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(57) ABSTRACT 
Techniques are provided for maintaining data persistently in 
one format, but making that data available to a database server 
in more than one format. For example, one of the formats in 
which the data is made available for query processing is based 
on the on-disk format, while another of the formats in which 
the data is made available for query processing is independent 
of the on-disk format. Data that is in the format that is inde 
pendent of the disk format may be maintained exclusively in 
volatile memory to reduce the overhead associated with keep 
ing the data in Sync with the on-disk format copies of the data. 
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MECHANISM TO RUN OLTP WORKLOAD 
ON IN-MEMORY DATABASE UNDER 

MEMORY PRESSURE 

BENEFIT CLAIM 

0001. This application claims the benefit, as a Continua 
tion, of prior U.S. patent application Ser. No. 14/337,182 
(Attorney Docket No. 50277-4194) entitled “Mechanism To 
Run OLTP Workload On In-Memory Database Under 
Memory Pressure', filed Jul. 21, 2014, the contents of which 
are hereby incorporated by reference for all purposes as if 
fully set forth herein. U.S. patent application Ser. No. 14/337, 
182 claims the benefit of 
0002 Provisional Applin. 61/955,574, filed Mar. 19, 2014, 
and 
0003 Provisional Applin. 61/880,852, filed Sep. 21, 2013, 
the entire contents of each of which is hereby incorporated by 
reference for all purposes as if fully set forth herein. 
0004. The Applicant(s) hereby rescind any disclaimer of 
claim scope in the parent application(s) or the prosecution 
history thereof and advise the USPTO that the claims in this 
application may be broader than any claim in the parent 
application(s). 

FIELD OF THE INVENTION 

0005. The present invention relates to database systems 
and, more specifically, to mirroring, in memory in one format, 
data that resides on disk in another format. 

BACKGROUND 

0006 Given that main memory is becoming cheaper and 
larger, new data formats are needed to speed query processing 
when data is stored in memory. Existing formats are designed 
for disk and, when stored in memory (e.g. in the buffer cache), 
the formats are not optimal for queries. For example, it is 
common for database systems to store data persistently in 
“disk blocks'. Typically, within each disk block, data is 
arranged in row-major format. That is, the values of all col 
umns of one row are followed by the values of all columns for 
the next row. 
0007 To speed up performance, some of the disk blocks 
may be cached in a “buffer cache” within volatile memory. 
Accessing the data from Volatile memory is significantly 
faster than accessing the data from disk. However, even 
within the volatile memory, the data is still in the format of 
row-major disk blocks, which is not optimal for certain types 
of database operations. 
0008. In contrast to row-major disk blocks, columnar for 
mats have many attractive advantages for query processing in 
memory, Such as cache locality and compression. Conse 
quently, Some database servers now employ new table types 
for persistently storing data in column-major formats. In col 
umn-major format, the data may be read into Volatile memory 
where it can be used to process certain queries more effi 
ciently than would be possible if the data were stored in 
row-major disk blocks. 
0009. Unfortunately, the task of migrating existing data 
bases that persistently store data in row-major disk blocks to 
use of the new column-majortable types is not trivial. Further, 
after performing Such a migration, query processing will be 
less efficient for the class of queries that can be performed 
more efficiently on data that is stored in row-major disk 
blocks. 
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0010. As an alternative, some database systems keep the 
data in row-major disk blocks, but employ column store 
indexes. Column store indexes do not replace existing tables, 
and therefore do not require the entire database to be migrated 
to new table structures. Rather, column store indexes act more 
as a traditional secondary index. For example, Such column 
store indexes are still persisted to disk. Unfortunately, a sig 
nificant amount of overhead may be required to maintain Such 
indexes as updates are performed on the data indexed thereby. 
0011. As yet another alternative, one may replicate a data 
base, where a first replica of the database stores the data in 
conventional row-major disk blocks, while a second replica 
stores the data in a column-major format. When a database is 
replicated in this manner, queries that are most efficiently 
processed using row-major data may be routed to the first 
replica, and queries that are most efficiently processed using 
column-major data may be routed to the second replica. 
0012. Unfortunately, this technique does not work well 
due to the lag that occurs between replicated systems. Spe 
cifically, at any givenpoint in time, Some changes made at one 
of the replicas will not yet have been applied to the other 
replica. Consequently, the lag inherent in the replication 
mechanism may result in unpredictable artifacts and, possi 
bly, incorrect results. 
0013 Further, each transaction generally needs to see its 
own changes, even before those changes have been commit 
ted. However, database changes are not typically replicated 
until the changes have been committed. Thus, a transaction 
may be limited to using the replica at which the transactions 
uncommitted changes were made, even though the format of 
the data at the other replica may be more efficient for some 
operations. 
0014. The approaches described in this section are 
approaches that could be pursued, but not necessarily 
approaches that have been previously conceived or pursued. 
Therefore, unless otherwise indicated, it should not be 
assumed that any of the approaches described in this section 
qualify as prior art merely by virtue of their inclusion in this 
section. 

BRIEF DESCRIPTION OF THE DRAWINGS 

(0015. In the drawings: 
0016 FIG. 1 is a block diagram of a database system that 
concurrently maintains mirror format data in Volatile memory 
and persistent format data on persistent storage, according to 
an embodiment; 
0017 FIG. 2a is a block diagram of a table used for 
examples; 
0018 FIG.2b is a block diagram of how data items for a 
table may be concurrently maintained in two formats, one of 
which is an in-memory format, according to an embodiment; 
0019 FIG. 3 is a block diagram that illustrates journals 
stored in volatile memory in conjunction with mirror format 
data, according to an embodiment; 
0020 FIG. 4 is a block diagram illustrating how the data 
from a single table may be divided between IMCUs based on 
row ranges, according to an embodiment; 
0021 FIG. 5a is a block diagram illustrating how different 
database server instances may be assigned to manage differ 
ent sets of MF data, where the sets are based on row ranges; 
0022 FIG.5b is a block diagram illustrating how different 
database server instances may be assigned to manage differ 
ent sets of MF data, where the sets are based on columns; 
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0023 FIG. 6 is a block diagram illustrating an SMU that 
stores a changed-row bitmap and a record of bit changes, 
according to an embodiment; 
0024 FIG. 7 is a flowchart illustrating steps for perform 
ing a scan operation, according to an embodiment; 
0025 FIG. 8 is a block diagram illustrating a structure for 
implementing a changed-row bitmap, according to an 
embodiment; and 
0026 FIG. 9 is a block diagram illustrating a computer 
system that may be used to implement the techniques 
described herein. 

DETAILED DESCRIPTION 

0027. In the following description, for the purposes of 
explanation, numerous specific details are set forth in order to 
provide a thorough understanding of the present invention. It 
will be apparent, however, that the present invention may be 
practiced without these specific details. In other instances, 
well-known structures and devices are shown in block dia 
gram form in order to avoid unnecessarily obscuring the 
present invention. 

General Overview 

0028. Different data formats have different benefits. 
Therefore, techniques are described herein for maintaining 
data persistently in one format, but making that data available 
to a database server in more than one format. In one embodi 
ment, one of the formats in which the data is made available 
for query processing is based on the on-disk format, while 
another of the formats in which the data is made available for 
query processing is independent of the on-disk format. 
0029. The format that corresponds to the on-disk format is 
referred to hereinas the “persistent format” or “PF. Data that 
is in the persistent format is referred to herein as PF data. An 
in-memory format that is independent of the on-disk format is 
referred to as a “mirror format or “MF. Data that is in the 
mirror format is referred to herein as MF data. For example, 
in one embodiment, the persistent format is row-major disk 
blocks, and the mirror format is a column-major format. 
0030. According to one embodiment, the mirror format is 
completely independent of the persistent format. However, 
the MF data is initially constructed in memory based on the 
persistently stored PF data, not based on any persistent MF 
structures. Since persistent MF structures are not required, 
users of existing databases need not migrate the data or struc 
tures in their existing databases to another format. Thus, a 
conventional database system that uses row-major disk 
blocks may continue to use those disk blocks to persistently 
store its data without performing any data migration, while 
still obtaining the performance benefit that results from hav 
ing a column-major representation of the data available in 
Volatile memory. 
0031 In-memory MF data is maintained transactionally 
consistent with the PF data. The MF data is transactionally 
consistent in that any data items provided to a transaction 
from the MF data will be the same version that would have 
been provided if the data items were provided from the PF 
data. Further, that version reflects all changes that were com 
mitted before the Snapshot time of the transaction, and no 
changes that were committed after the Snapshot time of the 
transaction. Thus, when a transaction, that made a change to 
a data item that is mirrored in the MF data, is committed, the 
change is made visible relative to both the PF data and the MF 
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data. On the other hand, if a transaction that made a change is 
aborted or rolled back, then the change is rolled back relative 
to both the PF data and the MF data. 
0032. In one embodiment, the same transaction manager 
that ensures consistency among the reads and writes of the PF 
data is also used to ensure consistency among the reads and 
writes of the MF data. Because the MF data is kept current in 
a transactionally consistent manner, if the in-memory MF 
data includes the data required by a database operation, then 
the database operation may be satisfied either from the in 
memory MF data, or from the PF data. 
0033. The MF data mirrors data that already exists in the 
PF data. However, while all items in the MF data are mirror 
versions of corresponding items in the PF data (albeit orga 
nized in a different format), not all items in the PF data need 
be mirrored in the MF data. Thus, the MF data may be a subset 
of the PF data. 
0034. Because not all of the PF data is necessarily mir 
rored in the MF data, in Some situations queries may require 
data that can only be satisfied by the PF data. For example, if 
a table has columns A, B and C, and only column A is 
mirrored in the MF data, then a query that requires values 
from column B must obtain those values from the PF data. 
0035 However, even in those circumstances, the MF data 
may still be used to (a) satisfy a portion of the query, and/or 
(b) speed up the retrieval of required data from the PF data. 
For example, the MF data may be used to identify the specific 
rows that must be retrieved from the PF data. 
0036. According to one embodiment, to reduce overhead, 
no on-disk copy of the MF data is maintained. In an alterna 
tive embodiment, a copy of the MF may be stored, but no 
attempt is made to keep the on-disk copy of the MF data in 
sync with updates that are being performed on the PF data. 
Consequently, after a failure, the in-memory MF data must be 
reconstructed based on the persistent copy of the PF data. 
0037. In some embodiments, the MF data is compressed. 
The compression can be performed at various compression 
levels, either specified by the user or based on access patterns. 
0038. While examples shall be given hereafter in which 
the mirror format is columnar, the mirror format may be any 
format, different from the persistent format, that is useful for 
running in-memory queries. For example, in an alternative 
embodiment, the PF format is column-major, while the MF 
format is row-major. Regardless of the particular mirror for 
mat used, the mirror format data is created in memory based 
on existing PF structures (e.g. tables and indexes) without 
causing a change to the format of those structures. 

General Architecture 

0039 FIG. 1 is a block diagram of a database system 
according to one embodiment. Referring to FIG. 1, database 
system 100 includes volatile memory 102 and persistent stor 
age 110. Volatile memory 102 generally represents the ran 
dom access memory used by the database system, and may be 
implemented by any number of memory devices. Typically, 
data stored volatile memory 102 is lost when a failure occurs. 
0040 Persistent storage 110 generally represents any 
number of persistent storage devices, such as magnetic disks, 
FLASH memory, and/or solid state drives. Unlike volatile 
memory 102, data stored on persistent storage 110 is not lost 
when a failure occurs. Consequently, after a failure, the data 
on persistent storage 110 may be used to rebuild the data that 
was lost in volatile memory 102. 
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0041. Within volatile memory 102, a database server 120 
is executing database commands that are submitted to the 
database server by one or more database applications (not 
shown). The data used by those applications is illustrated as 
PF data 112. PF data 112 resides on persistent storage device 
110 in PF data structures 108. The PF structures 108 may be, 
for example, row-major disk blocks. While row-major disk 
blocks are used for the purposes of illustration, the PF struc 
tures may take any form, Such as column-major disk block, 
hybrid compression units, etc. 
0042. The volatile memory 102 further includes a cache 
106 of PF data. Within cache 106, the data is stored in a format 
that is based on the formatin which the data resides within the 
PF data structures 108. For example, if the persistent format is 
row-major disk blocks, then cache 106 may contain cached 
copies of row-major disk blocks. 
0043. On the other hand, MF data 104 is in a format that is 
unrelated to the persistent format. For example, in the case 
where the persistent format is row-major disk blocks, the 
mirror format may be column-major compression units. 
Because the mirror format differs from the persistent format, 
the MF data 104 is produced by performing transformations 
on the PF data. These transformations occur both when vola 
tile memory 102 is initially populated with MF data 104 
(whether at start-up or on-demand), and when volatile 
memory 102 is re-populated with MF data 104 after a failure. 
0044 Significantly, the existence of MF data 104 may be 
transparent to the database applications that Submit database 
commands to the database server that makes use of the MF 
data 104. For example, those same applications, designed to 
interact with database systems that operate exclusively on PF 
data 112, may interact without modification with a database 
server that maintains MF data 104 in addition to the PF data 
112. Further, transparent to those applications, that database 
server may use the MF data 104 to more efficiently process 
Some or all of those database commands. 

