
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2014/0195776 A1

US 20140195776A1

STEWART et al. (43) Pub. Date: Jul. 10, 2014

(54) MEMORY ACCESS FOR A VECTOR (52) U.S. Cl.
PROCESSOR CPC G06F 9/3004 (2013.01)

USPC ... 712/7, 712/27
(71) Applicant: COGNIVUE CORPORATION,

Gatineau, CA (US)
(57) ABSTRACT

(72) Inventors: Malcolm STEWART, Ottawa (CA); Ali
Osman ORS, Ottawa (CA); Daniel A method and device for memory access in LAROCHE, Kemptville (CA) mory in processors is provided. A processor, comprising a plurality of computa

(73) Assignee: COGNIVUE CORPORATION, tional units, is capable of executing a single instruction on
Gatineau (CA) multiple pieces of data simultaneously (SIMD). A read opera

tion is initiated to load data from memory into the plurality of
(21) Appl. No.: 13/737,290 computational units (CUs) arranged into a plurality of CU

1-1. groups. The memory is arranged into a plurality of memory
(22) Filed: Jan. 9, 2013 macro-blocks each associated with a respective CU group of

Publication Classification the plurality of CU groups. For each CU group a respective
first memory address is determined and for each CU group,

(51) Int. Cl. the data in the associated memory macro-block is accessed at
G06F 9/30 (2006.01) the respective first memory address.

Vector Memory (315)

Macroblock 0 (316) Macroblock 1 (318) Macroblock 2 (320)

322 312

334 {

330 {

nx4 314 nx4 310

Macroblock ACCess O Macroblock Acess 1 Macroblock Acess 2

I cusculeviour

304

302f 302g 302h 302i 302. 302k 302

306 308

Patent Application Publication Jul. 10, 2014 Sheet 1 of 17 US 2014/O195776 A1

Vector Memory
(106)

Memory ACCeSS 104

a a a 2. a 2.
108

102b 102d 102f 102h 102 102

1001N

Figure 1 - Prior Art

US 2014/O195776 A1 Patent Application Publication

US 2014/O195776 A1 Jul. 10, 2014 Sheet 3 of 17 Patent Application Publication

US 2014/O195776 A1 Sheet 4 of 17 Jul. 10, 2014 Patent Application Publication

#7 ºun61
809909

(GLC) KJOu3VN JO103A

709 ÉÉÉÉ
9Z9

|-

US 2014/O195776 A1 Sheet 5 Of 17 Jul. 10, 2014 Patent Application Publication

809

G ?un61-I 909†709
IZO9 XZOG (Z09

|

||
|ZZ9

|| (819) | >100|QOJOeW(919) O XOO|qoJoeW

————Z/9
Patent Application Publication

909

US 2014/O195776 A1 Jul. 10, 2014 Sheet 8 of 17 Patent Application Publication

8 eun61-I
909 (819) | >100|qOJOeW

?L? ??J?
9Z9

|

099

Patent Application Publication Jul. 10, 2014 Sheet 9 of 17 US 2014/O195776 A1

cN
C
cy

-sa

S &
So co
CN c Y-3
a C
(d CN
O O
O CY)
9
d

c CN

d S

c

S
o cy
w

as

r
cy O

5 &5 WS
S is O

O
> is 9
- CD

2 9N
O C
C) (5) O
D

V
O
cy

OL eun61-I ÉÉÉJÉT ÉTÉ ÉTÉ ÉÉÉÉ |0/91|999|999 ||

US 2014/O195776 A1

(GLC) ÁJOUueIN JO?O?A

Patent Application Publication

%

1.
(819) | >100|qoJoeW

Patent Application Publication

09 ÉÉÉ? 99
9

Patent Application Publication Jul. 10, 2014 Sheet 12 of 17 US 2014/0195776A1

CU Group 3

CU Group 2 306

CU Group 1 304

Determine address for CUO

Load data at determined address in
aSSOCiated macroblock into CU0

Determine address for CU 1

Load data at determined address in
asSociated maCrOblock into CU 1

Determine address for CU 2

Load data at determined address in
associated macroblock into CU 2

Determine address for CU 3

Load data at determined address in
asSociated macroblock into CU3

Figure 12

Patent Application Publication Jul. 10, 2014 Sheet 13 of 17 US 2014/0195776A1

CU Group 3 308

CU Group 2 306

CU Group 1 304

Determine address for CU Group
Cycle 0 1302

Load data at determined address in
associated macroblock into all CUS

Figure 13

Patent Application Publication Jul. 10, 2014 Sheet 14 of 17 US 2014/0195776A1

1402

1400

Initiate memory access
operation

1404

For each CU group

Determine memory
address for "CU in

grOup

Access memory for "
CU in group

is n number of CUS in each
CU group?

Memory access
operation Complete

Figure 14

US 2014/O195776 A1 Jul. 10, 2014 Sheet 15 of 17 Patent Application Publication

G? eun61-I

Patent Application Publication Jul. 10, 2014 Sheet 16 of 17 US 2014/0195776A1

1602a 1602b 1602C

1602g 1602h 1602

Figure 16

US 2014/O195776 A1 Jul. 10, 2014 Sheet 17 of 17 Patent Application Publication

LL aun61-I

US 2014/O 195776 A1

MEMORYACCESS FOR AVECTOR
PROCESSOR

TECHNICAL FIELD

0001. The current application relates to processors
capable of executing an instruction on multiple pieces of data
simultaneously and in particular to memory access in proces
sors capable of executing an instruction on multiple pieces of
data simultaneously.

