
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2016/0140206A1

Hase et al.

US 2016O140206A1

(43) Pub. Date: May 19, 2016

(54)

(71)

(72)

(21)

(22)

(63)

MECHANISM TO RUN OLTP WORKLOAD
ON IN-MEMORY DATABASE UNDER
MEMORY PRESSURE

Applicant: Oracle International Corporation,
Redwood Shores, CA (US)

Inventors: Sanket Hase, Mountain View, CA (US);
Vivekanandhan Raja, San Mateo, CA
(US); Amit Ganesh, San Jose, CA (US);
Vineet Marwah, San Ramon, CA (US);
Sukhada Pendse, Foster City, CA (US);
Shuang Su, Redwood City, CA (US);
Atrayee Mullick, Santa Clara, CA (US)

Appl. No.: 15/005,610

Filed: Jan. 25, 2016

Related U.S. Application Data
Continuation of application No. 14/337,182, filed on
Jul. 21, 2014.

DATABASE SYSTEM 100

VOLATILE MEMORY 102

DATABASE SERVER 120

CACHE OF PERSISTENT
FORMAT DATA 106

MIRRORFORMAT
DATA 104

PERSISTENT STORAGE 110
PERSISTENT FORMAT DATASTRUCTURES 108

PERSISTENT FORMAT DATA 112

(60) Provisional application No. 61/880,852, filed on Sep.
21, 2013, provisional application No. 61/955,574,
filed on Mar. 19, 2014.

Publication Classification

(51) Int. Cl.
G06F 7/30 (2006.01)

(52) U.S. Cl.
CPC. G06F 17/30592 (2013.01); G06F 17/30185

(2013.01); G06F 17/30088 (2013.01)
(57) ABSTRACT
Techniques are provided for maintaining data persistently in
one format, but making that data available to a database server
in more than one format. For example, one of the formats in
which the data is made available for query processing is based
on the on-disk format, while another of the formats in which
the data is made available for query processing is independent
of the on-disk format. Data that is in the format that is inde
pendent of the disk format may be maintained exclusively in
volatile memory to reduce the overhead associated with keep
ing the data in Sync with the on-disk format copies of the data.

Patent Application Publication May 19, 2016 Sheet 1 of 11 US 2016/O140206A1

DATABASE SYSTEM 100

VOLATILE MEMORY 102

DATABASE SERVER 120

MIRRORFORMAT CACHE OF PERSISTENT
DATA 104 FORMAT DATA 106

PERSISTENT STORAGE 110
PERSISTENT FORMAT DATASTRUCTURES 108

PERSISTENT FORMAT DATA 112

FG, 1

Patent Application Publication May 19, 2016 Sheet 2 of 11 US 2016/O140206A1

TABLE 200

C1 v

R3

* -
* -
* -

C2 C3

R1

R2

FIG. 2A

Patent Application Publication May 19, 2016 Sheet 3 of 11 US 2016/O140206A1

VOLATILE MEMORY 102

MIRRORFORMAT CACHE OF PERSISTENT
DATA 104 FORMAT DATA 106

220 222
212

CACHED COPY OF
BLOCK 204

PERSISTENT STORAGE 110

PERSISTENT FORMAT DATASTRUCTURES 108

Patent Application Publication May 19, 2016 Sheet 4 of 11 US 2016/O140206A1

VOLATILE MEMORY 102

MIRRORFORMAT DATA 104 CACHE OF PERSISTENT
FORMAT DATA 106

212

CACHED COPY OF
BLOCK 204

220 222 330

COMPRESSED
MF DATA 302

JOURNAL 310

JOURNALS 304 JOURNAL JOURNAL JOURNAL
312 FORTX1 314 FORTX2316 FORTX3

FG, 3

Patent Application Publication May 19, 2016 Sheet 5 of 11 US 2016/O140206A1

VOLATILE MEMORY 102

METADATA 430 FOR MF DATA

MCU 402 MCU 404

420 422 424 426

FIG. 4

Patent Application Publication May 19, 2016 Sheet 6 of 11 US 2016/0140206A1

VOLATILE MEMORY 502 OF VOLATILE MEMORY 504 OF
INSTANCE 1 INSTANCE 2

METADATA 53OFOR METADATA 532 FOR
MF DATA MF DATA

MCU 402 MCU 404

420 422 424 426

FIG 5a

Patent Application Publication May 19, 2016 Sheet 7 of 11 US 2016/O140206A1

VOLATILE MEMORY 502 OF VOLATILE MEMORY 504 OF
INSTANCE 1 INSTANCE 2

METADATA 530 FOR METADATA 532 FOR
MF DATA MF DATA

MCU 402 MCU 404

FIG 5b.

Patent Application Publication May 19, 2016 Sheet 8 of 11 US 2016/O140206A1

VOLATILE MEMORY 102

MCU 600 SMU 604. FOR IMCU 600

220 222 330 MCU VERSIONTIME=T1

CHANGED-ROW BTMAP 606

608
RECORD OF BIT

CHANGES

602
GLOBAL. JOURNAL FOR IMCU 600

giFSSED JOURNAL JOURNAL JOURNAL
30 662 FORTX1664. FORTX2666 FORTX3

FG, 6

Patent Application Publication May 19, 2016 Sheet 9 of 11 US 2016/O140206A1

700
MEMORY-ENABLED?

780
PERFORM

CONVENTIONAL SCAN
OF PF DATA

702
DETERMINE RANGE OF BLOCKS THAT
CONTAINDATAREQUIRED BY SCAN

704
MORE BLOCKS TO

SCAN2

716
706 OBTAIN FROMPF DATAUNTIL

DETERMINE NEXTBLOCK TO SCAN END OF EXTENT

708 710
MAPS TO AN IS ANY DATA IN

IMCU2 MCUVALID?

712 722
OBTAINPF DATA FETCHVALID DATA FROMIMCU

CREATEMF DATA AND LOAD FETCHINVALID DATA FROM
INTO IMCU JOURNAL ENTRIES OR FROMPF

DATA

720
USE PF DATA

US 2016/O140206A1 May 19, 2016 Sheet 10 of 11 Patent Application Publication

US 2016/O140206A1 May 19, 2016 Sheet 11 of 11 Patent Application Publication

W

705

HOSSE OO}}d

US 2016/0140206A1

MECHANISM TO RUN OLTP WORKLOAD
ON IN-MEMORY DATABASE UNDER

MEMORY PRESSURE

BENEFIT CLAIM

0001. This application claims the benefit, as a Continua
tion, of prior U.S. patent application Ser. No. 14/337,182
(Attorney Docket No. 50277-4194) entitled “Mechanism To
Run OLTP Workload On In-Memory Database Under
Memory Pressure', filed Jul. 21, 2014, the contents of which
are hereby incorporated by reference for all purposes as if
fully set forth herein. U.S. patent application Ser. No. 14/337,
182 claims the benefit of
0002 Provisional Applin. 61/955,574, filed Mar. 19, 2014,
and
0003 Provisional Applin. 61/880,852, filed Sep. 21, 2013,
the entire contents of each of which is hereby incorporated by
reference for all purposes as if fully set forth herein.
0004. The Applicant(s) hereby rescind any disclaimer of
claim scope in the parent application(s) or the prosecution
history thereof and advise the USPTO that the claims in this
application may be broader than any claim in the parent
application(s).

FIELD OF THE INVENTION

0005. The present invention relates to database systems
and, more specifically, to mirroring, in memory in one format,
data that resides on disk in another format.

BACKGROUND

0006 Given that main memory is becoming cheaper and
larger, new data formats are needed to speed query processing
when data is stored in memory. Existing formats are designed
for disk and, when stored in memory (e.g. in the buffer cache),
the formats are not optimal for queries. For example, it is
common for database systems to store data persistently in
“disk blocks'. Typically, within each disk block, data is
arranged in row-major format. That is, the values of all col
umns of one row are followed by the values of all columns for
the next row.
0007 To speed up performance, some of the disk blocks
may be cached in a “buffer cache” within volatile memory.
Accessing the data from Volatile memory is significantly
faster than accessing the data from disk. However, even
within the volatile memory, the data is still in the format of
row-major disk blocks, which is not optimal for certain types
of database operations.
0008. In contrast to row-major disk blocks, columnar for
mats have many attractive advantages for query processing in
memory, Such as cache locality and compression. Conse
quently, Some database servers now employ new table types
for persistently storing data in column-major formats. In col
umn-major format, the data may be read into Volatile memory
where it can be used to process certain queries more effi
ciently than would be possible if the data were stored in
row-major disk blocks.
0009. Unfortunately, the task of migrating existing data
bases that persistently store data in row-major disk blocks to
use of the new column-majortable types is not trivial. Further,
after performing Such a migration, query processing will be
less efficient for the class of queries that can be performed
more efficiently on data that is stored in row-major disk
blocks.

May 19, 2016

0010. As an alternative, some database systems keep the
data in row-major disk blocks, but employ column store
indexes. Column store indexes do not replace existing tables,
and therefore do not require the entire database to be migrated
to new table structures. Rather, column store indexes act more
as a traditional secondary index. For example, Such column
store indexes are still persisted to disk. Unfortunately, a sig
nificant amount of overhead may be required to maintain Such
indexes as updates are performed on the data indexed thereby.
0011. As yet another alternative, one may replicate a data
base, where a first replica of the database stores the data in
conventional row-major disk blocks, while a second replica
stores the data in a column-major format. When a database is
replicated in this manner, queries that are most efficiently
processed using row-major data may be routed to the first
replica, and queries that are most efficiently processed using
column-major data may be routed to the second replica.
0012. Unfortunately, this technique does not work well
due to the lag that occurs between replicated systems. Spe
cifically, at any givenpoint in time, Some changes made at one
of the replicas will not yet have been applied to the other
replica. Consequently, the lag inherent in the replication
mechanism may result in unpredictable artifacts and, possi
bly, incorrect results.
0013 Further, each transaction generally needs to see its
own changes, even before those changes have been commit
ted. However, database changes are not typically replicated
until the changes have been committed. Thus, a transaction
may be limited to using the replica at which the transactions
uncommitted changes were made, even though the format of
the data at the other replica may be more efficient for some
operations.
0014. The approaches described in this section are
approaches that could be pursued, but not necessarily
approaches that have been previously conceived or pursued.
Therefore, unless otherwise indicated, it should not be
assumed that any of the approaches described in this section
qualify as prior art merely by virtue of their inclusion in this
section.

BRIEF DESCRIPTION OF THE DRAWINGS

(0015. In the drawings:
0016 FIG. 1 is a block diagram of a database system that
concurrently maintains mirror format data in Volatile memory
and persistent format data on persistent storage, according to
an embodiment;
0017 FIG. 2a is a block diagram of a table used for
examples;
0018 FIG.2b is a block diagram of how data items for a
table may be concurrently maintained in two formats, one of
which is an in-memory format, according to an embodiment;
0019 FIG. 3 is a block diagram that illustrates journals
stored in volatile memory in conjunction with mirror format
data, according to an embodiment;
0020 FIG. 4 is a block diagram illustrating how the data
from a single table may be divided between IMCUs based on
row ranges, according to an embodiment;
0021 FIG. 5a is a block diagram illustrating how different
database server instances may be assigned to manage differ
ent sets of MF data, where the sets are based on row ranges;
0022 FIG.5b is a block diagram illustrating how different
database server instances may be assigned to manage differ
ent sets of MF data, where the sets are based on columns;

US 2016/0140206A1

0023 FIG. 6 is a block diagram illustrating an SMU that
stores a changed-row bitmap and a record of bit changes,
according to an embodiment;
0024 FIG. 7 is a flowchart illustrating steps for perform
ing a scan operation, according to an embodiment;
0025 FIG. 8 is a block diagram illustrating a structure for
implementing a changed-row bitmap, according to an
embodiment; and
0026 FIG. 9 is a block diagram illustrating a computer
system that may be used to implement the techniques
described herein.

DETAILED DESCRIPTION

0027. In the following description, for the purposes of
explanation, numerous specific details are set forth in order to
provide a thorough understanding of the present invention. It
will be apparent, however, that the present invention may be
practiced without these specific details. In other instances,
well-known structures and devices are shown in block dia
gram form in order to avoid unnecessarily obscuring the
present invention.

