US 20220004321A1

a2y Patent Application Publication o) Pub. No.: US 2022/0004321 Al

a9y United States

JIANG et al.

43) Pub. Date: Jan. 6, 2022

(54) EFFECTIVE TRANSACTION TABLE WITH
PAGE BITMAP

Publication Classification

(51) Imt.CL
S . GOG6F 3/06 (2006.01)
(71) Applicant: Sz$§$§ (l%(lgc)tronlcs Co., Ltd., GOGF 12/0831 (2006.01)
GOG6F 9/46 (2006.01)
(72) Inventors: Dongyan JIANG, San Jose, CA (US); GOGF 12/1009 (2006.01)
Hongzhong ZHENG, Los Gatos, CA (52) US.CL
(US) CPC GO6F 3/0608 (2013.01); GOGF 12/0831
(2013.01); GO6F 9/467 (2013.01); GO6F
. 2212/621 (2013.01); GOGF 3/068 (2013.01);
(21) Appl. No.: 17/480,061 GOGF 3/0641 (2013.01); GOG6F 2212/65
(2013.01); GO6F 12/1009 (2013.01)
(22) Filed: Sep. 20, 2021
57 ABSTRACT
Related U.S. Application Data A transaction manager for use with memory is described.
(63) Continuation of application No. 16/735,688, filed on The transaction manager can include a write data. buifer to
Jan. 6. 2020. now Pat. No. 11.126.354. which is a store outstanding write requests, a read data multlpl.exer to
continilation ’0 £ anplication No ’ 15 /é2l 7’0 4. filed on select between data read from the memory and the write data
Nov. 22. 2017 nlo)\liv Pat. No 1'0 5570 ‘;2 ’ buffer, a command queue and a priority queue to store
T ’ oo o mTem e requests for the memory, and a transaction table to track
(60) Provisional application No. 62/554,896, filed on Sep. outstanding write requests, each write request associated
6, 2017. with a state that is Invalid, Modified, or Forwarded.
11 0\/_\ 1 05\/\
/A \
Processor B
—-—:u
1 25\/\ 1 30\/\
M |]
: T
Memory Device Hinnan
= _; P 14
Controller Driver M U M H H P ;
11 5\/\ 1 20\/\

Storage

Memory Device

Patent Application Publication Jan. 6,2022 Sheet 1 of 13 US 2022/0004321 A1

01 | i B
| I B
* |
| I B

. JC
. JC

105,
ASaN

Device
Driver
Storage
Device

130
ATaN

120
N\

Frocessor
Memory

Memory
Controller

110
N\

125
N\

115,
ASaN

US 2022/0004321 A1l

Jan. 6,2022 Sheet 2 of 13

Patent Application Publication

VAN
AICWIBIN
/\/m_‘ I
auibuz .
ol AUO0
Wa
N\ N\
144 G0
NN Gzl 10108UL0N
MNIOMIBN
001D
a0BLIBIU] Noiz
R 108880014
ssn o
oLl
/\/ONN
a01A8(]
~ abelolg
< GlLc
/\/owr 1\/mo_‘

US 2022/0004321 A1l

Jan. 6,2022 Sheet 3 of 13

Patent Application Publication

v-owm/\/
N-ONM/\/
€-0¢ < > 0B
= uoniUe N Ll o P ...%Lm
0 uoniLed oUT JUOLS)
| uoniued > 1S0H
Z uoniued
R /\/m_‘m
AV

910d
Noig
e
ol
LWYING
Ne-oie
OVIANG
e
A

SLi

m ¥ 'Old

»

- auibuzg

- . ‘dnps

s pwng] PE— s

s Wy €-0Zy

m eoe Meczr .

o A0y

S JBN auibuz “JBN .
g "WIBN ‘dnpaq ‘sueld |

= oy

5 suibug

3 -dnpa(]

= "JJuo

z onnwial > ,&m% - B

=

g A~ suibu=z

g 08y gz a1v | -dnpeq

j=3

< 0 uoniued ovy ooy
=

z N oee

<
S ansnp
z Aold o
ad r~/
- T " aneng <> O|QBL UONOBSUBLL <>
- pUBLLIWON
2 lesied ‘puwn
« | 'SPON N X H Noes ‘SPON
S | pug pus
= |Mdoeg jeyng 5 1o4ng Juoi4
. “VIVOM | eleq s [+ VIVOM gwwwm@m “VIVOM
.m /\/mmlm_lv oz
g XN
- ejeq
E V1Va v@)ﬁ V1Va g
w Jobeuepy uoloesued|
m /\/orm /\/mov /\/mom

Patent Application Publication Jan. 6,2022 Sheet 6 of 13 US 2022/0004321 A1

530,
ASaN

Transaction Table
ss | FP |State| TID Page LA |Entry Bitmap
=" 1 | 01 | 001 | ox084A0 0x0000

FIG. 6
505, ros__ 405 510,
Write
Req.
b
Ack.
Front , Back
en | < [Tamsdion o | g
Mods. Write Mods.
Req.
720\/\ :
Ack.

I

FIG. 7

Patent Application Publication Jan. 6,2022 Sheet 7 of 13 US 2022/0004321 A1

505, 405, 510
AN AN AN
805\/\
Read
Reg.
:> 815
Read
Req.
- — 1 N
Front T ion| 80~ 77 Back
Eﬁd ;?nsac ion o\ Eﬁﬁ
anager
Mods. Data Mods.
L — —
810, <.— .
Data

Patent Application Publication Jan. 6,2022 Sheet 8 of 13 US 2022/0004321 A1

(Start)

905 910
ASaN

Requested
data in the write

Receive a read No

request data buffer?
Yes
915\f\ l 920\/\ v
Read the requested Place a read
data from the write request in the
data buffer priority queue
930, I‘ 925,
Send the requested Receive the data
data to the host from the dedupable
computer memory

Patent Application Publication

C

Start

)

1005

ASaN
Receive a wrile
request
1010\/\ l

Send an early
acknowledgement {o
the host computer

Jan. 6,2022 Sheet 9 of 13

US 2022/0004321 A1l

Transaction
table shows a
Modified entry in
the write data

No

Merge the write
request with the
modified entry in the
write data buffer

&=nd

C)

FIG. 10A

Patent Application Publication Jan. 6,2022 Sheet 10 of 13 US 2022/0004321 A1l

Full Write request partig|
include full or
partial write?

L
Write the data from C
the write request

into the write data

buffer
1035 1040 l
Add a Modified entry Add a write request
to the transaction to the command
table gueue

FIG. 10B

Patent Application Publication

1050,
ATaN 4

Jan. 6,2022 Sheet 11 of 13

Transaction
table shows a
forwarded entry in
the write data

Read the data from
the forwarded entry
in the write data
buffer

DI

US 2022/0004321 A1l

No

1055
Y r~/

Place a read
request for the data
in the command
queue

1060,
APaN

Receive the data
from the dedupable
memory

FIG. 10C

Patent Application Publication

1070

1065

AN

Jan. 6,2022 Sheet 12 of 13

1075,

Merge the data from
the write request
with the read data

o

1080

Write the data from
the write request
into the write data

buffer

FIG. 10D

Ly

US 2022/0004321 A1l

Add a Modified entry
to the transaction
table

.