BACKGROUND

0002 Single instruction multiple data (SIMD) processors
execute a single instruction on multiple pieces of data simul
taneously. SIMD processors may comprise a plurality of
computational units (CU) that receive a piece of the data and
executes the instruction on the data.

0003 FIG. 1 depicts a prior art SIMD processor and
memory. The SIMD processor 100 comprises a plurality of
computational units (CUs) 102a-1 (referred to collectively as
CUs 102) and a memory access control unit 104 that loads
data into, and writes data out of each of the CUs 102. As
depicted, each CU operates on n-bits of data. The memory
access control unit 104 can retrieve and/or store data into a
vector memory 106. The vector memory 106 is capable of
providing a vector block of data sufficient to load data into
each of the CUs 102. As depicted, there are 12 CUs and as
such, the vector memory can provide a vector of nx12 bits of
data for a single memory address. The memory access control
unit 104 can receive an address (Rn) 108 for either loading
data from the vector memory or storing data to the vector
memory. The memory access control unit 104 can load data
into each of the CUs from the vector memory in a single read
or write cycle. However, if different CUs 102 require data
from different address locations, the data must be loaded from
the vector memory in Subsequent read/write cycles. As such,
the memory access control unit 104 may provide a relatively
simple implementation; however, the performance of provid
ing data from separate addresses to different CUs 102 is low.
0004 FIG. 2 depicts a further prior art SIMD processor
and memory. The SIMD processor 200 is similar to the SIMD
processor 100 and comprises a plurality of CUs 102 and a
vector memory 206. However, rather than a single memory
access control 104, the SIMD processor 200 comprises a
plurality of memory access control units 204a-l (referred to
collectively as memory control units 204). Each of the
memory access control units 204 can receive an address 108
and retrieve and/or store data from the address. The memory
access control units 204 may apply a respective offset to the
base address (Rn) 108 in order to determine a respective
address to load the data from or to. Unlike the vector memory
106, which could provide a vector of nx12 bits of data for a
single address, the vector memory 206 is arranged to provide
in bits of data, sufficient to load from or into a single CU, for
a single address.
0005. The memory access control units 100, 200 can pro
vide data to individual CUs. However, the memory access
control unit 100 may provide poor performance when differ
ent CUs require data to be loaded from different memory
addresses. The memory access control units 200 can provide
better performance, even if different CUs require data from
different memory addresses; however, the individual memory
access control units 204 increase the complexity of the pro

Jul. 10, 2014

cessor 200, and increases the footprint required to provide the
memory access control units 204.
0006. It is desirable to have a processor capable of loading
data into CUS while mitigating one or more problems asso
ciated with previous processors.

BRIEF DESCRIPTION OF THE DRAWINGS

0007 Further features and advantages of the present dis
closure will become apparent from the following detailed
description, taken in combination with the appended draw
ings, in which:
0008 FIG. 1 depicts a prior art SIMD processor and
memory;
0009 FIG. 2 depicts a further prior art SIMD processor
and memory;
0010 FIG. 3 depicts a SIMD processor and memory;
(0011 FIGS. 4-7 depict data transfer in the SIMD proces
sor and memory of FIG. 3;
(0012 FIG. 8 depicts a further data transfer in the SIMD
processor and memory of FIG. 3;
(0013 FIG. 9 depicts a further data transfer in the SIMD
processor and memory of FIG. 3;
(0014 FIGS. 10 and 11 depict data transfer in a further
SIMD processor and memory;
0015 FIG. 12 depicts a process for loading data into indi
vidual computational units;
0016 FIG. 13 depicts a further process for loading data
into individual computational units:
0017 FIG. 14 depicts a method of loading data into indi
vidual computational units;
0018 FIG. 15 depicts in a block diagram, illustrative com
ponents of a memory access unit; and
(0019 FIGS. 16 and 17 depict possible neighbouring
memory macro-blocks of a CU Group.

DETAILED DESCRIPTION

0020. In accordance with an aspect of the present disclo
Sure there is provided a device comprising: a vector memory
space divided into a plurality of memory macro-blocks for
storing data; a vector processor comprising a plurality of
computational units (CUs) for executing instructions, the plu
rality of CUs arranged into a plurality of CU groups, each CU
group comprising two or more CUs of the plurality of CUs,
the plurality of CUS providing execution of a single instruc
tion on multiple pieces of data (SIMD); and a plurality of
memory macro-block access units, each coupling a respective
CU group to a respective associated memory macro-block,
for controlling access of the CUs of the respective CU group
to the associated memory macro-block.
0021. In accordance with another aspect of the present
disclosure there is provided a method comprising initiating a
read operation for loading data from memory into a plurality
of computational units (CUs) arranged into a plurality of CU
groups, the memory arranged into a plurality of memory
macro-blocks each associated with a respective CU group of
the plurality of CU groups; for each CU group, determining a
respective first memory address; and for each CU group,
accessing the data in the associated memory macro-block at
the respective first memory address.
0022. A vector processor is described further herein that
allows data to be loaded into a plurality of computational
units (CUs). As described further herein, the CUs of the
vector processor are arranged into a plurality of CU groups.

