illustrate a detailed example in
accordance with one or more embodiments.

[0015] FIG. 4 illustrates a system in accordance with one
or more embodiments.

DETAILED DESCRIPTION

[0016] In the following description, for the purposes of
explanation, numerous specific details are set forth in order
to provide a thorough understanding. One or more embodi-
ments may be practiced without these specific details. Fea-
tures described in one embodiment may be combined with
features described in a different embodiment. In some
examples, well-known structures and devices are described
with reference to a block diagram form in order to avoid
unnecessarily obscuring the present invention.

[0017] 1. GENERAL OVERVIEW

[0018] 2. ARCHITECTURAL OVERVIEW

[0019] 3. DEVELOPMENT ENVIRONMENT
EXAMPLE

[0020] 4. GENERATING A BRIDGE MODULE FOR

BRIDGING A MODULE ENVIRONMENT AND A
NON-MODULE ENVIRONMENT

US 2017/0177315 Al

[0021] 5. EXAMPLE EMBODIMENTS
[0022] 6. MISCELLANEOUS; EXTENSIONS
[0023] 7. HARDWARE OVERVIEW
1. General Overview
[0024] In an embodiment, a bridge module is generated to

bridge standard modules in a module environment and
non-module code in a non-module environment. Standard
modules from the module environment may depend explic-
itly on the bridge modules, but may not depend explicitly on
the non-module code. Bridge modules may depend on the
non-module code. For example, bridge modules may explic-
itly reference a namespace that corresponds to non-module
code. For example, bridge modules may explicitly depend
on a dependency path that corresponds to non-module code.
Bridge modules may also depend on other bridge modules,
and standard modules.

[0025] In an embodiment, generating bridge modules
includes modularizing non-module code in the non-module
environment. Modularization of non-module code may be
performed in response to one or more triggering events.
Furthermore, modularization requirements may be used for
determining whether non-module code may be modularized.
[0026] Modularizing non-module code does not necessar-
ily include any modifications to the non-module code itself.
Modularizing non-module code includes generating a
description for the non-module code for use by other mod-
ules. For example, modularizing non-module code includes
identifying and exposing packages of the non-module code
to a module system via a module descriptor. The packages
are exposed by a bridge module to other bridge modules,
standard modules, and other non-module code. The depen-
dencies of a bridge module are explicitly noted in a module
descriptor but, in at least one embodiment, are not exposed
to other components. Modularizing code may further
include identifying dependency paths of the non-module
code and including the dependency paths in a module
descriptor of the corresponding bridge module.

[0027] In an embodiment, operations are performed on a
non-compiled or compiled code base corresponding at least
to a combined set of standard modules, bridge modules, and
non-module code. For example, the code base may be
complied, validated, or executed by a system.

[0028] One or more embodiments described in this Speci-
fication and/or recited in the claims may not be included in
this General Overview section.

2. Architectural Overview

[0029] FIGS. 1B and 1C illustrate examples of systems in
accordance with one or more embodiments. Other embodi-
ments may include more or fewer devices and more or fewer
components than illustrated in the systems and/or described
below. Hardware components, software components, and/or
functionality described as corresponding to one device may
instead correspond to another device. Components illus-
trated separately may be combined into a single component
or implemented on a single device. Accordingly, the scope
of the claims should not be construed as being limited by the
specific examples herein.

[0030] System 101 illustrates components associated with
one or both of a module environment 102 and a non-module
environment 130. Components within system 101 may
depend on other components within system 101 (depen-

Jun. 22,2017

dency restrictions described in detail below). In an example,
if a first component needs a package or service provided by
a second component, the first component depends on the
second component.

[0031] A dependency between components may or may
not be explicitly noted. An explicit dependency for a par-
ticular component, as referred to herein, includes a decla-
ration of other components and/or a namespace. A
namespace maps names of resources (e.g., Java classes) to
resource definitions (e.g., class definitions). In one example,
a namespace is implemented as a dependency path. A
dependency path may include, as parameters, an ordered set
of'entities. Each entity may contain and transparently expose
a set of named resource definitions (e.g., Java class defini-
tions). In another example, a namespace is implemented as
a class loader. A class loader is an entity, containing and
transparently exposing a set of named resources definitions
(e.g., Java class definitions). Embodiments and examples
herein, which refer to a dependency path may be equally
applicable to any other namespace, e.g., a class loader.
[0032] In an embodiment, a dependency path identifies
non-module code that may be, but is not necessarily,
depended upon. The dependency path may be stored as an
environment variable in a software development environ-
ment or stored within a file (e.g., a manifest file).

[0033] In an embodiment, the dependency path corre-
sponds to a namespace. A namespace may include a set of
identifiers corresponding to respective sets of non-module
code. The set of identifiers may be ordered according to a
policy. In an example, the namespace identifies a set of Java
Archive (JAR) files.

[0034] In the Java Module System, a keyword “requires”
is used to declare explicit dependencies. The keyword
“requires” may be used with a parameter identifying another
component or identifying a dependency path (e.g., CLASS-
PATH). An explicit dependency on a dependency path
allows for depending on the parameters associated with the
dependency path. In an example, a first component depends
on a second component, either directly or via a dependency
path. To illustrate a first component depending on a second
component in FIG. 1B, an arrow is drawn from the first
component to the second component. The arrowhead points
to the second component which is being depended upon,
directly or via a dependency path, by the first component.
[0035] In an illustrated example, the module environment
102 includes a set of standard modules (e.g., standard
modules 104-112) which collectively define how the set of
standard modules work together, including but not limited to
any dependencies thereof. A standard module, as referred to
herein, includes any module with a restriction that prohibits
explicit dependency on any non-module code (e.g., non-
module code 140-146) either directly or via a dependency
path. A standard module may include an explicit dependency
on other standard modules and/or on bridge modules. Fur-
thermore, a standard module may indirectly depend on
non-module code (e.g., via bridge modules as described
herein).

[0036] In an embodiment, bridge modules may serve as a
bridge between standard modules and non-module code.
Specifically, bridge modules refer to modules that may (a) be
depended upon by standard modules and (b) depend upon
non-module code. Bridge modules may depend upon non-
module code via an explicit dependency on a dependency
path that corresponds to the non-module code. In addition to

US 2017/0177315 Al

the functionality to depend on non-module code, bridge
modules may depend on other bridge modules and/or on
standard modules. Bridge modules expose one or more
packages of non-module code to standard modules, other
bridge modules, and other non-module code via modular-
ization as described below w/reference to FIG. 2.

