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METHOD AND APPARATUS FOR 
ON-DEMAND SOLATED AO CHANNELS 

FOR SECURE APPLICATIONS 

RELATED APPLICATIONS 

0001. This application is a national phase filing under 35 
U.S.C. S371 of PCT Application No. PCT/US 15/31083, 
filed May 15, 2015, which claims the benefit of U.S. 
Provisional Application No. 61/996,834, filed May 15, 2014. 

GOVERNMENT INTEREST 

0002 This invention was made with government support 
under National Science Foundation CCF-0424422. The gov 
ernment has certain rights in this invention. 

BACKGROUND OF THE INVENTION 

0003) To tolerate the malware and vulnerabilities in large 
and complex commodity operating systems (OSes), modern 
secure architectures isolate secure applications (SecApps) 
from OSes, thereby enabling their safe co-existence. How 
ever, safe co-existence does not guarantee the viability and 
usefulness of the SecApps. 
0004 Two fundamental causes of this problem are: (1) To 
be trustworthy, SecApps must be formally verified, hence 
Small and simple. Thus, they cannot include a variety of 
basic services available only in large and untrustworthy 
commodity systems, such as persistent storage, file systems, 
networking services, and isolated device I/O, and (2) among 
these services, providing on-demand isolated I/O channels 
to secure applications is particularly important and challeng 
ing, to improve the secure applications usefulness and 
viability. Examples include providing secure user interfaces 
for human-application communication (e.g., keyboard input, 
screen output), or enabling secure control of remote devices 
and critical infrastructure (e.g., Surveillance cameras, 
unmanned drones, network-connected electricity genera 
tors). 
0005 Modern architectures can isolate security-sensitive 
application code from the untrusted code of commodity 
platforms, enabling their safe co-existence. This is necessary 
because large untrustworthy Software components will cer 
tainly continue to exist in future commodity platforms. 
Competitive markets with low cost of entry, little regulation, 
and no liability will always produce innovative, attractively 
priced, large software systems comprising diverse-origin 
components with uncertain security properties. Thus, the 
best one can hope for is that some trustworthy software 
components can be protected from attacks launched by 
adversely-controlled giants. To be trustworthy, software 
components must be verified, and to be verified they must be 
comparatively small, simple, and limited in function. In 
contrast to the giants, these Software components are wimps. 
0006 Unfortunately, isolating these security-sensitive 
SecApps from untrusted giants does not guarantee the ability 
of the SecApps to survive on commodity platforms. To 
avoid re-creating giants inside their isolated execution envi 
ronments (IEES), SecApps often give up a variety of basic 
services for application development, which greatly under 
mines their usefulness and viability. For example, SecApps 
typically lack persistent memory, file system and network 
services, flexible trusted paths to users, and I/O services 
needed for many applications; e.g., in industrial control, 
finance, health care, and defense. 
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0007 Past multi-year efforts to restructure giants (e.g., 
commercial OSes) to provide trustworthy services for appli 
cations led to successful research but failed to deliver 
trustworthy OSes that met product compatibility and time 
liness demands of competitive markets. The alternative of 
including basic services in the trusted computing bases 
(TCBs) that guarantee safe giant-wimp co-existence has 
been equally unattractive. TCBS include, for example, Secu 
rity kernels, micro-kernels, and exokernels, virtual machine 
monitors, micro-hypervisors, and separation/isolation ker 
nels. TCBs would lose assurance because they would 
become bloated, unstable, and unverifiable; i.e., they would 
use large and complex code bases of diverse, uncertain 
origin (e.g., device drivers) needed for different applications, 
and require frequent updates because of function additions, 
upgrades, and patches. 
0008 Thus, the only remaining option is to place basic 
application services in the giants. To Survive, SecApps 
would have to rely on giant-provided services but only after 
efficiently verifying their results. In turn, SecApps could 
make their own isolated services available to giants for 
protection against persistent threats. Continuing with the 
wimp-giant metaphor, trustworthy SecApps must engage in 
a carefully choreographed dance (i.e., secure composition) 
with untrustworthy giants. 
0009 Among the basic services needed by SecApps are 
on-demand isolated I/O channels to peripheral devices, 
especially character devices (other types of devices, net 
working and storage devices, can be simply isolated by data 
encryption). Past attempts to provide Such services with high 
assurance on commodity systems, however, have been 
unsuccessful. Some provide isolated I/O channels within 
system TCBs but only for a few selected devices. Even 
limited support for few devices invariably increases the size 
and complexity of trusted code and undermines assurance. 
For example, including just the Linux USB bus subsystem 
in a micro-hypervisor would more than double its code-base 
size and increase its complexity significantly; e.g., it would 
introduce concurrency in serial micro-hypervisor code since 
it would require I/O interrupt handling. Other attempts 
statically allocate selected peripheral devices to isolated 
system partitions at the cost of losing on-demand (e.g., 
plug-and-play) capabilities of commodity systems. In con 
trast, other systems provide on-demand I/O capabilities by 
virtualizing devices or passing them through to isolated 
guest OSes, but sacrifice I/O channel isolation from the 
untrusted OSes. Further attempts to isolate I/O channels rely 
on special hardware devices equipped with data encryption 
capabilities to establish cryptographic channels to applica 
tions. This approach excludes commodity devices, which 
lack encryption capabilities, and adds TCB complexity by 
requiring secure key management for the special devices. 

SUMMARY OF THE INVENTION 

0010. The present invention is a method and apparatus 
for on-demand I/O channels, which enables SecApps to 
dynamically connect to diverse peripheral devices of 
untrusted commodity OSes. Central to on-demand isolation 
of I/O channels is the notion of the trusted I/O kernel (TK). 
The TK is an add-on trustworthy service that is isolated from 
the untrusted OS by the underlying code isolation root-of 
trust mechanism (underlying TCB). It executes at least at the 
same privilege level as, if not higher than, the OS. In some 
examples, the TK can include or be embodied as computer 
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readable instructions, processor micro-code, firmware and/ 
or hardware. It should be noted that in the present invention, 
the TK is less privileged than the underlying TCB. The TK 
constructs on-demand isolated I/O channels to SecApps, 
mediates all accesses of SecApps to I/O devices, and pre 
vents the untrusted OS from interfering with SecApps' 
execution and I/O transfers, and Vice-versa. The TK con 
structs isolated I/O channels without affecting the underly 
ing TCB. The TK retains the size, complexity, security 
properties of the underlying TCB. For example, a mecha 
nism to redirect the interrupts of the isolated devices to the 
TK was developed, thus no interrupt handling code is added 
to the underlying TCB. The TK removes a SecApp's direct 
interfaces to the underlying TCB. The TK minimizes the 
OS's interfaces to the underlying TCB by enabling efficient 
direct communications between the OS and the TK. Thus, 
future I/O function innovation that enhances the untrusted 
OS or SecApps would only affect the TK, leaving the 
underlying TCB unchanged. 
0011. The present invention minimizes the size and com 
plexity of the TK, using two classic security engineering 
methods. First, the present invention outsources I/O subsys 
tem functions to the untrusted OS, but only if the TK can 
verify that the execution of that code is correct. For example, 
the initialization and configuration of the entire PCI or USB 
bus hierarchy is done by the untrusted OS and handed over 
to the TK when the isolated I/O channels are needed. The TK 
verifies the hierarchy without enumerating each device. 
Note that the outsourced functions use the existing I/O code 
in the OS and plug-ins to the OS (e.g., loadable kernel 
modules), so does not require modifications to or re-com 
pilation of the OS source code. Second, the present inven 
tion further minimizes the TK by de-privileging and export 
ing drive and driver-subsystem code to SecApps, and 
implementing TK checks that verify applications use of the 
exported code. Exporting code requires identification and 
removal of all driver-code dependencies on the untrusted OS 
services (e.g., memory management, synchronization, ker 
nel utility libraries), either because they become redundant 
in the new on-demand mode of operation or because they 
can be satisfied by the SecApps or TK. For example, 
synchronization functions that multiplex a device among 
different applications become redundant, since the present 
invention can guarantee the isolation and exclusive owner 
ship of devices to a SecApp during its execution. Another 
example is that the wimpy kernel exports USB request 
handling code to the SecApp and mediates the behavior of 
the exported code, i.e., sanity checks the security-sensitive 
fields of the USB request descriptors created by the SecApp. 
Using these two methods, significant code base reduction of 
the wimpy kernel was achieved to facilitate future formal 
verification to it. In one example, more than 99% of USB 
subsystem code was cut down from the TK. 

DESCRIPTION OF THE DRAWINGS 

0012 FIG. 1 shows an overview of the I/O isolation 
architecture, with the grey components representing the 
trusted code of SecApps. 
0013 FIG. 2 shows the outsourced functions and 
exported code of the kernel. 
0014 FIG. 3 shows USB Address Overlap and Remote 
Wake-up Attacks. Legend: The root of the USB bus denotes 
the USB host controller, the leaves the USB devices, and the 
intermediate nodes the USB hubs. The number of each tree 
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node denotes the USB device address. The dotted nodes 
represent the USB devices whose addresses are duplicated in 
an attack. The grey node denotes the USB device that is 
suspended by the untrusted OS and can be remotely woken 
up using external signals (e.g., a special packet sent to a USB 
Ethernet card). 
(0015 FIG. 4 shows USB Transfer Descriptor Verification 
by the kernel 
(0016 FIG. 5 shows the life cycle of a SecApp 

DETAILED DESCRIPTION OF THE 
INVENTION 

1. On-Demand Isolated I/O 

0017. This section outlines the advantages of the on 
demand I/O channel isolation on commodity platforms in 
the wimp-giant model, describes the adversary model, and 
presents the inherent challenges posed by on-demand chan 
nel isolation. 

0018. In the on-demand I/O isolation model, the 
untrusted OS manages all commodity hardware resources 
and devices on the platform most of the time. However, 
when a security-sensitive application demands exclusive use 
of a device, the I/O isolation system takes control of 
necessary hardware communication resources from the 
untrusted commodity OS, verifies their OS configurations, 
and allocates them to the application. When the application 
is done with a channel, the system returns all resources used 
to the untrusted OS. 