US 2014/O 195776 A1

Each CU group has an associated memory access unit for
controlling the loading of data into, and out of the individual
CU of the respective CU group. The memory associated with
the vector processor is arranged into a plurality of memory
macro-blocks, with each memory macro-block associated
with a memory access unit of a respective CU group. The CU
groups are able to load data from an address of the associated
memory macro-block into each of the CUs of the CU group in
a single read or write cycle. The memory access units are able
to load data into separate CUs of the respective CU group in
subsequent read/write cycles. Since the CUs of the processor
are arranged into a plurality of CU groups, it is possible to
load data from separate addresses within the memory into
each individual CU in fewer read/write cycles than required
when a single memory access control unit is utilized as
described with regards to FIG. 1, while providing a reduced
footprint for the memory access in comparison to the plurality
of individual memory access control units 204 described with
regards to FIG. 2.
0023 FIG. 3 depicts a SIMD processor and memory. As
depicted, the CUs 302a-l of the processor are arranged into a
plurality of CU groups 304,306, 308. Three CU groups are
depicted, although more or fewer are contemplated. Each CU
group is depicted as comprising 4 CUs, and as Such there are
a total of 12 CUs in the processor. Each of the 12 CUs is
depicted as being an n-bit CU. Each CU group 304,306, 308
has an associated memory access unit 310, 312, 314 for
loading data into and out of CUs of the associated CU group
304,306,308. Each of the memory access units 310,312,314
is associated with a respective memory macro-block 316,
318,320 in the vector memory 314.
0024. The vector memory 314 is grouped into a plurality
of memory macro-blocks 316, 318, 320. Each memory
macro-block 316,318,320 is capable of reading or writing a
vector of nx4 bits of data to a memory address in a cycle. If,
for example, each of the CUs is a 32 bit CU, the memory
access units are capable of transferring a vector of 32x4=128
bits of data to or from the associated memory macro-block in
a single read/write cycle. A single address (Rn) 322 is
depicted in FIG.3. At the beginning of a memory access cycle
the address Rn is provided to the plurality of memory access
units 310,312,314. The memory access units may then either
read or write the data from or to the memory macro-block. As
depicted in FIG. 3, if all of the CUs from a CU group are
reading or writing for the same memory address the memory
macro-blocks can provide all of the data required by the CU
group in a single cycle. If the CUS need to read or write to
different memory addresses, the memory access units can
read from addresses in Subsequent cycles. As such, the pro
cessor can read or write data for each of the individual CUs
from different addresses in 4 cycles, that is, one cycle for each
CU in a CU group.
0025 FIGS. 4-7 depict data transfer in the SIMD proces
sor and memory of FIG. 3. As described above, a CU group
can load data from or into an address of the memory macro
blockinto each CU in a single read/write cycle. The following
describes loading data from memory into CUs; however it
will be appreciated that the same process can be applied for
writing data from the CU into the memory. FIG.4, depicts a
first cycle for loading data into the CUs of the CU groups. As
depicted, an address (Rn) 322 is provided to the memory
access units 310, 312,314 that provides a base address for
loading the data from. Once the base address (Rn) 322 is
loaded into the memory access units 310, 312, 314 the first

