wo 2014/08581°7 A 1[I NI NP0 OO 000 O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

S June 2014 (05.06.2014)

WIPOIPCT

(10) International Publication Number

WO 2014/085817 Al

(51

eay)

(22)

(25)
(26)
(30)

1

(72

31

International Patent Classification:
HO4L 29/08 (2006.01) HO4L 29/06 (2006.01)

International Application Number:
PCT/US2013/072661

International Filing Date:
2 December 2013 (02.12.2013)

Filing Language: English
Publication Language: English
Priority Data:

13/691,826 2 December 2012 (02.12.2012) US

Applicant: MICROSOFT CORPORATION [US/US];
One Microsoft Way, Redmond, Washington 98052-6399

(US).

Inventors: KALLSTROM, Erik Jonas; c/o Microsoft
Corporation, LCA - International Patents, One Microsott
Way, Redmond, Washington 98052-6399 (US).
HUGHES, Kevin R.; ¢/o Microsoft Corporation, LCA -
International Patents, One Microsoft Way, Redmond,
Washington 98052-6399 (US). KUVSHINOV, Stanislay
S.; ¢/o Microsoft Corporation, LCA - International Patents,
One Microsoft Way, Redmond, Washington 98052-6399

(US).

(84)

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Designated States (unless otherwise indicated, for every Published:

kind of national protection available). AE, AG, AL, AM,

with international search report (Art. 21(3))

(54) Title: EFFICIENT DATA TRANSMISSION BETWEEN COMPUTING DEVICES

206

Client
1. Call identifyUnknownBlocks()

3. Return
Hash Values

Cloud Resource

208
2 5. Add
Unknown

Library

202~
4. Call UploadUnknownBlocksf)

Storage
Logic

Data BLOB

Blocks

BLOB

BLOB

BLOB

6. Store
Unknown
Data
Blocks

2. Copy Known
Data Blocks

FIG. 2

(57) Abstract: The subject disclosure is directed towards technology by which data transmission sizes are reduced when uploading
files over a network. By processing hash values corresponding to a plurality of data blocks of a file to potentially be uploaded to a
server, the server identifies any already known data block or blocks of the file. The server performs a server-local copy operation that
writes the known data block into a server-local copy of the file. If applicable, the server returns hash values corresponding to un-
known data blocks to a client, by which the client responds by uploading copies of the unknown data blocks. Accordingly, the client
and the server maintain the server-local copy of the file by transferring only unknown data blocks.

10

15

20

25

30

WO 2014/085817 PCT/US2013/072661

EFFICIENT DATA TRANSMISSION BETWEEN COMPUTING DEVICES

BACKGROUND

[0001] A number of organizations employ a local area network to facilitate data
communications between various devices (e.g., computing devices, peripheral devices,
storage devices and/or the like). Within a typical local area network, a server computer
(often simply referred to as a server) performs various data processing/storage tasks—
often at the direction of a client computer (often simply referred to as a client). To
illustrate one example, the client initiates a file upload process by transmitting a whole file
to the server for storage in network-accessible memory.
[0002] Uploading files having substantially large data sizes to a server in a traditional
client/server network environment is costly in terms of total time consumed, dollars spent
and/or computing resources required, including network bandwidth and/or storage
capacity. Uploading substantially similar or the same files, whether from various clients
or repeatedly from a same client, also incurs significant costs and/or delays. In particular,
poor or inadequate network connectivity exacerbates the cost associated with completing a
file upload process. A file upload process also may be hindered or restricted by a current
network environment. Servers running on certain networks, such as a cloud resource, are
designed to timeout file upload requests after a pre-determined threshold time period
clapses. Other networks prohibit file uploads that exceed a pre-determined payload size.
[0003] Previous solutions prescribe performing file uploads in piecemeal by splitting a
file into chunks and uploading each chunk separately. Such solutions, however, are
impractical when uploading files of considerable sizes. To demonstrate one such
impracticality, if a single chunk upload fails, the entire file upload process is restarted. A
more efficient solution for uploading files is desired.

SUMMARY
[0004] This Summary is provided to introduce a selection of representative concepts in a
simplified form that are further described below in the Detailed Description. This
Summary is not intended to identify key features or essential features of the claimed
subject matter, nor is it intended to be used in any way that would limit the scope of the
claimed subject matter.
[0005] Briefly, various aspects of the subject matter described herein are directed
towards efficient data transmissions over a network when uploading files. In one aspect,

while preparing a file for uploading, a computing device referred to as a client removes

10

15

20

25

30

WO 2014/085817 PCT/US2013/072661

certain data blocks, including any data block that is, without uploading any portion
thereof, reconstructible at the server. Some of the certain data blocks have been initialized
to particular default data and do not need to be transmitted because the server recreates
these data blocks using one or more server default storage values. In another aspect, the
client excludes extrancous copies of redundant data blocks. Eliminating these blocks from
the file upload process reduces a total length of time to complete the transfer of remaining
data blocks.

[0006] In one aspect, a server coupled to the client processes hash value data
corresponding to each data block of the file and identifies one or more locally stored data
blocks. In another aspect, the server returns hash value data for any data block that is
unknown to the server and/or not found in the server’s data store, which allows the client
to reduce file upload-related traffic by uploading unknown data blocks. In yet another
aspect, the server employs a library comprising reconstructible and/or reusable data blocks
to determine which data blocks of the file are known and which data blocks are unknown.
The storage logic uses the library to identify reusable and re-constructible data blocks,
within the same file or between similar instances of a same type of file. Accordingly, the
file upload size reduction approaches described herein are applicable to any file type.
[0007] Other advantages may become apparent from the following detailed description
when taken in conjunction with the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] The present invention is illustrated by way of example and not limited in the
accompanying figures in which like reference numerals indicate similar elements and in
which:

[0009] FIG. 1 is a block diagram illustrating an example system for reducing data
transmission size when uploading file data according to one or more example
implementations.

[0010] FIG. 2 is a block diagram representing an example architecture through which
known file data is locally copied and unknown file data is uploaded onto a cloud resource
according to one or more example implementations.

[0011] FIG. 3 is a flow diagram illustrating example steps for generating a copy of a file
comprising known data blocks according to one or more example implementations.
[0012] FIG. 4 is a flow diagram illustrating example steps for uploading a virtual
machine file using a library comprising data blocks according to one or more example

implementations.