The Mirror Format Data 

0045 MF data 104 may mirror all of the PF data 112, or a 
Subset thereof. In one embodiment, a user may specify what 
portion of the PF data 112 is “in-memory enabled'. The 
specification may be made at any level of granularity. For 
example, the specification of what is in-memory enabled may 
be made at least at the following levels of granularity: 

0046 the entire database 
0047 specified tables 
0048 specified columns 
0049 specified row ranges 
0050 specified partitions 
0051 specified segments 
0052 specified extents 
0053 any combination thereof (e.g. specified columns 
and partitions) 

0054 As shall be described hereafter, in-memory enabled 
data is converted to the mirror format and stored as MF data 
104 in volatile memory. Thus, when in-memory enabled data 
is required by a query, the database server has the option of 
providing the data from either the PF data 112 or the MF data 
104. The conversion and loading may occur at the time the 
database is started, or in a lazy or on-demand fashion. Data 
that is not in-memory enabled is not mirrored in the MF data 
104. Consequently, when such data is required by a query, the 
database server does not have the option of obtaining the data 
from the MF data 104. 
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0055 For the purpose of explanation, it shall be assumed 
that PF data structures 108 include the table 200 illustrated in 
FIG. 2A. Table 200 includes three columns c1-c3, and six 
rows r1-ró. While the illustration of table 200 in FIG. 2A 
portrays how the data is logically organized on persistent 
storage 110, the actual format in which the data is physically 
stored may be quite different. 
0056 Specifically, referring to FIG. 2B, it illustrates how 
the data that resides in table 200 may be physically organized 
on persistent storage 110. In the present example, the data for 
table 200 is stored in three row-major disk blocks 202, 204 
and 206. Block 202 stores the values for all columns of row r1, 
followed by the values for all columns of row r2. Block 204 
stores the values for all columns of row r3, followed by the 
values of all columns of row ra. Finally, block 206 stores the 
values of all columns of row r5, followed by the values of all 
columns of row ré. 
0057 Copies of some of those disk blocks may be tempo 
rarily stored in cache 106. In the example illustrated in FIG. 
2B, a cached copy 212 of block 204 resides in cache 106. 
Cache 106 may be managed using any one of a variety of 
cache management techniques, and the embodiments 
described herein are not limited to any particular cache man 
agement technique. In general, such techniques attempt to 
retain in volatile memory 102 copies of the disk blocks that 
are most likely to be requested in the near future. Conse 
quently, when cache 106 runs out of space, cached copies of 
disk blocks that are less likely to be requested are replaced by 
copies of blocks that are more likely to be requested. 
0058. In contrast to the data in cache 106, the mirror for 
mat data 104 is not formatted in a manner that is based on the 
persistent format. In the illustrated example, mirror format 
data 104 includes two column vectors 220 and 222. Each 
column vector stores a contiguous series of values from a 
single column of table 200. In the present example, column 
vector 220 stores values from column 1 of table 200, and 
column vector 222 stores values from column 3 of table 300. 
In this example, the MF data 104 mirrors a subset of the PF 
data because MF data 104 does not include column vectors 
for column 2 of table 200. 

Organization of the MF Data 
0059. According to one embodiment, even though the MF 
data uses a different format than the PF data, the MF data is 
organized in a manner that corresponds to the organization of 
the PF data. For example, on persistent storage 110, the PF 
data may be stored in blocks that reside in extents which, in 
turn, are organized into segments. Under these circum 
stances, within volatile memory 102, the MF data 104 may be 
organized based on the extents and/or segments to which the 
data belongs. Thus, column vector 220 may be divided into 
vector portions, each of which corresponds to a particular 
range of extents and/or segments. 
0060. Within the extents, data is typically ordered by 
rowid. Similarly, in one embodiment, the MF data 104 is 
ordered based on rowid. For example, the values in column 
vector 220 are ordered based on the same rowids that are used 
to order the PF data in blocks 202,204 and 206. Specifically, 
rowid r1 immediately precedes rowid r2, so r1c1 immediately 
precedes r2c1 in column vector 220, and r1c1 to r1c3 imme 
diately precede r2c1 to r2.c3 in block 202. 
0061. In alternative embodiments, some or all of the data 
items in the MF data 104 are not ordered, within the MF data 
104, by rowid. Storing the data items in a different order may 
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be useful, for example, if the different ordering produced 
significantly better compression. As another example, the 
column vectors may initially be ordered by rowid. However, 
when new updates are “merged into the column vectors (as 
shall be discussed in greater detail hereafter), the updated 
values may appended to the end of the existing column vec 
tors to avoid having to decompress and recompress the exist 
ing column vectors. 
0062. When the data items within the column vectors are 
not in rowid order, an in-memory index may be built on rowid 
to quickly locate within the MF data 104 the data items 
associated with any given rowid. 
0063. Whether or not the data items within the column row 
vectors are ordered based on rowid, a rowid-to-item mapping 
may be established by maintaining a vector of rowids in 
conjunction with the column vectors. For example, FIG. 3 
illustrates a rowid vector 330 that is maintained in addition to 
the column vectors 220 and 222. The first value (R1) in the 
vector of rowids is the rowid of the first data item in each of 
the column vectors. Similarly, the second value in the vector 
of rowids (R2) is the rowid of the second data item in each of 
the column vectors. 
0064. In embodiments where the organization of the MF 
data corresponds to the organization of the PF data, it is easier 
for the database server to split database operations between 
the MF data and the PF data. For example, the database server 
may determine that the MF data is to be used to satisfy a query 
relative to one range of extents (e.g. extent 1 to extent 10), 
while PF data is to be used to satisfy the query relative to 
another range of extents (e.g. extent 11 to extent 20). 

Using the MF Data to Satisfy Queries 
0065. A conventional database system may operate nor 
mally by responding to every query by first searching for the 
requested data in cache 106. If the data is in cache 106, the 
data is accessed from cache 106. Otherwise, the needed data 
is loaded from PF data structures 108 into cache 106, and then 
accessed from cache 106. However, because the data in both 
cache 106 and PF data structures 108 is in the persistent 
format, performing operations based exclusively on the PF 
data does not always provide the best performance. 
0066. Therefore, according to one embodiment, the data 
base server uses the MF data 104 to supply data items 
required by at least some requested database operations. For 
example, ifa database query requests the values from column 
1 of all rows, the database server may obtain those values 
from the column vector 220 without accessing persistent 
storage 110. In the absence of MF data 104, the database 
would only be able to obtain R3C1 and R4C1 without access 
ing persistent storage 110 (because currently only block 204 
is in cache 106). To obtain R1C1 and R2C1, block 202 must 
be loaded into cache 106, and to obtain R5C1 and R6C1, 
block 206 must be loaded into cache 106. The time it would 
take to loadblocks 202 and 206 into cache would be signifi 
cantly more than the time required to obtain the values 
directly from column vector 220. 

Using the MF Data to Evaluate Predicates 
0067 Even in situations where the data required by a 
database operation is not included in the mirror format data 
104, the mirror format data 104 may be used to evaluate 
predicates, and thereby speed up the database operations in 
the same manner as conventional indexes. For example, 
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assume that table 200 has thousands of rows, and in only three 
of those rows does column c1 have the value joe'. Under 
these circumstances, a database server may receive a database 
command that requests the values, from column c2, of all 
rows where c1 =joe'. 
0068. In this example, the data that needs to be returned by 
the database command is from column c2, which is not in the 
MF data 104. However, the column vector 220 for column 1 
may be used to quickly identify the three rows where 
c1=joe'. This operation can be performed efficiently 
because the data items required to evaluate the predicate 
(values from c1) are stored contiguously in Volatile memory. 
Once those rows have been identified using column vector 
220, the database server may retrieve from disk only those 
blocks needed to obtain the data from those three rows. 

0069. Without using the MF data, a conventional index 
built on column c1 may be used to evaluate the predicate 
“where c1.joe'. However, some disk I/O may be necessary to 
make use of the conventional index to perform this evalua 
tion, whereas no disk I/O is needed to evaluate the predicate 
using column vector 220. Further, maintaining Such an index 
can incur significant overhead. 
0070. Without using mirror format data 104 or a conven 
tional index, the database server would have to load from 
persistent storage 110 every disk block that (a) is not already 
in cache 106, and (b) stores data for table 200. These blocks 
would have to be loaded merely to compare the values of 
column c1 against “joe' to identify the three rows for which 
c2 is required by the database command. 
(0071. Because MF data 104 may be used for the same 
function as conventional indexes (i.e. to efficiently identify 
which rows satisfy criteria specified in a database command), 
a database system that uses MF data 104 need not have as 
many conventional indexes as would otherwise be necessary 
for efficient predicate evaluation. For example, if the MF data 
104 includes a column vector for c1 and a column vector for 
c3, then the database server need not maintain conventional 
indexes for columns c1 or c3. By reducing the number of 
conventional indexes that need to be maintained by a database 
server, the overhead associated with making updates may be 
significantly reduced. 

In-Memory Indexes 

0072. As explained above, when a predicate references a 
column, the column vector for that column may be used to 
evaluate the predicate. In this way, column vectors may be 
used instead of conventional indexes. To provide even faster 
predicate evaluation, in-memory indexes may be used. An 
in-memory index is an index stored entirely within volatile 
memory. The nature of the in-memory index may vary based 
on the characteristics of the data being indexed. For example, 
if low-cardinality keys are being indexed, the in-memory 
index may be a binary index. If high-cardinality keys are 
being indexed, then the in-memory index may be a B-tree. 
Regardless of the nature of the in-memory index, the entries 
in the index point to in-memory location of the data items in 
question, rather than on-disk locations. 

Compression 

0073. As mentioned above, the MF data may be com 
pressed. However, according to one embodiment, not all MF 
data need be compressed in the same way, or to the same 
degree. For example, if it is determined that the data from 
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column c1 of table 200 is used frequently, and the data from 
column c3 is used infrequently, then the data in column vector 
220 may be lightly compressed, or uncompressed, whereas 
the data in column vector 222 is highly compressed. 
0074 The compression algorithm, and the level of com 
pression used by the algorithm, that is used to compress each 
portion of the MF data may be specified by a user, or may be 
determined automatically by a database server based on vari 
ous factors. Possible compression algorithms include, but are 
not limited to, dictionary-based compression, run-length 
encoding (RLE), OZip compression, etc. Ozip compress is 
described in U.S. Provisional Patent No. 61/955,574, filed 
Mar. 19, 2014, the contents of which are incorporated herein 
by this reference. 
0075. The factors used by the database server to determine 
how each portion of MF data is compressed may include, for 
example, the frequency with which each portion is accessed, 
and how much data is in the portion, and how much volatile 
memory is available. In general, the more frequently a portion 
of the MF data is accessed, the less compressed the data. As 
another general rule, the less volatile memory that is available 
to store the MF data and/or the larger the size of the portion of 
the MF data, the higher the compression. 
0076. Even though data items may be compressed within 
the MF data, it may not be necessary to decompress the MF 
data to use it. For example, vector processing operations may 
be performed directly on compressed values, as described in 
U.S. patent application Ser. No. 13/708,054, filed Dec. 7, 
2012, the entire contents of which are incorporated herein by 
reference. As also described in that application, it is also 
possible for the decompression to be performed on-chip after 
the compressed column vector values have been transferred to 
the CPU. 

In-Memory Compression Units (IMCUs) 

0077. In an embodiment in which the MF data is com 
pressed, the MF data may be organized, within volatile 
memory 102, into “in-memory compression units” (IMCUs). 
Each IMCU stores a different set of MF data. For example, as 
illustrated in FIG. 4, IMCU 402 stores half of column vectors 
220 and 222, and IMCU 404 stores the other half of column 
vectors 220 and 222. Specifically, IMCU 402 includes a vec 
torportion 420 that stores half the values from column c1, and 
a vector portion 422 that stores half the values from column 
c3. Similarly, IMCU 404 includes a vector portion 424 that 
stores the other half of the values from column c1, and a 
vector portion 426 that stores the other half the values from 
column c3. 
0078. In this example, the IMCUs divide the MF data 
based on the rows to which the data belongs, where IMCU 
402 corresponds to rows r1 to r3 of table 200, and IMCU404 
corresponds to rows ra-ró of table 200. However, this is only 
one of many different ways that the MF data may be spread 
among IMCUs. For example, different IMCUs may store MF 
data for different tables, different partitions of a table, differ 
ent columns of a table, different segments, different extents, 
etc. 

Metadata for the MF Data 

0079. To determine whether the MF data has the data 
required to process a query, and if so, to find the MF data 
required to process the query, the database server needs to 
know which PF data is mirrored in the MF data, and specifi 
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cally which specific PF data is mirrored by each IMCU. 
Therefore, according to one embodiment, metadata 430 for 
the MF data is maintained in volatile memory 102, as illus 
trated in FIG. 4. 

0080. In one embodiment, metadata 430 includes a data 
to-IMCU mapping. The data-to-IMCU mapping indicates 
which data is contained in each IMCU. This indication may 
be made in a variety of ways, including storing data that 
indicates, for each IMCU, one or more of the following: 

I0081 the table(s) whose data is stored in the IMCU 
0082 the column(s) whose data is stored in the IMCU 
I0083) the range of rows stored in the IMCU 
0084 the range of the disk blocks whose data is stored 
in the IMCU 

0085 the segments whose data is stored in the IMCU 
I0086 the table partitions whose data is stored in the 
IMCU 

0087 the extents whose data is stored in the IMCU 
0088 the manner in which the data, within the IMCU, 
has been compressed 

0089 the dictionary for decompressing the data stored 
in the IMCU (when a dictionary-type encoding has been 
used to compress the PF data) 

0090. In the situation illustrated in FIG. 4, the data-to 
IMCU mapping may indicate, for example, that rows r1-r3 of 
columns c1 and c3 of table 200 are stored in IMCU 402, and 
that rows ra-ré of columns c1 and c3 of table 200 are stored in 
IMCU 404. 

