
US 20170177854A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2017/0177854 A1

Gligor et al. (43) Pub. Date: Jun. 22, 2017

(54) METHOD AND APPARATUS FOR Publication Classification
ON-DEMAND SOLATED AO CHANNELS (51) Int. Cl
FOR SECURE APPLICATIONS GoF3I44 (2006.01)

(71) Applicant: Carnegie Mellon University, Pittsbugh, G06F 2/53 (2006.01)
PA (US) G06F 9/455 (2006.01)

G06F 2/57 (2006.01)
(72) Inventors: Virgil D Gligor, Pittsburgh, PA (US); (52) U.S. Cl.

Zongwei Zhou, Mountain View, CA CPC G06F 2 1/44 (2013.01); G06F 2 1/572
(US); Miao Yu, Pittsburgh, PA (US) (2013.01); G06F 21/53 (2013.01); G06F

9/45558 (2013.01); G06F 2221/034 (2013.01); 21) Appl. No.: 15/129,548 s s
(21) Appl. No 9 G06F 222 1/2141 (2013.01); G06F 2009/45579
(22) PCT Filed: May 15, 2015 (2013.01); G06F 2009/45587 (2013.01)
(86). PCT No.: PCT/US 15/31083

S 371 (c)(1), (57) ABSTRACT
(2) Date: Sep. 27, 2016

Related U.S. Application Data A computing platform for on-demand I/O channels, which
(60) Provisional application No. 61/996,834, filed on May enable secure application to dynamically connect to diverse

15, 2014. peripheral devices of untrusted commodity OSes

2O
is a a is a sers a is a a as as is a as is a as a as is a as a is as as is a is is a is a as a is is a a st

N: Secure Secure
Application Application 2

6
ser
eve

: ...O...N.A.i.

Rodified OS Privileged
0. eve

: Most
privileged

awe
inistriarities initiai"

Hastware GO
:...---- ::::::

legend (...) *Fife axes use *

Patent Application Publication Jun. 22, 2017 Sheet 1 of 5 US 2017/0177854 A1

2O

Secure Secure :
Application Application 2 :

6 8
iser
eve

todified OS
0.

Privileged
eve

yost

givieged
eve

GO Hadware

Legend “y interface:

Patent Application Publication Jun. 22, 2017 Sheet 2 of 5 US 2017/0177854 A1

25

ise: i.e.:

todified OS

S is Sisystem;
5: Prweged

e':
give Sksiast t&-le's is

s 8

leged {X serifies V 7 Sašac

Fig. 2

Patent Application Publication Jun. 22, 2017 Sheet 3 of 5 US 2017/0177854 A1

The SR hierarchy The reas iSB tierarchy

way series

Fig. 3

Patent Application Publication Jun. 22, 2017 Sheet 4 of 5 US 2017/0177854 A1

soiation

qh = qh make(); sysenter \
addr=WKcall(&qh);

qh s = copy from Wimp(&qh),
if (verify qh) == Success)
add qh to host controller();

return &qhs,
SeCApp 1

Sysexit

poll ghaddr), dh S is in shared memory:
WK: read/write
SecApp 1: read-only

Fig. 4

Patent Application Publication Jun. 22, 2017. Sheet 5 of 5

todified OS Underlying CB K
i 8

: Register SecAgap i3 seate physica neory
2. of 88 & SecApp 28&

US 2017/0177854 A1

3. Estaitish virtua
reinery sciation 238 3 Switch to & K

S 35 verify if hardware config
attsoiced to CS 33

i} isyoke the acierying CS
$5 Establish if 3 chanisei

for fire-sisired via contre isciatic e.g., iterripts
i8 Switch to OS 24

as E8.

{& Sex & regisiatics

rtified OS inderying CB K See App
8 s

ii is ska Secáip 33 sets set App
iterist geisty

1. 3S
{4} Execite secs;

I

3 Switt &R 3.
33.

38

is Exit
}

is easio's secA
isite it distie: 33

8 Rasia. }s

: Sex &psissix sis:

Fig. 5

US 2017/0177854 A1

METHOD AND APPARATUS FOR
ON-DEMAND SOLATED AO CHANNELS

FOR SECURE APPLICATIONS

RELATED APPLICATIONS

0001. This application is a national phase filing under 35
U.S.C. S371 of PCT Application No. PCT/US 15/31083,
filed May 15, 2015, which claims the benefit of U.S.
Provisional Application No. 61/996,834, filed May 15, 2014.

GOVERNMENT INTEREST

0002 This invention was made with government support
under National Science Foundation CCF-0424422. The gov
ernment has certain rights in this invention.

BACKGROUND OF THE INVENTION

0003) To tolerate the malware and vulnerabilities in large
and complex commodity operating systems (OSes), modern
secure architectures isolate secure applications (SecApps)
from OSes, thereby enabling their safe co-existence. How
ever, safe co-existence does not guarantee the viability and
usefulness of the SecApps.
0004 Two fundamental causes of this problem are: (1) To
be trustworthy, SecApps must be formally verified, hence
Small and simple. Thus, they cannot include a variety of
basic services available only in large and untrustworthy
commodity systems, such as persistent storage, file systems,
networking services, and isolated device I/O, and (2) among
these services, providing on-demand isolated I/O channels
to secure applications is particularly important and challeng
ing, to improve the secure applications usefulness and
viability. Examples include providing secure user interfaces
for human-application communication (e.g., keyboard input,
screen output), or enabling secure control of remote devices
and critical infrastructure (e.g., Surveillance cameras,
unmanned drones, network-connected electricity genera
tors).
0005 Modern architectures can isolate security-sensitive
application code from the untrusted code of commodity
platforms, enabling their safe co-existence. This is necessary
because large untrustworthy Software components will cer
tainly continue to exist in future commodity platforms.
Competitive markets with low cost of entry, little regulation,
and no liability will always produce innovative, attractively
priced, large software systems comprising diverse-origin
components with uncertain security properties. Thus, the
best one can hope for is that some trustworthy software
components can be protected from attacks launched by
adversely-controlled giants. To be trustworthy, software
components must be verified, and to be verified they must be
comparatively small, simple, and limited in function. In
contrast to the giants, these Software components are wimps.
0006 Unfortunately, isolating these security-sensitive
SecApps from untrusted giants does not guarantee the ability
of the SecApps to survive on commodity platforms. To
avoid re-creating giants inside their isolated execution envi
ronments (IEES), SecApps often give up a variety of basic
services for application development, which greatly under
mines their usefulness and viability. For example, SecApps
typically lack persistent memory, file system and network
services, flexible trusted paths to users, and I/O services
needed for many applications; e.g., in industrial control,
finance, health care, and defense.

Jun. 22, 2017

0007 Past multi-year efforts to restructure giants (e.g.,
commercial OSes) to provide trustworthy services for appli
cations led to successful research but failed to deliver
trustworthy OSes that met product compatibility and time
liness demands of competitive markets. The alternative of
including basic services in the trusted computing bases
(TCBs) that guarantee safe giant-wimp co-existence has
been equally unattractive. TCBS include, for example, Secu
rity kernels, micro-kernels, and exokernels, virtual machine
monitors, micro-hypervisors, and separation/isolation ker
nels. TCBs would lose assurance because they would
become bloated, unstable, and unverifiable; i.e., they would
use large and complex code bases of diverse, uncertain
origin (e.g., device drivers) needed for different applications,
and require frequent updates because of function additions,
upgrades, and patches.
0008 Thus, the only remaining option is to place basic
application services in the giants. To Survive, SecApps
would have to rely on giant-provided services but only after
efficiently verifying their results. In turn, SecApps could
make their own isolated services available to giants for
protection against persistent threats. Continuing with the
wimp-giant metaphor, trustworthy SecApps must engage in
a carefully choreographed dance (i.e., secure composition)
with untrustworthy giants.
0009 Among the basic services needed by SecApps are
on-demand isolated I/O channels to peripheral devices,
especially character devices (other types of devices, net
working and storage devices, can be simply isolated by data
encryption). Past attempts to provide Such services with high
assurance on commodity systems, however, have been
unsuccessful. Some provide isolated I/O channels within
system TCBs but only for a few selected devices. Even
limited support for few devices invariably increases the size
and complexity of trusted code and undermines assurance.
For example, including just the Linux USB bus subsystem
in a micro-hypervisor would more than double its code-base
size and increase its complexity significantly; e.g., it would
introduce concurrency in serial micro-hypervisor code since
it would require I/O interrupt handling. Other attempts
statically allocate selected peripheral devices to isolated
system partitions at the cost of losing on-demand (e.g.,
plug-and-play) capabilities of commodity systems. In con
trast, other systems provide on-demand I/O capabilities by
virtualizing devices or passing them through to isolated
guest OSes, but sacrifice I/O channel isolation from the
untrusted OSes. Further attempts to isolate I/O channels rely
on special hardware devices equipped with data encryption
capabilities to establish cryptographic channels to applica
tions. This approach excludes commodity devices, which
lack encryption capabilities, and adds TCB complexity by
requiring secure key management for the special devices.

SUMMARY OF THE INVENTION

0010. The present invention is a method and apparatus
for on-demand I/O channels, which enables SecApps to
dynamically connect to diverse peripheral devices of
untrusted commodity OSes. Central to on-demand isolation
of I/O channels is the notion of the trusted I/O kernel (TK).
The TK is an add-on trustworthy service that is isolated from
the untrusted OS by the underlying code isolation root-of
trust mechanism (underlying TCB). It executes at least at the
same privilege level as, if not higher than, the OS. In some
examples, the TK can include or be embodied as computer

US 2017/0177854 A1

readable instructions, processor micro-code, firmware and/
or hardware. It should be noted that in the present invention,
the TK is less privileged than the underlying TCB. The TK
constructs on-demand isolated I/O channels to SecApps,
mediates all accesses of SecApps to I/O devices, and pre
vents the untrusted OS from interfering with SecApps'
execution and I/O transfers, and Vice-versa. The TK con
structs isolated I/O channels without affecting the underly
ing TCB. The TK retains the size, complexity, security
properties of the underlying TCB. For example, a mecha
nism to redirect the interrupts of the isolated devices to the
TK was developed, thus no interrupt handling code is added
to the underlying TCB. The TK removes a SecApp's direct
interfaces to the underlying TCB. The TK minimizes the
OS's interfaces to the underlying TCB by enabling efficient
direct communications between the OS and the TK. Thus,
future I/O function innovation that enhances the untrusted
OS or SecApps would only affect the TK, leaving the
underlying TCB unchanged.
0011. The present invention minimizes the size and com
plexity of the TK, using two classic security engineering
methods. First, the present invention outsources I/O subsys
tem functions to the untrusted OS, but only if the TK can
verify that the execution of that code is correct. For example,
the initialization and configuration of the entire PCI or USB
bus hierarchy is done by the untrusted OS and handed over
to the TK when the isolated I/O channels are needed. The TK
verifies the hierarchy without enumerating each device.
Note that the outsourced functions use the existing I/O code
in the OS and plug-ins to the OS (e.g., loadable kernel
modules), so does not require modifications to or re-com
pilation of the OS source code. Second, the present inven
tion further minimizes the TK by de-privileging and export
ing drive and driver-subsystem code to SecApps, and
implementing TK checks that verify applications use of the
exported code. Exporting code requires identification and
removal of all driver-code dependencies on the untrusted OS
services (e.g., memory management, synchronization, ker
nel utility libraries), either because they become redundant
in the new on-demand mode of operation or because they
can be satisfied by the SecApps or TK. For example,
synchronization functions that multiplex a device among
different applications become redundant, since the present
invention can guarantee the isolation and exclusive owner
ship of devices to a SecApp during its execution. Another
example is that the wimpy kernel exports USB request
handling code to the SecApp and mediates the behavior of
the exported code, i.e., sanity checks the security-sensitive
fields of the USB request descriptors created by the SecApp.
Using these two methods, significant code base reduction of
the wimpy kernel was achieved to facilitate future formal
verification to it. In one example, more than 99% of USB
subsystem code was cut down from the TK.