10

15

20

25

30

WO 2014/085817 PCT/US2013/072661

[0013] FIG. 5 is a block diagram representing example non-limiting networked
environments in which various embodiments described herein can be implemented.
[0014] FIG. 6 is a block diagram representing an example non-limiting computing
system or operating environment in which one or more aspects of various embodiments
described herein can be implemented.

DETAILED DESCRIPTION

[0015] Various aspects of the technology described herein are generally directed towards
more efficient file uploads to a server through file upload size reduction. The technology
described herein exemplifies a number of approaches for achieving such a reduction.
Various software/hardware components initiate and execute file upload processes from
one or more computing device to one or more stores. In one example implementation,
using a storage logic coupled to a server, a computing device, referred to as a client,
determines whether a particular file includes one or more data blocks that are already
stored on the server and if possible, which data blocks are not found on the server and
therefore, considered to be unknown data blocks.

[0016] One example implementation utilizes a server-stored common data block library
comprising reusable and re-constructible data blocks. The volume of data being
transferred from the client to the server during each upload process may be significantly
reduced by constructing at least part of the file on the server from the data blocks stored in
the block library. Accordingly, only those data blocks not found in the library are actually
transferred over the network. The client only uploads the unknown blocks because the any
known data block can be locally copied from the library instead of over the network.
[0017] It should be understood that any of the examples herein are non-limiting. For
instance, one example describes uploading virtual machine files, such as Virtual Hard
Disk (VHD) files, to Microsoft® Windows® Azure-Based Storage, which represents one
example embodiment where the file upload optimization approaches described herein
improve a total time to upload a given VHD file over traditional client/server network
environments. With a common data block library residing in Microsoft® Windows®
Azure-Based Storage and populated with data blocks representing a virtual hard disk
containing a clean Microsoft® Windows® Operating System installation, uploading a
portion of a VHD is more efficient as compared to uploading the entire VHD file.
However, this is only one example, and other file types, environments and the like may
similarly benefit from the technology described herein. As such, the present invention is

not limited to any particular embodiments, aspects, concepts, structures, functionalities or

10

15

20

25

30

WO 2014/085817 PCT/US2013/072661

examples described herein. Rather, any of the embodiments, aspects, concepts, structures,
functionalities or examples described herein are non-limiting, and the present invention
may be used various ways that provide benefits and advantages in computing and data
communication in general.

[0018] FIG. 1 is a block diagram illustrating an example system for reducing data
transmission size when uploading file data according to one example implementation.
Example components of the example system include a client 102 and a server 104 that
communicate various data with each other via a network 106. The server 104 may be
configured to support the client 102 with computing operations, including those pertaining
to file data 108 as described herein.

[0019] The client 102 may refer to a computing device comprising various software
and/or hardware components. Although some embodiments of the client 102 include a
desktop computer, a laptop computer, a mobile device and/or the like, it is appreciated that
additional embodiments are envisioned by the present disclosure.

[0020] According to one example implementation that achieves file upload size
reduction, because certain file structure patterns are recognizable, the client 102 may filter
data blocks having such patterns from the file data 108. For instance, when storage space
associated with the server 104 is allocated, data within such storage space is initialized to a
particular (default) value (e.g., referred to as a server-default-storage-value). The client
102 may reduce a data transmission size when uploading the file data 108 by removing
any data block comprising the particular value and only transmitting those data blocks not
equal to that particular value. To illustrate an example, if a data block is initialized to a
default value of zero (0) upon allocation, the client 102 does not upload that data block to
the server 104.

[0021] The server 104 may be configured to provide the client 102 with various
computing resources/services, such as storage logic 110 configured to handle file upload
requests from the client 102. In order to complete these file upload requests, the storage
logic 110 may use a library 112 associated with common data blocks located within one or
more stores, including locally attached data stores. As an example, for each common data
block, the library 112 may include a corresponding hash value and a copy of / reference to
cach redundant memory location within a store 114. In one example implementation, the
storage logic 110 regulates a size of the library 112 by culling out seldom accessed data
blocks. The storage logic 110 may maintain the library 112 at a pre-determined maximum

size.

10

15

20

25

30

WO 2014/085817 PCT/US2013/072661

[0022] According to one example implementation, the client 102 initiates an upload
process by partitioning the file data 108 into a plurality of data blocks and computing hash
value data and offset information for each data block. The client 102 may remove
redundant data blocks and record each file offset in the offset information such that a data
block of the plurality of data blocks may map to more than one file offset. Before
transmitting any of the plurality of data blocks to the server 104, the client 102 issues at
least one file upload request comprising the hash value data that corresponds to at least a
portion of the plurality of data blocks. In response to the at least one file upload request,
the storage logic 110 searches the library 112 for matching hash values indicating at least a
portion of the file data 108 to be known and/or retrievable via a local network copy
operation. For each hash value in the library 112 that substantially/exactly matches a hash
value in the hash value data, the storage logic 110 identifies a corresponding common data
block and labels that data block to be a known data block of the plurality of data blocks.
[0023] Proceeding with the upload process for the file data 108, the storage logic 110
retrieves a copy of each known data block from the store 114, and/or one or more other
stores, via the network 106. Using the offset information provided by the client 102, the
storage logic 110 constructs a server-local copy comprising at least a portion of the file
data 108. The storage logic 110 creates a file 116 to store the server-local copy and
represent a reconstruction of the file data 108 at the store 114. According to one example
implementation, the storage logic 110 writes each known data block to corresponding file
offsets within the server-local copy. Alternatively, the storage logic 110 may include a
reference within the server-local file copy 116 to a memory location, in the library 112, the
store 114 and/or another store, corresponding to a known data block instead of creating a
copy.

[0024] The storage logic 110 may initially seed the library 112 with a set of commonly
used data blocks. Optionally, the storage logic 110 uses other data stores, besides the store
114, to identify commonly used data blocks. The storage logic 110 may search a store 118
for new data blocks to record in the library 112 and add to the store 114. The store 118
may be located on a same local area network as the client 102 and the server 104 or,
alternatively, the store 118 may be located on a cloud-based server in a private or public
cloud environment.