General Overview

0028. Different data formats have different benefits.
Therefore, techniques are described herein for maintaining
data persistently in one format, but making that data available
to a database server in more than one format. In one embodi
ment, one of the formats in which the data is made available
for query processing is based on the on-disk format, while
another of the formats in which the data is made available for
query processing is independent of the on-disk format.
0029. The format that corresponds to the on-disk format is
referred to hereinas the “persistent format” or “PF. Data that
is in the persistent format is referred to herein as PF data. An
in-memory format that is independent of the on-disk format is
referred to as a “mirror format or “MF. Data that is in the
mirror format is referred to herein as MF data. For example,
in one embodiment, the persistent format is row-major disk
blocks, and the mirror format is a column-major format.
0030. According to one embodiment, the mirror format is
completely independent of the persistent format. However,
the MF data is initially constructed in memory based on the
persistently stored PF data, not based on any persistent MF
structures. Since persistent MF structures are not required,
users of existing databases need not migrate the data or struc
tures in their existing databases to another format. Thus, a
conventional database system that uses row-major disk
blocks may continue to use those disk blocks to persistently
store its data without performing any data migration, while
still obtaining the performance benefit that results from hav
ing a column-major representation of the data available in
Volatile memory.
0031 In-memory MF data is maintained transactionally
consistent with the PF data. The MF data is transactionally
consistent in that any data items provided to a transaction
from the MF data will be the same version that would have
been provided if the data items were provided from the PF
data. Further, that version reflects all changes that were com
mitted before the Snapshot time of the transaction, and no
changes that were committed after the Snapshot time of the
transaction. Thus, when a transaction, that made a change to
a data item that is mirrored in the MF data, is committed, the
change is made visible relative to both the PF data and the MF

May 19, 2016

data. On the other hand, if a transaction that made a change is
aborted or rolled back, then the change is rolled back relative
to both the PF data and the MF data.
0032. In one embodiment, the same transaction manager
that ensures consistency among the reads and writes of the PF
data is also used to ensure consistency among the reads and
writes of the MF data. Because the MF data is kept current in
a transactionally consistent manner, if the in-memory MF
data includes the data required by a database operation, then
the database operation may be satisfied either from the in
memory MF data, or from the PF data.
0033. The MF data mirrors data that already exists in the
PF data. However, while all items in the MF data are mirror
versions of corresponding items in the PF data (albeit orga
nized in a different format), not all items in the PF data need
be mirrored in the MF data. Thus, the MF data may be a subset
of the PF data.
0034. Because not all of the PF data is necessarily mir
rored in the MF data, in Some situations queries may require
data that can only be satisfied by the PF data. For example, if
a table has columns A, B and C, and only column A is
mirrored in the MF data, then a query that requires values
from column B must obtain those values from the PF data.
0035 However, even in those circumstances, the MF data
may still be used to (a) satisfy a portion of the query, and/or
(b) speed up the retrieval of required data from the PF data.
For example, the MF data may be used to identify the specific
rows that must be retrieved from the PF data.
0036. According to one embodiment, to reduce overhead,
no on-disk copy of the MF data is maintained. In an alterna
tive embodiment, a copy of the MF may be stored, but no
attempt is made to keep the on-disk copy of the MF data in
sync with updates that are being performed on the PF data.
Consequently, after a failure, the in-memory MF data must be
reconstructed based on the persistent copy of the PF data.
0037. In some embodiments, the MF data is compressed.
The compression can be performed at various compression
levels, either specified by the user or based on access patterns.
0038. While examples shall be given hereafter in which
the mirror format is columnar, the mirror format may be any
format, different from the persistent format, that is useful for
running in-memory queries. For example, in an alternative
embodiment, the PF format is column-major, while the MF
format is row-major. Regardless of the particular mirror for
mat used, the mirror format data is created in memory based
on existing PF structures (e.g. tables and indexes) without
causing a change to the format of those structures.

General Architecture

0039 FIG. 1 is a block diagram of a database system
according to one embodiment. Referring to FIG. 1, database
system 100 includes volatile memory 102 and persistent stor
age 110. Volatile memory 102 generally represents the ran
dom access memory used by the database system, and may be
implemented by any number of memory devices. Typically,
data stored volatile memory 102 is lost when a failure occurs.
0040 Persistent storage 110 generally represents any
number of persistent storage devices, such as magnetic disks,
FLASH memory, and/or solid state drives. Unlike volatile
memory 102, data stored on persistent storage 110 is not lost
when a failure occurs. Consequently, after a failure, the data
on persistent storage 110 may be used to rebuild the data that
was lost in volatile memory 102.

US 2016/0140206A1

0041. Within volatile memory 102, a database server 120
is executing database commands that are submitted to the
database server by one or more database applications (not
shown). The data used by those applications is illustrated as
PF data 112. PF data 112 resides on persistent storage device
110 in PF data structures 108. The PF structures 108 may be,
for example, row-major disk blocks. While row-major disk
blocks are used for the purposes of illustration, the PF struc
tures may take any form, Such as column-major disk block,
hybrid compression units, etc.
0042. The volatile memory 102 further includes a cache
106 of PF data. Within cache 106, the data is stored in a format
that is based on the formatin which the data resides within the
PF data structures 108. For example, if the persistent format is
row-major disk blocks, then cache 106 may contain cached
copies of row-major disk blocks.
0043. On the other hand, MF data 104 is in a format that is
unrelated to the persistent format. For example, in the case
where the persistent format is row-major disk blocks, the
mirror format may be column-major compression units.
Because the mirror format differs from the persistent format,
the MF data 104 is produced by performing transformations
on the PF data. These transformations occur both when vola
tile memory 102 is initially populated with MF data 104
(whether at start-up or on-demand), and when volatile
memory 102 is re-populated with MF data 104 after a failure.
0044 Significantly, the existence of MF data 104 may be
transparent to the database applications that Submit database
commands to the database server that makes use of the MF
data 104. For example, those same applications, designed to
interact with database systems that operate exclusively on PF
data 112, may interact without modification with a database
server that maintains MF data 104 in addition to the PF data
112. Further, transparent to those applications, that database
server may use the MF data 104 to more efficiently process
Some or all of those database commands.

The Mirror Format Data

0045 MF data 104 may mirror all of the PF data 112, or a
Subset thereof. In one embodiment, a user may specify what
portion of the PF data 112 is “in-memory enabled'. The
specification may be made at any level of granularity. For
example, the specification of what is in-memory enabled may
be made at least at the following levels of granularity:

0046 the entire database
0047 specified tables
0048 specified columns
0049 specified row ranges
0050 specified partitions
0051 specified segments
0052 specified extents
0053 any combination thereof (e.g. specified columns
and partitions)

0054 As shall be described hereafter, in-memory enabled
data is converted to the mirror format and stored as MF data
104 in volatile memory. Thus, when in-memory enabled data
is required by a query, the database server has the option of
providing the data from either the PF data 112 or the MF data
104. The conversion and loading may occur at the time the
database is started, or in a lazy or on-demand fashion. Data
that is not in-memory enabled is not mirrored in the MF data
104. Consequently, when such data is required by a query, the
database server does not have the option of obtaining the data
from the MF data 104.

May 19, 2016

0055 For the purpose of explanation, it shall be assumed
that PF data structures 108 include the table 200 illustrated in
FIG. 2A. Table 200 includes three columns c1-c3, and six
rows r1-ró. While the illustration of table 200 in FIG. 2A
portrays how the data is logically organized on persistent
storage 110, the actual format in which the data is physically
stored may be quite different.
0056 Specifically, referring to FIG. 2B, it illustrates how
the data that resides in table 200 may be physically organized
on persistent storage 110. In the present example, the data for
table 200 is stored in three row-major disk blocks 202, 204
and 206. Block 202 stores the values for all columns of row r1,
followed by the values for all columns of row r2. Block 204
stores the values for all columns of row r3, followed by the
values of all columns of row ra. Finally, block 206 stores the
values of all columns of row r5, followed by the values of all
columns of row ré.
0057 Copies of some of those disk blocks may be tempo
rarily stored in cache 106. In the example illustrated in FIG.
2B, a cached copy 212 of block 204 resides in cache 106.
Cache 106 may be managed using any one of a variety of
cache management techniques, and the embodiments
described herein are not limited to any particular cache man
agement technique. In general, such techniques attempt to
retain in volatile memory 102 copies of the disk blocks that
are most likely to be requested in the near future. Conse
quently, when cache 106 runs out of space, cached copies of
disk blocks that are less likely to be requested are replaced by
copies of blocks that are more likely to be requested.
0058. In contrast to the data in cache 106, the mirror for
mat data 104 is not formatted in a manner that is based on the
persistent format. In the illustrated example, mirror format
data 104 includes two column vectors 220 and 222. Each
column vector stores a contiguous series of values from a
single column of table 200. In the present example, column
vector 220 stores values from column 1 of table 200, and
column vector 222 stores values from column 3 of table 300.
In this example, the MF data 104 mirrors a subset of the PF
data because MF data 104 does not include column vectors
for column 2 of table 200.

Organization of the MF Data
0059. According to one embodiment, even though the MF
data uses a different format than the PF data, the MF data is
organized in a manner that corresponds to the organization of
the PF data. For example, on persistent storage 110, the PF
data may be stored in blocks that reside in extents which, in
turn, are organized into segments. Under these circum
stances, within volatile memory 102, the MF data 104 may be
organized based on the extents and/or segments to which the
data belongs. Thus, column vector 220 may be divided into
vector portions, each of which corresponds to a particular
range of extents and/or segments.
0060. Within the extents, data is typically ordered by
rowid. Similarly, in one embodiment, the MF data 104 is
ordered based on rowid. For example, the values in column
vector 220 are ordered based on the same rowids that are used
to order the PF data in blocks 202,204 and 206. Specifically,
rowid r1 immediately precedes rowid r2, so r1c1 immediately
precedes r2c1 in column vector 220, and r1c1 to r1c3 imme
diately precede r2c1 to r2.c3 in block 202.
0061. In alternative embodiments, some or all of the data
items in the MF data 104 are not ordered, within the MF data
104, by rowid. Storing the data items in a different order may

US 2016/0140206A1

be useful, for example, if the different ordering produced
significantly better compression. As another example, the
column vectors may initially be ordered by rowid. However,
when new updates are “merged into the column vectors (as
shall be discussed in greater detail hereafter), the updated
values may appended to the end of the existing column vec
tors to avoid having to decompress and recompress the exist
ing column vectors.
0062. When the data items within the column vectors are
not in rowid order, an in-memory index may be built on rowid
to quickly locate within the MF data 104 the data items
associated with any given rowid.
0063. Whether or not the data items within the column row
vectors are ordered based on rowid, a rowid-to-item mapping
may be established by maintaining a vector of rowids in
conjunction with the column vectors. For example, FIG. 3
illustrates a rowid vector 330 that is maintained in addition to
the column vectors 220 and 222. The first value (R1) in the
vector of rowids is the rowid of the first data item in each of
the column vectors. Similarly, the second value in the vector
of rowids (R2) is the rowid of the second data item in each of
the column vectors.
0064. In embodiments where the organization of the MF
data corresponds to the organization of the PF data, it is easier
for the database server to split database operations between
the MF data and the PF data. For example, the database server
may determine that the MF data is to be used to satisfy a query
relative to one range of extents (e.g. extent 1 to extent 10),
while PF data is to be used to satisfy the query relative to
another range of extents (e.g. extent 11 to extent 20).

Using the MF Data to Satisfy Queries
0065. A conventional database system may operate nor
mally by responding to every query by first searching for the
requested data in cache 106. If the data is in cache 106, the
data is accessed from cache 106. Otherwise, the needed data
is loaded from PF data structures 108 into cache 106, and then
accessed from cache 106. However, because the data in both
cache 106 and PF data structures 108 is in the persistent
format, performing operations based exclusively on the PF
data does not always provide the best performance.
0066. Therefore, according to one embodiment, the data
base server uses the MF data 104 to supply data items
required by at least some requested database operations. For
example, ifa database query requests the values from column
1 of all rows, the database server may obtain those values
from the column vector 220 without accessing persistent
storage 110. In the absence of MF data 104, the database
would only be able to obtain R3C1 and R4C1 without access
ing persistent storage 110 (because currently only block 204
is in cache 106). To obtain R1C1 and R2C1, block 202 must
be loaded into cache 106, and to obtain R5C1 and R6C1,
block 206 must be loaded into cache 106. The time it would
take to loadblocks 202 and 206 into cache would be signifi
cantly more than the time required to obtain the values
directly from column vector 220.

Using the MF Data to Evaluate Predicates
0067 Even in situations where the data required by a
database operation is not included in the mirror format data
104, the mirror format data 104 may be used to evaluate
predicates, and thereby speed up the database operations in
the same manner as conventional indexes. For example,

May 19, 2016

assume that table 200 has thousands of rows, and in only three
of those rows does column c1 have the value joe'. Under
these circumstances, a database server may receive a database
command that requests the values, from column c2, of all
rows where c1 =joe'.
0068. In this example, the data that needs to be returned by
the database command is from column c2, which is not in the
MF data 104. However, the column vector 220 for column 1
may be used to quickly identify the three rows where
c1=joe'. This operation can be performed efficiently
because the data items required to evaluate the predicate
(values from c1) are stored contiguously in Volatile memory.
Once those rows have been identified using column vector
220, the database server may retrieve from disk only those
blocks needed to obtain the data from those three rows.

0069. Without using the MF data, a conventional index
built on column c1 may be used to evaluate the predicate
“where c1.joe'. However, some disk I/O may be necessary to
make use of the conventional index to perform this evalua
tion, whereas no disk I/O is needed to evaluate the predicate
using column vector 220. Further, maintaining Such an index
can incur significant overhead.
0070. Without using mirror format data 104 or a conven
tional index, the database server would have to load from
persistent storage 110 every disk block that (a) is not already
in cache 106, and (b) stores data for table 200. These blocks
would have to be loaded merely to compare the values of
column c1 against “joe' to identify the three rows for which
c2 is required by the database command.
(0071. Because MF data 104 may be used for the same
function as conventional indexes (i.e. to efficiently identify
which rows satisfy criteria specified in a database command),
a database system that uses MF data 104 need not have as
many conventional indexes as would otherwise be necessary
for efficient predicate evaluation. For example, if the MF data
104 includes a column vector for c1 and a column vector for
c3, then the database server need not maintain conventional
indexes for columns c1 or c3. By reducing the number of
conventional indexes that need to be maintained by a database
server, the overhead associated with making updates may be
significantly reduced.