1.1 Advantages 

0019. The on-demand I/O isolation model has four sig 
nificant advantages. First, it enables SecApps to obtain 
isolated I/O channels to any Subset of a systems commodity 
devices needed during a session, not just to a few devices 
statically selected at System and application configuration. 
Cryptographically enabled channels, device virtualization, 
or pass-through of hardware devices become unnecessary. 
0020 Second, it enables trusted audit and control of 
physical devices without stopping and restarting applica 
tions, since all devices can be time-shared between trusted 
and untrusted applications. This makes it possible to main 
tain control of physical devices in long-running applications 
on untrusted commodity OSes; e.g., industrial process con 
trol, air-traffic control, and defense. 
0021. Third, it allows unmodified commodity OSes to 
have unfettered access to all hardware resources and pre 
serve the entire application ecosystem unchanged. The relin 
quishing and reclaiming of hardware resources for on 
demand I/O isolation is handled by non-intrusive OS plug 
ins (e.g., loadable kernel modules), without requiring any 
OS re-design or re-compilation. 
0022. Fourth, it offers a significant opportunity for the 
reduction of the trusted I/O kernel size and complexity, and 
hence for enhanced verifiability. That is, the kernel can 
outsource many of its I/O functions to an untrusted OS and 
use them whenever it can verify the results of the outsourced 
functions correctly and efficiently. This opportunity is 
unavailable in either the static device allocation or virtual 
ization models. In the former the OS cannot configure 
devices in SecApp partitions, and in the latter it does not 
have direct access to hardware devices. 
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1.2 Adversary Model 
0023 The present invention adopts the typical adversary 
model of systems that Support giant-wimp isolation. Thus, 
an adversary could compromise the untrusted commodity 
OS (i.e., the giant) and can control Some of its hardware 
resources (e.g., physical memory, device I/O ports). The 
compromised OS can directly attack SecApps (i.e., the 
wimps) or intentionally control or mis-configure any device 
(e.g., modify a USB device's address), including the I/O 
devices that it hands over to SecApps, on demand. Con 
trolled or mis-configured devices may unwittingly perform 
arbitrary operations to breach a SecApp's I/O isolation, such 
as claiming USB transfers, and issuing Direct Memory 
Access (DMA) requests. In addition, a malicious or rogue 
SecApp may attempt to escalate its privilege by manipulat 
ing the interfaces with the I/O isolation system or config 
uring the SecApp's devices. It could also try to break 
application isolation (e.g., process isolation, file system 
controls), or even compromise OS execution and corrupt its 
data. 

1.3 Security Challenges 

0024. In the giant-wimp isolation model, on-demand I/O 
channels offer ample opportunity for a giant to interfere with 
a SecApp's I/O operation and compromise its secrecy and 
integrity. One faces three key challenges in providing Such 
channels. 
0025 I/O Channel Interference. 
0026. Given the fact that hardware resources and devices 
are dynamically shared by the giant (i.e., untrusted OS) and 
wimps (i.e., SecApps) on a time-multiplexed basis, the giant 
can mis-configure a device, or a transfer path to it, and 
compromise the Secrecy and/or integrity of a SecApp's I/O. 
For example, most devices are interconnected by diverse bus 
subsystems (e.g., PCI, USB, Bluetooth, HDMI) in modern 
I/O architectures, which now become exposed to subtle 
isolation attacks; viz., the USB address overlap attack and 
the remote wake-up attack of Section 3.4.1. Hence, I/O 
channel isolation must now control the multiplexing of 
complex bus subsystems for different devices. 
0027 Mediation of Shared Access to Devices. 
0028. Further opportunities for interference arise from 
on-demand I/O; e.g., a rogue SecApp/untrusted OS may 
refuse to release the use of I/O resources shared with the 
untrusted OS/SecApp (e.g., shared interrupts) after I/O 
completion. Although both SecApps and untrusted OSes 
must have time-bounded, exclusive access to shared I/O 
resources and devices, they must be unable to retain unilat 
eral control over shared I/O resources beyond time bounds 
specified by mediation policies for device access. 
0029. Verifiable I/O Codebase. 
0030 The opportunity for minimizing I/O kernel size and 
complexity created by the on-demand I/O isolation model 
(viz., Section 1.1) poses a significant design question. That 
is, if outsourcing of I/O kernel functions to the untrusted OS 
is possible only if the results of the outsourced functions can 
be verified correctly and efficiently by the kernel, which 
functions can be outsourced? Answering this question is 
important, since the trusted code minimization can be dra 
matic, as illustrated below. 
0031 Minimization of I/O kernel code base for verifi 
ability reasons goes beyond the outsource-and-verify 
method. For example, device driver and bus subsystem code 
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could be decomposed into modules that can be exported to 
applications, whenever the trusted I/O kernel can mediate 
the exported modules access to I/O kernel functions and 
objects. 
0032. Finally, the composition of the TK with the rest of 
the TCB must not diminish the existing assurance; i.e., must 
not invalidate the TCB’s security properties and their proofs. 

2. System Overview 
0033. To fulfill all three security properties of on-demand 
isolated I/O systems, we define an add-on security architec 
ture based on a trusted I/O kernel (TK), which composes 
with the underlying TCB, the untrusted OS, and SecApps. 
This section illustrates this architecture, and highlights the 
code base minimization methodology of the TK. 

2.1 Platform 

0034. The present invention can include or be embodied 
as computer-readable instructions, processor micro-code, 
firmware, hardware, and other embodiments which, when 
executed, causes the processor to perform certain actions 
according to the present invention. 
0035. In one embodiment, the present invention includes 
a platform (as shown in FIG. 1), comprising: 
0036 1. One or more processors; 
0037 2. One or more devices. Multiple devices con 
nected to the platform via chipset hardware and bus con 
trollers (e.g., in one non-limiting example, USB devices are 
plugged to the USB bus controller, and then USB bus 
controller is wired to the southbridge, and connected to the 
processor and memory via northbridge and memory con 
troller). Devices share chipset hardware and bus controllers. 
0038. 3. Memory. Memory connected to the processor 
and including computer-readable instructions which, when 
executed by the processor, cause the processor to create a 
computing platform having four components: 
0039 (1) One or more untrusted operating systems 
(OSes), which can run one or more untrusted applications on 
top of the said OSes. The said OSes can be unmodified 
commodity OSes (e.g., Windows OS, Android) or special 
purposed ones (e.g., hardened OS, security kernels) for 
bare-metal or virtualized environments, on, include but not 
limit to, computers, real-time systems, embedded systems 
and mobile platforms etc. 
0040 (2) An underlying Trusted Computing Base (TCB). 
The underlying TCB runs at the most-privileged level of the 
platform and is used to create isolated domains. Each 
isolated domain contains but not limited to: a unique domain 
identity, CPU contents, exclusively owned regions of 
memory, etc. Different isolated domains cannot access each 
others’ memory and CPU contents. The underlying TCB 
partitions memory into three types of portions, one for the 
exclusive use of the underlying TCB, one for the exclusive 
use of the trusted I/O kernel (dubbed TK, described below) 
and one or more secure applications, and one for the 
exclusive use of the untrusted OSes and one or more 
untrusted applications. The underlying TCB could be in the 
form of, but not limited to, secure kernel, micro-hypervisor 
or hypervisor. 
0041. The underlying TCB may rely on certain root-of 
trust hardware (e.g., Trusted Platform Module) to implement 
their security primitive. The underlying TCB employs at 
least three security primitives/services: (a) Memory access 
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control: which isolated domain can access which memory 
region(s). (b) Device Direct Memory Access (DMA) access 
control: which device can perform DMA operation to the 
memory of which isolated domain. (c) Trusted Computing 
primitives: sealed storage and attestation root-of-trust. 
Sealed storage allows the primitive users to bind certain data 
with the identity of an isolated domain or domains, while 
attestation enables the primitive users to measure the iden 
tity of its isolated domain and report the measured identity 
to an external third party for verifying. 
0042 (3) A trusted I/O kernel (TK), wherein: 
0043 (3.1) The TK runs on top of the said underlying 
TCB, and runs in one or more different isolated domains 
(namely secure isolated domains) than the ones for the 
untrusted OSes and untrusted applications (namely 
untrusted isolated domains). 
0044 (3.2) The TK has at least the same privilege level 
as, if not higher than, the OS, including but not limited to the 
privileged level. And the TK has at least a lower-privileged 
level (including but not limited to unprivileged level) to run 
SecApps. The TK provides a subset of OS services (namely 
TK system calls) to the SecApps and the device drivers in 
the SecApps, such as, memory management, synchroniza 
tion, interrupt isolation and delivery, and other OS utility 
libraries. 

0045. In some embodiments, the TK is mapped to the 
same isolated domain of the SecApps it protected. Each 
secure isolated domain contains exactly one TK mapping 
and exactly one SecApp. Each secure isolated domain 
exclusively occupies one CPU core during its lifetime. Thus, 
the number of SecApps can run concurrently is less than the 
number of CPU cores. In other embodiments, the TK runs in 
its own isolated domain, while SecApps communicate with 
the TK cross isolated domain boundary. In yet other embodi 
ments, the TK can also be part of the underlying TCB 
domain, e.g., an extension to the underlying micro-hyper 
visor. In these two cases, the TK handles the scheduling of 
the SecApps, and perform context switches between differ 
ent SecApps. Thus there is no limit on the number of 
SecApps can run. 
0046 (4) One or more trusted SecApps run on top of the 
said TK. A SecApp can exclusively use one or more SecApp 
owned devices (SecApp devices) and hence contain one or 
more SecApp device drivers. 

2.2 Trusted Kernel (TK) 
0047 On top of the said platform, the TK can further 
comprise on-demand I/O channels isolation: 
0048 (1) The TK isolates I/O channels between 
SecApps devices and the ones of the OS. The TK also 
isolate I/O channels between devices of different SecApps. 
I/O channels isolation means the data transferred between a 
SecApp and a SecApp device cannot be intercepted (secrecy 
violation) or tampered with (authenticity violation) by the 
untrusted OS domain, other SecApps or SecApp devices. 
0049 (2) The TK can dynamically change the ownership 
of the devices during the computing platform is running, 
without rebooting the system. The TK assigns an OS device 
to SecApp to fulfill the I/O requirement of SecApp, and 
protects this device as one of the SecApp device via I/O 
channel isolation. Later when the SecApp releases the 
SecApp device, the TK removes protection for this device 
and returns it back to OS. 
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0050 (3) An untrusted plug-in of the untrusted OS (e.g., 
loadable kernel module, drivers) to provide various OS 
functionalities to the TK and SecApps, including but not 
limited to releasing the device control to the TK and 
configuring the isolated I/O channels (e.g., configuring 
chipset hardware and bus controllers) for the TK. After the 
plugin configured the isolated I/O channels, the TK verifies 
the configurations before assigning the I/O channels to the 
SecApps. The verification code in the TK is smaller and 
simpler than the I/O channel isolation configuration code (as 
shown in FIG. 2). The above mechanism is named “out 
source-and-verify” in the present invention. 
0051 (4) The TK decomposes device drivers and bus 
Subsystem code into modules that can be exported to 
SecApps. Depending on the types of the exported code, the 
SecApp may need to mediate the exported codes access to 
SecApp devices and makes sure that it won’t violate I/O 
channels isolation. The mediation code in the TK is smaller 
and simpler than the exported code (as shown in FIG. 2). In 
a non-limiting example, the code of setting up the USB 
command data structure is exported to the SecApp, but the 
TK verifies only a few fields of the data structure (e.g., the 
USB Queue Head descriptor) to guarantee that the corre 
sponding USB command only accesses the SecApps 
devices, not the devices of other SecApps or the OS. Note 
that the TK also comprises a procedure to load I/O access 
policy and enforce the policy on a particular SecApp's 
access to its devices. The above mechanism is named 
“export-and-mediate” in the present invention. 
0052 (5). The TK performs isolation of interrupts of 
SecApp device and the OS devices, and between the devices 
of different SecApp. The TK handles both non-shared and 
shared interrupts: 
0053 (5.1) non-shared interrupts represents the cases that 
each SecApp interrupt occupies a unique hardware interrupt 
number, or can be configured to occupy a unique interrupt 
number (e.g., by using configurable Message Signaled Inter 
rupts). In this case, the SecApp owns the non-shared inter 
rupts. The TK remaps the SecApp interrupts to the relevant 
SecApp isolated domain, by configuring interrupt control 
lers (e.g., IOAPIC and LAPIC in x86 APIC architecture and 
IOMMU with the interrupt remapping feature) 
0054 (5.2) If the SecApp interrupt shares an interrupt 
number with an interrupt of a device that belongs to other 
SecApps, the TK accesses the interrupt status registers of 
both devices to identify the interrupt source and delivers the 
interrupt to the corresponding SecApp. 
0055 (5.3) If the SecApp interrupt shares an interrupt 
number with an OS device interrupt, the interrupt is deliv 
ered to both the SecApp isolated domain and the OS isolated 
domain, the TK accesses the interrupt status registers of the 
SecApp device, if this is a SecApp interrupt, the TK delivers 
the interrupt to the SecApp and prevents OS from interfering 
with this interrupt delivery; if this is an OS interrupt, the TK 
prevents OS from holding up this interrupt so that the 
SecApp/TK cannot receive any Subsequent interrupts with 
the same interrupt number. 
0056 (6) To facilitate the run-time communication 
between the TK and the OS, the TK provides bidirectional 
secure communication channels to the OS (TK-OS chan 
nels) without invoking the underlying TCB. In one nonlim 
iting example, the TK-OS channels can be used by the TK 
or a SecApp to outsource I/O functions to the OS during 
run-time. In another example, the OS can also use the 
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TK-OS channels to request some security services from the 
protected SecApps. In one embodiment, on a multi-proces 
sor platform, the TK and the OS are running on different 
CPUs and they can notify each other using Interprocessor 
Interrupts (IPIs). The detailed communication messages are 
exchanged in a shared memory region of the TK and the OS, 
which is configured by the underlying TCB. The IPIs avoid 
the TK-OS isolated domain switches performed by the 
underlying TCB, which are typically more heavy-weight. 
For example, the IPI delivery incurs much less latency 
overhead than a VM switch performed by the underlying 
micro-hypervisor/hypervisor. Note that on uniprocessor 
platforms, the typical TK-OS isolated domain switches are 
used for TK-OS communication channels. In other embodi 
ments, the TK-OS channels may use other approaches to 
share and/or exchange data among the TK/untrusted OSes/ 
SecApps, such as, in non-limiting examples, listening on 
shared memory and exchanging cross-CPU signals. The TK 
can also provide APIs to the SecApps so that they can use 
the TK-OS channels. 