Add a write request
to the command
gueue

Patent Application Publication Jan. 6,2022 Sheet 13 of 13 US 2022/0004321 A1l

(Start >

1 105\/\ 1 120\f\ l
Receive a notification that Receive an
the dedupable memory acknowledgement from
has removed a wrile the dedupable memory
request from the that the write request
command queue completed
11 10\/\ 1 125\/\

identify an eniry in the
transaction table
corresponding to the
removed wrile request

Change the flag for
the entry from
Forwarded {o Invalid

1115
ASAN

Change the state for (End >

the entry from
Modified to
Forwarded

US 2022/0004321 Al

EFFECTIVE TRANSACTION TABLE WITH
PAGE BITMAP

RELATED APPLICATION DATA

[0001] This application is a continuation of U.S. patent
application Ser. No. 16/735,688, filed Jan. 6, 2020, now
allowed, which is a continuation of U.S. patent application
Ser. No. 15/821,704, filed Nov. 22, 2017, now U.S. Pat. No.
10,552,042, issued Feb. 4, 2020, which claims the benefit of
U.S. Provisional Patent Application Ser. No. 62/554,896,
filed Sep. 6, 2017, all of which are incorporated by reference
herein for all purposes.

FIELD

[0002] The inventive concepts relate generally to memory,
and more particularly to improving read access time using
memory, such as dedupable memory.

BACKGROUND

[0003] Deduplicated (or dedupable) memory provides a
more efficient mechanism in which to store data. In tradi-
tional memory solutions, each data object is written to its
own location in memory. The same data object might be
stored in any number of locations in memory, each as a
separate copy: the memory system has no way to identify or
prevent this repetitious storage of data. For data objects that
are large, this repetitious storage of data may be wasteful.
Deduplicated memory, which stores only a single copy of
any data object, attempts to address this problem.

[0004] But dedupable memory has a high latency and a
slow performance. Executing a write request for a single
piece of data may require actually writing data three times
and reading data five times in the worst case. This high
latency may be a deterrent in systems that need memory to
be responsive.

[0005] A need remains for a way to improve the respon-
siveness of memory, whether or not subject to deduplication.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] FIG. 1 shows a machine operative to use dedupable
memory, according to an embodiment of the inventive
concept.

[0007] FIG. 2 shows additional details of the machine of
FIG. 3.

[0008] FIG. 3 shows the front end of the memory of FIG.
1.

[0009] FIG. 4 shows the back end of the memory of FIG.
1.

[0010] FIG. 5 shows details of the transaction manager of
FIG. 4.

[0011] FIG. 6 shows details of the transaction table of FIG.
5.

[0012] FIG. 7 shows the transaction manager of FIG. 5

processing a write request from the front end of FIG. 5 of the
memory of FIG. 1.

[0013] FIG. 8 shows the transaction manager of FIG. 5
processing a read request from the front end of FIG. 5 of the
memory of FIG. 1.

[0014] FIG. 9 shows a flowchart of an example procedure
for processing a read request from the front end of FIG. 5 of
the memory of FIG. 1 by the transaction manager of FIG. 5,
according to an embodiment of the inventive concept.

Jan. 6, 2022

[0015] FIGS. 10A-10D shows a flowchart of an example
procedure for processing a write request from the front end
of FIG. 5 of the memory of FIG. 1 by the transaction
manager of FIG. 5, according to an embodiment of the
inventive concept.

[0016] FIG. 11 shows a flowchart of an example procedure
for the transaction manager of FIG. 5 to process write
transactions completed by the back end of FIG. 5 of the
memory of FIG. 1, according to an embodiment of the
inventive concept.

DETAILED DESCRIPTION

[0017] Reference will now be made in detail to embodi-
ments of the inventive concept, examples of which are
illustrated in the accompanying drawings. In the following
detailed description, numerous specific details are set forth
to enable a thorough understanding of the inventive concept.
It should be understood, however, that persons having
ordinary skill in the art may practice the inventive concept
without these specific details. In other instances, well-known
methods, procedures, components, circuits, and networks
have not been described in detail so as not to unnecessarily
obscure aspects of the embodiments.

[0018] It will be understood that, although the terms first,
second, etc. may be used herein to describe various ele-
ments, these elements should not be limited by these terms.
These terms are only used to distinguish one element from
another. For example, a first module could be termed a
second module, and, similarly, a second module could be
termed a first module, without departing from the scope of
the inventive concept.

[0019] The terminology used in the description of the
inventive concept herein is for the purpose of describing
particular embodiments only and is not intended to be
limiting of the inventive concept. As used in the description
of the inventive concept and the appended claims, the
singular forms “a,” “an,” and “the” are intended to include
the plural forms as well, unless the context clearly indicates
otherwise. It will also be understood that the term “and/or”
as used herein refers to and encompasses any and all
possible combinations of one or more of the associated listed
items. It will be further understood that the terms “com-
prises” and/or “comprising,” when used in this specification,
specify the presence of stated features, integers, steps,
operations, elements, and/or components, but do not pre-
clude the presence or addition of one or more other features,
integers, steps, operations, elements, components, and/or
groups thereof. The components and features of the draw-
ings are not necessarily drawn to scale.

[0020] One of the challenges of deduplicated memory
storage systems is read and write transaction amplification.
Read amplification for deduplicated memory may result in
two reads to the device for every read request by the host
machine. Write amplification may be worse: in the worst
case, one write transaction from the host could be amplified
into three write transactions as well as five read transactions.
[0021] To overcome this challenge and to achieve high
throughput and low latency, an effective Transaction Man-
ager may support multiple outstanding transactions and
provide early acknowledgement for write transactions, while
supporting multiple read transactions and read priority to
reduce read latency.

[0022] To support read priority, early write acknowledg-
ments, and multiple outstanding write and read transactions,

US 2022/0004321 Al

the Transaction Manager may track a large number of
outstanding write transaction addresses, and also may keep
commands in order for Read After Write transactions, and
for posted write transactions.

[0023] The Transaction Manager includes:

[0024] A Write Coalescing Buffer for partial writes.
[0025] A Read Data Mux of the read data path.

[0026] A Write Data Buffer to buffer multiple outstanding

write transactions.

[0027] A Transaction Table to track the multiple outstand
write transactions/threads with Invalid (or Idle)/Modified/
Forwarded states.

[0028] A Command Parser that contains Command
Queues (CQ) for write and internal read commands, and
Priority Queues (PQ) for host read transactions.

[0029] The Transaction Manager is the central controller
mechanism which manages the multiple outstanding write
and read transactions/threads by:

[0030] Supporting a configurable write early acknowledge
mechanic.
[0031] Keeping posted memory writes complete and in

order by storing the write transaction data and tracking the
write transaction stages of Invalid/Modified/Forwarded.

[0032] Supporting read transactions with prioritization for
low latency by maintaining RAW (Read After Write) Orders.

[0033] The Write Data Buffer (WDB) contains the out-
standing writes which have been acknowledged to the host.
Therefore, the write data entries in WDB need to be man-
aged correctly and efficiently to support multiple transac-
tions/threads to achieve high throughput and low latency.

[0034] The Transaction Manager tracks the status at a page
granularity for fast search and insertion within the outstand-
ing pages. This scheme optimizes the DMA or burst write
transactions, not the random write transactions.

[0035] The Page State consists of several possible states:
[0036] Invalid: An entry that is empty or data is invalided.
[0037] Modified: An entry that contains valid data that has

not yet been written to the “back end” memory storage. In
the context of this application, the terms “back end” and
“front end” (used below) are not intended to imply that there
is any physical separation between the components of the
memory, but instead identify the portions of the memory
subsystem that are between the host processor and the
Transaction Manager (the “front end”) and the portions of
the memory subsystem that are on the other side of the
Transaction Manager from the host processor (the “back
end”). As far the Transaction Manager is concerned, the
operations of other components of the system, including
other parts of the memory subsystem, might be thought of as
black boxes, whose physical layout and internal operations
might not be known by the Transaction Manager.

[0038] Forwarded: An entry that contains valid data which
has been sent to back end memory storage but not acknowl-
edge from the back end yet.

