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INTEGRATED
DIAGENETIC-DEPOSITIONAL FACIES
(IDDF) CHARACTERIZATION AND 3D

GEOMODELING

TECHNICAL FIELD

[0001] The present disclosure applies to determining res-
ervoir quality, e.g., in oil fields.

BACKGROUND

[0002] In most carbonate reservoirs, initial depositional
characteristics and subsequent diagenetic modification pro-
cesses are strongly associated with reservoir quality and
heterogeneity. These processes are often inter-related and
usually impact basic reservoir properties such as porosity,
permeability, and water saturation. Information about these
parameters are often generated by (or included in) logs such
as density logs, neutron logs, sonic logs, and resistivity logs.
[0003] Many carbonate oil and gas fields typically suffer
from inaccurate volumetric estimation, poor history match-
ing, poor production forecast, and reservoir management.
This can occur due to the lack of integrated reservoir
characterization and three-dimensional (3D) geomodeling.
One of the key elements of carbonate reservoir character-
ization that is often under-represented is diagenesis (e.g.,
including dissolutions, dolomitizations, and cementations).
Diagenetic processes can be used in conjunction with pre-
existing depositional products and in generating multi-scale
pore systems, e.g., spanning from meter to micron size. In
many carbonate fields, these multi-scale diagenetic compo-
nents, their paragenesis, and their distribution within a 3D
space are often poorly represented. These features may be
blended into the terms of carbonate reservoir heterogeneity
and complexity. As a result, reservoir properties may be
modeled randomly (stochastically).

[0004] Many carbonate reservoirs are often under-charac-
terized due to the absence of integrated diagenetic studies. In
several cases, carbonate reservoir property models are just
modeled using basic depositional (litho) facies as the basis
for determining or estimating reservoir quality. This
approach often fails to capture the full spectrum of carbonate
reservoir heterogeneity, its predictability, and its volumetric
impact.

SUMMARY

[0005] The present disclosure describes techniques that
can be used for Integrated Diagenetic-Depositional Facies
(IDDF) characterization and three-dimensional (3D) geo-
modeling. In some implementations, a computer-imple-
mented method includes the following. Correlated geosci-
ence datasets are generated for a set of oil and gas drilling
operations. Integrated Diagenetic-Depositional Facies
(IDDF) classifications are performed using genetic and
analytic criteria and using the correlated geoscience data-
sets. A training dataset is prepared using the IDDF classi-
fications and well data including core, petrographic, and
routine core analyses (RCA) data. The training dataset
includes correlations of porosity-permeability (poro-perm)
and log properties. Automated machine learning is per-
formed using the training dataset to provide IDDF estima-
tion in uncovered wells. Reservoir quality predictions, 3D
reservoir modeling, and volume estimations are performed
based on the automated machine learning. Suggested
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changes to make in wellbore operations are provided in a
user interface based on the reservoir quality predictions, the
3D reservoir modeling, and the volume estimations.
[0006] The previously described implementation is imple-
mentable using a computer-implemented method; a non-
transitory, computer-readable medium storing computer-
readable instructions to perform the computer-implemented
method; and a computer-implemented system including a
computer memory interoperably coupled with a hardware
processor configured to perform the computer-implemented
method, the instructions stored on the non-transitory, com-
puter-readable medium.

[0007] The subject matter described in this specification
can be implemented in particular implementations, so as to
realize one or more of the following advantages. The tech-
niques of the present disclosure can be used to overcome
limitations in carbonate oil and gas fields that experience
poor up-side volumetric estimation, reservoir quality pre-
diction, under-estimated volumetric assessment, and poor
reservoir simulation history-matching. The limitations may
exist due to the lack of data integration, characterization, and
3D geo-cellular modeling of geo-bodies and the associated
properties. As described in the present disclosure, an inte-
grated workflow can be used that provides a comprehensive
method to characterize and model the 3D integrated depo-
sitional and diagenetic facies (IDDF) distribution and asso-
ciated porosity, permeability, and water saturation. Limita-
tions in conventional systems related to IDDF property
modeling can be overcome by integrating both static and
dynamic data early in 3D geo-cellular modeling processed.
IDDF workflows improve the integration of multi-disciplin-
ary data sets such as geology (e.g., petrography, diagenetic
concepts), geophysics (e.g., seismic attributes), and reser-
voir engineering data (e.g., production flow meter log). This
integration allows a more comprehensive worktlow to build
both 3D static (geologic) and dynamic (simulation) models
than the traditional modeling workflow. This in turn gener-
ates a more robust 3D subsurface description for better
hydrocarbon volume estimation, well placement, fluid
dynamic simulation and production forecasting.

[0008] The details of one or more implementations of the
subject matter of this specification are set forth in the
Detailed Description, the accompanying drawings, and the
claims. Other features, aspects, and advantages of the sub-
ject matter will become apparent from the Detailed Descrip-
tion, the claims, and the accompanying drawings.

DESCRIPTION OF DRAWINGS

[0009] FIG. 1 is a flow chart showing an example of a
workflow for integrated diagenetic-depositional facies
(IDDF) characterization and three-dimensional (3D) geo-
modeling, according to some implementations of the present
disclosure.

[0010] FIG. 2 is a block diagram showing an example
workflow for well data preparation, integration, and machine
learning estimation of the IDDF, according to some imple-
mentations of the present disclosure.

[0011] FIG. 3 is a block diagram showing an example of
an IDDF classification using the integration of petrography
and routine core analyses, according to some implementa-
tions of the present disclosure.

[0012] FIG. 4 is a flow diagram showing an example
integration of seismic data, well logs, flow meter data, and
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the IDDF flags at well location, according to some imple-
mentations of the present disclosure.

[0013] FIG. 5is a flow diagram showing an example of 3D
IDDF modeling using an integration of seismic and well
data, according to some implementations of the present
disclosure.

[0014] FIG. 6 is a flowchart of an example of a method for
determining reservoir quality, according to some implemen-
tations of the present disclosure.

[0015] FIG. 7 is a block diagram illustrating an example
computer system used to provide computational function-
alities associated with described algorithms, methods, func-
tions, processes, flows, and procedures as described in the
present disclosure, according to some implementations of
the present disclosure.

[0016] Like reference numbers and designations in the
various drawings indicate like elements.

DETAILED DESCRIPTION

[0017] The following detailed description describes tech-
niques for Integrated Diagenetic-Depositional Facies
(IDDF) characterization and three-dimensional (3D) geo-
modeling. Various modifications, alterations, and permuta-
tions of the disclosed implementations can be made and will
be readily apparent to those of ordinary skill in the art, and
the general principles defined may be applied to other
implementations and applications, without departing from
the scope of the disclosure. In some instances, details
unnecessary to obtain an understanding of the described
subject matter may be omitted so as to not obscure one or
more described implementations with unnecessary detail
and inasmuch as such details are within the skill of one of
ordinary skill in the art. The present disclosure is not
intended to be limited to the described or illustrated imple-
mentations, but to be accorded the widest scope consistent
with the described principles and features.