Multi-Instance Environments 

0091. In some environments, the same PF data is accessed 
by multiple database server instances. Such environments are 
referred to herein as multi-instance environments. In a multi 
instance environment, each database server instance may 
have access to volatile memory that the other database server 
instances cannot access directly. In Such situations, one may 
populate the volatile memory of each of the database server 
instances with the same MF data, or may cause different 
portions of the MF data to be stored in the volatile memories 
of different database server instances. In the case where dif 
ferent portions of the MF data is stored in the volatile memo 
ries of different database server instances, metadata 430 may 
also include an IMCU-to-instance mapping. 
0092. For example, referring to FIG. 5a, it illustrates an 
embodiment in which IMCU 402 is stored in the volatile 
memory 502 of one database server instance (instance 1), and 
IMCU 404 is stored in the volatile memory 504 of another 
database server instance (instance 2). For the database servers 
to know where specific portions of the MF data reside, each 
maintains metadata (530 and 532) to indicate both (a) where 
IMCUs 402 and 404 reside, and (b) what data they contain. 
(0093. In FIG.5a, MF data from the same two columns (c1 
and c3) is distributed between two database instances. How 
ever, it is also possible to distribute the MF data among 
database servers on other basis. For example, different 
instances may have the MF data for different tables, different 
columns, different partitions, different segments, different 
eXtents, etc. 
0094 FIG.5b is a block diagram of a scenario in which the 
MF data is distributed among the database instances based on 
column. Specifically, in FIG.5b, the IMCU 402 stored in the 
volatile memory 502 of instance 1 includes the entire column 



US 2016/0140206A1 

vector 220 for column c1, while the IMCU 404 stored in the 
volatile memory 504 of instance 2 includes the entire column 
vector 222 for column c3. 

0.095 Because it is more efficient to access local data than 
to obtain data from a remote instance, the location of the MF 
data may be a factor in determining whether to obtain a 
particular data item from the MF data or the PF data. For 
example, in the scenario illustrated in FIG.5b, if a query that 
is being executed by the database server of instance 1 requires 
data from column c1, the database server may decide to obtain 
the data from column vector 220, rather than from the PF data. 
On the other hand, if the same query being executed by the 
same database server requires data from column c3, then the 
database server may decide to obtain the data from the PF 
data. 

0096. When a database server determines that it is more 
efficient to performan operation using MF data that resides in 
a remote instance that to use the PF data, the database server 
requests the remote instance to perform the operation. For 
example, in the scenario illustrated in FIG.5b, if the database 
server of instance 1 is executing a query with the predicate 
“where c3=X', the database server of instance 1 would 
request the database server of instance 2 to evaluate “where 
c3=X”using column vector 222. In response to evaluating the 
predicate, the database server of instance 2 would return to the 
database server of instance 1 data that indicates which rows 
satisfy the predicate. 

Keeping the Mirror Format Data in Sync 

0097. The MF data 104 is only useful if the MF data 104 is 
kept up to date with all changes being made to the PF data. For 
example, if a query calls for the current values from column 
c1, then column vector 220 can only be used if its values are 
current. Similarly, if a query calls for current values of c2 
from rows where c1 =joe', then column vector 220 can only 
be used to identify the rows where c1 =joe' if the values in 
the column vector 220 are current. 

0098 Consequently, a mechanism is provided for keeping 
the mirror format data 104 in sync with the PF data as updates, 
inserts and deletes are performed on the PF data. Specifically, 
in one embodiment, the transaction manager of a relational 
database server, which is conventionally designed to transac 
tionally update the PF data, is modified to concurrently trans 
actionally update the MF data. For example, when the trans 
action manager updates aparticular item in the PF data as part 
of a transaction, the transaction manager also updates the 
particular item in the MF data (if the particular item is in the 
MF data) as part of the same transaction. 
0099. By maintaining MF data 104 and the PF data trans 
actionally synchronized, the result set of a query will be the 
same regardless of whether the query was processed using 
data items obtained exclusively from the MF data 104, or data 
items obtained exclusively from the PF data. The result set 
will also be the same if the query is processed using some data 
items from MF data 104, and other data items from the PF 
data. 

In-Place Updates to MF Data 

0100 For the MF data to remain transactionally consistent 
with the PF data, changes are made permanent to the MF data 
at the same time the changes are made permanent to the PF 
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data. For example, when a transaction that changed r1c1 from 
X to Y commits, r1c1 must be changed from X to Yin both the 
PF data and the MF data. 
0101. In some situations, it is possible to directly update 
the MF data to reflect a change made by a transaction when 
the transaction commits. For example, if column vector 220 is 
either uncompressed, or compressed in a manner that pro 
duces fixed-width values, it is possible to directly change the 
value of r1c1 from X to Y in the column vector 220 when the 
transaction commits, without otherwise affecting the column 
vector 220 or incurring significant overhead. 
0102) However, in other situations, it may be necessary to 
update the MF data implicitly. When updated implicitly, the 
MF data itself does not necessarily change, but metadata is 
stored to indicate that the values contained therein have been 
updated. As shall be described in greater detail hereafter, the 
metadata used to record implicit updates to the MF data may 
include journals and changed-row bitmaps. 

Journals 

0103) In some embodiments, keeping the MF data in sync 
with updates to the PF data is complicated by the fact that the 
MF data may be in a compressed format. For example, if 
column vector 220 is compressed, then directly updating a 
value within the column vector 220 may require the entire 
column vector to be decompressed, the update performed, 
and then the entire column vector to be compressed again. It 
would not be efficient to perform Such operations in response 
to every update performed on the PF data. 
0104. To reduce the amount of decompression and decom 
pression operations required to keep the MF data in Sync, one 
embodiment makes use of journals to make implicit updates 
to the MF data. In general, journals store information about 
updates (a) made to the PF data, and (b) not yet made directly 
to the MF data. 

0105 Referring to FIG. 3, it illustrates an embodiment in 
which journals 304 are maintained in conjunction with col 
umn vectors 220 and 222. In the embodiment illustrated in 
FIG. 3, column vectors 220 and 222 store compressed MF 
data 302. Because the data within the column vectors 220 and 
222 is compressed, a significant amount of overhead would be 
required to directly update the data within the column vectors 
220 and 222. 
0106 While journals 304 are also in volatile memory 102, 
journals 304 generally contain uncompressed data 302 that 
indicates changes made to the PF data that is not yet reflected 
in column vectors 220 and 222. For example, if the value of 
R3C1 of table 200 is updated from X to Y, rather than change 
the value of R3C1 in column vector 220, an entry is stored in 
one of journals 304 to indicate that R3C1 has been changed, 
and to record the new value for R3C1. 

0107 Journals 310 include a global journal 310 and 
numerous private journals. In general, global journal 310 
records only those changes that have been made by commit 
ted transactions. Before transactions commit, the changes 
made by the transactions are stored in the private journals, as 
explained in greater detail hereafter. 
0.108 Journals 310 may include entries for rows that do 
not exist in the MF data. For example, assume that the MF 
data for table 200 is created at time T1, and at time T2 a new 
row is inserted into table 200. Under these circumstances, an 
entry for the new row will initially be added to private journal 
of the transaction that inserted the row, and the entry for the 
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new row will be moved to the global journal for table 200 
when that transaction commits. 
0109 According to one embodiment, all journals support 

full transactional semantics (e.g. queries, DMLS, rollback to 
savepoint, rollback/abort, parallel queries/DMLs, and dis 
tributed transactions). In addition, journals can interoperate 
with the on-disk database system. For example, when the data 
is purged from an in-memory journal, required changes can 
be obtained from the PF data on disk, if a query needs them. 

Private Journals 

0110. As mentioned above, journals 304 are used to store 
data that indicates (a) changes made to the PF data that (b) are 
not yet reflected in the MF data stored in IMCUs. Such 
changes are typically made by database servers as part of 
transactions. According to one embodiment, in addition to 
having a single “global journal, such as journal 310, for all 
Such changes, a separate “private journal is maintained for 
each transaction. 
0111 For example, FIG.3 illustrates the situation in which 
three transactions TX1, TX2 and TX3 are making changes to 
PF data that is mirrored in the compressed MF data 302. In 
addition to making the changes to the PF data, the transac 
tions make the same changes to the MF data by storing, in 
their respective private journals, data that indicates what the 
changes are. 
0112 Similar to the changes made to the PF data, those 
changes reflected in the private journal of a transaction are not 
considered permanent until the transaction commits. Conse 
quently, the changes reflected in the private journal of any 
given transaction will not be visible to other transactions until 
the given transaction commits. In the example shown in FIG. 
3, the contents of journal 312 will be ignored by transactions 
TX2 and TX3. The contents of journal 314 will be ignored by 
transactions TX1 and TX3. The contents of journal 316 will 
be ignored by transactions TX1 and TX2. 

Moving Journal Entries Upon Commit 
0113. The global journal is visible system-wide, since all 
changes reflected therein have been committed. Thus, in 
response to transaction TX1 committing, the changes 
reflected in the private journal 312 of TX1 are moved to the 
global journal 130. Similarly, in response to transaction TX2 
committing, the changes reflected in the private journal 314 of 
TX2 are moved to the global journal 130. Likewise, in 
response to transaction TX3 committing, the changes 
reflected in the private journal 316 of TX6 are moved to the 
global journal 130. 
0114 AS mentioned above, when a transaction commits, 
the contents of that transaction’s private journal are moved to 
the appropriate global journals. In embodiments where the 
global journals are maintained on a per-IMCU basis and the 
private journals are maintained on a per-transaction basis, 
moving the private journal entries of a committed transaction 
may involve moving some of the entries to the global journal 
of one IMCU, and some entries to the global journal of 
another IMCU. 
0115 For example, assume that a transaction modifies a 

first set of data that maps to a first IMCU, and modifies a 
second set of data that maps to a second IMCU. Prior to 
commit, entries for both sets of modifications are stored in the 
private journal of the transaction. However, when the trans 
action commits, the entries for modifications to the first set of 
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data are moved to the global journal for the first IMCU, and 
entries for modifications to the second set of data are moved 
to the global journal for the second IMCU. 
0116. After a transaction’s changes are persistently com 
mitted to the PF data, the transaction is assigned a commit 
time. In response to being assigned a committime, the journal 
entries of the transaction are updated to reflect the commit 
time. Once a transaction’s journal entries are moved to the 
appropriate global journals and updated with the commit time 
of the transaction, the changes reflected in those entries 
become visible to other transactions. 

0117. As mentioned above, data within an IMCU need not 
be arranged in rowid order. When not in rowid order, the 
column vector of rowids (e.g. vector 330) may be used to 
locate data within an IMCU based on rowid. Specifically, the 
position of a rowid within vector 330 is the position of the 
values for the corresponding row within the other vectors 220 
and 222. According to one embodiment, even when the data 
within an IMCU is not arranged in rowid order, the entries in 
the corresponding private and global journals are organized 
based on rowid. Thus, when data in an IMCU is invalidated 
due to an update made to the corresponding PF data, the rowid 
of the invalidated data is recorded, rather than the position of 
that data within the IMCU. 

Journal Entry Contents 

0118. In general, each journal entry contains all informa 
tion required to determine (a) what data items are in the entry, 
and (b) what version of those data items does the entry reflect. 
In one embodiment, each journal entry includes: 

0119) 
0120 a timestamp that indicates when the data con 
tained in the row was "current 

0121 values for one or more columns of the corre 
sponding row 

0.122 With respect to the column values, in one embodi 
ment, each journal entry includes full row images that result 
from all Data Manipulation Language (DML) operations. In 
Such an embodiment, the journals are initially row-major data 
stores. However, under certain circumstances (such as when 
the journals grow too large), the contents of the journal may 
be converted to a column-major row store. The column-major 
information in the journals would only need to include values 
for those columns that are mirrored in the MF data. 

(0123. In on embodiment, a threshold is established for 
how many rows a journal may have in row-major format. 
Once that threshold is exceeded, a conversion operation is 
triggered for converting some or all of the journal's row 
major data to a column-major format. The threshold may be, 
for example, that a journal may have no more than 1000 rows 
of row-major data. 

the rowid of the row associated with the entry 

Journal Indexes 

0.124. According to one embodiment, an index, main 
tained in volatile memory 102, is built on the rowid column of 
each private journal. In addition to the rowid column, indexes 
may be built on any other column of the private journals that 
will improve overall query processing efficiency. These jour 
nal indexes may be used, for example, during query process 
ing to perform look-ups, or range-based scans of the journals. 
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Journal Structure 

0125. According to an embodiment, journals are orga 
nized, within volatile memory 102, as a series oftemporally 
ordered extents. For example, assume that the version time 
for MF data 104 is T1, and that the current system time is time 
T10. Under these circumstances, journal 310 may be orga 
nized into three extents, the first of which includes journal 
entries for changes made between time T1 and time T3, the 
second of which includes journal entries for changes made 
between time T3 and time T6, and the third of which includes 
journal entries for changes made between time T6 and the 
current system time. 
0126 When structured in this manner, extent pruning may 
be used to reduce the number of extents that are processed 
during a table scan. For example, for a table scan performed 
for a transaction with a snapshot time of T2, only the first 
extent of journal 310 would need to be scanned. The other 
journals contain only changes that the transaction is not 
allowed to see. 
0127. On the other hand, for a table scan performed for a 
transaction with a snapshot time of T7, all three extents of 
journal 310 would have to be scanned, because all three could 
contain journal entries for changes that must be seen by the 
transaction. 