[0039] The page state may be tracked in the Transaction
Table ST[1:0] field.

Jan. 6, 2022

[0040] The Transaction Manager contains a Transaction
Table which contains the outstanding pages and the page
bitmap for fast search. The Transaction Table may track
NxM Cache-line transactions (N pages and M entries per

page).

[0041] Fields:

[0042] Full Page (FP):

[0043] O: Page is not fully filed with entries; 1: Page is

fully filed with entries.

[0044] Status (ST[1:0]):

[0045] 200: Invalid.

[0046] 2501: Modified.

[0047] 2'b10: Forwarded.

[0048] 211: Failed.

[0049] Note that all the entries in the same page share the

same page state. Therefore, all entries in the same page are
forwarded to the back end at the same time.

[0050] or failed transactions, the failing information will
be tracked in Transaction Manager Status registers.

[0051] Transaction ID (TID) A Transaction ID assigned to
the data when sent to the back end.

[0052] Note: For a partial filed page, the TID is the TID for
the first entry. An incremental TID may be assigned to the
rest of the entries in the same page.

[0053] Page Head Logical Address (LA): The logical
address of the first entry in the page. The rest of the entries’
addresses may be derived from this address based on the
bitmap (the logical address of any one entry may be com-
puted as “Page Head Logical Address+offset of the page
indicated by bitmap”).

[0054] Entry Bitmap: The valid entry bitmap in the current
page.
[0055] Ifatransactionis to send data from the WDB to the

back end memory storage, The Transaction Manager
updates the ST state of the Transaction Table for the related
page entry to “Forwarded”. When the sending of data to the
back end is completed, the Transaction Manager updates the
related page entry status to “Invalid.”

[0056] If a transaction is a read request, the Transaction
Manager may search the Transaction Table for the cache line
or DMA page. If the cache line or DMA is found in the
Transaction Table, and the ST field of the Transaction Table
shows a Modified or Forwarded status, the Transaction
Manager may read the Write data buffer and returns the data
to the front end. Otherwise the Transaction Manager may
send the read request to a Priority Queue.

[0057] If a transaction generated by the Transaction Man-
ager is to flush the WDB, the Transaction Manager may stop
accepting any new write transaction and wait for the
acknowledgement from WDB to empty the associated trans-
action table entries.

[0058] If the transaction is to write data and the ST entry
in the Transaction Table for the data is Modified, the
Transaction Manager may sends the write to the WDB for
merger.

[0059] If the transaction is to write data and the ST entry
in the Transaction Table for the data is not Modified, or there
is no TT entry:

[0060] For a full write, the Transaction Manager may
create a new Transaction Table entry, store the write data to
the WDB, and send the write command to the Command
Queue.

[0061] For a partial write, if the Transaction Table’s ST
entry is Forwarded, the Transaction Manager may send a

US 2022/0004321 Al

read request to the WDB, merge the partial data with the
read data, create a new Transaction Table entry for the
transaction, store the data in the WDB, and put the write
command into the Command Queue. If the Transaction
Table’s ST entry is not Forwarded, the Transaction Manager
may send a read command to the Command Queue to read
the rest of the data from memory storage, merge that data
with the partial data, create a new entry for the transaction
in the Transaction Table, store the data in the WDB, and send
the write command to the Command Queue.

[0062] FIG. 1 shows a machine operative to use memory
with a Transaction manager, according to an embodiment of
the inventive concept. In FIG. 1, machine 105 is shown.
Machine 105 may be any desired machine, including with-
out limitation a desktop or laptop computer, a server (either
a standalone server or a rack server), or any other device that
may benefit from embodiments of the inventive concept.
Machine 105 may also include specialized portable com-
puting devices, tablet computers, smartphones, and other
computing devices. Machine 105 may run any desired
applications: database applications are a good example, but
embodiments of the inventive concept may extend to any
desired application.

[0063] Machine 105, regardless of its specific form, may
include processor 110, memory 115, and storage device 120.
Processor 110 may be any variety of processor: for example,
an Intel Xeon, Celeron, Itanium, or Atom processor, an
AMD Opteron processor, an ARM processor, etc. While
FIG. 1 shows a single processor, machine 105 may include
any number of processors, each of which may be single core
or multi-core processors. Memory 115 may be any variety of
memory, such as flash memory, Dynamic Random Access
Memory (DRAM), Static Random Access Memory
(SRAM), Persistent Random Access Memory, Ferroelectric
Random Access Memory (FRAM), or Non-Volatile Random
Access Memory (NVRAM), such as Magnetoresistive Ran-
dom Access Memory (MRAM) etc. Memory 115 may also
be any desired combination of different memory types.
Memory 115 may be controlled by memory controller 125,
also part of machine 105.

[0064] Storage device 120 may be any variety of storage
device. Storage device 120 may be controlled by device
driver 130, which may reside within memory 115.

[0065] FIG. 2 shows additional details of machine 105 of
FIG. 1. Referring to FIG. 2, typically, machine 105 includes
one or more processors 110, which may include memory
controller 125 and clock 205, which may be used to coor-
dinate the operations of the components of machine 105.
Processors 110 may also be coupled to memory 115, which
may include random access memory (RAM), read-only
memory (ROM), or other state preserving media, as
examples.

[0066] Processors 110 may also be coupled to storage
devices 120, and to network connector 210, which may be,
for example, an Ethernet connector or a wireless connector.
Processors 110 may also be connected to a bus 215, to which
may be attached user interface 220 and Input/Output inter-
face ports that may be managed using Input/Output engine
225, among other components.

[0067] In FIGS. 1-2, memory 115 may be a conventional
memory (where eliminating data duplication is not an objec-
tive) or dedupable memory. While the implementation of
dedupable memory may vary from more traditional forms of
memory, such as Dynamic Random Access Memory

Jan. 6, 2022

(DRAM), these differences may not be relevant to the
implementation of dedupable memory, or to the implemen-
tation of the Transaction Manager. Furthermore, whether
other hardware components of machine 105, such as pro-
cessor 110, are aware of the specific implementation of
memory 115 may depend on whether those components
need to know the physical structure of memory 115. This
“lack of knowledge” about the specific implementation of
memory 115 may also extend to software elements, such as
application programs running on machine 115. Application
programs might send read and write requests to memory 115
without any knowledge of whether memory 115 includes
DRAM, dedupable memory, or any other form of memory.
In the remainder of this application, memory 115 will be
described with reference to dedupable memory, but embodi-
ments of the inventive concept extend to other forms of
memory without limitation, and the Transaction Manager
may improve the performance of other forms of memory in
a similar manner.

[0068] FIG. 3 shows the front end of memory subsystem
115 of FIG. 3. In FIG. 3, memory 115 may include host
interface 305. Host interface may receive requests (either
read or write) from various sources using any desired
interfaces. Such sources may include, for example, Direct
Memory Access lines 310-1 through 310-3, Peripheral Com-
ponent Interconnect Express (PCle) 310-4, or conventional
Memory Bus connections (not shown). Sources 310-1
through 310-4 may represent sources for applications, oper-
ating systems, or any other sources of data requests. Host
interface 305 may then communicate with front end sched-
uler 315, which may distribute data requests to any of
partitions 320-1 through 320-3, which include the dedupable
memory and may then process and respond to the data
requests.

[0069] While FIG. 3 shows four sources 310-1 through
310-4, and three partitions 320-1 through 320-3, these
numbers are merely examples. Embodiments of the inven-
tive concept may support any number of sources and any
number of partitions without limitation. In addition, the
sources may be of any desired form: sources are not limited
to DMA and PCle communications.