Jul. 10, 2014

CUs 302a, 302e, 302i of the CU groups 304,306, 308 may
provide an offset address to the base address (depicted by
lines 324, 326, 328). If an offset is used, the memory access
units 310,312,314 add the offset to the base address (Rn)322
to provide a memory address. It will be appreciated that each
memory access units 310,312,314 may generate a different
memory address. Once the memory addresses are generated,
the memory access units 310,312,314 read the data from the
address location within the associated memory macro-blocks
316, 318,320. As depicted, a full nx4 bits of data 330, 332,
334 may be transferred between the memory macro-blocks
and the associated memory access units 310, 312,314 even
though only n bits of data 336, 338, 340 are required to be
transferred to the respective first CUs 302a, 302e, 302i. As
depicted, the data is transferred from the memory macro
blocks to the memory access units, which Subsequently trans
feran n-bit block of data 336,338,340 to the respective CUs
302a, 302e, and 302i.
0026. Once the first CUs 302a, 302e, 302i have loaded the
data 336,338,340 the memory access units 310,312,314 can
load a further address offset from the second CUs of the CU
groups (depicted by lines 342, 344, 346) as shown in FIG. 5.
The offset address loaded from the CUs 302b, 302?, 302j may
be added to the base address in the respective memory access
units 310, 312,314. Once the memory address is generated,
the memory access units read the n-bit data blocks 348,350,
352 from the respective memory macro-blocks 316,318,320
and loads the data into the respective CUs 302b, 302?, 302jof
the CU groups 304,306, 308.
(0027. Once the second CUs 302b, 302?, 302i have loaded
the data 342,244, 346 the memory access units 310,312,314
can load a further address offset from the third CUS 302c,
302g,302kofthe CUgroups (depicted by lines 354,356,358)
as shown in FIG. 6. The offset address loaded from the CUs
302c, 302g, 302k may be added to the base address (Rn) 322
in the respective memory access units 310,312,314. Once the
memory address is generated, the memory access units read
the n-bit data blocks 360, 362. 364 from the respective
memory macro-blocks 316, 318,320 and loads the data into
the respective CUs 302c, 302g, 302k of the CU groups 304,
306, 308.
(0028. Once the third CUs 302c, 302g, 302k have loaded
the data 360,362,364 the memory access units 310,312,314
can load a further address offset from the fourth CUS 302d,
302h, 3021 of the CU groups (depicted by lines 366,368,370)
as shown in FIG. 7. The offset address loaded from the CUs
302d, 302h, 302l may be added to the base address (Rn) 322
in the respective memory access units 310,312,314. Once the
memory address is generated, the memory access units read
the n-bit data blocks 372, 374, 376 from the respective
memory macro-blocks 316, 318,320 and loads the data into
the respective CUs 302d, 302h, 3021 of the CU groups 304,
306, 308.
(0029 FIG. 8 depicts a further data transfer in the SIMD
processor and memory of FIG. 3. The data transfer described
above with reference to FIGS. 4-7 depicts loading n bits of
data into respective CUs. As described with reference to
FIGS. 4-7, it takes four read cycles in order to load data from
separate memory locations into each of the individual CUs
302. As will be appreciated, different CUs load data from the
same address in the memory macro-block as one or more of
the other CUs in the CU group. As such, it is possible to load
data into a plurality of CUs of a CU group in the same read
cycle. Turning to FIG. 8, each memory access unit 310, 312,

US 2014/O 195776 A1

314 receives a base address to load data from in the respective
memory macro-blocks 316,318,320. One of the CUs in each
of the CU groups, depicted as the first CU302a, 302e, 302i,
may provide a respective offset to be added to the base
address 322. Once the address for accessing the memory
macro-block is generated, the memory access units 310,312.
314 can retrieve data from the associated memory macro
blocks at the generated address. As depicted, 2Xn bits of data
378,380,382 are retrieved from the memory macro-blocks,
and each of the 2 n bit data blocks are loaded into respective
CUs of the CU groups, depicted as the first and second CUs
302a, 302b, 302e, 302?, 302i, 302i. As such, if a plurality of
CUS load data from the same address location in the respec
tive memory macro-blocks, the time required to load data into
each of the individual CUs may be reduced.
0030 FIG. 9 depicts further data transfer in the SIMD
processor and memory of FIG. 3. The data transfer described
above with reference to FIGS. 4-7 and 8 have described
loading data into respective CUs based on the order of the CU.
Each memory macro-block can provide a vector of data that
can Supply the 4xn bits of data for each CU group. As
depicted, the first CUs of the CU groups receives the first n
bits of data from the retrieved vector, the second CUs of the
CU groups receives the next n bits of data, the third CUs of the
CU groups receive the next n bits of data, and the fourth CUs
of the CU groups receive the last n bits of data from the
retrieved vector. However, it is contemplated that the memory
access units of each CU group may load any of the blocks of
data from the retrieved vector into one of the CUs.

0031. As depicted in FIG. 9, two of the CU groups 312,
314 are loading data into the second CUs of the CU groups as
described above with reference to FIG. 5. That is, each CU
302e, 302; receives the second set of n bits 350,352 from the
vector retrieved at the generated addresses in the respective
memory macro-blocks. However, the first CU group 304 is
depicted as loading the last n bits of data of the retrieved
vector 330 in the memory macro-block 316.
0032 FIGS. 10 and 11 depict data transfer in a further
SIMD processor and memory. The memory access units 310,
312. 314 of FIGS. 3 to 9 were depicted as only accessing
vector data from one of the memory macro-blocks. The
memory access units 310, 312,314 may comprise an inter
block connection 1002a, 1002b 1002c to adjacent memory
access units 310, 312, 314. The inter-block connections
1002a, 1002b, 1002c allow data to be loaded into one of the
CUs from an adjacent memory macro-block 316, 318,320.
With regards to the inter-block connection 1002a, a CU,
depicted as CU302d, of one CU group 304 can load data 338
from an adjacent memory macro-block 318.
0033. When loading data from an adjacent memory
macro-block, an additional cycle may need to be added to the
processing of a complete read/write operation. That is, the
first through fourth cycles of a read/write operation may load
data from a first through fourth address respectively in the
memory block 316. An additional cycle of the read/write
operation may load data to or from the adjacent memory
macro-block 318. The address used for loading the data from
the adjacent memory macro-block 318 may be provided by
one of the CUs, for example CU302d, of the CU group 304,
depicted as arrow 366.
0034. The inter-block connections 1002a, 1002b, 1002c
are depicted as providing data from memory macro-block to
the right of the CU group. As depicted in FIG. 10, an inter

