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QUANTUM CIRCUIT SIMULATION

RELATED APPLICATIONS

[0001] The present application is a continuation of Inter-
national Application No. PCT/CN2022/133406, filed on
Nov. 22, 2022 and entitled “QUANTUM CIRCUIT SIMU-
LATION METHOD AND APPARATUS, DEVICE, STOR-
AGE MEDIUM, AND PROGRAM PRODUCT,” which
claims priority to Chinese Patent Application No.
202210077584.7, filed on Jan. 24, 2022 and entitled
“QUANTUM CIRCUIT SIMULATION METHOD AND
APPARATUS, DEVICE, STORAGE MEDIUM, AND
PROGRAM PRODUCT.” The entire disclosures of the prior
applications are hereby incorporated by reference in their
entirety.

FIELD OF THE TECHNOLOGY

[0002] Embodiments of this disclosure relate to the field of
quantum technologies, including a quantum circuit simula-
tion method and apparatus, a device, a storage medium, and
a program product.

BACKGROUND OF THE DISCLOSURE

[0003] Quantum circuit simulation includes simulating
and approximating the behavior of a quantum computer
through a classical computer and numerical computation.
[0004] Currently, the efficiency of quantum circuit simu-
lation is not high.

SUMMARY

[0005] Embodiments of this disclosure provide a quantum
circuit simulation method and apparatus, a device, a storage
medium (e.g., non-transitory computer readable storage
medium), and a program product.

[0006] Some aspects of the disclosure provide a method of
a quantum circuit simulation. The method includes receiving
a primitive function for the quantum circuit simulation and
determining at least a first input parameter of the primitive
function. The quantum circuit simulation includes a plurality
of first tensors respectively for the first input parameter. The
method includes converting the primitive function to a target
function according to the primitive function and the at least
the first input parameter. The target function includes a
converted first input parameter corresponding to the first
input parameter, the plurality of first tensors are spliced into
a second tensor for the converted first input parameter in the
quantum circuit simulation. The method further includes
obtaining an execution result of the target function accord-
ing to at least the second tensor for the converted first input
parameter, and performing the quantum circuit simulation
based on the execution result of the target function.

[0007] Some aspects of the disclosure provide an appara-
tus for a quantum circuit simulation. The apparatus includes
processing circuitry configured to receive a primitive func-
tion for the quantum circuit simulation and determine at
least a first input parameter of the primitive function. The
quantum circuit simulation includes a plurality of first
tensors respectively for the first input parameter. The pro-
cessing circuitry is configured to convert the primitive
function to a target function according to the primitive
function and the at least the first input parameter. The target
function includes a converted first input parameter corre-
sponding to the first input parameter, and the plurality of first
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tensors are spliced into a second tensor for the converted first
input parameter in the quantum circuit simulation. The
processing circuitry is further configured to obtain an execu-
tion result of the target function according to at least the
second tensor for the converted first input parameter and
perform the quantum circuit simulation based on the execu-
tion result of the target function.

[0008] Some aspects of the disclosure provide a non-
transitory computer-readable storage medium storing
instructions which when executed by at least one processor
cause the at least one processor to perform the method of the
quantum circuit simulation.

[0009] The technical solutions provided in the embodi-
ments of this disclosure may bring the various beneficial
effects. The idea of vector parallelism is introduced into the
quantum circuit simulation. The primitive function is con-
verted to the target function, the input parameter of the target
function including the converted first input parameter cor-
responding to the first input parameter that needs to be
parallelized, and the tensor corresponding to the converted
first input parameter being the result obtained by splicing the
plurality of parallelized tensors corresponding to the first
input parameter. By executing the target function, a plurality
of original computing processes can be parallelized into a
single computing process, which can be completed in the
same time as the single computation, thereby fully improv-
ing the efficiency of quantum circuit simulation.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] FIG. 1 is a flowchart of a quantum circuit simula-
tion method according to an embodiment of this disclosure.

[0011] FIG. 2 is a functional schematic diagram of the
vmap interface according to an embodiment of this disclo-
sure.

[0012] FIG. 3 is a flowchart of a quantum circuit simula-
tion method according to another embodiment of this dis-
closure.

[0013] FIG. 4 is a schematic diagram of numerical simu-
lation of a target quantum circuit according to an embodi-
ment of this disclosure.

[0014] FIG. 5 is a schematic diagram of parallelized
processing of an input wave function according to an
embodiment of this disclosure.

[0015] FIG. 6 is a schematic diagram of parallelized
optimization of a circuit variation parameter according to an
embodiment of this disclosure.

[0016] FIG. 7 is a schematic diagram of a tensor network
including parameterized structural information according to
an embodiment of this disclosure.

[0017] FIG. 8 is a schematic diagram of parallelized
generation of a circuit structure according to an embodiment
of this disclosure.

[0018] FIG. 9 is a schematic diagram of an experimental
result according to an embodiment of this disclosure.

[0019] FIG. 10 is a block diagram of a quantum circuit
simulation apparatus according to an embodiment of this
disclosure.

[0020] FIG. 11 is a schematic diagram of a computer
device according to an embodiment of this disclosure.
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DESCRIPTION OF EMBODIMENTS

[0021] In order to make objectives, technical solutions,
and advantages of this disclosure clearer, implementations
of this disclosure are further described in detail below with
reference to the drawings.

[0022] Before description of the technical solutions of this
disclosure, some key terms in this disclosure are explained.

[0023] 1. Quantum computing is, for example, a basic unit
for data storage based on a quantum logic computing way
such as a qubit (or quantum bit).

[0024] 2. Qubit is, for example, a basic unit of quantum
computing. Conventional computers use Os and 1s as basic
units of binary, while quantum computing can process Os
and 1s simultaneously, and quantum computing systems
may be in a linear superposition state of Os and 1s, that is:
ly)=al0)+BI1) . o, B represent complex probability ampli-
tudes of the system on 0 and 1. Their modular squares oI,
IBI? respectively represent probabilities of being at 0 and 1.

[0025] 3. Quantum circuit is, for example, a representation
of a quantum general purpose computer, which represents a
hardware implementation of a corresponding quantum algo-
rithm/program in a quantum gate model. If the quantum
circuit includes an adjustable parameter for controlling a
quantum gate, the quantum circuit is referred to as a param-
eterized quantum circuit (PQC) or a variational quantum
circuit (VQC), which are the same concept.

[0026] 4. Hamiltonian is, for example, a Hermitian matrix
describing the total energy of a quantum system. Hamilto-
nian is a physical term that describes the total energy of a
system, which is usually represented by H.

[0027] 5. Eigenstate for the Hamiltonian matrix H in an
example, includes a solution satisfying the equation
Hiy=Ely) which can be referred to as an eigenstate ) of
H, which has the eigenenergy E. The ground state corre-
sponds to a lowest energy eigenstate of the quantum system.

[0028] 6. Classical quantum hybrid computing is, for
example, a computing paradigm in which a quantum circuit
(such as the PQC) is used in an inner layer to compute a
corresponding physical quantity or a loss function and a
conventional classical optimizer is used in an outer layer to
adjust a variational parameter of the quantum circuit, which
can maximize the advantages of the quantum computing and
is believed to be one of the significant directions with
potential to prove the advantages of quantum. The paradigm
of the classical quantum hybrid computing can also be
referred to as a variational quantum algorithm.

[0029] 7. Noisy intermediate-scale quantum (NISQ):
Recently, medium-scale quantum hardware with noise is the
current stage and research focus of development of the
quantum computing. In this stage, the quantum computing
temporarily cannot be used as a general-purpose computing
engine due to limitations such as the scale and noise.
However, in some aspects, the quantum computing can
achieve results that surpass those of the strongest classical
computer, which is usually referred to as quantum hege-
mony or quantum advantage.

[0030] 8. Variational quantum eigensolver (VQE for short)
is, for example, a typical classical quantum hybrid comput-
ing paradigm that estimates the ground state energy of a
specific quantum system through a variational circuit (PQC/
VQC), which is widely used in the field of quantum chem-
istry.
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[0031] 9. Pauli string is, for example. a term formed by a
direct product of a plurality of Pauli matrices at different
lattice points. A general Hamiltonian usually may be decom-
posed into a sum of a group of Pauli strings. Measurements
by a VQE are generally performed term by term by parti-
tioning Pauli strings. An expected value of each Pauli string
may be estimated by averaging a plurality of measurements
on the quantum circuit.

[0032] 10. Bitstring (also referred to as classic bitstring) is,
for example, a string of numbers formed by O and 1. Each
classical result measured by a quantum circuit may be
represented by a 0 and a 1 for spin up and spin down
respectively in a measurement-based spin configuration, and
thus an overall measurement result corresponds to a bit
string. A measured value of each measurement of the Pauli
string is provided by bitstring computation.

[0033] 11. Quantum circuit software simulation includes,
for example, simulating and approximating the behavior of
a quantum computer through a conventional computer and
numerical computation. The quantum circuit software simu-
lation may be referred to as “quantum circuit simulation” for
short.

[0034] 12. Vector parallelism may be implemented by
performing hardware-supported vectorization on all opera-
tors of a primitive function one by one, so as to implement
high-speed parallelism of high-level functions. This imple-
mentation is usually performed together with static graph
compiling. For example, for a function f(x)=2xx, when 1 is
inputted, 2 is returned, that is, f(1)=2. In a vector parallelism
version fv(x), fv([1, 2])=[2, 4] may be implemented. This
process does not require successive computing. Instead, a
vector instruction set (or referred to as a vectorized instruc-
tion set) on the hardware may be used to complete the
computations at one time. Therefore, the computing time of
fv([1,2]) is almost the same as that of f (1), which is half less
than that spent for computing f(1) and f(2) successively. If
a size of a vector dimension (a parallelism dimension/batch
dimension) further increases, the acceleration is more
prominent. In this example, f(x) is the primitive function,
and the multiplication is the unique operator that appears.
Vectorization support for the computation depends on the
hardware, such as a vector instruction set on a central
processing unit (CPU) or a graphics processing unit (GPU).
f herein is a high-level function. An interface encapsulated
in a modern machine learning framework may be used to
implement vector parallelism without a need to consider
hardware details and the underlying implementation off. The
static map compiling is a process provided by the modern
machine learning framework to compile and fuse application
programming interfaces (APIs) for high-level computing
into underlying hardware operations, which can accelerate
numerical computations.