[0037] In the illustrated example, standard module 108
explicitly depends on standard module 110. Standard mod-
ule 110 explicitly depends on bridge module 122 and bridge
module 124. Bridge module 122 explicitly depends on a
dependency path corresponding to non-module code 140.
Furthermore, bridge module 122 explicitly depends on
bridge module 124. Bridge module 124 explicitly depends
on a dependency path corresponding to non-module code
146. Furthermore, bridge module 124 explicitly depends on
standard module 112.

[0038] In at least one embodiment, use of bridge modules,
with characteristics and functionality as described herein,
may be restricted. In one example, generation of a bridge
module may be restricted to a system or software develop-
ment environment. Developers that define standard modules
may be prohibited from defining module descriptors for
bridge modules.

[0039] In an embodiment, a system modularizes non-
module code to obtain modularized code (e.g., modularized
code 133 and modularized code 135). Modularizing non-
module code to obtain modularized code does not necessar-
ily require any modification of the non-module code itself.
Modularizing non-module code to obtain modularized code
includes generating data based on the contents of the non-
module code. The data associated with the modularized code
is indicated in a module descriptor naming a bridge module
associated with the modularized code. The module descrip-
tor is used for exposing (for example, by exporting) the
packages of the modularized code for access by other
modules or non-module code. Furthermore, the module
descriptor of a bridge module may include an explicit
dependency on a dependency path corresponding to non-
module code without exposing the non-module code. Alter-
natively, the module descriptor may expose non-module
code. A detailed example set of operations for modulariza-
tion of non-module code is described below with reference
to FIG. 2.

[0040] Referring again to the illustrated example, FIG. 1B
includes system 101 which is the result of modularizing
non-module code 132 and non-module code 134 identified
in FIG. 1A. Prior to the modularizing of non-module code
132 and non-module code 134, no standard modules in any
module environment, such as module environment 102,
could gain direct or indirect access to the functionality of
non-module code 132-146. Specifically, standard modules
104-112 cannot depend explicitly on any of non-module
code 132-146. In this example, non-module code 132 and
non-module code 134, as illustrated in FIG. 1A, were
modularized to obtain modularized code 133 and modular-
ized code 135, respectively, as illustrated in FIG. 1B.

[0041] Modularization of non-module code 132 and non-
module code 134 did not necessarily require any modifica-
tion of non-module code 132 and non-module code 134,
respectively. The modularization of non-module code 132 to
obtain modularized code 133 includes identification of the
packages in non-module code 132. The modularization of
non-module code 132 further includes identification of the
dependencies of non-module code 132 (e.g., on a depen-

Jun. 22,2017

dency path and/or on other non-modules). Bridge module
122 exposes the packages of modularized code 133 (previ-
ously referred to as non-module code 132) to standard
modules, other bridge modules, and other non-module code.
As an example, bridge module 122 allows standard module
110 to access the packages of modularized code 133. How-
ever, bridge module 122 does not necessarily expose the
explicit dependencies of modularized code 133 to other
modules. For example, while the module descriptor for
bridge module 122 includes an explicit dependency on a
dependency path corresponding to non-module code 140,
the bridge module 122 does not expose non-module code
140 to any other module. Accordingly, standard module 110,
which can access the packages of modularized code 133,
cannot explicitly depend on the non-module code 140.
Alternative implementations may include a bridge module
exposing non-module code to other modules. In a variation
of the above example, bridge module 122 exposes non-
module code 140 to standard module 110. The bridge
module may use “requires public” keywords to depend on
and expose non-module code 140 to standard module 110.
[0042] In an example, a bridge module is used for expos-
ing non-module code to standard modules. Specifically, the
bridge module exposes the non-module code, being modu-
larized, to standard modules. Furthermore, the bridge mod-
ule may expose all or a subset of other non-module code
upon which the modularized code depends.

[0043] In an embodiment, non-module code can depend
on packages exposed by bridge modules or by standard
modules. In an example, non-module code 146 depends on
packages exposed by standard module 112, for example, via
an “exports” command in the Java Module System. Further-
more, non-module code 146 may access the packages of
modularized code 133 that are exposed by bridge module
122 (access is not illustrated in the example FIG. 1B).
[0044] In an embodiment, bridge modules may be imple-
mented without any standard modules. As illustrated, in
FIG. 1C, system 102 includes bridge modules 122 and 124.
The system 102 further includes non-module code 140, 142,
144, and 146. However, system 102 does not include any
standard modules. A main method or main application which
serves as an entry point for execution may be implemented
in the modularized code 133 or the modularized code 135.
A system without standard modules (e.g., system 102 illus-
trated in FIG. 1C) may be (a) a permanent configuration or
(b) a temporary configuration until the system is modified to
include standard modules (e.g., system 101 illustrated in
FIG. 1B).

3. Development Environment Example

[0045] Embodiments, described herein, are applicable to
any development environment for developing, debugging,
or updating software. For purposes of explanation, specific
examples reference operations performed using the Java
Development Kit (JDK). Development environments other
than the JDK may share some functional constructs with the
JDK but not others, and most functional constructs of the
JDK are not required to implement the embodiments
claimed or described herein. Even if other languages use
different names to refer to the same or highly similar
functional constructs, a person of ordinary skill would
understand how these same or highly similar functional
constructs could be used in conjunction with the embodi-
ments claimed or described herein, instead of the corre-

US 2017/0177315 Al

sponding JDK constructs. Certain features of the JDK are
described below. However, one or more embodiments
include additional features not described below and/or omit
features described below.

[0046] A Java program manages two kinds of information:
primitive data and objects. Primitive data includes common,
fundamental values such as numbers and characters. An
object usually represents something more specialized or
complex, such as a bank account. An object is defined by a
class. A class contains methods that generally represent the
operations that can be performed on objects created from
that class.

[0047] Related classes may be grouped into packages. On
example of a package is the java.sql package including
classes for interacting with databases (SQL stands for Struc-
tured Query Language). Another example of a package is the
java.awt package including classes which provide support
for drawing graphics and creating GUIs (AWT stands for
Abstract Windowing Toolkit). A package may expose some
classes (e.g., classes that are invaluable to a developer) while
hiding other classes that relate to implementation details
(e.g., classes that are unlikely to be referenced by a devel-
oper). A set of exposed classes is referred to as an Appli-
cation Programming Interface (API). For example, the java.
awt package includes the Java Abstract Windowing Toolkit
API. In another example, the java.sql package includes the
Java Database Connectivity API.

[0048] A set of packages may be referred to as a class
library. A class library supports the development and execu-
tion of programs. A compiler and a class library are often
packaged together; class libraries can also be obtained
separately through third-party vendors.