[0025] FIG. 2 is a block diagram representing an example architecture through which
known file data is locally copied and unknown file data is uploaded according to one

example implementation. Although the example architecture may be utilized in a cloud

10

15

20

25

30

WO 2014/085817 PCT/US2013/072661

computing embodiment, as illustrated, it is appreciated that the example architecture
described below is applicable to other computing environments. An on-premises server
cluster represents one example embodiment of another computer computing environment
in which the example architecture may facilitate efficient file uploads by reducing file
upload size.

[0026] A client 202, which may be any computing device, desires to upload various files
for storage on a cloud resource 204. FIG. 2 depicts example implementations of the
example architecture in which the client 202 initiates a request to upload a single file, for
example, a large virtual machine file, such as a virtual hard disk 206 (VHD). Optionally,
the client 202 may communicate a plurality of file upload requests in parallel such that
each upload request corresponds to a specific portion of the virtual hard disk 206. Each
request queues a set of hash values for a function call or the like to the cloud resource 204.
A storage logic 208, running within the cloud resource 204, processes the request and after
determining which data blocks are known/unknown, responds to the client 202 with a file
upload complete status or information identifying each unknown data block.
Alternatively, the response to the client 202 may identify each known data block. Using
known data blocks from a library 210 comprising common data blocks, the storage logic
208 creates a copy of at least a portion of the virtual hard disk 206. The client 202, if
necessary, responds with data transmissions of unknown data blocks in order to complete
the file upload process.

[0027] In one example implementation, the cloud resource 204 generally exposes an
application programming interface (API), such as a REST-based API, enabling
functionality over a block library comprising common data blocks, operation with a cloud-
based file system and/or access to other higher-level language code packages. The cloud
resource 204 may be configured to provide file uploading/downloading services to a
plurality of clients, including the client 202, by utilizing one or more file types to store
data from these clients. Because some cloud computing environments involve pricing
plans that charge on the basis of total data uploaded, the client 202 may benefit from the
savings attributed to smaller file upload sizes. Various example embodiments of the cloud
resource 204 employ a file type referred to as a BLOB (Binary Large Object) and a
container file type for storing one or more BLOBs. Microsoft® Windows® Azure-Based
Storage represents one example cloud resource in which block-based BLOBs typically

store streaming data (e.g., images, videos, documents and so forth).

10

15

20

25

30

WO 2014/085817 PCT/US2013/072661

[0028] Residing within the cloud resource 204, the library 210 may include a BLOB-
based file system through which data block reads/writes are completed. According to one
or more example implementations, the library 210 comprises a plurality of data blocks
that, when arranged at appropriate offsets, form a plurality of BLOBs. The library 210
may store the plurality of data blocks in a contiguous address space where each data
block’s hash value maps to a particular block identifier or, alternatively, in random
locations such that ecach data block’s hash value forms at least a portion of that data
block’s address.

[0029] The library 210 may be referred to herein as a data block library or simply a
block library. At least a portion of the library 210 includes data blocks that are common to
the cloud resource 204 (e.g., commonly used/selected data blocks). It is appreciated that
the library 210 also may include data blocks from other libraries and/or stores. For
example, the storage logic 208 may scan local and/or network-accessible data stores and
identify data blocks to add to the library 210. According to another example
implementation where data blocks are added to the library 210, the storage logic 208 may
access a different library comprising common data blocks that is located on another server
configuration, such as another cloud resource (e.g., a public cloud or a private cloud) or an
on-premises server with respect to the client 202. Furthermore, when the client 202
uploads new data blocks that are not found in the library 210, the new data blocks also are
added to the library 210, which benefits other users involved in uploads of similar files to
the cloud resource 204.

[0030] To upload the virtual hard disk 206 or a portion of the virtual hard disk 206, the
client 202 may call a function (e.g., a PUT function in BLOB-based storage) to initiate an
upload process in accordance with the API. The storage logic 208, in turn, may add the
virtual hard disk 206 to cloud-based file system, such as a BLOB-based system, by
constructing a BLOB 212 to maintain a copy 214 (e.g., a local copy) of at least one portion
the virtual hard disk 206 and providing the client 202 with access to the BLOB 212.
Hence, the virtual hard disk 206 is reconstructed on the cloud resource 204 in the form of
the copy 214, which may be herein referred to as the virtual hard disk copy 214, while
avoiding uploading of unnecessary data blocks.

[0031] In compliance with the example architecture, the client 202 partitions the virtual
hard disk 206 into a plurality of data blocks of fixed size (e.g., five-hundred and twelve
(512) KB) in one example implementation. According to other example implementations,

the example architecture may be adaptable to different data block sizes in order to

10

15

20

25

30

WO 2014/085817 PCT/US2013/072661

maximize data block reuse in a block library and/or minimize a number of data block
transmissions during file uploads. For each data block in to the virtual hard disk 206, the
client 202 may assign an identifier (e.g., a Base64 encoded string value referred to as a
block identifier or BlockId).

[0032] The client 202 communicates the block identifiers to the storage logic 208 in
order to determine which data blocks are known in the library 210 and which data blocks
are unknown and/or not found in the library 210. The storage logic 208 performs local
copying of the known data blocks from the library 210 to corresponding file offsets in the
virtual hard disk copy 214. Once all unknown/new data blocks are uploaded successfully,
the client 202 calls another function (e.g., a PUT Block List function) instructing the
storage logic 208 to commit and/or write the uploaded data blocks to corresponding file
offsets in the virtual hard disk copy 214.

[0033] The following illustrates file upload size reduction where at least one example
implementation of the client 202 scans the virtual hard disk 206 in order to identify data
blocks comprised substantially or entirely of default data (e.g., server-default-storage-
values). If the cloud resource 204 is configured to initialize storage space to a value of
zero (0), the client 202 identifies any data block within the virtual hard disk 206
comprising only zeros and precludes that data block from being uploaded to the cloud
resource 204.

[0034] For cach remaining data block, the client 202 computes an identifying hash value
and a set of file offsets corresponding to one or more addresses/locations within the file.
Because a data block may be used at multiple locations within the virtual hard disk 206,
the set of file offsets includes a corresponding file offset for each redundant location. In
one example implementation, the client 202 produces the set of file offsets by aggregating
data blocks having a same hash value, which enables the client 202 to transmit only one
copy of a redundant data block instead of multiple copies. When applied to uploading the
virtual hard disk, such an aggregation reduces a data transmission size since there is no
need for the client 202 to upload numerous copies of the same redundant data block.
[0035] According to one example implementation, as the client 202 aggregates the hash
values and builds offset information, the client 202 arranges the hash values into N groups
of M hash values where N and M are configurable values used to throttle the number of
calls made to the server during the upload process. Once there is a group of M hash

values, that group is queued for a function call directed towards the storage logic 208.