Jul. 10, 2014

block connection 1002c may provide data between the first
and last memory macro-blocks 316, 320.
0035 FIG. 10 depicts the inter-block connections as pro
viding data between a memory macro-block located to the
right of the CU group. It will be appreciated, that in the
Figure, the first memory macro-block 316 may be considered
as being to the right of the last CU group 308.
0036 FIG. 11 is similar to FIG. 10; however, instead of
loading data to or from a memory macro-block to the right of
the CU group, the data is loaded to or from a memory macro
block to the left of the CU group. Again, an additional cycle
may be added to the read/write operation. Accordingly, a
read/write operation that allows data to be loaded to or from
both the left and right neighboring memory macro-blocks
316,318,320 may require 6 cycles. As described further with
reference to FIGS. 16 and 17, a CU group may be associated
with more than two neighboring memory macro-blocks,
which may require additional clock cycles. For example and
with reference to CU group 306, the first cycle may load data
to or from the neighboring memory macro-block 316 to the
left of the CU group 306, the next for cycles may load data
from the memory macro-block 318 associated with the CU
group 306 and the sixth cycle may load data from the neigh
boring memory macro-block 320 to the right of the CU group
306.
0037. As described above, a read/write operation may
comprise more cycles than required for a specific operation.
That is, the read/write operation may load six different n-bit
blocks of data, even though there are only 4 CUs that require
data to be loaded to or from. As such, two cycles may not
actually load data to or from a CU. It is contemplated that the
memory access units could implement the read/write opera
tions in the minimum number of cycles required for a particu
lar operation; however, the logic required to implement Such
a realization could impose too high of an overhead interms of
complexity. For example, four cycles could be used to load
the required data into each CU of a CU group, however, it may
become more complex if, for example, a CU requires data
from a neighboring memory macro-block that is not accessed
by the associated CU group, and as Such the neighboring
memory macro-block would be required to provide five
reads/or writes. One of the read/writes would provide the data
to the neighboring CU group, while the other four would
provide the data to the CUs of the associated CU group. As
such, it may be beneficial to include the additional cycles in a
read/write operation.
0038 FIG. 12 depicts a process of loading data into CU
groups of the vector processor and memory of FIG.3. As will
be appreciated, each CU group performs the same method at
the same time. That is, although the method is depicted for the
first CUgroup 304, the other CU groups 306,308 perform the
same methods in parallel with each other.
0039. The data loading processes 1200 described loads
data into each individual CU from different memory
addresses in the respective memory macro-blocks. The pro
cess 1200 may provide for the loading of data as described
above with reference to FIGS. 4-7. In FIG. 12, it is assumed
that each CU group 304,306,308 is comprised of four CUs.
It is contemplated that additional or fewer CU groups could
be present, and that each individual CU group may comprise
additional or few individual CUs.
0040. The data loading process 1200 takes 4 cycles to
complete. In the first cycle 1202, the address in the vector
memory macro-block is determined for the first CU (1210).

US 2014/O 195776 A1

The address for the first CU may be determined by adding an
offset address from the first CU to a base address. Alterna
tively, the address may be determined solely from a base
address, or solely from the first CU. Once the address is
determined, data is loaded from the determined address in the
vector memory macro-block associated with the CU group of
the CU (1212). As will be appreciated, the memory macro
block is arranged as vector memory, and as such can provide
a vector of nxm bits of data for each memory address, where
n is the number of bits of the individual CUs and m is the
number of individual CUs in a CU group. In the first cycle,
data is loaded into the first CU, and as such, only a subset of
the data, in particular n bits, retrieved is loaded into the first
CU. In one embodiment, the first CU may load the first n bits
of data from the retrieved vector. Alternatively, the CU may
load the second, third or fourth n bits of data from the
retrieved vector. Once each of the first CUs of the respective
CU groups have completed the first cycle, that is, once data
has been loaded into each of the first CUs, the CU groups
begin the second cycle 1204.
0041. The second cycle 1204 begins with determining an
address within the vector memory macro-block for the sec
ond CU (1214). The address for the second CU may be
determined by adding an offset address from the second CU
to a base address. Alternatively, the memory address may be
determined solely from the base address or solely from the
address provided by the CU. Once the address is determined,
the data is loaded into the second CU from the vector memory
macro-block (1216). As described above, the data loaded into
the CU may be only a subset of the vector retrieved from the
memory macro-block. Once each of the second CUs of the
respective CU groups have completed the second cycle, that
is, once data has been loaded into each of the second CUs, the
CU groups begin the third cycle 1206.
0042. The third cycle 1206 begins with determining an
address within the vector memory macro-block for the third
CU (1218). The address for the third CU may be determined
by adding an offset address from the third CU to a base
address. Alternatively, the memory address may be deter
mined solely from the base address or solely from the address
provided by the CU. Once the address is determined, the data
is loaded into the third CU from the vector memory macro
block (1218). As described above, the data loaded into the CU
may be only a subset of the vector retrieved from the memory
macro-block. Once each of the third CUs of the respective CU
groups have completed the third cycle, that is, once data has
been loaded into each of the third CUs, the CU groups begin
the fourth cycle 1206
0043. The fourth cycle 1208 begins with determining an
address within the vector memory macro-block for the fourth
CU (1218). The address for the fourth CU may be determined
by adding an offset address from the fourth CU to a base
address. Alternatively, the memory address may be deter
mined solely from the base address or solely from the address
provided by the CU. Once the address is determined, the data
is loaded into the fourth CU from the vector memory macro
block (1218). As described above, the data loaded into the CU
may be only a subset of the vector retrieved from the memory
macro-block. Once each of the fourth CUs of the respective
CU groups have completed the fourth cycle, that is, once data
has been loaded into each of the fourth CUs, all of the CUs in
each of the CU groups have newly loaded data and may
process the loaded data according to an instruction to be
performed.