[0049] In order to develop Java programs, a compiler is
required for compiling Java source code into Java class files.
Java source code may be pre-defined (e.g., in a class library)
or defined by a developer. A developer may generate Java
source code using any tool including, but not limited to, a
text editor or a full-fledged Integrated Development Envi-
ronment (IDE). A compiler compiles all Java source code,
whether pre-defined or developer-defined, into Java class
files. The javac compiler, included in the JDK, is one
example of a compiler used for compiling source code into
Java class files.

[0050] Java class files (i.e., *.class files) contain bytecode
representing the original source code in an efficient, por-
table, and architecture-neutral formal. The bytecode is
executed by an implementation of the Java Virtual Machine
(JVM). Hotspot, included in the JDK, is an example of a
JVM implementation. The JVM implementation may
execute the bytecode by an interpretation technique which
includes executing one bytecode “statement” at a time. The
JVM implementation may execute by the bytecode by a
compilation technique which includes converting the byte-
code to machine code at runtime. In the compilation tech-
nique, a different converter, for converting the bytecode to
machine code, is needed for each kind of processor on which
the bytecode is to be executed.

[0051] Prior to executing a Java class file, the JVM
implementation verifies all of the bytecode within the Java
class file. The verification ensures: (a) branches reference
valid locations and (b) data is initialized and references are
type-safe. Steps (a) and (b) of the verification process may
be performed when a class is loaded using a class loader.

Jun. 22,2017

[0052] A class loader is an object responsible for first
locating a binary representation of a class, and then passing
the binary representation to the JVM to create a class in
memory. The process of location followed by creation is
known as “class loading”. Class loading may be triggered by
the JVM as it executes code in one class and resolves that
code’s references to other classes. The JVM may trigger
class loading for classes as needed by a program instead of
loading all classes into memory at once. Class loading may
also be triggered by a Java program, because a class loader
is an ordinary object whose class (java.lang.ClassLoader or
a subclass) exposes methods to locate and create classes.
[0053] A Java runtime is typically associated with three or
more class loaders. One class loader is a “bootstrap™ class
loader (also referred to as a “primordial class loader”) for
loading trusted classes. Another class loader is an “exten-
sion” class loader which delegates class loading to the
bootstrap class loader or loads from a specified directory.
The extension class loader will typically load “non-core”
and/or less trusted classes. Another class loader is an “appli-
cation” class loader for loading developer-defined classes.
An application class loader loads classes from a namespace.
The namespace may refer to a CLASSPATH. Various
embodiments, described herein, refer to uses of the CLASS-
PATH. If a Java program creates its own class loader, it is
conventional for that class loader to “delegate” to the class
loaders associated with the Java runtime before that class
loader attempts to locate and create classes.

4. Generating a Bridge Module for Bridging a
Module Environment and a Non-Module
Environment

[0054] FIG. 2 illustrates an example set of operations for
generating a bridge module for bridging a module environ-
ment and a non-module environment in accordance with one
or more embodiments. The bridge module may be generated
for any non-module code in a set of non-module code
regardless of where the non-module code is located in a
dependency path. In an example, a first non-module code
depends on a second non-module code via a dependency
path. Either one of the first non-module code and the second
non-module code may be modularized before or without the
modularization of the other one of the first non-module code
and the second non-module code.

[0055] One or more operations illustrated in FIG. 2 may be
modified, rearranged, or omitted all together. Accordingly,
the particular sequence of operations illustrated in FIG. 2
should not be construed as limiting the scope of one or more
embodiments.

[0056] Initially, a triggering event is detected for modu-
larizing non-module code (Operation 202). In an embodi-
ment, a triggering event is a command or operation that
explicitly requests modularizing of the non-module code or
implicitly requires modularizing of the non-module code.
Modularization of the non-module code may be required if
a command requires a modularized version of the non-
module code. In an example, a module-related command,
using the keyword “MODULEPATH”, is to be executed.
The module-related command may be a command to com-
pile, validate, or execute a particular code base. When the
command is being executed, an identifier, foo-bar.jar corre-
sponding to the non-module code is identified as a parameter
associated with the keyword “MODULEPATH.” An analy-
sis of foo-barjar indicates that there is no module descriptor

US 2017/0177315 Al

identifying a module corresponding to foo-barjar. As a
result of lacking a module descriptor, foo-bar.jar is deter-
mined to be non-module code. However, MODULEPATH
requires a modularized version of foo-bar.jar, i.e., foo-bar.jar
with a module descriptor. Since MODULEPATH requires a
modularized version of foo-bar.jar, modularizing of foo-bar.
jar is triggered.

[0057] In another example, a triggering event includes
receiving an explicit command from a developer to modu-
larize the first non-module code. The command may be
determined as a function of a developer moving or copying
a file within a system. The system is configured such that
when any non-module code is moved or copied (e.g., using
a Graphical User Interface or Command Line Interface) into
a particular file or directory, the system triggers the modu-
larization of that non-module code.

[0058] Subsequent to detecting a trigger for modularizing
the non-module code, a determination is made as to whether
the non-module code meets the requirements for modular-
ization (Operation 204). If the non-module code does not
meet the requirements for modularization, a determination is
made that the first non-module cannot be modularized
(Operation 206).

[0059] Different systems may implement different require-
ments for modularization of non-module code into modu-
larized code. Requirements for modularizing non-module
code may include, for example, one or more of:

[0060] (a) Non-module code to be modularized may not
contain any duplicate packages.

[0061] (b) Non-module code to be modularized may not
depend on any of a particular set of restricted module
code (e.g., Java Development Kit-Internal APIs)

[0062] (c) Non-module code to be modularized may not
perform reflective operations, such as, looking up
classes or resources in other modules

[0063] In one example, two different sets of non-module
code, depended on by a particular code base, are determined
to expose the same package. In response to determining that
the two different sets of non-module code expose the same
package, the two different sets of non-module code are not
modularized.

[0064] Once a determination is made to modularize non-
module code, a bridge module is generated for the non-
module code. The bridge module is generated at least by
defining a module descriptor, for the non-module code, that
names the bridge module (Operation 208). If the module
descriptor is system-defined, any deterministic naming con-
vention may be used for selecting a name for the bridge
module. In one example, the name is a function of the file
name corresponding to the non-module code being modu-
larized.

