
US 20220276849A1
INI

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2022/0276849 A1

Games et al . (43) Pub . Date : Sep. 1 , 2022

(54) SYSTEM AND METHOD FOR HOLISTIC
APPLICATION DEVELOPMENT AND
DEPLOYMENT IN A DISTRIBUTED
HETEROGENEOUS COMPUTING
ENVIRONMENT

GO6F 9/445 (2006.01)
H04L 67/00 (2006.01)
H04L 9/40 (2006.01)
H04L 67/104 (2006.01)
G06F 9/54 (2006.01)

(52) U.S. CI .
CPC G06F 8/60 (2013.01) ; G06F 8/10

(2013.01) ; G06F 9/44505 (2013.01) ; H04L
67/34 (2013.01) ; H04L 63/20 (2013.01) ;
H04L 67/1053 (2013.01) ; G06F 9/546

(2013.01)

(71) Applicant : Network Native , Inc. , Austin , TX (US)
(72) Inventors : Donald W. Games , Austin , TX (US) ;

Michael C. Brogioli , Austin , TX (US) ;
Richard Moats , Austin , TX (US)

(21) Appl . No .: 17 / 745,792
(22) Filed : May 16 , 2022

Related U.S. Application Data
(63) Continuation of application No. 16 / 721,913 , filed on

Dec. 19 , 2019 , now Pat . No. 11,340,877 .
(60) Provisional application No. 62 / 782,009 , filed on Dec.

19 , 2018 .

(57) ABSTRACT

Exemplary embodiments of the invention can include a
method for identifying an individual component from
among a plurality of components in a target system as an
identified component of a plurality of identified components ,
mapping each one of the identified components to respective
ones of a target hardware node , generating intermediate code
for each respective one of the target hardware nodes , gen
erating serialization code for each respective communica
tion interface between the target hardware nodes , transmit
ting the respective intermediate codes to each one of the
target hardware nodes , and transmitting respective serializa
tion codes to each communication interface of the target
hardware nodes .

Publication Classification

(51) Int . Cl .
GO6F 8/60
GOOF 8/10

(2006.01)
(2006.01)

Sensor Device (s) Gateway
Device (s) Server (s)

Application
Deployment

Patent Application Publication Sep. 1 , 2022 Sheet 1 of 14 US 2022/0276849 A1

Sensor Device (5) Gateway
Server)

Application
Deployment

System

Patent Application Publication Sep. 1 , 2022 Sheet 2 of 14 US 2022/0276849 A1

Conponent
Splitting
Engine

Strategy
Message
Type

Detection
Engine 216 Engine 218

Serializer Generation Engine 214
...

Component
Target

Assignment
Engine 204

Transfomation
Engine 220

Architecture
Optimized Library Part - Specific

Library 212

Target Specialization Engine 206

Application Deployment System 108
Fig . 2

300

Identify independent components in a heterogenous system 310

Patent Application Publication

Search Part Specific Library 360

found

Identify message boundaries in the heterogenous system 320

No

Generate Serialization Code for communication channels 380

found

Divide the heterogenous system into discrete segments 330

Search Optimized Library 365

Deploy Code to target hardware nodes 390

Sep. 1 , 2022 Sheet 3 of 14

Map segments to target hardware nodes 340

Search Generic Library 370

Generate Specialized Code 350

found

FIG . 3

US 2022/0276849 A1

Patent Application Publication Sep. 1 , 2022 Sheet 4 of 14 US 2022/0276849 A1

Timer 410
Timer
462

Sensor
460

Read Tempo Read Temp 464

Rolling Avg 472 Gateway Rolling Avg (2)
425 455 470

Store Value (t) 430 Store Value 482

Server
480

ShowGraph ShowGraph
484

400
FIG . 4 450

Sensor 510

Gateway 540

Patent Application Publication

BT 530

MO 570

Timer 512

N

N

* | ??

0 here to on the E

Protocol Denserializer 545

Protocol De - serializer

Read Temp 514

580

5

5

3 LA M S

7 En Nu

5

Rolling Avg 550

5

Store Average 592

Protocol Serializer 520

Sep. 1 , 2022 Sheet 5 of 14

Protocol Serializer 560

Show Graph 594

BT 530

MO 570

Server 590

FIG . 5

US 2022/0276849 A1

Patent Application Publication Sep. 1 , 2022 Sheet 6 of 14 US 2022/0276849 A1

610
600
MYYYYY

S

620
val y = Proxy Class Y) (123)
val x = { Proxy Class X (9 , " foo ")

?? ? ? ? ?? ?? ??? ?? ??? ???

ït

Generic Library Part - Specific Library

Implementation X
Implementation Y
Implementation Z

Architecture - Optimized
Library
Implementation X
Implementation Y Implementation Y

-640

least specific most specific 630

Fig . 6

Patent Application Publication Sep. 1 , 2022 Sheet 7 of 14 US 2022/0276849 A1

Serialization Strategy
Employed Message Types

Security Strategy
Channel Configuration Channel Configuration Ervin Sockenni

Target $ Target
Message Serialization Message Serialization

Key Management / Crypto
Channel Management

Key Management / Crypto
Channel Management messages

Channel

Fig . 7

Patent Application Publication Sep. 1 , 2022 Sheet 8 of 14 US 2022/0276849 A1

870

}
3
}

3 800
Cloud

KOTA Serbes Keys Crypto
Transport

3
{

3

}
}
} 3

3 820
{

{
}
}
3 Code -840
} Gateway
$
3
?
}

Software Update
Serialization

Key Handing :
Encryption
Transport

App
Deployment
System

850

880 288
Network
Spanning
App

domowe MCU
}

Het w Wu Wu W 810

Transport
Crypto Keys

ZOTA SerDes
Edge

Fig . 8

920

910

930

build

bean

android

analysis

Patent Application Publication

compile compile compile

compile conting

stage

Stage

stage

compile app

* WWWWWWWWWWW

900

950

3

920

print

Em Am I WAN MAN I mana man kan man

*

my

L

SAKALA

analyze app

14 ore

910

+

deploy

III.deploy
deploy

La

how

mm

930

MULLE

bean

androlas
Sever

321 322 323 324 325

Sep. 1 , 2022 Sheet 9 of 14

o

compile o compile compile

940

Stage

stage

stage
.

a

AMIR W

FREE

r HOTEL

f

deploys

Il deploy

till deploy

*** ***

4

TD

2 o com .

L

VAT

***** A

US 2022/0276849 A1

538 530 532 534 536 538

Fig . 9

1020

1030

Patent Application Publication

177

sensors

recording

analysis

archive

actuators

Lembedded node 2

cloud datastore

1010

1020

1050

1030

recording

Sep. 1 , 2022 Sheet 10 of 14

analysis

archive

sensors 22 7A actuators ember

node 2

fog gateway

miestom cloud datastore

1040
Fig . 10

US 2022/0276849 A1

Patent Application Publication Sep. 1 , 2022 Sheet 11 of 14 US 2022/0276849 A1

10
MANA

15

Interfaces

1 Local
Storage

212
Remote
Storage

h
16

Processor's
1413 14

Fig . 11

Patent Application Publication Sep. 1 , 2022 Sheet 12 of 14 US 2022/0276849 A1

24 Clients Inputs 228
23 Services 27 Outputs

22 OSes
26 Storage

21 Processors Memory 25

20
Fig . 12

Patent Application Publication Sep. 1 , 2022 Sheet 13 of 14 US 2022/0276849 A1

2 Servers Clients

? 33 Databases
Network (s) h 31 36 Sec . 34

35

Config 37
Ext Svcs

Fig . 13
30

Patent Application Publication Sep. 1 , 2022 Sheet 14 of 14 US 2022/0276849 A1

40

S PSU

43. Mem NVM
42

41 , CPU
RTTh51 48

473 Display NIC 54
53

HDD h52
19 Fig . 14 50

US 2022/0276849 Al Sep. 1 , 2022
1

SYSTEM AND METHOD FOR HOLISTIC
APPLICATION DEVELOPMENT AND
DEPLOYMENT IN A DISTRIBUTED
HETEROGENEOUS COMPUTING

ENVIRONMENT

CROSS - REFERENCE TO RELATED
APPLICATIONS

weight APIs and message - buses that eliminate developer
considerations of where or how many of a component is
deployed . As a result , the inefficiencies introduced within
development teams in terms of capital and human resources
is made even worse .
[0004] Additionally , testing a newly developed applica
tion is an incredibly difficult process because it is often
difficult to determine the devices and / or the code that is
present at any given part of the network . As a result , these
new developments are tested — often for the first time in a
fully deployed operational environment . This practice can
potentially cause significant damage and down - time to the
environment , and potentially introduce the system to secu
rity vulnerabilities . As a result , the process of deploying new
embedded applications and / or devices often tends to be
harrowing experience .