10

15

20

25

30

WO 2014/085817 PCT/US2013/072661

[0036] In one example implementation, the storage logic 208 exposes at least two
functions to the client 202, including a first function configured to identify one or more
known data blocks within the library 210 and a second function configured to upload new,
unknown data blocks to the cloud resource 204. FIG. 2 depicts the first function and the
second function as IdentifyUnknownBlocks() and UploadUnknownBlocks(), respectively.
[0037] FIG. 2 generally illustrates a file upload process using the example architecture in
which certain distinct operations of the file upload process are presented via numeric
labels (e.g., 1, 2, 3... and so forth). Operation One (1) depicts the client 202 commencing
the file upload process with an initial function call IdentifyUnknownBlocks(). As a
parameter to IdentifyUnknownBlocks(), the client 202 may communicate a list of hash
values corresponding to a plurality of data blocks that form at least a portion of the virtual
hard disk 206.

[0038] Executing the function call IdentifyUnknownBlocks() may entail the storage logic
208 to generate the virtual hard disk copy 214 and/or if applicable, to copy known data
blocks to the BLOB 212 as depicted by Operation Two (2) in FIG. 2. The storage logic
208 may compare the list of hash values with the library 210 to determine whether any
hash value resolves to a common data block. If, for instance, the library 210 includes at
least one matching hash value, the storage logic 208 performs a local copy operation for at
least one common data block that corresponds to the at least one matching hash value such
that the at least one common data block is stored at corresponding file offsets in the virtual
hard disk copy 214.

[0039] At Operation Three (3), the storage logic 208 is instructed to return one or more
hash values to the client 202 that are not found in the library 210, as depicted in FIG. 2.
For every hash value returned, the client 202 reads a data block from the virtual hard disk
206 starting at one of the corresponding file offsets. Optionally, the client 202 applies a
compression algorithm to reduce a number of bytes uploaded. Before adding a
compressed data block to the library 210, the storage logic 208 performs a complementary
decompression operation by which the compressed data block reverts back to an
uncompressed data block.

[0040] After generating a copy of each and every unknown block of the virtual hard disk
206, the client 202 performs Operation Four (4) as depicted in FIG. 2 and proceeds to call
UploadUnknownBlocks() with the unknown data block copies as parameters. At
Operation Five (5), the storage logic 208 may add the unknown data blocks into the library

210 along with identifying hash values, including the returned hash values to the function

10

15

20

25

30

WO 2014/085817 PCT/US2013/072661

call IdentifyUnknownBlocks() at Operation Three (3). As an alternative, the storage logic
208 uses other authentication data (e.g., a corresponding hash string) as a block identifier
for each unknown data block. FIG. 2 illustrates Operation Six (6) with the storage logic
208 proceeding to store the unknown data blocks at corresponding file offsets in the
virtual hard disk copy 214.

[0041] In yet another example implementation involving uploading files to the cloud
resource 204, the client 202 updates the virtual hard disk copy 214 as new data and/or
modified data is written to the virtual hard disk 206. As described herein, the client 202
uploads at least a portion of the virtual hard disk 206 corresponding to a particular point in
time; and in turn, the storage logic 208 uses the uploaded portion(s) to generate the virtual
hard disk copy 214 of the virtual hard disk 206.

[0042] As the virtual hard disk 206 changes (e.g., by installing a software component or
creating a new document), the client 202 may refresh the virtual hard disk copy 214 with
differential data, for example, by updating certain data blocks within modified data,
removing deleted data blocks and/or adding new data blocks. Once completed, the virtual
hard disk copy 214 becomes transformed into a virtual hard disk associated with a more
current point in time. By using the storage logic 208 to (e.g., periodically) update the
virtual hard disk copy 214, the client 202 realizes costs savings with each upload.

[0043] The client 202 may instruct the storage logic 208 to identify each and every
known data block within the differential data. The storage logic 208, using hash values
associated with the modified and/or new data blocks, searches the library 210 for data
blocks having matching hash values. If such a data block is found, the storage logic 208
performs a local copy operation that writes the found/known data block to the virtual hard
disk copy 214. With respect to any modified and/or new data block not found in the
library 210 and thus deemed unknown, the client 202 uploads each such data block to the
cloud resource 204, as described herein. The storage logic 208, in turn, stores each
unknown data block at corresponding file offsets in the virtual hard disk copy 214.

[0044] Thus, instead of replacing unchanged data blocks of the virtual hard disk copy
214, the client 202 uploads only the modified and/or new data blocks that are also not
found in the library 210. The client 202 may, alternatively, update the virtual hard disk
copy 214 by transmitting the modified and/or new data blocks, regardless of whether a
data block is known or unknown. This alternative implementation may be applied in order
to avoid latencies resulting from querying the library 210 if such latencies negate the

savings in reducing data transmission sizes.

10

10

15

20

25

30

WO 2014/085817 PCT/US2013/072661

[0045] In one example implementation, the virtual hard disk 206 refers to a virtual
machine template. In another example implementation, the virtual hard disk 206 includes
a “stateful” virtual machine where “stateful” generally refers to a virtual machine that has
been customized with installation/user specific data and hardware/software components.
Upon generating the virtual hard disk copy 214, the storage logic 208 may complete a
virtual machine migration that moves the “stateful” virtual machine to the cloud resource
204.

[0046] Example embodiments of the example architecture include computer networks
that provide data recovery services, such as backup/restore functionality, snapshot creation
and/or the like. Components of the example architecture enhance performance of these
data recovery services. To illustrate one example of such enhancement, the example
architecture enables efficient snapshot creation/modification by providing access to
known, common data blocks such that only unknown data blocks, if any, need to be
uploaded to complete the snapshot creation/modification. With respect to the virtual hard
disk 206, the example architecture may improve an initial snapshot creation phase by
decreasing a total time to create a virtual hard disk snapshot prior to a data recovery
service assuming control. Accordingly, the example architecture provides the data
recovery service, such as Microsoft® Hyper-V® Replica, with an initial virtual hard disk
snapshot while avoiding delays caused by uploading known data blocks.