[0070] FIG. 4 shows the back end of memory 115 of FIG.
1. In FIG. 4, partition 320-1 is shown, but the same archi-
tecture may be used in partitions 320-2 and 320-3 of FIG. 3.
Partition 320-1 may include transaction manager 405, dedu-
plication engine manager 410, and memory manager 415.
Transaction manager 405 is responsible for managing data
requests, and may improve the latency of read requests as
compared with a deduplication memory architecture that
omits transaction manager 405. Transaction manager 405 is
discussed further with reference to FIG. 5 below.

[0071] Deduplication engine manager 410 is responsible
for handling the specific reading and writing of data and
eliminating data duplication. To that end, deduplication
engine manager 410 may include various deduplication
engines 420-1 through 420-3. Each deduplication engine
420-1 through 420-3 may determine whether any received
user data has been stored before and if so, may prevent
storing the same data a second time in memory 115.

[0072] Deduplication engine manager 410 (and therefore
deduplication engines 420-1 through 420-3) may commu-
nicate with memory manager 415. Memory manager 415 is
responsible for directing specific data requests to the appro-
priate memory hardware. For example, FIG. 4 shows two

US 2022/0004321 Al

memory controllers 425-1 and 425-2, communicating with
Dual In-Line Memory Modules (DIMMs) 430-1 and 430-2.
Embodiments of the inventive concept may support any
physical form used to store data. For example, DIMMs
430-1 and 430-2 may be replaced with Dual In-line Pack-
ages (DIPs), Single In-line Packages (SIPs), Single In-line
Memory Modules (SIMMs), or even just the memory chips
themselves. In the remainder of this application, the term
“memory module” is intended to encompass all such varia-
tions on the form taken to store data. Memory manager 415
may direct any data requests received from deduplication
engine manager 410 to either of memory controllers 425-1
or 425-2, depending on where the actual data is stored (or is
to be stored); memory controllers 425-1 and 425-2, in turn,
manage the actual reading and writing of data from DIMMs
430-1 and 430-2.

[0073] While FIG. 4 shows three deduplication engines
420-1 through 420-3 and two memory controllers 425-1 and
425-2 (communicating with two memory modules 430-1
and 430-2), embodiments of the inventive concept may
include any number of deduplication engines and any num-
ber of memory controllers and memory modules (although
typically there is a one-to-one relationship between memory
controllers and memory modules). Further, while FIG. 4
shows memory modules 430-1 and 430-2 as DIMMs,
embodiments of the inventive concept may support any
desired memory module format, and may also support
mixed formats: for example, some memory modules being
DIMMs and others being Small Outline Dual In-Line
Memory Modules (SODIMMs). Each partition 320-1
through 320-3 of FIG. 3 may also include varying numbers
and types of deduplication engines and memory modules.
[0074] As mentioned above, a deduplication memory sys-
tem may operate without transaction manager 405. How-
ever, because of the amplification factor, such a deduplica-
tion memory system may have a high latency. Even
conventional memory subsystems, which might not experi-
ence amplification to the same extent as deduplication
memory, may experience a sufficiently high read or write
latency. By including transaction manager 405 in the dedu-
plication (or other) memory system architecture, the ampli-
fication factor may be reduced by coalescing partial write
data and by early write acknowledgment to the host, improv-
ing the performance of the memory system.

[0075] FIG. 5 shows details of transaction manager 405 of
FIG. 4. In FIG. 5, transaction manager 405 is shown
interfacing with front end 505 and back end 510. Front end
505 is intended to represent front end scheduler 315 of FIG.
3, along with all the other components that are implicated
“before” transaction manager 405. Similarly, back end 510
is intended to represent deduplication engine manager 410
of FIG. 4, along with all the other components that are
implicated “after” transaction manager 405. Since the
memory system architecture may operate without transac-
tion manager 405, from the point of view of transaction
manager 405, front end 505 and back end 510 may be
considered black boxes, whose internal operations are
unknown. Front end 505, transaction manager 405, and back
end 510 may communicate using standard protocols.
[0076] Transaction manager 405 may include read data
multiplexer (mux) 515, write data coalescing buffer 520,
write data buffer 525, transaction table 530, and command
parser 535. Read data mux 515 may receive read data from
write data buffer 525 (if the requested data was buffered for

Jan. 6, 2022

a deferred write) or back end 510 (if the data is not in write
data buffer 525). If the data needs to be retrieved from back
end 510, transaction manager 405 may place a read request
in priority queue 540 of command parser 535, which back
end 510 may process to locate and return the requested data.
[0077] Write data buffer 525 may store data that is buft-
ered for writing to back end 510. When transaction manager
405 receives a write request from front end 505, transaction
manager 405 may store the write data in write data buffer
525, and may store the write request in command queue 545
of command parser 535. Transaction manager 405 may then
send an early acknowledgement back to front end 505 (early
in the sense that the data has not yet been written to its
ultimate storage location in memory, but is buffered for
writing at a later time). Data that has been previously
buffered in write data buffer 525 but not yet written to and
acknowledged by back end 510 may be read into read data
mux 515 in response to a read request. The size of write data
buffer 525 may vary and may depend on the speed of the
memory modules in back end 510: the slower the memory
modules are, the larger write data buffer 525 may need to be.
Ideally, at a minimum, write data buffer 525 should be large
enough to handle a DMA burst to the memory modules. If
write data buffer 525 becomes full, transaction manager 405
may generate a flush command to write data to back end 510.
[0078] It may happen that a write request does not request
to write a full page (or cache line) of data to the memory
system. But writes to the memory module should be of
complete pages. So if front end 505 only sent a partial write,
transaction manager 405 may “merge” that partial write with
the rest of the data needed to complete the write. For
example, if the write request is a partial cache line write,
transaction manager 405 may merge that partial write with
the rest of the data in the cache line, which may be read from
the memory. Write coalescing buffer 520 operates to handle
this process. Write coalescing buffer 520 requests the
remaining data needed to complete the page or cache line
(which might be find in write data buffer 525 or might have
to be read from back end 510), merges the partial write with
that data, stores the complete page or cache line in write data
buffer 525, and (potentially) stores a write request in com-
mand queue 545 of command parser 535. In this context,
“merging” means to change the portions of the read data as
per the write request, leaving the other portions of the read
data unchanged.

[0079] Whether write coalescing buffer 520 receives the
remaining data from back end 510 or reads the remaining
data from write data buffer 525 depends on whether the
remaining data may be found in write data buffer 525. If the
remaining data may be found in write data buffer 525, then
there is no need to request the data from back end 510
(which would be a slower operation and might return data
that is out-of-date).

[0080] But if write data buffer 525 already stores a full
page of data, there is a question of how to handle the
conflicting entries. The solution to this problem is to deter-
mine whether the existing page in write data buffer 525 has
been sent to back end 510 or not. If the existing page in write
data buffer 525 has already been sent to back end 510, then
the new page is stored as a separate page of data in write data
buffer 525. This new page of data will eventually be written
to back end 510 to replace the page that was already written.
[0081] On the other hand, if the existing page in write data
buffer 525 is still waiting to be sent to back end 510, then the

US 2022/0004321 Al

existing page may be updated in write data buffer 525. In this
situation, the page is sent to back end 510 only once,
avoiding the repeated writes to back end 510.

[0082] To determine whether a page in write data buffer
525 has been sent to back end 510 or not, transaction table
530 may be used. Transaction table 530 may store informa-
tion about the state of data in write data buffer 525. Each
page in write data buffer 525 may have one of four states:
Invalid, meaning that the page does not store any data
waiting to be written to back end 510; Modified, meaning
that the page contains data waiting to be written to back end
510, but not yet sent to back end 510; Forwarded, meaning
that the page contains data that has been sent to back end
510; and Failed, which represents an error condition. The
number of entries in transaction table 530 may correspond to
the number of pages stored in write data buffer 525.