Merging Global Journals into the MF Data 
0128. As mentioned above, journals are used because it is 
inefficient to update the MF data directly every time a data 
base operation makes a change to the corresponding PF data. 
This is particularly true when the MF data is compressed. 
However, it is also inefficient to allow the journals to grow 
indefinitely, both because eventually the journals will require 
too much volatile memory, and because the larger the journals 
grow, the less efficient it becomes to use the MF data to satisfy 
queries. 
0129. Consequently, according to one embodiment, the 
content of the global journals is periodically merged into the 
MF data. When the MF data is compressed, this merger opera 
tion typically involves decompressing the MF data, updating 
the MF data to reflect the most current committed versions of 
the items contained therein, and then compressing the MF 
data. 
0130. After data has been merged into the MF data con 
tained in a particular IMCU, the metadata associated with the 
IMCU is updated to indicate a new version timestamp for the 
IMCU. For example, if the MF data in an IMCU reflected all 
changes made as of time T1, then prior to the merger the 
version timestamp for the IMCU would be T1. If the update 
involves merging into the MF data of the IMCU all changes 
that were made up to time T3, then after the merger the 
version timestamp for the IMCU would be updated to T3. 

Post-Merger Retention of Global Journal Entries 
0131. As shall be described in greater detail hereafter, in 
Some embodiments, changed-row bitmaps may be used to 
indicate which data items in the MF data have become stale. 
A data item in the MF data becomes stale when a change (not 
reflected in the MF data) is committed to the data item. Once 
the contents of a global journal have been merged into the 
corresponding MF data, the old entries in the journals may be 
purged and the changed-row bitmap is updated to reset all bits 
(thereby indicating that no data items in the newly-merged 
MF data are stale). However, in some embodiments, rather 
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than purge all old journal entries in response to merging 
changes into the MF data, some of the old data may be 
retained in order to continue to use the MF data for transac 
tions whose Snapshot-times are before the merger time. 
I0132) For example, if the post-merger version timestamp 
for the IMCU is T3, then a transaction with a snapshot time of 
T2 cannot use the MF data in the IMCU, because that data 
contains changes that the transaction is not allowed to see. 
However, if all the journal entries as of time T1 have been 
retained, it is possible to use those journal entries, in conjunc 
tion with the IMCU, to obtain some data items as of time T2. 
Specifically, for a data item whose journal entries have been 
retained, a transaction with a Snapshot time of T2 would use 
the version of the data item from the most recent journal entry 
that precedes T2, the Snapshot time of the transaction. 
0.133 For example, assume that the journal only has a 
single entry, and the entry indicates that rSc1 was changed at 
time T3 from X to Y. Consequently, the post-merger IMCU 
will have value Y for rSc1. However, to provide the correct 
value to the transaction, the database server inspects the jour 
nal to see that the row of rSc1 was changed between the 
snapshot time T2 and the version time T3 of the IMCU. Based 
on this information, the database server knows that the value 
Y for rSc1 is too recent for the transaction to see, and that the 
transaction must instead see value X for rSc1. Consequently, 
in the data obtained for the transaction, the database server 
changes the value of rSc 1Y to X. 
I0134. Unfortunately, it is not feasible to retain old journal 
entries indefinitely. Therefore, according to one embodiment, 
a configuration parameter is provided for specifying the 
retention policies associated with IMCUs or the database 
objects to which they correspond. For example, a retention 
policy may be that, for table 200, journal entries are retained 
for at least one hour. Thus, for IMCUs that contain data for 
table 200, when purging journal entries after a merger, only 
those journal entries that are associated with Snapshot times 
that are less than an hour old are retained. Retaining already 
merged journal entries in this manner ensures that transac 
tions that have Snapshot times less than an hour old will 
always be able to obtain the correct version of data items from 
the MF data. 

0.135 According to one embodiment, old journal entries 
are retained until the database server determines that no cur 
rently executing queries will need the old journal entries. For 
example, if changes are merged into an IMCU at time T10. 
then journal entries, in the global journal of that IMCU, that 
are associated with changes made before time T10 may auto 
matically be purged by the database server when there are no 
more currently-running transactions that have Snapshot times 
before T10. 

0.136. In some embodiments, the journal entries may store 
only an indication of which row was changed, and when, 
without storing the actual values involved. In Such an embodi 
ment, the pre-merger journal entries are still useful for indi 
cating which values from the post-merger IMCU cannot be 
used by a transaction. In the example given above, the version 
of rSc1 that is in the post-merger IMCU cannot be used for a 
transaction with a snapshot time of T2, because the journal 
would indicate that r5c1 was changed between the snapshot 
time T2 and the version time T3 of the post-merger IMCU. 
Under these circumstances, if the journal does not have the 
actual pre-update value of r5c1 (i.e. X), the database server 
may obtain that value from the PF data, and the rest of the 
values that it needs from the MF data. 
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Global Journals and Memory Constraints 
0.137 As explained above, both global and private journals 
are maintained in Volatile memory. Private journals are used 
to record changes made by transactions that have not yet 
committed. Global journals, on the other hand, generally 
record changes made by transactions that have committed. 
0.138. The more entries that a global journal has, the more 
Volatile memory is consumed. Under some circumstances, 
there may simply not be enough Volatile memory to store 
excessively large global journals. One way of handling these 
situations is to purge older extents of the journals. 
0139 For example, assume that the global journal of an 
IMCU has three extents E1, E2 and E3. Assume further that 
E1 contains entries for transactions that committed between 
time T1 and time T5, E2 contains entries for transactions that 
committed between time T5 and time T9, and E3 has journal 
entries for transactions that committed between time T9 and 
the current system time. 
0140 Assume further that the version time of the IMCU is 
T5. Under these circumstances, the entries in E1 may be used 
to “roll back the values in the IMCU for transactions that 
have snapshot times between T1 and T5. On the other hand, 
the entries in E2 and E3 may be used to “roll forward the 
values in the IMCU for transactions that have snapshot times 
after T5. 
0141 When faced with memory constraints, the database 
server may purge extents E1 only, E1 and E3, or E1, E2 and 
E3, depending on how much memory is needed. Purging an 
extent has an effect on performance of certain transactions. 
For example, assume that E1 is purged. After E1 is purged, a 
transaction with a Snapshot time of T3 may require data items 
that maps to the IMCU.The transaction may obtain data items 
that did not change between T3 and T5 from the IMCU. Data 
items that did change between T3 and T5 are obtained from 
the PF data, because those items were recorded in E1 which 
has been purged. 
0142 Even after the purging of its journals, an IMCU may 
be used to Supply data that did not change between (a) the 
version time of the IMCU and (b) the snapshot time of the 
transaction requesting the data. For example, if the IMCU 
version time is T1, a transaction with a snapshot time of T5 
may obtain data items from the IMCU that were not changed 
between T1 and T5. As shall be described in greater detail 
hereafter, those changed data items may be identified using a 
delete vector generated for the transaction. 

Snapshot Metadata Units 

0143. As mentioned above, metadata is maintained for 
each IMCU. In one embodiment, a Snapshot Metadata Unit 
(SMU) is responsible for maintaining at least some of that 
metadata. Referring to FIG. 6, an IMCU 600 is illustrated 
with its corresponding SMU 604. In the illustrated embodi 
ment, SMU 604 stores the IMCU version time and a changed 
row bitmap 606. The IMCU version time is the time at which 
the values in the IMCU 600 were current. Changed-row bit 
maps shall be described in greater detail hereafter. 
0144. Among other things, the SMU for an IMCU cap 
tures all updates that affect the MF data contained in the 
IMCU. Consequently, the SMU for an IMCU may indicate, 
for example, whether the corresponding IMCU has valid 
values for a given rowid/snapshot-time combination. As 
another example, the SMU may generate a list of rowids of all 
rows for which the corresponding IMCU has invalid values, 
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relative to a given Snapshot-time. This list may then be used in 
conjunction with the rowid column vector to identify the rows 
for which values must be obtained from other sources (e.g. 
from journals or from the PF data). 

Changed-Row Bitmaps 

0145. In one embodiment, the updates captured by an 
SMU are indicated by a “changed-row bitmap' maintained 
within the SMU. Referring again to FIG. 6, the changed row 
bitmap 606 for IMCU 600 is maintained in SMU 604. A 
changed-row bitmap is a bitmap that indicates the rows (a) for 
which the corresponding IMCU has values, and (b) that have 
been changed by transactions that committed since the ver 
sion timestamp of the IMCU. 
0146 For example, when a transaction performs an update 
to rows r1, r3 and r5 of table 200, the SMU 604 for IMCU 600 
updates the changed-row bitmap of IMCU 600 by setting the 
bits that correspond to rows r1, r3, and r5 because those are 
the updated rows that fall within the MF data of IMCU 600. 
0147 According to one embodiment, when a change is 
made to data that is mirrored in IMCU 600, the SMU 604 
stores a record of which bits of the changed-row bitmap 606 
were set, and when. These records are collectively repre 
sented in FIG. 6 as record of bit changes 608. For example, if 
an update made at time T1 modifies row r1, then the bit for 
row r1 would be set, and a record is stored to indicate that the 
bit for r1 was set at time T1. 
0.148. According to one embodiment, the changed-row 
bitmap is created on an as-needed basis. For example, if the 
changed-row bitmap is to reflect whether a change has 
occurred to a million rows, a one million bit data structure is 
not pro-actively initialized. Instead, data is only stored for 
row ranges that have at least one bit set. For any range for 
which no data is stored, all bits are deemed to be “0”. 
0149 Referring to FIG. 8, it illustrates a hierarchical struc 
ture 800 for representing a changed-row bitmap, according to 
one embodiment. In the illustrated embodiment, the hierar 
chical structure 800 has levels that correspond to extents, 
blocks, and rows. The extent-level information802 includes a 
record for each extent in which there is any set bit. Extent 
level records link to other extent-level records (not shown), 
thereby forming a linked list of records for the extents that 
have one or more set bits. 
0150. In addition, the extent records include a pointer to a 
linked list of block level information 804 for the blocks that 
reside in the extent. In the illustrated example, the record for 
extent E1 points to the record for blocks B1, B2, B3 and B4. 
The block-level record can be the first recordinalinked list of 
block-level records for the blocks that belong to extent E1. 
0151. The block-level records, in turn, point to row-level 
information 806 stored in the form of bitmap pieces. Specifi 
cally, in the illustrated embodiment, the record for block B1 
points to bitmap piece 850. 
0152 Each position in the bitmap piece 850 corresponds 
to a row whose data items are stored in block B1. In the 
illustrated embodiment, bitmap piece 850 has six bit posi 
tions, which correspond to six rows are stored in B1. For each 
bit position, bitmap piece 850 includes two bits, one of which 
is a row-changed bit 820 and the other of which is an in 
journal bit 830. For any given row, the row-changed bit indi 
cates that the row changed since data items for the row were 
stored in the IMCU. The in-journal bit for a row indicates 
whether the updated values for the row are stored in the 
IMCU's journal. 
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0153. Based on the information in data structure 800, the 
database server may determine whether the current version of 
a data item resides in the IMCU, in the journals of the IMCU, 
or in neither. Specifically, if the structure 800 has no infor 
mation for a given row, then the IMCU has the current version 
of the data items from the row. The IMCU also has the current 
version of the data items from the row if the structure 800 has 
information for the row, and the row-changed bit for the row 
is “0”. If structure 800 has information for the row, the row 
changed bit is set and the in-journal bit is set, then the IMCU 
does not have the current version of the item, but the journal 
for the IMCU does have the current version of the item. 
Finally, if structure 800 has information for the row, the 
row-changed bit is set, and the in-journal bit is not set, then 
neither the IMCU northe journals have the current version of 
the data item, and the current version must be retrieved from 
the PF data. 
0154 The records of structure 800 are created on an as 
needed basis. Thus, if the IMCU is current for all data items in 
a particular extent, then structure 800 may not have any 
records for the extent. Similarly, if the IMCU is current for all 
data items in a particular block, then structure 800 may not 
have any block level information 804 for that block. By only 
storing changed-row information for extents/blocks that have 
been changed or added since the version time of the IMCU, 
structure 800 may be significantly small than it would other 
wise be if bits were pre-allocated for every row. 