In-Memory Indexes

0072. As explained above, when a predicate references a
column, the column vector for that column may be used to
evaluate the predicate. In this way, column vectors may be
used instead of conventional indexes. To provide even faster
predicate evaluation, in-memory indexes may be used. An
in-memory index is an index stored entirely within volatile
memory. The nature of the in-memory index may vary based
on the characteristics of the data being indexed. For example,
if low-cardinality keys are being indexed, the in-memory
index may be a binary index. If high-cardinality keys are
being indexed, then the in-memory index may be a B-tree.
Regardless of the nature of the in-memory index, the entries
in the index point to in-memory location of the data items in
question, rather than on-disk locations.

Compression

0073. As mentioned above, the MF data may be com
pressed. However, according to one embodiment, not all MF
data need be compressed in the same way, or to the same
degree. For example, if it is determined that the data from

US 2016/0140206A1

column c1 of table 200 is used frequently, and the data from
column c3 is used infrequently, then the data in column vector
220 may be lightly compressed, or uncompressed, whereas
the data in column vector 222 is highly compressed.
0074 The compression algorithm, and the level of com
pression used by the algorithm, that is used to compress each
portion of the MF data may be specified by a user, or may be
determined automatically by a database server based on vari
ous factors. Possible compression algorithms include, but are
not limited to, dictionary-based compression, run-length
encoding (RLE), OZip compression, etc. Ozip compress is
described in U.S. Provisional Patent No. 61/955,574, filed
Mar. 19, 2014, the contents of which are incorporated herein
by this reference.
0075. The factors used by the database server to determine
how each portion of MF data is compressed may include, for
example, the frequency with which each portion is accessed,
and how much data is in the portion, and how much volatile
memory is available. In general, the more frequently a portion
of the MF data is accessed, the less compressed the data. As
another general rule, the less volatile memory that is available
to store the MF data and/or the larger the size of the portion of
the MF data, the higher the compression.
0076. Even though data items may be compressed within
the MF data, it may not be necessary to decompress the MF
data to use it. For example, vector processing operations may
be performed directly on compressed values, as described in
U.S. patent application Ser. No. 13/708,054, filed Dec. 7,
2012, the entire contents of which are incorporated herein by
reference. As also described in that application, it is also
possible for the decompression to be performed on-chip after
the compressed column vector values have been transferred to
the CPU.

In-Memory Compression Units (IMCUs)

0077. In an embodiment in which the MF data is com
pressed, the MF data may be organized, within volatile
memory 102, into “in-memory compression units” (IMCUs).
Each IMCU stores a different set of MF data. For example, as
illustrated in FIG. 4, IMCU 402 stores half of column vectors
220 and 222, and IMCU 404 stores the other half of column
vectors 220 and 222. Specifically, IMCU 402 includes a vec
torportion 420 that stores half the values from column c1, and
a vector portion 422 that stores half the values from column
c3. Similarly, IMCU 404 includes a vector portion 424 that
stores the other half of the values from column c1, and a
vector portion 426 that stores the other half the values from
column c3.
0078. In this example, the IMCUs divide the MF data
based on the rows to which the data belongs, where IMCU
402 corresponds to rows r1 to r3 of table 200, and IMCU404
corresponds to rows ra-ró of table 200. However, this is only
one of many different ways that the MF data may be spread
among IMCUs. For example, different IMCUs may store MF
data for different tables, different partitions of a table, differ
ent columns of a table, different segments, different extents,
etc.

Metadata for the MF Data

0079. To determine whether the MF data has the data
required to process a query, and if so, to find the MF data
required to process the query, the database server needs to
know which PF data is mirrored in the MF data, and specifi

May 19, 2016

cally which specific PF data is mirrored by each IMCU.
Therefore, according to one embodiment, metadata 430 for
the MF data is maintained in volatile memory 102, as illus
trated in FIG. 4.

0080. In one embodiment, metadata 430 includes a data
to-IMCU mapping. The data-to-IMCU mapping indicates
which data is contained in each IMCU. This indication may
be made in a variety of ways, including storing data that
indicates, for each IMCU, one or more of the following:

I0081 the table(s) whose data is stored in the IMCU
0082 the column(s) whose data is stored in the IMCU
I0083) the range of rows stored in the IMCU
0084 the range of the disk blocks whose data is stored
in the IMCU

0085 the segments whose data is stored in the IMCU
I0086 the table partitions whose data is stored in the
IMCU

0087 the extents whose data is stored in the IMCU
0088 the manner in which the data, within the IMCU,
has been compressed

0089 the dictionary for decompressing the data stored
in the IMCU (when a dictionary-type encoding has been
used to compress the PF data)

0090. In the situation illustrated in FIG. 4, the data-to
IMCU mapping may indicate, for example, that rows r1-r3 of
columns c1 and c3 of table 200 are stored in IMCU 402, and
that rows ra-ré of columns c1 and c3 of table 200 are stored in
IMCU 404.

Multi-Instance Environments

0091. In some environments, the same PF data is accessed
by multiple database server instances. Such environments are
referred to herein as multi-instance environments. In a multi
instance environment, each database server instance may
have access to volatile memory that the other database server
instances cannot access directly. In Such situations, one may
populate the volatile memory of each of the database server
instances with the same MF data, or may cause different
portions of the MF data to be stored in the volatile memories
of different database server instances. In the case where dif
ferent portions of the MF data is stored in the volatile memo
ries of different database server instances, metadata 430 may
also include an IMCU-to-instance mapping.
0092. For example, referring to FIG. 5a, it illustrates an
embodiment in which IMCU 402 is stored in the volatile
memory 502 of one database server instance (instance 1), and
IMCU 404 is stored in the volatile memory 504 of another
database server instance (instance 2). For the database servers
to know where specific portions of the MF data reside, each
maintains metadata (530 and 532) to indicate both (a) where
IMCUs 402 and 404 reside, and (b) what data they contain.
(0093. In FIG.5a, MF data from the same two columns (c1
and c3) is distributed between two database instances. How
ever, it is also possible to distribute the MF data among
database servers on other basis. For example, different
instances may have the MF data for different tables, different
columns, different partitions, different segments, different
eXtents, etc.
0094 FIG.5b is a block diagram of a scenario in which the
MF data is distributed among the database instances based on
column. Specifically, in FIG.5b, the IMCU 402 stored in the
volatile memory 502 of instance 1 includes the entire column

US 2016/0140206A1

vector 220 for column c1, while the IMCU 404 stored in the
volatile memory 504 of instance 2 includes the entire column
vector 222 for column c3.

0.095 Because it is more efficient to access local data than
to obtain data from a remote instance, the location of the MF
data may be a factor in determining whether to obtain a
particular data item from the MF data or the PF data. For
example, in the scenario illustrated in FIG.5b, if a query that
is being executed by the database server of instance 1 requires
data from column c1, the database server may decide to obtain
the data from column vector 220, rather than from the PF data.
On the other hand, if the same query being executed by the
same database server requires data from column c3, then the
database server may decide to obtain the data from the PF
data.

0096. When a database server determines that it is more
efficient to performan operation using MF data that resides in
a remote instance that to use the PF data, the database server
requests the remote instance to perform the operation. For
example, in the scenario illustrated in FIG.5b, if the database
server of instance 1 is executing a query with the predicate
“where c3=X', the database server of instance 1 would
request the database server of instance 2 to evaluate “where
c3=X”using column vector 222. In response to evaluating the
predicate, the database server of instance 2 would return to the
database server of instance 1 data that indicates which rows
satisfy the predicate.

Keeping the Mirror Format Data in Sync

0097. The MF data 104 is only useful if the MF data 104 is
kept up to date with all changes being made to the PF data. For
example, if a query calls for the current values from column
c1, then column vector 220 can only be used if its values are
current. Similarly, if a query calls for current values of c2
from rows where c1 =joe', then column vector 220 can only
be used to identify the rows where c1 =joe' if the values in
the column vector 220 are current.

0098 Consequently, a mechanism is provided for keeping
the mirror format data 104 in sync with the PF data as updates,
inserts and deletes are performed on the PF data. Specifically,
in one embodiment, the transaction manager of a relational
database server, which is conventionally designed to transac
tionally update the PF data, is modified to concurrently trans
actionally update the MF data. For example, when the trans
action manager updates aparticular item in the PF data as part
of a transaction, the transaction manager also updates the
particular item in the MF data (if the particular item is in the
MF data) as part of the same transaction.
0099. By maintaining MF data 104 and the PF data trans
actionally synchronized, the result set of a query will be the
same regardless of whether the query was processed using
data items obtained exclusively from the MF data 104, or data
items obtained exclusively from the PF data. The result set
will also be the same if the query is processed using some data
items from MF data 104, and other data items from the PF
data.

In-Place Updates to MF Data

0100 For the MF data to remain transactionally consistent
with the PF data, changes are made permanent to the MF data
at the same time the changes are made permanent to the PF

May 19, 2016

data. For example, when a transaction that changed r1c1 from
X to Y commits, r1c1 must be changed from X to Yin both the
PF data and the MF data.
0101. In some situations, it is possible to directly update
the MF data to reflect a change made by a transaction when
the transaction commits. For example, if column vector 220 is
either uncompressed, or compressed in a manner that pro
duces fixed-width values, it is possible to directly change the
value of r1c1 from X to Y in the column vector 220 when the
transaction commits, without otherwise affecting the column
vector 220 or incurring significant overhead.
0102) However, in other situations, it may be necessary to
update the MF data implicitly. When updated implicitly, the
MF data itself does not necessarily change, but metadata is
stored to indicate that the values contained therein have been
updated. As shall be described in greater detail hereafter, the
metadata used to record implicit updates to the MF data may
include journals and changed-row bitmaps.

Journals

0103) In some embodiments, keeping the MF data in sync
with updates to the PF data is complicated by the fact that the
MF data may be in a compressed format. For example, if
column vector 220 is compressed, then directly updating a
value within the column vector 220 may require the entire
column vector to be decompressed, the update performed,
and then the entire column vector to be compressed again. It
would not be efficient to perform Such operations in response
to every update performed on the PF data.
0104. To reduce the amount of decompression and decom
pression operations required to keep the MF data in Sync, one
embodiment makes use of journals to make implicit updates
to the MF data. In general, journals store information about
updates (a) made to the PF data, and (b) not yet made directly
to the MF data.

0105 Referring to FIG. 3, it illustrates an embodiment in
which journals 304 are maintained in conjunction with col
umn vectors 220 and 222. In the embodiment illustrated in
FIG. 3, column vectors 220 and 222 store compressed MF
data 302. Because the data within the column vectors 220 and
222 is compressed, a significant amount of overhead would be
required to directly update the data within the column vectors
220 and 222.
0106 While journals 304 are also in volatile memory 102,
journals 304 generally contain uncompressed data 302 that
indicates changes made to the PF data that is not yet reflected
in column vectors 220 and 222. For example, if the value of
R3C1 of table 200 is updated from X to Y, rather than change
the value of R3C1 in column vector 220, an entry is stored in
one of journals 304 to indicate that R3C1 has been changed,
and to record the new value for R3C1.

0107 Journals 310 include a global journal 310 and
numerous private journals. In general, global journal 310
records only those changes that have been made by commit
ted transactions. Before transactions commit, the changes
made by the transactions are stored in the private journals, as
explained in greater detail hereafter.
0.108 Journals 310 may include entries for rows that do
not exist in the MF data. For example, assume that the MF
data for table 200 is created at time T1, and at time T2 a new
row is inserted into table 200. Under these circumstances, an
entry for the new row will initially be added to private journal
of the transaction that inserted the row, and the entry for the

US 2016/0140206A1

new row will be moved to the global journal for table 200
when that transaction commits.
0109 According to one embodiment, all journals support

full transactional semantics (e.g. queries, DMLS, rollback to
savepoint, rollback/abort, parallel queries/DMLs, and dis
tributed transactions). In addition, journals can interoperate
with the on-disk database system. For example, when the data
is purged from an in-memory journal, required changes can
be obtained from the PF data on disk, if a query needs them.

Private Journals

0110. As mentioned above, journals 304 are used to store
data that indicates (a) changes made to the PF data that (b) are
not yet reflected in the MF data stored in IMCUs. Such
changes are typically made by database servers as part of
transactions. According to one embodiment, in addition to
having a single “global journal, such as journal 310, for all
Such changes, a separate “private journal is maintained for
each transaction.
0111 For example, FIG.3 illustrates the situation in which
three transactions TX1, TX2 and TX3 are making changes to
PF data that is mirrored in the compressed MF data 302. In
addition to making the changes to the PF data, the transac
tions make the same changes to the MF data by storing, in
their respective private journals, data that indicates what the
changes are.
0112 Similar to the changes made to the PF data, those
changes reflected in the private journal of a transaction are not
considered permanent until the transaction commits. Conse
quently, the changes reflected in the private journal of any
given transaction will not be visible to other transactions until
the given transaction commits. In the example shown in FIG.
3, the contents of journal 312 will be ignored by transactions
TX2 and TX3. The contents of journal 314 will be ignored by
transactions TX1 and TX3. The contents of journal 316 will
be ignored by transactions TX1 and TX2.