[0083] Note that a single page in write data buffer 525
might store data for multiple write requests. For example,
assume that a cache line stores 64 bytes, and each page in the
memory stores 4096 bytes. This means that there are 64
cache lines per page. As a result, it might happen that one or
more pages in write data buffer 525 includes some cache
lines with valid data and some that are empty. The entries in
transaction table 530 are discussed further below with
reference to FIG. 6.

[0084] When write coalescing buffer 520 is ready to store
a page or cache line in write data buffer 525, the state of the
existing data in write data buffer 525, as recorded in trans-
action table 530, may indicate whether the existing page or
cache line may be overwritten or a new page or cache line
needs to be written. If the existing page (or the page that
includes the cache line in question) has the Modified state,
then the existing page or cache line has not yet been sent to
back end 510, and the existing page or cache line may be
modified to include the data from the partial write request.
On the other hand, if the existing page (or the page that
includes the cache line in question) has the Forwarded state,
then the existing page has already been sent to back end 510,
and a new page is stored in write data buffer 525. (If no page
containing the cache line matching the page logical address
can be found in transaction table 530, then a new page or
cache line may be added to write data buffer 525, and a
corresponding entry may be created in transaction table
530.)

[0085] Command parser 535 may include two queues:
command queue 545 and priority queue 540. Command
queue 545 may be thought of as a standard priority queue,
as compared with priority queue 540, which may be thought
of as a high priority queue. Command queue 545 may be
used for internally generated read requests (such as when
transaction manager 405 needs data from back end 510 for
internal reasons) and write requests, whereas priority queue
540 may be used for externally generated read requests
(such as read requests originating from front end 505). In
this manner, externally generated read requests may achieve
a low latency (externally generated write requests achieve a
low latency as a result of the early acknowledgement of
write requests). While FIG. 5 shows only one command
queue 545 and one priority queue 540, embodiments of the
inventive concept may support any number of command
queues 545 and priority queues 540, and do not require the
number of command queues and the number of priority
queues to be equal.

Jan. 6, 2022

[0086] Transaction manager 405 may achieve a fast search
for data in write data buffer 550: searches may be completed
in one cycle. Transaction manager 405 may also achieve a
fast insertion of a new page into write data buffer 525.
[0087] FIG. 6 shows details of transaction table 530 of
FIG. 5. In FIG. 6, transaction table 530 may include entries,
such as entry 605. Transaction table 530 may include one
entry for each page in write data buffer 525 of FIG. 5. Each
entry may include information, such as: a full page bit,
indicating whether the page contains a full page of data or
only a partial page; state bits, indicating whether the page in
question is Invalid, Modified, Forwarded or Failed; a trans-
action ID, which may be assigned to transactions posted to
back end 510 by transaction manager 405 of FIG. 5, a page
logical address, which may be the base address of the page
being written to back end 510 of FIG. 5, and an entry bitmap
that may indicate which cache lines within the page contain
valid data. For example, the entry bitmap might include a
“0” to indicate that a cache line in the page is empty, whereas
the entry bitmap might include a “1” to indicate that a cache
line in the page contains valid data. Thus, if the entry bitmap
is “111 . . . 17, the entry bitmap represents that the page is
full (in which case the full page bit should be set) and all
cache lines contain valid data. On the other hand, if any bit
in the entry bitmap is “0”, then then there is at least one entry
in the page that does not contain valid data, and the full page
bit ought not to be set. In other words, the full page bit can
be computed as a logical AND of the bits in the entry bitmap.
As a result, storing the full page bit might be unnecessary,
but it can save time (avoiding the need to computing the
logical AND of the bits in the entry bit map each time a
check is made to see if a page is full or not).

[0088] FIG. 7 shows transaction manager 405 of FIG. 5
processing a write request from front end 505 of FIG. 5 of
memory 115 of FIG. 1. In FIG. 7, front end 505 sends write
request 705 to transaction manager 405. Transaction man-
ager 405 may respond with early acknowledgement 710. At
some later time, transaction manager 405 may provide write
request 715 to back end 510, to complete the write request,
which back end 510 may acknowledge as complete with
acknowledgement 720.

[0089] Not shown in FIG. 7 would be a read request sent
from transaction manager 405 to back end 510. For example,
if write request 705 is a partial cache line write request and
the rest of the cache line entry is not stored in write data
buffer 525 of FIG. 5, then transaction manager 405 may need
to send a read request to back end 510 to retrieve the cache
line and merge the partial write.

[0090] FIG. 8 shows transaction manager 405 of FIG. 5
processing a read request from front end 505 of FIG. 5 of
memory 115 of FIG. 1. In FIG. 8, at front end 505 may send
read request 805 to transaction manager 405. If the requested
data is already within transaction manager 405—for
example, if the requested data is currently stored in write
data buffer 525 of FIG. 5, then transaction manager 405 may
respond with data 810 immediately. Otherwise, transaction
manager 405 may send read request 815 to back end 510 (via
priority queue 540 of FIG. 5) to read the requested data,
which may be returned as data 820 (and then forwarded from
transaction manager 405 to front end 505 as data 810).
[0091] FIG. 9 shows a flowchart of an example procedure
for processing a read request from front end 505 of FIG. 5
of memory 115 of FIG. 3 by transaction manager 405 of
FIG. 5, according to an embodiment of the inventive con-

US 2022/0004321 Al

cept. In FIG. 9, at block 905, transaction manager 405 of
FIG. 5 may receive read request 805 of FIG. 8 from front end
505 of FIG. 5. At block 910, transaction manager 405 of
FIG. 5 checks to see if the requested data is in write data
buffer 525 of FIG. 5. If the requested data is in write data
buffer 525 of FIG. 5, then at block 915 the requested data is
read from write data buffer 525 of FIG. 5 into read data mux
515 of FIG. 5. Otherwise, at block 920 transaction manager
places a read request in priority queue 540 of FIG. 5 destined
for back end 510 of FIG. 5, and at block 925 read data mux
515 of FIG. 5 receives the requested data from back end 510
of FIG. 5. Either way, at block 930, transaction manager 405
of FIG. 5 sends the requested data to front end 505 of FIG.
5

[0092] FIGS. 10A-10D shows a flowchart of an example
procedure for processing a write request from front end 505
of FIG. 5 of memory 115 of FIG. 1 by the transaction
manager of FIG. 5, according to an embodiment of the
inventive concept. In FIG. 10A, at block 1005, transaction
manager 405 of FIG. 5 may receive write request 705 of
FIG. 7 from front end 505 of FIG. 5. At block 1010,
transaction manager 405 of FIG. 5 may send an early
acknowledgement back to front end 505 of FIG. 5.

[0093] At block 1015, transaction manager 405 of FIG. 5
determines whether there is a page in write data buffer 525
of FIG. 5 that includes the logical address to be written, and
has a Modified status. If such a page exists in write data
buffer 525 of FIG. 5, then at block 1020 transaction manager
405 of FIG. 5 may merge the data from write request 705 of
FIG. 7 with the page in write data buffer 525 of FIG. 5, after
which processing may end.

[0094] Assuming that write data buffer 525 of FIG. 5 does
not store a page containing the logical address in write
request 705 of FIG. 7 that is in a Modified state, then at block
1025 (FIG. 10B) transaction manager 405 of FIG. 5 may
determine if write request 705 of FIG. 7 is a partial write
request or a full write request. If write request 705 of FIG.
7 is a full write request, then at block 1030 transaction
manager 405 of FIG. 5 may write the data from write request
705 of FIG. 7 into write data buffer 525 of FIG. 5, add an
entry to transaction table 530 of FIG. 5 with Modified state
at block 1035, and add write request 705 of FIG. 7 to
command queue 545 of FIG. 5 at block 1040, after which
processing may end. Note that in blocks 1030-1040 there is
no concern about creating redundant entries in write data
buffer 525 of FIG. 5: either no page exists in write data
buffer 525 that includes the logical address of write request
705 of FIG. 7, or the corresponding entry in transaction table
530 of FIG. 5 shows that the page has the Forwarded state,
in which case the existing page may not be modified (a
check for a page with Modified state was performed in block
1015 of FIG. 10A).