0057 (7) Similar to (6), the communication channels can 
also support the communication between different SecApps, 
and/or between SecApp and App. 
0058. On top of the said platform, the TK provides three 
procedures: 
0059 (1) the untrusted OS or applications register a 
SecApp via the underlying TCB and the TK. This process 
may include but not limited to (1a) the underlying TCB 
pauses the untrusted OS and the untrusted application (1b) 
the underlying TCB creates a new isolated domain, and 
maps including but not limited to the SecApp and SecApp 
device I/O resources into this isolated domain. In some 
embodiments, the underlying TCB may also map the TK in 
the same isolated domain with the SecApp. In other embodi 
ments, the TK is mapped in a separate isolated domain from 
the SecApps. (1c) the underlying TCB transfers control to 
the TK, which further establishes virtual memory isolation, 
bookkeeps SecApp information (Such as, in a non-limiting 
example, SecApp page table), initializes the SecApp, and 
uses the underlying TCB to enforce DMA access control. 
(1d) SecApp registration finishes and the underlying TCB 
Switches isolated domain and transfers control to the original 
untrusted OS and untrusted applications. 
0060 (2) the untrusted OS or applications invoke a 
SecApp to run on top of the TK. This process may include 
but not limited to (2a) the underlying TCB pauses the 
untrusted OS and the user application. (2b) the underlying 
TCB switches to TK, which checks if the target invocation 
address is a valid entry of the SecApp by checking the 
bookkeeping SecApp information. (2c) If check passed, the 
TK executes SecApp from that target invocation address. 
(2d) Once finished execution, SecApp transfers control to 
the TK then to the underlying TCB, the underlying TCB 
transfers control to the original untrusted OS and untrusted 
applications. 
0061 (3) the untrusted OS or applications unregister a 
SecApp via the TK. This process may include but not limited 
to (3a) the underlying TCB pauses the untrusted OS and the 
user application, and switches to the TK. (3.b) the TK 
removes the bookkeeping SecApp information, revokes 
memory region used by the SecApp, resets and releases 
SecApp devices. (3.c) the TK switches to the underlying 
TCB to tear down the select isolated domain and maps 
corresponding memory and SecApp device I/O resources to 
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one or more legacy isolated domains contain the untrusted 
OSes. (3d) the underlying TCB transfers control to the 
original untrusted OS and untrusted applications. 
0062. The TK further comprising verification algorithms 
to check the bus initialized by the untrusted OS and the 
relevant isolated I/O channels by the OS. Some non-limiting 
examples of computer buses contain PCI, USB, Bluetooth, 
NFC, and Firewire. In the following sections, two examples 
will be described: 
0063 (1) A PCI hierarchy verification algorithm 
0064 (2) A USB hierarchy verification algorithm 

2.3 Discussion 

0065. The TK is also an add-on trustworthy component, 
which is isolated from untrusted OS by the underlying TCB. 
It executes at least the same privilege level as, if not higher 
than, the OS. But it should be noted that in the present 
invention, the TK runs is less privileged than the underlying 
TCB. The TK dynamically controls hardware resources 
necessary to establish isolated I/O channels between 
SecApps and I/O devices, and prevents the untrusted OS 
from interfering with these channels and vice-versa. The TK 
leverages typical system techniques, such as CPU rings and 
page table permissions, to protect itself from the non 
privileged SecApps. The SecApps incorporate modified, 
unprivileged device drivers to communicate with the iso 
lated I/O devices, under the mediation of the TK. The 
underlying TCB, TK, and SecApp interactions for channel 
isolation are described in Section 5. 
0.066 FIG. 1 shows that the TK must compose with three 
other system components. First, it must compose with the 
underlying TCB. The key goal of this composition is to 
retain the stable and formally verified properties of the 
underlying TCB; e.g., memory integrity and address space 
separation. Second, it must compose with the untrusted OS 
(giant) since the TK outsources its most complex functions 
to the untrusted OS, whenever it can efficiently verify their 
results, if its code base is to be small and simple. Third, it 
must compose with SecApps. This is because the minimi 
Zation of its code base suggests that it should de-privilege 
and export some of its code (e.g., drivers) to SecApps 
whenever it can mediate all accesses of the exported code to 
I/O devices and channels under its control. 
0067. The composition of the TK with the underlying 
TCB has three important goals: it preserves the underlying 
TCB's wimp-giant isolation model; it avoids addition of 
new abstractions to the underlying TCB; and it retains the 
verifiability of the underlying TCB and its security proofs. 
First, the TK does not add any security primitives or services 
to the underlying TCB beyond those already required by the 
typical wimp-giant isolation model, which include physical 
memory access control, device Direct Memory Access 
(DMA) control, and sealed Storage and attestation root-of 
trust. Second, the TK does not require any new abstractions 
beyond SecApp registration/un-registration, which are 
already offered to the untrusted OS for wimp-giant isolation. 
These services rely on separation of the TK/SecApps and 
untrusted OS address spaces and physical memory, and 
preserve the memory isolation semantics of the underlying 
TCB. Third, the TK does not invalidate the underlying 
TCB’s security properties and their proofs. For example, it 
does not add services and primitives that Support I/O chan 
nels or virtualization. I/O channels include memory map 
ping operations that directly affect address-space separation 
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and memory protection proofs, and interrupt processing that 
greatly complicates those proofs due to added concurrency. 
Hence, interrupt processing must completely bypass the 
underlying TCB and dynamically select handling proce 
dures located in either the untrusted OS or the TK, depend 
ing on which system component controls the device at the 
time. 
0068 To assure the I/O channel isolation, TK needs to 
control all I/O hardware that is shared by SecApp devices 
with devices of the untrusted OS or another SecApp. A 
SecApp device could share the hardware controller and 
on-path hubs with untrusted-OS-controlled devices using 
this controller. However, to include all OS code that ordi 
narily controls shared I/O hardware in the TK would bloat 
its code base and substantially increase its verification effort. 
0069. To minimize the code base size and complexity of 
the TK, two classic methods of trustworthy system engi 
neering were applied, namely outsource-and-verify func 
tions and export-and-mediate code. However, neither 
method has been used for high-assurance, on-demand I/O 
isolation kernels for commodity platforms before. I/O iso 
lation was either in security kernels for a few simple devices 
and not on demand, or was outside security kernels and not 
minimized for high assurance; viz., related work section. 
The present invention achieves significant code base reduc 
tion results using these two methods; i.e., we manage to cut 
down over 99% of Linux USB code from the TK, as shown 
in Section 4. 
0070 Outsource-and-Verify. 
0071. We decompose the bus subsystem functions, out 
source them to the untrusted OS, and then efficiently verify 
the results of those functions; viz., FIG. 2. For example, in 
some embodiments related to USB subsystem, the untrusted 
OS initializes the USB hierarchy, which includes the USB 
host controller, hubs and devices, and configures the I/O 
channels for a specific SecApp device, whereas the TK 
verifies their correct configuration and initialization. With 
out verification, the untrusted OS could intentionally mis 
configure the shared USB host controller and hubs, and 
violate I/O channel isolation in an undetectable manner. The 
verification code is much smaller and simpler than the bus 
subsystem code and various device drivers left in the 
untrusted OS, and relies only on generic host controller and 
hub operations, instead of the device-specific ones. In short, 
the outsource-and-verify approach enables the present 
invention to substantially decrease the code base of the TK 
and, at the same time, avoid reliance on the untrusted OS. 
0072 Export-and-Mediate. 
0073. The TK code base is further minimized by export 
ing device drivers and bus Subsystem code to isolated 
SecApps which would otherwise have to be supported in the 
TK itself; e.g., the Bus Subsystem Stub of FIG. 2 denotes 
bus subsystem code exported by the TK to a SecApp. In 
Section 3.4.2, we illustrate how to export bus subsystem 
code using USB as an example. In particular, we show how 
different transfer descriptors for USB transactions are cre 
ated for SecApps, and how the TK mediates the SecApp's 
use of these descriptors by checking the validity of a few 
isolation-relevant descriptor fields. 
0074 To export device driver and bus subsystem code to 
SecApps, the TK must identify and remove all code depen 
dencies on the untrusted OS. To do this, the TK de-privileges 
the driver Support code (e.g., memory management, kernel 
utility libraries) and mediates the SecApps use of it, when 
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ever necessary; viz. FIG. 2. Some code dependencies, 
including but not limited to, those of synchronization func 
tions for device multiplexing, disappear in the on-demand 
I/O model and, while they no longer require de-privileging 
before export, they still require mediation after export. We 
illustrate how the TK performs driver support code export 
ing in Section 3.2. (SecApps can also outsource-and-verify 
driver functions (e.g., device initialization, power manage 
ment) to the untrusted OS, and reduce their size and com 
plexity). The present invention also de-privileges the low 
level I/O code (e.g. MMIO, DMA, interrupts) and mediates 
the SecApps use of interrupts. We illustrate how the TK 
perform interrupt isolation in Section 3.4. 
0075 Efficient TK-OS Communication. 
0076. The TK implements low-level communication 
primitives between SecApps and the untrusted OS, which 
are compatible with the unmodified OS; i.e., the OS is 
neither redesigned nor recompiled. At run time, SecApps 
can invoke untrusted OS services, such as file-system and 
networking services, whose results they can verify effi 
ciently; e.g., using typical cryptographic functions. In some 
of the embodiments, these primitives are highly efficient 
because they use Interprocessor Interrupts and shared 
memory and avoid heavy-weight context Switches with the 
underlying TCB. In other embodiments, especially on the 
single-core platform, the present invention uses shared 
memory and relies on the underlying TCB for isolated 
domain switching. We describe the design of the wimp-OS 
communication in Section 3.3, and illustrate its performance 
in the subsequent section (Best Mode of Implementation). 