[0035] 13. Pauli operators, also referred to as Pauli matri-
ces, may refer to a set of three 2x2 complex unitary
Hermitian matrices (also referred to as unitary matrices), and
are usually represented by the Greek alphabet ¢ (Sigma). A
Pauli operator X is

_[0 1]
O—X_ 1 05
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a Pauli operator Y is

and a Pauli operator Z is

_[1 0]
7=y |

[0036] 14. Differentiable architecture search (DARTS for
short) is, for example, a popular neural architecture search
(NAS) solution that implements end-to-end differential
computation and gradient descent search in a super network
by allowing a plurality of operation layers between different
nodes to be weighted and added together, so that the
searching speed of the neural network structure is greatly
improved. The DARTS does not search for discrete candi-
date structures, but instead makes the search space continu-
ous, which can optimize the network structure based on the
performance of a validation set through gradient descent.
The gradient based optimization algorithm allows DARTS
to compete with the current top-notch performance and
reduce computation by a plurality of orders of magnitude
compared to inefficient black box search.

[0037] 15. Quantum architecture search (QAS for short)
is, for example, a general name of a series of works and
solutions used for attempting to perform automatic and
programmed search for the structure, mode, and layout of a
quantum circuit. Conventionally, a greedy algorithm, rein-
forcement learning, or a genetic algorithm is usually used as
the core technology of quantum structure search. The new
differentiable quantum structure search technology can
iteratively evaluate the advantages and disadvantages of
quantum circuit structures in batches with high throughput.
[0038] 16. Tensor network includes, for example, a series
of tensors and connection information between the tensors,
which can represent high-dimensional tensors with less
information. Each quantum circuit may be mapped into a
tensor network. Therefore, the quantum circuit may be
simulated by the way of the contraction of the tensor
network.

[0039] In the application scenario of quantum circuit
simulation, for some dimensions that need to be parallelized,
a simple serial loop computation is usually performed, that
is, a simple for loop is performed to implement the corre-
sponding a plurality of computations. In this case, the
parallelism is 0. Therefore, if a size of the to-be-parallelized
dimension is 1000, 1000 times the time for the single
computation is required to implement software simulation.
[0040] A bit of more optimized solution is to accelerate
processing of to-be-parallelized computing parts by using a
multiprocessing or multithreading technology. This solution
allows different computations that need a parallelism dimen-
sion to be distributed over different processes for simulta-
neous processing. However, the solution is usually limited
by hardware architectures and operating systems, and needs
to be implemented separately for different hardware. The
reason is that a high-level program interface implemented
through multiprocessing or multithreading significantly
relies on hardware details and operating systems, and there-
fore requires rewriting of code when run on different soft-
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ware and hardware, resulting in low code reusability. This
increases the development and usage costs by a large
amount, and the support for multiprocessing and multi-
threading on heterogeneous hardware such as a GPU and a
tensor processing unit (TPU) is not user-friendly. In a
multiprocessing case, each task is computed only on a single
process, so a vector operation set (that is, hardware’s intrin-
sic vector operation set support) is underutilized. In addition,
the multiprocessing parallelism is limited by a number of
CPU cores, and a single CPU may usually run only several
or dozens of computing modules simultaneously. For a
to-be-parallelized dimension of 1000, a time several tens of
times or more time is required to complete the single
computation.

[0041] This disclosure proposes to introduce the idea of
vector parallelism into the quantum circuit simulation. In
essence, in the vector parallelism in this disclosure, a
parallel dimension is considered as an additional dimension
of linear algebra, and a batch parallelism capability is
directly implemented from the underlying operator, which
can give full play to the advantages of hardware such as a
GPU. For example, for a parallel dimension size of 1000, the
same time as the single computation is usually required.
Therefore, the efficiency of large-scale quantum simulations
is much higher than that of previous solutions. In addition,
the solution has a desirable design interface and is indepen-
dent of backend hardware and system details, which is
extremely convenient for use and development.

[0042] Steps in a quantum circuit simulation method pro-
vided in the embodiments of the disclosure may be per-
formed by a classic computer, such as a personal computer
(PC). For example, the method is implemented by executing
a corresponding computer program through the classic com-
puter. In the following method embodiments, for ease of
explanation, the steps are performed by a computer device,
for example.

[0043] FIG. 1 is a flowchart of a quantum circuit simula-
tion method according to an embodiment of this disclosure.
Steps of the method may be performed by a computer
device, such as a classical computer. The method may
include the following steps (110-140):

[0044] In step 110, a primitive function for quantum
circuit simulation is acquired, and a first input parameter in
the primitive function that needs to be parallelized is deter-
mined.

[0045] A process of the quantum circuit simulation may
include one or more of steps such as processing an input
wave function, optimizing a circuit variation parameter,
generating circuit noise, generating a circuit structure, and
performing circuit measurement. In some embodiments, the
primitive function is configured to implement a target step in
the quantum circuit simulation. The target step includes but
is not limited to any one of processing an input wave
function, optimizing a circuit variation parameter, generat-
ing circuit noise, generating a circuit structure, and perform-
ing circuit measurement. For example, the primitive func-
tion is configured to process an input wave function. The
primitive function is configured to compute an input wave
function of a target quantum circuit to obtain a correspond-
ing computing result. For example, the primitive function is
configured to optimize the circuit variation parameter. The
primitive function is configured to optimize a circuit varia-
tion parameter of the target quantum circuit, to obtain an
optimized circuit variation parameter.
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[0046] The primitive function may have one or more input
parameters. The above first input parameter is the input
parameter in the primitive function that needs to be paral-
lelized. There may be one or more first input parameters. For
example, the primitive function f is denoted as f (x, y, W),
which indicates that the primitive function f has three input
parameters, including X, y, and w. It is assumed that x in the
three input parameters of the primitive function fneeds to be
parallelized. In this case, the above first input parameter is
X, and the other two parameters y and w do not need to be
parallelized. Alternatively, it is assumed that x and y in the
three input parameters of the primitive function f need to be
parallelized. In this case, the above first input parameter is
x and y, and the other one parameter w does not need to be
parallelized.

[0047] A different primitive function may have a different
input parameter, and therefore has a different first input
parameter that needs to be parallelized. In actual application,
after the primitive function is determined, the input param-
eter is determined. One or more input parameters suitable for
parallelism may be selected as the first input parameter
according to an actual situation.

[0048] In step 120, the primitive function is converted to
a target function according to the primitive function and the
first input parameter, an input parameter of the target func-
tion includes a converted first input parameter corresponding
to the first input parameter, and a tensor corresponding to the
converted first input parameter is a result obtained by
splicing a plurality of parallelized tensors corresponding to
the first input parameter;

[0049] The input parameter of the target function includes
the converted first input parameter corresponding to the first
input parameter that needs to be parallelized. In some
embodiments, if the input parameter of the primitive func-
tion further includes a target input parameter that does not
need to be parallelized in addition to the first input parameter
that needs to be parallelized, the target function may be
obtained in the following way: modifying the first input
parameter in the primitive function to the converted first
input parameter and retaining the target input parameter that
does not need to be parallelized, to obtain the target function.
That is to say, the input parameter of the target function not
only includes the converted first input parameter corre-
sponding to the first input parameter, but also includes the
target input parameter that does not need to be parallelized.
Exemplarily, the primitive function f'is denoted as f (x, y, w).
It is assumed that x and y in the three input parameters of the
primitive function f need to be parallelized and w does not
need to be parallelized. In this case, a target function f' may
be denoted as f' (xs, ys, w). Xs represents converted x
corresponding to the input parameter X, ys represents con-
verted y corresponding to the input parameter y, and the
input parameter w is not converted since it does not need to
be parallelized.

[0050] Insome embodiments, if the input parameter of the
primitive function does not include the target input param-
eter that does not need to be parallelized, the target function
may be obtained in the following way: modifying the first
input parameter in the primitive function to the converted
first input parameter, to obtain the target function. Exem-
plarily, the primitive function f is denoted as f (x, y, w). It
is assumed that the three input parameters of the primitive
function f all need to be parallelized. In this case, a target
function f' may be denoted as f' (xs, ys, wWs). Xs represents
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converted x corresponding to the input parameter X, ys
represents converted y corresponding to the input parameter
y, and ws represents converted w corresponding to the input
parameter w.

[0051] In some embodiments, if a parallelism size (also
referred to as a “batch size”) corresponding to the first input
parameter is n, n being an integer greater than 1, it means
that n tensors corresponding to the first input parameter are
parallelized. In this case, the tensor corresponding to the
converted first input parameter is an integration result (or a
“splicing result”) of the n tensors. In this embodiment of this
disclosure, the tensor is a high-dimensional array including
n;xn,Xxn, . .. xn, numbers, m being an order of the tensor,
m being a positive integer. When m=1, the tensor is a
one-dimensional array, that is, a vector. When m=2, the
tensor is a two-dimensional array, that is, a matrix. Certainly,
m may alternatively be an integer of 3 or greater than 3, that
is, the dimension number of the tensor array may be infi-
nitely expanded.

[0052] In some embodiments, a plurality of parallelized
tensors corresponding to the first input parameter are spliced
in a target dimension to obtain the tensor corresponding to
the converted first input parameter, a size of the tensor
corresponding to the converted first input parameter in the
target dimension corresponds to a number of the parallelized
tensors corresponding to the first input parameter.

[0053] Exemplarily, as shown in FIG. 2, for the input
parameter x in the primitive function f (x, y, w) that needs
to be parallelized, it is assumed that a corresponding paral-
lelism size thereof is n. In this case, the n tensors corre-
sponding to the input parameter x are spliced in the target
dimension, and a tensor obtained by the splicing is a tensor
corresponding to xs. In some embodiments, a value of n may
be 2, 10, 50, 100, 200, 500, 1000, or the like, which may be
set according to an actual need. This is not limited in this
disclosure.