[0095] At this point, transaction manager 405 of FIG. 5
has covered the situations where an existing page in write
data buffer 525 in a Modified state includes the logical
address of write request 705 of FIG. 7, or write request 705
of FIG. 7 is a full write request. The only case that remains
is where write request 705 of FIG. 7 is a partial write request
and there is no page in write data buffer 525 of FIG. 5 that
may be modified responsive to the partial write request. At
this point, transaction manager 405 of FIG. 5 may load the
full page (or cache line) to merge the partial write request
into a full write request for write data buffer 525 of FIG. 5.
At block 1045 (FIG. 10C), transaction manager 405 of FI1G.

Jan. 6, 2022

5 may check to see if write data buffer 525 of FIG. 5 includes
a page in a Forwarded state that includes the logical address
of write request 705 of FIG. 7. If such a page exists, then at
block 1050 transaction manager 405 of FIG. 5 may read the
data from write data buffer 525 of FIG. 5. Otherwise, at
block 1055, transaction manager 405 of FIG. 5 may place a
read request for the page in command queue 545 of FIG. 5,
and at block 1060, transaction manager 405 of FIG. 5 may
receive the requested page from back end 510 of FIG. 5.
[0096] At this point, whether transaction manager 405 of
FIG. 5 followed block 1050 or blocks 1055 and 1060,
transaction manager 405 of FIG. 5 has the rest of the data
from the page or cache line. At block 1065 (FIG. 10D), write
coalescing buffer 520 of FIG. 5 may merge the data in the
partial write request with the full page or cache line as
accessed. At block 1070, write coalescing buffer 520 of FIG.
5 may write the merged page or cache line into write data
buffer 525 of FIG. 5. At block 1075, transaction manager
405 of FIG. 5 may add an entry to transaction table 530 of
FIG. 5 for the page, with a Modified state. Finally, at block
1080, transaction manager 405 of FIG. 5 may place write
request 715 of FIG. 7 in command queue 545 of FIG. 5.
[0097] FIG. 11 shows a flowchart of an example procedure
for transaction manager 405 of FIG. 5 to process write
transactions completed by back end 510 of FIG. 5 of
memory 115 of FIG. 1, according to an embodiment of the
inventive concept. In FIG. 11, at block 1105, transaction
manager 405 of FIG. 5 may receive a notification from back
end 510 of FIG. 5 that write request 715 of FIG. 7 has been
removed from command queue 545 of FIG. 5. At block
1110, transaction manager 405 of FIG. 5 may identify as
corresponding entry in transaction table 530 of FIG. 5: for
example, using a transaction ID for write request 715 of FIG.
7. At block 1115, transaction manager 405 of FIG. 5 may
change the state of the identified entry from Modified to
Forwarded (which prevents any future write requests
received by transaction manager 405 of FIG. 5 from directly
modifying that page in write data buffer 525 of FIG. 5).
[0098] At block 1120, transaction manager 405 of FIG. 5
may receive from back end 510 of FIG. 5 an acknowledge-
ment that write request 715 of FIG. 7 has completed. At
block 1125, transaction manager 405 of FIG. 5 may then
change the state of the identified entry from Forwarded to
Invalid, which frees the page in write data buffer 525 of FIG.
5 for use by another page of data.

[0099] In FIGS. 9-11, some embodiments of the inventive
concept are shown. But a person skilled in the art will
recognize that other embodiments of the inventive concept
are also possible, by changing the order of the blocks, by
omitting blocks, or by including links not shown in the
drawings. All such variations of the flowcharts are consid-
ered to be embodiments of the inventive concept, whether
expressly described or not.

[0100] The following discussion is intended to provide a
brief, general description of a suitable machine or machines
in which certain aspects of the inventive concept may be
implemented. The machine or machines may be controlled,
at least in part, by input from conventional input devices,
such as keyboards, mice, etc., as well as by directives
received from another machine, interaction with a virtual
reality (VR) environment, biometric feedback, or other input
signal. As used herein, the term “machine” is intended to
broadly encompass a single machine, a virtual machine, or
a system of communicatively coupled machines, virtual

US 2022/0004321 Al

machines, or devices operating together. Exemplary
machines include computing devices such as personal com-
puters, workstations, servers, portable computers, handheld
devices, telephones, tablets, etc., as well as transportation
devices, such as private or public transportation, e.g., auto-
mobiles, trains, cabs, etc.

[0101] The machine or machines may include embedded
controllers, such as programmable or non-programmable
logic devices or arrays, Application Specific Integrated
Circuits (ASICs), embedded computers, smart cards, and the
like. The machine or machines may utilize one or more
connections to one or more remote machines, such as
through a network interface, modem, or other communica-
tive coupling. Machines may be interconnected by way of a
physical and/or logical network, such as an intranet, the
Internet, local area networks, wide area networks, etc. One
skilled in the art will appreciate that network communication
may utilize various wired and/or wireless short range or long
range carriers and protocols, including radio frequency (RF),
satellite, microwave, Institute of Electrical and Electronics
Engineers (IEEE) 802.11, Bluetooth®, optical, infrared,
cable, laser, etc.

[0102] Embodiments of the present inventive concept may
be described by reference to or in conjunction with associ-
ated data including functions, procedures, data structures,
application programs, etc. which when accessed by a
machine results in the machine performing tasks or defining
abstract data types or low-level hardware contexts. Associ-
ated data may be stored in, for example, the volatile and/or
non-volatile memory, e.g., RAM, ROM, etc., or in other
storage devices and their associated storage media, includ-
ing hard-drives, floppy-disks, optical storage, tapes, flash
memory, memory sticks, digital video disks, biological
storage, etc. Associated data may be delivered over trans-
mission environments, including the physical and/or logical
network, in the form of packets, serial data, parallel data,
propagated signals, etc., and may be used in a compressed
or encrypted format. Associated data may be used in a
distributed environment, and stored locally and/or remotely
for machine access.

[0103] Embodiments of the inventive concept may include
a tangible, non-transitory machine-readable medium com-
prising instructions executable by one or more processors,
the instructions comprising instructions to perform the ele-
ments of the inventive concepts as described herein.
[0104] Having described and illustrated the principles of
the inventive concept with reference to illustrated embodi-
ments, it will be recognized that the illustrated embodiments
may be modified in arrangement and detail without depart-
ing from such principles, and may be combined in any
desired manner. And, although the foregoing discussion has
focused on particular embodiments, other configurations are
contemplated. In particular, even though expressions such as
“according to an embodiment of the inventive concept” or
the like are used herein, these phrases are meant to generally
reference embodiment possibilities, and are not intended to
limit the inventive concept to particular embodiment con-
figurations. As used herein, these terms may reference the
same or different embodiments that are combinable into
other embodiments.