Jul. 10, 2014

0044 FIG. 13 depicts a further process of loading data into
CU groups of the vector processor and memory of FIG. 3. As
will be appreciated, each CU group performs the same
method at the same time. That is, although the method is
depicted for the first CU group 304, the other CU groups 306,
308 perform the same methods in parallel with each other.
0045. The data loading processes 1300 described loads
data into each individual CU from the same memory address
in the respective memory macro-blocks. The process 1300
may provide for the loading of data as described above with
reference to FIGS. 3. In FIG. 13, it is assumed that each CU
group 304,306, 308 is comprised of four CUs. It is contem
plated that additional or fewer CU groups could be present,
and that each individual CU group may comprise additional
or few individual CUs.
0046. The data loading process 1300 takes one cycle to
complete. In the first cycle 1302, the address in the vector
memory macro-block is determined from which data will be
loaded into each of the individual CUs (1304). The address
may be determined from a base address. Alternatively, the
address may be determined by one of the individual CUs of by
adding an offset address from the CU to a base address, or
providing the address. Once the address is determined, data is
loaded into each of the individual CUs from the determined
address in the vector memory macro-block associated with
the CU group (1306). As will be appreciated, the memory
macro-block is arranged as vector memory, and as such can
provide a vector of nxm bits of data for each memory address,
where n is the number of bits of the individual CUs and m is
the number of individual CUs in a CU group. Each CU may
load a respective n bits of data, Such as the first, second, third
or fourth n bits of data, from the nxmbit vector retrieved from
the address. Once all of the CUs have loaded data from the
vector memory macro-block, the load operation may be com
plete.
0047. It should be appreciated, that although described
with reference to loading data from memory into a CU, the
process may be similarly applicable for writing data from the
individual CUs into the vector memory macro-blocks. When
storing data to the vector memory macro-block, either a Sub
set of data, such as the first, second, third or fourth n bits of the
vector, may be written to the address in the vector memory
macro-block. Alternatively, an inxm bit vector may generated
by sequentially appending data to be written from the indi
vidual CUs into the full vector and subsequently written to the
memory address.
0048. The above description has described data as being
loaded in a number of cycles. It should be appreciated that the
cycles are meant to illustrate the representall of the steps for
loading data to or from a CU. The cycles may comprise a
plurality of clock cycles in order to complete the loading
process. For example, one loading cycle may comprise gen
erating the required memory address by adding an offset
address to a base address, then reading or writing the data
from or to the memory address.
0049 FIG. 14 depicts a method of a memory access opera
tion in accordance with the vector processor and memory
described above. The method 1400 begins when a memory
access operation is initiated (1402). The memory access
operation may either load data from memory into individual
CUs, or write data from the CUs into the memory. Once the
memory access is initiated, a counter (i) is initiated (1404) for
tracking the individual CUs in each of the CU groups. With
the counter initialized, the method performs the same actions

US 2014/O 195776 A1

for each of the CU groups (1406). For each CU group, the
method determines a memory address for the i' CU in the
respective CU groups (1408) and then accesses the memory
location for the i' CU in the CU group (1410). As described,
the memory access may comprise reading data from the
memory or writing data to the memory. Once the memory
location is accessed for the i' CU, the method determines if
the counter i is less than or equal to the number of CUs in the
CU groups (1412). If the counter i is less than or equal to the
number of CUs (Yes at 1412), that is, if there are additional
CUs in the CU group, the counter, i, is increased (1414) and
processing returns to determine a memory address (1408) for
the next CU in each CU group. If the counter i is greater than
the number of CUs in the CU groups (No at 1412), that is, if
there are no further CUs in the CU groups, than the memory
access operation is complete (1416).
0050 FIG. 15 depicts in a block diagram, illustrative com
ponents of a memory access unit. It will be appreciated that
the memory access unit 1500 provides an illustrative memory
access unit, and other implementations are possible. The
memory access unit 1500 comprises components for gener
ating the appropriate address for accessing in the associated
vector memory macro-block. The addressing components
may include an address selector multiplexor 1502. The
address selector multiplexor may select one of a plurality of
addresses, or offsets that are provided from the CUs of the CU
group associated with the memory access unit 1500. Addi
tional addresses may be provided to the address selector
multiplexor 1502 from the neighboring, both left and right,
memory access units. The output of the address selector mul
tiplexor 1502 may be controlled by various control signals to
indicate which of the addresses or offset should be produced
at the output of the multiplier 1502. The output of the address
selector multiplexor may be provided to an addition compo
nent 1504, which may add the output from the multiplexor
1502 to a base address and store the result in an address
register 1506.
0051. The memory access unit 1500 may further comprise
a plurality of registers or memory components 1508, 1510,
1512, 1514, each one of which stores r bits of data. In FIG. 15,
r is equal to n, where n is the width of the individual CUs:
however, r can be independent of n. As depicted in FIG. 15, n
is 32 bits, however, it is contemplated that other widths are
possible. Each of the registers 1508, 1510, 1512, 1514
receives data, or alternatively provides data to, a respective
portion of the vector memory.
0052. The memory access unit 1500 may have a plurality
of output multiplexors 1516, 1518, 1520, 1522 for selecting
the data that is provided to the respective CUs of the associ
ated CU group. As depicted, there may be an output multi
plexor for each CU in the CU group. Each of the output
multiplexors may have the same inputs, namely the n-bits
provided by the registers 1508, 1510, 1512, and 1514. If the
memory access unit 1500 allows the CUs to load data from
the neighboring memory macroblocks, each of the output
multiplexors may have additional inputs for receiving n-bits
of data from either the left and right neighboring memory
access units, or memory macroblocks. Each of the output
multiplexors 1516, 1518, 1520, 1520 may have its output
controlled by a CU mask indicating which portion of the mxn
bits of data from the associated memory macro-block, or
neighboring memory macro-blocks, the respective CU is to
receive.