[0065] Once a module descriptor has been defined for the
non-module code, the non-module code may be referred to
as modularized code. Accordingly, modularizing of non-
module code to obtain modularized code does not necessar-
ily include any modification to the non-module code itself.
[0066] A module descriptor, as referred to herein, includes
declarations corresponding to information about the modu-
larized code. The declarations relate to the use and/or
functionality of the modularized code. Examples of various
declarations are provided below which should not be con-
strued as limiting the scope of the claims in any way.
[0067] Inone embodiment, the module descriptor declares
explicit dependency of the corresponding bridge module to

Jun. 22,2017

a dependency path (Operation 208a). In a first example, the
non-module code is associated with a dependency path.
Specifically, the non-module code depends on other non-
module code identified in the dependency path. The module
descriptor declares explicit dependency of the bridge mod-
ule to the dependency path in response to determining that
the non-module code is associated with the dependency
path. In a second example, a dependency path declared by
the module descriptor is determined independent of the
non-module code. The dependency path may be a default
and/or system-defined dependency path used for bridge
modules. In a third example, the dependency path declared
by the bridge module is based on a combination of depen-
dencies of the non-module code (first example above) and
system-defined dependencies that are independent of the
non-module code (second example above). In a fourth
example, the non-module code, being modularized, depends
on two or more sets of non-module code. The module
descriptor includes an explicit dependency to and/or exposes
a first non-module code of the two or more sets of non-
module code. The module descriptor does not include an
explicit dependency to and/or does not expose a second
non-module code of the two or more sets of non-module
code. In another example, the non-module code depends on
other non-module code or another module that is not offi-
cially supported by a particular platform. The bridge mod-
ules do not expose the non-module code or other module that
is not officially supported by a particular platform. In
another example, the module descriptor includes an explicit
dependency on a dependency path that corresponds to at
least one set of non-module code that is not used or required
by the non-module code that is being modularized.

[0068] The module descriptor may explicitly depend on
the dependency path itself without necessarily referring to or
identifying the parameters of the dependency path. The
module descriptor may be defined without even examining
or identifying the parameters of the dependency path. The
dependency path included in the module descriptor may
refer to files (e.g., JAR files) that are neither used nor
required by the non-module code being modularized.
[0069] The explicit dependencies, included in the module
descriptor, may or may not be exposed to other modules
within the system. In an example related to the Java Module
System, “requires #CLASSPATH” may be used to declare
dependence to parameters identified in the CLASSPATH
without exposing the parameters to other modules. Alterna-
tively, “requires public #CLLASSPATH” may be used to
declare dependence to parameters identified in the CLASS-
PATH and expose the parameters to other modules.

[0070] In another example, the dependencies of the non-
module code may be recursively determined. The non-
module code is analyzed to determine a first hierarchical
layer of code on which the non-module code depends (either
directly or via a dependency path). The first hierarchical
layer of code is then analyzed to determine a second
hierarchical layer of code upon which the first hierarchical
layer of code depends. The process is recursively repeated
until a base layer is reached which does not depend on any
other layers. The set of recursively determined dependencies
may then be included as explicit dependencies in the module
descriptor.

[0071] In an embodiment, a check is performed to ensure
that contents of a dependency path are not modified between
(a) an initial time when a bridge module is created for

US 2017/0177315 Al

non-module code including the dependency path and (b) a
later time (subsequent to the initial time) when the depen-
dency path is accessed. Specifically, contents of a depen-
dency path may be identified and stored when creating a
bridge module. At a later time, when the dependency path is
accessed, the current contents are compared to the stored
content. Any changes to the contents of the dependency path
may trigger an alert.

[0072] Inone embodiment, the module descriptor declares
an explicit dependency of the bridge module to all other
bridge modules (Operation 2085). In an example, a system
maintains a listing of all bridge modules that have already
been created. When a new bridge module is being created by
defining a module descriptor for non-module code, the new
bridge module explicitly depends on each bridge module
included in the listing of bridge modules. The explicit
dependencies on other bridge modules are defined such that
the other bridge modules are exposed to other modules or
non-module code. In an example of the Java Module Sys-
tem, “requires public” is used for explicitly depending on the
other bridge modules and exposing the other bridge modules
to other modules or non-module code.

[0073] In one example, all bridge modules are configured
to explicitly depend on and expose all other bridge modules.
When a standard module explicitly depends on one of the
bridge modules in this configuration, all bridge modules are
exposed to the standard module. Specifically, all packages
exposed by all of the bridge modules are exposed to the
standard module.

[0074] In an embodiment, the module descriptor declares
explicit dependencies to every observable standard module,
to every standard module that allows for an explicit depen-
dence and/or to every standard module determined by the
runtime environment as being necessary for the execution of
an application which consists of a standard module (Opera-
tion 208¢). In an example, a standard module exposes a
package that may be depended upon by other standard
modules, bridge modules, and/or non-module code. A mod-
ule descriptor of the bridge module may declare an explicit
dependency to the standard module that exposes the pack-
age. In another example, standard module M has an entry
point enabling a user to run standard module M as an
application. Standard module M requires standard module N
and non-module code B, a JAR file. Furthermore, standard
module N requires standard module O. The JAR file is
included on the MODULEPATH and as a result, the runtime
environment generates a bridge module B from the JAR file.
The bridge module B is set up to require standard modules
M, N, and O. If an additional standard module, P, is
observable, but is not required by any of standard modules
M, N, or O, then the bridge module B is not set up to require
standard module P.

[0075] In an embodiment, the module descriptor declares
packages being exposed by the bridge module (Operation
208d). In an example, a system traverses the contents of the
non-module code being modularized. The traversal identi-
fies all available packages. The packages are then made
available for dependence by other components using a
declaration identifying the packages.

[0076] In an embodiment, the module descriptor declares
an entry point for initiating execution of an application
(Operation 208e). In an example, a set of files includes a
particular file that is an entry point for initiating execution of
an application. The particular file may include a “main”

Jun. 22,2017

method or other primary method that corresponds to a
primary set of operations within the sets of operations
defined in the sets of files.

[0077] Inanembodiment, defining a module descriptor for
non-module code, as described above with reference to
Operation 208, results in modularized code corresponding to
a bridge module. The module descriptor of the bridge
module describes the declarations associated with the modu-
larized code.

[0078] Inanembodiment, a combination of standard mod-
ules, bridge modules, and non-module code form a code
base. Using the code base involves concurrently using
standard modules, bridge modules, and non-module code
(Operation 210). In an example, the code base may be
compiled, validated, and/or executed. The standard modules
may produce results based, in part, on operations performed
using non-module code.

[0079] In an embodiment, the modularized code, corre-
sponding to bridge modules, may be fully analyzed to
determine the actual code external to the modularized code
that is used and/or required by the modularized code.
Determining the actual code may involve a recursive set of
operations to identify a full hierarchy of code based on code
dependencies. The explicit dependency of the bridge module
on a dependency path may be replaced by explicit depen-
dencies on only the actual code that is used and/or required.