[0054] In step 130, an execution result corresponding to
the target function is obtained according to the input param-
eter of the target function.

[0055] After the primitive function is converted to the
target function, the target function is executed to obtain the
corresponding execution result. In some embodiments, the
target function is executed through vector parallelism to
obtain the execution result corresponding to the target func-
tion. The converted first input parameter included in the
input parameter of the target function is processed through
vector parallelism, to obtain the execution result correspond-
ing to the target function. In some embodiments of this
disclosure, the idea of vector parallelism is introduced into
the quantum circuit simulation. Since the input parameter of
the target function includes the converted first input param-
eter, the tensor corresponding to the converted first input
parameter may be processed through vector parallelism, so
that the execution result corresponding to the target function
which can be computed directly through one step.

[0056] It is assumed that an execution time of the primi-
tive function is t, and the parallelism size is n. If the
primitive function is executed n times through simple loop,
the required total time is nxt. After the primitive function is
converted to the target function, a time required to execute
the target function through vector parallelism is theoretically
t, which is greatly reduced compared to nxt. In addition, as
n increases, the reduction will become more prominent.
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[0057] In step 140, the quantum circuit simulation is
performed based on the execution result corresponding to
the target function.

[0058] After the execution result corresponding to the
target function is obtained, the quantum circuit simulation
may be performed. For example, the primitive function is
configured to process the input wave function. Correspond-
ingly, the execution result corresponding to the target func-
tion includes processing results respectively corresponding
to a plurality of input wave functions. Subsequently, steps
such as optimizing the circuit variation parameter may be
performed based on the processing results respectively cor-
responding to the plurality of input wave function. For
example, the primitive function is configured to optimize the
circuit variation parameter. Correspondingly, the execution
result corresponding to the target function includes optimi-
zation results respectively corresponding to a plurality of
groups of circuit variation parameters. Subsequently, an
optimal group of circuit variation parameters may be
selected as a final target quantum circuit based on the
optimization results respectively corresponding to the plu-
rality of groups of circuit variation parameters.

[0059] In addition, the behavior of simulating and
approximating the quantum computer (or the quantum cir-
cuit) through the classical computer and numerical compu-
tation is implemented through the quantum circuit simula-
tion, which accelerates the research and design of the
quantum circuit and reduce the costs.

[0060] In the technical solution of this disclosure, the idea
of vector parallelism is introduced into the quantum circuit
simulation. The primitive function is converted to the target
function, the input parameter of the target function including
the converted first input parameter corresponding to the first
input parameter that needs to be parallelized, and the tensor
corresponding to the converted first input parameter being
the result obtained by splicing the plurality of parallelized
tensors corresponding to the first input parameter. By
executing the target function, a plurality of original com-
puting processes can be parallelized into a single computing
process, which can be completed in the same time as the
single computation, thereby fully improving the efficiency
of quantum circuit simulation.

[0061] FIG. 3 is a flowchart of a quantum circuit simula-
tion method according to another embodiment of this dis-
closure. Steps of the method may be performed by a
computer device, such as a classical computer. The method
may include the following steps (310-350):

[0062] In step 310, a primitive function for quantum
circuit simulation is acquired, and a first input parameter in
the primitive function that needs to be parallelized is deter-
mined.

[0063] Step 310 may be the same as step 110 in the
embodiment shown in FIG. 1. For an exemplary implemen-
tation, reference may be made to the description in the
embodiment shown in FIG. 1.

[0064] In step 320, a function conversion interface is
called, and the primitive function and first information are
transmitted (provided) to the function conversion interface,
the first information is used for indicating the first input
parameter in the primitive function that needs to be paral-
lelized.

[0065] The function conversion interface is configured to
implement the function of converting the primitive function
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into the target function. The function conversion interface
may be a user-oriented interface, such as an APl

[0066] The first information is used for indicating the first
input parameter in the primitive function that needs to be
parallelized. In some embodiments, the first information is
used for indicating a location of the first input parameter in
the primitive function that needs to be parallelized. For
example, in the primitive function f (x, y, w), location
numbers of the input parameters X, y, and w are 0, 1, and 2
respectively. If it is assumed that the input parameter that
needs to be parallelized is x, the first information is 0.
Alternatively, if it is assumed that the input parameter that
needs to be parallelized includes x and y, the first informa-
tion includes 0 and 1. By indicating the first input parameter
in the primitive function that needs to be parallelized
through locations, accurate and concise indication can be
implemented.

[0067] In step 330, the primitive function is converted to
the target function according to the first information through
the function conversion interface, an input parameter of the
target function includes a converted first input parameter
corresponding to the first input parameter, and a tensor
corresponding to the converted first input parameter is a
result obtained by splicing a plurality of parallelized tensors
corresponding to the first input parameter;

[0068] The function conversion interface determines,
according to the first information, the first input parameter in
the primitive function that needs to be parallelized, and then
converts the primitive function to the target function based
on the first input parameter. For example, for the first input
parameter in the primitive function that needs to be paral-
lelized, a plurality of parallelized tensors corresponding to
the first input parameter are spliced in the target dimension,
to obtain the tensor corresponding to the converted first
input parameter. For the target input parameter in the primi-
tive function that does not need to be parallelized, the target
input parameter is directly retained as the input parameter of
the target function. Therefore, the input parameter of the
target function includes the converted first input parameter,
and optionally, further includes the target input parameter.
The function conversion interface supports the vector par-
allelism function. After the above conversion of the function
conversion interface, the target function may be used to
output a result of a plurality of parallel computations of the
primitive function.

[0069] In some embodiments, the function conversion
interface not only supports the vector parallelism function,
but also supports an automatic differentiation function, so
that the target function converted by the function conversion
interface is not only configured to output the result obtained
by the plurality of parallel computations of the primitive
function, but also to output derivative information of the
primitive function relative to a second input parameter. The
second input parameter is an input parameter of the input
parameters of the primitive function for which a derivative
is to be calculated. There may be one or more second input
parameters. In addition, the second input parameter may be
the same as or different from the first input parameter. For
example, in the primitive function f (X, y, w), the input
parameter includes x, y, and w, the first input parameter that
needs to be parallelized is X, and the second input parameter
for which a derivative is to be calculated is also x. Alterna-
tively, the first input parameter that needs to be parallelized
includes x and y, and the second input parameter for which
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a derivative is to be calculated is x. Alternatively, the first
input parameter that needs to be parallelized is X, and the
second input parameter for which a derivative is to be
calculated is y, and so on.

[0070] In some embodiments, during the calling of the
function conversion interface, the primitive function, the
first information, and second information are transmitted to
the function conversion interface. The second information is
used for indicating the second input parameter in the primi-
tive function for which a derivative is to be calculated. In
some embodiments, the second information is used for
indicating a location of the second input parameter in the
primitive function for which a derivative is to be calculated.
For example, in the primitive function f (X, y, w), location
numbers of the input parameters X, y, and w are 0, 1, and 2
respectively. If it is assumed that the first input parameter
that needs to be parallelized includes x and y, and the second
input parameter for which a derivative is to be calculated is
X, the first information includes 0 and 1, and the second
information is 0. Correspondingly, the primitive function is
converted to the target function according to the first infor-
mation and the second information through the function
conversion interface. The target function is configured to
output the result obtained by the plurality of parallel com-
putations of the primitive function, and is further configured
to output the derivative information of the primitive function
relative to the second input parameter.

[0071] In some embodiments, the function conversion
interface includes a first interface and a second interface, the
first interface being configured to convert the primitive
function to the target function according to the first infor-
mation; and the second interface being configured to convert
the primitive function to the target function according to the
first information and the second information. That is to say,
the first interface is a function conversion interface that
supports the vector parallelism function, or the first interface
is a function conversion interface that supports only the
vector parallelism function. The second interface is a func-
tion conversion interface that supports the vector parallelism
function and the automatic differentiation function.

[0072] Exemplarily, the first interface is a vmap interface,
and a function signature of the vmap interface is exemplified
as follows: vmap(f: Callable[ . . . , Any], vectorized_
argnums: Union[int, Sequence[int]]=0)—Callable[ . . . ,
Any]. f represents the to-be-parallelized primitive function,
and vectorized_argnums is used for indicating the first input
parameter that needs to be parallelized, such as the location
of the first input parameter that needs to be parallelized. In
the function signature of the vmap interface, f: Callable] . .
., Any] indicates that the primitive function f may be a
function for which any input and output may be tensors;
vectorized_argnums: Union[int, Sequence|int]]=0 indicates
that vectorized_argnums may be a numerical value (such as
O or 1, 2 or 3), or may be a series of numerical values (such
as0,1or0,1,2or 1, 2), and a default value of vectorized_
argnums is 0. The output is defined as Callable [ . . ., Any].
[0073] FIG. 2 is an exemplary functional diagram of the
vmap interface. For any primitive function f (such as a
primitive function for which any input and output are
tensors), another target function f will be outputted after
function conversion through the vmap interface. f=vmap(f,
vectorized_argnums=(0,1)). vectorized_argnums=(0,1)
indicates that the location number of the first input param-
eter in the primitive function f that needs to be parallelized
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includes 0 and 1, which means that x and y need to be
parallelized while w does not need to be parallelized. An
input format (that is, a type and a shape of the input
parameter) of the target function f is the same as an input
format of the primitive function f, except that a shape of a
tensor corresponding to the input parameter at the location
indicated by vectorized_argnums has one more dimension
than a shape of the corresponding input tensor of the
primitive function f (, that is, a vertical dimension in FIG. 2,
which does not exist in the primitive function f). A size of
the dimension is set to n, and n is an integer greater than 1.
n may also be referred to as a batch size. The target function
' obtained through the conversion by the vmap interface has
a final computing effect equivalent to n computations of the
primitive function f Each input to the primitive function f'is
a slice that is one dimension lower than one of a parameter
at a non-vectorized_argnums location and a parameter at a
vectorized_argnums location. Tensors of the same color in
FIG. 2 form a slice, as shown by a dashed-line box in FIG.
2. Put simply, the n calls to the primitive function f may be
fused into a unified operator at the underlying layer for
parallel and simultaneous computation.