Jul. 10, 2014

0053. The above has described loading data from a neigh
boring memory macro block. The neighboring memory
macro-blocks have been described as being located to the left
and right of a CU group. It is contemplated that each CU
group can be associated with one or more neighbors. Each CU
group has an associated memory macro-block. A neighboring
memory macro-block is any of the remaining memory macro
blocks that the CU group can load data from, and does not
need to be physically adjacent to the CU. FIGS. 16 and 17
depict possible neighboring memory macro-blocks of a CU
Group. It is noted that the actual memory macro-blocks are
not depicted in the figures for clarity. However, each CU
Group would be associated with a respective memory macro
block. As depicted in FIG. 16, the CU Groups 1602a, 1602b,
1602c, 1602d, 1602e, 1602?, 1602g, 1602h, 1602i may be
logically arranged in a 2-dimensional pattern for example
providing north, South, east, west, northeast, northwest,
Southeast, and Southwest connections. The connections
between CU Groups is intended to depict the possible neigh
boring nodes that the CU Group could load data from. As
depicted, CU Group 1602e could load data from each of the
remaining CU Groups 1602a, 1602b, 1602c, 1602d, 1602f,
1602g, 1602h, 1602i.
0054 FIG. 17 depicts a similar arrangement as depicted in
FIG. 16, however the CU groups 1702a, 1702b, 1702c,
1702d, 1702e, 1702?, 1702g, 1702h, 1702i, 1704a, 1704b.
1704c. 1704d, 1704e, 1704?, 1704g, 1704h, 1704i, 1706a,
1706b, 1706c, 1706d, 1706e, 1706f 1706g, 1706h, 1706i are
logically arranged into a 3-dimensional pattern. As depicted,
CU Group 1704e could load data from each of the remaining
CU Groups 1702a, 1702b, 1702c, 1702d, 1702e, 1702f;
1702g, 1702h, 1702i, 1704a, 1704b. 1704c., 1704d, 1704?,
1704g, 1704h, 1704i, 1706a, 1706b, 1706c, 1706d, 1706e,
1706f 1706g, 1706h, 1706i.
0055. A vector processor and memory has been described
that provides a lower footprint of the memory access compo
nents while still providing adequate performance and flex
ibility. The vector processor and memory may be used in
numerous applications, including searching and tabulating
data, image processing, audio processing, or video process
ing. The flexibility provided by grouping the CUs in CU
groups provides Sufficient performance for many different
applications, allowing the same design to be adapted to dif
ferent specific implementations.
0056. It will be appreciated that not all possible embodi
ments have been described in detail. However, having regard
to the current description, it will be appreciated how to
modify the embodiments described in detail hereinto provide
the features and functionality of other possible embodiments.
The devices, systems and methods described herein have
been described with reference to various examples. It will be
appreciated that systems, devices, components, methods and/
or steps from the various examples may be combined
together, removed or modified. As described the system may
be implemented in one or more hardware components includ
ing a processing unit and a memory unit that are configured to
provide the functionality as described herein. Furthermore, a
computer readable memory, Such as for example electronic
memory devices, magnetic memory devices and/or optical
memory devices, may store computer readable instructions
for configuring one or more hardware components to provide
the functionality described herein.
0057. In some embodiments, any suitable computer read
able memory can be used for storing instructions for perform