Using the Record of Bit Changes 
0155 For a transaction that requires the most recent ver 
sion of data items, a set bit in the changed-row bitmap 606 
indicates that the MF data has stale data for that row, and 
therefore the IMCU 600 cannot be used to supply data from 
that row. However, not all transactions require the most recent 
version of data items. 
0156 For example, in many database systems, transac 
tions areassigned a Snapshot time, and return data that reflects 
the state of the database as of that snapshot time. Specifically, 
if a transaction is assigned a Snapshot time of T3, then the 
transaction must be provided versions of data items that 
include all changes that were committed before T3, and no 
changes that were not committed as of T3 (except for changes 
that the transaction makes itself). For Such transactions, a set 
bit in the changed-row bitmap 606 does not necessarily indi 
cate that the IMCU 600 cannot be used to be the source for 
items for the corresponding row. Specifically, such transac 
tions may still use the IMCU 600 to obtain data for a particu 
lar row, even though the bit for that row is set in changed-row 
bitmap 606, if the bit was first set after the snapshot time of the 
transaction. 
0157 For example, assume that the column vectors 220 
and 222 contain data as it existed at time T1, as indicated by 
the IMCU version time stored in SMU 604. At a later time T5, 
an update operation changes row r1. Specifically, the update 
changes the value of r1c1 for X to Y. In response to this 
update, the changed-row bitmap 606 of IMCU 600 would 
change from 000000 to 100000, setting the bit that corre 
sponds to row r1 to “1”. In addition, a record is stored within 
SMU 604 indicating the bit for r1 was changed at T5. 
0158. At yet a later time T9, another update operation 
changes row r3. Specifically, the second update changes the 
value of r2C3 from A to B. In response to this update, the 
changed-row bitmap 606 of IMCU 600 would change from 
100000 to 101000, setting the bit that corresponds to row r3 to 
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“1”. In addition, a record is stored within SMU 604 indicating 
that the bit for row r3 was set at time T9. 
0159. After these updates have occurred, the database 
server may execute a transaction that reads the values of 
columns c1 and c3. If the Snapshot time of the transaction is 
earlier than T5, then the transaction may read all the values 
from column vector 220 and 222. The database may deter 
mine this by comparing the Snapshot time of the transaction to 
the times indicated in the record of bit changes 608. If the 
snapshot time of the transaction is after the IMCU version 
time, but before any times in the record of bit changes 608, 
than all values in the IMCU 600 are valid relative to that 
transaction. 
0.160) If the snapshot time of the transaction is after T5 but 
before T9, then the transaction may read all values from 
column vectors 220 and 222 except the values from row r1, 
which must be obtained elsewhere (e.g. from a journal or 
from the PF data). If the snapshot time of the transaction is 
after T9, then the transaction may read all values from column 
vectors 220 and 222 except the values from rows r1 and r3. 
which must be obtained elsewhere. 

Delete Vectors 

0.161. In one embodiment, to account for the snapshot time 
of transactions that read values that are mirrored in IMCU 
600, the changed-row bitmap 606 is used in conjunction of the 
record of bit changes 608 to create a delete vector for each 
transaction that seeks to read data from IMCU 600. A delete 
vector is Snapshot-time specific, because bits in the delete 
vector are only set for rows that were modified before the 
Snapshot-time associated with the transaction for which the 
delete vector is constructed. Stated another way, each delete 
vector reflects the version of the changed-row bitmap that was 
current as of the Snapshot-time. Thus, the older the Snapshot 
time associated with a delete vector, the older the version of 
the changed-row bitmap the delete vector reflects, and thus 
fewer the number of bits that will be set in the delete vector. 
0162 For a transaction with a snapshot time after the 
version time of the IMCU, a delete vector is made for the 
transaction by “rolling back changes that occurred to the 
changed-row bitmap 606 after the snapshot-time of the trans 
action. For example, if a transaction has a Snapshot time of 
T5, the database server searches the record of bit changes 608 
to identify changes that occurred after time T5. A copy of the 
changed-row bitmap 606 is made, and within that copy the 
bits that correspond to the changes that occurred after time T5 
are reset to “0”. For transactions with snapshot times before 
the version time of the IMCU, the delete vector may be 
generated by making a copy of the changed-row bitmap 606, 
and within that copy setting to “1” the bits of rows that were 
changed between the Snapshot time of the query and the 
version time of the IMCU. 
0163 Because delete vectors are transaction-specific, at 
any given time, any number of distinct transactions may be 
performing scans of the rows that map to a particular IMCU. 
Each of those transactions may have been assigned a different 
Snapshot-time. Consequently, each of those transactions will 
have a different delete vector, though all of those delete vec 
tors are generated based on the same changed-row bitmap of 
the SMU that corresponds to the IMCU. 

Post-Merge Retention of Pre-Merge Changed-Row 
Bitmaps 

0164. As mentioned above, when changes are merged into 
an IMCU, all values in the changed-row bitmap of the IMCU 
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are reset to “0” to indicate that no rows have been changed 
since the new version time of the IMCU (which will be the 
time at which the IMCU is refreshed/merged). However, 
rather than simply discard or overwrite the existing changed 
row bitmap, a copy of pre-merge changed-row bitmap may be 
saved. A saved copy of a pre-merge changed-row bitmap is 
referred to herein as a “retained bitmap’. As shall be 
described in greater detail hereafter, such retained bitmaps 
allow a post-merge IMCU to be used to provide data items to 
transactions that have Snapshot times before the merge. 
0.165 For example, assume that an IMCU is constructed at 
time T1. From time T1 to time T10, the changes made to the 
data items in the IMCU are recorded in its global journal, 
rather than being made directly to the data items themselves 
within the IMCU. While those changes are being recorded 
within the journal, the changes are also causing correspond 
ing bits to be set in the changed-row bitmap of the IMCU. At 
time T10, the changes are merged into the IMCU, causing the 
version time of the IMCU to change from T1 to T10. 
0166 Under these circumstances, the state of the changed 
row bitmap immediately before the merger reflects which 
rows, within the IMCU had changed between time T1 and 
time T10. By indicating which rows had changed between 
time T1 and time T10, the changed-row bitmap likewise 
indicates which rows had not changed between time T1 and 
time T10. Within the post-merger IMCU, those rows that had 
not changed between time T1 and time T10 can be provided to 
transactions that have snapshot times between T1 and T10. 
0167 Specifically, a copy of the pre-merge version of the 
changed-row bitmap is retained after the merger. Along with 
the retained bitmap, the version timestamp of the pre-merge 
IMCU is also stored. In the example given above, the retained 
bitmap would be associated with the version timestamp ofT1. 
0168 When a transaction (a) requires data items that map 

to an IMCU, and (b) has a snapshot time that falls between the 
retrained bitmap time and the current IMCU time, the 
retained bitmap is used to identify the rows that were not 
changed between the retained bitmap time and the current 
IMCU time. Values for the identified rows may be provided to 
the transaction from the current IMCU. Values for the remain 
ing rows are obtained elsewhere. Specifically, values for the 
remaining rows may be obtained from the global journal of 
the IMCU if the relevant journal entries have not yet been 
purged, or from the PF data. 

IMCU Refresh Undo 

0169. Rather than store a single retained bitmap in 
response to the most recent merge, a separate retained bitmap 
may be stored in response to each merge. The retained bit 
maps for a given IMCU may be linked in chronological order. 
The linked set of retained bitmaps for an IMCU constitutes an 
“IMCU refresh undo' for the IMCU. 
0170 For example, assume that an IMCU was created at 
time T1, and then refreshed/merged at times T10, T15 and 
T30. Under these circumstances, the IMCU refresh undo for 
the IMCU would contain three retained bitmaps RB1, RB2 
and RB3. These three retrained bitmaps would be associated 
with times T1, T10 and T15, respectively. 
(0171 In the present example, the “0” bits of RB1 indicate 
the rows that were not changed between times T1 and T10. 
The “0” bits of RB2 indicate the rows that were not changed 
between the times T10 and T15. The “O'” bits of RB3 indicate 
the rows that were not changed between the times T15 and 
T30. 
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0172 Given any snapshot time, the IMCU refresh undo 
may be used to identify which rows, within the current IMCU 
can be provided to a transaction with that Snapshot time. For 
example, for a transaction with the snapshot time T18, the “O'” 
bits in RB3 would indicate which rows can be provided to the 
transaction from the current IMCU. As another example, for 
a transaction with the snapshot time of T12, RB2 and RB3 can 
be combined using a logical OR operation to produce a bit 
map that indicates which rows can be provided to the trans 
action from the current IMCU. As yet another example, for a 
transaction with the snapshot time of T5, RB1, RB2 and RB3 
can be combined using a logical OR operation to produce a 
bitmap that indicates which rows can be provided to the 
transaction from the current IMCU. 
0173 Thus, given a transaction with the snapshot time of 
TX, the retained bitmap with the highest timestamp that is 
below TX is combined, using a logical OR operation, with all 
more recent retained bitmaps of the same IMCU. The logical 
“OR” operation produces a bitmap where the “O’s correspond 
to rows that have not changed since TX and the version time 
of the current IMCU. Consequently, data items for those rows 
may be provided by the IMCU. 

Transaction Downgrade Based on Memory 
Constraints 

0.174 AS mentioned above, changes made to items in an 
IMCU are recorded in journals rather than made directly to 
the items in the IMCU.The journals are maintained in volatile 
memory. Unfortunately, long-running transactions that make 
changes to large numbers of items may cause so many journal 
entries to be generated that there is insufficient room to store 
the entries in volatile memory. 
0.175 Under these circumstances, the journal entries may 
be flushed to persistent storage to free up space in Volatile 
memory. However, flushing the journal entries to persistent 
storage, and reading the entries from persistent storage there 
after, incurs a significant performance penalty. Therefore, 
according to one embodiment, transactions that are generat 
ing journal entries in Sufficient quantity to cause memory 
issues are “downgraded'. 
0176 According to one embodiment, such transactions 
are downgraded by pushing their existing private journal 
entries to the global journal of the IMCU, and ceasing to 
generate further privatejournal entries. Although in the global 
journal of the IMCU, such journal entries are not visible to 
other transactions because the journal entries are for an 
uncommitted transaction, and therefore initially associated 
with an “indeterminate' timestamp. When the downgraded 
transaction commits, the timestamps of the transaction’s 
entries in the global journal are changed from indeterminate 
to the commit time of the transaction. 
0177 Rather than cease the generation of journal entries 
when in downgraded mode, transactions may continue to 
generate journal entries until the size of their private journal 
once again reaches the specified threshold. At that point, the 
private journal entries may once again be moved to the global 
journal, where the entries will not be visible to other transac 
tion due to their indeterminate timestamp. This process of 
filling the private journal to a threshold, and then moving the 
entries to the global journal, may be repeated any number of 
times until the transaction either commits or is rolled back. 
0.178 Regardless of whether a transaction that is operating 
in the downgraded mode continues to generate further private 
journal entries to record its changes, the changes are still 



US 2016/0140206A1 

recorded in the record of bit changes associated with the 
IMCU. Once the transaction commits, those bit changes are 
made to the changed-row bitmap. 
0179. By using the changed-row bitmap to record the fact 
that a change occurred, future transactions will avoid reading 
stale data items from the IMCU. When the changed-row 
bitmap indicates that data items associated with a particular 
row are invalid, transactions that require data items from that 
row must obtain the data items for a source other than the 
IMCU. In the case that the changes were made by a down 
graded transaction that ceased generating journal entries, the 
changes will not appearin the global journal, so the data items 
are retrieved from the PF data. 

0180. In one embodiment, not all transactions that are 
using an IMCU are downgraded at once. Rather, the down 
grades are performed on a per-transaction basis, where trans 
actions are only downgraded if they satisfy certain criteria. 
The criteria may be, for example, that the amount of journal 
entries that they have generated exceeds a particular thresh 
old. 

0181. In general, transactions must see the uncommitted 
changes that they have made themselves. Consequently, a 
downgraded transaction that has ceased generating journal 
entries may have to obtain the values of some data items that 
the transaction previously changed from the PF data, since no 
journal entry exists for those changes. 

Maintaining Sync without Journals 

0182. In the sections above, it is explained that the MF data 
may be kept in Sync with the PF data by recording changes in 
journals, while leaving the compressed MF data intact until 
the journals are merged into the compressed MF data. How 
ever, in an alternative embodiment, for one or more of the 
IMCUs, the MF data may be maintained in sync merely by 
invalidating the data in response to changes made to the 
corresponding PF data without using journals to record the 
changes. 
0183 In such an embodiment, delete vectors may be gen 
erated for a transaction, as described above. For those bits that 
are not set, the data may be obtained from the appropriate 
IMCU. For those bits that are set, the data must be retrieved 
from the PF data, since obtaining data from in-memory jour 
nals is not an option when no such journals are maintained. 
0184 The benefit of invalidating the MF data without 
recording the changes in journals is that the processing over 
head and memory consumption of maintaining the journals is 
avoided. However, when data items in the IMCU are too stale 
to be used to process a transaction, accessing the appropriate 
version of the data items from the PF data will generally incur 
more overhead than would be required to obtain the data 
items from journals. In addition, refreshing the IMCUs in the 
absence of in-memory journals will also typically incur more 
overhead, because the changes that need to be merged into the 
IMCUs must be obtained from the PF data rather than from 
in-memory journals. 
0185. In some embodiments, journals may be maintained 
for some IMCUs, but not others. In addition, it is possible for 
the journal of an IMCU to be dropped, and yet continue to use 
the IMCU for data that has not been invalidated due to 
changes between the IMCU version time and the snapshot 
time of the transactions that require the data. 
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Determining from where to Obtain Data 
0186 Because MF data 104 is merely a mirror of some of 
the PF data (albeit in a different format), all data items con 
tained in MF data 104 are also in the PF data. Therefore, for 
any query that requires access to data items that are mirrored 
in the MF data, the database server has the choice of obtaining 
that data from MF data 104, from the PF data, or partially 
from the MF data 104 and partially from the PF data. 
0187. In general, when the requested data is an entire row 
of a table (or the majority of columns of the table), the loca 
tion from which to most efficiently retrieve the data is cache 
106 (assuming that the persistent format is row-major). If the 
requested row does not currently reside in cache 106, but the 
MF data 104 has all columns of the row, then MF data 104 is 
the location from which to most efficiently retrieve the row. 
Assuming that MF data 104 is column-major, MF data 104 is 
less efficient than cache 106 for retrieving a row because, in 
column-major format, the values for the row must be pieced 
together from various places within the MF data 104. 
0188 If not all of the data for the requested row is in the 
MF data 104, then at least some of the row must be retrieved 
from persistent storage 110. Typically, persistent storage 110 
is the least efficient location from which to retrieve data, 
because disk accesses are significantly slower than operations 
on data stored in Volatile memory. 
0189 According to one embodiment, the decision of 
where to get the data may be made at any of numerous levels 
of granularity. For example, the decision of from where to 
obtain the data may be made on a per-table basis, a per 
column basis, a per extent basis, a per segment basis, a per 
table-partition basis, etc. Thus, even though all data from 
column c1 is in column vector 220, the database server may 
decide to execute a scan by obtaining some of the values of 
column c1 from column vector 220, and by obtaining the rest 
of the values of column c1 from the PF data on persistent 
storage 110. 
0190. According to one embodiment, database objects, 
such as tables, can be “in-memory enabled'. A table that has 
been in-memory enabled has at least a portion of its data 
mirrored in the MF data. For example, table 200 is in-memory 
enabled because data from two of its columns (c1 and c3) are 
mirrored in mirror format data 104. Specifically, data from 
column c1 of table 200 is mirrored in column vector 220, and 
data from column c3 of table 200 is mirrored in column vector 
222. 
(0191 When a table is not mirror-enabled, a scan of the 
table is performed by reading PF data from cache 106 and/or 
from persistent storage 110. On the other hand, when a table 
is mirror-enabled, it may be also possible to get Some or all of 
the table's data from MF data 104. More specifically, it may 
be possible to obtain data of a mirror-enabled table from any 
of the following locations: 