[0074] Exemplarily, the second interface is a vectorized_
value_and_grad interface, which may be abbreviated as a
vvag interface. A function signature of the vvag interface is
exemplified as follows: vectorized_value_and_grad(f: Call-

able[ . . ., Any], argnums: Union[int, Sequence[int]]=0,
vectorized_argnums: Union[int, Sequence|int]]=0)—Call-
able[ . . ., Tuple[Tensor, Tensor]]. f represents the to-be-

parallelized primitive function, vectorized_argnums is used
for indicating the first input parameter that needs to be
parallelized, such as the location of the first input parameter
that needs to be parallelized, and argnums is used for
indicating the second input parameter for which a derivative
is to be calculated, such as the location of the second input
parameter for which a derivative is to be calculated. In the
function signature of the vvag interface, f: Callable[ . . .,
Any] indicates that the primitive function f may be a
function for which any input and output may be tensors;
vectorized_argnums: Union[int, Sequence|int]|=0 indicates
that vectorized_argnums may be a numerical value (such as
O or 1, 2 or 3), or may be a series of numerical values (such
as0,1or0,1,2or1, 2), and a default value of vectorized_
argnums is 0; and argnums: Union[int, Sequence[int]]=0
indicates that argnums may be a numerical value (such as 0
or 1, 2 or 3), or may be a series of numerical values (such
as0,10r0, 1, 2 or 1, 2), and a default value of argnums is
0. The output is defined as Callable[ . . . , Tuple[Tensor,
Tensor]], which indicates that the output includes 2 tensors.
One tensor is the result of the plurality of parallel compu-
tations of the primitive function f, and the other tensor is
derivative information of the primitive function f relative to
the input parameter at the location indicated by argnums.

[0075] For any primitive function f (such as a primitive
function for which any input and output are tensors), another
target function f will be outputted after function conversion
through the vvag interface. A shape of a tensor correspond-
ing to the input parameter of the target function f' at the
location indicated by vectorized_argnums has one more
dimension than a shape of the corresponding input tensor of
the primitive function f. This function is the same as that of
the vmap interface. The returning of the target function f
obtained through the conversion by the vvag interface
includes not only returning of the result of the plurality of
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parallel computations of the primitive function f, but also
returning of the derivative information of the primitive
function f relative to the input parameter at the location
indicated by argnums.

[0076] Exemplarily, a mathematical expression corre-
sponding to the vvag interface is as follows. The primitive
function is f, and the target function f obtained by converting
the primitive function f through the vvag interface is f:

/' =vvag(f, argnums = k, vectorized_argnums = p)

Sf'(argl0], ... , arg[p], ... ,arglkl, ... )= (v, &)
vi = flargl0], ... , arglpllil, ... , arglA], ... )
021}1’
8= Gargli] P 7P
S L P
&= Gargiiii * =Y

[0077] argnums=k indicates that one of the input param-
eters of the primitive function f with a location number k is
the input parameter for which a derivative is to be calcu-
lated. vectorized_argnums=p indicates that one of the input
parameters of the primitive function f with a location
number p is the input parameter that needs to be parallelized.
arg[0], . . ., arg[p], . . .. arg[k], . . . represent the input
parameters of the target function f'. The output of the target
function includes two tensors v and g. v represents the result
of the plurality of parallel computations of the primitive
function f, and g represents the derivative information of the
primitive function f relative to the input parameter at the
location indicated by argnums. arg[p][i] represents an i
slice in a tensor corresponding to the input parameter with
the location number p after the conversion. If the parallelism
size is n, a value of i is an integer in an interval [0, n—1].
When p=zk,

a3 Z vi
&= Barglk]’
When p=k,
B Av;
&= Garglill’

[0078] In the above embodiment, the first interface being
the vmap interface and the second interface being the vvag
interface are used as examples, and the two interfaces with
different functional interfaces provided in this disclosure are
described. The names of the above two interfaces are not
limited in this embodiment of this disclosure, and may be set
by the developers.

[0079] In some embodiments, the function conversion
interface is an API encapsulated above a machine learning
library, the machine learning library being configured to
provide a vector instruction set for executing the target
function. For example, the underlying machine learning
library may be a machine learning library such as tensorflow
or jax. The underlying machine learning library provides the
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vector instruction set for executing the target function, and
the function conversion interface is encapsulated above the
machine learning library, thereby ensuring that the imple-
mentation of the vector parallelism is independent of the
underlying framework. Simply calling the function conver-
sion interface can implement the vector parallelism.
[0080] In step 340, vector parallelism is performed on the
tensor corresponding to the converted first input parameter
by using a vector instruction set, to obtain an execution
result corresponding to the target function.

[0081] After the primitive function is converted to the
target function through the function conversion interface,
the vector instruction set provided by the underlying
machine learning library may be further called. The vector
instruction set is executed on hardware such as a CPU, a
GPU, or a TPU, to perform the vector parallelism on the
tensor corresponding to the converted first input parameter,
so as to obtain the execution result corresponding to the
target function. The vector instruction set includes an
executable instruction for a processor to perform the vector
parallelism on the tensor corresponding to the converted first
input parameter. The above vector instruction set provides
executable instructions that may be executed by processors
such as the CPU, the GPU, or the TPU, which can imple-
ment functions of underlying operators such as addition and
multiplication. In this embodiment, the vector parallelism is
implemented by executing the vector instruction set on the
processors such as the CPU, the GPU or the TPU, which can
overcome the bottleneck of a parallelism number and fully
improve the parallelism size compared with executing a
plurality of processes or threads on an operating system.
[0082] In step 350, the quantum circuit simulation is
performed based on the execution result corresponding to
the target function.

[0083] After the execution result corresponding to the
target function is obtained, the quantum circuit simulation
may be performed. Step 350 may be the same as step 140 in
the embodiment shown in FIG. 1. For an exemplary imple-
mentation, reference may be made to the description in the
embodiment shown in FIG. 1.

[0084] In the technical solution provided in this disclo-
sure, the function conversion interface is called to transmit,
to the function conversion interface, the primitive function
and the first information used for indicating the first input
parameter in the primitive function that needs to be paral-
lelized, so that the primitive function can be converted to the
target function through the function conversion interface to
implement the vector parallelism, thereby improving the
computing efficiency of the primitive function, and thus
improving the efficiency of the quantum circuit simulation.
[0085] In addition, in some embodiments, the function
conversion interface not only supports the vector parallelism
function, but also supports the automatic differentiation
function, so that the target function converted by the func-
tion conversion interface is not only configured to output the
result of the plurality of parallel computations of the primi-
tive function, but also to output derivative information of the
primitive function relative to a second input parameter. This
is particularly suitable for a scenario of a variational quan-
tum algorithm, which facilitates the development and
research of the variational quantum algorithm.

[0086] A scenario of applying the vector parallelism to the
quantum circuit simulation is described below. In this
embodiment of this disclosure, the vector parallelism may
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be applied to the steps of the quantum circuit simulation
such as processing the input wave function, optimizing the
circuit variation parameter, generating the circuit noise,
generating the circuit structure, and performing the circuit
measurement. These application scenarios are described
below through a plurality of embodiments.

[0087] FIG. 4 is an exemplary schematic diagram of
numerical simulation of a target quantum circuit. The target
quantum circuit can implement numerical simulation of a
variational quantum algorithm. By using the technical solu-
tion provided in this disclosure, all major components of the
simulation can skillfully support vector parallelism, thereby
significantly accelerating quantum simulation in different
application scenarios. As shown in FIG. 4, a process that
needs to be simulated and computed includes: inputting a
specified quantum state (which may be in the form of a
matrix product state or a vector). Then an output state is
measured on different bases in the form of a measured Pauli
string by a parameter-containing and possibly noise-con-
taining quantum circuit, so as to obtain an optimized func-
tion value and a gradient about a weight for optimization
iteration.

[0088] In FIG. 4, an input quantum state of the target

quantum circuit is represented as I\VO) , a circuit parameter
of the target quantum circuit is represented as U,, a mea-
surement result is represented as M, and an optimization
function is represented as

L= Z(wo | U 81,05 | o).

M, represents an i”” measurement result, i is an integer, and
U," represents conjugate transpose of U,,.

[0089]
tion.

1. Parallelized Processing of an Input Wave Func-

[0090] In this example, the primitive function is config-
ured to implement a target step in the quantum circuit
simulation. The target step includes processing the input
wave function, and the first input parameter includes an
input wave function of the target quantum circuit.

[0091] In some embodiments, the tensor corresponding to
the converted first input parameter is acquired, the tensor
corresponding to the converted first input parameter being a
result obtained by splicing a plurality of parallelized input
wave functions of the target quantum circuit; and the vector
parallelism is performed on the tensor corresponding to the
converted first input parameter by using the vector instruc-
tion set, to obtain the execution result corresponding to the
target function, the execution result corresponding to the
target function including processing results respectively
corresponding to the plurality of parallelized input wave
functions.

[0092] Taking variational quantum circuit simulation as an
example, the variational quantum circuit simulation is com-
posed of three parts: an input wave function, a circuit unitary
matrix, and circuit measurement. In many tasks, the input
wave function of the circuit is an all O direct product state,
and in this case, the input wave function does not need to be
specified. However, in some tasks, the same circuit structure
may be required to accept different input wave function for
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processing and output. In this case, it is very suitable to
perform vector parallelism on the input wave function
parameter for simulation.

[0093] For example, in a quantum machine learning task,
an inputted data set needs to be processed in batches, and
each time a result of a batch of inputted data needs to be
computed. The batch of data is encoded into a wave function
and entered into a quantum machine learning model in the
form of the input wave function. Therefore, parallelized
processing of the input wave function can help process the
batch input of quantum machine learning and achieve accel-
eration under a large batch size. Numerical experiments
show that on a GPU, a batch size=512 and a batch size=1
require almost the same computing time. This benefits from
the underlying architecture optimization of the vector par-
allelism, which is equivalent to directly accelerating the
simulation by times of a batch size.