DESCRIPTION OF THE DRAWINGS

0012 FIG. 1 shows an overview of the I/O isolation
architecture, with the grey components representing the
trusted code of SecApps.
0013 FIG. 2 shows the outsourced functions and
exported code of the kernel.
0014 FIG. 3 shows USB Address Overlap and Remote
Wake-up Attacks. Legend: The root of the USB bus denotes
the USB host controller, the leaves the USB devices, and the
intermediate nodes the USB hubs. The number of each tree

Jun. 22, 2017

node denotes the USB device address. The dotted nodes
represent the USB devices whose addresses are duplicated in
an attack. The grey node denotes the USB device that is
suspended by the untrusted OS and can be remotely woken
up using external signals (e.g., a special packet sent to a USB
Ethernet card).
(0015 FIG. 4 shows USB Transfer Descriptor Verification
by the kernel
(0016 FIG. 5 shows the life cycle of a SecApp

DETAILED DESCRIPTION OF THE
INVENTION

1. On-Demand Isolated I/O

0017. This section outlines the advantages of the on
demand I/O channel isolation on commodity platforms in
the wimp-giant model, describes the adversary model, and
presents the inherent challenges posed by on-demand chan
nel isolation.

0018. In the on-demand I/O isolation model, the
untrusted OS manages all commodity hardware resources
and devices on the platform most of the time. However,
when a security-sensitive application demands exclusive use
of a device, the I/O isolation system takes control of
necessary hardware communication resources from the
untrusted commodity OS, verifies their OS configurations,
and allocates them to the application. When the application
is done with a channel, the system returns all resources used
to the untrusted OS.

1.1 Advantages

0019. The on-demand I/O isolation model has four sig
nificant advantages. First, it enables SecApps to obtain
isolated I/O channels to any Subset of a systems commodity
devices needed during a session, not just to a few devices
statically selected at System and application configuration.
Cryptographically enabled channels, device virtualization,
or pass-through of hardware devices become unnecessary.
0020 Second, it enables trusted audit and control of
physical devices without stopping and restarting applica
tions, since all devices can be time-shared between trusted
and untrusted applications. This makes it possible to main
tain control of physical devices in long-running applications
on untrusted commodity OSes; e.g., industrial process con
trol, air-traffic control, and defense.
0021. Third, it allows unmodified commodity OSes to
have unfettered access to all hardware resources and pre
serve the entire application ecosystem unchanged. The relin
quishing and reclaiming of hardware resources for on
demand I/O isolation is handled by non-intrusive OS plug
ins (e.g., loadable kernel modules), without requiring any
OS re-design or re-compilation.
0022. Fourth, it offers a significant opportunity for the
reduction of the trusted I/O kernel size and complexity, and
hence for enhanced verifiability. That is, the kernel can
outsource many of its I/O functions to an untrusted OS and
use them whenever it can verify the results of the outsourced
functions correctly and efficiently. This opportunity is
unavailable in either the static device allocation or virtual
ization models. In the former the OS cannot configure
devices in SecApp partitions, and in the latter it does not
have direct access to hardware devices.

US 2017/0177854 A1

1.2 Adversary Model
0023 The present invention adopts the typical adversary
model of systems that Support giant-wimp isolation. Thus,
an adversary could compromise the untrusted commodity
OS (i.e., the giant) and can control Some of its hardware
resources (e.g., physical memory, device I/O ports). The
compromised OS can directly attack SecApps (i.e., the
wimps) or intentionally control or mis-configure any device
(e.g., modify a USB device's address), including the I/O
devices that it hands over to SecApps, on demand. Con
trolled or mis-configured devices may unwittingly perform
arbitrary operations to breach a SecApp's I/O isolation, such
as claiming USB transfers, and issuing Direct Memory
Access (DMA) requests. In addition, a malicious or rogue
SecApp may attempt to escalate its privilege by manipulat
ing the interfaces with the I/O isolation system or config
uring the SecApp's devices. It could also try to break
application isolation (e.g., process isolation, file system
controls), or even compromise OS execution and corrupt its
data.

1.3 Security Challenges

0024. In the giant-wimp isolation model, on-demand I/O
channels offer ample opportunity for a giant to interfere with
a SecApp's I/O operation and compromise its secrecy and
integrity. One faces three key challenges in providing Such
channels.
0025 I/O Channel Interference.
0026. Given the fact that hardware resources and devices
are dynamically shared by the giant (i.e., untrusted OS) and
wimps (i.e., SecApps) on a time-multiplexed basis, the giant
can mis-configure a device, or a transfer path to it, and
compromise the Secrecy and/or integrity of a SecApp's I/O.
For example, most devices are interconnected by diverse bus
subsystems (e.g., PCI, USB, Bluetooth, HDMI) in modern
I/O architectures, which now become exposed to subtle
isolation attacks; viz., the USB address overlap attack and
the remote wake-up attack of Section 3.4.1. Hence, I/O
channel isolation must now control the multiplexing of
complex bus subsystems for different devices.
0027 Mediation of Shared Access to Devices.
0028. Further opportunities for interference arise from
on-demand I/O; e.g., a rogue SecApp/untrusted OS may
refuse to release the use of I/O resources shared with the
untrusted OS/SecApp (e.g., shared interrupts) after I/O
completion. Although both SecApps and untrusted OSes
must have time-bounded, exclusive access to shared I/O
resources and devices, they must be unable to retain unilat
eral control over shared I/O resources beyond time bounds
specified by mediation policies for device access.
0029. Verifiable I/O Codebase.
0030 The opportunity for minimizing I/O kernel size and
complexity created by the on-demand I/O isolation model
(viz., Section 1.1) poses a significant design question. That
is, if outsourcing of I/O kernel functions to the untrusted OS
is possible only if the results of the outsourced functions can
be verified correctly and efficiently by the kernel, which
functions can be outsourced? Answering this question is
important, since the trusted code minimization can be dra
matic, as illustrated below.
0031 Minimization of I/O kernel code base for verifi
ability reasons goes beyond the outsource-and-verify
method. For example, device driver and bus subsystem code

Jun. 22, 2017

could be decomposed into modules that can be exported to
applications, whenever the trusted I/O kernel can mediate
the exported modules access to I/O kernel functions and
objects.
0032. Finally, the composition of the TK with the rest of
the TCB must not diminish the existing assurance; i.e., must
not invalidate the TCB’s security properties and their proofs.

2. System Overview
0033. To fulfill all three security properties of on-demand
isolated I/O systems, we define an add-on security architec
ture based on a trusted I/O kernel (TK), which composes
with the underlying TCB, the untrusted OS, and SecApps.
This section illustrates this architecture, and highlights the
code base minimization methodology of the TK.

2.1 Platform

0034. The present invention can include or be embodied
as computer-readable instructions, processor micro-code,
firmware, hardware, and other embodiments which, when
executed, causes the processor to perform certain actions
according to the present invention.
0035. In one embodiment, the present invention includes
a platform (as shown in FIG. 1), comprising:
0036 1. One or more processors;
0037 2. One or more devices. Multiple devices con
nected to the platform via chipset hardware and bus con
trollers (e.g., in one non-limiting example, USB devices are
plugged to the USB bus controller, and then USB bus
controller is wired to the southbridge, and connected to the
processor and memory via northbridge and memory con
troller). Devices share chipset hardware and bus controllers.
0038. 3. Memory. Memory connected to the processor
and including computer-readable instructions which, when
executed by the processor, cause the processor to create a
computing platform having four components:
0039 (1) One or more untrusted operating systems
(OSes), which can run one or more untrusted applications on
top of the said OSes. The said OSes can be unmodified
commodity OSes (e.g., Windows OS, Android) or special
purposed ones (e.g., hardened OS, security kernels) for
bare-metal or virtualized environments, on, include but not
limit to, computers, real-time systems, embedded systems
and mobile platforms etc.
0040 (2) An underlying Trusted Computing Base (TCB).
The underlying TCB runs at the most-privileged level of the
platform and is used to create isolated domains. Each
isolated domain contains but not limited to: a unique domain
identity, CPU contents, exclusively owned regions of
memory, etc. Different isolated domains cannot access each
others’ memory and CPU contents. The underlying TCB
partitions memory into three types of portions, one for the
exclusive use of the underlying TCB, one for the exclusive
use of the trusted I/O kernel (dubbed TK, described below)
and one or more secure applications, and one for the
exclusive use of the untrusted OSes and one or more
untrusted applications. The underlying TCB could be in the
form of, but not limited to, secure kernel, micro-hypervisor
or hypervisor.
0041. The underlying TCB may rely on certain root-of
trust hardware (e.g., Trusted Platform Module) to implement
their security primitive. The underlying TCB employs at
least three security primitives/services: (a) Memory access

US 2017/0177854 A1

control: which isolated domain can access which memory
region(s). (b) Device Direct Memory Access (DMA) access
control: which device can perform DMA operation to the
memory of which isolated domain. (c) Trusted Computing
primitives: sealed storage and attestation root-of-trust.
Sealed storage allows the primitive users to bind certain data
with the identity of an isolated domain or domains, while
attestation enables the primitive users to measure the iden
tity of its isolated domain and report the measured identity
to an external third party for verifying.
0042 (3) A trusted I/O kernel (TK), wherein:
0043 (3.1) The TK runs on top of the said underlying
TCB, and runs in one or more different isolated domains
(namely secure isolated domains) than the ones for the
untrusted OSes and untrusted applications (namely
untrusted isolated domains).
0044 (3.2) The TK has at least the same privilege level
as, if not higher than, the OS, including but not limited to the
privileged level. And the TK has at least a lower-privileged
level (including but not limited to unprivileged level) to run
SecApps. The TK provides a subset of OS services (namely
TK system calls) to the SecApps and the device drivers in
the SecApps, such as, memory management, synchroniza
tion, interrupt isolation and delivery, and other OS utility
libraries.

0045. In some embodiments, the TK is mapped to the
same isolated domain of the SecApps it protected. Each
secure isolated domain contains exactly one TK mapping
and exactly one SecApp. Each secure isolated domain
exclusively occupies one CPU core during its lifetime. Thus,
the number of SecApps can run concurrently is less than the
number of CPU cores. In other embodiments, the TK runs in
its own isolated domain, while SecApps communicate with
the TK cross isolated domain boundary. In yet other embodi
ments, the TK can also be part of the underlying TCB
domain, e.g., an extension to the underlying micro-hyper
visor. In these two cases, the TK handles the scheduling of
the SecApps, and perform context switches between differ
ent SecApps. Thus there is no limit on the number of
SecApps can run.
0046 (4) One or more trusted SecApps run on top of the
said TK. A SecApp can exclusively use one or more SecApp
owned devices (SecApp devices) and hence contain one or
more SecApp device drivers.