[0018] The workflow of the present disclosure integrates
both depositional and diagenetic aspects to model reservoir
properties in a practical way, using a multi-disciplinary
dataset (e.g., petrographic, petrophysical, geophysical, and
dynamic data). This approach not only improves 3D reser-
voir properties distribution (e.g., porosity and permeability)
but also optimizes up-side volumetrics, development well
placement, history-matching, and hydrocarbon production
forecasting. For example, optimizing in this sense can refer
to achieving output values of the model that indicate or
result in a performance and a volume greater than a pre-
defined threshold, or result in estimates that match or
correlate with real-world conditions within a pre-determined
percentage.

[0019] The workflow of the present disclosure can be used
for characterizing and modeling integrated diagenetic-depo-
sitional facies (IDDF s) in carbonate reservoirs, from one-
dimensional (1D) IDDF classification and neural network
estimation, to two-dimensional (2D) IDDF trend and seis-
mic-based probability region modeling, and culminating
with 3D geo-cellular modeling processes. Being able to
blend the carbonate reservoir classification, estimation, and
modeling utilizing an IDDF scheme can provide a valuable
tool in characterizing diagenetically complex carbonates.
This can provide the benefit of constructing a geologically-
consistent 3D reservoir model that can be greatly beneficial
during simulations.
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[0020] The workflow of the present disclosure can include
the use of multi-disciplinary datasets and analyses and the
integration of a number of geoscience datasets including
(but not restricted to) a linking of petrographic thin section
analyses with other scales of data from core descriptions,
well-logs signatures and interpretation, routine core analyses
(RCA), borehole image logs interpretation, production log-
ging tool (PLT) flow meter signals, diagenetic proxies, and
depositional concepts. Steps of the workflow can associate
these features with 3D seismic attribute region extraction for
the benefit of 3D geo-cellular property modeling. This can
greatly improve reservoir quality prediction, 3D reservoir
modeling, volume estimation, history-matching processes,
and production forecasts.

[0021] FIG. 1 is a flow chart showing an example of a
workflow 100 for integrated diagenetic-depositional facies
(IDDF) characterization and 3D geomodeling, according to
some implementations of the present disclosure.

[0022] At 102, integration occurs that integrates depofa-
cies core descriptions, petrographic diagenetic analyses,
RCA poro-perm, and log signatures. For example, the work-
flow 100 can start with an integration of RCA results (e.g.,
porosity and permeability) into a similar 1D well-section
template with the well-log signatures in seismic-to-simula-
tion application (e.g., Petrel) (e.g., gamma ray, density,
neutron, resistivity, sonic, total porosity, estimated perme-
ability, and limestone-dolomite multi-mineral logs), core
litho-facies description flags, borehole formation image
logs, cumulative oil/gas production flow logs and flow rate
logs, and 1D seismic attribute logs. The worktlow 100 can
use a computer-based database that consists of petrographic
descriptions, analysis, and thin section photos that are com-
piled by depth. Each petrographic sample corresponds to an
RCA data point in the seismic-to-simulation application
(e.g., Petrel) well-section window.

[0023] At 104, IDDF classification occurs including
porosity to permeability transforms by IDDF, distinct PHI-
K, petrography, and well-log characteristics. For example,
step 104 includes the classification of the IDDF using
several genetic and analytic criteria: 1) distinctive RCA
porosity to permeability cross-plots and transforms; 2) typi-
cal well-log values, cross-plots, and signatures; 3) certain
depo-facies textural classes based on whole-core descrip-
tions; 4) genetic petrographic criteria such as dominant pore
type, grain type, and variation; and 5) distinct diagenetic
characters in thin sections such as dominant mineral, disso-
lution, dolomitization, micritization, and cementation fea-
tures. All of these inter-connected criteria become the basis
of the IDDF classification that is subsequently translated
into discrete flags in seismic-to-simulation application (e.g.,
Petrel) well-section window. In order to improve the clas-
sification, the discrete flags are also used as the color-fill for
each of the well-log signatures.

[0024] At 106, training data is prepared, including wells
with core, petrographic, and RCA data, tied to poro-perm
and log properties. For example, all of the IDDF flags can be
utilized as training data for a machine learning process in a
seismic-to-simulation application (e.g., Petrel), e.g., a “Neu-
ral Network Train Estimation Model” function. An impor-
tant step in the training data preparation is to fine-tune the
IDDF flags to honor well-log shoulder-bed effects and
depth-gaps between core and well-log data. This process can
be done iteratively by running the Neural Network Train
Estimation Modeling on wells with complete data-sets, such
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as: RCA, petrographic analysis, basic well-logs, and core
data. Once consistent results are achieved between input
IDDF training data and output IDDF neural network esti-
mation, then the training data (IDDF flags) in a particular
well can be stored in a final IDDF training dataset.

[0025] At 108, automated/machine learning occurs,
including IDDF estimation in un-cored wells, e.g., including
neural network estimation processes. For example, a
machine learning process (e.g. Petrel neural network esti-
mation or other artificial intelligence processes) can be run
in wells with no core and petrographic data. This particular
step utilizes final and clean IDDF training data as input, and
estimates the IDDF flags based on well-log values (e.g.,
density, neutron, gamma ray, sonic, and resistivity) and
correlation in each IDDF class.

[0026] At 110, 3D IDDF geomodeling occurs, including
integration of well, seismic attributes, and machine learning
methods. For example, all IDDF inputs both from wells with
petrographic data (IDDF training data) and wells without
core data (e.g., machine-learning estimated IDDF) are then
used as input for up-scaling process into 3D geo-cellular
grids. This process can be done by running a seismic-to-
simulation application (e.g., Petrel) “scale-up well logs”
function, either using a “mid-point pick” or a “most-of”
averaging method. Sample selection can be done by treating
the IDDF log “as-lines,” with either a “simple” or “neighbor
cell” grid selection method. These particular steps transform
the IDDF flag logs into 3D geo-cellular grids.

[0027] Another approach in the workflow includes linking
the up-scaled IDDF flags (e.g., IDDF geo-cellular grids)
with seismic data. This process can be done using several
different seismic data-sets, depending on the availability and
resolution of the seismic data. The following processes
describe IDDF to seismic integration methods using seismic
acoustic impedance and quadrature-phase attribute extrac-
tion. Intervals with more diagenetic dissolutions that yield
higher porosity (e.g., dissolutions-related IDDF classes)
correspond to low seismic acoustic impedance geobodies.
By comparison, intervals with more dolomitization, cemen-
tation, and dominant micrite occurrence that yield lower
porosity correspond to high seismic acoustic impedance
geobodies. Several sets of seismic-based IDDF probability
geobodies are extracted from a seismic impedance volume.