[0047] In addition to the network topologies discussed herein (e.g., cloud computing,
client/server over a LAN and/or the like), file upload optimization may be realized in
hybrid cloud computing environments where substantially large file transfers between
clients and on-premises servers, or between on-premises servers and cloud based servers,
are executed. In one example hybrid cloud computing environment, an on-premises server
may seed a cloud-based block library with local block libraries being used for on-premises
file upload operations.

[0048] Computer networks employing hardware-assisted or software-assisted copying
and/or de-duplication systems, such as Storage Area Networks and Network Attached
Storage, can implement the example architecture and achieve a reduction in the data traffic
volume necessary to complete file upload, move, and copy operations. Reducing an
overall storage capacity of the cloud resource 204 may also be achieved by implementing
the example architecture. Accordingly, the cloud resource 204 can handle a same number

of users with less storage space.

11

10

15

20

25

30

WO 2014/085817 PCT/US2013/072661

[0049] FIG. 3 is a flow diagram illustrating example steps for generating a copy of a file
comprising known data blocks according to one or more example implementation. It is
appreciated that some example implementations omit one or more of the example steps. A
storage logic running on at least one computing device (e.g., the storage logic 110 of FIG.
1 or the storage logic 208 of FIG. 2) may be configured to perform the example steps. As
described herein, the at least one computing device may be configured to support another
computing device, referred to as a client, with data processing/storage services and include
any combination of the following: a local area network server, a virtual machine, a cloud-
based server and/or the like.

[0050] Step 302 commences the example steps and proceeds to step 304 where hash
values are processed that correspond to data blocks of the file to be uploaded. Based upon
these hash values and other indicia, step 306 determines whether any data block of the file
can also be found locally with respect to the at least one computing device. The client
communicates at least one file upload request comprising the hash values to which the
storage logic compares a plurality of known/common data blocks. If the storage logic
identifies one or more of these data blocks that resolve to one or more substantially
equivalent hash values from the client, each identified data block is determined to be a
known data block of the file and step 306 proceeds to step 308. If the storage logic fails to
identify any such data block, no known data block exists and step 306 proceeds to step
312.

[0051] Step 308 refers to copying at least one known data block from one or more stores
to corresponding file offsets in a local copy of the file. The storage logic may execute a
local copy operation to retrieve the at least one known data block from the one or more
stores, including local data stores, cloud-based stores and/or network-attached stores. Step
310, which may be omitted in some example implementations, is directed towards
referencing other known data blocks at corresponding file offsets in the local copy of the
file. Some known data blocks are likely not to be used, but can be retrieved, if necessary,
from each respective data store. Accordingly, including a reference to a memory location
corresponding to a known data block in a local or remote store may further optimize file
uploads.

[0052] Step 312 returns a hash value corresponding to each unknown data block. The
client 202 processes each hash value and transmit one or more unknown data blocks to the
server. Step 314 receives the one or more unknown data block(s) from the client and

stores each unknown data block at corresponding file offsets in the local file copy. Some

12

10

15

20

25

30

WO 2014/085817 PCT/US2013/072661

example implementations omit step 312 and step 314 if all of the data blocks of the file are
known. Step 316 terminates the example steps depicted in FIG. 3.

[0053] FIG. 4 is a flow diagram illustrating example steps for uploading a large file,
which in this example is a virtual machine file using a library comprising data blocks
according to one or more example implementation. A virtual hard disk file (VHD)
represents one example embodiment of the virtual machine file. One or more
hardware/software components running on a client device (e.g., a computing device, such
as the client 102 of FIG. 1 or the client 202 of FIG. 2) may be configured to perform the
example steps. It is appreciated that the library (e.g., the library 112 of FIG. 1 or the
library 210 of FIG. 2) may include any combination of commonly used data blocks, most
selected data blocks, data blocks anticipated as likely to be selected and/or the like. Step
402 commences the example steps and proceeds to step 404 where a virtual hard disk is
processed into a plurality of data blocks.

[0054] Step 406 represents a determination as to which ones of the plurality of data
blocks include default data. Examples of default data, as described herein, include server-
default storage values (e.g., zero (0)). If any data block substantially comprises the default
data (e.g., only zero (0) values), step 406 proceeds to step 408 where the client excludes at
least one data block from the plurality of data blocks such that the client is precluded from
transmitting the at least one data block when completing the virtual hard disk upload. If
no data block comprises the default data, step 406 skips step 408 and continues to step
410.

[0055] Step 410 is directed towards generating offset information and hash value data
for remaining data blocks of the virtual hard disk. Step 412 queries a common data block
library residing on a cloud resource using the hash value data to determine which one(s) of
the remaining data blocks need(s) to be uploaded to the cloud resource. In one example
implementation, the client calls a function requesting that the virtual hard disk file be
uploaded with the hash value data as a parameter. A server running on the cloud resource
may respond to the client by returning one or more hash values corresponding to one or
more data blocks that the server did not find in the common data block library. In one or
more example implementations, the client prepares to upload the one or more data blocks
to the cloud resource.

[0056] In other example implementations, some of the one or more data blocks may not
be found in the common data block library but may be found in other block libraries

rendering such data blocks to be no longer unknown. Accordingly, step 414 queries

13

10

15

20

25

30

WO 2014/085817 PCT/US2013/072661

another library for additional known data blocks using the hash value data. The other
library may include a block library in a local area network or in another cloud resource,
such as a private cloud resource or a public cloud resource. If the other library does not
contribute towards file upload optimization, step 414 can be omitted.

[0057] Step 416 refers to communicating each unknown data block of the virtual hard
disk to the cloud resource. The client may arrange the unknown data blocks into groups
comprising one or more data blocks and upload each group in parallel to the cloud
resource. Using the approaches described herein, if one group upload fails, the client may
retry uploading just that group. Instead of uploading the file in piecemeal fashion, for
instance, the client uploads only unknown data blocks reducing a total time to complete
the file upload process. Step 418 instructs the cloud resource to add the virtual machine
file to a cloud-based file system. In one example implementation, the client instructs the
storage logic to create the virtual machine file in a BLOB-based file system by allocating
storage space in a BLOB, storing the at least one unknown block in the virtual machine
file and performing a local copy of at least one known data block into the virtual machine
file from the block library or, alternatively, from the other library. The client, as an
alternative, may include, at corresponding file offsets in the virtual machine file stored in
the BLOB, a reference to each known data block. Step 420 terminates the example steps
depicted in FIG. 4.