2.2 Trusted Kernel (TK)
0047 On top of the said platform, the TK can further
comprise on-demand I/O channels isolation:
0048 (1) The TK isolates I/O channels between
SecApps devices and the ones of the OS. The TK also
isolate I/O channels between devices of different SecApps.
I/O channels isolation means the data transferred between a
SecApp and a SecApp device cannot be intercepted (secrecy
violation) or tampered with (authenticity violation) by the
untrusted OS domain, other SecApps or SecApp devices.
0049 (2) The TK can dynamically change the ownership
of the devices during the computing platform is running,
without rebooting the system. The TK assigns an OS device
to SecApp to fulfill the I/O requirement of SecApp, and
protects this device as one of the SecApp device via I/O
channel isolation. Later when the SecApp releases the
SecApp device, the TK removes protection for this device
and returns it back to OS.

Jun. 22, 2017

0050 (3) An untrusted plug-in of the untrusted OS (e.g.,
loadable kernel module, drivers) to provide various OS
functionalities to the TK and SecApps, including but not
limited to releasing the device control to the TK and
configuring the isolated I/O channels (e.g., configuring
chipset hardware and bus controllers) for the TK. After the
plugin configured the isolated I/O channels, the TK verifies
the configurations before assigning the I/O channels to the
SecApps. The verification code in the TK is smaller and
simpler than the I/O channel isolation configuration code (as
shown in FIG. 2). The above mechanism is named “out
source-and-verify” in the present invention.
0051 (4) The TK decomposes device drivers and bus
Subsystem code into modules that can be exported to
SecApps. Depending on the types of the exported code, the
SecApp may need to mediate the exported codes access to
SecApp devices and makes sure that it won’t violate I/O
channels isolation. The mediation code in the TK is smaller
and simpler than the exported code (as shown in FIG. 2). In
a non-limiting example, the code of setting up the USB
command data structure is exported to the SecApp, but the
TK verifies only a few fields of the data structure (e.g., the
USB Queue Head descriptor) to guarantee that the corre
sponding USB command only accesses the SecApps
devices, not the devices of other SecApps or the OS. Note
that the TK also comprises a procedure to load I/O access
policy and enforce the policy on a particular SecApp's
access to its devices. The above mechanism is named
“export-and-mediate” in the present invention.
0052 (5). The TK performs isolation of interrupts of
SecApp device and the OS devices, and between the devices
of different SecApp. The TK handles both non-shared and
shared interrupts:
0053 (5.1) non-shared interrupts represents the cases that
each SecApp interrupt occupies a unique hardware interrupt
number, or can be configured to occupy a unique interrupt
number (e.g., by using configurable Message Signaled Inter
rupts). In this case, the SecApp owns the non-shared inter
rupts. The TK remaps the SecApp interrupts to the relevant
SecApp isolated domain, by configuring interrupt control
lers (e.g., IOAPIC and LAPIC in x86 APIC architecture and
IOMMU with the interrupt remapping feature)
0054 (5.2) If the SecApp interrupt shares an interrupt
number with an interrupt of a device that belongs to other
SecApps, the TK accesses the interrupt status registers of
both devices to identify the interrupt source and delivers the
interrupt to the corresponding SecApp.
0055 (5.3) If the SecApp interrupt shares an interrupt
number with an OS device interrupt, the interrupt is deliv
ered to both the SecApp isolated domain and the OS isolated
domain, the TK accesses the interrupt status registers of the
SecApp device, if this is a SecApp interrupt, the TK delivers
the interrupt to the SecApp and prevents OS from interfering
with this interrupt delivery; if this is an OS interrupt, the TK
prevents OS from holding up this interrupt so that the
SecApp/TK cannot receive any Subsequent interrupts with
the same interrupt number.
0056 (6) To facilitate the run-time communication
between the TK and the OS, the TK provides bidirectional
secure communication channels to the OS (TK-OS chan
nels) without invoking the underlying TCB. In one nonlim
iting example, the TK-OS channels can be used by the TK
or a SecApp to outsource I/O functions to the OS during
run-time. In another example, the OS can also use the

US 2017/0177854 A1

TK-OS channels to request some security services from the
protected SecApps. In one embodiment, on a multi-proces
sor platform, the TK and the OS are running on different
CPUs and they can notify each other using Interprocessor
Interrupts (IPIs). The detailed communication messages are
exchanged in a shared memory region of the TK and the OS,
which is configured by the underlying TCB. The IPIs avoid
the TK-OS isolated domain switches performed by the
underlying TCB, which are typically more heavy-weight.
For example, the IPI delivery incurs much less latency
overhead than a VM switch performed by the underlying
micro-hypervisor/hypervisor. Note that on uniprocessor
platforms, the typical TK-OS isolated domain switches are
used for TK-OS communication channels. In other embodi
ments, the TK-OS channels may use other approaches to
share and/or exchange data among the TK/untrusted OSes/
SecApps, such as, in non-limiting examples, listening on
shared memory and exchanging cross-CPU signals. The TK
can also provide APIs to the SecApps so that they can use
the TK-OS channels.

0057 (7) Similar to (6), the communication channels can
also support the communication between different SecApps,
and/or between SecApp and App.
0058. On top of the said platform, the TK provides three
procedures:
0059 (1) the untrusted OS or applications register a
SecApp via the underlying TCB and the TK. This process
may include but not limited to (1a) the underlying TCB
pauses the untrusted OS and the untrusted application (1b)
the underlying TCB creates a new isolated domain, and
maps including but not limited to the SecApp and SecApp
device I/O resources into this isolated domain. In some
embodiments, the underlying TCB may also map the TK in
the same isolated domain with the SecApp. In other embodi
ments, the TK is mapped in a separate isolated domain from
the SecApps. (1c) the underlying TCB transfers control to
the TK, which further establishes virtual memory isolation,
bookkeeps SecApp information (Such as, in a non-limiting
example, SecApp page table), initializes the SecApp, and
uses the underlying TCB to enforce DMA access control.
(1d) SecApp registration finishes and the underlying TCB
Switches isolated domain and transfers control to the original
untrusted OS and untrusted applications.
0060 (2) the untrusted OS or applications invoke a
SecApp to run on top of the TK. This process may include
but not limited to (2a) the underlying TCB pauses the
untrusted OS and the user application. (2b) the underlying
TCB switches to TK, which checks if the target invocation
address is a valid entry of the SecApp by checking the
bookkeeping SecApp information. (2c) If check passed, the
TK executes SecApp from that target invocation address.
(2d) Once finished execution, SecApp transfers control to
the TK then to the underlying TCB, the underlying TCB
transfers control to the original untrusted OS and untrusted
applications.
0061 (3) the untrusted OS or applications unregister a
SecApp via the TK. This process may include but not limited
to (3a) the underlying TCB pauses the untrusted OS and the
user application, and switches to the TK. (3.b) the TK
removes the bookkeeping SecApp information, revokes
memory region used by the SecApp, resets and releases
SecApp devices. (3.c) the TK switches to the underlying
TCB to tear down the select isolated domain and maps
corresponding memory and SecApp device I/O resources to

Jun. 22, 2017

one or more legacy isolated domains contain the untrusted
OSes. (3d) the underlying TCB transfers control to the
original untrusted OS and untrusted applications.
0062. The TK further comprising verification algorithms
to check the bus initialized by the untrusted OS and the
relevant isolated I/O channels by the OS. Some non-limiting
examples of computer buses contain PCI, USB, Bluetooth,
NFC, and Firewire. In the following sections, two examples
will be described:
0063 (1) A PCI hierarchy verification algorithm
0064 (2) A USB hierarchy verification algorithm

2.3 Discussion

0065. The TK is also an add-on trustworthy component,
which is isolated from untrusted OS by the underlying TCB.
It executes at least the same privilege level as, if not higher
than, the OS. But it should be noted that in the present
invention, the TK runs is less privileged than the underlying
TCB. The TK dynamically controls hardware resources
necessary to establish isolated I/O channels between
SecApps and I/O devices, and prevents the untrusted OS
from interfering with these channels and vice-versa. The TK
leverages typical system techniques, such as CPU rings and
page table permissions, to protect itself from the non
privileged SecApps. The SecApps incorporate modified,
unprivileged device drivers to communicate with the iso
lated I/O devices, under the mediation of the TK. The
underlying TCB, TK, and SecApp interactions for channel
isolation are described in Section 5.
0.066 FIG. 1 shows that the TK must compose with three
other system components. First, it must compose with the
underlying TCB. The key goal of this composition is to
retain the stable and formally verified properties of the
underlying TCB; e.g., memory integrity and address space
separation. Second, it must compose with the untrusted OS
(giant) since the TK outsources its most complex functions
to the untrusted OS, whenever it can efficiently verify their
results, if its code base is to be small and simple. Third, it
must compose with SecApps. This is because the minimi
Zation of its code base suggests that it should de-privilege
and export some of its code (e.g., drivers) to SecApps
whenever it can mediate all accesses of the exported code to
I/O devices and channels under its control.
0067. The composition of the TK with the underlying
TCB has three important goals: it preserves the underlying
TCB's wimp-giant isolation model; it avoids addition of
new abstractions to the underlying TCB; and it retains the
verifiability of the underlying TCB and its security proofs.
First, the TK does not add any security primitives or services
to the underlying TCB beyond those already required by the
typical wimp-giant isolation model, which include physical
memory access control, device Direct Memory Access
(DMA) control, and sealed Storage and attestation root-of
trust. Second, the TK does not require any new abstractions
beyond SecApp registration/un-registration, which are
already offered to the untrusted OS for wimp-giant isolation.
These services rely on separation of the TK/SecApps and
untrusted OS address spaces and physical memory, and
preserve the memory isolation semantics of the underlying
TCB. Third, the TK does not invalidate the underlying
TCB’s security properties and their proofs. For example, it
does not add services and primitives that Support I/O chan
nels or virtualization. I/O channels include memory map
ping operations that directly affect address-space separation