3. Trusted I/O Kernel Design 

3.1 Scope and Generality 

0077. The design of the TK focuses on character-oriented 
I/O devices for three reasons. First, these devices are per 
vasive. One recent driver study, their drivers constitute about 
52% of all Linux driver code and 57% of driver type. 
Second, these devices, such as video card, audio card, 
sensors, cameras, and user input devices, are important 
because they are responsible for connecting the software 
with the human users and the physical world. Third, the 
isolation of character devices is more complex than for 
storage and network I/O devices. The SecApps can safely 
outsource these functions of storage and network I/O 
devices to the untrusted OS. Specifically, SecApps can do 
this very efficiently using cryptographic outsource-and 
verify techniques, whereby they use either authenticated 
encryption or MAC modes to checksum and protect the 
integrity, and when necessary confidentiality, of the objects 
outsourced to untrusted OS services; e.g., files, databases, 
emails and other messages. Thus, the TK need not Support 
any storage or network I/O device functions. However, 
character devices cannot be isolated using authenticated data 
encryption. The reasons are two fold: (1) the real-time data 
transferred in bytes by character devices is impractical to 
encrypt; (2) the commodity character devices typically lack 
key management and cryptographic capability for data 
encryption or authentication. 
0078. The minimization of TK code requires modular 
decomposition and our design relies on traditional decom 
position methods for I/O kernel code; viz., FIG. 2. The 
outsource-and-verify method, which illustrated with the 
USB subsystem (Section 4.1), applies to all other bus 
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Subsystems with similar code size and complexity minimi 
Zation results. This is the case because device initialization 
and configuration functions, which outsourced to the 
untrusted OS, comprise about 51% of driver code on aver 
age. Verification algorithms for the outsourced results are 
much simpler for all other subsystems (e.g., PCI, Firewire) 
than for the USB. For example, the verification algorithm for 
PCI bus is able to collect hierarchy information directly 
from the hardware registers of PCI bridges without having 
to derive it. For the Firewire bus, all bus bridges store 
routing information on how to reach a specific device, which 
can be directly accessed by the verification algorithm. In 
addition, for power management code (7.4% of driver code 
on average), Verifying the power state of bus controller and 
hubs/bridges are general to any bus Subsystem, because they 
comply with the widely accepted ACPI standard. 
007.9 The export-and-mediate method follows classic 
trustworthy-system engineering principles (mentioned 
above). Although the security-sensitive operations may dif 
fer for different bus subsystems and devices, their identifi 
cation is well understood. In the on-demand I/O isolation 
model, the present invention identifies all operations which, 
if misused by malicious or compromised SecApps, could 
violate the isolation I/O channels belonging to other 
SecApps or to the untrusted OS. The mediation code of the 
TK verifies that SecApp operations do not cross the isolation 
boundary of low-level I/O resources allocated to SecApp 
devices and is used by all devices and bus subsystems. For 
example, the TK performs simple range checks to ensure 
that a SecApp's operations only touch its own I/O ports, 
MMIO memory, and DMA memory. Mediation code also 
validates interrupt settings by comparing the interrupt vec 
tor, which is set by SecApps, with others set by the untrusted 
OS. The TK need not mediate SecApp operations that affect 
functional properties or availability of the isolated devices, 
which are more likely to have complex semantics of specific 
devices or buses. In addition, the method used to export 
driver-support code (e.g., low-level I/O, memory manage 
ment, synchronization) to SecApps (Section 3.2) applies to 
all devices and buses. However, drivers for different types of 
devices and buses may have different dependencies on 
Support code. 

3.2 Exporting Driver Support Code 

0080 Aside from communicating with bus subsystems, 
device drivers also use a variety of services of untrusted OS 
Subsystems; e.g., kernel library, memory management, Syn 
chronization, device library and other kernel services. Table 
1 shows some non-limiting examples of Such interfaces in 
each category and how we export them to minimize the code 
base of the TK, according to the on-demand I/O isolation 
model. Certain untrusted OSes may contain other types of 
driver Support code. Thus in Some embodiments, additional 
minimization decisions, or even different minimization deci 
sions, are required to handle all these types accordingly. 

TABLE 1. 

Minimizing driver support code in the TK 

Driver Support Code Minimization 

Memory Virt & phys Exported to 
Page Mediated by 
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TABLE 1-continued 

Minimizing driver support code in the TK 

Driver Support Code Minimization 

Synchronization Locks Exported to 
Threads Exported to 
Signals Exported to 

Kernel Utility Exported to 
Timer Exported to 

Device ibrary Class functions Exported to 
I/O ports & Exported to 
Config space & Mediated by 

Kernel File system Outsourced to 
CPU Mediated by 

I0081 (1) Memory management interfaces are further 
divided into three types: virtual memory pages, physical 
pages, page permissions. Virtual and physical page manage 
ment is done in SecApps, because during SecApp registra 
tion, memory (including the code, data and I/O memory) of 
SecApps is provisioned by the OS, and isolated by the 
underlying TCB and TK. The TK verifies that the OS 
provisions contiguous memory in both virtual and physical 
address spaces to the SecApps, so that the SecApps can 
easily perform page mapping translation. However, the TK 
sets page permissions for SecApps to prevent buggy or 
compromised SecApp code from subverting the TK's virtual 
memory isolation. 
I0082 (2) Synchronization functions (e.g., locks, threads, 
and signals) are either unnecessary in the on-demand isola 
tion model, or can be deprivileged to SecApps. First, locks 
(e.g., mutex, semaphore, conditional variable) that are used 
for multiplexing devices among different applications are 
unnecessary, because SecApps exclusively own their 
devices during execution. Locks for other usage can be 
easily implemented in user-level. Second, in some embodi 
ments, SecApps may implement their own thread manage 
ment and scheduling functions using user space thread 
libraries and timer interrupts delivered by TK, in other 
embodiments, TK provides thread scheduling for SecApps. 
Third, if multi-process is needed (Multi-thread is usually 
sufficient for SecApps that exclusively own their CPUs 
during execution), in some embodiments, SecApps manage 
the signals between their processes, using user-space signal 
implementation. In other embodiments, TK provides pro 
cess Scheduling and inter-process communication/signaling 
accordingly. 
I0083 (3) Kernel library for utilities, timers, debugging 
and book-keeping are unprivileged and can be replaced by 
user-level libraries in SecApps. In some non-limiting 
examples, SecApps manage their own timers, because TK 
delivers timer interrupts to SecApps. 
I0084 (4) Device library include routines supporting a 
class of device and other low-level I/O related functions. 
Device-class functions are now placed in SecApps, similar 
to device drivers. Low-level I/O resources such as I/O ports, 
MMIO and DMA memory are already isolated by the TK. 
thus the SecApps directly manage them without any run 
time mediation by TK. However, configuration space access 
code (e.g., changing MMIO base address registers, modify 
ing Message Signaled Interrupt Capability) and interrupt 
management functions (e.g., acknowledging End of Inter 
rupts register, enable/disable interrupts) exported to 
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SecApps should be mediated by TK, because this code could 
be exploited by malicious or compromised SecApps to 
breach I/O channel isolation. 
I0085 (5) Kernel services include code for driver inter 
action with other OS subsystems, such as file systems and 
CPU scheduling. File system functions are outsourced to the 
OS by SecApps, using the TK-OS communication channels 
of TK (discussed below). Multi-process CPU scheduling, if 
needed, is implemented in SecApps. However, the TK needs 
to sanitize the new process page tables created by SecApps 
during forking processes, and mediates page table Switches. 
I0086 (6) Others. In other embodiments, the TK may 
provide other driver support code to the SecApps, for some 
non-limiting examples, debugging interfaces or error han 
dling procedures. These types of driver Support code is 
relevant to the code and I/O isolation of SecApps, thus it is 
better to include them in the implementation of TK. 

3.3 TK-OS Communication 

0087. The TK-OS communication channels enable bidi 
rectional communication between the untrusted OS and the 
TK or SecApps. In a non-limiting example, a SecApp can 
request extra memory from the OS, when it runs out of the 
memory provisioned. The TK contacts the relevant OS 
services, and verifies that the dynamically assigned memory 
regions returned by the OS services are valid (e.g., they do 
not overlap with the memory regions of other SecApps). 
0088. In some non-limiting examples, the untrusted OS 
can use these TK-OS channels to protect itself from potential 
buggy SecApp behavior or defend against privilege escala 
tion attacks from malicious SecApps. When the OS invokes 
the SecApps, it places upper bounds on the SecApps' 
resources. If a SecApp exceeds these bounds, the OS 
requests the TK to take appropriate action. TK verifies these 
requests using the resource accounting information it keeps 
during SecApp execution. In another non-limiting example, 
if the OS detects a potentially deadlocked SecApp (e.g., 
which holds a CPU in excess of an established time bound), 
it notifies TK with the total running time as an input 
message. TK verifies this request by calculating the elapsed 
time of the SecApp, using the CPU time stamp it records 
during SecApp invocation and the current time stamp. If the 
total running time is correct, TK then notifies the SecApp to 
prepare for a descheduling. If the SecApp acts normally in 
descheduling, it can still be invoked by OS later. However, 
if the SecApp fails to deschedule for a certain amount of 
time, the untrusted OS can request the TK to terminate the 
SecApp. Similarly, in another example, an OS plug-in (e.g., 
a loadable kernel module) can constantly monitor shared 
interrupts of OS devices. If it discovers that a shared 
interrupt with a SecApp is blocked for a long time, it could 
also complain to TK using TK-OS communication channels. 
0089. The present invention designed primitives for TK 
OS communication, which are compatible with standard 
commodity OS implementations. Especially, in an example 
embodiment on top of multicore platform, when a SecApp 
requests OS services, it invokes TK-provided interfaces, 
instead of directly triggering high-weight context Switches 
coordinated by the underlying micro-hypervisor. This yields 
Substantially better performance for fine-granularity protec 
tion than that offered by security/separation kernels, recent 
micro-hypervisors, and traditional hypervisor designs. We 
demonstrated its efficiency in Section 4.5. Specifically, the 
SecApp provides an OS service number, inputs, and a 
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completion call-back function to TK. In some embodiments, 
the TK signals the OS running on other CPUs using Inter 
processor Interrupts (IPIs), which is a standard facility of the 
Local Advanced Programmable Interrupt Controller 
(LAPIC) in main-stream multi-processor CPUs. It is fre 
quently used to coordinate multi-processor bootstrap, but we 
use this capability to send an interrupt to other processors 
where the OS executes, as a signal of service requests. 
Before sending the IPIs, TK places the SecApp-provided 
inputs in a dedicated memory region shared with the OS, 
which is established by the micro-hypervisor during SecApp 
registration. After IPIs are sent, TK transfers control back to 
the requesting SecApp, and the SecApp continues to per 
form other operations. Later, the OS sends an IPI to TK to 
signal the service completion, and returns service results 
using the shared memory region. The TK verifies the service 
results and passes them to SecApp. In other embodiments, 
the TK-OS channels may use other approaches to share 
and/or exchange data among the TK/untrusted OSes/Se 
cApps, such as, in non-limiting examples, listening on 
shared memory, or passing cross-processor signals. In some 
embodiments, especially for the single-core platform, the 
TK-OS channels may also rely on the underlying TCB for 
isolated domain Switching, and use other mechanisms to 
perform this TK-OS communication. In the embodiments 
for single-core platform, the TK-OS communication channel 
includes isolated domain Switch in Synchronized communi 
cations, or not include isolated domain Switch immediately 
in asynchronous communications. 