5. Example Embodiments

[0080] In an embodiment, operations include: identifying
a first non-module code, wherein the first non-module code
does not correspond to any of a plurality of modules;
generating a first module for the first non-module code; and
wherein the generating operation comprises: defining a
module descriptor that (a) corresponds to the first module
and (b) comprises an explicit dependency based on a
namespace corresponding to one or more sets of non-module
code. The namespace may include a dependency path cor-
responding to the one or more sets of non-module code. The
operations may further include: prior to generating the first
module, determining that the first non-module code is asso-
ciated with the namespace; and wherein defining the module
descriptor to comprise the explicit dependency based on the
namespace is responsive to determining that the first non-
module code was associated with the namespace. The opera-
tions may further include: determining the explicit depen-
dency, for including in the module descriptor, independent
of any content or dependency of the first non-module code.
The explicit dependency, in the module descriptor, may
explicitly refer to the namespace without explicitly referring
to the one or more sets of non-module code corresponding
to the namespace. The explicit dependency, in the module
descriptor, may explicitly refer to a second non-module code
selected from the one or more sets of non-module code
corresponding to the namespace. The one or more sets of
non-module code corresponding to the namespace may
include a second non-module code that is not used or
required by the first non-module code, and wherein the
namespace, in the module descriptor, allows the first module
to access the second non-module code even though the
second non-module code is not used or required by the first
non-module code. The first module as referred to above may
be a bridge module as described herein. The module descrip-
tor, corresponding to the first module, may be defined by a
system in response to the system detecting occurrence of a

US 2017/0177315 Al

triggering event. The operations may further include: receiv-
ing a command requiring modularization of the first non-
module code; and wherein generating the first module for
the first non-module code is responsive to receiving the
command. The operations may further include: determining
that the first non-module code does not correspond to any of
the plurality of modules; and wherein generating the first
module for the first non-module code is responsive at least
to determining that the first non-module code does not
correspond to any of the plurality of modules. The opera-
tions may further include: receiving a command for execut-
ing a module operation, the command comprising the first
non-module code as a parameter; and wherein generating the
first module for the first non-module code is responsive to
receiving the command. The operations may further include:
receiving a command comprising a MODULEPATH key-
word that refers to an identifier for the first non-module code
as a parameter; and wherein generating the first module for
the first non-module code is responsive to receiving the
command. The plurality of modules may include (a) a first
set of standard modules that are restricted from explicitly
depending on the namespace corresponding to the one or
more sets of non-module code and (b) a second set of bridge
modules that are not restricted from explicitly depending on
the namespace corresponding to the one or more sets of
non-module code. When the first module is a bridge module,
the operations may further include: subsequent to generating
the bridge: successfully validating a particular standard
module with an explicit dependency on the bridge module;
and wherein the particular standard module is restricted
from including the explicit dependency on the namespace.
The operations may further include: defining the module
descriptor to include a particular explicit dependency based
on one or more of: each module in the plurality of modules
that allows for explicit dependency by the first module; each
module in the plurality of modules that is necessary for
execution of an application which consists of a standard
module; each observable standard module in the plurality of
modules; each standard module enumerated by a developer;
and each bridge module other than the first module. The
operations may further include: defining the module descrip-
tor to allow every package in the first non-module code to be
accessed by any standard module, any bridge module, and
any non-module code. Generating the first module for the
first non-module code may be responsive at least to deter-
mining: determining that the first non-module code does not
contain any duplicate packages; determining that the first
non-module code does not depend on any of a set of
restricted modules of the plurality of modules; and deter-
mining that the first non-module code does not look up
classes or resources in other modules of the plurality of
modules.

[0081] In an embodiment, operations include: executing
an operation on a code base corresponding to a plurality of
modules comprising: a first set of modules that are not
restricted from including an explicit dependency based on a
namespace corresponding to one or more sets of non-module
code; and a second set of modules that are restricted from
including the explicit dependency based on the namespace
corresponding to the one or more sets of non-module code;
and wherein at least one of the second set of modules
explicitly depends on at least one of the first set of modules.
The first of modules may consist of one or more bridge
modules. The second set of modules may consist of one or

Jun. 22,2017

more standard modules. The namespace may include a
dependency path. The namespace may include a dependency
path corresponding to the one or more sets of non-module
code. A particular module, in the first set of modules may
include a module descriptor, wherein the module descriptor
includes the explicit dependency based on the namespace
corresponding to the one or more sets of non-module code.

[0082] FIGS. 3A-3D illustrate detailed examples for pur-
poses of clarity. Components and/or operations described
below should be understood as specifics example which may
not be applicable to certain embodiments. Accordingly,
components and/or operations described below should not
be construed as limiting the scope of any of the claims.
Furthermore, the example is not intended to present a
complete set of information. For example, only a subset of
the content associated with modules or module descriptors is
described below.

[0083] In an embodiment, FIG. 3A illustrates a non-
module system, components of which are being migrated to
a module system. Specifically, non-module code within the
non-module system is being modularized to generate bridge
modules.

[0084] Code description 304 describes characteristics of
four files A jar 320, B.jar 310, C jar 330, and D.jar 340. A jar
includes class a.AA, B jar includes class b.BB, ¢ jar includes
class ¢.CC, and D.jar includes class d.DD. Class a.AA
creates instances of b.BB and ¢.CC, and accordingly,
depends on b.BB and ¢.CC. Class ¢.CC extends d.DD, and
accordingly, depends on d.DD. A software development
environment searches for and loads classes as needed by the
various files.

[0085] In an initial operational state T0, the environment
variable CLASSPATH, identified as dependency path 350,
includes Ajar; Bjar; C.jar; Djar. When operations (e.g.,
compiling, validating, or executing) are being executed, the
software development environment finds all files using the
CLASSPATH.

[0086] At time T1, the operational state is illustrated after
modularization of D.jar 340. The modularization of D.jar
340 is triggered by adding D.jar 340 to the MODULEPATH
as illustrated in listing 355. The modularization of D jar 340
results in defining a module descriptor that names bridge
module D 342 based on the file name “D.jar.” The module
descriptor for bridge module 342 also exports d.DD. The
software development environment now finds d.DD, when
needed for A.jar and C jar, based on the export by bridge
module D 342. No modification is needed for A jar 320 and
C jar 330 for the software development environment to find
d.DD via the export function of bridge module D 342 rather
than the CLASSPATH. D.jar 340 cannot be found using the
CLASSPATH as D.jar 340 has been removed from the
CLASSPATH.