[0028] In several study cases, seismic acoustic impedance
cubes are not always available, hence one of the inventions
here is to use the “Seismic Quadrature Phase Seismic
Extraction” based on basic a “Pre-Stack Seismic Volume” to
guide IDDF distribution. This particular process can start by
converting basic zero-phase seismic cubes to quadrature
amplitude phase attributes in seismic-to-simulation software
(e.g., Petrel) “Volume Attributes” process. The zero-phase
seismic cube can be utilized as input data in the “Volume
Attributes” process. “Quadrature amplitude” can be used as
the calculation method in the seismic-to-simulation soft-
ware. A new seismic quadrature phase cube can be generated
as the output of this process. The result can then be subse-
quently used to extract mean, maximum, and minimum
amplitude seismic attributes in the seismic-to-simulation
software (e.g., Petrel) surface attribute process. These attri-
butes tie consistently with the 1D IDDF flags, e.g., higher
amplitudes correspond to dominant dissolution-related
IDDFs and lower amplitudes tied to lower reservoir quality
IDDFs.
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[0029] Another step in seismic and IDDF integration is to
overlay the extracted quad-phase amplitude with the top of
the reservoir structure map. In a late burial diagenetic
dissolution setting, dissolution patterns would correspond to
the proximity of the structural crest. These dissolution
patterns are well-represented by the quadrature phase ampli-
tude attribute that occur within the proximity of the crestal
area. This integration step ensures that IDDF distribution
proxies (e.g., 1D IDDF flags and quad-phase attributes)
honor hydro-geochemical diagenetic processes and experi-
ments.

[0030] The 3D IDDF geo-cellular modeling workflow can
utilize a facies modeling process in seismic-to-simulation
software (e.g., Petrel). Up-scaled IDDF flags (e.g., 3D
geo-cellular grids within wells) can be used as the basis for
the facies modeling process using, for example, a sequential
indicator simulation (SIS) algorithm. Prior to a model run,
the IDDF flags can be analyzed using seismic-to-simulation
software (e.g., Petrel) data analysis to generate vertical
proportion curves (VPC) for each IDDF class and to define
experimental variogram ranges and azimuths. Major, minor,
and vertical variogram ranges should be consistent with the
analogous diagenetic concepts and experiments, as well as
with the seismic attribute geometries. These datasets can
serve as the primary input for 3D IDDF distribution and
modeling. Seismic attributes (e.g., acoustic impedance or
quad-phase amplitude) can be used as secondary probability
trend, e.g., to guide IDDF probability occurrence spatially
beyond well controls.

[0031] The subsequent process is to populate the 3D IDDF
property model with Porosity, Permeability, and Water Satu-
ration (S,,) functions in each IDDF class. Porosity logs are
first up-scaled into the 3D geo-cellular grids. Porosity his-
tograms in each IDDF class can be defined, and each set of
the histograms can be utilized as input for 3D porosity
modeling under a “Petrophysical Modeling” process. Poros-
ity to permeability transforms of each IDDF class are also
established. These transforms can be generated by integrat-
ing and characterizing petrographic analyses, routine core
analyses (e.g., including whole core and CT scan/image
analysis for larger pore sizes), and basic-well logs into
genetically-related porosity to permeability cross plots by
IDDF classes. A 3D permeability model can then be gener-
ated by transforming a previously-generated 3D porosity
model into permeability values in each IDDF class.

[0032] A set of functions that include key parameters such
as porosity, permeability, capillary pressure, and R-constant
can be employed to generate a 3D S, model. The process can
utilize IDDF-based porosity and permeability models that
have been generated in the previous step. As a result, S,
distribution can be controlled by the IDDF distribution. A
3D S,, model can be constructed using a combination of rock
specific matrix capillary and vugular zero capillary pressure.
Eventually, each of the S, -Pc or zero Pc functions can be
applied into each of the 3D cells to generate the final 3D S,
model.

[0033] FIG. 2 is a block diagram showing an example
workflow 200 for well data preparation, integration, and
machine learning estimation of the IDDF, according to some
implementations of the present disclosure. In a data prepa-
ration step 202, clean and consistent formats are determined
for gamma ray (GR), density (dens), neutron (neu), and
input IDDF logs. The data preparation step 202 can use
information from various logs, including GR logs, RHOB
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logs, NPHI logs, PEF, resistivity logs, and sonic logs. The
data preparation step 202 can search for missing data.
[0034] A property filtering step 204 can be used to deter-
mine zone properties (ZP) and sector properties (SP). In a
data sampling step 206, training data can be sampled by
zone and sector.

[0035] In a machine learning step 208, an estimation
model can be trained, and neural network estimation (NNE)
can be estimated by zone and sector. Outputs include various
estimated IDDF logs and plots 210 at multiple wells within
the zone, sector and IDDF classifications 212.

[0036] FIG. 3 is a block diagram showing an example of
an IDDF classification 300 using the integration of petrog-
raphy and routine core (porosity and permeability) analyses,
according to some implementations of the present disclo-
sure. Results of the IDDF classification 300 include IDDFs
301-307 that are generated from 3,300 samples 308, where
each IDDF falls within a specific poro-perm trend and
represents specific IDDF class.

[0037] FIG. 4 is a flow diagram showing an example
integration 400 of seismic data, well logs, flow meter data,
and the IDDF flags at well location, according to some
implementations of the present disclosure. The integration
400 begins with 3D quadrature phase seismic attributes 402,
from which associations 404 include quadrature attributes
tied to the IDDF. From there, corresponding IDDF flags 406
are tied to well logs (e.g., gamma ray, porosity, permeability,
and density logs) and a production flow meter log.

[0038] FIG. 5is a flow diagram showing an example of 3D
IDDF modeling 500 using an integration of seismic and well
data, according to some implementations of the present
disclosure. Input plots 502 that are inputs to the 3D IDDF
modeling 500 include a vugular dissolution prone IDDF
504, a vugular-micrite (vug-mic) dominated IDDF 506, a
micrite dominated IDDF 508, and a dolomite (dol) IDDF
510. The input plots 502 are plotted relative to porosity axis
518 and quadrature amplitude attribute axis 520. The input
plots 502 serve as inputs to identification of corresponding
IDDF seismic-based probability regions, first as regions 512
and then regions 514, which are inputs to the 3D IDDF
model 516.

[0039] Workflows that can be supported or implemented
using the techniques of the present disclosure include: 1) a
workflow for IDDF characterization and 3D geologic mod-
eling; 2) a method to integrate and display multi-disciplinary
data for IDDF characterization; 3) a method and criteria
(e.g., genetic and analytic criteria) for IDDF classification;
4) a method to prepare training data for IDDF estimation in
un-cored wells; 5) a method to estimate IDDFs utilizing
machine learning (e.g., neural network) process; 6) a method
to link and extract the IDDF probability trend from a seismic
acoustic impedance volume; 7) a method to link and extract
the IDDF probability trend from a quadrature seismic attri-
bute; 8) a method to integrate the IDDF flags with the
seismic data; 9) a method to populate the IDDF distribution
into 3D geo-cellular grids using sequential indicator simu-
lation algorithm; 10) a method to generate 3D porosity
model by IDDF classes; 11) a method to generate IDDF
porosity-to-permeability transforms; 12) a method to popu-
late IDDF-based 3D permeability model; and 13) a method
to generate 3D water saturation model based on IDDF-
related properties.