[0001] This application is a continuation of U.S. patent
application Ser . No. 16 / 721,913 , filed Dec. 19 , 2019 , which
claims priority to U.S. Provisional Patent Application Ser .
No. 62 / 782,009 , filed Dec. 19 , 2018 entitled " SYSTEM
AND METHOD FOR HOLISTIC APPLICATION DEVEL
OPMENT AND DEPLOYMENT IN A DISTRIBUTED
HETEROGENEOUS COMPUTING ENVIRONMENT . ”
The entire content of these applications are incorporated
herein by reference . SUMMARY

BACKGROUND

Discussion of the State of the Art

[0002] Current software development techniques and
frameworks are inadequate for introducing , updating , or
deploying applications and / or devices in an enterprise - wide
network of computing devices comprising of low - level
embedded devices , fog layer of medium - powered hubs , and
computationally sophisticated cloud - based servers . The dif
ficulty in developing , designing , or deploying applications
in these types of networks stems from the fact that the
various devices in these networks tend to be diverse and
often have very different computing resources available to
them . Moreover , because of the very nature of these net
works , it is often difficult to introduce updates at one or more
nodes in the network without substantially altering or affect
ing other network components . Finally , the physical nature
of low - level embedded device or edge internet - of - things
(IoT) devices makes it difficult to fix , patch , and / or update
these devices .
[0003] For example , embedded devices or edge IoT
devices in such networks may be shipped with software that
is written on bare metal , or with limited operating system
and networking capabilities . Thus , once such devices roll off
the assembly line , the only way to fix , patch , and / or update
the device is through a technician visit or a recall . Moreover ,
development teams are often forced to work inefficiently to
solve problems in heterogenous IoT networks because the
various devices in these networks tend to be diverse , both in
terms of their capabilities , and also in terms of their internal
logic and communications protocols . For example , in dis
tributed heterogeneous designs , large amounts of develop
ment effort are spent simply getting all the different com
ponents and the teams developing the components
communicating with each other . The embedded part of the
project team often spends most of its time simply getting the
software to come up on the hardware within resource
constraints and without crashing , while the cloud developers
are adding and deploying new features on a weekly basis .
This problem is exacerbated because in cloud - targeted appli
cation development , resources and frameworks have
become and are continuing to become even more abstract .
Bare metal machines have given way to virtual machines ,
which , in turn , have given way to containers . As a result ,
software components are built to communicate via light

[0005] The present invention overcomes many of the
technical difficulties outlined above by offering a develop
ment environment , and runtime system that considers the
heterogeneous targets of an IoT product as a single , coherent
whole . More specifically , the present invention consumes an
application specification that is associated with one or more
devices or applications in a network environment , identifies
independent components in the network by identifying mes
sage - passing boundaries and / or data - dependencies between
code paths , maps the consumed application specification to
identified independent components by leveraging one or
more libraries (at least one of a generic library , an architec
ture - optimized library , or a part - specific library) , encodes
one more objects of the consumed application specification
for a target’s communication channel by detecting at least
one of : message types that may traverse each channel from
one target node to another , and the security needs for the
communication channel , and transforms the consumed
application specification into a format suitable for a target
node .
[0006] Specifically , a method for the following is dis
closed : identifying , by a processing system comprising a
processor , an individual component from among a plurality
of components in a target system as an identified component
of a plurality of identified components , mapping , by the
processing system , each one of the identified components to
respective ones of a target hardware node ; generating , by the
processing system , intermediate code for each respective
one of the target hardware nodes ; generating , by the pro
cessing system , serialization code for each respective com
munication interface between the target hardware nodes ;
transmitting , by the processing system , the respective inter
mediate codes to each one of the target hardware nodes ; and
transmitting , by the processing system , respective serializa
tion codes to each communication interface of the target
hardware nodes .
[0007] A computer program product comprising a non
transitory computer readable storage medium having
instructions encoded thereon that , when executed by a
processor , cause the processor to : consume an application
specification associated with a plurality of devices provided
in a network environment as a consumed application speci
fication ; identify independent components in the network by
identifying message - passing boundaries between code paths
as identified independent components ; map the consumed
application specification to the identified independent com

US 2022/0276849 A1 Sep. 1 , 2022
2

[0021] FIG . 12 illustrates on embodiment of the comput
ing architecture that supports an embodiment of the inven
tive disclosure .
[0022] FIG . 13 illustrates components of a system archi
tecture that supports an embodiment of the inventive dis
closure .
[0023] FIG . 14 illustrates components of a computing
device that supports an embodiment of the inventive disclo
sure .

ponents by leveraging one or more code libraries , encode
one more objects of the consumed application specification
for a target communication channel by detecting message
types that may traverse each channel from one target node
to another ; and transform the consumed application speci
fication into a format suitable for a target node .
[0008] A system comprising : a processing system includ
ing a processor ; and a memory , coupled to the processing
system , that stores executable instructions and that , when
executed by the processing system , facilitate performance of
operations , comprising : identifying an individual compo
nent from among a plurality of components in a target
system as an identified component of a plurality of identified
components ; mapping each one of the identified components
to respective ones of a target hardware node ; generating
serialization code for each respective communication inter
face between the target hardware nodes ; and transmitting , by
the processing system , respective serialization codes to each
communication interface of the target hardware nodes .

DETAILED DESCRIPTION

BRIEF DESCRIPTION OF THE DRAWING
FIGURES

3

a

[0009] The accompanying drawings illustrate several
embodiments and , together with the description , serve to
explain the principles of the invention according to the
embodiments . It will be appreciated by one skilled in the art
that the particular arrangements illustrated in the drawings
are merely exemplary and are not to be considered as
limiting of the scope of the invention or the claims herein in
any way .
[0010] FIG . 1 is a block diagram illustrating an exemplary
operating environment , according to a preferred embodi
ment of the invention .
[0011] FIG . 2 is a block diagram illustrating an exemplary
application deployment system , according to a preferred
embodiment of the invention .
[0012] FIG . 3 is a flow diagram illustrating an example
method , according to a preferred embodiment of the inven
tion .
[0013] FIG . 4 is an exemplary illustration of the present
invention in a deployment configuration .
[0014] FIG . 5 is an exemplary illustration of the present
invention in a deployment configuration .
[0015] FIG . 6 is an exemplary illustration of the present
invention employing a code library .
[0016] FIG . 7 is an exemplary illustration of the present
invention applying a serialization / de serialization strategy .
[0017] FIG . 8 is an exemplary illustration of the present
invention deploying code to downstream elements of a
system in accordance with the method of FIG . 3 .
[0018] FIG . 9 is an exemplary illustration of the present
invention deploying code to downstream elements of a
system in accordance with the method of FIG . 3 and system
of FIG . 8 .
[0019] FIG . 10 is an exemplary illustration of the present
invention deploying code to downstream elements of a
system in accordance with the method of FIG . 3 and system
of FIG . 8 .

[0020] FIG . 11 illustrates one embodiment of components
of an example machine able to read instructions from a
machine - readable medium and execute them in a processor
(or controller) .

[0024] The inventor has conceived , and reduced to prac
tice , a system and method for writing and deploying appli
cations to a distributed network comprising of heterogenous
devices .
[0025] One or more different embodiments may be
described in the present application . Further , for one or more
of the embodiments described herein , numerous alternative
arrangements may be described ; it should be appreciated
that these are presented for illustrative purposes only and are
not limiting of the embodiments contained herein or the
claims presented herein in any way . One or more of the
arrangements may be widely applicable to numerous
embodiments , as may be readily apparent from the disclo
sure . In general , arrangements are described in sufficient
detail to enable those skilled in the art to practice one or
more of the embodiments , and it should be appreciated that
other arrangements may be utilized and that structural ,
logical , software , electrical and other changes may be made
without departing from the scope of the embodiments .
Particular features of one or more of the embodiments
described herein may be described with reference to one or
more particular embodiments or figures that form a part of
the present disclosure , and in which are shown , by way of
illustration , specific arrangements of one or more of the
aspects . It should be appreciated , however , that such features
are not limited to usage in the one or more particular
embodiments or figures with reference to which they are
described . The present disclosure is neither a literal descrip
tion of all arrangements of one or more of the embodiments
nor a listing of features of one or more of the embodiments
that must be present in all arrangements .
[0026] One embodiment of the subject disclosure includes
method that performs identifying an individual component
from among a plurality of components in a target system as
an identified component of a plurality of identified compo
nents , mapping each one of the identified components to
respective ones of a target hardware node , generating inter
mediate code for each respective one of the target hardware
nodes , generating serialization code for each respective
communication interface between the target hardware
nodes , transmitting the respective intermediate codes to each
one of the target hardware nodes , and transmitting respective
serialization codes to each communication interface of the
target hardware nodes .
[0027] Another embodiment of the subject disclosure
includes a device having a memory that stores executable
instructions and a processor coupled to the memory . The
processor , responsive to executing the executable instruc
tions , performs operations including consuming an applica
tion specification associated with a plurality of devices
provided in a network environment as a consumed applica
tion specification , identifying independent components in
the network by identifying message - passing boundaries

US 2022/0276849 A1 Sep. 1 , 2022
3

or multiple instantiations of a mechanism unless noted
otherwise . Process descriptions or blocks in figures should
be understood as representing modules , segments , or por
tions of code which include one or more executable instruc
tions for implementing specific logical functions or steps in
the process . Alternate implementations are included within
the scope of various embodiments in which , for example ,
functions may be executed out of order from that shown or
discussed , including substantially concurrently or in reverse
order , depending on the functionality involved , as would be
understood by those having ordinary skill in the art .