(0192 the persistently-stored PF data 
0193 from a flash cache (described in U.S. patent Ser. 
No. 13/840,811, filed Mar. 15, 2013, the entire contents 
of which is incorporated herein by reference) 

(0194 the locally cached PF data 
0.195 the PF data in the cache of another instance 
(0196) the locally stored MF data 
(0197) the MF data stored in the volatile memory of 

another instance 
0198 the locally stored MF data updated with informa 
tion from journals 

(0199 entirely from the journals 
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0200 MF data stored in the volatile memory of another 
instance updated with information from journals 

0201 any combination of the above. 
0202 Further, the data can be obtained without the use of 
any indexes, with the use of conventional indexes on the PF 
data, and/or with the use of in-memory indexes. Further, 
indexes need not be used in conjunction only with the format 
based upon which the indexes were built. Thus, conventional 
indexes built on the PF data may be used to identify rows that 
must be retrieved, and then data for those rows may be 
retrieved from the MF data. Similarly, an in-memory index 
may be used to identify rows that must be retrieved, and some 
or all of those rows may be retrieved from the PF data. 
0203. According to one embodiment, a cost-based opti 
mizer is used to determine, for any given database operation, 
which of the sources (or which combination of these sources) 
will be used to supply the data needed by the database opera 
tion. Additional factors used by the cost-based optimizer 
include whether conventional and/or in-memory indexes 
exist for quickly locating the desired data. 

Scanning Operations 

0204 According to one embodiment, when it is deter 
mined that a table scan operation is to obtain at least some of 
the requested data from MF data 104, a determination is made 
as to whether the timestamp associated with the MF data 104 
is earlier than the Snapshot timestamp being used by the scan. 
In embodiments where the MF data 104 is contained in an 
IMCU, the determination is made by comparing the IMCU 
version time, stored in the SMU of the IMCU, to the snapshot 
time of the transaction associated with the table Scan. 

0205 If the MF data timestamp is earlier than the snapshot 
timestamp being used by the scan, then is possible that some 
of the data in the IMCU is stale relative to that snapshot time. 
Under these circumstances, it is possible that the required 
versions of data items that are stale in the IMCU reside in the 
global journal of the IMCU or the private journal of the 
transaction. In this case, the journals associated with the 
IMCU may also be scanned to obtain the correct version of 
the data that is stale in the IMCU. 

0206 Referring to FIG. 6, assume that column vector 220 
has the current version of all values from column c1 of table 
200 as of time T1. However, at time T3, R3C1 was changed 
from X to Y. For R3C1, column vector 220 has the old value 
X, while journal 602 has the new value Y. Thus, when a table 
scan with a snapshot time of T5 uses IMCU 600 as a source 
for any of its data, both the compressed MF data in IMCU 600 
and the global journal 602 of IMCU 600 are scanned. 
0207. In addition to scanning the global journal 602, the 
private journal of the transaction that is performing the Scanis 
also scanned. For example, if the transaction performing the 
scan is TX1, then private journal 662 is also scanned. 
0208 Thus, any given table scan may involve scanning the 
compressed MF data in IMCU 600, scanning global and 
private journals (e.g. journals 602 and 662), and scanning the 
PF data (some of which may be in cache 106). Each of these 
scans can be performed independently and in parallel. Thus, 
in response to a query that requests values from columns c1 
and c2 of table 200, the database server may, in parallel, (a) 
scan column vector 220 for values from c1, (b) scan journal 
602 for updated values from c1 (c) scan journal 662 for 
updated values of c1, and (d) scan the PF data structures 108 
to obtain the values for c2 of table 200. 
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Scanning Operation Example 
0209 Referring to FIG.7, it is a block diagram of the steps 
performed by a database server in response to a request to 
scan a table. The table that is being scanned is split into 
segments, where each segment includes a set of extents, and 
each extent includes a set of blocks. In this context, database 
server determines which blocks contain data that needs to be 
scanned, and whether to scan the blocks from the PF data, or 
to obtain the data from the MF data. 
0210 Specifically, at step 700, the database server deter 
mines where the scan operation is “memory-enabled'. An 
operation is “memory-enabled if the operation is permitted 
to obtain some or all of the data it requires from the MF data. 
The scan operation may automatically be treated as memory 
enabled, for example, if the table that is being scanned (the 
“target table') is designated as memory-enabled. A table is 
“memory-enabled' if data from the table is to be mirrored in 
the MF data. As described elsewhere, data items from a 
memory-enabled table may be proactively loaded into 
IMCUs, or may be loaded into IMCUs on an on-demand 
basis. Even if the target table is designated as memory-en 
abled, a Switch may be provided to designate the scan opera 
tion as either memory-enabled or not-memory-enabled. A 
scan operation may be designated as not-memory-enabled to 
force the scan to be executed against only the PF data. 
0211. According to one embodiment, the memory-en 
abled designation may be made at any of a number of levels of 
granularity. For example, the designation may be made on a 
per-table basis, a per-partition basis, a per-segment basis, or a 
per-extent basis. For the purpose of illustration, it shall be 
assumed that the memory-enabled designation is made at the 
per-extent basis. 
0212 Referring again to FIG. 7, if the scan is not memory 
enabled, then control passes to step 780 and the scan is per 
formed only against the PF data. After the PF data has been 
used to perform the Scan, the scan operation is done (step 
782). 
0213. On the other hand, if the scan operation is memory 
enabled, then control proceeds to step 702. At step 702, the 
database server determines the range of blocks that contain 
data required by the scan. Once the range has been deter 
mined, control passes to step 704. For the purpose of illustra 
tion, it shall be assumed that blocks B1 to B500 contain the 
data required by the scan operation. 
0214 Step 704 is the beginning of a loop that iterates 
through each block in the range identified in step 704. If at 
step 704 it is determined that there are no more blocks to scan, 
then control passes to step 782 and the scan operation is done. 
If some blocks have not yet been scanned, than control passes 
from step 704 to step 706. 
0215. At step 706, the database server determines the next 
block, from the range identified in step 702, to scan. At step 
708, it is determined whether the address of the block selected 
in step 706 maps to an IMCU. If the address maps to an 
IMCU, then the IMCU stores MF versions of at least some 
data items from the segment. If the IMCU stores MF versions 
of data items from the segment, then control passes to step 
710. Otherwise, control passes to step 712, where the segment 
that includes the block is obtained from the PF data. 
0216. In one embodiment, upon obtaining the PF version 
of a segment that is mapped to an IMCU, the database server 
converts the segment into the in-memory format, and stores 
the MF data thus produced in the IMCU. Such an embodi 
ment employs on-demand loading, which is described in 
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greater detail hereafter. The conversion and loading of the 
data into the IMCU may take some time. Therefore, at step 
714, the database server determines whether to wait for the 
data from the segment to be converted and loaded. If the 
database determines to wait, then the database server waits, 
and control passes to step 708 when the data from the segment 
has been converted and loaded into the IMCU. If the database 
server determines not to wait, the data items are obtained from 
the PF data (step 720), and control returns to step 704. 
0217. As mentioned above, control passes to step 710 
when it is determined that the address of the block maps to an 
IMCU. When the address of the block maps to an IMCU, the 
IMCU contains an MF version of at least some of the data 
items in the block. However, the versions of the data items 
that are contained in the IMCU are not necessarily valid 
relative to the snapshot time of the scan. Therefore, at step 
710, it is determined whether the version of those data items 
in the IMCU is valid for the transaction that is executing the 
Scan. In one embodiment, determining whether the data in the 
IMCU is valid involves generating a delete vector for the scan 
operation based on the Snapshot time associated with the scan 
operation, the changed-row bitmap of the IMCU, and the 
record of bit changes for the IMCU. As described above, the 
delete vector is a snapshot-specific bitmap where each set bit 
indicates that the row corresponding to the bit is invalid 
relative to the snapshot time. 
0218 If, at step 710, it is determined that no data items for 
the current block are valid in the IMCU, control passes to step 
716 where data items are obtained from the PF data until the 
end of the current extent. Then control passes back to step 
704. In some situations, even though no data items for the 
current block are valid in the IMCU, the database server may 
not immediately attempt to obtain the PF data from disk. 
Instead, the database server may attempt to retrieve the PF 
data only after reaching the end of the current extent. 
0219. If the IMCU has valid versions for at least some of 
the items, then control passes to step 722. At step 722, the data 
items for which the IMCU has valid versions are fetched from 
the IMCU. The data items for which the IMCU does not have 
valid versions are fetched either from entries in the global 
journal of the IMCU, or from the PF data. As explained 
elsewhere, various factors may affect the selection of the 
source from which to obtain data items. Such factors may 
include, for example, whether the PF disk block that stores the 
correct version of the data items currently resides in cache. It 
is possible that only a Subset of the data in a segment is 
mapped to an IMCU. For example, it may be that only a subset 
of a table's columns are mapped to an IMCU. Under these 
circumstances, any data items in the segment that are required 
by the scan but not mapped to the IMCU must be obtained 
from the PF data. 

0220. If the private journal of the transaction performing 
the scan has updated versions of any of the data obtained from 
the IMCU or the global journal, those updated versions are 
provided in place of any version otherwise obtained. This 
ensures that the scanning transaction sees its own changes, 
even though those changes have not been committed. 
0221 Even when the delete vector indicates that the 
IMCU has valid data for all rows, the global journal is 
checked to identify rows that were inserted after the IMCU 
was created. If the journal does not contain the actual data 
items for those rows, then the rows are retrieved from the PF 
data. Similarly, the private journal of the transaction is 
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checked for rows newly inserted by the transaction, and for 
data items that have been changed by the transaction. 
0222. After fetching all necessary data items, control 
passes from step 722 back to step 704. At step 704, the loop is 
repeated until data items required by the scan have been 
obtained, either from an IMCU, from journal entries, or from 
the PF data. 

When to Create the MF Data 

0223 Before MF data may be used to satisfy a query, or to 
improve performance of a query whose results are ultimately 
obtained from the PF data, the MF data must be present in 
volatile memory. Unlike cache 106, mirror format data is not 
simply a copy of the data that is stored on persistent storage 
110. Rather, because the mirror format is not based on the 
persistent format, volatile memory 102 is initially populated 
by (a) reading the PF data from persistent storage 110 and (b) 
converting the PF data thus obtained to the MF format. 
0224. The amount of overhead that is required to perform 
the PF-to-MF conversion will vary from situation to situation, 
based on how different the mirror format is from the persistent 
format. For example, if the persistent format is row-major 
disk blocks that have been compressed one way, and the 
mirror format is column vectors that are compressed another 
way, the amount of overhead required to perform the conver 
sion may be extensive. 
0225. The decision about when to create the MF data may 
be based on a variety of factors. For example, if sufficient time 
is available at system start-up, all of the PF data that has been 
selected for mirroring may be pre-loaded into volatile 
memory 102 on startup. As mentioned above, loading the MF 
data involves reading the corresponding PF data from persis 
tent storage 110 and then converting that PF data into the 
mirror format. 

Pre-Loading the MF Data 
0226. In one embodiment, the MF data is pre-loaded into 
Volatile memory at database system start up. The pre-loading 
may be performed, for example, by background processes 
before any database operation is executed against the 
memory-enabled data structures that contain the data items 
that will be mirrored by the MF data. 
0227. The MF data may be created one-IMCU at a time. In 
multi-instance environment, durably stored metadata may be 
used to determine which MF data is pre-loaded into which 
database instance. Such metadata may include, for example, 
a MF-data-to-IMCU mapping and an IMCU-to-instance 
mapping. 
0228. In a simple example, the MF-data-to-IMCU map 
ping may indicate that IMCU 402 is to store the column 
vector 220 for c1, and that IMCU 404 is to store the column 
vector 222 of column c3. The IMCU-to-instance mapping 
may indicate that IMCU 402 is to be loaded into the volatile 
memory 502 of instance 1, while IMCU 404 is to be loaded 
into the volatile memory 504 of instance 2. Based on these 
mappings, the MF data would be pre-loaded into volatile 
memory in the manner illustrated in FIG. 5b. 