[0087] At time T2, the operational state is illustrated after
modularization of Ajar 320. The modularization of A jar
320 is triggered by adding A.jar 320 to the MODULEPATH
as illustrated in listing 355. The modularization of A jar 320
results in defining a module descriptor that names bridge
module A 322 based on the file name “Ajar” and further
exports a.AA. The software development environment may
find a.AA, if and when needed, based on the export by
bridge module A 322. A jar 320 cannot be found using the
CLASSPATH as Ajar 320 has been removed from the
CLASSPATH.

US 2017/0177315 Al

[0088] At time T3, the operational state is illustrated after
the addition of standard module 360 and standard module
370. Standard module 360 explicitly depends on bridge
module A 322. The software development environment uses
the “requires” declaration of standard module 360 and the
“exports” declaration of bridge module A 322 to identify
A jar 320 when needed for standard module 360. Standard
module 370 explicitly depends on bridge module 342. The
software development environment uses the “requires” dec-
laration of standard module 370 and the “exports” declara-
tion of bridge module D 342 to identify D.jar 340 when
needed for standard module 370. The bridge modules
(bridge module A 322 and bridge module D 342) expose
non-module code (A jar 320 and D.jar 340) to the standard
modules. Furthermore, the bridge modules allow the stan-
dard modules to complete operations indirectly using the
non-module code that is not exposed to the standard mod-
ules. Specifically, bridge module A 322 allows standard
module 360 to access A.jar 320. A jar 320 may use B.jar 310
and Cjar 330 to perform operations for obtaining results
which may be passed on to the standard modules 360 and
370.

6. Miscellaneous; Extensions

[0089] Embodiments are directed to a system with one or
more devices that include a hardware processor and that are
configured to perform any of the operations described herein
and/or recited in any of the claims below.

[0090] Inan embodiment, a non-transitory computer read-
able storage medium comprises instructions which, when
executed by one or more hardware processors, causes per-
formance of any of the operations described herein and/or
recited in any of the claims.

[0091] In an embodiment, the operations include identi-
fying a first non-module code, wherein the first non-module
code does not correspond to any of a plurality of modules;
generating a first module for the first non-module code; and
wherein the generating operation comprises: defining a
module descriptor that (a) corresponds to the first module
and (b) comprises an explicit dependency based on a
namespace corresponding to one or more sets of non-module
code. In an embodiment, the namespace comprises a depen-
dency path corresponding to the one or more sets of non-
module code. In an embodiment, the operations further
comprise: prior to generating the first module, determining
that the first non-module code is associated with the
namespace; and wherein defining the module descriptor to
comprise the explicit dependency based on the namespace is
responsive to determining that the first non-module code
was associated with the namespace. In an embodiment, the
operations further comprise: determining the explicit depen-
dency, for including in the module descriptor, independent
of any content or dependency of the first non-module code.
In an embodiment, the explicit dependency, in the module
descriptor, explicitly refers to the namespace without explic-
itly referring to the one or more sets of non-module code
corresponding to the namespace. In an embodiment, the
explicit dependency, in the module descriptor, explicitly
refers to a second non-module code selected from the one or
more sets of non-module code corresponding to the
namespace. In an embodiment, the one or more sets of
non-module code corresponding to the namespace includes
a second non-module code that is not used or required by the
first non-module code, and wherein the namespace, in the

Jun. 22,2017

module descriptor, allows the first module to access the
second non-module code even though the second non-
module code is not used or required by the first non-module
code. In an embodiment, the first module is a bridge module.
In an embodiment, the module descriptor, corresponding to
the first module, is defined by a system in response to the
system detecting occurrence of a triggering event. In an
embodiment, the operations further comprise: receiving a
command requiring modularization of the first non-module
code; and wherein generating the first module for the first
non-module code is responsive to receiving the command.
In an embodiment, the operations further comprise: deter-
mining that the first non-module code does not correspond
to any of the plurality of modules; and wherein generating
the first module for the first non-module code is responsive
at least to determining that the first non-module code does
not correspond to any of the plurality of modules. In an
embodiment, the operations further comprise: receiving a
command for executing a module operation, the command
comprising the first non-module code as a parameter; and
wherein generating the first module for the first non-module
code is responsive to receiving the command. In an embodi-
ment, the operations further comprise: receiving a command
comprising a MODULEPATH keyword that refers to an
identifier for the first non-module code as a parameter; and
wherein generating the first module for the first non-module
code is responsive to receiving the command. In an embodi-
ment, the plurality of modules comprises (a) a first set of
standard modules that are restricted from explicitly depend-
ing on the namespace corresponding to the one or more sets
of non-module code and (b) a second set of bridge modules
that are not restricted from explicitly depending on the
namespace corresponding to the one or more sets of non-
module code. In an embodiment, the first module is a bridge
module, and wherein the operations further comprise: sub-
sequent to generating the bridge: successfully validating a
particular standard module with an explicit dependency on
the bridge module; and wherein the particular standard
module is restricted from including the explicit dependency
on the namespace. In an embodiment, the operations further
comprise: defining the module descriptor to include a par-
ticular explicit dependency based on one or more of: each
module in the plurality of modules that allows for explicit
dependency by the first module; each module in the plurality
of modules that is necessary for execution of an application
which consists of a standard module; each observable stan-
dard module in the plurality of modules; each standard
module enumerated by a developer; and each bridge module
other than the first module. In an embodiment, the opera-
tions further comprise: defining the module descriptor to
allow every package in the first non-module code to be
accessed by any standard module, any bridge module, and
any non-module code. In an embodiment, generating the
first module for the first non-module code is responsive at
least to determining: determining that the first non-module
code does not contain any duplicate packages; determining
that the first non-module code does not depend on any of a
set of restricted modules of the plurality of modules; and
determining that the first non-module code does not look up
classes or resources in other modules of the plurality of
modules.

[0092] In an embodiment, the operations include execut-
ing an operation on a code base corresponding to a plurality
of modules comprising: a first set of modules that are not

US 2017/0177315 Al

restricted from including an explicit dependency based on a
namespace corresponding to one or more sets of non-module
code; and a second set of modules that are restricted from
including the explicit dependency based on the namespace
corresponding to the one or more sets of non-module code;
and wherein at least one of the second set of modules
explicitly depends on at least one of the first set of modules.
In an embodiment, the first set of modules consists of one or
more bridge modules. In an embodiment, the second set of
modules consists of one or more standard modules. In an
embodiment, the namespace comprises a dependency path.
In an embodiment, the namespace comprises a dependency
path corresponding to the one or more sets of non-module
code. In an embodiment, a particular module, in the first set
of modules, comprises a module descriptor; wherein the
module descriptor comprises the explicit dependency based
on the namespace corresponding to one or more sets of
non-module code.