[0094] FIG. 5 is a schematic diagram of parallelized
processing of an input wave function. The vvag interface
described in the above is used as an example. The target
function f=vvag(f,vectorized_argnums=0, argnums=1), f
being the primitive function, vectorized_argnums=0 indicat-
ing that the input parameter that needs to be parallelized is
the input wave function of the target quantum circuit, and
argnums=1 indicating that the input parameter for which a
derivative is to be calculated is a weight of the target
quantum circuit. The input parameter of the target function
f' includes a weight 51 of the target quantum circuit and a
result 52 obtained by splicing a plurality of parallelized
input wave functions of the target quantum circuit. The
target function f' is executed through the vector parallelism,
to obtain processing results 53 respectively corresponding to
the plurality of parallelized input wave functions and deriva-
tive information 54 of the weight. Subsequently, steps such
as optimizing the circuit variation parameter may be per-
formed based on the processing results respectively corre-
sponding to the plurality of parallelized input wave func-
tions. For example, the circuit variation parameter of the
target quantum circuit may be adjusted according to a
difference between the processing results corresponding to
the input wave functions and expected results, so that the
processing results corresponding to the input wave functions
approximate the expected results as much as possible.
[0095] In this example, through the parallelized process-
ing of the input wave functions, the batch processing effi-
ciency of the input wave functions in the quantum circuit
simulation process is fully improved.

[0096] 2. Parallelized Optimization of a Circuit Variation
Parameter.

[0097] In this example, the primitive function is config-
ured to implement a target step in the quantum circuit
simulation. The target step includes optimizing the circuit
variation parameter, and the first input parameter includes a
circuit variation parameter of the target quantum circuit.
[0098] In some embodiments, the tensor corresponding to
the converted first input parameter is acquired, the tensor
corresponding to the converted first input parameter being a
result obtained by splicing a plurality of groups of paral-
lelized circuit variation parameters of target quantum circuit;
and the vector parallelism is performed on the tensor cor-
responding to the converted first input parameter by using
the vector instruction set, to obtain the execution result
corresponding to the target function, the execution result
corresponding to the target function including optimization
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results respectively corresponding to the plurality of groups
of parallelized circuit variation parameters.

[0099] For the variational quantum optimization, param-
eters with gradient descent often remain at a local minimum.
This requires a plurality of independent optimizations on the
same problem from different initial parameters, and requires
selection of a group of corresponding parameters that make
the optimization function optimal. The plurality of indepen-
dent optimizations increase the time consumption by times
of an optimization number in the simple loop solution. In
this case, the vector parallelism may be performed on
variables corresponding to the circuit variation parameters.
[0100] This embodiment of this disclosure proposes par-
allel acceleration for the plurality of independent optimiza-
tions. In particular, for algorithms prone to remain at a local
minimum such as a VQE, a plurality of parallel optimiza-
tions are performed simultaneously, and then the most
suitable convergence parameter is finally selected. In this
way, the time for the plurality of optimizations is almost
identical to the time for a single optimization. This optimi-
zation solution is referred to as batched VQE optimization.
That is to say, parallel execution of the plurality of inde-
pendent optimization may be implemented from the under-
lying operator.

[0101] FIG. 6 is a schematic diagram of parallelized
optimization of a circuit variation parameter. The vvag
interface described in the above is used as an example. The
target function f=vvag(f,vectorized_argnums=0, arg-
nums=0), f being the primitive function, vectorized_arg-
nums=0 indicating that the input parameter that needs to be
parallelized is the circuit variation parameter (such as the
weight) of the target quantum circuit, and argnums=0 indi-
cating that the input parameter for which a derivative is to
be calculated is also the circuit variation parameter (such as
the weight) of the target quantum circuit. The input param-
eter of the target function f' includes a result 61 obtained by
splicing a plurality of groups of parallelized circuit variation
parameters of the target quantum circuit. The target function
f' is executed through the vector parallelism, to obtain
optimization results 62 respectively corresponding to the
plurality of groups of parallelized circuit variation param-
eters and derivative information 63 of the circuit variation
parameters. Subsequently, an optimal group of circuit varia-
tion parameters may be selected as a final parameter of the
target quantum circuit according to the optimization results
respectively corresponding to the plurality of groups of
parallelized circuit variation parameters.

[0102] In this example, through the parallelized optimiza-
tion of the circuit variation parameters, the optimization
efficiency of the circuit variation parameters in the quantum
circuit simulation process is fully improved.

[0103] 3. Parallelized Generation of Circuit Noise.
[0104] In this example, the primitive function is config-
ured to implement a target step in the quantum circuit
simulation. The target step includes generating circuit noise,
and the first input parameter includes a random number used
for generating circuit noise of the target quantum circuit.
[0105] In some embodiments, the tensor corresponding to
the converted first input parameter is acquired, the tensor
corresponding to the converted first input parameter being a
result obtained by splicing a plurality of groups of paral-
lelized random numbers used for generating circuit noise of
the target quantum circuit; and the vector parallelism is
performed on the tensor corresponding to the converted first
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input parameter by using the vector instruction set, to obtain
the execution result corresponding to the target function, the
execution result corresponding to the target function includ-
ing noise simulation results respectively corresponding to
the plurality of groups of parallelized random numbers.
Subsequently, execution results of the target quantum circuit
under noise simulation results corresponding to different
random numbers may be observed to obtain execution
statuses of the target quantum circuit in different noise
environments and difference between the execution results.

[0106] In a scenario of a Monte Carlo trajectory simulator,
a behavior of using different random numbers to simulate
noise with different probability distributions is performed.
Since evaluating observed quantities by using the Monte
Carlo trajectory simulator requires averaging of a large
number of observation and measurement results from dif-
ferent random number configurations, naturally, the random
number parameters may be parallelized to implement simul-
taneous simulation of dozens or even hundreds of random
configurations. Therefore, the solution of this disclosure
may be used for accelerating the Monte Carlo simulation of
quantum noise. Different random number inputs are paral-
lelized, to implement vectorized parallelism of the Monte
Carlo simulation of noise. The behavior of using the random
number as a parallel dimension is similar to that of using the
input wave function as a parallel dimension, and therefore
the schematic diagram is not shown separately.

[0107] Inthis example, through the parallelized generation
of the circuit noise, the generation efficiency of the circuit
noise in the quantum circuit simulation process is fully
improved.

[0108] Inthe above three cases, the vimap or vvag interface
may be directly called without any special processing on the
to-be-implemented function, and the location of the input
parameter that needs to be parallelized may be specified as
the parameter vectorized_argnums in the API, so as to be
converted to an efficient simulation supporting vector par-
allelism.

[0109] In the following two situations, it is necessary to
implement parameterized summation of tensors based on a
circuit simulator based on a tensor network, so that different
input parameters correspond to different reduced tensor
network structures. The idea of parameterizing the summa-
tion of local tensors and keeping the same local tensor shape
so as to be embedded into a global tensor network to
implement parameterized control of simulation of different
tensor network structures (or quantum circuit structures) is
shown in FIG. 7. FIG. 7 shows a fragment of a tensor

network including parameterized structural information. X
is a structural parameter. When different one-hot vectors are

used as 7, in the tensor network, the local tensor of interest
can be a controlled NOT (CNOT) gate direct product (

7:(1, 0, ...)) or can be a single bit rotation gate direct

—
product (A=(0, 1, . . . )). For parameterized structural
simulation of more sub-blocks, only an independent struc-

—
tural parameter vector A needs to be introduced in each
local area. Measurement parameterization is similar, as long
as the local tensor at the measurement position is selected as
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A; represents a group of four-dimensional vectors corre-
sponding to an i”* qubit, 6,=I (the operator I is

[o 1))

and G,, 6,, and G correspond to Pauli matrices X, Y, and Z.
In this case, the Pauli string corresponding to the final
measurement may be directly controlled by transmitting a
group of parameter tensors with the shape of [qubits, 4]. All
computing processes and real-time compiled computing
graphs are identical and may be reused. For example,
measurement parameters [[1,0,0,0], [0,1,0,0], and [0,0,0,1]]
indicate that the to-be-measured expected Pauli string is
[,X,Z,, which is simplified as X,Z,. What’s more, the above
solution does not change the overall static structure of the
tensor network, which can still perfectly support real-time
compiling and pre-optimized search of tensor contraction
paths.

[0110] 4. Parallelized Generation of a Circuit Structure.
[0111] In this example, the primitive function is config-
ured to implement a target step in the quantum circuit
simulation. The target step includes generating a circuit
structure. The first input parameter includes a control param-
eter used for generating a circuit structure of the target
quantum circuit, and a different control parameter is used for
generating a different circuit structure.

[0112] In some embodiments, the tensor corresponding to
the converted first input parameter is acquired, the tensor
corresponding to the converted first input parameter being a
result obtained by splicing a plurality of groups of paral-
lelized control parameters used for generating circuit struc-
ture of the target quantum circuit; and the vector parallelism
is performed on the tensor corresponding to the converted
first input parameter by using the vector instruction set, to
obtain the execution result corresponding to the target func-
tion, the execution result corresponding to the target func-
tion including circuit structure generation results respec-
tively corresponding to the plurality of groups of
parallelized control parameters.

[0113] In order to implement parallelism of different cir-
cuit structures, it is necessary to underutilize the character-
istic that the underlying simulator is based on the tensor
network. For circuit parts that may have different structures,
parameterized summation is performed on tensors represent-
ing different structures. That is to say, these parameters can
control the circuit structure while satisfying the limitations
of real-time compiling. The reason is that even if the circuit
structure changes, since a super network represented by the
most generalized parameterized summation has already
summarized all possibilities with fixed tensor shapes, real-
time compiling can still be normally implemented.

[0114] DARTS inspired differentiable quantum structure
search includes a task of evaluating target optimization
functions corresponding to a large number of different
circuit structures in a batch, which perfectly matches the
situation of parallelized circuit structures. Therefore, quan-
tum software with vector parallelization will significantly
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improve the efficiency of differentiable quantum structure
search, that is, automatic variational circuit design. This is a
parallel paradigm that is unique to tensor simulators and
uneasily implemented in state simulators.