US 2017/0177854 A1

and memory protection proofs, and interrupt processing that
greatly complicates those proofs due to added concurrency.
Hence, interrupt processing must completely bypass the
underlying TCB and dynamically select handling proce
dures located in either the untrusted OS or the TK, depend
ing on which system component controls the device at the
time.
0068 To assure the I/O channel isolation, TK needs to
control all I/O hardware that is shared by SecApp devices
with devices of the untrusted OS or another SecApp. A
SecApp device could share the hardware controller and
on-path hubs with untrusted-OS-controlled devices using
this controller. However, to include all OS code that ordi
narily controls shared I/O hardware in the TK would bloat
its code base and substantially increase its verification effort.
0069. To minimize the code base size and complexity of
the TK, two classic methods of trustworthy system engi
neering were applied, namely outsource-and-verify func
tions and export-and-mediate code. However, neither
method has been used for high-assurance, on-demand I/O
isolation kernels for commodity platforms before. I/O iso
lation was either in security kernels for a few simple devices
and not on demand, or was outside security kernels and not
minimized for high assurance; viz., related work section.
The present invention achieves significant code base reduc
tion results using these two methods; i.e., we manage to cut
down over 99% of Linux USB code from the TK, as shown
in Section 4.
0070 Outsource-and-Verify.
0071. We decompose the bus subsystem functions, out
source them to the untrusted OS, and then efficiently verify
the results of those functions; viz., FIG. 2. For example, in
some embodiments related to USB subsystem, the untrusted
OS initializes the USB hierarchy, which includes the USB
host controller, hubs and devices, and configures the I/O
channels for a specific SecApp device, whereas the TK
verifies their correct configuration and initialization. With
out verification, the untrusted OS could intentionally mis
configure the shared USB host controller and hubs, and
violate I/O channel isolation in an undetectable manner. The
verification code is much smaller and simpler than the bus
subsystem code and various device drivers left in the
untrusted OS, and relies only on generic host controller and
hub operations, instead of the device-specific ones. In short,
the outsource-and-verify approach enables the present
invention to substantially decrease the code base of the TK
and, at the same time, avoid reliance on the untrusted OS.
0072 Export-and-Mediate.
0073. The TK code base is further minimized by export
ing device drivers and bus Subsystem code to isolated
SecApps which would otherwise have to be supported in the
TK itself; e.g., the Bus Subsystem Stub of FIG. 2 denotes
bus subsystem code exported by the TK to a SecApp. In
Section 3.4.2, we illustrate how to export bus subsystem
code using USB as an example. In particular, we show how
different transfer descriptors for USB transactions are cre
ated for SecApps, and how the TK mediates the SecApp's
use of these descriptors by checking the validity of a few
isolation-relevant descriptor fields.
0074 To export device driver and bus subsystem code to
SecApps, the TK must identify and remove all code depen
dencies on the untrusted OS. To do this, the TK de-privileges
the driver Support code (e.g., memory management, kernel
utility libraries) and mediates the SecApps use of it, when

Jun. 22, 2017

ever necessary; viz. FIG. 2. Some code dependencies,
including but not limited to, those of synchronization func
tions for device multiplexing, disappear in the on-demand
I/O model and, while they no longer require de-privileging
before export, they still require mediation after export. We
illustrate how the TK performs driver support code export
ing in Section 3.2. (SecApps can also outsource-and-verify
driver functions (e.g., device initialization, power manage
ment) to the untrusted OS, and reduce their size and com
plexity). The present invention also de-privileges the low
level I/O code (e.g. MMIO, DMA, interrupts) and mediates
the SecApps use of interrupts. We illustrate how the TK
perform interrupt isolation in Section 3.4.
0075 Efficient TK-OS Communication.
0076. The TK implements low-level communication
primitives between SecApps and the untrusted OS, which
are compatible with the unmodified OS; i.e., the OS is
neither redesigned nor recompiled. At run time, SecApps
can invoke untrusted OS services, such as file-system and
networking services, whose results they can verify effi
ciently; e.g., using typical cryptographic functions. In some
of the embodiments, these primitives are highly efficient
because they use Interprocessor Interrupts and shared
memory and avoid heavy-weight context Switches with the
underlying TCB. In other embodiments, especially on the
single-core platform, the present invention uses shared
memory and relies on the underlying TCB for isolated
domain switching. We describe the design of the wimp-OS
communication in Section 3.3, and illustrate its performance
in the subsequent section (Best Mode of Implementation).

3. Trusted I/O Kernel Design

3.1 Scope and Generality

0077. The design of the TK focuses on character-oriented
I/O devices for three reasons. First, these devices are per
vasive. One recent driver study, their drivers constitute about
52% of all Linux driver code and 57% of driver type.
Second, these devices, such as video card, audio card,
sensors, cameras, and user input devices, are important
because they are responsible for connecting the software
with the human users and the physical world. Third, the
isolation of character devices is more complex than for
storage and network I/O devices. The SecApps can safely
outsource these functions of storage and network I/O
devices to the untrusted OS. Specifically, SecApps can do
this very efficiently using cryptographic outsource-and
verify techniques, whereby they use either authenticated
encryption or MAC modes to checksum and protect the
integrity, and when necessary confidentiality, of the objects
outsourced to untrusted OS services; e.g., files, databases,
emails and other messages. Thus, the TK need not Support
any storage or network I/O device functions. However,
character devices cannot be isolated using authenticated data
encryption. The reasons are two fold: (1) the real-time data
transferred in bytes by character devices is impractical to
encrypt; (2) the commodity character devices typically lack
key management and cryptographic capability for data
encryption or authentication.
0078. The minimization of TK code requires modular
decomposition and our design relies on traditional decom
position methods for I/O kernel code; viz., FIG. 2. The
outsource-and-verify method, which illustrated with the
USB subsystem (Section 4.1), applies to all other bus

US 2017/0177854 A1

Subsystems with similar code size and complexity minimi
Zation results. This is the case because device initialization
and configuration functions, which outsourced to the
untrusted OS, comprise about 51% of driver code on aver
age. Verification algorithms for the outsourced results are
much simpler for all other subsystems (e.g., PCI, Firewire)
than for the USB. For example, the verification algorithm for
PCI bus is able to collect hierarchy information directly
from the hardware registers of PCI bridges without having
to derive it. For the Firewire bus, all bus bridges store
routing information on how to reach a specific device, which
can be directly accessed by the verification algorithm. In
addition, for power management code (7.4% of driver code
on average), Verifying the power state of bus controller and
hubs/bridges are general to any bus Subsystem, because they
comply with the widely accepted ACPI standard.
007.9 The export-and-mediate method follows classic
trustworthy-system engineering principles (mentioned
above). Although the security-sensitive operations may dif
fer for different bus subsystems and devices, their identifi
cation is well understood. In the on-demand I/O isolation
model, the present invention identifies all operations which,
if misused by malicious or compromised SecApps, could
violate the isolation I/O channels belonging to other
SecApps or to the untrusted OS. The mediation code of the
TK verifies that SecApp operations do not cross the isolation
boundary of low-level I/O resources allocated to SecApp
devices and is used by all devices and bus subsystems. For
example, the TK performs simple range checks to ensure
that a SecApp's operations only touch its own I/O ports,
MMIO memory, and DMA memory. Mediation code also
validates interrupt settings by comparing the interrupt vec
tor, which is set by SecApps, with others set by the untrusted
OS. The TK need not mediate SecApp operations that affect
functional properties or availability of the isolated devices,
which are more likely to have complex semantics of specific
devices or buses. In addition, the method used to export
driver-support code (e.g., low-level I/O, memory manage
ment, synchronization) to SecApps (Section 3.2) applies to
all devices and buses. However, drivers for different types of
devices and buses may have different dependencies on
Support code.

3.2 Exporting Driver Support Code

0080 Aside from communicating with bus subsystems,
device drivers also use a variety of services of untrusted OS
Subsystems; e.g., kernel library, memory management, Syn
chronization, device library and other kernel services. Table
1 shows some non-limiting examples of Such interfaces in
each category and how we export them to minimize the code
base of the TK, according to the on-demand I/O isolation
model. Certain untrusted OSes may contain other types of
driver Support code. Thus in Some embodiments, additional
minimization decisions, or even different minimization deci
sions, are required to handle all these types accordingly.

TABLE 1.

Minimizing driver support code in the TK

Driver Support Code Minimization

Memory Virt & phys Exported to
Page Mediated by

Jun. 22, 2017

TABLE 1-continued

Minimizing driver support code in the TK

Driver Support Code Minimization

Synchronization Locks Exported to
Threads Exported to
Signals Exported to

Kernel Utility Exported to
Timer Exported to

Device ibrary Class functions Exported to
I/O ports & Exported to
Config space & Mediated by

Kernel File system Outsourced to
CPU Mediated by

I0081 (1) Memory management interfaces are further
divided into three types: virtual memory pages, physical
pages, page permissions. Virtual and physical page manage
ment is done in SecApps, because during SecApp registra
tion, memory (including the code, data and I/O memory) of
SecApps is provisioned by the OS, and isolated by the
underlying TCB and TK. The TK verifies that the OS
provisions contiguous memory in both virtual and physical
address spaces to the SecApps, so that the SecApps can
easily perform page mapping translation. However, the TK
sets page permissions for SecApps to prevent buggy or
compromised SecApp code from subverting the TK's virtual
memory isolation.
I0082 (2) Synchronization functions (e.g., locks, threads,
and signals) are either unnecessary in the on-demand isola
tion model, or can be deprivileged to SecApps. First, locks
(e.g., mutex, semaphore, conditional variable) that are used
for multiplexing devices among different applications are
unnecessary, because SecApps exclusively own their
devices during execution. Locks for other usage can be
easily implemented in user-level. Second, in some embodi
ments, SecApps may implement their own thread manage
ment and scheduling functions using user space thread
libraries and timer interrupts delivered by TK, in other
embodiments, TK provides thread scheduling for SecApps.
Third, if multi-process is needed (Multi-thread is usually
sufficient for SecApps that exclusively own their CPUs
during execution), in some embodiments, SecApps manage
the signals between their processes, using user-space signal
implementation. In other embodiments, TK provides pro
cess Scheduling and inter-process communication/signaling
accordingly.
I0083 (3) Kernel library for utilities, timers, debugging
and book-keeping are unprivileged and can be replaced by
user-level libraries in SecApps. In some non-limiting
examples, SecApps manage their own timers, because TK
delivers timer interrupts to SecApps.
I0084 (4) Device library include routines supporting a
class of device and other low-level I/O related functions.
Device-class functions are now placed in SecApps, similar
to device drivers. Low-level I/O resources such as I/O ports,
MMIO and DMA memory are already isolated by the TK.
thus the SecApps directly manage them without any run
time mediation by TK. However, configuration space access
code (e.g., changing MMIO base address registers, modify
ing Message Signaled Interrupt Capability) and interrupt
management functions (e.g., acknowledging End of Inter
rupts register, enable/disable interrupts) exported to

US 2017/0177854 A1

SecApps should be mediated by TK, because this code could
be exploited by malicious or compromised SecApps to
breach I/O channel isolation.
I0085 (5) Kernel services include code for driver inter
action with other OS subsystems, such as file systems and
CPU scheduling. File system functions are outsourced to the
OS by SecApps, using the TK-OS communication channels
of TK (discussed below). Multi-process CPU scheduling, if
needed, is implemented in SecApps. However, the TK needs
to sanitize the new process page tables created by SecApps
during forking processes, and mediates page table Switches.
I0086 (6) Others. In other embodiments, the TK may
provide other driver support code to the SecApps, for some
non-limiting examples, debugging interfaces or error han
dling procedures. These types of driver Support code is
relevant to the code and I/O isolation of SecApps, thus it is
better to include them in the implementation of TK.