Moving Journal Entries Upon Commit
0113. The global journal is visible system-wide, since all
changes reflected therein have been committed. Thus, in
response to transaction TX1 committing, the changes
reflected in the private journal 312 of TX1 are moved to the
global journal 130. Similarly, in response to transaction TX2
committing, the changes reflected in the private journal 314 of
TX2 are moved to the global journal 130. Likewise, in
response to transaction TX3 committing, the changes
reflected in the private journal 316 of TX6 are moved to the
global journal 130.
0114 AS mentioned above, when a transaction commits,
the contents of that transaction’s private journal are moved to
the appropriate global journals. In embodiments where the
global journals are maintained on a per-IMCU basis and the
private journals are maintained on a per-transaction basis,
moving the private journal entries of a committed transaction
may involve moving some of the entries to the global journal
of one IMCU, and some entries to the global journal of
another IMCU.
0115 For example, assume that a transaction modifies a

first set of data that maps to a first IMCU, and modifies a
second set of data that maps to a second IMCU. Prior to
commit, entries for both sets of modifications are stored in the
private journal of the transaction. However, when the trans
action commits, the entries for modifications to the first set of

May 19, 2016

data are moved to the global journal for the first IMCU, and
entries for modifications to the second set of data are moved
to the global journal for the second IMCU.
0116. After a transaction’s changes are persistently com
mitted to the PF data, the transaction is assigned a commit
time. In response to being assigned a committime, the journal
entries of the transaction are updated to reflect the commit
time. Once a transaction’s journal entries are moved to the
appropriate global journals and updated with the commit time
of the transaction, the changes reflected in those entries
become visible to other transactions.

0117. As mentioned above, data within an IMCU need not
be arranged in rowid order. When not in rowid order, the
column vector of rowids (e.g. vector 330) may be used to
locate data within an IMCU based on rowid. Specifically, the
position of a rowid within vector 330 is the position of the
values for the corresponding row within the other vectors 220
and 222. According to one embodiment, even when the data
within an IMCU is not arranged in rowid order, the entries in
the corresponding private and global journals are organized
based on rowid. Thus, when data in an IMCU is invalidated
due to an update made to the corresponding PF data, the rowid
of the invalidated data is recorded, rather than the position of
that data within the IMCU.

Journal Entry Contents

0118. In general, each journal entry contains all informa
tion required to determine (a) what data items are in the entry,
and (b) what version of those data items does the entry reflect.
In one embodiment, each journal entry includes:

0119)
0120 a timestamp that indicates when the data con
tained in the row was "current

0121 values for one or more columns of the corre
sponding row

0.122 With respect to the column values, in one embodi
ment, each journal entry includes full row images that result
from all Data Manipulation Language (DML) operations. In
Such an embodiment, the journals are initially row-major data
stores. However, under certain circumstances (such as when
the journals grow too large), the contents of the journal may
be converted to a column-major row store. The column-major
information in the journals would only need to include values
for those columns that are mirrored in the MF data.

(0123. In on embodiment, a threshold is established for
how many rows a journal may have in row-major format.
Once that threshold is exceeded, a conversion operation is
triggered for converting some or all of the journal's row
major data to a column-major format. The threshold may be,
for example, that a journal may have no more than 1000 rows
of row-major data.

the rowid of the row associated with the entry

Journal Indexes

0.124. According to one embodiment, an index, main
tained in volatile memory 102, is built on the rowid column of
each private journal. In addition to the rowid column, indexes
may be built on any other column of the private journals that
will improve overall query processing efficiency. These jour
nal indexes may be used, for example, during query process
ing to perform look-ups, or range-based scans of the journals.

US 2016/0140206A1

Journal Structure

0125. According to an embodiment, journals are orga
nized, within volatile memory 102, as a series oftemporally
ordered extents. For example, assume that the version time
for MF data 104 is T1, and that the current system time is time
T10. Under these circumstances, journal 310 may be orga
nized into three extents, the first of which includes journal
entries for changes made between time T1 and time T3, the
second of which includes journal entries for changes made
between time T3 and time T6, and the third of which includes
journal entries for changes made between time T6 and the
current system time.
0126 When structured in this manner, extent pruning may
be used to reduce the number of extents that are processed
during a table scan. For example, for a table scan performed
for a transaction with a snapshot time of T2, only the first
extent of journal 310 would need to be scanned. The other
journals contain only changes that the transaction is not
allowed to see.
0127. On the other hand, for a table scan performed for a
transaction with a snapshot time of T7, all three extents of
journal 310 would have to be scanned, because all three could
contain journal entries for changes that must be seen by the
transaction.

Merging Global Journals into the MF Data
0128. As mentioned above, journals are used because it is
inefficient to update the MF data directly every time a data
base operation makes a change to the corresponding PF data.
This is particularly true when the MF data is compressed.
However, it is also inefficient to allow the journals to grow
indefinitely, both because eventually the journals will require
too much volatile memory, and because the larger the journals
grow, the less efficient it becomes to use the MF data to satisfy
queries.
0129. Consequently, according to one embodiment, the
content of the global journals is periodically merged into the
MF data. When the MF data is compressed, this merger opera
tion typically involves decompressing the MF data, updating
the MF data to reflect the most current committed versions of
the items contained therein, and then compressing the MF
data.
0130. After data has been merged into the MF data con
tained in a particular IMCU, the metadata associated with the
IMCU is updated to indicate a new version timestamp for the
IMCU. For example, if the MF data in an IMCU reflected all
changes made as of time T1, then prior to the merger the
version timestamp for the IMCU would be T1. If the update
involves merging into the MF data of the IMCU all changes
that were made up to time T3, then after the merger the
version timestamp for the IMCU would be updated to T3.

Post-Merger Retention of Global Journal Entries
0131. As shall be described in greater detail hereafter, in
Some embodiments, changed-row bitmaps may be used to
indicate which data items in the MF data have become stale.
A data item in the MF data becomes stale when a change (not
reflected in the MF data) is committed to the data item. Once
the contents of a global journal have been merged into the
corresponding MF data, the old entries in the journals may be
purged and the changed-row bitmap is updated to reset all bits
(thereby indicating that no data items in the newly-merged
MF data are stale). However, in some embodiments, rather

May 19, 2016

than purge all old journal entries in response to merging
changes into the MF data, some of the old data may be
retained in order to continue to use the MF data for transac
tions whose Snapshot-times are before the merger time.
I0132) For example, if the post-merger version timestamp
for the IMCU is T3, then a transaction with a snapshot time of
T2 cannot use the MF data in the IMCU, because that data
contains changes that the transaction is not allowed to see.
However, if all the journal entries as of time T1 have been
retained, it is possible to use those journal entries, in conjunc
tion with the IMCU, to obtain some data items as of time T2.
Specifically, for a data item whose journal entries have been
retained, a transaction with a Snapshot time of T2 would use
the version of the data item from the most recent journal entry
that precedes T2, the Snapshot time of the transaction.
0.133 For example, assume that the journal only has a
single entry, and the entry indicates that rSc1 was changed at
time T3 from X to Y. Consequently, the post-merger IMCU
will have value Y for rSc1. However, to provide the correct
value to the transaction, the database server inspects the jour
nal to see that the row of rSc1 was changed between the
snapshot time T2 and the version time T3 of the IMCU. Based
on this information, the database server knows that the value
Y for rSc1 is too recent for the transaction to see, and that the
transaction must instead see value X for rSc1. Consequently,
in the data obtained for the transaction, the database server
changes the value of rSc 1Y to X.
I0134. Unfortunately, it is not feasible to retain old journal
entries indefinitely. Therefore, according to one embodiment,
a configuration parameter is provided for specifying the
retention policies associated with IMCUs or the database
objects to which they correspond. For example, a retention
policy may be that, for table 200, journal entries are retained
for at least one hour. Thus, for IMCUs that contain data for
table 200, when purging journal entries after a merger, only
those journal entries that are associated with Snapshot times
that are less than an hour old are retained. Retaining already
merged journal entries in this manner ensures that transac
tions that have Snapshot times less than an hour old will
always be able to obtain the correct version of data items from
the MF data.

0.135 According to one embodiment, old journal entries
are retained until the database server determines that no cur
rently executing queries will need the old journal entries. For
example, if changes are merged into an IMCU at time T10.
then journal entries, in the global journal of that IMCU, that
are associated with changes made before time T10 may auto
matically be purged by the database server when there are no
more currently-running transactions that have Snapshot times
before T10.

0.136. In some embodiments, the journal entries may store
only an indication of which row was changed, and when,
without storing the actual values involved. In Such an embodi
ment, the pre-merger journal entries are still useful for indi
cating which values from the post-merger IMCU cannot be
used by a transaction. In the example given above, the version
of rSc1 that is in the post-merger IMCU cannot be used for a
transaction with a snapshot time of T2, because the journal
would indicate that r5c1 was changed between the snapshot
time T2 and the version time T3 of the post-merger IMCU.
Under these circumstances, if the journal does not have the
actual pre-update value of r5c1 (i.e. X), the database server
may obtain that value from the PF data, and the rest of the
values that it needs from the MF data.

US 2016/0140206A1

Global Journals and Memory Constraints
0.137 As explained above, both global and private journals
are maintained in Volatile memory. Private journals are used
to record changes made by transactions that have not yet
committed. Global journals, on the other hand, generally
record changes made by transactions that have committed.
0.138. The more entries that a global journal has, the more
Volatile memory is consumed. Under some circumstances,
there may simply not be enough Volatile memory to store
excessively large global journals. One way of handling these
situations is to purge older extents of the journals.
0139 For example, assume that the global journal of an
IMCU has three extents E1, E2 and E3. Assume further that
E1 contains entries for transactions that committed between
time T1 and time T5, E2 contains entries for transactions that
committed between time T5 and time T9, and E3 has journal
entries for transactions that committed between time T9 and
the current system time.
0140 Assume further that the version time of the IMCU is
T5. Under these circumstances, the entries in E1 may be used
to “roll back the values in the IMCU for transactions that
have snapshot times between T1 and T5. On the other hand,
the entries in E2 and E3 may be used to “roll forward the
values in the IMCU for transactions that have snapshot times
after T5.
0141 When faced with memory constraints, the database
server may purge extents E1 only, E1 and E3, or E1, E2 and
E3, depending on how much memory is needed. Purging an
extent has an effect on performance of certain transactions.
For example, assume that E1 is purged. After E1 is purged, a
transaction with a Snapshot time of T3 may require data items
that maps to the IMCU.The transaction may obtain data items
that did not change between T3 and T5 from the IMCU. Data
items that did change between T3 and T5 are obtained from
the PF data, because those items were recorded in E1 which
has been purged.
0142 Even after the purging of its journals, an IMCU may
be used to Supply data that did not change between (a) the
version time of the IMCU and (b) the snapshot time of the
transaction requesting the data. For example, if the IMCU
version time is T1, a transaction with a snapshot time of T5
may obtain data items from the IMCU that were not changed
between T1 and T5. As shall be described in greater detail
hereafter, those changed data items may be identified using a
delete vector generated for the transaction.

Snapshot Metadata Units

0143. As mentioned above, metadata is maintained for
each IMCU. In one embodiment, a Snapshot Metadata Unit
(SMU) is responsible for maintaining at least some of that
metadata. Referring to FIG. 6, an IMCU 600 is illustrated
with its corresponding SMU 604. In the illustrated embodi
ment, SMU 604 stores the IMCU version time and a changed
row bitmap 606. The IMCU version time is the time at which
the values in the IMCU 600 were current. Changed-row bit
maps shall be described in greater detail hereafter.
0144. Among other things, the SMU for an IMCU cap
tures all updates that affect the MF data contained in the
IMCU. Consequently, the SMU for an IMCU may indicate,
for example, whether the corresponding IMCU has valid
values for a given rowid/snapshot-time combination. As
another example, the SMU may generate a list of rowids of all
rows for which the corresponding IMCU has invalid values,

May 19, 2016

relative to a given Snapshot-time. This list may then be used in
conjunction with the rowid column vector to identify the rows
for which values must be obtained from other sources (e.g.
from journals or from the PF data).

Changed-Row Bitmaps

0145. In one embodiment, the updates captured by an
SMU are indicated by a “changed-row bitmap' maintained
within the SMU. Referring again to FIG. 6, the changed row
bitmap 606 for IMCU 600 is maintained in SMU 604. A
changed-row bitmap is a bitmap that indicates the rows (a) for
which the corresponding IMCU has values, and (b) that have
been changed by transactions that committed since the ver
sion timestamp of the IMCU.
0146 For example, when a transaction performs an update
to rows r1, r3 and r5 of table 200, the SMU 604 for IMCU 600
updates the changed-row bitmap of IMCU 600 by setting the
bits that correspond to rows r1, r3, and r5 because those are
the updated rows that fall within the MF data of IMCU 600.
0147 According to one embodiment, when a change is
made to data that is mirrored in IMCU 600, the SMU 604
stores a record of which bits of the changed-row bitmap 606
were set, and when. These records are collectively repre
sented in FIG. 6 as record of bit changes 608. For example, if
an update made at time T1 modifies row r1, then the bit for
row r1 would be set, and a record is stored to indicate that the
bit for r1 was set at time T1.
0.148. According to one embodiment, the changed-row
bitmap is created on an as-needed basis. For example, if the
changed-row bitmap is to reflect whether a change has
occurred to a million rows, a one million bit data structure is
not pro-actively initialized. Instead, data is only stored for
row ranges that have at least one bit set. For any range for
which no data is stored, all bits are deemed to be “0”.
0149 Referring to FIG. 8, it illustrates a hierarchical struc
ture 800 for representing a changed-row bitmap, according to
one embodiment. In the illustrated embodiment, the hierar
chical structure 800 has levels that correspond to extents,
blocks, and rows. The extent-level information802 includes a
record for each extent in which there is any set bit. Extent
level records link to other extent-level records (not shown),
thereby forming a linked list of records for the extents that
have one or more set bits.
0150. In addition, the extent records include a pointer to a
linked list of block level information 804 for the blocks that
reside in the extent. In the illustrated example, the record for
extent E1 points to the record for blocks B1, B2, B3 and B4.
The block-level record can be the first recordinalinked list of
block-level records for the blocks that belong to extent E1.
0151. The block-level records, in turn, point to row-level
information 806 stored in the form of bitmap pieces. Specifi
cally, in the illustrated embodiment, the record for block B1
points to bitmap piece 850.
0152 Each position in the bitmap piece 850 corresponds
to a row whose data items are stored in block B1. In the
illustrated embodiment, bitmap piece 850 has six bit posi
tions, which correspond to six rows are stored in B1. For each
bit position, bitmap piece 850 includes two bits, one of which
is a row-changed bit 820 and the other of which is an in
journal bit 830. For any given row, the row-changed bit indi
cates that the row changed since data items for the row were
stored in the IMCU. The in-journal bit for a row indicates
whether the updated values for the row are stored in the
IMCU's journal.