[0115] FIG. 8 is an exemplary schematic diagram of
parallelized generation of a circuit structure. The vvag
interface described in the above is used as an example. The
target function f=vvag(f,vectorized_argnums=0, arg-
nums=1), f being the primitive function, vectorized_arg-
nums=0 indicating that the input parameter that needs to be
parallelized is a control parameter for a circuit structure of
the target quantum circuit, and argnums=1 indicating that
the input parameter for which a derivative is to be calculated
is a weight of the target quantum circuit. The input param-
eter of the target function f includes a weight 81 of the target
quantum circuit and a result 82 obtained by splicing a
plurality of groups of parallelized control parameters for the
circuit structure of the target quantum circuit. The target
function f is executed through the vector parallelism, to
obtain circuit structure generation results respectively cor-
responding to the plurality of groups of parallelized control
parameters. Based on the plurality of groups of circuit
structure generation results, a plurality of groups of mea-
surement results 83 as well as derivative information 84 of
the measurement results relative to the weight may be
obtained. Subsequently, an optimal circuit structure genera-
tion result may be selected from the above plurality of
groups of circuit structure generation results, and the target
quantum circuit may be deployed in the actual hardware on
this basis.

[0116] In this example, through the parallelized generation
of the circuit structure, the generation efficiency of the
circuit structure in the quantum circuit simulation process is
fully improved.

[0117] 5. Parallelized Execution of Circuit Measurement.
[0118] In this example, the primitive function is config-
ured to implement a target step in the quantum circuit
simulation. The target step includes performing circuit mea-
surement. The first input parameter includes a measurement
parameter used for performing circuit measurement on the
target quantum circuit, and a different measurement param-
eter is used for generating a different measurement result.
[0119] In some embodiments, the tensor corresponding to
the converted first input parameter is acquired, the tensor
corresponding to the converted first input parameter being a
result obtained by splicing a plurality of groups of paral-
lelized measurement parameters used for performing the
circuit measurement on the target quantum circuit; and the
vector parallelism is performed on the tensor corresponding
to the converted first input parameter by using the vector
instruction set, to obtain the execution result corresponding
to the target function, the execution result corresponding to
the target function including measurement results respec-
tively corresponding to the plurality of groups of paral-
lelized measurement parameters. Subsequently, an execu-
tion result of the target quantum circuit may be observed
based on the measurement results corresponding to plurality
of groups of measurement parameters.

[0120] For a small-sized system, the numerical simulation
may completely preserve the wave function information of
a final state output of the quantum circuit. In this case, many
different solutions are available for the numerical simulation
of the measurement results. The solutions include reusing
the wave function information and computing expectations
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of different Pauli string operators on the wave function
according to the wave function information. In addition,
when smaller systems can fully represent a matrix form of
a Hamiltonian operator in a memory, summations of Pauli
strings may be directly combined into an independent Ham-
iltonian matrix to compute the expectations, which is usually
more efficient.

[0121] However, for large-sized systems that may be sup-
ported by only the tensor network simulator, a final wave
function cannot be reused (since there is no enough memory
space for storage) for different Pauli strings. In addition,
during solving of different operator expectations by contra-
dicting the tensor networks in sequence, it is necessary to
search for the contradiction path again and perform real-time
compiling, which wastes a lot of time. Therefore, the solu-
tion of parameterized circuit structure summation may be
simulated to implement parameterized circuit measurement
summation. In this way, the Pauli string of the corresponding
measurement operator may be controlled by using the one-
hot vector of the input parameter. In this case, only one
real-time compiling is required to support the solution of the
expectations of all different Pauli strings. In combination
with the vector parallelism of the structural parameters in the
measurement, the expectations of a plurality of Pauli strings
may be efficiently computed simultaneously without a need
to recompile (in real-time) each different measurement
operatotr.

[0122] In this example, when the memory cannot store the
complete wave function and thus the wave function cannot
be fully used to evaluate different Pauli strings, efficient
large-scale circuit simulation can be implemented through
the vector parallelism of the parameterized circuit measure-
ments.

[0123] The application scenarios and the corresponding
acceleration effects of the technical solution in this disclo-
sure have been mentioned above. Generally speaking, on
hardware such as a GPU, vector parallelism can substan-
tially achieve an acceleration consistent with the size of the
parallel batch dimension. This can achieve efficiency
improvements ranging from tens to hundreds of times com-
pared to simple loop computation in common scenarios, and
the required additional development costs may be negli-
gible, which is user-friendly. The significance of improving
the efficiency is emphasized through some simple quantita-
tive results.

[0124] 1. Accelerating a Quantum Machine Learning
Task.
[0125] As mentioned above, in the machine learning task,

the input data needs to be processed in batch, to implement
vector parallelism of the parameters of the input wave
function, which can significantly improve the computing
efficiency of the quantum machine learning. Different main-
stream quantum software simulates the same parameterized
circuit for MNIST discrimination, and the time consumed in
a single step varies with the batch size, as shown in FIG. 9.
A line 91 shows a variation of the execution time with the
batch size on the GPU using the vector parallelism solution
provided in this disclosure, a line 92 shows a variation of the
execution time with the batch size on the CPU using the
vector parallelism solution provided in this disclosure, a line
93 shows a variation of the execution time with the batch
size using a pennylane solution, and a line 94 shows a
variation of the execution time with the batch size using a
tensorflow-quantum solution. It may be learned that the
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vector parallelism technology provided in this disclosure can
achieve acceleration over a hundred times compared to other
mainstream software on the GPU when the batch size is
large.

[0126] 2. Measurement Parallelism Implements Efficient
Simulation of an Ultra Large Quantum System.

[0127] Implementing the reuse of different Pauli string
measurement computing graphs by using the vector paral-
lelism technology when the wave function cannot be reused
can implement simulation of more than 100 bits of quantum
chemistry ground state simulation VQEs on a single V100.
It is the first time in the world to show and simulate the entire
process of variational quantum algorithms in such a large
system. Corresponding simulation convergence results of
one-dimensional transverse field Ising model phase transi-
tion points and one-dimensional isotropic Heisenberg model
at 100 grids are shown in the following Table 1. For
large-scale problems such as a 100 grid VQE, the time
required for a single optimization iteration is only on the
order of seconds, and the simulation task cannot be imple-
mented by mainstream simulators based on the quantum
state due to memory exponential divergence.

TABLE 1
Double bit Ground state
N =100 gate layers  Single step time energy error
One-dimensional 6 85s 0.5%
Heisenberg model
One-dimensional transverse 7 8.6 0.1%

field Ising model

[0128] The solution described in this disclosure is based
on the self-developed TensorCircuit quantum simulation
framework. TensorCircuit is a new generation of quantum
computing simulation software based on the modern
machine learning framework, which supports a multi-hard-
ware platform and a multi-software backend, and also sup-
ports automatic differentiation, real-time compiling, vector
parallelism, and heterogeneous hardware acceleration. Ten-
sorCircuit is particularly suitable for the design, research,
and development of algorithms in the NISQ era, and per-
fectly supports the simulation of quantum classical hybrid
computing paradigms. TensorCircuit is entirely written in
pure Python, and uses the tensor network as the core engine
in the algorithm, which has higher running efficiency than
optimized C++ code while maintaining user friendliness.
The solution presented in this disclosure has been fully
implemented under the TensorCircuit framework, and may
be directly used, and achieves much higher efficiency than
similar software.

[0129] The solution of this disclosure and the TensorCir-
cuit platform can significantly accelerate and enhance the
verification development of quantum hardware and the
design and testing of quantum software and algorithms in
the NISQ period. The solution has laid a foundation for
demonstrating effective quantum advantages on NISQ hard-
ware and verifying problems related to large-scale varia-
tional quantum computing, and increase a possibility of
commercial application of quantum computers and quantum
heuristics.

[0130] Apparatus embodiments of this disclosure are
described below, which may be used for performing the
method embodiments of this disclosure. For details not
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disclosed in the apparatus embodiments of this disclosure,
refer to the above embodiments of this disclosure.

[0131] FIG. 10 is a block diagram of a quantum circuit
simulation apparatus according to an embodiment of this
disclosure. The apparatus has a function of implementing the
above quantum circuit simulation method, and the function
may be implemented by hardware or by hardware by execut-
ing corresponding software. The apparatus may be a com-
puter device, or may be arranged in the computer device.
The apparatus 1000 may include a function acquisition
module 1010, a function conversion module 1020, a func-
tion execution module 1030, and a circuit simulation module
1040.

[0132] The function acquisition module 1010 is config-
ured to acquire a primitive function for quantum circuit
simulation, and determine a first input parameter in the
primitive function that needs to be parallelized.

[0133] The function conversion module 1020 is config-
ured to convert the primitive function to a target function
according to the primitive function and the first input
parameter, the input parameter of the target function includ-
ing a converted first input parameter corresponding to the
first input parameter, and a tensor corresponding to the
converted first input parameter being a result obtained by
splicing a plurality of parallelized tensors corresponding to
the first input parameter.

[0134] The function execution module 1030 is configured
to obtain an execution result corresponding to the target
function according to the input parameter of the target
function.

[0135] The circuit simulation module 1040 is configured
to perform the quantum circuit simulation based on the
execution result corresponding to the target function.
[0136] In an exemplary embodiment, the function execu-
tion module 1030 is configured to process the converted first
input parameter included in the input parameter of the target
function through vector parallelism, to obtain the execution
result corresponding to the target function.

[0137] In an exemplary embodiment, the function execu-
tion module 1030 is configured to perform the vector
parallelism on the tensor corresponding to the converted first
input parameter by using a vector instruction set, to obtain
the execution result corresponding to the target function, the
vector instruction set including an executable instruction for
a processor to perform the vector parallelism on the tensor
corresponding to the converted first input parameter.
[0138] In some embodiments, the primitive function is
configured to implement an operation processing an input
wave function in the quantum circuit simulation, and the first
input parameter includes an input wave function of a target
quantum circuit. The function execution module 1030 is
configured to: acquire the tensor corresponding to the con-
verted first input parameter, the tensor corresponding to the
converted first input parameter being a result obtained by
splicing a plurality of parallelized input wave functions of
the target quantum circuit; and perform the vector parallel-
ism on the tensor corresponding to the converted first input
parameter by using the vector instruction set, to obtain the
execution result corresponding to the target function, the
execution result corresponding to the target function includ-
ing processing results respectively corresponding to the
plurality of parallelized input wave functions.