On-Demand Loading of MF Data 
0229 Rather than simply pre-load the MF data, some or all 
of the MF data may be generated at the time that the corre 
sponding PF data is accessed by a database operation. For 
example, assume that database instance 1 is assigned to host 



US 2016/0140206A1 

the column vectors for columns c1 and c3 of table 200. Rather 
than construct and load those column vectors on start-up, 
database instance 1 may initially generate no MF data. 
Instead, the database instance 1 may wait until a database 
command requires a scan of table 200. Because no MF data 
has been created yet, the scan is performed based entirely on 
the PF data. During that scan, the values needed to construct 
the column vectors for c1 and c2 will be accessed. Therefore, 
the column vectors for c1 and c2 may be built at that time 
without incurring any additional disk accesses. 
0230. On-demand loading of MF data may be used in 
conjunction with pre-loading. For example, some of the MF 
data that is to be hosted on instance 1 may be created at the 
time instance 1 is started. Other portions of the MF data may 
be constructed at the time the data is accessed by queries. 
0231. In one embodiment, users may set configuration 
options to indicate which MF data to pre-load, and which MF 
data to load on-demand. In an alternative embodiment, the 
database server automatically determines which portions of 
the MF data are pre-loaded and which are loaded on-demand. 
In general, the more frequently a data item is used, the more 
likely the database server will automatically pre-load the data 
item into MF data so that even the first database operation that 
requires the data item has the option of obtaining the data 
from the MF data. 

Persistent Storage of IMCU Images 

0232. As mentioned above, the MF data may be created on 
start-up, on-demand, or any combination thereof. In one 
embodiment, images of IMCUs may be periodically stored to 
disk. Such persistently-stored images may be used to re 
populate volatile memory 102 with MF data after a crash. The 
image of any given IMCU will be current as of a “checkpoint 
time', which may be when the IMCU image was persistently 
stored. However, that checkpoint time may be before the time 
that the crash occurred. Consequently, between the check 
point time of an IMCU image and the time of the crash, 
additional changes may have been made to the IMCU. Since 
those changes are not reflected in the stored image, the IMCU 
image may be stale. 
0233. To use an otherwise stale IMCU image, the IMCU 
image may first be loaded into volatile memory. The IMCU 
data thus loaded may be usable, in conjunction with durably 
stored undo information, for database commands that have 
snapshot times before the checkpoint time associated with the 
IMCU image. To be usable with database commands that 
have Snapshot times after the checkpoint time, redo informa 
tion that was durably stored for the associated PF data prior to 
the crash may be used to populate the stale journals of the 
IMCU image with journal entries for the changes that 
occurred after the checkpoint time of the IMCU. 
0234 Depending on how many changes were made after 
the checkpoint time and before the crash, reconstructing an 
IMCU using a stale persistently stored image of the IMCU 
may consume significantly less overhead than completely 
re-generating the IMCU data from the PF data. 

Selecting which PF Data to Mirror 
0235. The decision of which PF data to mirror, and when 
to load it, may be based on a variety of factors. For example, 
if a system has an enormous about of volatile memory 102, 
and a relatively small database, it may be desirable to mirror 
the entire database. Thus, all PF data would also be mirrored 
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in the MF data. On the other hand, if there is a relatively small 
amount of volatile memory 102 relative to the size of the 
database, then it may be optimal to only mirror a very Small 
fraction of the database. 
0236 Typically, when not all of the database is to be mir 
rored, the portion that is selected to be mirrored is based on 
which portion will most improve overall performance of the 
system. Typically, mirroring data that is used frequently will 
provide more benefit than mirroring data that is used less 
frequently. Thus, if one table, one column of a table, or one 
partition of a table is access more frequently than other data in 
the database, that table, column or partition may be selected to 
be mirrored in volatile memory 102. The selection of which 
portions of a database to mirror may be made at any level of 
granularity. For example, the selection may be made on a 
per-table basis, a per-column basis, a per extent basis, a per 
segment basis, a per-table-partition basis, etc. 

Self-Verification 

0237. In systems that maintain MF data in addition to the 
PF data, multiple sources of the same data are available to 
process Some queries. In the foregoing sections, it has been 
explained that when multiple sources of the same data are 
available, a database server may select from among the pos 
sible sources based on which source will result in the most 
efficient processing of the requested database operation. 
0238. However, rather than select one of the possible 
Sources, a database server may alternatively execute the data 
base operation, in parallel, against each of the two or more 
Sources. For example, a query that selects data from column 
c1 of table 200 may be answered with MF data from column 
vector 220, or with PF data from PF data structures 108. 
Rather than select one or the other, the database server can 
execute the operation, separately and independently, against 
both sources. Once finished, the results produced by the vari 
ous sources may be compared against each other. If the result 
sets do not match, then an error occurred during the process 
ing of at least one of the operations. 
0239. The database server may take any number of pos 
sible actions when such an error is detected. For example, in 
one embodiment, an alert is generated to indicate the occur 
rence of the error. The alert may indicate what the discrepancy 
is between the two results sets. Instead of or in addition to 
generating an alert, the database server may perform addi 
tional debugging operations, including but not limited to re 
executing the operation turning off or on different database 
features to determine the feature whose use produces the 
eO. 

0240. When the results sets match, the user may have a 
greater degree of confidence that the results of the operation 
are accurate. Thus, parallel execution, by the same database 
instance, of the same operation against multiple sources of the 
same data (the MF data and the PF data) provides an on-the 
fly "double check” to verify the result set of the operation. 
0241 Typically, the execution of the database operations 
against the two sources may be done in parallel, so that 
performing self-verification has little performance impact on 
the operation relative to performing the operation only on the 
PF data. According to one embodiment, self-verification may 
be enabled at a highly granular level. For example, self 
Verification may be enabled on a per-session basis. Thus, the 
additional overhead incurred by self-verification may be 
incurred in only those sessions a user wishes to “test” for 
accuracy. 
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0242 Self-verification operations may also be initiated by 
the system itself. For example, rather than receive a request 
from an application to execute a database command, the 
database system may be configured to identify and select 
“critical database commands from those that have already 
been executed by the database system. During periods of low 
use, the database server may execute one or more of those 
selected database commands in the background. The selected 
database commands are executed in self-verification mode to 
concurrently produce multiple copies of the result set, one 
based on the MF data and one based on the PF data. The result 
sets are compared to ensure that the result sets are identical. If 
not identical, an error message may be sent to a user and/or 
recorded in a log. If identical, data may be stored to indicate 
that the selected database command passed a self-verification 
test. After passing a threshold number of tests (where the 
threshold may be 1), the database server may be configured to 
cease to select the database command for automated back 
ground self-verification. 
0243 In one embodiment, rather than simply generate an 
alert when a self-verification test fails, the database command 
is repeatedly retested under different conditions. To ensure 
that the repeats of the operation are as similar as possible to 
the original operation that produced the self-verification 
error, the same database operation may be executed with the 
same Snapshot time as was used during the session that 
encountered the error. 
0244. In many database systems, numerous advanced 
query processing features may have virtual “on-off 
switches, where the default state is “on”. During the repeats of 
a previously-failed self-verification test, those features may 
be selectively turned on and off. If the self-verification passes 
when a particular feature is turned off, and fails when the 
same particular is turned on, then there is a likelihood that the 
error is related to that feature. 
0245 Having determined that use of a particular feature 
causes a self-verification problem with a particular database 
operation, a quarantine may be enforced. The scope of the 
quarantine may vary. For example, the database server may 
automatically turn off the particular feature for all future 
database commands, for all future database commands that 
target the same data as the database operation that encoun 
tered the error, or for only future executions of the specific 
database command that encountered the error. 

Hardware Overview 

0246 According to one embodiment, the techniques 
described herein are implemented by one or more special 
purpose computing devices. The special-purpose computing 
devices may be hard-wired to perform the techniques, or may 
include digital electronic devices such as one or more appli 
cation-specific integrated circuits (ASICs) or field program 
mable gate arrays (FPGAs) that are persistently programmed 
to perform the techniques, or may include one or more gen 
eral purpose hardware processors programmed to perform the 
techniques pursuant to program instructions in firmware, 
memory, other storage, or a combination. Such special-pur 
pose computing devices may also combine custom hard 
wired logic, ASICs, or FPGAs with custom programming to 
accomplish the techniques. The special-purpose computing 
devices may be desktop computer systems, portable com 
puter systems, handheld devices, networking devices or any 
other device that incorporates hard-wired and/or program 
logic to implement the techniques. 
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0247 For example, FIG. 9 is a block diagram that illus 
trates a computer system 900 upon which an embodiment of 
the invention may be implemented. Computer system 900 
includes a bus 902 or other communication mechanism for 
communicating information, and a hardware processor 904 
coupled with bus 902 for processing information. Hardware 
processor 904 may be, for example, a general purpose micro 
processor. 
0248 Computer system 900 also includes a main memory 
906, such as a random access memory (RAM) or other 
dynamic storage device, coupled to bus 902 for storing infor 
mation and instructions to be executed by processor 904. 
Main memory 906 also may be used for storing temporary 
variables or other intermediate information during execution 
of instructions to be executed by processor 904. Such instruc 
tions, when stored in non-transitory storage media accessible 
to processor 904, render computer system 900 into a special 
purpose machine that is customized to perform the operations 
specified in the instructions. 
0249 Computer system 900 further includes a read only 
memory (ROM) 908 or other static storage device coupled to 
bus 902 for storing static information and instructions for 
processor 904. A storage device 910, such as a magnetic disk, 
optical disk, or Solid-state drive is provided and coupled to 
bus 902 for storing information and instructions. 
(0250 Computer system 900 may be coupled via bus 902 to 
a display 912, such as a cathode ray tube (CRT), for display 
ing information to a computer user. An input device 914. 
including alphanumeric and other keys, is coupled to bus 902 
for communicating information and command selections to 
processor 904. Another type of user input device is cursor 
control 916, such as a mouse, a trackball, or cursor direction 
keys for communicating direction information and command 
selections to processor 904 and for controlling cursor move 
ment on display 912. This input device typically has two 
degrees of freedom in two axes, a first axis (e.g., X) and a 
second axis (e.g., y), that allows the device to specify posi 
tions in a plane. 
0251 Computer system 900 may implement the tech 
niques described herein using customized hard-wired logic, 
one or more ASICs or FPGAs, firmware and/or program logic 
which in combination with the computer system causes or 
programs computer system 900 to be a special-purpose 
machine. According to one embodiment, the techniques 
herein are performed by computer system 900 in response to 
processor 904 executing one or more sequences of one or 
more instructions contained in main memory 906. Such 
instructions may be read into main memory 906 from another 
storage medium, such as storage device 910. Execution of the 
sequences of instructions contained in main memory 906 
causes processor 904 to perform the process steps described 
herein. In alternative embodiments, hard-wired circuitry may 
be used in place of or in combination with software instruc 
tions. 

0252. The term “storage media' as used herein refers to 
any non-transitory media that store data and/or instructions 
that cause a machine to operate in a specific fashion. Such 
storage media may comprise non-volatile media and/or Vola 
tile media. Non-volatile media includes, for example, optical 
disks, magnetic disks, or Solid-state drives, such as storage 
device 910. Volatile media includes dynamic memory, such as 
main memory 906. Common forms of storage media include, 
for example, a floppy disk, a flexible disk, hard disk, solid 
state drive, magnetic tape, or any other magnetic data storage 
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medium, a CD-ROM, any other optical data storage medium, 
any physical medium with patterns of holes, a RAM, a 
PROM, and EPROM, a FLASH-EPROM, NVRAM, any 
other memory chip or cartridge. 
0253 Storage media is distinct from but may be used in 
conjunction with transmission media. Transmission media 
participates in transferring information between storage 
media. For example, transmission media includes coaxial 
cables, copper wire and fiber optics, including the wires that 
comprise bus 902. Transmission media can also take the form 
of acoustic or light waves, such as those generated during 
radio-wave and infra-red data communications. 