3.3 TK-OS Communication

0087. The TK-OS communication channels enable bidi
rectional communication between the untrusted OS and the
TK or SecApps. In a non-limiting example, a SecApp can
request extra memory from the OS, when it runs out of the
memory provisioned. The TK contacts the relevant OS
services, and verifies that the dynamically assigned memory
regions returned by the OS services are valid (e.g., they do
not overlap with the memory regions of other SecApps).
0088. In some non-limiting examples, the untrusted OS
can use these TK-OS channels to protect itself from potential
buggy SecApp behavior or defend against privilege escala
tion attacks from malicious SecApps. When the OS invokes
the SecApps, it places upper bounds on the SecApps'
resources. If a SecApp exceeds these bounds, the OS
requests the TK to take appropriate action. TK verifies these
requests using the resource accounting information it keeps
during SecApp execution. In another non-limiting example,
if the OS detects a potentially deadlocked SecApp (e.g.,
which holds a CPU in excess of an established time bound),
it notifies TK with the total running time as an input
message. TK verifies this request by calculating the elapsed
time of the SecApp, using the CPU time stamp it records
during SecApp invocation and the current time stamp. If the
total running time is correct, TK then notifies the SecApp to
prepare for a descheduling. If the SecApp acts normally in
descheduling, it can still be invoked by OS later. However,
if the SecApp fails to deschedule for a certain amount of
time, the untrusted OS can request the TK to terminate the
SecApp. Similarly, in another example, an OS plug-in (e.g.,
a loadable kernel module) can constantly monitor shared
interrupts of OS devices. If it discovers that a shared
interrupt with a SecApp is blocked for a long time, it could
also complain to TK using TK-OS communication channels.
0089. The present invention designed primitives for TK
OS communication, which are compatible with standard
commodity OS implementations. Especially, in an example
embodiment on top of multicore platform, when a SecApp
requests OS services, it invokes TK-provided interfaces,
instead of directly triggering high-weight context Switches
coordinated by the underlying micro-hypervisor. This yields
Substantially better performance for fine-granularity protec
tion than that offered by security/separation kernels, recent
micro-hypervisors, and traditional hypervisor designs. We
demonstrated its efficiency in Section 4.5. Specifically, the
SecApp provides an OS service number, inputs, and a

Jun. 22, 2017

completion call-back function to TK. In some embodiments,
the TK signals the OS running on other CPUs using Inter
processor Interrupts (IPIs), which is a standard facility of the
Local Advanced Programmable Interrupt Controller
(LAPIC) in main-stream multi-processor CPUs. It is fre
quently used to coordinate multi-processor bootstrap, but we
use this capability to send an interrupt to other processors
where the OS executes, as a signal of service requests.
Before sending the IPIs, TK places the SecApp-provided
inputs in a dedicated memory region shared with the OS,
which is established by the micro-hypervisor during SecApp
registration. After IPIs are sent, TK transfers control back to
the requesting SecApp, and the SecApp continues to per
form other operations. Later, the OS sends an IPI to TK to
signal the service completion, and returns service results
using the shared memory region. The TK verifies the service
results and passes them to SecApp. In other embodiments,
the TK-OS channels may use other approaches to share
and/or exchange data among the TK/untrusted OSes/Se
cApps, such as, in non-limiting examples, listening on
shared memory, or passing cross-processor signals. In some
embodiments, especially for the single-core platform, the
TK-OS channels may also rely on the underlying TCB for
isolated domain Switching, and use other mechanisms to
perform this TK-OS communication. In the embodiments
for single-core platform, the TK-OS communication channel
includes isolated domain Switch in Synchronized communi
cations, or not include isolated domain Switch immediately
in asynchronous communications.

3.4 Interrupt Isolation and Delivery

0090. The TK needs to isolate both non-shared and
shared interrupts. The SecApp device interrupts are
remapped to the TK first. The TK decides the source of the
interrupts, delivers them to the destinated SecApp if the
interrupts are for SecApp, handles them if the interrupts are
for the TK, or safely clears them if the interrupts are for the
untrusted OS(es) (mainly in the case of shared interrupts).
The implementation of interrupt delivery to the SecApp
depends on the implementation of isolation domains of the
SecApp and the TK. In one embodiment, the TK is mapped
to the isolated domain of the SecApp. The TK can deliver
interrupts to SecApp as signals (similar to signals in com
modity OSes). In other non-limiting embodiments, the TK
resides in a different isolated domain from the SecApp. The
TK delivers interrupts to SecApp using cross-domains com
munication primitives, such as IPCs or our TK-OS channels.
0091
0092. Each SecApp interrupt occupies a unique hardware
interrupt number, or can be configured to occupy a unique
interrupt number if the SecApp device uses non-shared
interrupts. To isolate non-shared interrupts, the TK remaps
the SecApp interrupts to the relevant SecApp isolated
domain, by using their interrupt numbers and SecApp device
information (e.g., the bus/device/function number of a PCI
device).
0093
0094. At least one of the SecApps devices shares an
interrupt number with an interrupt of a device that belongs
to other SecApps or the untrusted OS.
0.095 To isolate shared interrupts with other SecApps,
the TK receives the interrupts, decides the interrupt sources

Non-Shared Interrupt Isolation.

Shared Interrupt Isolation.

US 2017/0177854 A1

by reading some interrupt status registers of the devices of
both SecApps, and delivers the interrupts to the destinated
SecApp.
0096. To isolate shared interrupts with the untrusted OS
in Some embodiments on multicore platform to isolate
shared interrupts with the untrusted OS, the TK performs
extra steps in step (3) of the FIG. 5(b). These extra steps
include, but are not limited to: 1. the TK enables the
interrupts to be routed to one or more cores running the
untrusted OS (named OS cores), and one or more cores
going to run the SecApp (named SecApp cores). 2. the TK
sets up a handler for the interrupt on each of the named
SecApp cores. Also, the untrusted plug-in in the untrusted
OS sets up a handler for the interrupt (named dummy
interrupt handler) on each of the named OS cores. Thus, both
the OS and the TK are able to receive interrupts on this
shared interrupt line. The dummy interrupt handler in the OS
is used to gracefully acknowledge the interrupts of the
SecApp and prevent attacks from a compromised or mali
cious SecApp (e.g., the SecApp holds up the interrupts so
that the OS cannot receive interrupts of its own devices).
During the SecApp is running, when a shared interrupt
arrives, the TK and the plug-in in the untrusted OS performs
the following steps to achieve interrupt isolation and deliv
ery:
0097 (1) The TK accesses the interrupt status registers of
the SecApp device and decides which device triggers the
interrupt. If none of the SecApp device triggers the interrupt,
the interrupt should be handled by the untrusted OS, other
wise it Should be handled by the TK.
0098 (2.a) If the interrupt should be handled by the
untrusted OS, the TK sets up a timer (named Tos). This step
ensures that the TK does not signal an end-of-interrupt (EOI)
to the interrupt controller until the OS signals an EOI.
0099 (2b) If the interrupt should be handled by the TK,
the dummy interrupt handler in the agent module sets up a
timer (named Twimp). This step ensures that the untrusted
OS does not signal an EOI until the TK signals an EOI. The
value of Twimp is independent from the value of Tos.
0100 (3.a) If the interrupt should be handled by the
untrusted OS. The untrusted OS handles the interrupt nor
mally according to the OS original design. Then go to step
(5a).
0101 (3.b) If the interrupt should be handled by the TK,
in some embodiments, the TK performs the following non
limiting steps to deliver the interrupt to the SecApp: 1. the
TK saves SecApp execution context. 2. resumes SecApp
execution from certain entry, to let SecApp handle the
interrupt. 3. after the SecApp handled the interrupt, the TK
restores the previously saved SecApp execution context. In
other embodiments, the TK may hint the SecApp about the
interrupt arrival by modifying SecApp State. In this case, the
SecApp is responsible to check its own state and handle the
interrupt timely.
0102 (4a) If the interrupt should be handled by the TK,
after the SecApp serves the interrupt, the TK should perform
additional non-limiting steps to ensure safely interrupt iso
lation. In some embodiments, the TK may check device
interrupt status before signaling EOIs for the SecApp. In
other embodiments, the TK bookkeeps interrupt informa
tion, Such as, but not limited to, number of times, and
frequency. The agent module of the untrusted OS may also
bookkeeps the interrupt information for this shared interrupt
line. If the interrupts are too frequent, it will complain this

Jun. 22, 2017

fact to the TK. At the TK side, if the number complained by
the untrusted OS/other SecApps matches the TKs number,
the TK will take action as the untrusted OS/other SecApps
required, including but not limited to, terminating the
SecApp.
(0103 (5a) If the interrupt should be handled by the
untrusted OS, the TK sends EOI when Tos is expired.
0104 (5b) If the interrupt should be handled by the TK,
the dummy interrupt handler in the agent module sends EOI
when Twimp is expired.

TABLE 2

Decomposition of bus subsystems.

(6) Tos Design

Bus Outsourced
Power Outsourced
Informatio Removed
Device Removed
Request Exported to

0105. The present invention may include certain mecha
nisms to decrease the waiting time in step (2a) and step (2b).
In some embodiments, mechanisms are used to decrease Tos
and Twimp initial values. In other embodiments, mecha
nisms are used as another source of timeout decisions, along
with or replace Tos and Twimp.
0106. In other embodiments on single-core platform, the
interrupt isolation mechanism is different. The shared inter
rupts are delivered to the TK first. If the interrupts are for the
SecApp, the TK delivers the interrupts and sets up Twimp.
If the interrupts are for the OS, the TK delivers the interrupts
to the untrusted OS, which triggers the underlying TCB to
switch the isolated domains from the TK to the OS. In some
embodiments, the TK delivers the interrupts to the untrusted
OS by invoking the OS's interrupt handler directly. It some
other embodiments, the TK delivers the interrupts to the OS
by triggering a self-interrupt on the CPU interrupt controller
with a different interrupt number. The OS plug-in handles
the self-interrupt by relaying the interrupt to the original OS
interrupt handler.

4. Decomposing Bus Subsystems

0107 The present invention includes a method of decom
posing the bus Subsystem, including but not limiting to PCI.
USB, Bluetooth, Firewire, NFC, HDMI, and Thunderbolt,
using the proposed outsource-and-verify, and export-and
mediate approaches. The bus Subsystem usually implements
a variety of I/O functions such as bus enumeration, power
management, device-information bookkeeping and the Vir
tual file system (VFS) presentation to user-level application,
device hot-plug, and request handling. The present invention
applies the outsource-and-verify and the export-and-mediate
approaches to decompose this subsystem and include only
necessary code in the TK. Some example results are sum
marized in Table 2.