[0139] In some embodiments, the primitive function is
configured to implement an operation of optimizing a circuit
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variation parameter in the quantum circuit simulation, and
the first input parameter includes a circuit variation param-
eter of a target quantum circuit. The function execution
module 1030 is configured to: acquire the tensor correspond-
ing to the converted first input parameter, the tensor corre-
sponding to the converted first input parameter being a result
obtained by splicing a plurality of groups of parallelized
circuit variation parameters of the target quantum circuit;
and perform the vector parallelism on the tensor correspond-
ing to the converted first input parameter by using the vector
instruction set, to obtain the execution result corresponding
to the target function, the execution result corresponding to
the target function including optimization results respec-
tively corresponding to the plurality of groups of paral-
lelized circuit variation parameters.

[0140] In some embodiments, the primitive function is
configured to implement an operation of generating circuit
noise in the quantum circuit simulation, and the first input
parameter includes a random number used for generating
circuit noise of a target quantum circuit. The function
execution module 1030 is configured to: acquire the tensor
corresponding to the converted first input parameter, the
tensor corresponding to the converted first input parameter
being a result obtained by splicing a plurality of groups of
parallelized random numbers used for generating the circuit
noise of the target quantum circuit; and perform the vector
parallelism on the tensor corresponding to the converted first
input parameter by using the vector instruction set, to obtain
the execution result corresponding to the target function, the
execution result corresponding to the target function includ-
ing noise simulation results respectively corresponding to
the plurality of groups of parallelized random numbers.

[0141] In some embodiments, the primitive function is
configured to implement an operation of generating a circuit
structure in the quantum circuit simulation, the first input
parameter includes a control parameter used for generating
a circuit structure of a target quantum circuit, and a different
control parameter is used for generating a different circuit
structure. The function execution module 1030 is configured
to: acquire the tensor corresponding to the converted first
input parameter, the tensor corresponding to the converted
first input parameter being a result obtained by splicing a
plurality of groups of parallelized control parameters used
for generating the circuit structure of the target quantum
circuit; and perform the vector parallelism on the tensor
corresponding to the converted first input parameter by
using the vector instruction set, to obtain the execution result
corresponding to the target function, the execution result
corresponding to the target function including circuit struc-
ture generation results respectively corresponding to the
plurality of groups of parallelized control parameters.

[0142] In some embodiments, the primitive function is
configured to implement an operation of performing circuit
measurement in the quantum circuit simulation, and the first
input parameter includes a measurement parameter used for
performing circuit measurement on a target quantum circuit,
a different measurement parameter being used for generating
a different measurement result. The function execution mod-
ule 1030 is configured to: acquire the tensor corresponding
to the converted first input parameter, the tensor correspond-
ing to the converted first input parameter being a result
obtained by splicing a plurality of groups of parallelized
measurement parameters used for performing the circuit
measurement on the target quantum circuit; and perform the
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vector parallelism on the tensor corresponding to the con-
verted first input parameter by using the vector instruction
set, to obtain the execution result corresponding to the target
function, the execution result corresponding to the target
function including measurement results respectively corre-
sponding to the plurality of groups of parallelized measure-
ment parameters.

[0143] Inan exemplary embodiment, the target function is
obtained in the following way:

[0144] modifying the first input parameter in the primi-
tive function to the converted first input parameter and
retaining a target input parameter that does not need to
be parallelized when the input parameter of the primi-
tive function further includes the target input param-
eter, to obtain the target function;

[0145] or

[0146] modifying the first input parameter in the primi-
tive function to the converted first input parameter
when the input parameter of the primitive function does
not include the target input parameter that does not
need to be parallelized, to obtain the target function.

[0147] In an exemplary embodiment, the function conver-
sion module 1020 is configured to: call a function conver-
sion interface, and transmit the primitive function and first
information to the function conversion interface, the first
information being used for indicating the first input param-
eter in the primitive function that needs to be parallelized;
and convert the primitive function to the target function
according to the first information through the function
conversion interface.

[0148] In some embodiments, the function conversion
module 1020 is configured to: transmit second information
to the function conversion interface, the second information
being used for indicating a second input parameter in the
primitive function for which a derivative is to be calculated;
and convert the primitive function to the target function
according to the first information and the second information
through the function conversion interface, the target func-
tion being further configured to output derivative informa-
tion of the primitive function relative to the second input
parameter.

[0149] In some embodiments, the function conversion
interface includes a first interface and a second interface, the
first interface being configured to convert the primitive
function to the target function according to the first infor-
mation; and the second interface being configured to convert
the primitive function to the target function according to the
first information and the second information.

[0150] In some embodiments, the function conversion
interface is an API encapsulated above a machine learning
library, the machine learning library being configured to
provide a vector instruction set for executing the target
function.

[0151] In an exemplary embodiment, a plurality of paral-
lelized tensors corresponding to the first input parameter are
spliced in a target dimension to obtain the tensor corre-
sponding to the converted first input parameter, a size of the
tensor corresponding to the converted first input parameter
in the target dimension corresponds to a number of the
parallelized tensors corresponding to the first input param-
eter.

[0152] In the technical solution provided in this disclo-
sure, the idea of vector parallelism is introduced into the
quantum circuit simulation. The primitive function is con-
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verted to the target function, the input parameter of the target
function including the converted first input parameter cor-
responding to the first input parameter that needs to be
parallelized, and the tensor corresponding to the converted
first input parameter being the result obtained by splicing the
plurality of parallelized tensors corresponding to the first
input parameter. By executing the target function, a plurality
of original computing processes can be parallelized into a
single computing process, which can be completed in the
same time as the single computation, thereby fully improv-
ing the efficiency of quantum circuit simulation.

[0153] During function implementation of the apparatus
provided in the above embodiment, only division of the
functional modules is illustrated. In actual application, the
functions may be assigned to different functional modules
for completion as required. In other words, an internal
structure of the device is divided into different functional
modules to complete all or some of the functions described
above. In addition, the apparatus in the above embodiment
belongs to the same idea as the method. For a specific
implementation thereof, refer to the method embodiment,
and the details are not described herein.

[0154] FIG. 11 is a schematic structural diagram of a
computer device according to an embodiment of this dis-
closure. The computer device may be a classical computer.
The computer device is configured to implement the quan-
tum circuit simulation method provided in the above
embodiments. Details are as follows:

[0155] The computer device 1100 includes a central pro-
cessing unit (CPU), a graphics processing unit (GPU), and
a field programmable gate array (FPGA) 1101, a system
memory 1104 including a random access memory (RAM)
1102 and a read-only memory (ROM) 1103, and a system
bus 1105 connected to the system memory 1104 and the
CPU 1101. The computer device 1100 further includes a
basic input/output system (I/O system) 1106 assisting infor-
mation transmission between devices in the server, and a
mass storage device 1107 configured to store an operating
system 1113, an application program 1114, and other pro-
gram modules 1115.

[0156] In some embodiments, the basic I/O system 1106
includes a display 1108 configured to display information
and an input device 1109 such as a mouse and a keyboard for
a user to input information. The display 1108 and the input
device 1109 are both connected to the CPU 1101 through an
1/O controller 1110 connected to the system bus 1105. The
basic I/O system 1106 may further include the I/O controller
1110 for receiving and processing input from a plurality of
other devices such as a keyboard, a mouse, or an electronic
stylus. Similarly, the /O controller 1110 further provides
output to a display screen, a printer, or other types of output
devices.

[0157] In some embodiments, the mass storage device
1107 is connected to the CPU 1101 through a mass storage
controller (not shown) connected to the system bus 1105.
The mass storage device 1107 and an associated computer-
readable medium thereof provide non-volatile storage for
the computer device 1100. In other words, the mass storage
device 1107 may include a computer-readable medium (not
shown) such as a hard disk or a compact disc read-only
memory (CD-ROM) drive.

[0158] Without loss of generality, the computer-readable
medium may include a computer storage medium and a
communication medium. The computer storage medium
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includes volatile and non-volatile media, and removable and
non-removable media implemented by using any method or
technology used for storing information such as computer-
readable instructions, data structures, program modules, or
other data. The computer storage medium includes a RAM,
a ROM, an erasable programmable read-only memory
(EPROM), an electrically erasable programmable ROM
(EEPROM), a flash memory or other solid-state storage
technologies, a CD-ROM, a digital versatile disc (DVD) or
other optical memories, a tape cartridge, a magnetic cassette,
a magnetic disk memory, or other magnetic storage devices.
The computer storage medium is not limited to the above
embodiments. The above system memory 1104 and mass
storage device 1107 may be collectively referred to as a
memory.

[0159] According to the embodiments of this disclosure,
the computer device 1100 may be further connected to a
remote computer on a network for running through a net-
work such as the Internet. In other words, the computer
device 1100 may be connected to a network 1112 through a
network interface unit 1111 connected to the system bus
1105, or may be connected to other types of networks or
remote computer systems (not shown) through the network
interface unit 1116.

[0160] The memory further includes a computer program.
The computer program is stored in the memory and config-
ured to be executed by one or more processors to implement
the quantum circuit simulation method.

[0161] Inan exemplary embodiment, a computer device is
further provided. The computer device is configured to
implement the above quantum circuit simulation method. In
some embodiments, the computer device is a classical
computer.

[0162] Inan exemplary embodiment, a computer-readable
storage medium (e.g., non-transitory computer readable
storage medium) is further provided. The computer-readable
storage medium stores a computer program. The computer
program, when executed by a processor of a computer
device, implements the above quantum circuit simulation
method.

[0163] In some embodiments, the computer-readable stor-
age medium may include a ROM, a RAM, a solid state drive
(SSD), an optical disc, or the like. The RAM may include a
resistance random access memory (ReRAM) and a dynamic
random access memory (DRAM).

[0164] In an exemplary embodiment, a computer program
product is further provided. The computer program product
includes a computer program stored in a computer-readable
storage medium. A processor of a computer device reads the
computer program from the computer-readable storage
medium, and the processor executes the computer program,
to cause the computer device to perform the above quantum
circuit simulation method.