EXAMPLE NETWORKED AND DISTRIBUTED ENVIRONMENTS

[0058] One of ordinary skill in the art can appreciate that the various embodiments and
methods described herein can be implemented in connection with any computer or other
client or server device, which can be deployed as part of a computer network or in a
distributed computing environment, and can be connected to any kind of data store or
stores. In this regard, the various embodiments described herein can be implemented in
any computer system or environment having any number of memory or storage units, and
any number of applications and processes occurring across any number of storage units.
This includes, but is not limited to, an environment with server computers and client
computers deployed in a network environment or a distributed computing environment,
having remote or local storage.

[0059] Distributed computing provides sharing of computer resources and services by
communicative exchange among computing devices and systems. These resources and
services include the exchange of information, cache storage and disk storage for objects,

such as files. These resources and services also include the sharing of processing power

14

10

15

20

25

30

WO 2014/085817 PCT/US2013/072661

across multiple processing units for load balancing, expansion of resources, specialization
of processing, and the like. Distributed computing takes advantage of network
connectivity, allowing clients to leverage their collective power to benefit the entire
enterprise. In this regard, a variety of devices may have applications, objects or resources
that may participate in the resource management mechanisms as described for various
embodiments of the subject disclosure.

[0060] FIG. 5 provides a schematic diagram of an example networked or distributed
computing environment. The distributed computing environment comprises computing
objects 510, 512, etc., and computing objects or devices 520, 522, 524, 526, 528, etc.,
which may include programs, methods, data stores, programmable logic, etc. as
represented by example applications 530, 532, 534, 536, 538. It can be appreciated that
computing objects 510, 512, etc. and computing objects or devices 520, 522, 524, 526,
528, etc. may comprise different devices, such as personal digital assistants (PDAs),
audio/video devices, mobile phones, MP3 players, personal computers, laptops, etc.
[0061] Each computing object 510, 512, etc. and computing objects or devices 520, 522,
524, 526, 528, etc. can communicate with one or more other computing objects 510, 512,
etc. and computing objects or devices 520, 522, 524, 526, 528, etc. by way of the
communications network 540, either directly or indirectly. Even though illustrated as a
single element in FIG. 5, communications network 540 may comprise other computing
objects and computing devices that provide services to the system of FIG. 5, and/or may
represent multiple interconnected networks, which are not shown. Each computing object
510, 512, etc. or computing object or device 520, 522, 524, 526, 528, etc. can also contain
an application, such as applications 530, 532, 534, 536, 538, that might make use of an
API, or other object, software, firmware and/or hardware, suitable for communication with
or implementation of the application provided in accordance with various embodiments of
the subject disclosure.

[0062] There are a variety of systems, components, and network configurations that
support distributed computing environments. For example, computing systems can be
connected together by wired or wireless systems, by local networks or widely distributed
networks. Currently, many networks are coupled to the Internet, which provides an
infrastructure for widely distributed computing and encompasses many different networks,
though any network infrastructure can be used for example communications made incident

to the systems as described in various embodiments.

15

10

15

20

25

30

WO 2014/085817 PCT/US2013/072661

[0063] Thus, a host of network topologies and network infrastructures, such as
client/server, peer-to-peer, or hybrid architectures, can be utilized. The “client” is a
member of a class or group that uses the services of another class or group to which it is
not related. A client can be a process, ¢.g., roughly a set of instructions or tasks, that
requests a service provided by another program or process. The client process utilizes the
requested service without having to “know” any working details about the other program
or the service itself.

[0064] In a client/ server architecture, particularly a networked system, a client is
usually a computer that accesses shared network resources provided by another computer,
e.g., a server. In the illustration of FIG. 5, as a non-limiting example, computing objects
or devices 520, 522, 524, 526, 528, etc. can be thought of as clients and computing objects
510, 512, etc. can be thought of as servers where computing objects 510, 512, etc., acting
as servers provide data services, such as receiving data from client computing objects or
devices 520, 522, 524, 526, 528, etc., storing of data, processing of data, transmitting data
to client computing objects or devices 520, 522, 524, 526, 528, etc., although any
computer can be considered a client, a server, or both, depending on the circumstances.
[0065] A server is typically a remote computer system accessible over a remote or local
network, such as the Internet or wireless network infrastructures. The client process may
be active in a first computer system, and the server process may be active in a second
computer system, communicating with one another over a communications medium, thus
providing distributed functionality and allowing multiple clients to take advantage of the
information-gathering capabilities of the server.

[0066] In a network environment in which the communications network 540 or bus is the
Internet, for example, the computing objects 510, 512, etc. can be Web servers with which
other computing objects or devices 520, 522, 524, 526, 528, etc. communicate via any of a
number of known protocols, such as the hypertext transfer protocol (HTTP). Computing
objects 510, 512, etc. acting as servers may also serve as clients, e.g., computing objects or
devices 520, 522, 524, 526, 528, etc., as may be characteristic of a distributed computing
environment.

EXAMPLE COMPUTING DEVICE

[0067] As mentioned, advantageously, the techniques described herein can be applied to
any device. It can be understood, therefore, that handheld, portable and other computing

devices and computing objects of all kinds are contemplated for use in connection with the

16

10

15

20

25

30

WO 2014/085817 PCT/US2013/072661

various embodiments. Accordingly, the below general purpose remote computer
described below in FIG. 8 is but one example of a computing device.

[0068] Embodiments can partly be implemented via an operating system, for use by a
developer of services for a device or object, and/or included within application software
that operates to perform one or more functional aspects of the various embodiments
described herein. Software may be described in the general context of computer
executable instructions, such as program modules, being executed by one or more
computers, such as client workstations, servers or other devices. Those skilled in the art
will appreciate that computer systems have a variety of configurations and protocols that
can be used to communicate data, and thus, no particular configuration or protocol is
considered limiting.

[0069] FIG. 8 thus illustrates an example of a suitable computing system environment
800 in which one or aspects of the embodiments described herein can be implemented,
although as made clear above, the computing system environment 800 is only one
example of a suitable computing environment and is not intended to suggest any limitation
as to scope of use or functionality. In addition, the computing system environment 800 is
not intended to be interpreted as having any dependency relating to any one or
combination of components illustrated in the example computing system environment 800.
[0070] With reference to FIG. 6, an example remote device for implementing one or
more embodiments includes a general purpose computing device in the form of a
computer 610. Components of computer 610 may include, but are not limited to, a
processing unit 620, a system memory 630, and a system bus 622 that couples various
system components including the system memory to the processing unit 620.