US 2016/0140206A1

0153. Based on the information in data structure 800, the
database server may determine whether the current version of
a data item resides in the IMCU, in the journals of the IMCU,
or in neither. Specifically, if the structure 800 has no infor
mation for a given row, then the IMCU has the current version
of the data items from the row. The IMCU also has the current
version of the data items from the row if the structure 800 has
information for the row, and the row-changed bit for the row
is “0”. If structure 800 has information for the row, the row
changed bit is set and the in-journal bit is set, then the IMCU
does not have the current version of the item, but the journal
for the IMCU does have the current version of the item.
Finally, if structure 800 has information for the row, the
row-changed bit is set, and the in-journal bit is not set, then
neither the IMCU northe journals have the current version of
the data item, and the current version must be retrieved from
the PF data.
0154 The records of structure 800 are created on an as
needed basis. Thus, if the IMCU is current for all data items in
a particular extent, then structure 800 may not have any
records for the extent. Similarly, if the IMCU is current for all
data items in a particular block, then structure 800 may not
have any block level information 804 for that block. By only
storing changed-row information for extents/blocks that have
been changed or added since the version time of the IMCU,
structure 800 may be significantly small than it would other
wise be if bits were pre-allocated for every row.

Using the Record of Bit Changes
0155 For a transaction that requires the most recent ver
sion of data items, a set bit in the changed-row bitmap 606
indicates that the MF data has stale data for that row, and
therefore the IMCU 600 cannot be used to supply data from
that row. However, not all transactions require the most recent
version of data items.
0156 For example, in many database systems, transac
tions areassigned a Snapshot time, and return data that reflects
the state of the database as of that snapshot time. Specifically,
if a transaction is assigned a Snapshot time of T3, then the
transaction must be provided versions of data items that
include all changes that were committed before T3, and no
changes that were not committed as of T3 (except for changes
that the transaction makes itself). For Such transactions, a set
bit in the changed-row bitmap 606 does not necessarily indi
cate that the IMCU 600 cannot be used to be the source for
items for the corresponding row. Specifically, such transac
tions may still use the IMCU 600 to obtain data for a particu
lar row, even though the bit for that row is set in changed-row
bitmap 606, if the bit was first set after the snapshot time of the
transaction.
0157 For example, assume that the column vectors 220
and 222 contain data as it existed at time T1, as indicated by
the IMCU version time stored in SMU 604. At a later time T5,
an update operation changes row r1. Specifically, the update
changes the value of r1c1 for X to Y. In response to this
update, the changed-row bitmap 606 of IMCU 600 would
change from 000000 to 100000, setting the bit that corre
sponds to row r1 to “1”. In addition, a record is stored within
SMU 604 indicating the bit for r1 was changed at T5.
0158. At yet a later time T9, another update operation
changes row r3. Specifically, the second update changes the
value of r2C3 from A to B. In response to this update, the
changed-row bitmap 606 of IMCU 600 would change from
100000 to 101000, setting the bit that corresponds to row r3 to

May 19, 2016

“1”. In addition, a record is stored within SMU 604 indicating
that the bit for row r3 was set at time T9.
0159. After these updates have occurred, the database
server may execute a transaction that reads the values of
columns c1 and c3. If the Snapshot time of the transaction is
earlier than T5, then the transaction may read all the values
from column vector 220 and 222. The database may deter
mine this by comparing the Snapshot time of the transaction to
the times indicated in the record of bit changes 608. If the
snapshot time of the transaction is after the IMCU version
time, but before any times in the record of bit changes 608,
than all values in the IMCU 600 are valid relative to that
transaction.
0.160) If the snapshot time of the transaction is after T5 but
before T9, then the transaction may read all values from
column vectors 220 and 222 except the values from row r1,
which must be obtained elsewhere (e.g. from a journal or
from the PF data). If the snapshot time of the transaction is
after T9, then the transaction may read all values from column
vectors 220 and 222 except the values from rows r1 and r3.
which must be obtained elsewhere.

Delete Vectors

0.161. In one embodiment, to account for the snapshot time
of transactions that read values that are mirrored in IMCU
600, the changed-row bitmap 606 is used in conjunction of the
record of bit changes 608 to create a delete vector for each
transaction that seeks to read data from IMCU 600. A delete
vector is Snapshot-time specific, because bits in the delete
vector are only set for rows that were modified before the
Snapshot-time associated with the transaction for which the
delete vector is constructed. Stated another way, each delete
vector reflects the version of the changed-row bitmap that was
current as of the Snapshot-time. Thus, the older the Snapshot
time associated with a delete vector, the older the version of
the changed-row bitmap the delete vector reflects, and thus
fewer the number of bits that will be set in the delete vector.
0162 For a transaction with a snapshot time after the
version time of the IMCU, a delete vector is made for the
transaction by “rolling back changes that occurred to the
changed-row bitmap 606 after the snapshot-time of the trans
action. For example, if a transaction has a Snapshot time of
T5, the database server searches the record of bit changes 608
to identify changes that occurred after time T5. A copy of the
changed-row bitmap 606 is made, and within that copy the
bits that correspond to the changes that occurred after time T5
are reset to “0”. For transactions with snapshot times before
the version time of the IMCU, the delete vector may be
generated by making a copy of the changed-row bitmap 606,
and within that copy setting to “1” the bits of rows that were
changed between the Snapshot time of the query and the
version time of the IMCU.
0163 Because delete vectors are transaction-specific, at
any given time, any number of distinct transactions may be
performing scans of the rows that map to a particular IMCU.
Each of those transactions may have been assigned a different
Snapshot-time. Consequently, each of those transactions will
have a different delete vector, though all of those delete vec
tors are generated based on the same changed-row bitmap of
the SMU that corresponds to the IMCU.

Post-Merge Retention of Pre-Merge Changed-Row
Bitmaps

0164. As mentioned above, when changes are merged into
an IMCU, all values in the changed-row bitmap of the IMCU

US 2016/0140206A1

are reset to “0” to indicate that no rows have been changed
since the new version time of the IMCU (which will be the
time at which the IMCU is refreshed/merged). However,
rather than simply discard or overwrite the existing changed
row bitmap, a copy of pre-merge changed-row bitmap may be
saved. A saved copy of a pre-merge changed-row bitmap is
referred to herein as a “retained bitmap’. As shall be
described in greater detail hereafter, such retained bitmaps
allow a post-merge IMCU to be used to provide data items to
transactions that have Snapshot times before the merge.
0.165 For example, assume that an IMCU is constructed at
time T1. From time T1 to time T10, the changes made to the
data items in the IMCU are recorded in its global journal,
rather than being made directly to the data items themselves
within the IMCU. While those changes are being recorded
within the journal, the changes are also causing correspond
ing bits to be set in the changed-row bitmap of the IMCU. At
time T10, the changes are merged into the IMCU, causing the
version time of the IMCU to change from T1 to T10.
0166 Under these circumstances, the state of the changed
row bitmap immediately before the merger reflects which
rows, within the IMCU had changed between time T1 and
time T10. By indicating which rows had changed between
time T1 and time T10, the changed-row bitmap likewise
indicates which rows had not changed between time T1 and
time T10. Within the post-merger IMCU, those rows that had
not changed between time T1 and time T10 can be provided to
transactions that have snapshot times between T1 and T10.
0167 Specifically, a copy of the pre-merge version of the
changed-row bitmap is retained after the merger. Along with
the retained bitmap, the version timestamp of the pre-merge
IMCU is also stored. In the example given above, the retained
bitmap would be associated with the version timestamp ofT1.
0168 When a transaction (a) requires data items that map

to an IMCU, and (b) has a snapshot time that falls between the
retrained bitmap time and the current IMCU time, the
retained bitmap is used to identify the rows that were not
changed between the retained bitmap time and the current
IMCU time. Values for the identified rows may be provided to
the transaction from the current IMCU. Values for the remain
ing rows are obtained elsewhere. Specifically, values for the
remaining rows may be obtained from the global journal of
the IMCU if the relevant journal entries have not yet been
purged, or from the PF data.

IMCU Refresh Undo

0169. Rather than store a single retained bitmap in
response to the most recent merge, a separate retained bitmap
may be stored in response to each merge. The retained bit
maps for a given IMCU may be linked in chronological order.
The linked set of retained bitmaps for an IMCU constitutes an
“IMCU refresh undo' for the IMCU.
0170 For example, assume that an IMCU was created at
time T1, and then refreshed/merged at times T10, T15 and
T30. Under these circumstances, the IMCU refresh undo for
the IMCU would contain three retained bitmaps RB1, RB2
and RB3. These three retrained bitmaps would be associated
with times T1, T10 and T15, respectively.
(0171 In the present example, the “0” bits of RB1 indicate
the rows that were not changed between times T1 and T10.
The “0” bits of RB2 indicate the rows that were not changed
between the times T10 and T15. The “O'” bits of RB3 indicate
the rows that were not changed between the times T15 and
T30.

May 19, 2016

0172 Given any snapshot time, the IMCU refresh undo
may be used to identify which rows, within the current IMCU
can be provided to a transaction with that Snapshot time. For
example, for a transaction with the snapshot time T18, the “O'”
bits in RB3 would indicate which rows can be provided to the
transaction from the current IMCU. As another example, for
a transaction with the snapshot time of T12, RB2 and RB3 can
be combined using a logical OR operation to produce a bit
map that indicates which rows can be provided to the trans
action from the current IMCU. As yet another example, for a
transaction with the snapshot time of T5, RB1, RB2 and RB3
can be combined using a logical OR operation to produce a
bitmap that indicates which rows can be provided to the
transaction from the current IMCU.
0173 Thus, given a transaction with the snapshot time of
TX, the retained bitmap with the highest timestamp that is
below TX is combined, using a logical OR operation, with all
more recent retained bitmaps of the same IMCU. The logical
“OR” operation produces a bitmap where the “O’s correspond
to rows that have not changed since TX and the version time
of the current IMCU. Consequently, data items for those rows
may be provided by the IMCU.

Transaction Downgrade Based on Memory
Constraints

0.174 AS mentioned above, changes made to items in an
IMCU are recorded in journals rather than made directly to
the items in the IMCU.The journals are maintained in volatile
memory. Unfortunately, long-running transactions that make
changes to large numbers of items may cause so many journal
entries to be generated that there is insufficient room to store
the entries in volatile memory.
0.175 Under these circumstances, the journal entries may
be flushed to persistent storage to free up space in Volatile
memory. However, flushing the journal entries to persistent
storage, and reading the entries from persistent storage there
after, incurs a significant performance penalty. Therefore,
according to one embodiment, transactions that are generat
ing journal entries in Sufficient quantity to cause memory
issues are “downgraded'.
0176 According to one embodiment, such transactions
are downgraded by pushing their existing private journal
entries to the global journal of the IMCU, and ceasing to
generate further privatejournal entries. Although in the global
journal of the IMCU, such journal entries are not visible to
other transactions because the journal entries are for an
uncommitted transaction, and therefore initially associated
with an “indeterminate' timestamp. When the downgraded
transaction commits, the timestamps of the transaction’s
entries in the global journal are changed from indeterminate
to the commit time of the transaction.
0177 Rather than cease the generation of journal entries
when in downgraded mode, transactions may continue to
generate journal entries until the size of their private journal
once again reaches the specified threshold. At that point, the
private journal entries may once again be moved to the global
journal, where the entries will not be visible to other transac
tion due to their indeterminate timestamp. This process of
filling the private journal to a threshold, and then moving the
entries to the global journal, may be repeated any number of
times until the transaction either commits or is rolled back.
0.178 Regardless of whether a transaction that is operating
in the downgraded mode continues to generate further private
journal entries to record its changes, the changes are still

US 2016/0140206A1

recorded in the record of bit changes associated with the
IMCU. Once the transaction commits, those bit changes are
made to the changed-row bitmap.
0179. By using the changed-row bitmap to record the fact
that a change occurred, future transactions will avoid reading
stale data items from the IMCU. When the changed-row
bitmap indicates that data items associated with a particular
row are invalid, transactions that require data items from that
row must obtain the data items for a source other than the
IMCU. In the case that the changes were made by a down
graded transaction that ceased generating journal entries, the
changes will not appearin the global journal, so the data items
are retrieved from the PF data.

0180. In one embodiment, not all transactions that are
using an IMCU are downgraded at once. Rather, the down
grades are performed on a per-transaction basis, where trans
actions are only downgraded if they satisfy certain criteria.
The criteria may be, for example, that the amount of journal
entries that they have generated exceeds a particular thresh
old.

0181. In general, transactions must see the uncommitted
changes that they have made themselves. Consequently, a
downgraded transaction that has ceased generating journal
entries may have to obtain the values of some data items that
the transaction previously changed from the PF data, since no
journal entry exists for those changes.