0108. The outsourced functions include but not limited to
the bus enumeration function isolated I/O channel prepara
tion, and power management functions. Forbus enumeration
function isolated I/O channel preparation, the present inven
tion designs simple and efficient verification algorithms in
the TK to verify the OS's configuration of the bus hierarchy
and isolated I/O channels. The TK's verification algorithm

US 2017/0177854 A1

will verify the configurations of the on-path controller and
intermediate hubs and the isolated device in the bus enables
the desired isolated channel. For example, all relevant
devices (including controllers and hubs) must have correct
device address and the devices are connected to each other
as indicated by the untrusted OS. The low-level I/O
resources (e.g., I/O ports, MMIO memory, DMA memory,
interrupts) assigned to the isolated devices do not conflict
with any other device in the same bus. Moreover, the
configurations of other devices in the same bus will not
violate the I/O data secrecy and authenticity of the isolated
channel. In addition, the TK must also have persistent
protection of the verified bus configurations and detect or
prevent any attack that could modify the verified configu
rations. We will illustrate the outsource and verification of
bus enumeration and I/O channel preparation using two bus
subsystems, USB in Section 4.1 and PCI in Section 4.3.
0109 For the outsourced power management functions,
the TK can efficiently verify the power status and prevent the
OS from selectively disabling the bus hierarchy and com
promising I/O data integrity of SecApps.
0110. The present invention exports some functions to the
SecApps, including but not limited to the request handling
code. The request handling module of the a commodity bus
Subsystem accepts the requests from device drivers of
SecApps, generates request descriptors or other data struc
tures, executes the requests directly via low-level I/O
resources or Submits the request descriptors to bus controller
hardware to perform relevant bus transactions. The TK
exports most of the request handling module to the SecApps
and mediates the behaviors of the exported code. For one
non-limiting example, the TK verifies a few fields in the
SecApp-generated descriptors to ensure that the SecApps'
use of device I/O resources does not violate I/O channel
isolation. We will use an example in USB request handling
to illustrate the methodology (Section 4.2).
0111. In addition, the TK removes a large portion of the
bus Subsystem, according to our unique on-demand I/O
isolation model. For Some non-limiting examples, device
information bookkeeping and virtual file system services
become unnecessary, because the TK manages only a few
devices for SecApps on-demand. Instead, user-level
SecApps include the device drivers and directly access their
devices, without any file-system representation. Also, the
device hot-plug is excluded from the TK because, in the
on-demand I/O isolation model, the OS can handle the
hot-plug event first and then switches to the SecApps. The
SecApps do not deal with hot-plugged SecApp devices.

4.1 Verifying the Outsourced USB Bus
Enumeration

0112 USB subsystem is chosen to illustrate the TK
design of bus Subsystem decomposing and code minimiza
tion method for two reasons. First, the USB bus is very
popular in terms of device connectivity. For example, in
Linux, 35% of device drivers use USB and 36% PCI; 10%
of higher-level protocol drivers use either. Second, channel
isolation for the USB subsystem is the most complex since
it mixes control and data channels, and uses (untrusted)
software to maintain the device hierarchy and initialize
device addresses (in versions earlier than USB 3.0). There is
no direct hardware information about the device address and
bus hiearchy for the TK to verify. We will illustrate two
non-limiting attack examples in the following paragraphs to

Jun. 22, 2017

demonstrate the complexity of USB bus. In contrast, channel
isolation for all other Subsystems (e.g., PCI) is much sim
pler. For example, they already have separate control chan
nels: some (e.g., PCI, Firewire) store hierarchy information
in hardware, and others (e.g., Bluetooth and HDMI) have
hardware-assigned device addresses. These channel control
components can be directly accessed and protected by the
TK.
0113. Address Overlap Attack.
0114. A compromised OS can intentionally create dupli
cate addresses for various devices or hubs in the USB
hierarchy, as is shown in FIG. 3. The ultimate purpose of this
type of device misconfiguration is to Surreptitiously com
promise the SecApp I/O data, as illustrated below.
0.115. A device with a duplicate USB address can hide
from the TK during hierarchy verification, if it responds to
control transfers from the TK (e.g., reading device descrip
tors) slower than the SecApp device whose address it
duplicates. However, the hidden device (“hidden dev’) may
still intercept or respond to other types of USB data transfers
faster. Thus the hidden device can be directed to compro
mise both I/O data secrecy and integrity of a SecApp device
with the same address.
0116 Remote Wake-Up Attack.
0117. A subtle attack can be launched by USB devices in
Suspended State which can still respond to external wake-up
signals (e.g., a special packet sent to a USB Ethernet card)
and resume their active state. Taking advantage of this
remote wake-up feature, a compromised OS can configure a
hidden dev, Suspend it to evade Verification, and later resume
it to launch a “USB address overlap attack”. However, we
note that the remote waking up of a device needs to be
coordinated by an upstream, non-suspended USB hub. In a
more potent attack, the OS could configure the hub upstream
of the Suspended device as a hidden dev (e.g., the dotted
node No. 3 in FIG. 3), which would hide the remote wake-up
event from the TK. Thus, to defend against this subtle attack,
the TK verifies (1) that only the hubs that connect the
SecApp device to the host controllers are in non-Suspended
state during SecApp execution, (2) that there is no hidden
hub in the hierarchy, and (3) the status of all non-suspended
hubs to detect any remote wake-up signals.
0118 Proof-of-Concept Experiments.
0119 We experiment with the USB address overlap
attack, and analyze its impact on I/O channel isolation. Note
that USB device communication has two directions: IN
means data is transferred from device to host controller,
while OUT represents the opposite. There are four types of
data transfer: control, interrupt, bulk, and isochronous. Each
type has different latency and bandwidth guarantees, and is
performed by different types of USB devices.
I0120 We perform the analysis using two keyboards; one
is Dell SK8115, as the SecApp device, the other one is Dell
L100, as a device controlled by the adversary. We changed
the USB address of Dell L100 to overlap that of Dell
SK8115. In the experiment, when performing control trans
fer IN direction communication (e.g., reading device
descriptors), Dell SK8115 always replies faster, so we only
read its device descriptors from the host controller. Dell
L100 is hidden from the control software (e.g., verification
Software, SecApps). However, when performing control
transfer OUT direction communication (e.g., sending com
mand to light the caps-lock LED on the keyboard), we
discovered that the caps-lock LEDs on both keyboards are

US 2017/0177854 A1

always lighted together. This means the hidden Dell L100
can silently intercept control OUT data of the isolated
channel device, which breaks the secrecy of the I/O channel.
Moreover, if we perform interrupt control IN communica
tion (e.g., reading keyboard input), key-presses on both
keyboards are accepted normally, which means that the
hidden Dell L100 can inject data into the isolated channel
and break its integrity.
0121. In summary, the USB device address overlap attack
can break both the secrecy and integrity of isolated I/O
channels, without being noticed by any control Software.
0122 Hierarchy Verification Algorithm.
0123. The purpose of the verification algorithm is to
check that only the USB paths of the SecApp devices are in
active state under a USB host controller. Here a USB path
denotes a chain of USB devices from the host controller, via
the on-path hubs, and to a specific SecApp device.
0.124. To design this algorithm, we need to overcome
several challenges as the result of the complexity of USB
bus. For instance, the USB hierarchy information about USB
address and hub-device connectivity is maintained only in
the bus subsystem software of the untrusted OS. There is no
hardware-stored hierarchy information that can be directly
used by the TK. When discovering the hierarchy informa
tion, the TK must communicate with the USB devices using
common operations instead of device-specific ones (to mini
mize code size and complexity). In addition, the TK must
not interfere with the normal functions of the I/O hardware
being verified; e.g., it must not make un-recoverable con
figuration changes.
0125. In the on-demand isolation model, the untrusted
OS prepares a set of USB paths for all SecApp devices, and
provides them as inputs to the TK verification algorithm.
Specifically, the OS backs up the state of all non-USB-path
devices, Suspends them, and passes the USB path informa
tion to the TK. The USB path information includes the
addresses of all devices and on-path hubs, and the ports of
their upstream hubs that they connect to. The TK protects the
host controller so that the untrusted OS can no longer issue
any USB command via this host controller. The TK then
executes the following algorithm to verify the OS-prepared
USB paths:
0126 (1) TK periodically monitors the port status of all
on-path hubs to detect remote wake-up events. If any is
detected, the verification fails. The present invention does
not require this step prior than other steps. This step can also
take place after step 2, step 3, or step 4.
0127 (2) TK examines all hub ports that do not have any
downstream SecApp device. These ports should either be
disabled or suspended. Otherwise, the TK suspends those
ports.
0128 (3) TK scans all the device addresses (e.g., 127
addresses possible for USB 2.0). If it detects any that are
active non-USB-path devices, the verification fails.
0129 (4) For each device in USB path, TK suspends it,
and then communicates using its address. If there is any
reply, a hidden dev or hub is detected, and verification fails.
0130. Extensions to Support Multiple SecApps.
0131 The same USB hierarchy may be shared by mul

tiple SecApps. The above algorithm is used for the first
SecApp. For the Subsequent applications, the present inven
tion adds the following two preliminary steps before running
the algorithm.

Jun. 22, 2017

I0132 (1) TK notifies the previously registered SecApps
and suspends their USB paths.
0.133 (2) TK activates the USB paths of the requesting
SecApp.
0.134 Step (1) is necessary, because the USB paths acti
vated in (2) may have hidden devices that conflict with the
devices in the USB paths of the previous SecApps.
0.135 Algorithm Analysis.
0.136. In this section, we present an informal analysis of
the algorithm and argue that it prevents both the USB
address overlap and remote wake-up attacks; in this analysis
we assume the step 1 is prior than the step 2.
I0137 We first analyze that Steps 1 to 3 are able to find out
all non-USB-path devices that are still in active state. The
untrusted OS may attempt to hide a device when the TK
scans it in Step 3, and remotely wake it up later. However,
the remote wake-up event of a device must be coordinated
by a non-suspended hub. This hub is either be a non-USB
path hub, or a hub on a USB path. For the former the TK will
always discover it in the linear scan, and for the latter the
remote wake-up event will be detected by the TK, as shown
in Step 1.
0.138. Although Steps 1 to 3 guarantee that all non
suspended devices have correct addresses are on the USB
paths, this does not prove that the given USB paths are
correct, because hidden devs (or hubs) may still be on USB
paths. Step 4 can rule out any hidden dev that is on a
different USB-path with the targeted device whose address
the hidden dev duplicates, but it cannot detect the hidden dev
that is on the same USB-path with the targeted device
“same-path hidden dev').
0.139. We now provide a informal correctness argument
on a proposition that the untrusted OS cannot configure any
“same-path hidden dev” that manages to evade the TK
verification and compromise the SecApp I/O data isolation
later. To be “meaningful', the same-path hidden device must
either be able to intercept/fake messages between the host
controller and the targeted device, or it must have suspended
devices that are hidden downstream and can be remotely
woken up later.
0140. Before continuing with the argument, we need to
make four observations on USB 2.0 specification. First, a
non-malicious device/hub in its Configured state will not
respond to SET Address commands, unless it is deconfig
ured by a SET Configuration command and transits back to
Address state. Second, if a hub is in the deconfigured State,
all its downstream devices lose power and transit back to the
Attached state, which is similar to resetting all downstream
devices. Third, the remote wake-up capability is disabled by
default, and can only be enabled when the device/hub is in
its Configured state. Forth, a hidden device downstream to
its target device cannot affect the message secrecy and
integrity of the target device, because the target device
always receives and responds to USB transactions faster
than the downstream hidden device.
0141 Our informal correctness argument is as follows: If
the untrusted OS intends to configure a hidden device to
duplicate the address of its upstream device, the SET Con
figuration command to the hidden device is always inter
cepted by the upstream device, thus the hidden device can
never transit to the Configured State, and thus “meaning
less'. If the untrusted OS sets a hidden device to duplicate
the address of its downstream device, the hidden device
must first be deconfigured, and thus all downstream devices

US 2017/0177854 A1

will lose power and all their configurations. The hidden
device itself becomes “meaningless'. In conclusion, the
hierarchy verification algorithm can prevent both the USB
address overlap and remote wake-up attacks.
0142. The two main advantages of the USB hierarchy
verification algorithm are as follows: (1) it only uses a few
standard operations of the USB host controller and hubs; (2)
it does not use the driver of any other device that shares the
same USB bus with the SecApp device. Note that some USB
host controller and hubs may have device-specific opera
tions that can violate the I/O channel isolation. For example,
Some host controllers or hubs may be configured to record
a few of their latest data transfers for debugging purpose.
This feature may be abused by the untrusted OS to reveal
some secret data of a isolated I/O channel. The algorithm
should verify the configurations of these device-specific
operations. One could develop an automatic device speci
fication checker to scan through the open specifications of
all host controllers and hubs and to identify the sensitive
device-specific operations. For devices that have no open
specifications, there is no guarantee that we can use some
black-box fuzz testing technique to identify the sensitive
operations. Thus the verification algorithm should warn the
users of the isolated I/O channels about the potential risks.
Users that have higher security concerns can choose to avoid
these devices on their platforms. This is one example of how
users adapt the I/O isolation system for different usage
models that could have various levels of security require
mentS.