a

a

between code paths as identified independent components ,
mapping the consumed application specification to the iden
tified independent components by leveraging one or more
code libraries , encoding one more objects of the consumed
application specification for a target communication channel
by detecting message types that may traverse each channel
from one target node to another , and transforming the
consumed application specification into a format suitable for
a target node .
[0028] Headings of sections provided in this patent appli
cation and the title of this patent application are for conve
nience only and are not to be taken as limiting the disclosure
in any way .
[0029] Devices that are in communication with each other
need not be in continuous communication with each other ,
unless expressly specified otherwise . In addition , devices
that are in communication with each other may communi
cate directly or indirectly through one or more communica
tion means or intermediaries , logical or physical .
[0030] A description of an aspect with several components
in communication with each other does not imply that all
such components are required . To the contrary , a variety of
optional components may be described to illustrate a wide
variety of possible embodiments and in order to more fully
illustrate one or more embodiments . Similarly , although
process steps , method steps , algorithms or the like may be
described in a sequential order , such processes , methods and
algorithms may generally be configured to work in alternate
orders , unless specifically stated to the contrary . In other
words , any sequence or order of steps that may be described
in this patent application does not , in and of itself , indicate
a requirement that the steps be performed in that order . The
steps of described processes may be performed in any order
practical . Further , some steps may be performed simultane
ously despite being described or implied as occurring non
simultaneously (e.g. , because one step is described after the
other step) . Moreover , the illustration of a process by its
depiction in a drawing does not imply that the illustrated
process is exclusive of other variations and modifications
thereto , does not imply that the illustrated process or any of
its steps are necessary to one or more of the embodiments ,
and does not imply that the illustrated process is preferred .
Also , steps are generally described once per aspect , but this
does not mean they must occur once , or that they may only
occur once each time a process , method , or algorithm is
carried out or executed . Some steps may be omitted in some
embodiments or some occurrences , or some steps may be
executed more than once in a given aspect or occurrence .
[0031] When a single device or article is described herein ,
it will be readily apparent that more than one device or
article may be used in place of a single device or article .
Similarly , where more than one device or article is described
herein , it will be readily apparent that a single device or
article may be used in place of the more than one device or
article .
[0032] The functionality or the features of a device may be
alternatively embodied by one or more other devices that are
not explicitly described as having such functionality or
features . Thus , other embodiments need not include the
device itself .
[0033] Techniques and mechanisms described or refer
enced herein will sometimes be described in singular form
for clarity . However , it should be appreciated that particular
embodiments may include multiple iterations of a technique

Conceptual Architecture
[0034] FIG . 1 illustrates an exemplary network compris
ing heterogeneous devices , which , in accordance with an
embodiment of the invention , is comprised of one or more
sensor device (s) 102 , one or more gateway devices 104 ,
servers 106 , network 110 , and an application deployment
system 108. Although not illustrated in FIG . 1 , the network
may also be comprised of user devices or mobile computing
devices that interface with the server or portions of the
network . The network can exemplary be applied across an
enterprise - wide network controlling any number of down
stream devices . The specific elements described and illus
trated herein may be varied in accordance with this descrip
tion , as would be apparent to a person of ordinary skill in the
art , without departing from the scope of the invention .
[0035] The sensor devices 102 that may be deployed in the
network environment may vary based on the one or more
uses cases described below . But generally , the sensor
devices 102 capture certain information and provide to the
gateway devices 104 either directly or via the network 110 .
In an IoT framework , the sensor devices 102 may be
comprised of sensors (temperature sensors , imaging devices ,
machine vision , optical light sensors , position / proximity /
presence sensors , motion / velocity / displacement sensors ,
humidity / moisture sensors , acoustic / sound / vibration detec
tion sensors , chemical and gas sensors , flow rate detection
sensors , force / load / torque / strain / pressure sensors , leak / level
detectors , electric / magnetic sensors , acceleration / tilt sen
sors , etc.) , actuators , recording devices , and more , as would
be apparent to a person of ordinary skill in the art . In some
instances , the software on the sensor devices 102 may exist
in an abstraction layer . But in other instances , the code may
be stored on metal . In some embodiments , the sensor
devices 102 may be integrated into computing devices that
interface with the device .
[0036] The gateway devices 104 that may be deployed in
a heterogeneous network environment may vary based on
one or more use cases described below . But generally , the
gateway devices 104 interface with sensor devices 102 to
compile , store , record , organize , the data that is output by the
sensor devices 102. In an IoT framework , the gateway
devices interface with the sensor devices 102 to record
and / or store the values output by the sensor devices 102. In
some embodiments , the gateway devices 104 may be com
prised of their own IoT protocols , data management and
messaging protocols , etc. , as would be apparent to a person
of ordinary skill in the art .
[0037] The servers 106 that may be deployed in a het
erogenous network environment may vary based on one or
more use cases described below . But generally , the server
106 interface with the gateway devices to enable certain
applications , manage devices , manage data , etc. , as would

US 2022/0276849 A1 Sep. 1 , 2022
4

be apparent to a person of ordinary skill in the art . The
various devices that may be used are described in greater
detail below in reference to FIGS . 9-12 .
[0038] The application deployment system 108 interfaces
with the entire network to generate code that can be
deployed at the sensor devices 102 , gateway devices 104 ,
and the servers 106. More specifically , the application
deployment system 108 analyzes the network environment ,
splits it among one or more configured targets including a
sensor level target , a gateway level target , and a server level
target . In addition , the application deployment system 108
generates serialization code that is synthesized for each
intra - node message - passing boundary . For example , in one
embodiment of the invention , the application deployment
system 108 generates intermediate code that is built by
native compilers and transactionally deployed to physical
nodes . As such , the application deployment system 108
enables deployment at build time , which is a significant
breakthrough over the traditional systems for deploying
devices or applications in a network of heterogenous
devices . The specific components of the application deploy
ment system 108 are described in greater detail below in
reference to FIG . 2.)
[0039] The sensor devices 102 , the gateway devices 104 ,
the servers 106 , and the application deployment system 108
may be connected via a network 110. The network 110 may
comprise a wide area network (WAN) . The network 110 may
comprise a local area network (LAN) . The network 110 may
comprise a physical connection between two or more of the
scoring system 102 , the feedback device 104 , and the digital
data acquisition system 106. The network 110 may comprise
a bus between two or more of the scoring system 102 , the
feedback device 104 , and the digital data acquisition system
106. At least a portion of the network 110 may be private . At
least a portion of the network 110 may be public , such as the
Internet . The network 110 may be capable of transporting
messages comprising one or more messaging protocol .
Network cloud 150 generally represents a network or col
lection of networks (such as the Internet or a corporate
intranet , or a combination of both) over which the various
components illustrated in FIG . 1 (including other compo
nents that may be necessary to execute the system described
herein , as would be readily understood to a person of
ordinary skill in the art) . In particular embodiments , network
110 is an intranet , an extranet , a virtual private network
(VPN) , a local area network (LAN) , a wireless LAN
(WLAN) , a wide area network (WAN) , a metropolitan area
network (MAN) , a portion of the Internet , or another net
work 110 or a combination of two or more such networks
150. One or more links connect the systems and databases
described herein to the network 110. In particular embodi
ments , one or more links each includes one or more wired ,
wireless , or optical links . In particular embodiments , one or
more links each includes an intranet , an extranet , a VPN , a
LAN , a WLAN , a WAN , a MAN , a portion of the Internet ,
or another link or a combination of two or more such links .
The present disclosure contemplates any suitable network
110 , and any suitable link for connecting the various systems
and databases described herein .
[0040] The network 110 connects the various systems and
computing devices described or referenced herein . In par
ticular embodiments , network 110 is an intranet , an extranet ,
a virtual private network (VPN) , a local area network
(LAN) , a wireless LAN (WLAN) , a wide area network

(WAN) , a metropolitan area network (MAN) , a portion of
the Internet , or another network or a combination of two or
more such networks . The present disclosure contemplates
any suitable network 110 .
[0041] One or more links couple one or more systems ,
engines or devices to the network 110. In particular embodi
ments , one or more links each includes one or more wired ,
wireless , or optical links . In particular embodiments , one or
more links each includes an intranet , an extranet , a VPN , a
LAN , a WLAN , a WAN , a MAN , a portion of the Internet ,
or another link or a combination of two or more such links .
The present disclosure contemplates any suitable links cou
pling one or more systems , engines or devices to the network
110 .
[0042] In particular embodiments , each system or engine
may be a unitary server or may be a distributed server
spanning multiple computers or multiple datacenters . Sys
tems , engines , or modules may be of various types , such as ,
for example and without limitation , web server , news server ,
mail server , message server , advertising server , file server ,
application server , exchange server , database server , or
proxy server . In particular embodiments , each system ,
engine or module may include hardware , software , or
embedded logic components or a combination of two or
more such components for carrying out the appropriate
functionalities implemented or supported by their respective
servers . For example , a web server is generally capable of
hosting websites containing web pages or particular ele
ments of web pages . More specifically , a web server may
host HTML files or other file types , or may dynamically
create or constitute files upon a request , and communicate
them to clients devices or other devices in response to HTTP
or other requests from clients devices or other devices . A
mail server is generally capable of providing electronic mail
services to various clients devices or other devices . A
database server is generally capable of providing an inter
face for managing data stored in one or more data stores .
[0043] In particular embodiments , one or more data stor
ages may be communicatively linked to one or more servers
via one or more links . In particular embodiments , data
storages may be used to store various types of information .
In particular embodiments , the information stored in data
storages may be organized according to specific data struc
tures . In particular embodiment , each data storage may be a
relational database . Particular embodiments may provide
interfaces that enable servers or clients to manage , e.g. ,
retrieve , modify , add , or delete , the information stored in
data storage .
[0044] The system may also contain other subsystems and
databases , which are not illustrated in FIG . 1 , but would be
readily apparent to a person of ordinary skill in the art . For
example , the system may include databases for storing data ,
storing features , storing outcomes (training sets) , and storing
models . Other databases and systems may be added or
subtracted , as would be readily understood by a person of
ordinary skill in the art , without departing from the scope of
the invention .