[0093] Any combination of the features and functionalities
described herein may be used in accordance with one or
more embodiments. In the foregoing specification, embodi-
ments have been described with reference to numerous
specific details that may vary from implementation to imple-
mentation. The specification and drawings are, accordingly,
to be regarded in an illustrative rather than a restrictive
sense. The sole and exclusive indicator of the scope of the
invention, and what is intended by the applicants to be the
scope of the invention, is the literal and equivalent scope of
the set of claims that issue from this application, in the
specific form in which such claims issue, including any
subsequent correction.

7. Hardware Overview

[0094] According to one embodiment, the techniques
described herein are implemented by one or more special-
purpose computing devices. The special-purpose computing
devices may be hard-wired to perform the techniques, or
may include digital electronic devices such as one or more
application-specific integrated circuits (ASICs) or field pro-
grammable gate arrays (FPGAs) that are persistently pro-
grammed to perform the techniques, or may include one or
more general purpose hardware processors programmed to
perform the techniques pursuant to program instructions in
firmware, memory, other storage, or a combination. Such
special-purpose computing devices may also combine cus-
tom hard-wired logic, ASICs, or FPGAs with custom pro-
gramming to accomplish the techniques. The special-pur-
pose computing devices may be desktop computer systems,
portable computer systems, handheld devices, networking
devices or any other device that incorporates hard-wired
and/or program logic to implement the techniques.

[0095] For example, FIG. 4 is a block diagram that illus-
trates a computer system 400 upon which an embodiment of
the invention may be implemented. Computer system 400
includes a bus 402 or other communication mechanism for
communicating information, and a hardware processor 404
coupled with bus 402 for processing information. Hardware
processor 404 may be, for example, a general purpose
Microprocessor.

[0096] Computer system 400 also includes a main
memory 406, such as a random access memory (RAM) or
other dynamic storage device, coupled to bus 402 for storing
information and instructions to be executed by processor
404. Main memory 406 also may be used for storing

Jun. 22,2017

temporary variables or other intermediate information dur-
ing execution of instructions to be executed by processor
404. Such instructions, when stored in non-transitory storage
media accessible to processor 404, render computer system
400 into a special-purpose machine that is customized to
perform the operations specified in the instructions.

[0097] Computer system 400 further includes a read only
memory (ROM) 408 or other static storage device coupled
to bus 402 for storing static information and instructions for
processor 404. A storage device 410, such as a magnetic disk
or optical disk, is provided and coupled to bus 402 for
storing information and instructions.

[0098] Computer system 400 may be coupled via bus 402
to a display 412, such as a cathode ray tube (CRT), for
displaying information to a computer user. An input device
414, including alphanumeric and other keys, is coupled to
bus 402 for communicating information and command
selections to processor 404. Another kind of user input
device is cursor control 416, such as a mouse, a trackball, or
cursor direction keys for communicating direction informa-
tion and command selections to processor 404 and for
controlling cursor movement on display 412. This input
device typically has two degrees of freedom in two axes, a
first axis (e.g., X) and a second axis (e.g., y), that allows the
device to specify positions in a plane.

[0099] Computer system 400 may implement the tech-
niques described herein using customized hard-wired logic,
one or more ASICs or FPGAs, firmware and/or program
logic which in combination with the computer system causes
or programs computer system 400 to be a special-purpose
machine. According to one embodiment, the techniques
herein are performed by computer system 400 in response to
processor 404 executing one or more sequences of one or
more instructions contained in main memory 406. Such
instructions may be read into main memory 406 from
another storage medium, such as storage device 410. Execu-
tion of the sequences of instructions contained in main
memory 406 causes processor 404 to perform the process
steps described herein. In alternative embodiments, hard-
wired circuitry may be used in place of or in combination
with software instructions.

[0100] The term “storage media” as used herein refers to
any non-transitory media that store data and/or instructions
that cause a machine to operation in a specific fashion. Such
storage media may comprise non-volatile media and/or
volatile media. Non-volatile media includes, for example,
optical or magnetic disks, such as storage device 410.
Volatile media includes dynamic memory, such as main
memory 406. Common forms of storage media include, for
example, a floppy disk, a flexible disk, hard disk, solid state
drive, magnetic tape, or any other magnetic data storage
medium, a CD-ROM, any other optical data storage
medium, any physical medium with patterns of holes, a
RAM, a PROM, and EPROM, a FLASH-EPROM,
NVRAM, any other memory chip or cartridge.

[0101] Storage media is distinct from but may be used in
conjunction with transmission media. Transmission media
participates in transferring information between storage
media. For example, transmission media includes coaxial
cables, copper wire and fiber optics, including the wires that
comprise bus 402. Transmission media can also take the
form of acoustic or light waves, such as those generated
during radio-wave and infra-red data communications.

US 2017/0177315 Al

[0102] Various forms of media may be involved in carry-
ing one or more sequences of one or more instructions to
processor 404 for execution. For example, the instructions
may initially be carried on a magnetic disk or solid state
drive of a remote computer. The remote computer can load
the instructions into its dynamic memory and send the
instructions over a telephone line using a modem. A modem
local to computer system 400 can receive the data on the
telephone line and use an infra-red transmitter to convert the
data to an infra-red signal. An infra-red detector can receive
the data carried in the infra-red signal and appropriate
circuitry can place the data on bus 402. Bus 402 carries the
data to main memory 406, from which processor 404
retrieves and executes the instructions. The instructions
received by main memory 406 may optionally be stored on
storage device 410 either before or after execution by
processor 404.

[0103] Computer system 400 also includes a communica-
tion interface 418 coupled to bus 402. Communication
interface 418 provides a two-way data communication cou-
pling to a network link 420 that is connected to a local
network 422. For example, communication interface 418
may be an integrated services digital network (ISDN) card,
cable modem, satellite modem, or a modem to provide a data
communication connection to a corresponding kind of tele-
phone line. As another example, communication interface
418 may be a local area network (LAN) card to provide a
data communication connection to a compatible LAN. Wire-
less links may also be implemented. In any such implemen-
tation, communication interface 418 sends and receives
electrical, electromagnetic or optical signals that carry digi-
tal data streams representing various kinds of information.
[0104] Network link 420 typically provides data commu-
nication through one or more networks to other data devices.
For example, network link 420 may provide a connection
through local network 422 to a host computer 424 or to data
equipment operated by an Internet Service Provider (ISP)
426. ISP 426 in turn provides data communication services
through the world wide packet data communication network
now commonly referred to as the “Internet” 428. Local
network 422 and Internet 428 both use electrical, electro-
magnetic or optical signals that carry digital data streams.
The signals through the various networks and the signals on
network link 420 and through communication interface 418,
which carry the digital data to and from computer system
400, are example forms of transmission media.