[0040] Experimentation using IDDF characterization and
3D geomodeling was conducted in a carbonate oil field. The
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experimentation included multi-disciplinary datasets, both
static and dynamic, integrated into a 3D geo-cellular mod-
eling platform, resulting in multiple observations. IDDF
proportions in certain reservoir intervals may be higher or
lower than predictions due to data uncertainty. The geometry
of IDDF distribution in the 3D volume might be smaller or
larger than the model due to statistical and seismic data
quality uncertainty. IDDF-based porosity may be lower or
higher than predicted values due to data uncertainty and
resolution. IDDF-based permeability may be lower or higher
than predicted values due to data uncertainty and resolution.
[0041] FIG. 6 is a flowchart of an example of a method
600 for determining reservoir quality, according to some
implementations of the present disclosure. For clarity of
presentation, the description that follows generally describes
method 600 in the context of the other figures in this
description. However, it will be understood that method 600
can be performed, for example, by any suitable system,
environment, software, and hardware, or a combination of
systems, environments, software, and hardware, as appro-
priate. In some implementations, various steps of method
600 can be run in parallel, in combination, in loops, or in any
order.

[0042] At 602, correlated geoscience datasets are gener-
ated for a set of oil and gas drilling operations. As an
example, generating the correlated geoscience datasets can
include linking petrographic thin sections analyses with
scales of data from core descriptions, well log signatures,
RCA, borehole image logs interpretation, production log-
ging tool (PLT) flow meter signals, diagenetic proxies, and
depositional concepts. From 602, method 600 proceeds to
604. At 604, IDDF classifications are performed using
genetic and analytic criteria and using the correlated geo-
science datasets. For example, performing the IDDF classi-
fication can include performing porosity to permeability
transforms of each IDDF class. From 604, method 600
proceeds to 606.

[0043] At 606, a training dataset is prepared using the
IDDF classifications and using well data including core,
petrographic, and routine core analyses (RCA) data. The
training dataset includes correlations of porosity-permeabil-
ity (poro-perm) and log properties. In some implementa-
tions, preparing the training dataset can include fine-tuning
IDDF flags to honor well-log shoulder-bed effects and
depth-gaps between core and well-log data. From 606,
method 600 proceeds to 608.

[0044] At 608, automated machine learning is performed
using the training dataset to provide IDDF estimation in
uncovered wells. For example, performing the automated
machine learning can include running machine learning in
wells with no core and petrographic data using final and
clean IDDF training data as input. IDDF flags can be
estimated based on well-log values, including density, neu-
tron, gamma ray, sonic, and resistivity, and using correla-
tions in each IDDF class. From 608, method 600 proceeds
to 610.

[0045] At 610, reservoir quality predictions, 3D reservoir
modeling, and volume estimations are performed based on
the automated machine learning. From 610, method 600
proceeds to 612.

[0046] At 612, suggested changes to make in wellbore
operations are provided in a user interface based on the
reservoir quality predictions, the 3D reservoir modeling, and
the volume estimations. For example, making changes in
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wellbore operations includes providing inputs to change
parameters of equipment used in drilling. After 612, method
600 can stop.

[0047] In some implementations, in addition to (or in
combination with) any previously-described features, tech-
niques of the present disclosure can include the following.
Customized user interfaces can present intermediate or final
results of the above described processes to a user. The
presented information can be presented in one or more
textual, tabular, or graphical formats, such as through a
dashboard. The information can be presented at one or more
on-site locations (such as at an oil well or other facility), on
the Internet (such as on a webpage), on a mobile application
(or “app”), or at a central processing facility. The presented
information can include suggestions, such as suggested
changes in parameters or processing inputs, that the user can
select to implement improvements in a production environ-
ment, such as in the exploration, production, and/or testing
of petrochemical processes or facilities. For example, the
suggestions can include parameters that, when selected by
the user, can cause a change or an improvement in drilling
parameters (including speed and direction) or overall pro-
duction of a gas or oil well. The suggestions, when imple-
mented by the user, can improve the speed and accuracy of
calculations, streamline processes, improve models, and
solve problems related to efficiency, performance, safety,
reliability, costs, downtime, and the need for human inter-
action. In some implementations, the suggestions can be
implemented in real-time, such as to provide an immediate
or near-immediate change in operations or in a model. The
term real-time can correspond, for example, to events that
occur within a specified period of time, such as within one
minute or within one second. In some implementations,
values of parameters or other variables that are determined
can be used automatically (such as through using rules) to
implement changes in oil or gas well exploration, produc-
tion/drilling, or testing. For example, outputs of the present
disclosure can be used as inputs to other equipment and/or
systems at a facility. This can be especially useful for
systems or various pieces of equipment that are located
several meters or several miles apart or are located in
different countries or other jurisdictions.

[0048] FIG. 7 is a block diagram of an example computer
system 700 used to provide computational functionalities
associated with described algorithms, methods, functions,
processes, flows, and procedures described in the present
disclosure, according to some implementations of the pres-
ent disclosure. The illustrated computer 702 is intended to
encompass any computing device such as a server, a desktop
computer, a laptop/notebook computer, a wireless data port,
a smart phone, a personal data assistant (PDA), a tablet
computing device, or one or more processors within these
devices, including physical instances, virtual instances, or
both. The computer 702 can include input devices such as
keypads, keyboards, and touch screens that can accept user
information. Also, the computer 702 can include output
devices that can convey information associated with the
operation of the computer 702. The information can include
digital data, visual data, audio information, or a combination
of information. The information can be presented in a
graphical user interface (UI) (or GUI).

[0049] The computer 702 can serve in a role as a client, a
network component, a server, a database, a persistency, or
components of a computer system for performing the subject
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matter described in the present disclosure. The illustrated
computer 702 is communicably coupled with a network 730.
In some implementations, one or more components of the
computer 702 can be configured to operate within different
environments, including cloud-computing-based environ-
ments, local environments, global environments, and com-
binations of environments.

[0050] At a top level, the computer 702 is an electronic
computing device operable to receive, transmit, process,
store, and manage data and information associated with the
described subject matter. According to some implementa-
tions, the computer 702 can also include, or be communi-
cably coupled with, an application server, an email server, a
web server, a caching server, a streaming data server, or a
combination of servers.

[0051] The computer 702 can receive requests over net-
work 730 from a client application (for example, executing
on another computer 702). The computer 702 can respond to
the received requests by processing the received requests
using software applications. Requests can also be sent to the
computer 702 from internal users (for example, from a
command console), external (or third) parties, automated
applications, entities, individuals, systems, and computers.
[0052] Each of the components of the computer 702 can
communicate using a system bus 703. In some implemen-
tations, any or all of the components of the computer 702,
including hardware or software components, can interface
with each other or the interface 704 (or a combination of
both) over the system bus 703. Interfaces can use an
application programming interface (API) 712, a service
layer 713, or a combination of the API 712 and service layer
713. The API 712 can include specifications for routines,
data structures, and object classes. The AP 712 can be either
computer-language independent or dependent. The API 712
can refer to a complete interface, a single function, or a set
of APIs.