.

Detailed Description of Exemplary Embodiments
[0045] FIG . 2 illustrates an exemplary embodiment of the
application deployment system 108 of FIG . 1. In one exem
plary embodiment , the application deployment system 108
is comprised of a consumption engine 201 , splitting engine
202 , target assignment engine 204 , target specialization

US 2022/0276849 A1 Sep. 1 , 2022
5

hardware nodes . For example , the generic library 208
includes implementation code that is less specific . The
part - specific library , on the other hand , includes code that is
more specific . The target specialization engine 206 exem
plarily selects one or more appropriate libraries for each
target hardware node and selects an implementation code
that is appropriate for a deployment . As such , the target
specialization engine 206 exemplarily resolves proxy
classes and objects against the most target - architecture and
peripheral - specific implementation that may be available to
it .

engine 206 , a serializer generation engine 214 , and a trans
formation engine 218. As would be readily apparent to a
person of ordinary skill in the art , the various modules or
engines may be comprised of other sub - modules or engines
and may be arranged or deployed in a variety of different
engines and configuration in accordance with the description
herein without departing from the scope of the present
invention .
[0046] The consumption engine 201 exemplarily con
sumes an application specification associated with one or
more devices or application in a network environment . In a
general sense , an application specification may be a task /
program / algorithm here that may result in an application or
an instance of a device . The application specification may be
comprised of security layers , relevant libraries , communi
cation channels , and other information that may be crafted
or instantiated as part of the compilation process . In one
embodiment of the invention , the application specification
may be source code , script based , GUI based , etc.
[0047] The splitting engine 202 exemplarily analyzes the
network to identify independent components in the network .
In one exemplary embodiment , the component splitting
engine 202 identifies independent components by identify
ing message - passing boundaries and data dependencies
between code paths . In one exemplary embodiment , an
independent component is identified as such if it does not
share a data dependency with another component .
[0048] The target assignment engine 204 exemplarily
maps independent components to independent target hard
ware nodes . A variety of different methodologies may be
used to map independent components to independent target
hardware nodes . For example , the independent components
may be mapped to hardware nodes based on an explicit
configuration in the deployed network . For example , a user
may define a set of configuration information that details the
available network resources upon which the application is to
be deployed . This may include a given fixed networked
compute node , a networked system of homogeneous com
pute nodes , or a heterogeneous fixed network of compute
nodes . In another example , the independent components
may be mapped based on dependency on a specific target
peripheral , such as dependence on specific compute or
network resources , i.e. , network bandwidth , certain hard
ware acceleration , etc. In another exemplary embodiment ,
the independent components may be mapped by performing
various cost analysis functions . For example , the component
target assignment engine 204 may identify available net
worked computer resources and partition the application
according to a given cost criteria , such as compute perfor
mance , power consumption , bandwidth requirements , etc.
Networks upon which a given target application is deployed
may be fixed in terms of network architecture , may be fluid
in terms of self - organizing networks , or may be varied in
terms of networked swarm intelligence such as rapidly
evolving systems of drone like devices .
[0049] The target specialization engine 206 exemplarily
leverages the generic library 208 , the architecture - optimized
library 210 , and / or a part - specific library 212 to generate
code that is specialized for each target hardware node and / or
independent component . Generally , the three libraries men
tioned above , the generic library 208 , the architecture
optimized library 210 , and part - specific library 212 , include
one or more implementations that may be deployed at
specific components in the network and at specific target

[0050] The serializer generation engine 214 exemplarily
generates serialization and / or de - serialization code for each
target's communication channel . Serialization / deserializa
tion , as used herein , broadly refers to encoding something to
go over a communication wired , wireless , or other connec
tion . The disclosure herein is not limited to serialization as
in forcing of packet orderings , and is not meant to refer to
internal memory references or any specific internal memory
formats . In one embodiment , the serializer generation engine
214 is comprised of a message type detection engine 216 ,
and a serialization strategy generation engine 218. The
message type detection engine 216 detects the message
types that may traverse each channel from one target hard
ware node to another . The serialization strategy generation
engine 218 identifies the security needs for the communi
cation channel , channel configuration of one or more target
hardware node . The serializer generation engine 214 uses
the information provided by the message type detection
engine 216 and the serialization strategy generation engine
218 to generate serialization / deserialization code for each
target's communication channel .
[0051] The transformation engine 220 exemplarily trans
forms the consumed application specification into a format
suitable for a target node . The suitable format may be
determined based on analysis performed by various com
ponents of the application deployment system 108 described
above and throughout the specification . In one embodiment ,
the transformation engine 220 may compile in a binary
executable . However , more generally , the transformation
engine 220 may generate an intermediate representation that
is target agnostic , or other representation such as script
language or other . Moreover , there may not be an explicit
application code ; the transformation engine 220 may gen
erate security modules that may be deployed to the devices
as part of a security layer on top of which the application
code sits for a given networked node . In one embodiment ,
the transformation engine 220 may not generate executable
code at all ; rather a new configuration file may be pushed out
to update access ports , or other non - executable code parts of
the node .

[0052] The implementation described herein may be
employed in a variety of use cases . For example , the present
invention may be used to implement proceduralized security
implementation . In order to do so , the application deploy
ment system 108 may be used to update software at various
target nodes , and enable communication via serialization ,
key handling , encryption and transport . This enables a more
secure method for updating code or introducing new hard
ware in a heterogeneous network environment . In one
embodiment , for example , the implementation of the present
invention enables automatic , secure distribution of crypto

US 2022/0276849 A1 Sep. 1 , 2022
6

graphic key material . Moreover , the implementation enables
distribution of encrypted , signed software updates on one or
more participating nodes .
[0053] The implementation described herein may also be
employed to enable integrated security administration . In
this implementation , the application deployment system 108
interfaces with a user device to authenticate a user , and
automatically and securely distribute crytopgraphic key
material and encrypted , signed software updates to one or
more components , including a key management component ,
a firmware repository , and / or an app server .
[0054] In one embodiment , the present invention may also
be deployed in a chip architecture , such as , for example ,
RISC - V , but other instruction set architectures may be used ,
as would be readily apparent to a person of ordinary skill in
the art , without departing from the scope of the invention .
Such methods of designing chip architecture in the cloud
may be used in fog computing by , for example , plugging in
the chip architecture , running real time network traffic on it ,
and iteratively enabling design of software in a full stack
environment . In another example , the chip architecture with
the present invention implementation may be used in edge
computing to evaluate real application in a network system ,
and rapidly redeploy the invention at edge devices .
[0055] FIG . 3 illustrates an exemplary process 300 for
deploying code automatically in a heterogenous network
environment . The process typically begins by identifying
independent components in a heterogenous system , such as
a system composed of , for example , the sensor device 102 ,
the gateway device 104 , and server 106 exemplarily illus
trated by FIG . 1. The heterogenous system can include some
or all elements in an enterprise - wide network of connected
devices . In one embodiment , step 320 identifies message
passing boundaries and data dependencies between code
paths in the heterogenous system . In one exemplary embodi
ment , an independent component is identified as such if it
does not share a data dependency with another component .
For example , the independent components may be mapped
to hardware nodes based on an explicit configuration in the
deployed network . For example , a user may define a set of
configuration information that details the available network
resources upon which the application is to be deployed . This
may include a given fixed networked compute node , a
networked system of homogeneous compute nodes , or a
heterogeneous fixed network of compute nodes . In another
example , the independent components may be mapped
based on dependency on a specific target peripheral , such as
dependence on specific computer or network resource . A
variety of different methods to automatically analyze an
application at message passing boundaries may be applied .
These can be either inserted into the application specifica
tion and / or configuration manually by a user , or performed
automatically by build tools process . The information that
transmits over these message passing boundaries may be
messages themselves of varying types . A number of different
messages can be sent , whether TCP / IP , or other higher level
custom formats like XML / Javascript etc. Generally , mes
sage - boundary detection takes place remotely from the
target system . The analysis for message passing boundaries
is done at the build / complete stage of the process , thus done
on build servers or workstations . The segmented application
is then typically deployed to the target system on which the
application ultimately runs . The build system may be a
separate machine from the target system on which the