[0105] The foregoing illustrative embodiments are not to
be construed as limiting the inventive concept thereof.
Although a few embodiments have been described, those
skilled in the art will readily appreciate that many modifi-

Jan. 6, 2022

cations are possible to those embodiments without materi-
ally departing from the novel teachings and advantages of
the present disclosure. Accordingly, all such modifications
are intended to be included within the scope of this inventive
concept as defined in the claims.
[0106] Embodiments of the inventive concept may extend
to the following statements, without limitation:
[0107] Statement 1. An embodiment of the inventive con-
cept includes a transaction manager for use in a memory
subsystem with memory, comprising:
[0108] a write data buffer to store outstanding write trans-
actions to be written to memory;
[0109] a read data multiplexer to select between data read
from the write data buffer and the memory;
[0110] a command queue to store write requests and
internal read requests for the memory;
[0111] a priority queue to store external read requests for
the memory; and
[0112] a transaction table to track outstanding write
requests, each write request associated with a state drawn
from a set including Invalid, Modified, and Forwarded.
[0113] Statement 2. An embodiment of the inventive con-
cept includes a transaction manager according to statement
1, further comprising a write coalescing buffer to merge
partial write requests with other data, the other data drawn
from a set including data in the memory and data in the write
data buffer.
[0114] Statement 3. An embodiment of the inventive con-
cept includes a transaction manager according to statement
1, wherein the transaction manager supports early acknowl-
edgement of write requests from a host computer before
completing the write requests by the memory.
[0115] Statement 4. An embodiment of the inventive con-
cept includes a transaction manager according to statement
1, wherein the memory includes a dedupable memory.
[0116] Statement 5. An embodiment of the inventive con-
cept includes a transaction manager (405) according to
statement 1, wherein the transaction table (530) includes at
least one entry, each entry including a page state, a trans-
action identifier (ID), a page logical address, and an entry
bitmap.
[0117] Statement 6. An embodiment of the inventive con-
cept includes a method, comprising:
[0118] receiving a request at a transaction manager for
memory from a host computer;
[0119] determining if the request may be satisfied using a
write data buffer in the transaction manager; and
[0120] satistying the request using at least one of the write
data buffer and the memory.
[0121] Statement 7. An embodiment of the inventive con-
cept includes a method according to statement 6, wherein the
request includes a read request requesting data.
[0122] Statement 8. An embodiment of the inventive con-
cept includes a method according to statement 7, wherein:
[0123] determining if the request may be satisfied using a
write data buffer in the transaction memory includes deter-
mining if the data requested in the read request may be found
in the write data buffer; and
[0124] satistying the request using at least one of the write
data buffer and the memory includes, if the data requested in
the read request may be found in the write data buffer:
[0125] reading the data requested in the read request
from the write data buffer; and

US 2022/0004321 Al

[0126] sending the data requested in the read request to
the host computer.
[0127] Statement 9. An embodiment of the inventive con-
cept includes a method according to statement 8, wherein
satisfying the request using at least one of the write data
buffer and the memory further includes, if the data requested
in the read request may not be found in the write data buffer:
[0128] placing the read request in a priority queue in the
transaction manager for the memory;
[0129] receiving the data requested in the read request
from the memory; and

[0130] sending the data requested in the read request to the
host computer.
[0131] Statement 10. An embodiment of the inventive

concept includes a method according to statement 6,
wherein:
[0132] the request includes a write request requesting data
be written to the memory; and
[0133] satistying the request using at least one of the write
data buffer and the memory includes sending an early
acknowledgement to the host computer before completing
the write requests by the memory.
[0134] Statement 11. An embodiment of the inventive
concept includes a method according to statement 10,
wherein satisfying the request using at least one of the write
data buffer and the memory includes:
[0135] determining if a transaction table in the transaction
manger includes an entry associated with a Modified flag
that includes an address for the data to be written to the
memory; and
[0136] if'the write data buffer includes the entry associated
with the Modified flag that includes the address for the data
to be written to the memory, merging the data to be written
with a page in the write data buffer corresponding to the
entry in the transaction manager associated with the
[0137] Modified flag.
[0138] Statement 12. An embodiment of the inventive
concept includes a method according to statement 11,
wherein satisfying the request using at least one of the write
data buffer and the memory further includes, if the transac-
tion table does not include the entry associated with the
Modified flag that includes the address for the data to be
written to the memory:
[0139] determining if the data to be written to the memory
includes a full data write; and
[0140] if the data to be written to the memory includes a
full data write:
[0141] writing the data to be written to the write data
buffer;
[0142] adding a new entry to the transaction table
associated with the Modified flag; and
[0143] placing the write request in a command queue
in the transaction manager for the memory.

[0144] Statement 13. An embodiment of the inventive
concept includes a method according to statement 12,
wherein satisfying the request using at least one of the write
data buffer and the memory further includes, if the transac-
tion table does not include the entry associated with the
Modified flag that includes the address for the data to be
written to the memory and the data to be written to the
memory does not include a full data write:
[0145] reading a full cache line from at least one of the
write data buffer and the memory;

Jan. 6, 2022

[0146] merging the data to be written with the full cache
line;
[0147] adding the new entry to the transaction table asso-

ciated with the Modified flag for the merged full cache line;
and

[0148] placing the write request in a command queue in
the transaction manager for the memory.

[0149] Statement 14. An embodiment of the inventive
concept includes a method according to statement 13,
wherein reading a full cache line from at least one of the
write data buffer and the memory includes:

[0150] if the transaction table include the entry associated
with a Forwarded flag that includes the address for the data
to be written to the memory, reading the full cache line from
the write data buffer; and

[0151] if the transaction table does not include the entry
associated with the Forwarded flag that includes the address
for the data to be written to the memory:

[0152] placing a read request for the full cache line in a
command queue in the transaction manager for the
memory; and

[0153] receiving the full cache line from the memory.

[0154] Statement 15. An embodiment of the inventive
concept includes a method according to statement 6, further
comprising:

[0155] receiving a notification from the memory that a
write request was removed from the command queue; and
[0156] changing a Modified flag associated with an entry
in a transaction table for the write request to a Forwarded
flag.

[0157] Statement 16. An embodiment of the inventive
concept includes a method according to statement 15, fur-
ther comprising:

[0158] receiving an acknowledgement from the memory;
and
[0159] changing the Forwarded flag associated with the

entry in the transaction table for the write request to an
Invalid flag.

[0160] Statement 17. An embodiment of the inventive
concept includes a method according to statement 6,
wherein the memory includes a dedupable memory.

[0161] Statement 18. An embodiment of the inventive
concept includes an article, comprising a non-transitory
storage medium, the non-transitory storage medium having
stored thereon instructions that, when executed by a
machine, result in:

[0162] receiving a request at a transaction manager for
memory from a host computer;

[0163] determining if the request may be satisfied using a
write data buffer in the transaction manager; and

[0164] satistying the request using at least one of the write
data buffer and the memory.

[0165] Statement 19. An embodiment of the inventive
concept includes an article according to statement 18,
wherein the request includes a read request requesting data.
[0166] Statement 20. An embodiment of the inventive
concept includes an article according to statement 19,
wherein:

[0167] determining if the request may be satisfied using a
write data buffer in the transaction memory includes deter-
mining if the data requested in the read request may be found
in the write data buffer; and

US 2022/0004321 Al

[0168] satistying the request using at least one of the write
data buffer and the memory includes, if the data requested in
the read request may be found in the write data buffer:
[0169] reading the data requested in the read request
from the write data buffer; and
[0170] sending the data requested in the read request to
the host computer.
[0171] Statement 21. An embodiment of the inventive
concept includes an article according to statement 20,
wherein satisfying the request using at least one of the write
data buffer and the memory further includes, if the data
requested in the read request may not be found in the write
data buffer:
[0172] placing the read request in a priority queue in the
transaction manager for the memory;
[0173] receiving the data requested in the read request
from the memory; and