[0053] The service layer 713 can provide software ser-
vices to the computer 702 and other components (whether
illustrated or not) that are communicably coupled to the
computer 702. The functionality of the computer 702 can be
accessible for all service consumers using this service layer.
Software services, such as those provided by the service
layer 713, can provide reusable, defined functionalities
through a defined interface. For example, the interface can
be software written in JAVA, C++, or a language providing
data in extensible markup language (XML) format. While
illustrated as an integrated component of the computer 702,
in alternative implementations, the API 712 or the service
layer 713 can be stand-alone components in relation to other
components of the computer 702 and other components
communicably coupled to the computer 702. Moreover, any
or all parts of the API 712 or the service layer 713 can be
implemented as child or sub-modules of another software
module, enterprise application, or hardware module without
departing from the scope of the present disclosure.

[0054] The computer 702 includes an interface 704.
Although illustrated as a single interface 704 in FIG. 7, two
or more interfaces 704 can be used according to particular
needs, desires, or particular implementations of the com-
puter 702 and the described functionality. The interface 704
can be used by the computer 702 for communicating with
other systems that are connected to the network 730
(whether illustrated or not) in a distributed environment.
Generally, the interface 704 can include, or be implemented
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using, logic encoded in software or hardware (or a combi-
nation of software and hardware) operable to communicate
with the network 730. More specifically, the interface 704
can include software supporting one or more communication
protocols associated with communications. As such, the
network 730 or the interface’s hardware can be operable to
communicate physical signals within and outside of the
illustrated computer 702.

[0055] The computer 702 includes a processor 705.
Although illustrated as a single processor 705 in FIG. 7, two
or more processors 705 can be used according to particular
needs, desires, or particular implementations of the com-
puter 702 and the described functionality. Generally, the
processor 705 can execute instructions and can manipulate
data to perform the operations of the computer 702, includ-
ing operations using algorithms, methods, functions, pro-
cesses, flows, and procedures as described in the present
disclosure.

[0056] The computer 702 also includes a database 706 that
can hold data for the computer 702 and other components
connected to the network 730 (whether illustrated or not).
For example, database 706 can be an in-memory, conven-
tional, or a database storing data consistent with the present
disclosure. In some implementations, database 706 can be a
combination of two or more different database types (for
example, hybrid in-memory and conventional databases)
according to particular needs, desires, or particular imple-
mentations of the computer 702 and the described function-
ality. Although illustrated as a single database 706 in FIG. 7,
two or more databases (of the same, different, or combina-
tion of types) can be used according to particular needs,
desires, or particular implementations of the computer 702
and the described functionality. While database 706 is
illustrated as an internal component of the computer 702, in
alternative implementations, database 706 can be external to
the computer 702.

[0057] The computer 702 also includes a memory 707 that
can hold data for the computer 702 or a combination of
components connected to the network 730 (whether illus-
trated or not). Memory 707 can store any data consistent
with the present disclosure. In some implementations,
memory 707 can be a combination of two or more different
types of memory (for example, a combination of semicon-
ductor and magnetic storage) according to particular needs,
desires, or particular implementations of the computer 702
and the described functionality. Although illustrated as a
single memory 707 in FIG. 7, two or more memories 707 (of
the same, different, or combination of types) can be used
according to particular needs, desires, or particular imple-
mentations of the computer 702 and the described function-
ality. While memory 707 is illustrated as an internal com-
ponent of the computer 702, in alternative implementations,
memory 707 can be external to the computer 702.

[0058] The application 708 can be an algorithmic software
engine providing functionality according to particular needs,
desires, or particular implementations of the computer 702
and the described functionality. For example, application
708 can serve as one or more components, modules, or
applications. Further, although illustrated as a single appli-
cation 708, the application 708 can be implemented as
multiple applications 708 on the computer 702. In addition,
although illustrated as internal to the computer 702, in
alternative implementations, the application 708 can be
external to the computer 702.
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[0059] The computer 702 can also include a power supply
714. The power supply 714 can include a rechargeable or
non-rechargeable battery that can be configured to be either
user- or non-user-replaceable. In some implementations, the
power supply 714 can include power-conversion and man-
agement circuits, including recharging, standby, and power
management functionalities. In some implementations, the
power supply 714 can include a power plug to allow the
computer 702 to be plugged into a wall socket or a power
source to, for example, power the computer 702 or recharge
a rechargeable battery.

[0060] There can be any number of computers 702 asso-
ciated with, or external to, a computer system containing
computer 702, with each computer 702 communicating over
network 730. Further, the terms “client,” “user,” and other
appropriate terminology can be used interchangeably, as
appropriate, without departing from the scope of the present
disclosure. Moreover, the present disclosure contemplates
that many users can use one computer 702 and one user can
use multiple computers 702.

[0061] Described implementations of the subject matter
can include one or more features, alone or in combination.

[0062] Forexample, in a first implementation, a computer-
implemented method includes the following. Correlated
geoscience datasets are generated for a set of oil and gas
drilling operations. Integrated Diagenetic-Depositional
Facies (IDDF) classifications are performed using genetic
and analytic criteria and using the correlated geoscience
datasets. A training dataset is prepared using the IDDF
classifications and well data including core, petrographic,
and routine core analyses (RCA) data. The training dataset
includes correlations of porosity-permeability (poro-perm)
and log properties. Automated machine learning is per-
formed using the training dataset to provide IDDF estima-
tion in uncovered wells. Reservoir quality predictions, 3D
reservoir modeling, and volume estimations are performed
based on the automated machine learning. Suggested
changes to make in wellbore operations are provided in a
user interface based on the reservoir quality predictions, the
3D reservoir modeling, and the volume estimations.
[0063] The foregoing and other described implementa-
tions can each, optionally, include one or more of the
following features:

[0064] A first feature, combinable with any of the follow-
ing features, where generating the correlated geoscience
datasets includes linking petrographic thin sections analyses
with scales of data from core descriptions, well log signa-
tures, RCA, borehole image logs interpretation, production
logging tool (PLT) flow meter signals, diagenetic proxies
and depositional concepts.

[0065] A second feature, combinable with any of the
previous or following features, where performing the IDDF
classification includes performing porosity to permeability
transforms of each IDDF class.

[0066] A third feature, combinable with any of the previ-
ous or following features, where making changes in well-
bore operations includes providing inputs to change param-
eters of equipment used in drilling.

[0067] A fourth feature, combinable with any of the pre-
vious or following features, where preparing the training
dataset includes fine-tuning IDDF flags to honor well-log
shoulder-bed effects and depth-gaps between core and well-
log data.
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[0068] A fifth feature, combinable with any of the previ-
ous or following features, where performing the automated
machine learning includes running machine learning in
wells with no core and petrographic data using final and
clean IDDF training data as input.

[0069] A sixth feature, combinable with any of the previ-
ous or following features, the method further including
estimating IDDF flags based on well-log values, including
density, neutron, gamma ray, sonic, and resistivity, and using
correlations in each IDDF class.