application is deployed , but , as may be appreciated by
persons of ordinary skill in the art , they may not be .
[0056] Once an independent component is identified , it is
separated in step 330 from other components by a message
passing boundary to exemplarily divide the heterogenous
system into discrete segments . Thereafter , the process con
tinues by mapping independent components to independent
target hardware nodes in step 340. A variety of different
methodologies may be used to map independent compo
nents to independent target hardware nodes , including the
one noted above in reference to FIG . 2 .
[0057] The process continues to step 350 by generating
code that is specialized for each target hardware node and / or
discrete component to allow communication with a target
communication node of the divided system . Exemplarily , a
variety of different libraries may be used to deploy appro
priately generic or specific code at a variety of different
target hardware nodes . As such , the process resolves proxy
classes and objects against the most target - architecture and
peripheral - specific implementation that may be available to
it . In one exemplary embodiment , the process generates
code by retrieving sample codes from a library and then
applying the identified variables making up the data com
municated through communication boundaries . Exemplar
ily , the most specific code that can be determined is selected .
The generating of specialized code can first include search
ing part specific libraries as exemplarily illustrated in step
360. If a part specific code can be found , method 300
proceeds to step 380. If no part specific code is found in step
360 , step 365 exemplarily searches for an architecture
optimized code from an architecture optimized library . If
such a code is found , method 300 proceeds then to step 380 .
If no appropriate code is found in step 365 , method 300
proceeds to step 370 where generalized code is retrieved
from a generic library . If no code is found at step 370 , then
a build / link time error may occur .
[0058] In some embodiments , each of steps 360 , 365 , and
370 are performed for each discrete segment to return all
available coding options . Additionally , in some embodi
ments , various cost analysi functions can be applied to
decide , in step 350 , which code can be provided to step 380 .
Exemplarily , in step 380 , serialization and de - serialization
code is generated for each discrete component as required .
In some instances , a terminal device may only need to
develop a single serialization / deserialization code for that
discrete segments target's communication channel . In one
embodiment , the process detects a message type that may
traverse each channel from one target hardware node to
another , and / or the security needs for the communication
channel , channel configuration of one or more target hard
ware node . This information is used to generate serializa
tion / deserialization code for each target's communication
channel . For example , the types of data and message types
crossing the boundaries are instantiated and applied to that
code .
[0059] Exemplarily , the code may thereafter be deployed
in step 390 at a one or more target hardware nodes in
accordance with one or more embodiments of the invention .
In some embodiments , the deployment can be applied to
individual discrete elements of the heterogenous system ,
entire branches or paths of the network , or across an
enterprise - level deployment . In some embodiments , the
deployment can include various security steps , including
distributing keys and encryption codes , that would allow , for

>

US 2022/0276849 A1 Sep. 1 , 2022
7

9 example , the application deployment system 108 to distrib
ute serialization codes , de - serialization codes , programming
updates , work assignments , removal of nodes , and addition
of nodes .
[0060] FIG . 4 illustrates an exemplary illustration of a
heterogeneous system 400. Heterogenous system 400 can
perform several tasks employing several devices employed
within the system . Exemplarily the system heterogeneous
system 400 can include upstream and downstream con
nected devices , such as the exemplary sensor system illus
trated in FIG . 1. In other embodiments , the heterogeneous
system 400 can include many different servers , gateways ,
and downstream devices across an enterprises - wide system
including many different devices . Thus , in one example , an
oil field that employs countless sensors and gateway devices
can be controlled and updated as desired . Exemplarily , the
heterogeneous system 400 , in accordance with an embodi
ment of the invention , can be analyzed and divided into three
separate instances as exemplarily illustrated in segmented
system 450. Referring to method 300 illustrated in steps 310 ,
320 , and 330 within FIG . 3 , the individual components of
the heterogeneous system 400 are identified and divided into
the discrete segments of the segmented system 450. In one
embodiment , the components within the heterogeneous sys
tem 400 can be identified based on locating message - passing
boundaries and data - dependencies within the heterogeneous
system 400 .
[0061] Exemplarily , components and programs within the
heterogeneous system 400 are analyzed , as represented by
arrow 455 , for message - passing boundaries and data depen
dencies between code paths . An independent component of
the heterogeneous system 400 exemplarily can be separated
from other components based on the identified message
passing boundary . In addition , an identified component can
be determined based on its data dependency . Exemplarily , an
identified component will share no data dependency with
other components within the heterogeneous system 400. In
additional embodiments , once independent components of
the heterogeneous system 400 are identified , they can be
mapped to independent target hardware nodes based on the
application configuration . Exemplarily , the mapping of com
ponents to these targets can be determined by an explicit
configuration of the heterogeneous system 400 or by deter
mining a component dependency based on a specific target
peripheral .
[0062] In one embodiment , the heterogeneous system 400
can represent a temperature monitoring system which exem
plarily measures a temperature of an environment over time
and provides a graph of that temperature versus time . In this
example , the heterogeneous system 400 can include a timer
410 which triggers a temperature sensor that provides a read
temperature value 420. The read temperature value 420 can
be used to exemplarily create a rolling average value 425
which can then be stored as a stored value 430. In this
embodiment , the stored value 430 can be analyzed to
exemplarily provide a graph in the Showgraph function 430 .
Exemplarily , the Showgraph function 430 output is served or
transmitted to a user client device .
[0063] Exemplarily , in accordance with an embodiment of
this invention , the heterogeneous system 400 can be ana
lyzed , as represented by arrow 455 , to determine message
boundaries and individual components . Based on this analy
sis , different segments within the heterogeneous system 400
can be identified as exemplarily illustrated in the segmented

system 450. Within the segmented system 450 , the identified
components can include a sensor 460 , a gateway device 470 ,
and a server 480. In other exemplary embodiments , any
number of target configurations and identified components
can be recognized from the heterogenous device being
considered . In this exemplary embodiment , the sensor 460
can include a timer function 462 and read temperature
function 464. The gateway 470 can include a rolling average
function 472 while the server 480 can perform a storing
value function 482 and a graph , such as a “ Showgraph ” ,
function 484 .
[0064] FIG . 5 illustrates an exemplary illustration of the
generation of code for intra - node message - passage bound
aries that were identified for the segmented system 450 of
FIG . 4. Exemplarily , FIG . 5 illustrates a build of interme
diate code that is deployed to physical nodes between these
boundaries . FIG . 5 illustrates the communication between
sensor portion 510 , gateway 540 , and server 590 that com
prise the segmented system 450. Within the sensor portion
510 , the similar functions of the heterogeneous system 400
from FIG . 4 are employed in the timer function 512 and read
temperature function 514. Next , within the sensor portion
510 , a protocol serializer 520 is employed to provide an
output , such as a Bluetooth message , although any message
interface or process may be used , BT output 530 , across the
node 535 identified between the sensor 510 and the gateway
540. In other embodiments , different communication modes
can be employed , from exemplary wired connections to
various wireless communication paths .
[0065] Next , the BT output 530 is received at gateway 540
and is de - serialized at de - serializer 545. Next , the rolling
average function 550 is performed within the gateway 540
and then that value is serialized in the gateway protocol
serializer 560 to create an output , such as message via a
Message Queuing Telemetry Transport pathway , or MQ 570 ,
although any message interface or process may be used . The
message MQ 570 is then transported across the node 575
between gateway 540 and server 590. At the server 590 , the
MQ message 570 is received and de - serialized at the pro
tocol de - serializer 580. The server 590 then uses these
values at the store average function 592 and can perform the
show graph function 594. That is , referring to method 300
illustrated within FIG . 3 , specialized code is created , includ
ing a serialization and de - serialization code for each com
munication channel between the target hardware nodes .
Exemplarily , once individual components of a heterogenous
system are identified , the components are mapped to inde
pendent target hardware nodes based on the application
configuration . In other embodiments , different communica
tion modes can be employed , from exemplary wired con
nections to various wireless communication paths .
[0066] Referring to method 300 of FIG . 3 , where in step
390 the resulting code is deployed , FIG . 5 exemplarily
illustrates the deployment of code where intermediate code
generated in step 350 of FIG . 3 can be deployed to each
physical node such as sensor 510 , gateway 540 , and server
590 of FIG . 5 to perform message serialization / deserializa
tion by protocol serializer 520 and 560 and protocol de
serializer 545 and 580 between each node of the identified
nodes 535 and 575. Exemplarily , the message types and data
crossing each boundary is identified and incorporated into
the message serialization / deserialization protocols . In some
examples , the BT message 530 would include the tempera
ture data collected by the sensor 510. In other examples , the