Maintaining Sync without Journals

0182. In the sections above, it is explained that the MF data
may be kept in Sync with the PF data by recording changes in
journals, while leaving the compressed MF data intact until
the journals are merged into the compressed MF data. How
ever, in an alternative embodiment, for one or more of the
IMCUs, the MF data may be maintained in sync merely by
invalidating the data in response to changes made to the
corresponding PF data without using journals to record the
changes.
0183 In such an embodiment, delete vectors may be gen
erated for a transaction, as described above. For those bits that
are not set, the data may be obtained from the appropriate
IMCU. For those bits that are set, the data must be retrieved
from the PF data, since obtaining data from in-memory jour
nals is not an option when no such journals are maintained.
0184 The benefit of invalidating the MF data without
recording the changes in journals is that the processing over
head and memory consumption of maintaining the journals is
avoided. However, when data items in the IMCU are too stale
to be used to process a transaction, accessing the appropriate
version of the data items from the PF data will generally incur
more overhead than would be required to obtain the data
items from journals. In addition, refreshing the IMCUs in the
absence of in-memory journals will also typically incur more
overhead, because the changes that need to be merged into the
IMCUs must be obtained from the PF data rather than from
in-memory journals.
0185. In some embodiments, journals may be maintained
for some IMCUs, but not others. In addition, it is possible for
the journal of an IMCU to be dropped, and yet continue to use
the IMCU for data that has not been invalidated due to
changes between the IMCU version time and the snapshot
time of the transactions that require the data.

May 19, 2016

Determining from where to Obtain Data
0186 Because MF data 104 is merely a mirror of some of
the PF data (albeit in a different format), all data items con
tained in MF data 104 are also in the PF data. Therefore, for
any query that requires access to data items that are mirrored
in the MF data, the database server has the choice of obtaining
that data from MF data 104, from the PF data, or partially
from the MF data 104 and partially from the PF data.
0187. In general, when the requested data is an entire row
of a table (or the majority of columns of the table), the loca
tion from which to most efficiently retrieve the data is cache
106 (assuming that the persistent format is row-major). If the
requested row does not currently reside in cache 106, but the
MF data 104 has all columns of the row, then MF data 104 is
the location from which to most efficiently retrieve the row.
Assuming that MF data 104 is column-major, MF data 104 is
less efficient than cache 106 for retrieving a row because, in
column-major format, the values for the row must be pieced
together from various places within the MF data 104.
0188 If not all of the data for the requested row is in the
MF data 104, then at least some of the row must be retrieved
from persistent storage 110. Typically, persistent storage 110
is the least efficient location from which to retrieve data,
because disk accesses are significantly slower than operations
on data stored in Volatile memory.
0189 According to one embodiment, the decision of
where to get the data may be made at any of numerous levels
of granularity. For example, the decision of from where to
obtain the data may be made on a per-table basis, a per
column basis, a per extent basis, a per segment basis, a per
table-partition basis, etc. Thus, even though all data from
column c1 is in column vector 220, the database server may
decide to execute a scan by obtaining some of the values of
column c1 from column vector 220, and by obtaining the rest
of the values of column c1 from the PF data on persistent
storage 110.
0190. According to one embodiment, database objects,
such as tables, can be “in-memory enabled'. A table that has
been in-memory enabled has at least a portion of its data
mirrored in the MF data. For example, table 200 is in-memory
enabled because data from two of its columns (c1 and c3) are
mirrored in mirror format data 104. Specifically, data from
column c1 of table 200 is mirrored in column vector 220, and
data from column c3 of table 200 is mirrored in column vector
222.
(0191 When a table is not mirror-enabled, a scan of the
table is performed by reading PF data from cache 106 and/or
from persistent storage 110. On the other hand, when a table
is mirror-enabled, it may be also possible to get Some or all of
the table's data from MF data 104. More specifically, it may
be possible to obtain data of a mirror-enabled table from any
of the following locations:

(0192 the persistently-stored PF data
0193 from a flash cache (described in U.S. patent Ser.
No. 13/840,811, filed Mar. 15, 2013, the entire contents
of which is incorporated herein by reference)

(0194 the locally cached PF data
0.195 the PF data in the cache of another instance
(0196) the locally stored MF data
(0197) the MF data stored in the volatile memory of

another instance
0198 the locally stored MF data updated with informa
tion from journals

(0199 entirely from the journals

US 2016/0140206A1

0200 MF data stored in the volatile memory of another
instance updated with information from journals

0201 any combination of the above.
0202 Further, the data can be obtained without the use of
any indexes, with the use of conventional indexes on the PF
data, and/or with the use of in-memory indexes. Further,
indexes need not be used in conjunction only with the format
based upon which the indexes were built. Thus, conventional
indexes built on the PF data may be used to identify rows that
must be retrieved, and then data for those rows may be
retrieved from the MF data. Similarly, an in-memory index
may be used to identify rows that must be retrieved, and some
or all of those rows may be retrieved from the PF data.
0203. According to one embodiment, a cost-based opti
mizer is used to determine, for any given database operation,
which of the sources (or which combination of these sources)
will be used to supply the data needed by the database opera
tion. Additional factors used by the cost-based optimizer
include whether conventional and/or in-memory indexes
exist for quickly locating the desired data.

Scanning Operations

0204 According to one embodiment, when it is deter
mined that a table scan operation is to obtain at least some of
the requested data from MF data 104, a determination is made
as to whether the timestamp associated with the MF data 104
is earlier than the Snapshot timestamp being used by the scan.
In embodiments where the MF data 104 is contained in an
IMCU, the determination is made by comparing the IMCU
version time, stored in the SMU of the IMCU, to the snapshot
time of the transaction associated with the table Scan.

0205 If the MF data timestamp is earlier than the snapshot
timestamp being used by the scan, then is possible that some
of the data in the IMCU is stale relative to that snapshot time.
Under these circumstances, it is possible that the required
versions of data items that are stale in the IMCU reside in the
global journal of the IMCU or the private journal of the
transaction. In this case, the journals associated with the
IMCU may also be scanned to obtain the correct version of
the data that is stale in the IMCU.

0206 Referring to FIG. 6, assume that column vector 220
has the current version of all values from column c1 of table
200 as of time T1. However, at time T3, R3C1 was changed
from X to Y. For R3C1, column vector 220 has the old value
X, while journal 602 has the new value Y. Thus, when a table
scan with a snapshot time of T5 uses IMCU 600 as a source
for any of its data, both the compressed MF data in IMCU 600
and the global journal 602 of IMCU 600 are scanned.
0207. In addition to scanning the global journal 602, the
private journal of the transaction that is performing the Scanis
also scanned. For example, if the transaction performing the
scan is TX1, then private journal 662 is also scanned.
0208 Thus, any given table scan may involve scanning the
compressed MF data in IMCU 600, scanning global and
private journals (e.g. journals 602 and 662), and scanning the
PF data (some of which may be in cache 106). Each of these
scans can be performed independently and in parallel. Thus,
in response to a query that requests values from columns c1
and c2 of table 200, the database server may, in parallel, (a)
scan column vector 220 for values from c1, (b) scan journal
602 for updated values from c1 (c) scan journal 662 for
updated values of c1, and (d) scan the PF data structures 108
to obtain the values for c2 of table 200.

May 19, 2016

Scanning Operation Example
0209 Referring to FIG.7, it is a block diagram of the steps
performed by a database server in response to a request to
scan a table. The table that is being scanned is split into
segments, where each segment includes a set of extents, and
each extent includes a set of blocks. In this context, database
server determines which blocks contain data that needs to be
scanned, and whether to scan the blocks from the PF data, or
to obtain the data from the MF data.
0210 Specifically, at step 700, the database server deter
mines where the scan operation is “memory-enabled'. An
operation is “memory-enabled if the operation is permitted
to obtain some or all of the data it requires from the MF data.
The scan operation may automatically be treated as memory
enabled, for example, if the table that is being scanned (the
“target table') is designated as memory-enabled. A table is
“memory-enabled' if data from the table is to be mirrored in
the MF data. As described elsewhere, data items from a
memory-enabled table may be proactively loaded into
IMCUs, or may be loaded into IMCUs on an on-demand
basis. Even if the target table is designated as memory-en
abled, a Switch may be provided to designate the scan opera
tion as either memory-enabled or not-memory-enabled. A
scan operation may be designated as not-memory-enabled to
force the scan to be executed against only the PF data.
0211. According to one embodiment, the memory-en
abled designation may be made at any of a number of levels of
granularity. For example, the designation may be made on a
per-table basis, a per-partition basis, a per-segment basis, or a
per-extent basis. For the purpose of illustration, it shall be
assumed that the memory-enabled designation is made at the
per-extent basis.
0212 Referring again to FIG. 7, if the scan is not memory
enabled, then control passes to step 780 and the scan is per
formed only against the PF data. After the PF data has been
used to perform the Scan, the scan operation is done (step
782).
0213. On the other hand, if the scan operation is memory
enabled, then control proceeds to step 702. At step 702, the
database server determines the range of blocks that contain
data required by the scan. Once the range has been deter
mined, control passes to step 704. For the purpose of illustra
tion, it shall be assumed that blocks B1 to B500 contain the
data required by the scan operation.
0214 Step 704 is the beginning of a loop that iterates
through each block in the range identified in step 704. If at
step 704 it is determined that there are no more blocks to scan,
then control passes to step 782 and the scan operation is done.
If some blocks have not yet been scanned, than control passes
from step 704 to step 706.
0215. At step 706, the database server determines the next
block, from the range identified in step 702, to scan. At step
708, it is determined whether the address of the block selected
in step 706 maps to an IMCU. If the address maps to an
IMCU, then the IMCU stores MF versions of at least some
data items from the segment. If the IMCU stores MF versions
of data items from the segment, then control passes to step
710. Otherwise, control passes to step 712, where the segment
that includes the block is obtained from the PF data.
0216. In one embodiment, upon obtaining the PF version
of a segment that is mapped to an IMCU, the database server
converts the segment into the in-memory format, and stores
the MF data thus produced in the IMCU. Such an embodi
ment employs on-demand loading, which is described in

US 2016/0140206A1

greater detail hereafter. The conversion and loading of the
data into the IMCU may take some time. Therefore, at step
714, the database server determines whether to wait for the
data from the segment to be converted and loaded. If the
database determines to wait, then the database server waits,
and control passes to step 708 when the data from the segment
has been converted and loaded into the IMCU. If the database
server determines not to wait, the data items are obtained from
the PF data (step 720), and control returns to step 704.
0217. As mentioned above, control passes to step 710
when it is determined that the address of the block maps to an
IMCU. When the address of the block maps to an IMCU, the
IMCU contains an MF version of at least some of the data
items in the block. However, the versions of the data items
that are contained in the IMCU are not necessarily valid
relative to the snapshot time of the scan. Therefore, at step
710, it is determined whether the version of those data items
in the IMCU is valid for the transaction that is executing the
Scan. In one embodiment, determining whether the data in the
IMCU is valid involves generating a delete vector for the scan
operation based on the Snapshot time associated with the scan
operation, the changed-row bitmap of the IMCU, and the
record of bit changes for the IMCU. As described above, the
delete vector is a snapshot-specific bitmap where each set bit
indicates that the row corresponding to the bit is invalid
relative to the snapshot time.
0218 If, at step 710, it is determined that no data items for
the current block are valid in the IMCU, control passes to step
716 where data items are obtained from the PF data until the
end of the current extent. Then control passes back to step
704. In some situations, even though no data items for the
current block are valid in the IMCU, the database server may
not immediately attempt to obtain the PF data from disk.
Instead, the database server may attempt to retrieve the PF
data only after reaching the end of the current extent.
0219. If the IMCU has valid versions for at least some of
the items, then control passes to step 722. At step 722, the data
items for which the IMCU has valid versions are fetched from
the IMCU. The data items for which the IMCU does not have
valid versions are fetched either from entries in the global
journal of the IMCU, or from the PF data. As explained
elsewhere, various factors may affect the selection of the
source from which to obtain data items. Such factors may
include, for example, whether the PF disk block that stores the
correct version of the data items currently resides in cache. It
is possible that only a Subset of the data in a segment is
mapped to an IMCU. For example, it may be that only a subset
of a table's columns are mapped to an IMCU. Under these
circumstances, any data items in the segment that are required
by the scan but not mapped to the IMCU must be obtained
from the PF data.

0220. If the private journal of the transaction performing
the scan has updated versions of any of the data obtained from
the IMCU or the global journal, those updated versions are
provided in place of any version otherwise obtained. This
ensures that the scanning transaction sees its own changes,
even though those changes have not been committed.
0221 Even when the delete vector indicates that the
IMCU has valid data for all rows, the global journal is
checked to identify rows that were inserted after the IMCU
was created. If the journal does not contain the actual data
items for those rows, then the rows are retrieved from the PF
data. Similarly, the private journal of the transaction is

May 19, 2016

checked for rows newly inserted by the transaction, and for
data items that have been changed by the transaction.
0222. After fetching all necessary data items, control
passes from step 722 back to step 704. At step 704, the loop is
repeated until data items required by the scan have been
obtained, either from an IMCU, from journal entries, or from
the PF data.