[0070] Ina second implementation, a non-transitory, com-
puter-readable medium stores one or more instructions
executable by a computer system to perform operations
including the following. Correlated geoscience datasets are
generated for a set of oil and gas drilling operations.
Integrated Diagenetic-Depositional Facies (IDDF) classifi-
cations are performed using genetic and analytic criteria and
using the correlated geoscience datasets. A training dataset
is prepared using the IDDF classifications and well data
including core, petrographic, and routine core analyses
(RCA) data. The training dataset includes correlations of
porosity-permeability (poro-perm) and log properties. Auto-
mated machine learning is performed using the training
dataset to provide IDDF estimation in uncovered wells.
Reservoir quality predictions, 3D reservoir modeling, and
volume estimations are performed based on the automated
machine learning. Suggested changes to make in wellbore
operations are provided in a user interface based on the
reservoir quality predictions, the 3D reservoir modeling, and
the volume estimations.

[0071] The foregoing and other described implementa-
tions can each, optionally, include one or more of the
following features:

[0072] A first feature, combinable with any of the follow-
ing features, where generating the correlated geoscience
datasets includes linking petrographic thin sections analyses
with scales of data from core descriptions, well log signa-
tures, RCA, borehole image logs interpretation, production
logging tool (PLT) flow meter signals, diagenetic proxies
and depositional concepts.

[0073] A second feature, combinable with any of the
previous or following features, where performing the IDDF
classification includes performing porosity to permeability
transforms of each IDDF class.

[0074] A third feature, combinable with any of the previ-
ous or following features, where making changes in well-
bore operations includes providing inputs to change param-
eters of equipment used in drilling.

[0075] A fourth feature, combinable with any of the pre-
vious or following features, where preparing the training
dataset includes fine-tuning IDDF flags to honor well-log
shoulder-bed effects and depth-gaps between core and well-
log data.

[0076] A fifth feature, combinable with any of the previ-
ous or following features, where performing the automated
machine learning includes running machine learning in
wells with no core and petrographic data using final and
clean IDDF training data as input.

[0077] A sixth feature, combinable with any of the previ-
ous or following features, the method further including
estimating IDDF flags based on well-log values, including
density, neutron, gamma ray, sonic, and resistivity, and using
correlations in each IDDF class.
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[0078] In a third implementation, a computer-imple-
mented system includes one or more processors and a
non-transitory computer-readable storage medium coupled
to the one or more processors and storing programming
instructions for execution by the one or more processors.
The programming instructions instruct the one or more
processors to perform operations including the following.
Correlated geoscience datasets are generated for a set of oil
and gas drilling operations. Integrated Diagenetic-Deposi-
tional Facies (IDDF) classifications are performed using
genetic and analytic criteria and using the correlated geo-
science datasets. A training dataset is prepared using the
IDDF classifications and well data including core, petro-
graphic, and routine core analyses (RCA) data. The training
dataset includes correlations of porosity-permeability (poro-
perm) and log properties. Automated machine learning is
performed using the training dataset to provide IDDF esti-
mation in uncovered wells. Reservoir quality predictions,
3D reservoir modeling, and volume estimations are per-
formed based on the automated machine learning. Suggested
changes to make in wellbore operations are provided in a
user interface based on the reservoir quality predictions, the
3D reservoir modeling, and the volume estimations.
[0079] The foregoing and other described implementa-
tions can each, optionally, include one or more of the
following features:

[0080] A first feature, combinable with any of the follow-
ing features, where generating the correlated geoscience
datasets includes linking petrographic thin sections analyses
with scales of data from core descriptions, well log signa-
tures, RCA, borehole image logs interpretation, production
logging tool (PLT) flow meter signals, diagenetic proxies
and depositional concepts.

[0081] A second feature, combinable with any of the
previous or following features, where performing the IDDF
classification includes performing porosity to permeability
transforms of each IDDF class.

[0082] A third feature, combinable with any of the previ-
ous or following features, where making changes in well-
bore operations includes providing inputs to change param-
eters of equipment used in drilling.

[0083] A fourth feature, combinable with any of the pre-
vious or following features, where preparing the training
dataset includes fine-tuning IDDF flags to honor well-log
shoulder-bed effects and depth-gaps between core and well-
log data.

[0084] A fifth feature, combinable with any of the previ-
ous or following features, where performing the automated
machine learning includes running machine learning in
wells with no core and petrographic data using final and
clean IDDF training data as input.

[0085] Implementations of the subject matter and the
functional operations described in this specification can be
implemented in digital electronic circuitry, in tangibly
embodied computer software or firmware, in computer hard-
ware, including the structures disclosed in this specification
and their structural equivalents, or in combinations of one or
more of them. Software implementations of the described
subject matter can be implemented as one or more computer
programs. Each computer program can include one or more
modules of computer program instructions encoded on a
tangible, non-transitory, computer-readable computer-stor-
age medium for execution by, or to control the operation of,
data processing apparatus. Alternatively, or additionally, the
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program instructions can be encoded in/on an artificially
generated propagated signal. For example, the signal can be
a machine-generated electrical, optical, or electromagnetic
signal that is generated to encode information for transmis-
sion to a suitable receiver apparatus for execution by a data
processing apparatus. The computer-storage medium can be
a machine-readable storage device, a machine-readable stor-
age substrate, a random or serial access memory device, or
a combination of computer-storage mediums.

[0086] The terms “data processing apparatus,” “com-
puter,” and “electronic computer device” (or equivalent as
understood by one of ordinary skill in the art) refer to data
processing hardware. For example, a data processing appa-
ratus can encompass all kinds of apparatuses, devices, and
machines for processing data, including by way of example,
a programmable processor, a computer, or multiple proces-
sors or computers. The apparatus can also include special
purpose logic circuitry including, for example, a central
processing unit (CPU), a field-programmable gate array
(FPGA), or an application-specific integrated circuit
(ASIC). In some implementations, the data processing appa-
ratus or special purpose logic circuitry (or a combination of
the data processing apparatus or special purpose logic cir-
cuitry) can be hardware- or software-based (or a combina-
tion of both hardware- and software-based). The apparatus
can optionally include code that creates an execution envi-
ronment for computer programs, for example, code that
constitutes processor firmware, a protocol stack, a database
management system, an operating system, or a combination
of execution environments. The present disclosure contem-
plates the use of data processing apparatuses with or without
conventional operating systems, such as LINUX, UNIX,
WINDOWS, MAC OS, ANDROID, or 1I0S.

[0087] A computer program, which can also be referred to
or described as a program, software, a software application,
a module, a software module, a script, or code, can be
written in any form of programming language. Program-
ming languages can include, for example, compiled lan-
guages, interpreted languages, declarative languages, or
procedural languages. Programs can be deployed in any
form, including as stand-alone programs, modules, compo-
nents, subroutines, or units for use in a computing environ-
ment. A computer program can, but need not, correspond to
a file in a file system. A program can be stored in a portion
of a file that holds other programs or data, for example, one
or more scripts stored in a markup language document, in a
single file dedicated to the program in question, or in
multiple coordinated files storing one or more modules,
sub-programs, or portions of code. A computer program can
be deployed for execution on one computer or on multiple
computers that are located, for example, at one site or
distributed across multiple sites that are interconnected by a
communication network. While portions of the programs
illustrated in the various figures may be shown as individual
modules that implement the various features and function-
ality through various objects, methods, or processes, the
programs can instead include a number of sub-modules,
third-party services, components, and libraries. Conversely,
the features and functionality of various components can be
combined into single components as appropriate. Thresholds
used to make computational determinations can be statically,
dynamically, or both statically and dynamically determined.