a

a

US 2022/0276849 A1 Sep. 1 , 2022
8

as

2

a

MQ message 570 includes data such as the rolling average
compiled by the gateway 540. In other embodiments , the
gateway 540 would collect rolling averages from one or
more sensors and communicate that data through message
MQ 570 to the server . Exemplarily , by identifying these
nodes , updates to the various identified components includ
ing adding new components between the identified compo
nents , or changing the work being performed at each com
ponent can be accomplished without modifying each
application's code .
[0067] As discussed above with respect to FIG . 1 , the
application deployment system 108 can exemplarily gener
ate code that can be deployed at the sensor 510 , gateway
540 , and server 590 of FIG . 5. Exemplarily , the code can
include serialization code that is synthesized for each intra
node message - passing boundary between the sensor 510 ,
gateway 540 , and server 590. Additionally , newly added
devices can be added between pre - existing nodes by simply
re - coding the identified protocol serializer 520 and 560 and
protocol de - serializer 545 and 580 for the existing devices so
as to adapt to newly updated code , newly added devices , or
changes to the operation of intermediate devices in the
heterogenous system .
[0068] FIG . 6 illustrates an exemplary example of resolv
ing proxy classes and objects for the identified components .
Exemplarily , the resulting code 610 can be identified and
generated from the various libraries including a generic
library 620 , an architecture - optimized library 630 , and a
part - specific library 640 to result in the most target archi
tecture and peripheral specific implementation possible . In
this example , the libraries arranged from a least specific and
generic version of code in the generic library 620 to the more
specific , the architecture - optimized library 630 , and to the
most specific , the part - specific library 640. In the example
presented within FIG . 6 , the code for proxy class Y can be
found in all three libraries , and accordingly , the most specific
code from the part - specific library is chosen . On the other
hand , the code for proxy class X is only available in two of
the three libraries , and in this instance the more specific code
from the architecture - optimized library 630 is chosen .
[0069] FIG . 7 illustrates an exemplary serialization strat
egy that can be employed , for example , in the generating
serialization / deserialization code step 310 of method 300 in
FIG . 3. FIG . 7 illustrates a serialization strategy for gener
ating a communication channel serialization / deserialization
strategy can be based on a shared target communication
channel capabilities and configuration to connect the nodes
between identified components . Exemplarily , by leveraging
a knowledge of channel implementation and the message
types that will traverse each channel , a strategy for serial
ization / deserialization can be generated . In addition , a secu
rity strategy can be considered in creating the serialization /
deserialization strategy .
[0070] Exemplarily , the messages that cross the channel
between the exemplary two targeted components includes
the message serialization itself , a security strategy as illus
trated by the Key Management and / or cryptologic method
employed between the targeted components . Exemplarily ,
the channel configuration can inform the channel manage
ment protocols between the targeted components which
would allow for the control and security of downstream
components by a central device , such as a customer con
trolling and updating its downstream IoT devices .

[0071] FIG . 8 provides an exemplary illustration of a
system and method 800 for deploying the various codes ,
including serialization and de - serialization codes
described above in step 390 of FIG . 3. Additionally , in some
embodiments , additional code , such as updated code affect
ing the programming of individual components in the
divided system may be applied to the various individual
components of the divided system . In other embodiments ,
additional target components can be added or removed from
the system as desired . Exemplarily , the application deploy
ment system 810 , similar to the application deployment
system 108 described in FIG . 1 can control the process of
deploying updated code , including serialization and de
serialization codes to the discrete components of the het
erogenous system that was divided in step 330 , for example ,
in method 300 of FIG . 3 .
[0072] Exemplarily , the application deployment system
810 can include various upstream , administrative control
and programming apparatus and management tools . The
application deployment system 810 includes the coding and
other components as exemplarily described in FIG . 2 as well
as other heterogenous system management personnel and
systems that control the heterogenous system . In one
embodiment , software updates 820 for each , or individual ,
target components of the divided system can be generated at
the application deployment system 810 and applied to
downstream components , such as cloud server 870 , which
can be similar to server 590 of FIG . 5 , server 480 of FIG . 4 ,
and server 106 of FIG . 1. Additionally , software updates 820
for each , or individual , target components of the divided
system can be generated at the application deployment
system 810 and applied to downstream components , such as
gateway 880 , similar to gateway 540 of FIG . 5 , gateway 470
of FIG . 4 , and gateway 104 of FIG . 1. Additionally , software
updates 820 for each , or individual , target components of the
divided system can be generated at the application deploy
ment system 810 and applied to downstream components ,
such as an edge device 890 , which can be considered like the
sensor 540 of FIG . 5 , sensor 460 of FIG . 4 , and sensor 102
of FIG . 1 .
[0073] In one embodiment , serialization codes 830 ,
including serialization and de - serialization codes 830 , for
each , or individual , target components of the divided system
can be generated at the application deployment system 810
and applied to downstream components , such as cloud
server 870 , like server 590 of FIG . 5 , server 480 of FIG . 4 ,
and server 106 of FIG . 1. Additionally , serialization codes
830 for each , or individual , target components of the divided
system can be generated at the application deployment
system 810 and applied to downstream components , such as
gateway 880 , similar to gateway 540 of FIG . 5 , gateway 470
of FIG . 4 , and gateway 104 of FIG . 1. Additionally , serial
ization codes 830 for each , or individual , target components
of the divided system can be generated at the application
deployment system 810 and applied to downstream compo
nents , such as an edge device 890 , which can be considered
similar to the sensor 540 of FIG . 5 , sensor 460 of FIG . 4 , and
sensor 102 of FIG . 1 .
[0074] In another embodiment , key handling information
840 , exemplarily providing security and authorized access
that is exemplarily controlled by the application deployment
system 810 , for each , or individual , target components of the
divided system can be generated at the application deploy
ment system 810 and applied to downstream components ,

US 2022/0276849 A1 Sep. 1 , 2022
9

such as cloud server 870 , similar to server 590 of FIG . 5 ,
server 480 of FIG . 4 , and server 106 of FIG . 1. Additionally ,
key handling information 840 for each , or individual , target
components of the divided system can be generated at the
application deployment system 810 and applied to down
stream components , such as gateway 880 , which can be
conceptually similar to gateway 540 of FIG . 5 , gateway 470
of FIG . 4 , and gateway 104 of FIG . 1. Likewise , key
handling information 840 for each , or individual , target
components of the divided system can be generated at the
application deployment system 810 and applied to down
stream components , such as an edge device 890 , which is
comparable to the sensor 540 of FIG . 5 , sensor 460 of FIG .
4 , and sensor 102 of FIG . 1 .
[0075] In additional embodiments , encryption codes 850 ,
exemplarily ensuring that the update and access to the
various discrete components of the heterogenous system is
exemplarily controlled by the application deployment sys
tem 810 , for each , or individual , target components of the
divided system can be generated at the application deploy
ment system 810 and applied to downstream components ,
such as cloud server 870 , similar to server 590 of FIG . 5 ,
server 480 of FIG . 4 , and server 106 of FIG . 1. Similarly , the
key handling information 840 can be used to gain , for
example , access to the encryption codes 850 to access the
various software updates 820 , serialization , and de - serial
ization codes 830 , exemplarily being received via the trans
mission or transport step 860 , described below . Additionally ,
encryption codes 850 , for each , or individual , target com
ponents of the divided system can be generated at the
application deployment system 810 and applied to down
stream components , such as gateway 880 , comparable to
gateway 540 of FIG . 5 , gateway 470 of FIG . 4 , and gateway
104 of FIG . 1. Likewise , encryption codes 850 , for each , or
individual , target components of the divided system can be
generated at the application deployment system 810 and
applied to downstream components , such as an edge device
890 , which can be considered like the sensor 540 of FIG . 5 ,
sensor 460 of FIG . 4 , and sensor 102 of FIG . 1 .
[0076] In another embodiment , the application deploy
ment system 810 performs a transmission or transport step
860 that is exemplarily controlled by the application deploy
ment system 810 to provide the various serialization codes ,
programming , and other instructions for each , or individual ,
target components of the divided system can be generated at
the application deployment system 810 and applied to
downstream components , such as cloud server 870 , similar
to server 590 of FIG . 5 , server 480 of FIG . 4 , and server 106
of FIG . 1. Additionally , the transport step 860 communicates
with each , or individual , target components of the divided
system from the application deployment system 810 and
applied to downstream components , such as gateway 880 ,
similar to gateway 540 of FIG . 5 , gateway 470 of FIG . 4 , and
gateway 104 of FIG . 1. Likewise , the transport step 860
communicates with each , or individual , target components
of the divided system from the application deployment
system 810 and applied to downstream components , such as
an edge device 890 , which can be considered similar to the
sensor 540 of FIG . 5 , sensor 460 of FIG . 4 , and sensor 102
of FIG . 1 .
[0077] Exemplarily , in system 800 , the heterogenous sys
tem 400 of FIG . 4 , for example , can be analyzed and divided
as exemplarily illustrated in method 300 of FIG . 3. The
application deployment system 810 can then update the

downstream components , such as edge device 870 , gateway
880 , and server 890 with updated code , division of work ,
and the addition or removal of components to the heterog
enous system . In some embodiments , any number of servers
890 may be updated while a potentially unlimited gateway
devices 880 and downstream components , such as a large
scale sensing operation comprising potentially unlimited
downstream sensors and other components , such as the edge
device 870 , can be updated and controlled by the application
deployment system 810 .
[0078] FIG . 9 is an exemplary illustration of an embodi
ment the present invention deploying code to downstream
elements of system 900 in accordance with method 300 of
FIG . 3. System 900 exemplary illustrates a heterogenous
system including a sensor device 910 , a gateway 920 , and
server 930. These three elements exemplarily perform sepa
rate tasks to generate an output illustrated in element 940. In
accordance with method 300 of FIG . 3 and utilizing , for
example , system 800 of FIG . 8 where an application deploy
ment system 810 can exemplarily update the operation of
system 900. In this example , the heterogenous system has
been analyzed in accordance with method 300 to determine
the individual components . Referring to FIG . 8 , software
updates 820 have been developed and compiled to be
distributed to the updated system 950 of FIG . 9. In this
example , the software updates are distributed to sensor
device 910 , gateway 920 , and server 930 to perform updated
operations resulting in modified output 960 from updated
system 950 .
[0079] In the example of updating system 900 , the previ
ous programming can be represented as shown in table 1
below where the sensor device 910 was previously pro
grammed to perform a timing task and to then output that
value . The gateway 920 adds the value of 20 to that value
while the server 930 adds a value of 300 to that value .