When to Create the MF Data

0223 Before MF data may be used to satisfy a query, or to
improve performance of a query whose results are ultimately
obtained from the PF data, the MF data must be present in
volatile memory. Unlike cache 106, mirror format data is not
simply a copy of the data that is stored on persistent storage
110. Rather, because the mirror format is not based on the
persistent format, volatile memory 102 is initially populated
by (a) reading the PF data from persistent storage 110 and (b)
converting the PF data thus obtained to the MF format.
0224. The amount of overhead that is required to perform
the PF-to-MF conversion will vary from situation to situation,
based on how different the mirror format is from the persistent
format. For example, if the persistent format is row-major
disk blocks that have been compressed one way, and the
mirror format is column vectors that are compressed another
way, the amount of overhead required to perform the conver
sion may be extensive.
0225. The decision about when to create the MF data may
be based on a variety of factors. For example, if sufficient time
is available at system start-up, all of the PF data that has been
selected for mirroring may be pre-loaded into volatile
memory 102 on startup. As mentioned above, loading the MF
data involves reading the corresponding PF data from persis
tent storage 110 and then converting that PF data into the
mirror format.

Pre-Loading the MF Data
0226. In one embodiment, the MF data is pre-loaded into
Volatile memory at database system start up. The pre-loading
may be performed, for example, by background processes
before any database operation is executed against the
memory-enabled data structures that contain the data items
that will be mirrored by the MF data.
0227. The MF data may be created one-IMCU at a time. In
multi-instance environment, durably stored metadata may be
used to determine which MF data is pre-loaded into which
database instance. Such metadata may include, for example,
a MF-data-to-IMCU mapping and an IMCU-to-instance
mapping.
0228. In a simple example, the MF-data-to-IMCU map
ping may indicate that IMCU 402 is to store the column
vector 220 for c1, and that IMCU 404 is to store the column
vector 222 of column c3. The IMCU-to-instance mapping
may indicate that IMCU 402 is to be loaded into the volatile
memory 502 of instance 1, while IMCU 404 is to be loaded
into the volatile memory 504 of instance 2. Based on these
mappings, the MF data would be pre-loaded into volatile
memory in the manner illustrated in FIG. 5b.

On-Demand Loading of MF Data
0229 Rather than simply pre-load the MF data, some or all
of the MF data may be generated at the time that the corre
sponding PF data is accessed by a database operation. For
example, assume that database instance 1 is assigned to host

US 2016/0140206A1

the column vectors for columns c1 and c3 of table 200. Rather
than construct and load those column vectors on start-up,
database instance 1 may initially generate no MF data.
Instead, the database instance 1 may wait until a database
command requires a scan of table 200. Because no MF data
has been created yet, the scan is performed based entirely on
the PF data. During that scan, the values needed to construct
the column vectors for c1 and c2 will be accessed. Therefore,
the column vectors for c1 and c2 may be built at that time
without incurring any additional disk accesses.
0230. On-demand loading of MF data may be used in
conjunction with pre-loading. For example, some of the MF
data that is to be hosted on instance 1 may be created at the
time instance 1 is started. Other portions of the MF data may
be constructed at the time the data is accessed by queries.
0231. In one embodiment, users may set configuration
options to indicate which MF data to pre-load, and which MF
data to load on-demand. In an alternative embodiment, the
database server automatically determines which portions of
the MF data are pre-loaded and which are loaded on-demand.
In general, the more frequently a data item is used, the more
likely the database server will automatically pre-load the data
item into MF data so that even the first database operation that
requires the data item has the option of obtaining the data
from the MF data.

Persistent Storage of IMCU Images

0232. As mentioned above, the MF data may be created on
start-up, on-demand, or any combination thereof. In one
embodiment, images of IMCUs may be periodically stored to
disk. Such persistently-stored images may be used to re
populate volatile memory 102 with MF data after a crash. The
image of any given IMCU will be current as of a “checkpoint
time', which may be when the IMCU image was persistently
stored. However, that checkpoint time may be before the time
that the crash occurred. Consequently, between the check
point time of an IMCU image and the time of the crash,
additional changes may have been made to the IMCU. Since
those changes are not reflected in the stored image, the IMCU
image may be stale.
0233. To use an otherwise stale IMCU image, the IMCU
image may first be loaded into volatile memory. The IMCU
data thus loaded may be usable, in conjunction with durably
stored undo information, for database commands that have
snapshot times before the checkpoint time associated with the
IMCU image. To be usable with database commands that
have Snapshot times after the checkpoint time, redo informa
tion that was durably stored for the associated PF data prior to
the crash may be used to populate the stale journals of the
IMCU image with journal entries for the changes that
occurred after the checkpoint time of the IMCU.
0234 Depending on how many changes were made after
the checkpoint time and before the crash, reconstructing an
IMCU using a stale persistently stored image of the IMCU
may consume significantly less overhead than completely
re-generating the IMCU data from the PF data.

Selecting which PF Data to Mirror
0235. The decision of which PF data to mirror, and when
to load it, may be based on a variety of factors. For example,
if a system has an enormous about of volatile memory 102,
and a relatively small database, it may be desirable to mirror
the entire database. Thus, all PF data would also be mirrored

May 19, 2016

in the MF data. On the other hand, if there is a relatively small
amount of volatile memory 102 relative to the size of the
database, then it may be optimal to only mirror a very Small
fraction of the database.
0236 Typically, when not all of the database is to be mir
rored, the portion that is selected to be mirrored is based on
which portion will most improve overall performance of the
system. Typically, mirroring data that is used frequently will
provide more benefit than mirroring data that is used less
frequently. Thus, if one table, one column of a table, or one
partition of a table is access more frequently than other data in
the database, that table, column or partition may be selected to
be mirrored in volatile memory 102. The selection of which
portions of a database to mirror may be made at any level of
granularity. For example, the selection may be made on a
per-table basis, a per-column basis, a per extent basis, a per
segment basis, a per-table-partition basis, etc.

Self-Verification

0237. In systems that maintain MF data in addition to the
PF data, multiple sources of the same data are available to
process Some queries. In the foregoing sections, it has been
explained that when multiple sources of the same data are
available, a database server may select from among the pos
sible sources based on which source will result in the most
efficient processing of the requested database operation.
0238. However, rather than select one of the possible
Sources, a database server may alternatively execute the data
base operation, in parallel, against each of the two or more
Sources. For example, a query that selects data from column
c1 of table 200 may be answered with MF data from column
vector 220, or with PF data from PF data structures 108.
Rather than select one or the other, the database server can
execute the operation, separately and independently, against
both sources. Once finished, the results produced by the vari
ous sources may be compared against each other. If the result
sets do not match, then an error occurred during the process
ing of at least one of the operations.
0239. The database server may take any number of pos
sible actions when such an error is detected. For example, in
one embodiment, an alert is generated to indicate the occur
rence of the error. The alert may indicate what the discrepancy
is between the two results sets. Instead of or in addition to
generating an alert, the database server may perform addi
tional debugging operations, including but not limited to re
executing the operation turning off or on different database
features to determine the feature whose use produces the
eO.

0240. When the results sets match, the user may have a
greater degree of confidence that the results of the operation
are accurate. Thus, parallel execution, by the same database
instance, of the same operation against multiple sources of the
same data (the MF data and the PF data) provides an on-the
fly "double check” to verify the result set of the operation.
0241 Typically, the execution of the database operations
against the two sources may be done in parallel, so that
performing self-verification has little performance impact on
the operation relative to performing the operation only on the
PF data. According to one embodiment, self-verification may
be enabled at a highly granular level. For example, self
Verification may be enabled on a per-session basis. Thus, the
additional overhead incurred by self-verification may be
incurred in only those sessions a user wishes to “test” for
accuracy.

US 2016/0140206A1

0242 Self-verification operations may also be initiated by
the system itself. For example, rather than receive a request
from an application to execute a database command, the
database system may be configured to identify and select
“critical database commands from those that have already
been executed by the database system. During periods of low
use, the database server may execute one or more of those
selected database commands in the background. The selected
database commands are executed in self-verification mode to
concurrently produce multiple copies of the result set, one
based on the MF data and one based on the PF data. The result
sets are compared to ensure that the result sets are identical. If
not identical, an error message may be sent to a user and/or
recorded in a log. If identical, data may be stored to indicate
that the selected database command passed a self-verification
test. After passing a threshold number of tests (where the
threshold may be 1), the database server may be configured to
cease to select the database command for automated back
ground self-verification.
0243 In one embodiment, rather than simply generate an
alert when a self-verification test fails, the database command
is repeatedly retested under different conditions. To ensure
that the repeats of the operation are as similar as possible to
the original operation that produced the self-verification
error, the same database operation may be executed with the
same Snapshot time as was used during the session that
encountered the error.
0244. In many database systems, numerous advanced
query processing features may have virtual “on-off
switches, where the default state is “on”. During the repeats of
a previously-failed self-verification test, those features may
be selectively turned on and off. If the self-verification passes
when a particular feature is turned off, and fails when the
same particular is turned on, then there is a likelihood that the
error is related to that feature.
0245 Having determined that use of a particular feature
causes a self-verification problem with a particular database
operation, a quarantine may be enforced. The scope of the
quarantine may vary. For example, the database server may
automatically turn off the particular feature for all future
database commands, for all future database commands that
target the same data as the database operation that encoun
tered the error, or for only future executions of the specific
database command that encountered the error.

Hardware Overview

0246 According to one embodiment, the techniques
described herein are implemented by one or more special
purpose computing devices. The special-purpose computing
devices may be hard-wired to perform the techniques, or may
include digital electronic devices such as one or more appli
cation-specific integrated circuits (ASICs) or field program
mable gate arrays (FPGAs) that are persistently programmed
to perform the techniques, or may include one or more gen
eral purpose hardware processors programmed to perform the
techniques pursuant to program instructions in firmware,
memory, other storage, or a combination. Such special-pur
pose computing devices may also combine custom hard
wired logic, ASICs, or FPGAs with custom programming to
accomplish the techniques. The special-purpose computing
devices may be desktop computer systems, portable com
puter systems, handheld devices, networking devices or any
other device that incorporates hard-wired and/or program
logic to implement the techniques.

May 19, 2016

0247 For example, FIG. 9 is a block diagram that illus
trates a computer system 900 upon which an embodiment of
the invention may be implemented. Computer system 900
includes a bus 902 or other communication mechanism for
communicating information, and a hardware processor 904
coupled with bus 902 for processing information. Hardware
processor 904 may be, for example, a general purpose micro
processor.
0248 Computer system 900 also includes a main memory
906, such as a random access memory (RAM) or other
dynamic storage device, coupled to bus 902 for storing infor
mation and instructions to be executed by processor 904.
Main memory 906 also may be used for storing temporary
variables or other intermediate information during execution
of instructions to be executed by processor 904. Such instruc
tions, when stored in non-transitory storage media accessible
to processor 904, render computer system 900 into a special
purpose machine that is customized to perform the operations
specified in the instructions.
0249 Computer system 900 further includes a read only
memory (ROM) 908 or other static storage device coupled to
bus 902 for storing static information and instructions for
processor 904. A storage device 910, such as a magnetic disk,
optical disk, or Solid-state drive is provided and coupled to
bus 902 for storing information and instructions.
(0250 Computer system 900 may be coupled via bus 902 to
a display 912, such as a cathode ray tube (CRT), for display
ing information to a computer user. An input device 914.
including alphanumeric and other keys, is coupled to bus 902
for communicating information and command selections to
processor 904. Another type of user input device is cursor
control 916, such as a mouse, a trackball, or cursor direction
keys for communicating direction information and command
selections to processor 904 and for controlling cursor move
ment on display 912. This input device typically has two
degrees of freedom in two axes, a first axis (e.g., X) and a
second axis (e.g., y), that allows the device to specify posi
tions in a plane.
0251 Computer system 900 may implement the tech
niques described herein using customized hard-wired logic,
one or more ASICs or FPGAs, firmware and/or program logic
which in combination with the computer system causes or
programs computer system 900 to be a special-purpose
machine. According to one embodiment, the techniques
herein are performed by computer system 900 in response to
processor 904 executing one or more sequences of one or
more instructions contained in main memory 906. Such
instructions may be read into main memory 906 from another
storage medium, such as storage device 910. Execution of the
sequences of instructions contained in main memory 906
causes processor 904 to perform the process steps described
herein. In alternative embodiments, hard-wired circuitry may
be used in place of or in combination with software instruc
tions.

0252. The term “storage media' as used herein refers to
any non-transitory media that store data and/or instructions
that cause a machine to operate in a specific fashion. Such
storage media may comprise non-volatile media and/or Vola
tile media. Non-volatile media includes, for example, optical
disks, magnetic disks, or Solid-state drives, such as storage
device 910. Volatile media includes dynamic memory, such as
main memory 906. Common forms of storage media include,
for example, a floppy disk, a flexible disk, hard disk, solid
state drive, magnetic tape, or any other magnetic data storage

US 2016/0140206A1

medium, a CD-ROM, any other optical data storage medium,
any physical medium with patterns of holes, a RAM, a
PROM, and EPROM, a FLASH-EPROM, NVRAM, any
other memory chip or cartridge.
0253 Storage media is distinct from but may be used in
conjunction with transmission media. Transmission media
participates in transferring information between storage
media. For example, transmission media includes coaxial
cables, copper wire and fiber optics, including the wires that
comprise bus 902. Transmission media can also take the form
of acoustic or light waves, such as those generated during
radio-wave and infra-red data communications.