[0088] The methods, processes, or logic flows described in
this specification can be performed by one or more pro-
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grammable computers executing one or more computer
programs to perform functions by operating on input data
and generating output. The methods, processes, or logic
flows can also be performed by, and apparatus can also be
implemented as, special purpose logic circuitry, for
example, a CPU, an FPGA, or an ASIC.

[0089] Computers suitable for the execution of a computer
program can be based on one or more of general and special
purpose microprocessors and other kinds of CPUs. The
elements of a computer are a CPU for performing or
executing instructions and one or more memory devices for
storing instructions and data. Generally, a CPU can receive
instructions and data from (and write data to) a memory.
[0090] Graphics processing units (GPUs) can also be used
in combination with CPUs. The GPUs can provide special-
ized processing that occurs in parallel to processing per-
formed by CPUs. The specialized processing can include
artificial intelligence (Al) applications and processing, for
example. GPUs can be used in GPU clusters or in multi-
GPU computing.

[0091] A computer can include, or be operatively coupled
to, one or more mass storage devices for storing data. In
some implementations, a computer can receive data from,
and transfer data to, the mass storage devices including, for
example, magnetic, magneto-optical disks, or optical disks.
Moreover, a computer can be embedded in another device,
for example, a mobile telephone, a personal digital assistant
(PDA), a mobile audio or video player, a game console, a
global positioning system (GPS) receiver, or a portable
storage device such as a universal serial bus (USB) flash
drive.

[0092] Computer-readable media (transitory or non-tran-
sitory, as appropriate) suitable for storing computer program
instructions and data can include all forms of permanent/
non-permanent and volatile/non-volatile memory, media,
and memory devices. Computer-readable media can include,
for example, semiconductor memory devices such as ran-
dom access memory (RAM), read-only memory (ROM),
phase change memory (PRAM), static random access
memory (SRAM), dynamic random access memory
(DRAM), erasable programmable read-only memory
(EPROM), electrically erasable programmable read-only
memory (EEPROM), and flash memory devices. Computer-
readable media can also include, for example, magnetic
devices such as tape, cartridges, cassettes, and internal/
removable disks. Computer-readable media can also include
magneto-optical disks and optical memory devices and
technologies including, for example, digital video disc
(DVD), CD-ROM, DVD+/-R, DVD-RAM, DVD-ROM,
HD-DVD, and BLU-RAY. The memory can store various
objects or data, including caches, classes, frameworks,
applications, modules, backup data, jobs, web pages, web
page templates, data structures, database tables, repositories,
and dynamic information. Types of objects and data stored
in memory can include parameters, variables, algorithms,
instructions, rules, constraints, and references. Additionally,
the memory can include logs, policies, security or access
data, and reporting files. The processor and the memory can
be supplemented by, or incorporated into, special purpose
logic circuitry.

[0093] Implementations of the subject matter described in
the present disclosure can be implemented on a computer
having a display device for providing interaction with a user,
including displaying information to (and receiving input
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from) the user. Types of display devices can include, for
example, a cathode ray tube (CRT), a liquid crystal display
(LCD), a light-emitting diode (LED), and a plasma monitor.
Display devices can include a keyboard and pointing devices
including, for example, a mouse, a trackball, or a trackpad.
User input can also be provided to the computer through the
use of a touchscreen, such as a tablet computer surface with
pressure sensitivity or a multi-touch screen using capacitive
or electric sensing. Other kinds of devices can be used to
provide for interaction with a user, including to receive user
feedback including, for example, sensory feedback includ-
ing visual feedback, auditory feedback, or tactile feedback.
Input from the user can be received in the form of acoustic,
speech, or tactile input. In addition, a computer can interact
with a user by sending documents to, and receiving docu-
ments from, a device that the user uses. For example, the
computer can send web pages to a web browser on a user’s
client device in response to requests received from the web
browser.

[0094] The term “graphical user interface,” or “GUI,” can
be used in the singular or the plural to describe one or more
graphical user interfaces and each of the displays of a
particular graphical user interface. Therefore, a GUI can
represent any graphical user interface, including, but not
limited to, a web browser, a touch-screen, or a command line
interface (CLI) that processes information and efficiently
presents the information results to the user. In general, a GUI
can include a plurality of user interface (UI) elements, some
or all associated with a web browser, such as interactive
fields, pull-down lists, and buttons. These and other Ul
elements can be related to or represent the functions of the
web browser.

[0095] Implementations of the subject matter described in
this specification can be implemented in a computing system
that includes a back-end component, for example, as a data
server, or that includes a middleware component, for
example, an application server. Moreover, the computing
system can include a front-end component, for example, a
client computer having one or both of a graphical user
interface or a Web browser through which a user can interact
with the computer. The components of the system can be
interconnected by any form or medium of wireline or
wireless digital data communication (or a combination of
data communication) in a communication network.
Examples of communication networks include a local area
network (LAN), a radio access network (RAN), a metro-
politan area network (MAN), a wide area network (WAN),
Worldwide Interoperability for Microwave Access
(WIMAX), a wireless local area network (WLAN) (for
example, using 802.11 a/b/g/n or 802.20 or a combination of
protocols), all or a portion of the Internet, or any other
communication system or systems at one or more locations
(or a combination of communication networks). The net-
work can communicate with, for example, Internet Protocol
(IP) packets, frame relay frames, asynchronous transfer
mode (ATM) cells, voice, video, data, or a combination of
communication types between network addresses.

[0096] The computing system can include clients and
servers. A client and server can generally be remote from
each other and can typically interact through a communica-
tion network. The relationship of client and server can arise
by virtue of computer programs running on the respective
computers and having a client-server relationship.
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[0097] Cluster file systems can be any file system type
accessible from multiple servers for read and update. Lock-
ing or consistency tracking may not be necessary since the
locking of exchange file system can be done at the applica-
tion layer. Furthermore, Unicode data files can be different
from non-Unicode data files.

[0098] While this specification contains many specific
implementation details, these should not be construed as
limitations on the scope of what may be claimed, but rather
as descriptions of features that may be specific to particular
implementations. Certain features that are described in this
specification in the context of separate implementations can
also be implemented, in combination, in a single implemen-
tation. Conversely, various features that are described in the
context of a single implementation can also be implemented
in multiple implementations, separately, or in any suitable
sub-combination. Moreover, although previously described
features may be described as acting in certain combinations
and even initially claimed as such, one or more features from
a claimed combination can, in some cases, be excised from
the combination, and the claimed combination may be
directed to a sub-combination or variation of a sub-combi-
nation.

[0099] Particular implementations of the subject matter
have been described. Other implementations, alterations,
and permutations of the described implementations are
within the scope of the following claims as will be apparent
to those skilled in the art. While operations are depicted in
the drawings or claims in a particular order, this should not
be understood as requiring that such operations be per-
formed in the particular order shown or in sequential order,
or that all illustrated operations be performed (some opera-
tions may be considered optional), to achieve desirable
results. In certain circumstances, multitasking or parallel
processing (or a combination of multitasking and parallel
processing) may be advantageous and performed as deemed
appropriate.