0254 Various forms of media may be involved in carrying 
one or more sequences of one or more instructions to proces 
sor 904 for execution. For example, the instructions may 
initially be carried on a magnetic disk or solid-state drive of a 
remote computer. The remote computer can load the instruc 
tions into its dynamic memory and send the instructions over 
a telephone line using a modem. A modem local to computer 
system 900 can receive the data on the telephone line and use 
an infra-red transmitter to convert the data to an infra-red 
signal. An infra-red detector can receive the data carried in the 
infra-red signal and appropriate circuitry can place the data 
on bus 902. Bus 902 carries the data to main memory 906, 
from which processor 904 retrieves and executes the instruc 
tions. The instructions received by main memory 906 may 
optionally be stored on storage device 910 either before or 
after execution by processor 904. 
0255 Computer system 900 also includes a communica 
tion interface 918 coupled to bus 902. Communication inter 
face 918 provides a two-way data communication coupling to 
a network link 920 that is connected to a local network 922. 
For example, communication interface 918 may be an inte 
grated services digital network (ISDN) card, cable modem, 
satellite modem, or a modem to provide a data communica 
tion connection to a corresponding type of telephone line. As 
another example, communication interface 918 may be a 
local area network (LAN) card to provide a data communi 
cation connection to a compatible LAN. Wireless links may 
also be implemented. In any such implementation, commu 
nication interface 918 sends and receives electrical, electro 
magnetic or optical signals that carry digital data streams 
representing various types of information. 
0256 Network link 920 typically provides data commu 
nication through one or more networks to other data devices. 
For example, network link 920 may provide a connection 
through local network 922 to a host computer 924 or to data 
equipment operated by an Internet Service Provider (ISP) 
926. ISP 926 in turn provides data communication services 
through the world wide packet data communication network 
now commonly referred to as the “Internet 928. Local net 
work 922 and Internet 928 both use electrical, electromag 
netic or optical signals that carry digital data streams. The 
signals through the various networks and the signals on net 
work link 920 and through communication interface 918, 
which carry the digital data to and from computer system 900, 
are example forms of transmission media. 
0257 Computer system 900 can send messages and 
receive data, including program code, through the network 
(s), network link920 and communication interface 918. In the 
Internet example, a server 930 might transmit a requested 
code for an application program through Internet 928, ISP 
926, local network 922 and communication interface 918. 
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0258. The received code may be executed by processor 
904 as it is received, and/or stored in storage device 910, or 
other non-volatile storage for later execution. 
0259. In the foregoing specification, embodiments of the 
invention have been described with reference to numerous 
specific details that may vary from implementation to imple 
mentation. The specification and drawings are, accordingly, 
to be regarded in an illustrative rather than a restrictive sense. 
The sole and exclusive indicator of the scope of the invention, 
and what is intended by the applicants to be the scope of the 
invention, is the literal and equivalent scope of the set of 
claims that issue from this application, in the specific form in 
which such claims issue, including any Subsequent correc 
tion. 
What is claimed is: 
1. A method comprising: 
maintaining, by a database server, at least two copies of 

each item in a particular set of data; 
wherein, for each item in the particular set of data, the at 

least two copies include: 
a first copy, stored on persistent storage, in a persistent 

format, and 
a second copy, stored in Volatile memory, in a mirror 

format; 
wherein the particular set of data includes a first item and a 

second item; 
when a particular transaction performs a first operation that 

makes a change to the first item, the database server: 
making the change to a copy of the first item that is in the 

persistent format; and 
storing, in an in-memory journal, an entry that indicates 

the change without updating any copy of the first item 
that is in the mirror format; 

after the particular transaction performs the change, when 
the particular transaction performs a second operation 
that involves the first item and the second item, the 
database server: 
obtaining a copy of the first item, which is a current 

version of the first item, based on the entry in the 
in-memory journal; and 

obtaining a copy of the second item, which is a current 
version of the second item, from volatile memory in 
the mirror format. 

2. The method of claim 1, wherein: 
the in-memory journal is a private journal; and 
the method further comprises, upon commit of the particu 

lar transaction, moving one or more entries, from the 
in-memory journal, to a global journal. 

3. The method of claim 2, further comprising: 
after commit of the particular transaction, a second trans 

action obtaining a copy of the first item, that is the 
current version of the first item, based on a particular 
entry in the global journal; 

wherein the second transaction is distinct from the particu 
lar transaction. 

4. The method of claim 1, wherein: 
the second operation involves a third item; and 
the method further comprises, when the particular transac 

tion performs the second operation that involves the first 
item and the second item, the database server obtaining 
a copy of the third item, which is a current version of the 
third item, from persistent format data. 
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5. The method of claim 4, wherein obtaining the copy of the 
third item from persistent format data comprises obtaining a 
cached copy of the third item from volatile memory. 

6. The method of claim 1, wherein making the change to 
the copy of the first item that is in the persistent format 
comprises making the change to a cached copy of the first 
item stored in volatile memory. 

7. A method comprising: 
maintaining, by a database server, at least two copies of 

each item in a particular set of data; 
wherein, for each item in the particular set of data, the at 

least two copies include: 
a copy, stored on persistent storage, in a persistent for 

mat; and 
a copy, Stored in Volatile memory, in a mirror format; 

maintaining an in-memory journal with particular entries 
that reflect committed changes, wherein each change of 
the committed changes: 
was made to a copy of an item, in the particular set of 

data, in the persistent format; and 
was not made to any copy of the item, in the particular set 

of data, in the mirror format; 
purging a portion of the particular entries from the in 
memory journal; 

wherein the portion of the particular entries includes infor 
mation for one or more changes to one or more items of 
the particular set of data; 

wherein purging the portion of the particular entries from 
the in-memory journal is performed without having 
applied the one or more changes to any copies, of the one 
or more items, in the mirror format; 

after purging the portion of the particular entries from the 
in-memory journal, providing, in response to a query, a 
copy of a particular item, of the particular set of data, in 
the mirror format. 

8. The method of claim 7, wherein purging the portion of 
the particular entries from the in-memory journal is per 
formed based, at least in part, on memory availability within 
the volatile memory. 

9. The method of claim 7 wherein: 
the mirror format copies of items, in the particular set of 

data, belong to a set of mirror format data; 
the set of mirror format data reflects values that were cur 

rent as of a particular time; 
the portion of the particular entries includes entries for 

changes committed between a first time and the particu 
lar time; 

the first time precedes the particular time; and 
the method further comprises: 

before purging the portion of the particular entries from 
the in-memory journal, using the in-memory journal 
in conjunction with the set of mirror format data as a 
Source for data items for transactions with Snapshot 
times between the first time and the particular time; 
and 

after purging the portion of the particular entries from 
the in-memory journal, using persistent format data, 
that includes persistent format copies of items in the 
particular set of data, as a source for data items for 
transactions with snapshot times between the first 
time and the particular time. 

10. The method of claim 7 wherein: 
the mirror format copies of items, in the particular set of 

data, belong to a set of mirror format data; 
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the set of mirror format data reflects values that were cur 
rent as of a particular time; 

the portion of the particular entries includes entries for 
changes committed between a first time and a second 
time; 

the particular time precedes both the first time and the 
second time; and 

the first time precedes the second time; 
the method further comprises: 

before purging the portion of the particular entries from 
the in-memory journal, using the in-memory journal 
in conjunction with the set of mirror format data as a 
Source for data items for transactions with Snapshot 
times between the particular time and the second 
time; and 

after purging the portion of the particular entries from 
the in-memory journal: 
using the in-memory journal in conjunction with the 

set of mirror format data as a source for data items 
for transactions with snapshot times between the 
particular time and the first time, and 

using persistent format data, that includes persistent 
format copies of items in the particular set of data, 
as a source for data items for transactions with 
Snapshot times between the first time and the sec 
ond time. 

11. The method of claim 10 further comprising after purg 
ing the portion of the particular entries from the in-memory 
journal: 

identifying, based on a delete vector for a particular trans 
action with a Snapshot time of a third time, one or more 
particular items that have not changed between the first 
time and the third time; 

wherein the third time is before the second time and the 
third time is after the first time; 

in response to identifying the one or more particular items 
that have not changed between the first time and the third 
time, using the in-memory journal in conjunction with 
the set of mirror format data as a source, for the one or 
more particular items, for the particular transaction. 

12. One or more non-transitory computer-readable media 
storing one or more sequences of instructions which, when 
executed by one or more processors, cause: 

maintaining, by a database server, at least two copies of 
each item in a particular set of data; 

wherein, for each item in the particular set of data, the at 
least two copies include: 
a first copy, stored on persistent storage, in a persistent 

format, and 
a second copy, stored in Volatile memory, in a mirror 

format; 
wherein the particular set of data includes a first item and a 

second item; 
when a particular transaction performs a first operation that 

makes a change to the first item, the database server: 
making the change to a copy of the first item that is in the 

persistent format; and 
storing, in an in-memory journal, an entry that indicates 

the change without updating any copy of the first item 
that is in the mirror format; 

after the particular transaction performs the change, when 
the particular transaction performs a second operation 
that involves the first item and the second item, the 
database server: 
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obtaining a copy of the first item, which is a current 
version of the first item, based on the entry in the 
in-memory journal; and 

obtaining a copy of the second item, which is a current 
version of the second item, from volatile memory in 
the mirror format. 

13. The one or more non-transitory computer-readable 
media of claim 12, wherein: 

the in-memory journal is a private journal; and 
the one or more sequences of instructions further comprise 

instructions which, when executed by one or more pro 
cessors cause, upon commit of the particular transaction, 
moving one or more entries, from the in-memory jour 
nal, to a global journal. 

14. The one or more non-transitory computer-readable 
media of claim 13, wherein the one or more sequences of 
instructions further comprise instructions which, when 
executed by one or more processors cause: 

after commit of the particular transaction, a second trans 
action obtaining a copy of the first item, that is the 
current version of the first item, based on a particular 
entry in the global journal; 

wherein the second transaction is distinct from the particu 
lar transaction. 

15. The one or more non-transitory computer-readable 
media of claim 12, wherein: 

the second operation involves a third item; and 
the one or more sequences of instructions further comprise 

instructions which, when executed by one or more pro 
cessors cause, when the particular transaction performs 
the second operation that involves the first item and the 
second item, the database server obtaining a copy of the 
third item, which is a current version of the third item, 
from persistent format data. 

16. The one or more non-transitory computer-readable 
media of claim 15, wherein obtaining the copy of the third 
item from persistent format data comprises obtaining a 
cached copy of the third item from volatile memory. 

17. The one or more non-transitory computer-readable 
media of claim 12, wherein making the change to the copy of 
the first item that is in the persistent format comprises making 
the change to a cached copy of the first item stored in Volatile 
memory. 

18. One or more non-transitory computer-readable media 
storing one or more sequences of instructions which, when 
executed by one or more processors, cause: 

maintaining, by a database server, at least two copies of 
each item in a particular set of data; 

wherein, for each item in the particular set of data, the at 
least two copies include: 
a copy, stored on persistent storage, in a persistent for 

mat; and 
a copy, Stored in Volatile memory, in a mirror format; 

maintaining an in-memory journal with particular entries 
that reflect committed changes, wherein each change of 
the committed changes: 
was made to a copy of an item, in the particular set of 

data, in the persistent format; and 
was not made to any copy of the item, in the particular set 

of data, in the mirror format; 
purging a portion of the particular entries from the in 
memory journal; 

May 19, 2016 

wherein the portion of the particular entries includes infor 
mation for one or more changes to one or more items of 
the particular set of data; 

wherein purging the portion of the particular entries from 
the in-memory journal is performed without having 
applied the one or more changes to any copies, of the one 
or more items, in the mirror format; 

after purging the portion of the particular entries from the 
in-memory journal, providing, in response to a query, a 
copy of a particular item, of the particular set of data, in 
the mirror format. 

19. The one or more non-transitory computer-readable 
media of claim 18, wherein purging the portion of the par 
ticular entries from the in-memory journal is performed 
based, at least in part, on memory availability within the 
Volatile memory. 

20. The one or more non-transitory computer-readable 
media of claim 18 wherein: 

the mirror format copies of items, in the particular set of 
data, belong to a set of mirror format data; 

the set of mirror format data reflects values that were cur 
rent as of a particular time; 

the portion of the particular entries includes entries for 
changes committed between a first time and the particu 
lar time; 

the first time precedes the particular time; and 
the one or more sequences of instructions further comprise 

instructions which, when executed by one or more pro 
CSSOS CalS. 

before purging the portion of the particular entries from 
the in-memory journal, using the in-memory journal 
in conjunction with the set of mirror format data as a 
Source for data items for transactions with Snapshot 
times between the first time and the particular time; 
and 

after purging the portion of the particular entries from 
the in-memory journal, using persistent format data, 
that includes persistent format copies of items in the 
particular set of data, as a source for data items for 
transactions with snapshot times between the first 
time and the particular time. 

21. The one or more non-transitory computer-readable 
media of claim 18 wherein: 

the mirror format copies of items, in the particular set of 
data, belong to a set of mirror format data; 

the set of mirror format data reflects values that were cur 
rent as of a particular time; 

the portion of the particular entries includes entries for 
changes committed between a first time and a second 
time; 

the particular time precedes both the first time and the 
second time; and 

the first time precedes the second time; 
the one or more sequences of instructions further comprise 

instructions which, when executed by one or more pro 
CSSOS CalS. 

before purging the portion of the particular entries from 
the in-memory journal, using the in-memory journal 
in conjunction with the set of mirror format data as a 
Source for data items for transactions with Snapshot 
times between the particular time and the second 
time; and 

after purging the portion of the particular entries from 
the in-memory journal: 
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using the in-memory journal in conjunction with the 
set of mirror format data as a source for data items 
for transactions with snapshot times between the 
particular time and the first time, and 

using persistent format data, that includes persistent 
format copies of items in the particular set of data, 
as a source for data items for transactions with 
Snapshot times between the first time and the sec 
ond time. 

22. The one or more non-transitory computer-readable 
media of claim 21 wherein the one or more sequences of 
instructions further comprise instructions which, when 
executed by one or more processors cause, after purging the 
portion of the particular entries from the in-memory journal: 

identifying, based on a delete vector for a particular trans 
action with a Snapshot time of a third time, one or more 
particular items that have not changed between the first 
time and the third time; 

wherein the third time is before the second time and the 
third time is after the first time; 

in response to identifying the one or more particular items 
that have not changed between the first time and the third 
time, using the in-memory journal in conjunction with 
the set of mirror format data as a source, for the one or 
more particular items, for the particular transaction. 
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