3.4 Interrupt Isolation and Delivery 

0090. The TK needs to isolate both non-shared and 
shared interrupts. The SecApp device interrupts are 
remapped to the TK first. The TK decides the source of the 
interrupts, delivers them to the destinated SecApp if the 
interrupts are for SecApp, handles them if the interrupts are 
for the TK, or safely clears them if the interrupts are for the 
untrusted OS(es) (mainly in the case of shared interrupts). 
The implementation of interrupt delivery to the SecApp 
depends on the implementation of isolation domains of the 
SecApp and the TK. In one embodiment, the TK is mapped 
to the isolated domain of the SecApp. The TK can deliver 
interrupts to SecApp as signals (similar to signals in com 
modity OSes). In other non-limiting embodiments, the TK 
resides in a different isolated domain from the SecApp. The 
TK delivers interrupts to SecApp using cross-domains com 
munication primitives, such as IPCs or our TK-OS channels. 
0091 
0092. Each SecApp interrupt occupies a unique hardware 
interrupt number, or can be configured to occupy a unique 
interrupt number if the SecApp device uses non-shared 
interrupts. To isolate non-shared interrupts, the TK remaps 
the SecApp interrupts to the relevant SecApp isolated 
domain, by using their interrupt numbers and SecApp device 
information (e.g., the bus/device/function number of a PCI 
device). 
0093 
0094. At least one of the SecApps devices shares an 
interrupt number with an interrupt of a device that belongs 
to other SecApps or the untrusted OS. 
0.095 To isolate shared interrupts with other SecApps, 
the TK receives the interrupts, decides the interrupt sources 

Non-Shared Interrupt Isolation. 

Shared Interrupt Isolation. 
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by reading some interrupt status registers of the devices of 
both SecApps, and delivers the interrupts to the destinated 
SecApp. 
0096. To isolate shared interrupts with the untrusted OS 
in Some embodiments on multicore platform to isolate 
shared interrupts with the untrusted OS, the TK performs 
extra steps in step (3) of the FIG. 5(b). These extra steps 
include, but are not limited to: 1. the TK enables the 
interrupts to be routed to one or more cores running the 
untrusted OS (named OS cores), and one or more cores 
going to run the SecApp (named SecApp cores). 2. the TK 
sets up a handler for the interrupt on each of the named 
SecApp cores. Also, the untrusted plug-in in the untrusted 
OS sets up a handler for the interrupt (named dummy 
interrupt handler) on each of the named OS cores. Thus, both 
the OS and the TK are able to receive interrupts on this 
shared interrupt line. The dummy interrupt handler in the OS 
is used to gracefully acknowledge the interrupts of the 
SecApp and prevent attacks from a compromised or mali 
cious SecApp (e.g., the SecApp holds up the interrupts so 
that the OS cannot receive interrupts of its own devices). 
During the SecApp is running, when a shared interrupt 
arrives, the TK and the plug-in in the untrusted OS performs 
the following steps to achieve interrupt isolation and deliv 
ery: 
0097 (1) The TK accesses the interrupt status registers of 
the SecApp device and decides which device triggers the 
interrupt. If none of the SecApp device triggers the interrupt, 
the interrupt should be handled by the untrusted OS, other 
wise it Should be handled by the TK. 
0098 (2.a) If the interrupt should be handled by the 
untrusted OS, the TK sets up a timer (named Tos). This step 
ensures that the TK does not signal an end-of-interrupt (EOI) 
to the interrupt controller until the OS signals an EOI. 
0099 (2b) If the interrupt should be handled by the TK, 
the dummy interrupt handler in the agent module sets up a 
timer (named Twimp). This step ensures that the untrusted 
OS does not signal an EOI until the TK signals an EOI. The 
value of Twimp is independent from the value of Tos. 
0100 (3.a) If the interrupt should be handled by the 
untrusted OS. The untrusted OS handles the interrupt nor 
mally according to the OS original design. Then go to step 
(5a). 
0101 (3.b) If the interrupt should be handled by the TK, 
in some embodiments, the TK performs the following non 
limiting steps to deliver the interrupt to the SecApp: 1. the 
TK saves SecApp execution context. 2. resumes SecApp 
execution from certain entry, to let SecApp handle the 
interrupt. 3. after the SecApp handled the interrupt, the TK 
restores the previously saved SecApp execution context. In 
other embodiments, the TK may hint the SecApp about the 
interrupt arrival by modifying SecApp State. In this case, the 
SecApp is responsible to check its own state and handle the 
interrupt timely. 
0102 (4a) If the interrupt should be handled by the TK, 
after the SecApp serves the interrupt, the TK should perform 
additional non-limiting steps to ensure safely interrupt iso 
lation. In some embodiments, the TK may check device 
interrupt status before signaling EOIs for the SecApp. In 
other embodiments, the TK bookkeeps interrupt informa 
tion, Such as, but not limited to, number of times, and 
frequency. The agent module of the untrusted OS may also 
bookkeeps the interrupt information for this shared interrupt 
line. If the interrupts are too frequent, it will complain this 
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fact to the TK. At the TK side, if the number complained by 
the untrusted OS/other SecApps matches the TKs number, 
the TK will take action as the untrusted OS/other SecApps 
required, including but not limited to, terminating the 
SecApp. 
(0103 (5a) If the interrupt should be handled by the 
untrusted OS, the TK sends EOI when Tos is expired. 
0104 (5b) If the interrupt should be handled by the TK, 
the dummy interrupt handler in the agent module sends EOI 
when Twimp is expired. 

TABLE 2 

Decomposition of bus subsystems. 

(6) Tos Design 

Bus Outsourced 
Power Outsourced 
Informatio Removed 
Device Removed 
Request Exported to 

0105. The present invention may include certain mecha 
nisms to decrease the waiting time in step (2a) and step (2b). 
In some embodiments, mechanisms are used to decrease Tos 
and Twimp initial values. In other embodiments, mecha 
nisms are used as another source of timeout decisions, along 
with or replace Tos and Twimp. 
0106. In other embodiments on single-core platform, the 
interrupt isolation mechanism is different. The shared inter 
rupts are delivered to the TK first. If the interrupts are for the 
SecApp, the TK delivers the interrupts and sets up Twimp. 
If the interrupts are for the OS, the TK delivers the interrupts 
to the untrusted OS, which triggers the underlying TCB to 
switch the isolated domains from the TK to the OS. In some 
embodiments, the TK delivers the interrupts to the untrusted 
OS by invoking the OS's interrupt handler directly. It some 
other embodiments, the TK delivers the interrupts to the OS 
by triggering a self-interrupt on the CPU interrupt controller 
with a different interrupt number. The OS plug-in handles 
the self-interrupt by relaying the interrupt to the original OS 
interrupt handler. 

4. Decomposing Bus Subsystems 

0107 The present invention includes a method of decom 
posing the bus Subsystem, including but not limiting to PCI. 
USB, Bluetooth, Firewire, NFC, HDMI, and Thunderbolt, 
using the proposed outsource-and-verify, and export-and 
mediate approaches. The bus Subsystem usually implements 
a variety of I/O functions such as bus enumeration, power 
management, device-information bookkeeping and the Vir 
tual file system (VFS) presentation to user-level application, 
device hot-plug, and request handling. The present invention 
applies the outsource-and-verify and the export-and-mediate 
approaches to decompose this subsystem and include only 
necessary code in the TK. Some example results are sum 
marized in Table 2. 

0108. The outsourced functions include but not limited to 
the bus enumeration function isolated I/O channel prepara 
tion, and power management functions. Forbus enumeration 
function isolated I/O channel preparation, the present inven 
tion designs simple and efficient verification algorithms in 
the TK to verify the OS's configuration of the bus hierarchy 
and isolated I/O channels. The TK's verification algorithm 
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will verify the configurations of the on-path controller and 
intermediate hubs and the isolated device in the bus enables 
the desired isolated channel. For example, all relevant 
devices (including controllers and hubs) must have correct 
device address and the devices are connected to each other 
as indicated by the untrusted OS. The low-level I/O 
resources (e.g., I/O ports, MMIO memory, DMA memory, 
interrupts) assigned to the isolated devices do not conflict 
with any other device in the same bus. Moreover, the 
configurations of other devices in the same bus will not 
violate the I/O data secrecy and authenticity of the isolated 
channel. In addition, the TK must also have persistent 
protection of the verified bus configurations and detect or 
prevent any attack that could modify the verified configu 
rations. We will illustrate the outsource and verification of 
bus enumeration and I/O channel preparation using two bus 
subsystems, USB in Section 4.1 and PCI in Section 4.3. 
0109 For the outsourced power management functions, 
the TK can efficiently verify the power status and prevent the 
OS from selectively disabling the bus hierarchy and com 
promising I/O data integrity of SecApps. 
0110. The present invention exports some functions to the 
SecApps, including but not limited to the request handling 
code. The request handling module of the a commodity bus 
Subsystem accepts the requests from device drivers of 
SecApps, generates request descriptors or other data struc 
tures, executes the requests directly via low-level I/O 
resources or Submits the request descriptors to bus controller 
hardware to perform relevant bus transactions. The TK 
exports most of the request handling module to the SecApps 
and mediates the behaviors of the exported code. For one 
non-limiting example, the TK verifies a few fields in the 
SecApp-generated descriptors to ensure that the SecApps' 
use of device I/O resources does not violate I/O channel 
isolation. We will use an example in USB request handling 
to illustrate the methodology (Section 4.2). 
0111. In addition, the TK removes a large portion of the 
bus Subsystem, according to our unique on-demand I/O 
isolation model. For Some non-limiting examples, device 
information bookkeeping and virtual file system services 
become unnecessary, because the TK manages only a few 
devices for SecApps on-demand. Instead, user-level 
SecApps include the device drivers and directly access their 
devices, without any file-system representation. Also, the 
device hot-plug is excluded from the TK because, in the 
on-demand I/O isolation model, the OS can handle the 
hot-plug event first and then switches to the SecApps. The 
SecApps do not deal with hot-plugged SecApp devices. 