[0071] Computer 610 typically includes a variety of computer readable media and can be
any available media that can be accessed by computer 610. The system memory 630 may
include computer storage media in the form of volatile and/or nonvolatile memory such as
read only memory (ROM) and/or random access memory (RAM). By way of example,
and not limitation, system memory 630 may also include an operating system, application
programs, other program modules, and program data.

[0072] A user can enter commands and information into the computer 610 through input
devices 640. A monitor or other type of display device is also connected to the system bus
622 via an interface, such as output interface 650. In addition to a monitor, computers can
also include other peripheral output devices such as speakers and a printer, which may be

connected through output interface 650.

17

10

15

20

25

30

WO 2014/085817 PCT/US2013/072661

[0073] The computer 610 may operate in a networked or distributed environment using
logical connections to one or more other remote computers, such as remote computer 670.
The remote computer 670 may be a personal computer, a server, a router, a network PC, a
peer device or other common network node, or any other remote media consumption or
transmission device, and may include any or all of the elements described above relative to
the computer 610. The logical connections depicted in Fig. 6 include a network 672, such
local area network (LAN) or a wide area network (WAN), but may also include other
networks/buses. Such networking environments are commonplace in homes, offices,
enterprise-wide computer networks, intranets and the Internet.

[0074] As mentioned above, while example embodiments have been described in
connection with various computing devices and network architectures, the underlying
concepts may be applied to any network system and any computing device or system in
which it is desirable to improve efficiency of resource usage.

[0075] Also, there are multiple ways to implement the same or similar functionality, e.g.,
an appropriate API, tool kit, driver code, operating system, control, standalone or
downloadable software object, etc. which enables applications and services to take
advantage of the techniques provided herein. Thus, embodiments herein are contemplated
from the standpoint of an API (or other software object), as well as from a software or
hardware object that implements one or more embodiments as described herein. Thus,
various embodiments described herein can have aspects that are wholly in hardware, partly
in hardware and partly in software, as well as in software.

[0076] The word “exemplary” is used herein to mean serving as an example, instance, or
illustration. For the avoidance of doubt, the subject matter disclosed herein is not limited
by such examples. In addition, any aspect or design described herein as “exemplary” is
not necessarily to be construed as preferred or advantageous over other aspects or designs,
nor is it meant to preclude equivalent exemplary structures and techniques known to those
of ordinary skill in the art. Furthermore, to the extent that the terms “includes,” “has,”
“contains,” and other similar words are used, for the avoidance of doubt, such terms are
intended to be inclusive in a manner similar to the term “comprising” as an open transition
word without precluding any additional or other elements when employed in a claim.
[0077] As mentioned, the various techniques described herein may be implemented in

connection with hardware or software or, where appropriate, with a combination of both.

2% ¢ 2% ¢

As used herein, the terms “component,” “module,” “system” and the like are likewise

intended to refer to a computer-related entity, either hardware, a combination of hardware

18

10

15

20

25

30

WO 2014/085817 PCT/US2013/072661

and software, software, or software in execution. For example, a component may be, but
is not limited to being, a process running on a processor, a processor, an object, an
executable, a thread of execution, a program, and/or a computer. By way of illustration,
both an application running on computer and the computer can be a component. One or
more components may reside within a process and/or thread of execution and a component
may be localized on one computer and/or distributed between two or more computers.
[0078] The aforementioned systems have been described with respect to interaction
between several components. It can be appreciated that such systems and components can
include those components or specified sub-components, some of the specified components
or sub-components, and/or additional components, and according to various permutations
and combinations of the foregoing. Sub-components can also be implemented as
components communicatively coupled to other components rather than included within
parent components (hierarchical). Additionally, it can be noted that one or more
components may be combined into a single component providing aggregate functionality
or divided into several separate sub-components, and that any one or more middle layers,
such as a management layer, may be provided to communicatively couple to such sub-
components in order to provide integrated functionality. Any components described
herein may also interact with one or more other components not specifically described
herein but generally known by those of skill in the art.

[0079] In view of the example systems described herein, methodologies that may be
implemented in accordance with the described subject matter can also be appreciated with
reference to the flowcharts of the various figures. While for purposes of simplicity of
explanation, the methodologies are shown and described as a series of blocks, it is to be
understood and appreciated that the various embodiments are not limited by the order of
the blocks, as some blocks may occur in different orders and/or concurrently with other
blocks from what is depicted and described herein. Where non-sequential, or branched,
flow is illustrated via flowchart, it can be appreciated that various other branches, flow
paths, and orders of the blocks, may be implemented which achieve the same or a similar
result. Moreover, some illustrated blocks are optional in implementing the methodologies
described hereinafter.

CONCLUSION

[0080] While the invention is susceptible to various modifications and alternative
constructions, certain illustrated embodiments thereof are shown in the drawings and have

been described above in detail. It should be understood, however, that there is no

19

10

WO 2014/085817 PCT/US2013/072661

intention to limit the invention to the specific forms disclosed, but on the contrary, the
intention is to cover all modifications, alternative constructions, and equivalents falling
within the spirit and scope of the invention.

[0081] In addition to the various embodiments described herein, it is to be understood
that other similar embodiments can be used or modifications and additions can be made to
the described embodiment(s) for performing the same or equivalent function of the
corresponding embodiment(s) without deviating therefrom. Still further, multiple
processing chips or multiple devices can share the performance of one or more functions
described herein, and similarly, storage can be effected across a plurality of devices.
Accordingly, the invention is not to be limited to any single embodiment, but rather is to

be construed in breadth, spirit and scope in accordance with the appended claims.

20

WO 2014/085817 PCT/US2013/072661

CLAIMS
1. In a computing environment, a method performed at least in part on at least one
processor, comprising, reducing data transmission sizes for a server, including, processing
one or more hash values corresponding to one or more data blocks of file data to be
uploaded to the server, identifying at least one known data block of the file data based
upon the one or more hash values, and processing at least one unknown data block

transmitted over a network.

2. The method of claim 1, wherein identifying the at least one known data block
further comprises using a plurality of libraries to identify the at least one known data

block.