[0165] It is to be understood that the term “a plurality of”
in the description means two or more. “And/or” describes an
association relationship between associated objects and indi-
cates that three relationships may exist. For example, A
and/or B may represent the following three cases: only A
exists, both A and B exist, and only B exists. The character
“/” generally indicates that the associated objects at front
and rear are in an “or” relationship. In addition, the step
numbers described herein merely exemplarily show a pos-
sible execution sequence of the steps. In some other embodi-
ments, the steps may not be performed according to the
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number sequence. For example, two steps with different
numbers may be performed simultaneously, or two steps
with different numbers may be performed according to a
sequence reverse to the sequence shown in the figure. This
is not limited in the embodiments of this disclosure.
[0166] The term module (and other similar terms such as
unit, submodule, etc.) in this disclosure may refer to a
software module, a hardware module, or a combination
thereof. A software module (e.g., computer program) may be
developed using a computer programming language. A
hardware module may be implemented using processing
circuitry and/or memory. Each module can be implemented
using one or more processors (or processors and memory).
Likewise, a processor (or processors and memory) can be
used to implement one or more modules. Moreover, each
module can be part of an overall module that includes the
functionalities of the module.
[0167] The use of “at least one of” or “one of” in the
disclosure is intended to include any one or a combination
of the recited elements. For example, references to at least
one of A, B, or C; at least one of A, B, and C; at least one
of A, B, and/or C; and at least one of A to C are intended to
include only A, only B, only C or any combination thereof.
References to one of A or B and one of A and B are intended
to include A or B or (A and B). The use of “one of”” does not
preclude any combination of the recited elements when
applicable, such as when the elements are not mutually
exclusive.
[0168] The above descriptions are merely exemplary
embodiments of this disclosure, and are not intended to limit
this disclosure. Any modification, equivalent replacement,
or improvement made within the spirit and principle of this
disclosure shall fall within the scope of this disclosure.
What is claimed is:
1. A method of a quantum circuit simulation, comprising:
receiving a primitive function for the quantum circuit
simulation;
determining at least a first input parameter of the primitive
function, the quantum circuit simulation including a
plurality of first tensors respectively for the first input
parameter;
converting the primitive function to a target function
according to the primitive function and at least the first
input parameter, the target function including a con-
verted first input parameter corresponding to the first
input parameter, the plurality of first tensors being
spliced into a second tensor for the converted first input
parameter in the quantum circuit simulation;
obtaining an execution result of the target function
according to at least the second tensor for the converted
first input parameter; and
performing the quantum circuit simulation based on the
execution result of the target function.
2. The method according to claim 1, wherein the obtaining
the execution result comprises:
processing the converted first input parameter through a
vector parallelism, to obtain the execution result.
3. The method according to claim 2, wherein the process-
ing the converted first input parameter comprises:
performing the vector parallelism on the second tensor for
the converted first input parameter by using a vector
instruction set, the vector instruction set comprising
one or more executable instructions for a processor to
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perform the vector parallelism on the second tensor for
the converted first input parameter.

4. The method according to claim 3, wherein the primitive
function is configured to process an input wave function of
a target quantum circuit in the quantum circuit simulation,
and the performing the vector parallelism on the second
tensor comprises:

splicing a plurality of input wave functions of the target
quantum circuit into the second tensor for the converted
first input parameter; and

performing the vector parallelism on the second tensor for
the converted first input parameter by using the vector
instruction set, to obtain processing results respectively
corresponding to the plurality of input wave functions.

5. The method according to claim 3, wherein the primitive
function is configured to optimize a group of circuit varia-
tion parameters of a target quantum circuit in the quantum
circuit simulation, and the performing the vector parallelism
on the second tensor for the converted first input parameter
comprises:

splicing a plurality of groups of circuit variation param-

eters of the target quantum circuit into the second
tensor for the converted first input parameter; and

performing the vector parallelism on the second tensor for
the converted first input parameter by using the vector
instruction set, to obtain optimization results respec-
tively corresponding to the plurality of groups of circuit
variation parameters.

6. The method according to claim 3, wherein the primitive
function is configured to generate circuit noise of a target
quantum circuit in the quantum circuit simulation according
to a group of random numbers, and the performing the
vector parallelism on the second tensor for the converted
first input parameter comprises:

splicing a plurality of groups of random numbers into the
second tensor for the converted first input parameter;
and

performing the vector parallelism on the second tensor for
the converted first input parameter by using the vector
instruction set, to obtain noise simulation results
respectively corresponding to the plurality of groups of
random numbers.

7. The method according to claim 3, wherein the primitive
function is configured to generate a circuit structure of a
target quantum circuit according to a group of control
parameters in the quantum circuit simulation, and the per-
forming the vector parallelism on the second tensor for the
converted first input parameter comprises:

splicing a plurality of groups of control parameters into
the second tensor for the converted first input param-
eter; and

performing the vector parallelism on the second tensor for
the converted first input parameter by using the vector
instruction set, to obtain circuit structure generation
results respectively corresponding to the plurality of
groups of control parameters.

8. The method according to claim 3, wherein the primitive
function is configured to perform a circuit measurement of
a target quantum circuit according to a group of measure-
ment parameters in the quantum circuit simulation, and the
performing the vector parallelism on the second tensor for
the converted first input parameter comprises:
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splicing a plurality of groups of measurement parameters
into the second tensor for the converted first input
parameter; and

performing the vector parallelism on the second tensor for

the converted first input parameter by using the vector
instruction set, to obtain measurement results respec-
tively corresponding to the plurality of groups of mea-
surement parameters.

9. The method according to claim 1, wherein the convert-
ing the primitive function to the target function comprises:

modifying the first input parameter in the primitive func-

tion to the converted first input parameter; and

in response to a second input parameter in the primitive

function of no parallelizing need, retaining the second
input parameter in the target function.

10. The method according to claim 1, wherein the con-
verting the primitive function to the target function com-
prises:

calling a function conversion interface with the primitive

function and first information being provided to the
function conversion interface, the first information
indicating the first input parameter in the primitive
function for parallelizing, and the function conversion
interface causing the primitive function to be converted
to the target function according to the first information.

11. The method according to claim 10, further compris-
ing:

providing second information to the function conversion

interface, the second information indicating a second
input parameter in the primitive function for calculating
a derivative, the function conversion interface convert-
ing the primitive function to the target function accord-
ing to the first information and the second information,
and the target function comprising derivative informa-
tion of the primitive function according to the second
input parameter.

12. The method according to claim 11, wherein the
function conversion interface comprises a first interface and
a second interface,

the first interface is configured to convert the primitive

function to a first target function according to the first
information; and

the second interface is configured to convert the primitive

function to a second target function according to the
first information and the second information.

13. The method according to claim 10, wherein the
function conversion interface is an application programming
interface (API) that encapsulates a machine learning library,
the machine learning library is configured to provide a
vector instruction set for executing the target function to
obtain the execution result.

14. An apparatus for a quantum circuit simulation, com-
prising processing circuitry configured to:

receive a primitive function for the quantum circuit simu-

lation;

determine at least a first input parameter of the primitive

function, the quantum circuit simulation including a
plurality of first tensors respectively for the first input
parameter;

convert the primitive function to a target function accord-

ing to the primitive function and at least the first input
parameter, the target function including a converted
first input parameter corresponding to the first input
parameter, the plurality of first tensors being spliced
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into a second tensor for the converted first input param-
eter in the quantum circuit simulation;

obtain an execution result of the target function according

to at least the second tensor for the converted first input
parameter; and

perform the quantum circuit simulation based on the

execution result of the target function.

15. The apparatus according to claim 14, wherein the
processing circuitry is configured to:

process the converted first input parameter through a

vector parallelism to obtain the execution result.

16. The apparatus according to claim 15, wherein the
processing circuitry is configured to:

perform the vector parallelism on the second tensor for

the converted first input parameter by using a vector
instruction set, the vector instruction set comprising
one or more executable instructions to be executed by
the processing circuitry to perform the vector parallel-
ism on the second tensor for the converted first input
parameter.

17. The apparatus according to claim 16, wherein the
primitive function is configured to process an input wave
function of a target quantum circuit in the quantum circuit
simulation, and the processing circuitry is configured to:

splice a plurality of input wave functions of the target

quantum circuit into the second tensor for the converted
first input parameter; and

perform the vector parallelism on the second tensor for

the converted first input parameter by using the vector
instruction set, to obtain processing results respectively
corresponding to the plurality of input wave functions.

18. The apparatus according to claim 16, wherein the
primitive function is configured to optimize a group of
circuit variation parameters of a target quantum circuit in the
quantum circuit simulation, and the processing circuitry is
configured to:

splice a plurality of groups of circuit variation parameters

of the target quantum circuit into the second tensor for
the converted first input parameter; and
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perform the vector parallelism on the second tensor for
the converted first input parameter by using the vector
instruction set, to obtain optimization results respec-
tively corresponding to the plurality of groups of circuit
variation parameters.

19. The apparatus according to claim 16, wherein the
primitive function is configured to generate circuit noise of
a target quantum circuit in the quantum circuit simulation
according to a group of random numbers, the processing
circuitry is configured to:

splice a plurality of groups of random numbers into the

second tensor for the converted first input parameter;
and

perform the vector parallelism on the second tensor for

the converted first input parameter by using the vector
instruction set, to obtain noise simulation results
respectively corresponding to the plurality of groups of
random numbers.

20. A non-transitory computer-readable storage medium
storing instructions which when executed by at least one
processor cause the at least one processor to perform:

receiving a primitive function for the quantum circuit

simulation;

determining at least a first input parameter of the primitive

function, the quantum circuit simulation including a
plurality of first tensors respectively for the first input
parameter;
converting the primitive function to a target function
according to the primitive function and at least the first
input parameter, the target function including a con-
verted first input parameter corresponding to the first
input parameter, the plurality of first tensors being
spliced into a second tensor for the converted first input
parameter in the quantum circuit simulation;

obtaining an execution result of the target function
according to at least the second tensor for the converted
first input parameter; and

performing the quantum circuit simulation based on the

execution result of the target function.
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