US 2014/O 195776 A1

ing the processes described herein. For example, in some
embodiments, computer readable media can be transitory or
non-transitory. For example, non-transitory computer read
able media can include non-volatile computer storage
memory or media such as magnetic media (such as hard
disks), optical media (Such as compact discs, digital video
discs, Blu-ray discs, etc.), semiconductor media (such as flash
memory, read only memory (ROM), Flash memory, electri
cally programmable read only memory (EPROM), electri
cally erasable programmable read only memory (EEPROM),
etc.), any suitable media that is not fleeting or devoid of any
semblance of permanence during transmission, and/or any
Suitable tangible media. As another example, transitory com
puter readable media can include signals on networks, in
wires, conductors, optical fibers, circuits, and any Suitable
media that is fleeting and devoid of any semblance of perma
nence during transmission, and/or any Suitable intangible
media.
0058 Although the description discloses example meth
ods and apparatus including, among other components, soft
ware executed on hardware, it should be noted that such
methods and apparatus are merely illustrative and should not
be considered as limiting. For example, it is contemplated that
any or all of these hardware and software components could
be embodied exclusively in hardware, exclusively in soft
ware, exclusively in firmware, or in any combination of hard
ware, software, and/or firmware. Accordingly, while the fol
lowing describes example methods and apparatus, persons
having ordinary skill in the art will readily appreciate that the
examples provided are not the only way to implement Such
methods and apparatus.
What is claimed is:
1. A device comprising:
a vector memory space divided into a plurality of memory

macro-blocks for storing data;
a vector processor comprising a plurality of computational

units (CUs) for executing instructions, the plurality of
CUs arranged into a plurality of CU groups, each CU
group comprising two or more CUs of the plurality of
CUs, the plurality of CUs providing execution of a single
instruction on multiple pieces of data (SIMD); and

a plurality of memory macro-block access units, each cou
pling a respective CU group to a respective associated
memory macro-block, for controlling access of the CUS
of the respective CU group to the associated memory
macro-block.

2. The device of claim 1, wherein each of the memory
macro-block access units determines an address within the
associated memory macro-block to retrieve data from or
place data to.

3. The device of claim 2, wherein each of the memory
macro-block access units determines the address individually
for each CU in the associated CU group in Subsequent cycles.

4. The device of claim 2, wherein each of the memory
macro-block access units determines the address for two or
more CUS in the associated CU group in a single cycle.

5. The device of claim 1, wherein there are ZCU groups,
each withm CUs, each of the CUs has an n-bit interface to the
associated memory macro-block, wherein each of the
memory macro-blocks can provide nxm bits of data to the
associated CU group in a memory access operation, wherein
the nxm bits of data for a respective CU group are addressed
by a single memory macro-block address.

Jul. 10, 2014

6. The device of claim 5, wherein each of the memory
macro-block access units controls data provided to, or
received from, each of the CUs in the respective CU group
based on a CU mask indicating a portion of the mxn bits of
data from the associated memory macro-block the respective
CU is to receive.

7. The device of claim 1, wherein each of the memory
macro-block access units can access data from neighboring
memory macro-blocks during a portion of a memory access
operation.

8. The device of claim 7, wherein each of the memory
macro-block access units determines the address from the
respective neighboring memory macro-block for two or more
CUs in the associated CU group in a single cycle.

9. The device of claim 1, wherein each of the memory
macro-block access units can access data from a plurality of
neighboring memory macro-blocks during a portion of a
memory access operation.

10. The device of claim 9, wherein each memory macro
block access unit has a plurality of neighbors.

11. A method comprising:
initiating a read operation for loading data from memory

into a plurality of computational units (CUs) arranged
into a plurality of CU groups, the memory arranged into
a plurality of memory macro-blocks each associated
with a respective CU group of the plurality of CU
groups:

for each CU group, determining a respective first memory
address; and

for each CU group, accessing the data in the associated
memory macro-block at the respective first memory
address.

12. The method of claim 11, wherein accessing the data
comprises reading data from the respective memory macro
block or providing data to the respective memory macro
block.

13. The method of claim 11, further comprising:
reading data from the respective memory macro-block to a

first CU of the respective CU group or providing data to
the respective memory macro-block from the first CU of
the respective CU group, wherein the first memory
address is associated with the first CU:

for each CU group, determining a respective second
memory address associated with a respective second CU
in the CU group; and

reading data from the respective memory macro-block to
the second CU of the respective CU group or providing
data to the respective memory macro-block from the
second CU of the respective CU group.

14. The method of claim 13, wherein the first and second
addresses are individually determined for each of the first and
second CUS in the associated CU group in Subsequent cycles.

15. The method of claim 11, wherein the first address is
determined for two or more CUs in the associated CU group
in a single cycle.

16. The method of claim 11, wherein there are ZCU groups,
each withm CUs, each of the CUs has an n-bit interface to the
associated memory macro-block, wherein each of the
memory macro-blocks can provide nxm bits of data to the
associated CU group in a memory access operation, wherein
the nxm bits of data for a respective CU group are addressed
by a single memory macro-block address.

17. The method of claim 11, further comprising controlling
data provided to, or received from, each of the CUs in the

US 2014/O 195776 A1

respective CU group based on a CU mask indicatingaportion
of the mxn bits of data from the associated memory macro
block the respective CU is to receive.

18. The method of claim 11, further comprising accessing
data from a respective neighboring memory macro-block dur
ing a portion of a memory access operation.

19. The method of claim 18, determining an address from
the respective neighboring memory macro-block for two or
more CUS in the associated CU group in a single cycle.

20. The method of claim 11, further comprising accessing
data from one of a plurality of neighboring memory macro
blocks during a portion of a memory access operation.

k k k k k

Jul. 10, 2014