0254 Various forms of media may be involved in carrying
one or more sequences of one or more instructions to proces
sor 904 for execution. For example, the instructions may
initially be carried on a magnetic disk or solid-state drive of a
remote computer. The remote computer can load the instruc
tions into its dynamic memory and send the instructions over
a telephone line using a modem. A modem local to computer
system 900 can receive the data on the telephone line and use
an infra-red transmitter to convert the data to an infra-red
signal. An infra-red detector can receive the data carried in the
infra-red signal and appropriate circuitry can place the data
on bus 902. Bus 902 carries the data to main memory 906,
from which processor 904 retrieves and executes the instruc
tions. The instructions received by main memory 906 may
optionally be stored on storage device 910 either before or
after execution by processor 904.
0255 Computer system 900 also includes a communica
tion interface 918 coupled to bus 902. Communication inter
face 918 provides a two-way data communication coupling to
a network link 920 that is connected to a local network 922.
For example, communication interface 918 may be an inte
grated services digital network (ISDN) card, cable modem,
satellite modem, or a modem to provide a data communica
tion connection to a corresponding type of telephone line. As
another example, communication interface 918 may be a
local area network (LAN) card to provide a data communi
cation connection to a compatible LAN. Wireless links may
also be implemented. In any such implementation, commu
nication interface 918 sends and receives electrical, electro
magnetic or optical signals that carry digital data streams
representing various types of information.
0256 Network link 920 typically provides data commu
nication through one or more networks to other data devices.
For example, network link 920 may provide a connection
through local network 922 to a host computer 924 or to data
equipment operated by an Internet Service Provider (ISP)
926. ISP 926 in turn provides data communication services
through the world wide packet data communication network
now commonly referred to as the “Internet 928. Local net
work 922 and Internet 928 both use electrical, electromag
netic or optical signals that carry digital data streams. The
signals through the various networks and the signals on net
work link 920 and through communication interface 918,
which carry the digital data to and from computer system 900,
are example forms of transmission media.
0257 Computer system 900 can send messages and
receive data, including program code, through the network
(s), network link920 and communication interface 918. In the
Internet example, a server 930 might transmit a requested
code for an application program through Internet 928, ISP
926, local network 922 and communication interface 918.

May 19, 2016

0258. The received code may be executed by processor
904 as it is received, and/or stored in storage device 910, or
other non-volatile storage for later execution.
0259. In the foregoing specification, embodiments of the
invention have been described with reference to numerous
specific details that may vary from implementation to imple
mentation. The specification and drawings are, accordingly,
to be regarded in an illustrative rather than a restrictive sense.
The sole and exclusive indicator of the scope of the invention,
and what is intended by the applicants to be the scope of the
invention, is the literal and equivalent scope of the set of
claims that issue from this application, in the specific form in
which such claims issue, including any Subsequent correc
tion.
What is claimed is:
1. A method comprising:
maintaining, by a database server, at least two copies of

each item in a particular set of data;
wherein, for each item in the particular set of data, the at

least two copies include:
a first copy, stored on persistent storage, in a persistent

format, and
a second copy, stored in Volatile memory, in a mirror

format;
wherein the particular set of data includes a first item and a

second item;
when a particular transaction performs a first operation that

makes a change to the first item, the database server:
making the change to a copy of the first item that is in the

persistent format; and
storing, in an in-memory journal, an entry that indicates

the change without updating any copy of the first item
that is in the mirror format;

after the particular transaction performs the change, when
the particular transaction performs a second operation
that involves the first item and the second item, the
database server:
obtaining a copy of the first item, which is a current

version of the first item, based on the entry in the
in-memory journal; and

obtaining a copy of the second item, which is a current
version of the second item, from volatile memory in
the mirror format.

2. The method of claim 1, wherein:
the in-memory journal is a private journal; and
the method further comprises, upon commit of the particu

lar transaction, moving one or more entries, from the
in-memory journal, to a global journal.

3. The method of claim 2, further comprising:
after commit of the particular transaction, a second trans

action obtaining a copy of the first item, that is the
current version of the first item, based on a particular
entry in the global journal;

wherein the second transaction is distinct from the particu
lar transaction.

4. The method of claim 1, wherein:
the second operation involves a third item; and
the method further comprises, when the particular transac

tion performs the second operation that involves the first
item and the second item, the database server obtaining
a copy of the third item, which is a current version of the
third item, from persistent format data.

US 2016/0140206A1
18

5. The method of claim 4, wherein obtaining the copy of the
third item from persistent format data comprises obtaining a
cached copy of the third item from volatile memory.

6. The method of claim 1, wherein making the change to
the copy of the first item that is in the persistent format
comprises making the change to a cached copy of the first
item stored in volatile memory.

7. A method comprising:
maintaining, by a database server, at least two copies of

each item in a particular set of data;
wherein, for each item in the particular set of data, the at

least two copies include:
a copy, stored on persistent storage, in a persistent for

mat; and
a copy, Stored in Volatile memory, in a mirror format;

maintaining an in-memory journal with particular entries
that reflect committed changes, wherein each change of
the committed changes:
was made to a copy of an item, in the particular set of

data, in the persistent format; and
was not made to any copy of the item, in the particular set

of data, in the mirror format;
purging a portion of the particular entries from the in
memory journal;

wherein the portion of the particular entries includes infor
mation for one or more changes to one or more items of
the particular set of data;

wherein purging the portion of the particular entries from
the in-memory journal is performed without having
applied the one or more changes to any copies, of the one
or more items, in the mirror format;

after purging the portion of the particular entries from the
in-memory journal, providing, in response to a query, a
copy of a particular item, of the particular set of data, in
the mirror format.

8. The method of claim 7, wherein purging the portion of
the particular entries from the in-memory journal is per
formed based, at least in part, on memory availability within
the volatile memory.

9. The method of claim 7 wherein:
the mirror format copies of items, in the particular set of

data, belong to a set of mirror format data;
the set of mirror format data reflects values that were cur

rent as of a particular time;
the portion of the particular entries includes entries for

changes committed between a first time and the particu
lar time;

the first time precedes the particular time; and
the method further comprises:

before purging the portion of the particular entries from
the in-memory journal, using the in-memory journal
in conjunction with the set of mirror format data as a
Source for data items for transactions with Snapshot
times between the first time and the particular time;
and

after purging the portion of the particular entries from
the in-memory journal, using persistent format data,
that includes persistent format copies of items in the
particular set of data, as a source for data items for
transactions with snapshot times between the first
time and the particular time.

10. The method of claim 7 wherein:
the mirror format copies of items, in the particular set of

data, belong to a set of mirror format data;

May 19, 2016

the set of mirror format data reflects values that were cur
rent as of a particular time;

the portion of the particular entries includes entries for
changes committed between a first time and a second
time;

the particular time precedes both the first time and the
second time; and

the first time precedes the second time;
the method further comprises:

before purging the portion of the particular entries from
the in-memory journal, using the in-memory journal
in conjunction with the set of mirror format data as a
Source for data items for transactions with Snapshot
times between the particular time and the second
time; and

after purging the portion of the particular entries from
the in-memory journal:
using the in-memory journal in conjunction with the

set of mirror format data as a source for data items
for transactions with snapshot times between the
particular time and the first time, and

using persistent format data, that includes persistent
format copies of items in the particular set of data,
as a source for data items for transactions with
Snapshot times between the first time and the sec
ond time.

11. The method of claim 10 further comprising after purg
ing the portion of the particular entries from the in-memory
journal:

identifying, based on a delete vector for a particular trans
action with a Snapshot time of a third time, one or more
particular items that have not changed between the first
time and the third time;

wherein the third time is before the second time and the
third time is after the first time;

in response to identifying the one or more particular items
that have not changed between the first time and the third
time, using the in-memory journal in conjunction with
the set of mirror format data as a source, for the one or
more particular items, for the particular transaction.

12. One or more non-transitory computer-readable media
storing one or more sequences of instructions which, when
executed by one or more processors, cause:

maintaining, by a database server, at least two copies of
each item in a particular set of data;

wherein, for each item in the particular set of data, the at
least two copies include:
a first copy, stored on persistent storage, in a persistent

format, and
a second copy, stored in Volatile memory, in a mirror

format;
wherein the particular set of data includes a first item and a

second item;
when a particular transaction performs a first operation that

makes a change to the first item, the database server:
making the change to a copy of the first item that is in the

persistent format; and
storing, in an in-memory journal, an entry that indicates

the change without updating any copy of the first item
that is in the mirror format;

after the particular transaction performs the change, when
the particular transaction performs a second operation
that involves the first item and the second item, the
database server:

US 2016/0140206A1

obtaining a copy of the first item, which is a current
version of the first item, based on the entry in the
in-memory journal; and

obtaining a copy of the second item, which is a current
version of the second item, from volatile memory in
the mirror format.

13. The one or more non-transitory computer-readable
media of claim 12, wherein:

the in-memory journal is a private journal; and
the one or more sequences of instructions further comprise

instructions which, when executed by one or more pro
cessors cause, upon commit of the particular transaction,
moving one or more entries, from the in-memory jour
nal, to a global journal.

14. The one or more non-transitory computer-readable
media of claim 13, wherein the one or more sequences of
instructions further comprise instructions which, when
executed by one or more processors cause:

after commit of the particular transaction, a second trans
action obtaining a copy of the first item, that is the
current version of the first item, based on a particular
entry in the global journal;

wherein the second transaction is distinct from the particu
lar transaction.

15. The one or more non-transitory computer-readable
media of claim 12, wherein:

the second operation involves a third item; and
the one or more sequences of instructions further comprise

instructions which, when executed by one or more pro
cessors cause, when the particular transaction performs
the second operation that involves the first item and the
second item, the database server obtaining a copy of the
third item, which is a current version of the third item,
from persistent format data.

16. The one or more non-transitory computer-readable
media of claim 15, wherein obtaining the copy of the third
item from persistent format data comprises obtaining a
cached copy of the third item from volatile memory.

17. The one or more non-transitory computer-readable
media of claim 12, wherein making the change to the copy of
the first item that is in the persistent format comprises making
the change to a cached copy of the first item stored in Volatile
memory.

18. One or more non-transitory computer-readable media
storing one or more sequences of instructions which, when
executed by one or more processors, cause:

maintaining, by a database server, at least two copies of
each item in a particular set of data;

wherein, for each item in the particular set of data, the at
least two copies include:
a copy, stored on persistent storage, in a persistent for

mat; and
a copy, Stored in Volatile memory, in a mirror format;

maintaining an in-memory journal with particular entries
that reflect committed changes, wherein each change of
the committed changes:
was made to a copy of an item, in the particular set of

data, in the persistent format; and
was not made to any copy of the item, in the particular set

of data, in the mirror format;
purging a portion of the particular entries from the in
memory journal;

May 19, 2016

wherein the portion of the particular entries includes infor
mation for one or more changes to one or more items of
the particular set of data;

wherein purging the portion of the particular entries from
the in-memory journal is performed without having
applied the one or more changes to any copies, of the one
or more items, in the mirror format;

after purging the portion of the particular entries from the
in-memory journal, providing, in response to a query, a
copy of a particular item, of the particular set of data, in
the mirror format.

19. The one or more non-transitory computer-readable
media of claim 18, wherein purging the portion of the par
ticular entries from the in-memory journal is performed
based, at least in part, on memory availability within the
Volatile memory.

20. The one or more non-transitory computer-readable
media of claim 18 wherein:

the mirror format copies of items, in the particular set of
data, belong to a set of mirror format data;

the set of mirror format data reflects values that were cur
rent as of a particular time;

the portion of the particular entries includes entries for
changes committed between a first time and the particu
lar time;

the first time precedes the particular time; and
the one or more sequences of instructions further comprise

instructions which, when executed by one or more pro
CSSOS CalS.

before purging the portion of the particular entries from
the in-memory journal, using the in-memory journal
in conjunction with the set of mirror format data as a
Source for data items for transactions with Snapshot
times between the first time and the particular time;
and

after purging the portion of the particular entries from
the in-memory journal, using persistent format data,
that includes persistent format copies of items in the
particular set of data, as a source for data items for
transactions with snapshot times between the first
time and the particular time.

21. The one or more non-transitory computer-readable
media of claim 18 wherein:

the mirror format copies of items, in the particular set of
data, belong to a set of mirror format data;

the set of mirror format data reflects values that were cur
rent as of a particular time;

the portion of the particular entries includes entries for
changes committed between a first time and a second
time;

the particular time precedes both the first time and the
second time; and

the first time precedes the second time;
the one or more sequences of instructions further comprise

instructions which, when executed by one or more pro
CSSOS CalS.

before purging the portion of the particular entries from
the in-memory journal, using the in-memory journal
in conjunction with the set of mirror format data as a
Source for data items for transactions with Snapshot
times between the particular time and the second
time; and

after purging the portion of the particular entries from
the in-memory journal:

US 2016/0140206A1 May 19, 2016
20

using the in-memory journal in conjunction with the
set of mirror format data as a source for data items
for transactions with snapshot times between the
particular time and the first time, and

using persistent format data, that includes persistent
format copies of items in the particular set of data,
as a source for data items for transactions with
Snapshot times between the first time and the sec
ond time.

22. The one or more non-transitory computer-readable
media of claim 21 wherein the one or more sequences of
instructions further comprise instructions which, when
executed by one or more processors cause, after purging the
portion of the particular entries from the in-memory journal:

identifying, based on a delete vector for a particular trans
action with a Snapshot time of a third time, one or more
particular items that have not changed between the first
time and the third time;

wherein the third time is before the second time and the
third time is after the first time;

in response to identifying the one or more particular items
that have not changed between the first time and the third
time, using the in-memory journal in conjunction with
the set of mirror format data as a source, for the one or
more particular items, for the particular transaction.

k k k k k