4.1 Verifying the Outsourced USB Bus 
Enumeration 

0112 USB subsystem is chosen to illustrate the TK 
design of bus Subsystem decomposing and code minimiza 
tion method for two reasons. First, the USB bus is very 
popular in terms of device connectivity. For example, in 
Linux, 35% of device drivers use USB and 36% PCI; 10% 
of higher-level protocol drivers use either. Second, channel 
isolation for the USB subsystem is the most complex since 
it mixes control and data channels, and uses (untrusted) 
software to maintain the device hierarchy and initialize 
device addresses (in versions earlier than USB 3.0). There is 
no direct hardware information about the device address and 
bus hiearchy for the TK to verify. We will illustrate two 
non-limiting attack examples in the following paragraphs to 
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demonstrate the complexity of USB bus. In contrast, channel 
isolation for all other Subsystems (e.g., PCI) is much sim 
pler. For example, they already have separate control chan 
nels: some (e.g., PCI, Firewire) store hierarchy information 
in hardware, and others (e.g., Bluetooth and HDMI) have 
hardware-assigned device addresses. These channel control 
components can be directly accessed and protected by the 
TK. 
0113. Address Overlap Attack. 
0114. A compromised OS can intentionally create dupli 
cate addresses for various devices or hubs in the USB 
hierarchy, as is shown in FIG. 3. The ultimate purpose of this 
type of device misconfiguration is to Surreptitiously com 
promise the SecApp I/O data, as illustrated below. 
0.115. A device with a duplicate USB address can hide 
from the TK during hierarchy verification, if it responds to 
control transfers from the TK (e.g., reading device descrip 
tors) slower than the SecApp device whose address it 
duplicates. However, the hidden device (“hidden dev’) may 
still intercept or respond to other types of USB data transfers 
faster. Thus the hidden device can be directed to compro 
mise both I/O data secrecy and integrity of a SecApp device 
with the same address. 
0116 Remote Wake-Up Attack. 
0117. A subtle attack can be launched by USB devices in 
Suspended State which can still respond to external wake-up 
signals (e.g., a special packet sent to a USB Ethernet card) 
and resume their active state. Taking advantage of this 
remote wake-up feature, a compromised OS can configure a 
hidden dev, Suspend it to evade Verification, and later resume 
it to launch a “USB address overlap attack”. However, we 
note that the remote waking up of a device needs to be 
coordinated by an upstream, non-suspended USB hub. In a 
more potent attack, the OS could configure the hub upstream 
of the Suspended device as a hidden dev (e.g., the dotted 
node No. 3 in FIG. 3), which would hide the remote wake-up 
event from the TK. Thus, to defend against this subtle attack, 
the TK verifies (1) that only the hubs that connect the 
SecApp device to the host controllers are in non-Suspended 
state during SecApp execution, (2) that there is no hidden 
hub in the hierarchy, and (3) the status of all non-suspended 
hubs to detect any remote wake-up signals. 
0118 Proof-of-Concept Experiments. 
0119 We experiment with the USB address overlap 
attack, and analyze its impact on I/O channel isolation. Note 
that USB device communication has two directions: IN 
means data is transferred from device to host controller, 
while OUT represents the opposite. There are four types of 
data transfer: control, interrupt, bulk, and isochronous. Each 
type has different latency and bandwidth guarantees, and is 
performed by different types of USB devices. 
I0120 We perform the analysis using two keyboards; one 
is Dell SK8115, as the SecApp device, the other one is Dell 
L100, as a device controlled by the adversary. We changed 
the USB address of Dell L100 to overlap that of Dell 
SK8115. In the experiment, when performing control trans 
fer IN direction communication (e.g., reading device 
descriptors), Dell SK8115 always replies faster, so we only 
read its device descriptors from the host controller. Dell 
L100 is hidden from the control software (e.g., verification 
Software, SecApps). However, when performing control 
transfer OUT direction communication (e.g., sending com 
mand to light the caps-lock LED on the keyboard), we 
discovered that the caps-lock LEDs on both keyboards are 
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always lighted together. This means the hidden Dell L100 
can silently intercept control OUT data of the isolated 
channel device, which breaks the secrecy of the I/O channel. 
Moreover, if we perform interrupt control IN communica 
tion (e.g., reading keyboard input), key-presses on both 
keyboards are accepted normally, which means that the 
hidden Dell L100 can inject data into the isolated channel 
and break its integrity. 
0121. In summary, the USB device address overlap attack 
can break both the secrecy and integrity of isolated I/O 
channels, without being noticed by any control Software. 
0122 Hierarchy Verification Algorithm. 
0123. The purpose of the verification algorithm is to 
check that only the USB paths of the SecApp devices are in 
active state under a USB host controller. Here a USB path 
denotes a chain of USB devices from the host controller, via 
the on-path hubs, and to a specific SecApp device. 
0.124. To design this algorithm, we need to overcome 
several challenges as the result of the complexity of USB 
bus. For instance, the USB hierarchy information about USB 
address and hub-device connectivity is maintained only in 
the bus subsystem software of the untrusted OS. There is no 
hardware-stored hierarchy information that can be directly 
used by the TK. When discovering the hierarchy informa 
tion, the TK must communicate with the USB devices using 
common operations instead of device-specific ones (to mini 
mize code size and complexity). In addition, the TK must 
not interfere with the normal functions of the I/O hardware 
being verified; e.g., it must not make un-recoverable con 
figuration changes. 
0125. In the on-demand isolation model, the untrusted 
OS prepares a set of USB paths for all SecApp devices, and 
provides them as inputs to the TK verification algorithm. 
Specifically, the OS backs up the state of all non-USB-path 
devices, Suspends them, and passes the USB path informa 
tion to the TK. The USB path information includes the 
addresses of all devices and on-path hubs, and the ports of 
their upstream hubs that they connect to. The TK protects the 
host controller so that the untrusted OS can no longer issue 
any USB command via this host controller. The TK then 
executes the following algorithm to verify the OS-prepared 
USB paths: 
0126 (1) TK periodically monitors the port status of all 
on-path hubs to detect remote wake-up events. If any is 
detected, the verification fails. The present invention does 
not require this step prior than other steps. This step can also 
take place after step 2, step 3, or step 4. 
0127 (2) TK examines all hub ports that do not have any 
downstream SecApp device. These ports should either be 
disabled or suspended. Otherwise, the TK suspends those 
ports. 
0128 (3) TK scans all the device addresses (e.g., 127 
addresses possible for USB 2.0). If it detects any that are 
active non-USB-path devices, the verification fails. 
0129 (4) For each device in USB path, TK suspends it, 
and then communicates using its address. If there is any 
reply, a hidden dev or hub is detected, and verification fails. 
0130. Extensions to Support Multiple SecApps. 
0131 The same USB hierarchy may be shared by mul 

tiple SecApps. The above algorithm is used for the first 
SecApp. For the Subsequent applications, the present inven 
tion adds the following two preliminary steps before running 
the algorithm. 
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I0132 (1) TK notifies the previously registered SecApps 
and suspends their USB paths. 
0.133 (2) TK activates the USB paths of the requesting 
SecApp. 
0.134 Step (1) is necessary, because the USB paths acti 
vated in (2) may have hidden devices that conflict with the 
devices in the USB paths of the previous SecApps. 
0.135 Algorithm Analysis. 
0.136. In this section, we present an informal analysis of 
the algorithm and argue that it prevents both the USB 
address overlap and remote wake-up attacks; in this analysis 
we assume the step 1 is prior than the step 2. 
I0137 We first analyze that Steps 1 to 3 are able to find out 
all non-USB-path devices that are still in active state. The 
untrusted OS may attempt to hide a device when the TK 
scans it in Step 3, and remotely wake it up later. However, 
the remote wake-up event of a device must be coordinated 
by a non-suspended hub. This hub is either be a non-USB 
path hub, or a hub on a USB path. For the former the TK will 
always discover it in the linear scan, and for the latter the 
remote wake-up event will be detected by the TK, as shown 
in Step 1. 
0.138. Although Steps 1 to 3 guarantee that all non 
suspended devices have correct addresses are on the USB 
paths, this does not prove that the given USB paths are 
correct, because hidden devs (or hubs) may still be on USB 
paths. Step 4 can rule out any hidden dev that is on a 
different USB-path with the targeted device whose address 
the hidden dev duplicates, but it cannot detect the hidden dev 
that is on the same USB-path with the targeted device 
“same-path hidden dev'). 
0.139. We now provide a informal correctness argument 
on a proposition that the untrusted OS cannot configure any 
“same-path hidden dev” that manages to evade the TK 
verification and compromise the SecApp I/O data isolation 
later. To be “meaningful', the same-path hidden device must 
either be able to intercept/fake messages between the host 
controller and the targeted device, or it must have suspended 
devices that are hidden downstream and can be remotely 
woken up later. 
0140. Before continuing with the argument, we need to 
make four observations on USB 2.0 specification. First, a 
non-malicious device/hub in its Configured state will not 
respond to SET Address commands, unless it is deconfig 
ured by a SET Configuration command and transits back to 
Address state. Second, if a hub is in the deconfigured State, 
all its downstream devices lose power and transit back to the 
Attached state, which is similar to resetting all downstream 
devices. Third, the remote wake-up capability is disabled by 
default, and can only be enabled when the device/hub is in 
its Configured state. Forth, a hidden device downstream to 
its target device cannot affect the message secrecy and 
integrity of the target device, because the target device 
always receives and responds to USB transactions faster 
than the downstream hidden device. 
0141 Our informal correctness argument is as follows: If 
the untrusted OS intends to configure a hidden device to 
duplicate the address of its upstream device, the SET Con 
figuration command to the hidden device is always inter 
cepted by the upstream device, thus the hidden device can 
never transit to the Configured State, and thus “meaning 
less'. If the untrusted OS sets a hidden device to duplicate 
the address of its downstream device, the hidden device 
must first be deconfigured, and thus all downstream devices 
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will lose power and all their configurations. The hidden 
device itself becomes “meaningless'. In conclusion, the 
hierarchy verification algorithm can prevent both the USB 
address overlap and remote wake-up attacks. 
0142. The two main advantages of the USB hierarchy 
verification algorithm are as follows: (1) it only uses a few 
standard operations of the USB host controller and hubs; (2) 
it does not use the driver of any other device that shares the 
same USB bus with the SecApp device. Note that some USB 
host controller and hubs may have device-specific opera 
tions that can violate the I/O channel isolation. For example, 
Some host controllers or hubs may be configured to record 
a few of their latest data transfers for debugging purpose. 
This feature may be abused by the untrusted OS to reveal 
some secret data of a isolated I/O channel. The algorithm 
should verify the configurations of these device-specific 
operations. One could develop an automatic device speci 
fication checker to scan through the open specifications of 
all host controllers and hubs and to identify the sensitive 
device-specific operations. For devices that have no open 
specifications, there is no guarantee that we can use some 
black-box fuzz testing technique to identify the sensitive 
operations. Thus the verification algorithm should warn the 
users of the isolated I/O channels about the potential risks. 
Users that have higher security concerns can choose to avoid 
these devices on their platforms. This is one example of how 
users adapt the I/O isolation system for different usage 
models that could have various levels of security require 
mentS. 