TABLE 1

=

i

tag (' sensor) {
Sampler (2 seconds) - >

triggered {
new {

private var i = 0
def apply () : R [Int] = { i + = 1 ; i } % 10

}
}

}
tag (' gateway) {

(x : R [Int] = > 20 + x)
}
tag (' server) {

(x : R [Int] = > 300 + x)
}
tag (' output) {

sink (x : R [Int] = > println (x) }
}

[0080] Next , in the example of reprogramming the ele
ments of system 900 to provide the updated system 950 ,
table 2 illustrates the newly added code . The newly added
code instructs the sensor device 910 to perform a timing
task , multiply that value by 2 and to then output that value .
The gateway 920 is now instructed to add the value of 30 to
that value while the server 930 now adds a value of 500 to
that value . This allows exemplary embodiments of the
invention to provide changes to system 900 that ultimately
changes the output 940 of a series of numbers of 321 through

US 2022/0276849 A1 Sep. 1 , 2022
10

329 to the modified output 960 of a series of values starting
at 530 and stepping by a value of two to 538 .

TABLE 2

=

tag (' sensor) {
Sampler (1 seconds) - >

triggered {
new {

private var i 0
def apply () : R [Int] = { i + = 2 ; i } % 10

}
}

}
tag (' gateway) {

(x : R [Int] = > 30 + x)
} -
tag (' server) {

(x : R [Int] = > 500 + x)
} - >
tag (' output) {

sink (x : R [Int] = > println (x) }
}

a

[0081] FIG . 10 is another exemplary illustration of an
embodiment the present invention deploying code to down
stream elements of system 1010 in accordance with method
300 of FIG . 3. In this example , system 1010 is a heterog
enous system that is composed of an embedded node 1020
and cloud database 1030. Exemplarily , the embedded node
1020 performs a sensing and recording function while the
cloud database 1030 performs an analysis and archive
function . After performing the elements of method 300 of
FIG . 3 and being distributed via the application deployment
system 810 of FIG . 8 , system 1010 has been updated into
updated system 1040. In the updated system 1040 , a fog
gateway 1050 has been added to the heterogenous system of
system 1010. In updated system 1040 , the fog gateway 1050
has been assigned the recording and analysis tasks while the
embedded node 1020 has been assigned the sensing func
tions and the cloud database 1030 retains its archive func
tion . In other embodiments , additional elements can be
added or removed from system 1010 in any combination of
newly added functions and devices .

may be implemented on one or more general - purpose com
puters associated with one or more networks , such as for
example an end - user computer system , a client computer , a
network server or other server system , a mobile computing
device (e.g. , tablet computing device , mobile phone , smart
phone , laptop , or other appropriate computing device) , a
consumer electronic device , a music player , or any other
suitable electronic device , router , switch , or other suitable
device , or any combination thereof . In at least some embodi
ments , at least some of the features or functionalities of the
various embodiments disclosed herein may be implemented
in one or more virtualized computing environments (e.g. ,
network computing clouds , virtual machines hosted on one
or more physical computing machines , or other appropriate
virtual environments) .
[0084] Referring now to FIG . 11 , there is shown a block
diagram depicting an exemplary computing device 10 suit
able for implementing at least a portion of the features or
functionalities disclosed herein . Computing device 10 may
be , for example , any one of the computing machines listed
in the previous paragraph , or indeed any other electronic
device capable of executing software- or hardware - based
instructions according to one or more programs stored in
memory . Computing device 10 may be configured to com
municate with a plurality of other computing devices , such
as clients or servers , over communications networks such as
a wide area network a metropolitan area network , a local
area network , a wireless network , the Internet , or any other
network , using known protocols for such communication ,
whether wireless or wired .
[0085] In one aspect , computing device 10 includes one or
more central processing units (CPU) 12 , one or more inter
faces 15 , and one or more busses 14 (such as a peripheral
component interconnect (PCI) bus) . When acting under the
control of appropriate software or firmware , CPU 12 may be
responsible for implementing specific functions associated
with the functions of a specifically configured computing
device or machine . For example , in at least one aspect , a
computing device 10 may be configured or designed to
function as a server system utilizing CPU 12 , local memory
11 and / or remote memory 16 , and interface (s) 15. In at least
one aspect , CPU 12 may be caused to perform one or more
of the different types of functions and / or operations under
the control of software modules or components , which for
example , may include an operating system and any appro
priate applications software , drivers , and the like .
[0086] CPU 12 may include one or more processors 13
such as , for example , a processor from one of the Intel ,
ARM , Qualcomm , and AMD families of microprocessors .
In some embodiments , processors 13 may include specially
designed hardware such as application - specific integrated
circuits (ASICs) , electrically erasable programmable read
only memories (EEPROMs) , field - programmable gate
arrays (FPGAs) , and so forth , for controlling operations of
computing device 10. In a particular aspect , a local memory
11 (such as non - volatile random - access memory (RAM)
and / or read - only memory (ROM) , including for example
one or more levels of cached memory) may also form part
of CPU 12. However , there are many different ways in which
memory may be coupled to system 10. Memory 11 may be
used for a variety of purposes such as , for example , caching
and / or storing data , programming instructions , and the like .
It should be further appreciated that CPU 12 may be one of
a variety of system - on - a - chip (SOC) type hardware that may

Hardware Architecture

[0082] Generally , the techniques disclosed herein may be
implemented on hardware or a combination of software and
hardware . For example , they may be implemented in an
operating system kernel , in a separate user process , in a
library package bound into network applications , on a spe
cially constructed machine , on an application - specific inte
grated circuit (ASIC) , or on a network interface card .
[0083] Software / hardware hybrid implementations of at
least some of the embodiments disclosed herein may be
implemented on a programmable network - resident machine
(which should be understood to include intermittently con
nected network - aware machines) selectively activated or
reconfigured by a computer program stored in memory . Such
network devices may have multiple network interfaces that
may be configured or designed to utilize different types of
network communication protocols . A general architecture
for some of these machines may be described herein in order
to illustrate one or more exemplary means by which a given
unit of functionality may be implemented . According to
specific embodiments , at least some of the features or
functionalities of the various embodiments disclosed herein

US 2022/0276849 A1 Sep. 1 , 2022
11

are

include additional hardware such as memory or graphics
processing chips , such as a QUALCOMM SNAP
DRAGONTM or SAMSUNG EXYNOSTM CPU as
becoming increasingly common in the art , such as for use in
mobile devices or integrated devices .
[0087] As used herein , the term “ processor ” is not limited
merely to those integrated circuits referred to in the art as a
processor , a mobile processor , or a microprocessor , but
broadly refers to a microcontroller , a microcomputer , a
programmable logic controller , an application - specific inte
grated circuit , and any other programmable circuit .
[0088] In one aspect , interfaces 15 are provided as net
work interface cards (NICs) . Generally , NICs control the
sending and receiving of data packets over a computer
network ; other types of interfaces 15 may for example
support other peripherals used with computing device 10 .
Among the interfaces that may be provided are Ethernet
interfaces , frame relay interfaces , cable interfaces , DSL
interfaces , token ring interfaces , graphics interfaces , and the
like . In addition , various types of interfaces may be provided
such as , for example , universal serial bus (USB) , Serial ,
Ethernet , FIREWIRETM , THUNDERBOLTTM , PCI , parallel ,
radio frequency (RF) , BLUETOOTHTM , near - field commu
nications (e.g. , using near - field magnetics) , 802.11 (WiFi) ,
frame relay , TCP / IP , ISDN , fast Ethernet interfaces , Gigabit
Ethernet interfaces , Serial ATA (SATA) or external SATA
(ESATA) interfaces , high - definition multimedia interface
(HDMI) , digital visual interface (DVI) , analog or digital
audio interfaces , asynchronous transfer mode (ATM) inter
faces , high - speed serial interface (HSSI) interfaces , Point of
Sale (POS) interfaces , fiber data distributed interfaces (FD
DIs) , and the like . Generally , such interfaces 15 may include
physical ports appropriate for communication with appro
priate media . In some cases , they may also include an
independent processor (such as a dedicated audio or video
processor , as is common in the art for high - fidelity ANV
hardware interfaces) and , in some instances , volatile and / or
non - volatile memory (e.g. , RAM) .
[0089] Although the system shown in FIG . 11 illustrates
one specific architecture for a computing device 10 for
implementing one or more of the embodiments described
herein , it is by no means the only device architecture on
which at least a portion of the features and techniques
described herein may be implemented . For example , archi
tectures having one or any number of processors 13 may be
used , and such processors 13 may be present in a single
device or distributed among any number of devices . In one
aspect , single processor 13 handles communications as well
as routing computations , while in other embodiments a
separate dedicated communications processor may be pro
vided . In various embodiments , different types of features or
functionalities may be implemented in a system according to
the aspect that includes a client device (such as a tablet
device or smartphone running client software) and server
systems (such as a server system described in more detail
below) .
[0090] Regardless of network device configuration , the
system of an aspect may employ one or more memories or
memory modules (such as , for example , remote memory
block 16 and local memory 11) configured to store data ,
program instructions for the general - purpose network opera
tions , or other information relating to the functionality of the
embodiments described herein (or any combinations of the
above) . Program instructions may control execution of or

comprise an operating system and / or one or more applica
tions , for example . Memory 16 or memories 11 , 16 may also
be configured to store data structures , configuration data ,
encryption data , historical system operations information , or
any other specific or generic non - program information
described herein .