[0105] Computer system 400 can send messages and
receive data, including program code, through the network
(s), network link 420 and communication interface 418. In
the Internet example, a server 430 might transmit a
requested code for an application program through Internet
428, ISP 426, local network 422 and communication inter-
face 418.

[0106] The received code may be executed by processor
404 as it is received, and/or stored in storage device 410, or
other non-volatile storage for later execution.

[0107] In the foregoing specification, embodiments of the
invention have been described with reference to numerous
specific details that may vary from implementation to imple-
mentation. The specification and drawings are, accordingly,
to be regarded in an illustrative rather than a restrictive
sense. The sole and exclusive indicator of the scope of the
invention, and what is intended by the applicants to be the
scope of the invention, is the literal and equivalent scope of

Jun. 22,2017

the set of claims that issue from this application, in the
specific form in which such claims issue, including any
subsequent correction.

What is claimed is:

1. A non-transitory computer readable medium compris-
ing instructions which, when executed by one or more
hardware processors, cause performance of operations com-
prising:

identifying a code base comprising:

one or more sets of non-module code that are not
associated with any module descriptors;
a first module corresponding to:

a first module descriptor that includes a first set of
one or more explicit declarations indicating at
least a dependency on the one or more sets of
non-module code;

a first set of executable code;

a second module corresponding to:

a second module descriptor that includes a second set
of one or more explicit declarations indicating at
least a dependency on the first module, wherein
the second module descriptor is restricted from
including any explicit declaration indicating any
dependency on the one or more sets of non-
module code;

a second set of executable code;

executing the first set of executable code and the second

set of executable code;
wherein executing the first set of executable code com-
prises executing at least a first line of code of the first
set of executable code that accesses at least a second
line of code of the one or more sets of non-module
code.
2. The medium of claim 1, wherein the first set of modules
consists of one or more bridge modules.
3. The medium of claim 1, wherein the second set of
modules consists of one or more standard modules.
4. The medium of claim 1, wherein the dependency on the
one or more sets of non-module code is expressed as a
dependency on a namespace corresponding to the one or
more sets of non-module code.
5. The medium of claim 1, wherein:
executing the second set of executable code comprises
executing at least a third line of code of the second set
of executable code that accesses at least a fourth line of
code of the first set of executable code; and

executing the fourth line of code of the first set of
executable code causes execution of the first line of
code of the first set of executable code that accesses the
second line of code of the one or more sets of non-
module code.

6. The medium of claim 1, wherein executing the second
set of executable code does not include executing any lines
of code of the second set of executable code that accesses
any lines of code of the one or more sets of non-module
code.

7. The medium of claim 1, wherein the first line of code
of the first set of executable code that accesses the second
line of code of the one or more sets of non-module code
comprises: a line of code that calls a package or service
provided by the one or more sets of non-module code.

8. The medium of claim 1, wherein dependencies within
the one or more sets of non-module code are not required to
be explicitly declared.

US 2017/0177315 Al

9. The medium of claim 1, wherein the first module
descriptor defines dependencies, of the first module, on one
or more other components of the code base.

10. The medium of claim 1, wherein the second module
is restricted from accessing the one or more sets of non-
module code.

11. A system comprising:

at least one device including a hardware processor;

the system being configured to perform operations com-

prising:

executing an operation on a code base corresponding to a

plurality of modules comprising:

identifying a code base comprising:

one or more sets of non-module code that are not
associated with any module descriptors;
a first module corresponding to:

a first module descriptor that includes a first set of
one or more explicit declarations indicating at
least a dependency on the one or more sets of
non-module code;

a first set of executable code;

a second module corresponding to:

a second module descriptor that includes a second set
of one or more explicit declarations indicating at
least a dependency on the first module, wherein
the second module descriptor is restricted from
including any explicit declaration indicating any
dependency on the one or more sets of non-
module code;

a second set of executable code;

executing the first set of executable code and the second

set of executable code;
wherein executing the first set of executable code com-
prises executing at least a first line of code of the first
set of executable code that accesses at least a second
line of code of the one or more sets of non-module
code.
12. The system of claim 11, wherein the dependency on
the one or more sets of non-module code is expressed as a
dependency on a namespace corresponding to the one or
more sets of non-module code.
13. The system of claim 11, wherein:
executing the second set of executable code comprises
executing at least a third line of code of the second set
of executable code that accesses at least a fourth line of
code of the first set of executable code; and

executing the fourth line of code of the first set of
executable code causes execution of the first line of
code of the first set of executable code that accesses the
second line of code of the one or more sets of non-
module code.

14. The system of claim 11, wherein executing the second
set of executable code does not include executing any lines
of code of the second set of executable code that accesses
any lines of code of the one or more sets of non-module
code.

Jun. 22,2017

15. The system of claim 11, wherein the first line of code
of the first set of executable code that accesses the second
line of code of the one or more sets of non-module code
comprises: a line of code that calls a package or service
provided by the one or more sets of non-module code.

16. The system of claim 11, wherein the second module
is restricted from accessing the one or more sets of non-
module code.

17. A method comprising:

identifying a code base comprising:

one or more sets of non-module code that are not
associated with any module descriptors;
a first module corresponding to:

a first module descriptor that includes a first set of
one or more explicit declarations indicating at
least a dependency on the one or more sets of
non-module code;

a first set of executable code;

a second module corresponding to:

a second module descriptor that includes a second set
of one or more explicit declarations indicating at
least a dependency on the first module, wherein
the second module descriptor is restricted from
including any explicit declaration indicating any
dependency on the one or more sets of non-
module code;

a second set of executable code;

executing the first set of executable code and the second

set of executable code;

wherein executing the first set of executable code com-

prises executing at least a first line of code of the first
set of executable code that accesses at least a second
line of code of the one or more sets of non-module
code; and

wherein the method is executed by at least one device

including a hardware processor.
18. The method of claim 17, wherein the dependency on
the one or more sets of non-module code is expressed as a
dependency on a namespace corresponding to the one or
more sets of non-module code.
19. The method of claim 17, wherein:
executing the second set of executable code comprises
executing at least a third line of code of the second set
of executable code that accesses at least a fourth line of
code of the first set of executable code; and

executing the fourth line of code of the first set of
executable code causes execution of the first line of
code of the first set of executable code that accesses the
second line of code of the one or more sets of non-
module code.

20. The method of claim 17, wherein executing the second
set of executable code does not include executing any lines
of code of the second set of executable code that accesses
any lines of code of the one or more sets of non-module
code.