3. The method of claim 1 further comprising accessing the at least one known data
block from at least one of a public resource, a private resource, a hybrid resource, or a

network storage device.

4. The method of claim 1, wherein identifying the at least one known data block of
the file data further comprises processing offset information associated with the at least
one known block, including referencing a copy of each known data block at each
corresponding file offset and storing a copy of each unknown data block at each

corresponding file offset.

5. In a computing environment, a system, comprising, a storage logic within a
server and coupled to at least one store, wherein the storage logic configured to handle
requests from a client to upload file data onto the at least one store, wherein the requests
comprise hash value data, the storage logic further configured to access a library
comprising hash values for common data blocks within the at least one store, compare the
hash value data to the library to identify at least one known portion of the file data in the at
least one store, and construct a server-local file copy corresponding the at least one known

portion based upon the offset information.

6. The system of claim 5, wherein the storage logic is further configured to store at

least one unknown data block of the file data in the server-local file copy.

21

WO 2014/085817 PCT/US2013/072661

7. The system of claim 5, wherein the storage logic is configured to initially seed

the library with reusable data blocks.

8. The system of claim 5, wherein the client is configured to process the file data
into a plurality of data blocks, remove from the plurality of data blocks at least one server-
default data block and compute the offset information and the hash value data for at least

one remaining data block of the plurality of data blocks.

9. One or more computer-readable media having computer-executable instructions,
which when executed perform steps, comprising;:

processing a virtual machine file into a plurality of data blocks;

excluding any portion of the plurality of data blocks that comprises server-
default data;

generating offset information and hash value data for remaining data blocks of
the virtual machine file;

communicating requests, in parallel, to upload the virtual machine file, wherein
cach request comprising a portion of the hash value data, including querying a library
corresponding to data blocks in a network store; and

communicating an unknown portion of the virtual machine file for storing in the

at least one store.

10. The one or more computer-readable media of claim 9 having further computer-
executable instructions comprising:
instructing a server, running on a cloud resource, to add the virtual machine file

to a cloud-based file system associated with the library.

22

WO 2014/085817

Client

File Data ~ 108

PCT/US2013/072661
1/6
I~ 102
N— 4
106 -
| I~ 118
>| Store |
L I
o -

/ Request(s) /

Server
~~— 104
Storage ~_ 110
Logic
114~
Library Store
~— 112
File F™~—~ 116
S— S———

FIG. 1

PCT/US2013/072661

WO 2014/085817

2/6

sy20/g b1OQ
umou)y Ado) ¢

a01d
a01d

a01d

a01d

Aieiq

<>

umowjun
24015 °9

sy0;g
pIOg

¢ O

()syo01gumouyunpooldn fjpd

50JN0S8y Pno|D

syo0/g 21607 A&Ec\, YsoH
p10Qg abelolg uinyay s
umouyun
pPY S N
80¢

¥0Z

>

()s3oo1gumouunAfiruapj [jv3 1

ualo

—~—20¢

90¢

aHA

WO 2014/085817 PCT/US2013/072661

3/6

Process hash values corresponding to data [~_ 304
blocks of a file to be uploaded

NO

Copy known data blocks from one or more
stores to corresponding file offsets in a local
copy of the file

~~ 308

\ 4
Reference known data blocks at

corresponding file offsets in the local copy of
the file

!

Return a hash value corresponding to each
unknown data block

I

Process unknown data block(s) from client
and store at corresponding file offsets

~~— 310

~~— 312

~~— 314

End 316

FIG. 3

WO 2014/085817

PCT/US2013/072661

4/6

Process a virtual hard disk into a plurality of
data blocks

~— 404

Default data?

Remove any data block comprising default
data from the virtual hard disk

~— 408

N

Generate offset information and hash value
data for remaining data blocks of the virtual
hard disk

~~ 410

y

Query a common data block Library on a
cloud resource

~—412

;

Query another Library for additional known
data block

I~ 414

A 4

Communicate each unknown block of the
virtual hard disk to the cloud resource

~~— 410

|

Instruct the cloud resource to add the virtual
machine file to a cloud-based file system

~~— 418

End 420

FIG. 4

WO 2014/085817

Computing
Device 520

Object 526

5/6

nd

540

Z

PCT/US2013/072661

Object 524

Communications
Network/Bus

Computing
Device 528

ped

N

Server Object

FIG. 5

512

[]

N

S

Data

550

Store(s)

erver Object

PCT/US2013/072661

WO 2014/085817

6/6

079

(S)431NdINOD
J10N3Y

099

9 O

(s)ooeuoiu] |«
YJOMISN

¢¢9 sng WAISAS

{
059

Aeidsiq
“Ba yndino

029

Nd9 ‘NdD
“6'9 ‘(s)un
Buissao0.d

009 JUusSWUOIIAUT m:_u—smEOO

RIOWS\ WaISAS

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/072661

A. CLASSIFICATION OF SUBJECT MATTER

INV. HO4L29/08 HO4L29/06
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

HO4L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 20117087690 Al (CAIRNS RYAN [US]) 1-10
14 April 2011 (2011-04-14)

abstract

figures 1,2

paragraphs [0006], [0007]
paragraphs [0018], [0019], [0020]
A US 2009/271779 Al (CLARK JONATHAN [US]) 1-10
29 October 2009 (2009-10-29)
the whole document

D Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents : L
"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand

"A" document defining the general state of the art which is not considered the principle or theory underlying the invention

to be of particular relevance
"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be

filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone

cited to establish the publication date of another citation or other "Y* document of particular relevance; the claimed invention cannot be

special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later than
the priority date claimed "&" document member of the same patent family

Date of the actual completion of the international search Date of mailing of the international search report

10 March 2014 17/03/2014

Name and mailing address of the ISA/ Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, .
Fax: (+31-70) 340-3016 Pereira, Mafalda

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2013/072661
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2011087690 Al 14-04-2011 US 2011087690 Al 14-04-2011
US 2011087776 Al 14-04-2011
US 2011087960 Al 14-04-2011
US 2011088039 Al 14-04-2011
WO 2011046931 Al 21-04-2011
US 2009271779 Al 29-10-2009 US 2009271779 Al 29-10-2009
WO 2009132261 Al 29-10-2009

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - claims
	Page 23 - claims
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - wo-search-report
	Page 31 - wo-search-report