4.2 Mediating the Exported USB Request Handling 

0143. In the present invention, most of the USB device 
operation module is deprivileged and pushed to the 
SecApps. TK only verifies the behavior of the SecApps that 
may affect SecApp isolation from the untrusted OS. For 
example, as shown in FIG. 4, if a SecApp intends to perform 
certain operations to its device, it generates a set of transfer 
descriptors qhs. However, it cannot directly add descriptors 
to controller hardware, which is controlled by the TK. 
Instead, the SecApp invokes the TK using a system call like 
interface (TKcall) with the descriptors qhs as input. The TK 
copies the descriptors to its kernel space, verifies them, and 
submits the valid descriptors to the host controller hardware. 
In some embodiments, the TK places the copied descriptors 
in a shared memory area to allow efficient descriptor status 
polling by the SecApp. In other embodiments, the TK 
provides TKcalls to the SecApp for accessing certain fields 
in the descriptor, including but not limited to the status area. 
0144. In this outsourcing model, the SecApps bookkeep 
their USB transfer information, and fill a large amount of 
other descriptor fields. The TK only needs to verify a few 
security-critical descriptor fields to verify that SecApps 
filled them correctly. The principle of verification is that 
those fields in the descriptors do not affect the isolation of 
the SecApps' devices and other devices controlled by the TK 
and the untrusted OS. The TK does not verify descriptor 
fields that only affect the availability of the SecApps' 
devices. In addition, the verification algorithm of the secu 
rity-sensitive fields are general and simple, without compli 
cated bus-specific semantics. In some non-limiting 
examples, the TK performs simple range checking on the 
Buffer Pointer fields in the descriptors, and makes sure that 
these fields point to the SecApps DMA memory region 
Similar checking also applies to other bus Subsystems in the 
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present invention. The next section presents the details of 
USB transfer descriptor verification. 

4.3 Verifying the Outsourced the PCI Bus 
Subsystem 

(0145 PCI Control and Data Channels. 
0146 PCI devices have a set of device-agnostic registers 
referred to as “Configuration Space' which contain standard 
device information, data channel configurations and some 
vendor-defined feature information. 
0147 The Configuration Space of a device can be 
addressable by knowing the 8-bit PCI bus number, 5-bit 
device number and 3-bit function number (a.k.a. BDF bus/ 
device/function). The bus number is decided during bus 
enumeration and its information is stored in Some special 
registers of PCI host bridge and other intermediate bridges 
(e.g., PCI-to-PCI and PCI-to-PCIx bridges). The device 
number depends on how the device is interconnected to its 
direct upstream bridge, either hardwired or plugged-in to a 
expansion slot. The function number depends on the device 
hardware design. By specification, the Configuration Space 
of a PCI device should be accessible in any power state, 
except for D3 cold. Devices resuming from D3 cold always 
go through a power-on reset. Software must then re-initialize 
the device to put it into the working state. This rules out the 
time-of-checking-to-time-of-use attack. 
0.148. Among the register information contained in the 
Configuration Space, the Base Address Registers manage 
the assignment of device I/O ports and MMIO memory and 
Interrupt Line and Pin registers are relevant the delivery of 
the device interrupts. Capabilities Pointer register may point 
to a linked list of new capabilities implemented by the 
device, some of which may be related to the I/O data transfer 
of the device. For example, Message Signaled Interrupt 
(MSI) or MSI-X capability has registers that specify the 
Software-defined interrupt number, type and destinations. 
Slot Identification capability identifies a PCI bridge that 
provides external device expansion slots. Power Interface 
capability shows the power status of the device. In addition, 
Expansion ROM base address points to the option ROM that 
may contain device firmware code or configuration infor 
mation. However, option ROM is commonly used by stor 
age, network, and video devices to perform device initial 
ization during system bootup. 
0149 For a PCI bridge, its Configuration Space contains 
Some special registers that are relevant to the connection of 
different PCI buses and the forwarding of I/O port and 
memory access. For example, Primary Bus Number, Sec 
ondary Bus Number, and Subordinate Bus Number stand for 
the number of the upstream, direct downstream, and the 
farthest downstream bus of the bridge, respectively. The I/O 
Base and Limit, Memory Base and Limit, and Prefetchable 
Memory Base and Limit registers defines the range of I/O 
ports, memory, prefetchable memory of all devices down 
stream to the bridge, respectively. 
(O150 Hierarchy Verification Algorithm. 
0151. Before running the algorithm, the TK should pro 
tect the device Configuration Space from modifying by the 
untrusted OS. The algorithm starts from the PCI host bridge, 
which is Bus 0, and iterates through every possible device in 
this bus (from Device 0 to Device 31). The algorithm should 
consider the following conditions: (1) if the device is a PCI 
device, the algorithm verifies that the I/O port and memory 
are in the correct range and do not conflict with those of 
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other devices that are already checked. The algorithm also 
verifies the interrupt setting is correct. This verification 
should be performed on each possible function of the device. 
(2) If the device is a PCI bridge, the algorithm verifies the 
I/O port, memory, and interrupt setting, similar to a PCI 
device. The algorithm also checks that the Primary Bus 
Number, Secondary Bus Number, and Subordinate Bus 
Number are correctly set. The algorithm then perform a 
depth-first iteration on the Secondary Bus, with the I/O port, 
memory, prefetchable memory range set in the Configura 
tion space as the verification metrics. This verification 
should be performed on each possible function of the bridge. 
(3) If the device is a Slot for plug-and-play devices, the 
algorithm should verify Slot Identifier. (4) If the device does 
not exist, proceeds to the next device. 
0152 PCI Express (PCIe). 
0153. The algorithm to verify a PCI Express bus is very 
similar to the PCI algorithm. PCI Express switches contain 
multiple ports to connect to different devices. Each port is a 
virtual PCI-to-PCI bridge. Thus the PCI Express hierarchy is 
similar to the PCI hierarchy, but each bridge only connects 
to one device. 

5. System Life Cycle 
0154) This section illustrates the life cycle of isolated I/O 
channels and the interactions between the underlying TCB, 
the TK and the SecApps, as shown in FIG. 5. 
(O155 Registration. 
0156 The untrusted OS or untrusted application provi 
sions the memory (including but not limited to, stack and 
heap) and SecApp I/O resources (including but not limited 
to, MMIO memory, DMA memory) required by a SecApp. 
and explicitly registers the SecApp through the underlying 
TCB’s interface. The registration procedure including the 
following non-limiting steps: The underlying TCB isolates 
the SecApp's memory and I/O resources, isolate physical 
memory of the TK and SecApp, and transfers control to the 
TK. The TK creates the virtual address page table of the 
SecApp, verifies the configurations of the SecApp devices 
and necessary hardware, and establishes the isolated I/O 
channels for the SecApp devices (except for the interrupt 
delivery). Until unregistration, the untrusted OS can no 
longer tamper with the memory regions and I/O resources of 
the registered SecApps. In some embodiments, the TK may 
map itself in the same address space with the SecApp. In 
other embodiments, the TK may reside in a different isolated 
domain from the ones for SecApps. 
O157 Invocation. 
0158. The SecApp is invoked implicitly or explicitly. In 
some embodiments, the OS/user application implicitly 
invokes the SecApp by executing one of the SecApp's entry 
points. While in other embodiments, the OS/user application 
explicitly requires the underlying TCB and/or the TK to 
execute one of the SecApp's entry points. The underlying 
TCB detects this execution and Switches the context to the 
TK. The invocation procedure includes the following non 
limiting steps. The TK establishes the TK-OS channels for 
the SecApp, sets up the SecApp interrupt delivery, and then 
begins executing the requested entry points at the SecApp's 
privilege level (or the said user-level). Upon finishing execu 
tion, the SecApp Suspends its devices and transfers control 
to TK. The TK disables the TK-OS communication channels 
and wimp device interrupt delivery, and then the underlying 
TCB takes control and performs a context switch to the OS. 
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Between invocations, the OS can run other applications, but 
cannot use the wimp devices or tamper with the SecApp. 
Note that the SecApp could be invoked for arbitrary times 
after registration, and the invocation is efficient, because 
most I/O configuration overhead has already been offloaded 
to registration. 
0159) 
0160. Upon unregistration, The TK performs the follow 
ing non-limiting steps: 1. resets the wimp devices to a clean 
state. 2. tears down the isolated I/O resources of the SecApp 
with the help of the underlying TCB. 3. restores the con 
figurations of the shared I/O hardware, and returns the CPU, 
memory regions and I/O resources of the SecApp to the OS. 

Unregistration. 

Preferred Embodiment 

1. The Underlying TCB 

0.161. In one embodiment, the present invention works on 
x86 micro-architecture with multi-cores and uses micro 
hypervisor as an example of the underlying TCB. Micro 
hypervisor runs at the most-privileged level of the platform 
and can create multiple isolated domains. Micro-hypervisor 
also fulfills all the required properties listed in the previous 
section. In the best mode of implementation, the present 
embodiment adds two more interfaces in the underlying 
TCB: registration of the TK and unregistration of the TK. 

2. The TK 

0162 The present embodiment implements the TK that 
provides on-demand I/O channel isolation to USB 2.0 
devices using the Enhanced Host Controller Interface 
(EHCI) host controller driver, and adds the USB hierarchy 
verification and transfer descriptor (TD) verification algo 
rithm. The present embodiment uses x86 fast system call 
instructions to implement TKcall for secure applications. 
Also, the present TK uses IPIs and shared memory to 
implement TK-OS channels. 

2.1 USB Hierarchy Verification 

0163 The hierarchy verification algorithm only requires 
a few standard operations, including PCI configuration 
space operations to access EHCI host controller registers, 
and basic USB control and interrupt transfer operations to 
access registers of USB hubs, via the host controller. The 
control and interrupt transfers are much easier to configure 
than the other two USB transfers (i.e., bulk and isochronous) 
and require smaller TCB. 
0164. In Step 1 of the algorithm, TK monitors remote 
wake-up events by setting periodic interrupt transfers to the 
port status endpoints of all on-path hubs. The endpoint data 
contains a bit to indicate that the hubs have coordinated a 
wake-up event. This type of event is always be detected by 
the periodic checking. 
0.165. In Step 2, TK scans through all device addresses by 
sending standard SET Configuration commands to each 
address. By specification, every USB device supports at 
least a default configuration No. 1, thus an active device 
should always respond to a SET Configuration=1 command. 
The present embodiment uses this command, because its 
USB transaction does not have a data stage and introduces 
less latency overhead. A non-malicious USB device should 
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always acknowledge this command within 50 ms. If a 
scanned device address does not exist, the command will 
return an error immediately. 
0166 In Step 3, TK suspends an on-path hub or SecApp 
device by sending a SET Feature command to the upstream 
hub port that the hub/device connects to. If the upstream hub 
is the root-hub, TK directly accesses the port status registers 
of the host controller using PCI read command. After a 
device is suspended, TK finds out hidden devices by sending 
a SET Configuration command to the same address device. 