[0100] Moreover, the separation or integration of various
system modules and components in the previously described
implementations should not be understood as requiring such
separation or integration in all implementations. It should be
understood that the described program components and
systems can generally be integrated together in a single
software product or packaged into multiple software prod-
ucts.

[0101] Accordingly, the previously described example
implementations do not define or constrain the present
disclosure. Other changes, substitutions, and alterations are
also possible without departing from the spirit and scope of
the present disclosure.

[0102] Furthermore, any claimed implementation is con-
sidered to be applicable to at least a computer-implemented
method; a non-transitory, computer-readable medium stor-
ing computer-readable instructions to perform the computer-
implemented method; and a computer system including a
computer memory interoperably coupled with a hardware
processor configured to perform the computer-implemented
method or the instructions stored on the non-transitory,
computer-readable medium.

What is claimed is:
1. A computer-implemented method, comprising:

generating correlated geoscience datasets for a set of oil
and gas drilling operations;
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performing, using genetic and analytic criteria, Integrated
Diagenetic-Depositional Facies (IDDF) classifications
using the correlated geoscience datasets;
preparing a training dataset using the IDDF classifications
and using well data including core, petrographic and
routine core analyses (RCA) data, wherein the training
dataset includes correlations of porosity-permeability
(poro-perm) and log properties;

performing, using the training dataset, automated
machine learning to provide IDDF estimation in uncov-
ered wells;
performing, based on the automated machine learning,
reservoir quality predictions, three-dimensional (3D)
reservoir modeling, and volume estimations; and

providing, in a user interface and using the reservoir
quality predictions, the 3D reservoir modeling, and the
volume estimations, suggested changes to make in
wellbore operations.

2. The computer-implemented method of claim 1,
wherein generating the correlated geoscience datasets
includes linking petrographic thin sections analyses with
scales of data from core descriptions, well log signatures,
RCA, borehole image logs interpretation, production log-
ging tool (PLT) flow meter signals, diagenetic proxies and
depositional concepts.

3. The computer-implemented method of claim 1,
wherein performing the IDDF classification includes per-
forming porosity to permeability transforms of each IDDF
class.

4. The computer-implemented method of claim 1,
wherein making changes in wellbore operations includes
providing inputs to change parameters of equipment used in
drilling.

5. The computer-implemented method of claim 1,
wherein preparing the training dataset includes fine-tuning
IDDF flags to honor well-log shoulder-bed effects and
depth-gaps between core and well-log data.

6. The computer-implemented method of claim 1,
wherein performing the automated machine learning
includes running machine learning in wells with no core and
petrographic data using final and clean IDDF training data as
input.

7. The computer-implemented method of claim 6, further
comprising estimating IDDF flags based on well-log values,
including density, neutron, gamma ray, sonic, and resistivity,
and using correlations in each IDDF class.

8. A non-transitory, computer-readable medium storing
one or more instructions executable by a computer system to
perform operations comprising:

generating correlated geoscience datasets for a set of oil

and gas drilling operations;

performing, using genetic and analytic criteria, Integrated

Diagenetic-Depositional Facies (IDDF) classifications
using the correlated geoscience datasets;
preparing a training dataset using the IDDF classifications
and using well data including core, petrographic and
routine core analyses (RCA) data, wherein the training
dataset includes correlations of porosity-permeability
(poro-perm) and log properties;

performing, using the training dataset, automated
machine learning to provide IDDF estimation in uncov-
ered wells;
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performing, based on the automated machine learning,
reservoir quality predictions, three-dimensional (3D)
reservoir modeling, and volume estimations; and

providing, in a user interface and using the reservoir
quality predictions, the 3D reservoir modeling, and the
volume estimations, suggested changes to make in
wellbore operations.

9. The non-transitory, computer-readable medium of
claim 8, wherein generating the correlated geoscience data-
sets includes linking petrographic thin sections analyses
with scales of data from core descriptions, well log signa-
tures, RCA, borehole image logs interpretation, production
logging tool (PLT) flow meter signals, diagenetic proxies
and depositional concepts.

10. The non-transitory, computer-readable medium of
claim 8, wherein performing the IDDF classification
includes performing porosity to permeability transforms of
each IDDF class.

11. The non-transitory, computer-readable medium of
claim 8, wherein making changes in wellbore operations
includes providing inputs to change parameters of equip-
ment used in drilling.

12. The non-transitory, computer-readable medium of
claim 8, wherein preparing the training dataset includes
fine-tuning IDDF flags to honor well-log shoulder-bed
effects and depth-gaps between core and well-log data.

13. The non-transitory, computer-readable medium of
claim 8, wherein performing the automated machine learn-
ing includes running machine learning in wells with no core
and petrographic data using final and clean IDDF training
data as input.

14. The non-transitory, computer-readable medium of
claim 13, the operations further comprising estimating IDDF
flags based on well-log values, including density, neutron,
gamma ray, sonic, and resistivity, and using correlations in
each IDDF class.

15. A computer-implemented system, comprising:
one or more processors; and

a non-transitory computer-readable storage medium
coupled to the one or more processors and storing
programming instructions for execution by the one or
more processors, the programming instructions
instructing the one or more processors to perform
operations comprising:
generating correlated geoscience datasets for a set of 0il
and gas drilling operations;

performing, using genetic and analytic criteria, Inte-
grated Diagenetic-Depositional Facies (IDDF) clas-
sifications using the correlated geoscience datasets;

preparing a training dataset using the IDDF classifica-
tions and using well data including core, petro-
graphic and routine core analyses (RCA) data,
wherein the training dataset includes correlations of
porosity-permeability (poro-perm) and log proper-
ties;

performing, using the training dataset, automated
machine learning to provide IDDF estimation in
uncovered wells;

performing, based on the automated machine learning,
reservoir quality predictions, three-dimensional (3D)
reservoir modeling, and volume estimations; and
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providing, in a user interface and using the reservoir
quality predictions, the 3D reservoir modeling, and
the volume estimations, suggested changes to make
in wellbore operations.

16. The computer-implemented system of claim 15,
wherein generating the correlated geoscience datasets
includes linking petrographic thin sections analyses with
scales of data from core descriptions, well log signatures,
RCA, borehole image logs interpretation, production log-
ging tool (PLT) flow meter signals, diagenetic proxies and
depositional concepts.

17. The computer-implemented system of claim 15,
wherein performing the IDDF classification includes per-
forming porosity to permeability transforms of each IDDF
class.

18. The computer-implemented system of claim 15,
wherein making changes in wellbore operations includes
providing inputs to change parameters of equipment used in
drilling.

19. The computer-implemented system of claim 15,
wherein preparing the training dataset includes fine-tuning
IDDF flags to honor well-log shoulder-bed effects and
depth-gaps between core and well-log data.

20. The computer-implemented system of claim 15,
wherein performing the automated machine learning
includes running machine learning in wells with no core and
petrographic data using final and clean IDDF training data as
input.