4.2 Mediating the Exported USB Request Handling

0143. In the present invention, most of the USB device
operation module is deprivileged and pushed to the
SecApps. TK only verifies the behavior of the SecApps that
may affect SecApp isolation from the untrusted OS. For
example, as shown in FIG. 4, if a SecApp intends to perform
certain operations to its device, it generates a set of transfer
descriptors qhs. However, it cannot directly add descriptors
to controller hardware, which is controlled by the TK.
Instead, the SecApp invokes the TK using a system call like
interface (TKcall) with the descriptors qhs as input. The TK
copies the descriptors to its kernel space, verifies them, and
submits the valid descriptors to the host controller hardware.
In some embodiments, the TK places the copied descriptors
in a shared memory area to allow efficient descriptor status
polling by the SecApp. In other embodiments, the TK
provides TKcalls to the SecApp for accessing certain fields
in the descriptor, including but not limited to the status area.
0144. In this outsourcing model, the SecApps bookkeep
their USB transfer information, and fill a large amount of
other descriptor fields. The TK only needs to verify a few
security-critical descriptor fields to verify that SecApps
filled them correctly. The principle of verification is that
those fields in the descriptors do not affect the isolation of
the SecApps' devices and other devices controlled by the TK
and the untrusted OS. The TK does not verify descriptor
fields that only affect the availability of the SecApps'
devices. In addition, the verification algorithm of the secu
rity-sensitive fields are general and simple, without compli
cated bus-specific semantics. In some non-limiting
examples, the TK performs simple range checking on the
Buffer Pointer fields in the descriptors, and makes sure that
these fields point to the SecApps DMA memory region
Similar checking also applies to other bus Subsystems in the

Jun. 22, 2017

present invention. The next section presents the details of
USB transfer descriptor verification.

4.3 Verifying the Outsourced the PCI Bus
Subsystem

(0145 PCI Control and Data Channels.
0146 PCI devices have a set of device-agnostic registers
referred to as “Configuration Space' which contain standard
device information, data channel configurations and some
vendor-defined feature information.
0147 The Configuration Space of a device can be
addressable by knowing the 8-bit PCI bus number, 5-bit
device number and 3-bit function number (a.k.a. BDF bus/
device/function). The bus number is decided during bus
enumeration and its information is stored in Some special
registers of PCI host bridge and other intermediate bridges
(e.g., PCI-to-PCI and PCI-to-PCIx bridges). The device
number depends on how the device is interconnected to its
direct upstream bridge, either hardwired or plugged-in to a
expansion slot. The function number depends on the device
hardware design. By specification, the Configuration Space
of a PCI device should be accessible in any power state,
except for D3 cold. Devices resuming from D3 cold always
go through a power-on reset. Software must then re-initialize
the device to put it into the working state. This rules out the
time-of-checking-to-time-of-use attack.
0.148. Among the register information contained in the
Configuration Space, the Base Address Registers manage
the assignment of device I/O ports and MMIO memory and
Interrupt Line and Pin registers are relevant the delivery of
the device interrupts. Capabilities Pointer register may point
to a linked list of new capabilities implemented by the
device, some of which may be related to the I/O data transfer
of the device. For example, Message Signaled Interrupt
(MSI) or MSI-X capability has registers that specify the
Software-defined interrupt number, type and destinations.
Slot Identification capability identifies a PCI bridge that
provides external device expansion slots. Power Interface
capability shows the power status of the device. In addition,
Expansion ROM base address points to the option ROM that
may contain device firmware code or configuration infor
mation. However, option ROM is commonly used by stor
age, network, and video devices to perform device initial
ization during system bootup.
0149 For a PCI bridge, its Configuration Space contains
Some special registers that are relevant to the connection of
different PCI buses and the forwarding of I/O port and
memory access. For example, Primary Bus Number, Sec
ondary Bus Number, and Subordinate Bus Number stand for
the number of the upstream, direct downstream, and the
farthest downstream bus of the bridge, respectively. The I/O
Base and Limit, Memory Base and Limit, and Prefetchable
Memory Base and Limit registers defines the range of I/O
ports, memory, prefetchable memory of all devices down
stream to the bridge, respectively.
(O150 Hierarchy Verification Algorithm.
0151. Before running the algorithm, the TK should pro
tect the device Configuration Space from modifying by the
untrusted OS. The algorithm starts from the PCI host bridge,
which is Bus 0, and iterates through every possible device in
this bus (from Device 0 to Device 31). The algorithm should
consider the following conditions: (1) if the device is a PCI
device, the algorithm verifies that the I/O port and memory
are in the correct range and do not conflict with those of

US 2017/0177854 A1

other devices that are already checked. The algorithm also
verifies the interrupt setting is correct. This verification
should be performed on each possible function of the device.
(2) If the device is a PCI bridge, the algorithm verifies the
I/O port, memory, and interrupt setting, similar to a PCI
device. The algorithm also checks that the Primary Bus
Number, Secondary Bus Number, and Subordinate Bus
Number are correctly set. The algorithm then perform a
depth-first iteration on the Secondary Bus, with the I/O port,
memory, prefetchable memory range set in the Configura
tion space as the verification metrics. This verification
should be performed on each possible function of the bridge.
(3) If the device is a Slot for plug-and-play devices, the
algorithm should verify Slot Identifier. (4) If the device does
not exist, proceeds to the next device.
0152 PCI Express (PCIe).
0153. The algorithm to verify a PCI Express bus is very
similar to the PCI algorithm. PCI Express switches contain
multiple ports to connect to different devices. Each port is a
virtual PCI-to-PCI bridge. Thus the PCI Express hierarchy is
similar to the PCI hierarchy, but each bridge only connects
to one device.

5. System Life Cycle
0154) This section illustrates the life cycle of isolated I/O
channels and the interactions between the underlying TCB,
the TK and the SecApps, as shown in FIG. 5.
(O155 Registration.
0156 The untrusted OS or untrusted application provi
sions the memory (including but not limited to, stack and
heap) and SecApp I/O resources (including but not limited
to, MMIO memory, DMA memory) required by a SecApp.
and explicitly registers the SecApp through the underlying
TCB’s interface. The registration procedure including the
following non-limiting steps: The underlying TCB isolates
the SecApp's memory and I/O resources, isolate physical
memory of the TK and SecApp, and transfers control to the
TK. The TK creates the virtual address page table of the
SecApp, verifies the configurations of the SecApp devices
and necessary hardware, and establishes the isolated I/O
channels for the SecApp devices (except for the interrupt
delivery). Until unregistration, the untrusted OS can no
longer tamper with the memory regions and I/O resources of
the registered SecApps. In some embodiments, the TK may
map itself in the same address space with the SecApp. In
other embodiments, the TK may reside in a different isolated
domain from the ones for SecApps.
O157 Invocation.
0158. The SecApp is invoked implicitly or explicitly. In
some embodiments, the OS/user application implicitly
invokes the SecApp by executing one of the SecApp's entry
points. While in other embodiments, the OS/user application
explicitly requires the underlying TCB and/or the TK to
execute one of the SecApp's entry points. The underlying
TCB detects this execution and Switches the context to the
TK. The invocation procedure includes the following non
limiting steps. The TK establishes the TK-OS channels for
the SecApp, sets up the SecApp interrupt delivery, and then
begins executing the requested entry points at the SecApp's
privilege level (or the said user-level). Upon finishing execu
tion, the SecApp Suspends its devices and transfers control
to TK. The TK disables the TK-OS communication channels
and wimp device interrupt delivery, and then the underlying
TCB takes control and performs a context switch to the OS.

Jun. 22, 2017

Between invocations, the OS can run other applications, but
cannot use the wimp devices or tamper with the SecApp.
Note that the SecApp could be invoked for arbitrary times
after registration, and the invocation is efficient, because
most I/O configuration overhead has already been offloaded
to registration.
0159)
0160. Upon unregistration, The TK performs the follow
ing non-limiting steps: 1. resets the wimp devices to a clean
state. 2. tears down the isolated I/O resources of the SecApp
with the help of the underlying TCB. 3. restores the con
figurations of the shared I/O hardware, and returns the CPU,
memory regions and I/O resources of the SecApp to the OS.

Unregistration.

Preferred Embodiment

1. The Underlying TCB

0.161. In one embodiment, the present invention works on
x86 micro-architecture with multi-cores and uses micro
hypervisor as an example of the underlying TCB. Micro
hypervisor runs at the most-privileged level of the platform
and can create multiple isolated domains. Micro-hypervisor
also fulfills all the required properties listed in the previous
section. In the best mode of implementation, the present
embodiment adds two more interfaces in the underlying
TCB: registration of the TK and unregistration of the TK.

2. The TK

0162 The present embodiment implements the TK that
provides on-demand I/O channel isolation to USB 2.0
devices using the Enhanced Host Controller Interface
(EHCI) host controller driver, and adds the USB hierarchy
verification and transfer descriptor (TD) verification algo
rithm. The present embodiment uses x86 fast system call
instructions to implement TKcall for secure applications.
Also, the present TK uses IPIs and shared memory to
implement TK-OS channels.

2.1 USB Hierarchy Verification

0163 The hierarchy verification algorithm only requires
a few standard operations, including PCI configuration
space operations to access EHCI host controller registers,
and basic USB control and interrupt transfer operations to
access registers of USB hubs, via the host controller. The
control and interrupt transfers are much easier to configure
than the other two USB transfers (i.e., bulk and isochronous)
and require smaller TCB.
0164. In Step 1 of the algorithm, TK monitors remote
wake-up events by setting periodic interrupt transfers to the
port status endpoints of all on-path hubs. The endpoint data
contains a bit to indicate that the hubs have coordinated a
wake-up event. This type of event is always be detected by
the periodic checking.
0.165. In Step 2, TK scans through all device addresses by
sending standard SET Configuration commands to each
address. By specification, every USB device supports at
least a default configuration No. 1, thus an active device
should always respond to a SET Configuration=1 command.
The present embodiment uses this command, because its
USB transaction does not have a data stage and introduces
less latency overhead. A non-malicious USB device should

US 2017/0177854 A1

always acknowledge this command within 50 ms. If a
scanned device address does not exist, the command will
return an error immediately.
0166 In Step 3, TK suspends an on-path hub or SecApp
device by sending a SET Feature command to the upstream
hub port that the hub/device connects to. If the upstream hub
is the root-hub, TK directly accesses the port status registers
of the host controller using PCI read command. After a
device is suspended, TK finds out hidden devices by sending
a SET Configuration command to the same address device.