2.2 USB Transfer Descriptor Verification 
0167. There are four different types of descriptors speci 
fied in USB 2.0, namely Queue Head (QH), Isochronous 
Transfer Descriptor (iTD), Split Transaction Isochronous 
Transfer Descriptor (siTD) and Frame Span Traversal Node 
(FSTN). QH contains Zero or more Queue Element Transfer 
Descriptors (qTD). 
0168 The TK exposes seven interfaces to SecApps, in 
two categories: attach QH, attach iTD, attach siTD and 
attach FSTN for submitting descriptors; reactivate qTD, 
reactivate iTD and reactivate siTD for reactivating the 
executed descriptors. FSTN descriptors need not be reacti 
vated. 

(0169. For the first four interfaces, TK verifies the follow 
ing fields of the descriptors: the Device Address fields in 
QH, iTD, and siTD, to assure that the addresses refer to the 
correct SecApp device; the Buffer Pointer fields in qTD, 
iTD, and siTD, to make sure that the addresses point to the 
SecApp's own DMA memory region; a few other fields that 
lead to undefined operations if configured incorrectly, Such 
as the Maximum Packet Length field in QH and iTD, the 
Total Bytes to Transfer field in siTD, and the Typ field in 
FSTN. 

TABLE 3 

System code base size 

a) Micro-hypervisor b) The WK 

Modules SLoC Modules SLoC 

Registration 447 USB Subsystem 2144 
Unregistration 213 WKcall 249 
Underlying TCB 24551 WK-OS Channel 106 

Total 2S211 Others 1038 

Total 3537 

2.3 The TK Interfaces 

0170 The present embodiment implements the TKcall 
interface using the standard x86 Fast System Call instruction 
(SYSENTER for requesting TK services, and SYSEXIT for 
the TK to switch to the SecApp, both after serving syscalls 
and when invoking the SecApp). Parameters (e.g., service 
ID, pointers to input/output data structures) are passed by 
registers. Alternatives like SYSCALL/SYSRET and “int 
0x80 work, but SYSENTER/SYSEXIT is widely available 
on x86 platform and is more efficient. 
(0171 For the TK-OS channels, TK triggers an IPI by 
programming the interrupt command register (ICR) of 
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LAPIC to specify the IPI vector number and delivery 
destination. The delivery status bit of ICR indicates whether 
the IPI is sent. 

0172 
normal edge-triggered interrupts. The IPIs are used as noti 

On the receiving CPUs, the IPIs are delivered as 

fiers of TK-OS communication. The real data, including but 
not limited to, service request ID and input/output param 
eters, is passed by shared memory buffer, which is estab 
lished during SecApp registration, by the underlying micro 
hypervisor. 

3. Evaluation 

0173 The present embodiment is built and evaluated on 
an off-the-shelf HP Elitebook 8540p with a Dual-Core Intel 
Core i5 M540 CPU running at 2.53 GHz, 4 GB memory; a 
Hitachi GST Travelstar 7200 rpm 500 GB SATA-II disk; an 
Intel 82577LM Gigabit network card; and an Infineon v1.2 
TPM. The machine is also equipped with two USB 2.0 host 
controllers and two immediate downstream rate matching 
hubs for transforming high-speed USB transactions to low 
speed ones. The machine runs a 32-bit Ubuntu 12.04 OS 
with Linux kernel 3.2.0-36.56. The SecApp tested is a 
prototype that includes a USB keyboard device driver. In all 
network experiments, the machines are connected via 1 
Gbps Ethernet links. 

4. Code Base Size Evaluation 

(0174 
adds 660 SLoC to the micro-hypervisor for SecApp regis 
tration and unregistration. The code addition does not invali 

As shown in Table 3(a), the present embodiment 

date any security properties of the underlying TCB. The 
code base of the underlying micro-hypervisor is much 
smaller than full functioning VMMs/hypervisors. 

(0175 Table 3(b) shows the code base break-down of the 
present TK prototype. The TK code size is about 3.6K 
SLoC, 60% of which is USB bus subsystem relevant code. 
This code base is sufficient to support all types of USB 2.0, 
1.1, and 1.0 devices, and all types of USB transfer mode, 
Such as control, interrupt, bulk and isochronous transfers. 

(0176 Table 4 compares the TK USB software stack to the 
commodity Linux one (Both only support USB EHCI host 
controller). In the best mode of implementation, the TK 
includes only 2144 SLoC of the USB subsystem code, which 
represents more than 99% reduction compared with the over 
22K SLoC of Linux USB code base. Note that the reduction 

result in practice is even better, because a significant number 
of third party USB drivers and drivers relevant to high-level 
protocols (e.g. SCSI drivers for USB flash drive) are not 
included. In addition, the USB hierarchy verification algo 
rithm and transfer descriptor verification algorithm only use 
93 and 107 SLoC, respectively. 
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TABLE 4 

Comparison of code size in USB software stack between 
TK and in Linux. 

TK 

Verification Linux 

Hierarchy TD Others Totl USB USB 

93 107 1944 2144 1982O >2O6376* >226196* 

*We calculate only the USB drivers included in the Linux kernel tree. 

TABLE 5 

Latency break-down of the USB hierarchy verification algorithm. 

Step Step Step 3 Step Total 

Time O.29 O.S4 573.03 1.32 575.18 

TABLE 6 

Latency comparison of TK-involved and 
hypervisor-involved context switches. 

TKcall TK-OS Hypercall Page 

Time O.38 O.23 7.56 20.68 

TABLE 7 

Latency of SecApp life-cycle operations. 

Registration Invocation Unregistration 

Time 583.79 O.26 0.97 

0177 5. Micro-Benchmarks 
(0178 USB Hierarchy Verification. 
(0179 Table 5 shows the latency of each step in the USB 
hierarchy Verification algorithm. Among them, device 
address Scanning (step 3) dominates the latency overhead. 
However, this overhead is acceptable, because this algo 
rithm is only invoked once per SecApp registration, and 
does not affect the more frequent SecApp invocations. 
0180 USB Transfer Descriptor Verification. 
0181. The latency overhead of TD verification is negli 
gible. For example, verifying a QH and an iTD only takes 
about 0.28 us and 0.42 us, respectively. In comparison, a 
micro-frame, the minimum time unit in USB specification, 
takes 125 us. 
0182 TK Interfaces. 
0183 Table 6 illustrates the latency overhead of two main 
TK interfaces; i.e., the TKcalls for communicating with 
SecApps, and the IPI-based TK-OS channels for communi 
cating with the OS. These two interfaces avoid the more 
heavy-weight underlying TCB involved context switches 
and greatly improve overall system performance. Hyper 
calls and hardware page faults are the two most widely used 
methods of triggering micro-hypervisor involved context 
switches. In comparison, TK calls are about 20 times faster 
than hypercalls and 54 times faster than page faults. The 
TK-OS channels in the present embodiment are 33 times 
faster than hypercalls and 90 times faster than page faults. In 
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addition, using the asynchronous TK-OS channels, the 
SecApps and TK do not block waiting for the OS services. 
0.184 System Life-Cycle Operations. 
0185. Table 7 presents the latency overhead of the reg 
istration, invocation and unregistration of a SecApp. The 
latency of SecApp invocation and unregistration are much 
Smaller than those of registration, because the more heavy 
weight hardware configuration verification is only invoked 
during registration. 
0186 The present invention has been described in accor 
dance with several examples, which are intended to be 
illustrative in all aspects rather than restrictive. Thus, the 
present invention is capable of many variations in detailed 
implementation, which may be derived from the description 
contained herein by a person of ordinary skill in the art. 
We claim: 
1. A system for providing input/output channels to a 

secure application, comprising: 
one or more processors; 
one or more input/output (I/O) devices, said devices in 

communication with at least one of said processors; and 
memory, connected to said one or more processors and 

including computer-readable instructions which, when 
executed by one of said processors, cause the processor 
to create a computing platform having: 
one or more untrusted operating systems; 
a trusted computing base; 
a trusted I/O kernel; and 
a communications channel between said untrusted 

operating system and said trusted I/O kernel. 
2. The system of claim 1 wherein one or more secure 

applications may be run on top of said trusted input/output 
kernel. 

3. The system of claim 2 wherein said trusted computing 
base creates one or more isolated domains, each of said 
isolated domains comprising: 

processor contents; and 
one or more regions of memory, said regions of memory 

being for the exclusive use of said isolated domain. 
4. The system of claim 3 wherein said trusted computing 

base partitions memory into a plurality of portions compris 
ing: 

a portion for the exclusive use of said trusted computing 
base; 

a portion for the exclusive use of said trusted input/output 
kernel and one or more secure applications; and 

a portion for the exclusive use of said one or more 
untrusted operating systems and one or more untrusted 
applications. 

5. The system of claim 4 wherein said trusted I/O kernel 
runs in a first isolated domain. 

6. The system of claim 5 wherein said secure application 
runs in a second isolated domain. 

7. The system of claim 4 wherein said trusted I/O kernel 
and said secure application run in the same isolated domain 

8. The system of claim 5 wherein each of said one or more 
secure applications includes one or more device drivers and 
further wherein each of said one or more secured application 
has exclusive use of an I/O device associated with said 
device driver. 

9. The system of claim 8 wherein said trusted kernel 
decomposes said device drivers and exports portions of said 
device drivers to said secure applications for execution. 
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10. The system of claim 8 wherein input/output devices 
are reserved for exclusive and verified use by said secured 
application when: 

said untrusted operating system configures an I/O device 
for use by a secure application and releases said device 
to said trusted I/O kernel; 

said trusted I/O kernel verifies the configuration of the I/O 
device and assigns the I/O device to said secure appli 
cation; and 

said trusted I/O kernel provides channel isolation between 
said secure application and said I/O device. 

11. The system of claim 9 wherein data transferred 
between said secure application and said I/O device cannot 
be intercepted or altered by said untrusted operating system, 
by other secure applications or by other I/O devices. 

12. The system of claim 10 wherein said trusted I/O kernel 
provides isolation of interrupts generated by I/O devices 
assigned to a secure application. 

13. The system of claim 3 wherein said trusted computing 
base performs the functions of: 

creating an isolated domain; 
mapping a secure application to said isolated domain; 
mapping I/O device resources required by said secure 

application to said isolated domain; and 
transferring control to said trusted I/O kernel 
14. The system of claim 1 further comprising a plug-in to 

said untrusted operating system, said plug-in performing the 
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functions of configuring I/O devices for use by the trusted 
I/O kernel and releasing control of said I/O devices to said 
trusted I/O kernel. 

15. The system of claim 1 wherein said trusted computing 
base runs at the highest privilege level of said computing 
platform. 

16. The system of claim 3 wherein said trusted computing 
base relies on a trusted platform module to implement a 
security primitive. 

17. The system of claim 16 wherein said trusted comput 
ing base employs a plurality of security primitives, includ 
1ng: 

controlling which of said isolated domains can access 
which memory regions; 

controlling which device can perform direct memory 
access operations to the memory of aid isolated 
domain; and 

performing sealed storage and attestation root-of-trust 
18. The system of claim 17 wherein said sealed storage 

allows the biding of data with the identity of one or more 
isolated domains. 

19. The system of claim 17 where said attestation root 
or-trust allows the measurement of the identity of an isolated 
domain and the reporting of the measured identity to a third 
party for verification. 

k k k k k 