[0174] sending the data requested in the read request to the
host computer.
[0175] Statement 22. An embodiment of the inventive

concept includes an article according to statement 18,
wherein:
[0176] the request includes a write request requesting data
be written to the memory; and
[0177] satistying the request using at least one of the write
data buffer and the memory includes sending an early
acknowledgement to the host computer before completing
the write requests by the memory.
[0178] Statement 23. An embodiment of the inventive
concept includes an article according to statement 22,
wherein satisfying the request using at least one of the write
data buffer and the memory includes:
[0179] determining if a transaction table in the transaction
manger includes an entry associated with a Modified flag
that includes an address for the data to be written to the
memory; and
[0180] if'the write data buffer includes the entry associated
with the Modified flag that includes the address for the data
to be written to the memory, merging the data to be written
with a page in the write data buffer corresponding to the
entry in the transaction manager associated with the Modi-
fied flag.
[0181] Statement 24. An embodiment of the inventive
concept includes an article according to statement 23,
wherein satisfying the request using at least one of the write
data buffer and the memory further includes, if the transac-
tion table does not include the entry associated with the
Modified flag that includes the address for the data to be
written to the memory:
[0182] determining if the data to be written to the memory
includes a full data write; and
[0183] if the data to be written to the memory includes a
full data write:
[0184] writing the data to be written to the write data
buffer;
[0185] adding a new entry to the transaction table
associated with the Modified flag; and
[0186] placing the write request in a command queue in
the transaction manager for the memory.
[0187] Statement 25. An embodiment of the inventive
concept includes an article according to statement 24,
wherein satisfying the request using at least one of the write
data buffer and the memory further includes, if the transac-
tion table does not include the entry associated with the

Jan. 6, 2022

Modified flag that includes the address for the data to be
written to the memory and the data to be written to the
memory does not include a full data write:

[0188] reading a full cache line from at least one of the
write data buffer and the memory;

[0189] merging the data to be written with the full cache
line;
[0190] adding the new entry to the transaction table asso-

ciated with the Modified flag for the merged full cache line;
and

[0191] placing the write request in a command queue in
the transaction manager for the memory.

[0192] Statement 26. An embodiment of the inventive
concept includes an article according to statement 25,
wherein reading a full cache line from at least one of the
write data buffer and the memory includes:

[0193] if the transaction table include the entry associated
with a Forwarded flag that includes the address for the data
to be written to the memory, reading the full cache line from
the write data buffer; and

[0194] if the transaction table does not include the entry
associated with the Forwarded flag that includes the address
for the data to be written to the memory:

[0195] placing a read request for the full cache line in a
command queue in the transaction manager for the
memory; and

[0196] receiving the full cache line from the memory.

[0197] Statement 27. An embodiment of the inventive
concept includes an article according to statement 18, the
non-transitory storage medium having stored thereon further
instructions that, when executed by the machine, result in:
[0198] receiving a notification from the memory that a
write request was removed from the command queue; and

[0199] changing a Modified flag associated with an entry
in a transaction table for the write request to a Forwarded
flag.

[0200] Statement 28. An embodiment of the inventive

concept includes an article according to statement 27, the
non-transitory storage medium having stored thereon further
instructions that, when executed by the machine, result in:

[0201] receiving an acknowledgement from the memory;
and
[0202] changing the Forwarded flag associated with the

entry in the transaction table for the write request to an
Invalid flag.
[0203] Statement 29. An embodiment of the inventive
concept includes an article according to statement 18,
wherein the memory includes a dedupable memory.
[0204] Consequently, in view of the wide variety of per-
mutations to the embodiments described herein, this detailed
description and accompanying material is intended to be
illustrative only, and should not be taken as limiting the
scope of the inventive concept. What is claimed as the
inventive concept, therefore, is all such modifications as
may come within the scope and spirit of the following claims
and equivalents thereto.
1. A device, comprising:
a first buffer to store a data for write requests to be written
to memory; and
a data structure to track the write requests, the table
indicating that a write request of the write requests is
sent to the memory or that the write request remains in
the first

US 2022/0004321 Al

2. A device according to claim 1, further comprising a
second buffer to merge partial write requests with other data,
the other data drawn from a set including data in the memory
or data in the first buffer.

3. A device according to claim 2, wherein the device is
configured to transmit the data for the write requests to the
memory from the first buffer with the write requests.

4. A device according to claim 1, wherein data structure
includes at least one entry, the entry including a page state,
a transaction identifier (ID), a page logical address, and an
entry bitmap.

5. A device according to claim 1, further comprising:

a first queue to store the write requests for the memory;

and

a second queue to store external read requests for the

memory.

6. A device according to claim 1, wherein the first queue
is configured to further store internal read requests for the
memory.

7. A method, comprising:

receiving a write request at a device for memory from a

host computer, the write request including a first data;

determining that a buffer includes a page including a

second data for a pending write request; and

merging the first data for the write request with the second

data in the page in the buffer, including changing a
portion of the page in the buffer based at least in part
on the write request.

8. A method according to claim 7, wherein determining
that a buffer includes a page including a second data for a
pending write request includes determining that a data
structure in the device includes an entry indicating that the
pending write request for the page in the buffer is in a queue.

9. A method according to claim 7, wherein determining
that a data structure in the device includes an entry indicat-
ing that the pending write request for the page in the buffer
is in a queue includes determining that a table in the device
includes the entry indicating that the pending write request
for the page in the buffer is in the queue.

10. A method according to claim 7, further comprising
sending an early acknowledgement for the write request to
the host computer.

11. A method according to claim 10, further comprising:

receiving a second write request at the device for the

memory from the host computer, the second write
request including a partial data write;

determining that partial data write updates the memory;

reading a full cache line from the memory;

merging the partial data write with the full cache line to

produce a merged cache line; and

writing the merged cache line to a second page in the

buffer.

12. A method according to claim 11, further comprising:

placing the third second request in a queue in the device

for the memory; and

adding an entry to a table indicating that the second page

in the buffer is in the queue.

Jan. 6, 2022

13. A method according to claim 11, wherein reading a
full cache line from the memory includes:

sending a read request for the full cache line from the

device for the memory; and

receiving the full cache line from the memory.

14. A method according to claim 10, further comprising:

receiving a second write request including a full data

write at a second address;

writing the full data write to a second page in the buffer;

placing the second write request in a queue in the device

for the memory; and

adding an entry to a table indicating that the second page

in the buffer is in the queue.

15. A method according to claim 7, further comprising:

receiving a notification from the memory that the write

request was removed from a queue; and

changing an entry in a table for the write request to

indicate that the entry is sent to the memory.

16. A method according to claim 15, further comprising:

receiving an acknowledgement from the memory; and

invalidating the entry in the table.

17. A method according to claim 7, further comprising:

receiving a read request for a requested data at the device

for the memory from the host computer;

determining that the requested data is in a second page in

the buffer;

reading the requested data from the page in the buffer; and

sending the requested data to the host computer.

18. A method according to claim 7, further comprising:

receiving a read request at the device for the memory from

the host computer;

determining that the requested data is in the memory;

sending the read request from the device for the memory;

and

receiving the requested data from the memory; and

sending the requested data to the host computer.

19. An article, comprising a non-transitory storage
medium, the non-transitory storage medium having stored
thereon instructions that, when executed by a machine,
result in:

receiving a write request at a device for memory from a

host computer, the write request including a first data;

determining that a buffer includes a page including a

second data for a pending write request; and

merging the first data for the write request with the second

data in the page in the buffer, including changing a
portion of the page in the buffer based at least in part
on the write request.

20. An article according to claim 19, the non-transitory
storage medium having stored thereon further instructions
that, when executed by the machine, result in:

receiving a read request for a requested data at the device

for the memory from the host computer;

determining that the requested data is in a second page in

the buffer;

reading the requested data from the page in the buffer; and

sending the requested data to the host computer.

#* #* #* #* #*