2.2 USB Transfer Descriptor Verification
0167. There are four different types of descriptors speci
fied in USB 2.0, namely Queue Head (QH), Isochronous
Transfer Descriptor (iTD), Split Transaction Isochronous
Transfer Descriptor (siTD) and Frame Span Traversal Node
(FSTN). QH contains Zero or more Queue Element Transfer
Descriptors (qTD).
0168 The TK exposes seven interfaces to SecApps, in
two categories: attach QH, attach iTD, attach siTD and
attach FSTN for submitting descriptors; reactivate qTD,
reactivate iTD and reactivate siTD for reactivating the
executed descriptors. FSTN descriptors need not be reacti
vated.

(0169. For the first four interfaces, TK verifies the follow
ing fields of the descriptors: the Device Address fields in
QH, iTD, and siTD, to assure that the addresses refer to the
correct SecApp device; the Buffer Pointer fields in qTD,
iTD, and siTD, to make sure that the addresses point to the
SecApp's own DMA memory region; a few other fields that
lead to undefined operations if configured incorrectly, Such
as the Maximum Packet Length field in QH and iTD, the
Total Bytes to Transfer field in siTD, and the Typ field in
FSTN.

TABLE 3

System code base size

a) Micro-hypervisor b) The WK

Modules SLoC Modules SLoC

Registration 447 USB Subsystem 2144
Unregistration 213 WKcall 249
Underlying TCB 24551 WK-OS Channel 106

Total 2S211 Others 1038

Total 3537

2.3 The TK Interfaces

0170 The present embodiment implements the TKcall
interface using the standard x86 Fast System Call instruction
(SYSENTER for requesting TK services, and SYSEXIT for
the TK to switch to the SecApp, both after serving syscalls
and when invoking the SecApp). Parameters (e.g., service
ID, pointers to input/output data structures) are passed by
registers. Alternatives like SYSCALL/SYSRET and “int
0x80 work, but SYSENTER/SYSEXIT is widely available
on x86 platform and is more efficient.
(0171 For the TK-OS channels, TK triggers an IPI by
programming the interrupt command register (ICR) of

Jun. 22, 2017

LAPIC to specify the IPI vector number and delivery
destination. The delivery status bit of ICR indicates whether
the IPI is sent.

0172
normal edge-triggered interrupts. The IPIs are used as noti

On the receiving CPUs, the IPIs are delivered as

fiers of TK-OS communication. The real data, including but
not limited to, service request ID and input/output param
eters, is passed by shared memory buffer, which is estab
lished during SecApp registration, by the underlying micro
hypervisor.

3. Evaluation

0173 The present embodiment is built and evaluated on
an off-the-shelf HP Elitebook 8540p with a Dual-Core Intel
Core i5 M540 CPU running at 2.53 GHz, 4 GB memory; a
Hitachi GST Travelstar 7200 rpm 500 GB SATA-II disk; an
Intel 82577LM Gigabit network card; and an Infineon v1.2
TPM. The machine is also equipped with two USB 2.0 host
controllers and two immediate downstream rate matching
hubs for transforming high-speed USB transactions to low
speed ones. The machine runs a 32-bit Ubuntu 12.04 OS
with Linux kernel 3.2.0-36.56. The SecApp tested is a
prototype that includes a USB keyboard device driver. In all
network experiments, the machines are connected via 1
Gbps Ethernet links.

4. Code Base Size Evaluation

(0174
adds 660 SLoC to the micro-hypervisor for SecApp regis
tration and unregistration. The code addition does not invali

As shown in Table 3(a), the present embodiment

date any security properties of the underlying TCB. The
code base of the underlying micro-hypervisor is much
smaller than full functioning VMMs/hypervisors.

(0175 Table 3(b) shows the code base break-down of the
present TK prototype. The TK code size is about 3.6K
SLoC, 60% of which is USB bus subsystem relevant code.
This code base is sufficient to support all types of USB 2.0,
1.1, and 1.0 devices, and all types of USB transfer mode,
Such as control, interrupt, bulk and isochronous transfers.

(0176 Table 4 compares the TK USB software stack to the
commodity Linux one (Both only support USB EHCI host
controller). In the best mode of implementation, the TK
includes only 2144 SLoC of the USB subsystem code, which
represents more than 99% reduction compared with the over
22K SLoC of Linux USB code base. Note that the reduction

result in practice is even better, because a significant number
of third party USB drivers and drivers relevant to high-level
protocols (e.g. SCSI drivers for USB flash drive) are not
included. In addition, the USB hierarchy verification algo
rithm and transfer descriptor verification algorithm only use
93 and 107 SLoC, respectively.

US 2017/0177854 A1

TABLE 4

Comparison of code size in USB software stack between
TK and in Linux.

TK

Verification Linux

Hierarchy TD Others Totl USB USB

93 107 1944 2144 1982O >2O6376* >226196*

*We calculate only the USB drivers included in the Linux kernel tree.

TABLE 5

Latency break-down of the USB hierarchy verification algorithm.

Step Step Step 3 Step Total

Time O.29 O.S4 573.03 1.32 575.18

TABLE 6

Latency comparison of TK-involved and
hypervisor-involved context switches.

TKcall TK-OS Hypercall Page

Time O.38 O.23 7.56 20.68

TABLE 7

Latency of SecApp life-cycle operations.

Registration Invocation Unregistration

Time 583.79 O.26 0.97

0177 5. Micro-Benchmarks
(0178 USB Hierarchy Verification.
(0179 Table 5 shows the latency of each step in the USB
hierarchy Verification algorithm. Among them, device
address Scanning (step 3) dominates the latency overhead.
However, this overhead is acceptable, because this algo
rithm is only invoked once per SecApp registration, and
does not affect the more frequent SecApp invocations.
0180 USB Transfer Descriptor Verification.
0181. The latency overhead of TD verification is negli
gible. For example, verifying a QH and an iTD only takes
about 0.28 us and 0.42 us, respectively. In comparison, a
micro-frame, the minimum time unit in USB specification,
takes 125 us.
0182 TK Interfaces.
0183 Table 6 illustrates the latency overhead of two main
TK interfaces; i.e., the TKcalls for communicating with
SecApps, and the IPI-based TK-OS channels for communi
cating with the OS. These two interfaces avoid the more
heavy-weight underlying TCB involved context switches
and greatly improve overall system performance. Hyper
calls and hardware page faults are the two most widely used
methods of triggering micro-hypervisor involved context
switches. In comparison, TK calls are about 20 times faster
than hypercalls and 54 times faster than page faults. The
TK-OS channels in the present embodiment are 33 times
faster than hypercalls and 90 times faster than page faults. In

15
Jun. 22, 2017

addition, using the asynchronous TK-OS channels, the
SecApps and TK do not block waiting for the OS services.
0.184 System Life-Cycle Operations.
0185. Table 7 presents the latency overhead of the reg
istration, invocation and unregistration of a SecApp. The
latency of SecApp invocation and unregistration are much
Smaller than those of registration, because the more heavy
weight hardware configuration verification is only invoked
during registration.
0186 The present invention has been described in accor
dance with several examples, which are intended to be
illustrative in all aspects rather than restrictive. Thus, the
present invention is capable of many variations in detailed
implementation, which may be derived from the description
contained herein by a person of ordinary skill in the art.
We claim:
1. A system for providing input/output channels to a

secure application, comprising:
one or more processors;
one or more input/output (I/O) devices, said devices in

communication with at least one of said processors; and
memory, connected to said one or more processors and

including computer-readable instructions which, when
executed by one of said processors, cause the processor
to create a computing platform having:
one or more untrusted operating systems;
a trusted computing base;
a trusted I/O kernel; and
a communications channel between said untrusted

operating system and said trusted I/O kernel.
2. The system of claim 1 wherein one or more secure

applications may be run on top of said trusted input/output
kernel.

3. The system of claim 2 wherein said trusted computing
base creates one or more isolated domains, each of said
isolated domains comprising:

processor contents; and
one or more regions of memory, said regions of memory

being for the exclusive use of said isolated domain.
4. The system of claim 3 wherein said trusted computing

base partitions memory into a plurality of portions compris
ing:

a portion for the exclusive use of said trusted computing
base;

a portion for the exclusive use of said trusted input/output
kernel and one or more secure applications; and

a portion for the exclusive use of said one or more
untrusted operating systems and one or more untrusted
applications.

5. The system of claim 4 wherein said trusted I/O kernel
runs in a first isolated domain.

6. The system of claim 5 wherein said secure application
runs in a second isolated domain.

7. The system of claim 4 wherein said trusted I/O kernel
and said secure application run in the same isolated domain

8. The system of claim 5 wherein each of said one or more
secure applications includes one or more device drivers and
further wherein each of said one or more secured application
has exclusive use of an I/O device associated with said
device driver.

9. The system of claim 8 wherein said trusted kernel
decomposes said device drivers and exports portions of said
device drivers to said secure applications for execution.

US 2017/0177854 A1

10. The system of claim 8 wherein input/output devices
are reserved for exclusive and verified use by said secured
application when:

said untrusted operating system configures an I/O device
for use by a secure application and releases said device
to said trusted I/O kernel;

said trusted I/O kernel verifies the configuration of the I/O
device and assigns the I/O device to said secure appli
cation; and

said trusted I/O kernel provides channel isolation between
said secure application and said I/O device.

11. The system of claim 9 wherein data transferred
between said secure application and said I/O device cannot
be intercepted or altered by said untrusted operating system,
by other secure applications or by other I/O devices.

12. The system of claim 10 wherein said trusted I/O kernel
provides isolation of interrupts generated by I/O devices
assigned to a secure application.

13. The system of claim 3 wherein said trusted computing
base performs the functions of:

creating an isolated domain;
mapping a secure application to said isolated domain;
mapping I/O device resources required by said secure

application to said isolated domain; and
transferring control to said trusted I/O kernel
14. The system of claim 1 further comprising a plug-in to

said untrusted operating system, said plug-in performing the

Jun. 22, 2017

functions of configuring I/O devices for use by the trusted
I/O kernel and releasing control of said I/O devices to said
trusted I/O kernel.

15. The system of claim 1 wherein said trusted computing
base runs at the highest privilege level of said computing
platform.

16. The system of claim 3 wherein said trusted computing
base relies on a trusted platform module to implement a
security primitive.

17. The system of claim 16 wherein said trusted comput
ing base employs a plurality of security primitives, includ
1ng:

controlling which of said isolated domains can access
which memory regions;

controlling which device can perform direct memory
access operations to the memory of aid isolated
domain; and

performing sealed storage and attestation root-of-trust
18. The system of claim 17 wherein said sealed storage

allows the biding of data with the identity of one or more
isolated domains.

19. The system of claim 17 where said attestation root
or-trust allows the measurement of the identity of an isolated
domain and the reporting of the measured identity to a third
party for verification.

k k k k k