[0091] Because such information and program instruc
tions may be employed to implement one or more systems
or methods described herein , at least some network device
embodiments may include nontransitory machine - readable
storage media , which , for example , may be configured or
designed to store program instructions , state information ,
and the like for performing various operations described
herein . Examples of such nontransitory machine - readable
storage media include , but are not limited to , magnetic
media such as hard disks , floppy disks , and magnetic tape ;
optical media such as CD - ROM disks ; magneto - optical
media such as optical disks , and hardware devices that are
specially configured to store and perform program instruc
tions , such as read - only memory devices (ROM) , flash
memory (as is common in mobile devices and integrated
systems) , solid state drives (SSD) and “ hybrid SSD ” storage
drives that may combine physical components of solid state
and hard disk drives in a single hardware device (as are
becoming increasingly common in the art with regard to
personal computers) , memristor memory , random access
memory (RAM) , and the like . It should be appreciated that
such storage means may be integral and non - removable
(such as RAM hardware modules that may be soldered onto
a motherboard or otherwise integrated into an electronic
device) , or they may be removable such as swappable flash
memory modules (such as “ thumb drives ” or other remov
able media designed for rapidly exchanging physical storage
devices) , “ hot - swappable ” hard disk drives or solid state
drives , removable optical storage discs , or other such remov
able media , and that such integral and removable storage
media may be utilized interchangeably . Examples of pro
gram instructions include both object code , such as may be
produced by a compiler , machine code , such as may be
produced by an assembler or a linker , byte code , such as may
be generated by for example a JAVATM compiler and may be
executed using a Java virtual machine or equivalent , or files
containing higher level code that may be executed by the
computer using an interpreter (for example , scripts written in
Python , Perl , Ruby , Groovy , or any other scripting lan
guage) .
[0092] In some embodiments , systems may be imple
mented on a standalone computing system . Referring now to
FIG . 12 , there is shown a block diagram depicting a typical
exemplary architecture of one or more embodiments or
components thereof on a standalone computing system .
Computing device 20 includes processors 21 that may run
software that carry out one or more functions or applications
of embodiments , such as for example a client application 24 .
Processors 21 may carry out computing instructions under
control of an operating system 22 such as , for example , a
version of MICROSOFT WINDOWSTM operating system ,
APPLE macOSTM or iOSTM operating systems , some variety
of the Linux operating system , ANDROIDTM operating
system , or the like . In many cases , one or more shared
services 23 may be operable in system 20 , and may be useful
for providing common services to client applications 24 .
Services 23 may for example be WINDOWSTM services ,
user - space common services in a Linux environment , or any

US 2022/0276849 A1 Sep. 1 , 2022
12

other type of common service architecture used with oper
ating system 21. Input devices 28 may be of any type
suitable for receiving user input , including for example a
keyboard , touchscreen , microphone (for example , for voice
input) , mouse , touchpad , trackball , or any combination
thereof . Output devices 27 may be of any type suitable for
providing output to one or more users , whether remote or
local to system 20 , and may include for example one or more
screens for visual output , speakers , printers , or any combi
nation thereof . Memory 25 may be random - access memory
having any structure and architecture known in the art , for
use by processors 21 , for example to run software . Storage
devices 26 may be any magnetic , optical , mechanical , mem
ristor , or electrical storage device for storage of data in
digital form (such as those described above , referring to
FIG . 5) . Examples of storage devices 26 include flash
memory , magnetic hard drive , CD - ROM , and / or the like .
[0093] In some embodiments , systems may be imple
mented on a distributed computing network , such as one
having any number of clients and / or servers . Referring now
to FIG . 13 , there is shown a block diagram depicting an
exemplary architecture 30 for implementing at least a por
tion of a system according to one aspect on a distributed
computing network . According to the aspect , any number of
clients 33 may be provided . Each client 33 may run software
for implementing client - side portions of a system ; clients
may comprise a system 20 such as that illustrated in FIG . 6 .
In addition , any number of servers 32 may be provided for
handling requests received from one or more clients 33 .
Clients 33 and servers 32 may communicate with one
another via one or more electronic networks 31 , which may
be in various embodiments any of the Internet , a wide area
network , a mobile telephony network (such as CDMA or
GSM cellular networks) , a wireless network (such as WiFi ,
WiMAX , LTE , and so forth) , or a local area network (or
indeed any network topology known in the art ; the aspect
does not prefer any one network topology over any other) .
Networks 31 may be implemented using any known network
protocols , including for example wired and / or wireless pro
tocols .
[0094] In addition , in some embodiments , servers 32 may
call external services 37 when needed to obtain additional
information , or to refer to additional data concerning a
particular call . Communications with external services 37
may take place , for example , via one or more networks 31 .
In various embodiments , external services 37 may comprise
web - enabled services or functionality related to or installed
on the hardware device itself . For example , in one aspect
where client applications 24 are implemented on a smart
phone or other electronic device , client applications 24 may
obtain information stored in a server system 32 in the cloud
or on an external service 37 deployed on one or more of a
particular enterprise's or user's premises .
[0095] In some embodiments , clients 33 or servers 32 (or
both) may make use of one or more specialized services or
appliances that may be deployed locally or remotely across
one or more networks 31. For example , one or more data
bases 34 may be used or referred to by one or more
embodiments . It should be understood by one having ordi
nary skill in the art that databases 34 may be arranged in a
wide variety of architectures and using a wide variety of data
access and manipulation means . For example , in various
embodiments one or more databases 34 may comprise a
relational database system using a structured query language

(SQL) , while others may comprise an alternative data stor
age technology such as those referred to in the art as
“ NoSQL ” (for example , HADOOP CASSANDRATM ,
GOOGLE BIGTABLETM , and so forth) . In some embodi
ments , variant database architectures such as column - ori
ented databases , in - memory databases , clustered databases ,
distributed databases , or even flat file data repositories may
be used according to the aspect . It will be appreciated by one
having ordinary skill in the art that any combination of
known or future database technologies may be used as
appropriate , unless a specific database technology or a
specific arrangement of components is specified for a par
ticular aspect described herein . Moreover , it should be
appreciated that the term “ database ” as used herein may
refer to a physical database machine , a cluster of machines
acting as a single database system , or a logical database
within an overall database management system . Unless a
specific meaning is specified for a given use of the term
“ database ” , it should be construed to mean any of these
senses of the word , all of which are understood as a plain
meaning of the term “ database ” by those having ordinary
skill in the art .
[0096] Similarly , some embodiments may make use of one
or more security systems 36 and configuration systems 35 .
Security and configuration management are common infor
mation technology (IT) and web functions , and some
amount of each are generally associated with any IT or web
systems . It should be understood by one having ordinary
skill in the art that any configuration or security subsystems
known in the art now or in the future may be used in
conjunction with embodiments without limitation , unless a
specific security 36 or configuration system 35 or approach
is specifically required by the description of any specific
aspect .
[0097] FIG . 14 shows an exemplary overview of a com
puter system 40 as may be used in any of the various
locations throughout the system . It is exemplary of any
computer that may execute code to process data . Various
modifications and changes may be made to computer system
40 without departing from the broader scope of the system
and method disclosed herein . Central processor unit (CPU)
41 is connected to bus 42 , to which bus is also connected
memory 43 , nonvolatile memory 44 , display 47 , input /
output (1/0) unit 48 , and network interface card (NIC) 53 .
I / O unit 48 may , typically , be connected to keyboard 49 ,
pointing device 50 , hard disk 52 , and real - time clock 51 .
NIC 53 connects to network 54 , which may be the Internet
or a local network , which local network may or may not
have connections to the Internet . Also shown as part of
system 40 is power supply unit 45 connected , in this
example , to a main alternating current (AC) supply 46. Not
shown are batteries that could be present , and many other
devices and modifications that are well known but are not
applicable to the specific novel functions of the current
system and method disclosed herein . It should be appreci
ated that some or all components illustrated may be com
bined , such as in various integrated applications , for
example Qualcomm or Samsung system - on - a - chip (SOC)
devices , or whenever it may be appropriate to combine
multiple capabilities or functions into a single hardware
device (for instance , in mobile devices such as smartphones ,
video game consoles , in - vehicle computer systems such as
navigation or multimedia systems in automobiles , or other
integrated hardware devices) .

2

US 2022/0276849 A1 Sep. 1 , 2022
13

[0098] In various embodiments , functionality for imple
menting systems or methods of various embodiments may
be distributed among any number of client and / or server
components . For example , various software modules may be
implemented for performing various functions in connection
with the system of any particular aspect , and such modules
may be variously implemented to run on server and / or client
components .
[0099] The skilled person will be aware of a range of
possible modifications of the various embodiments
described above . Accordingly , the present invention is
defined by the claims and their equivalents .

ADDITIONAL CONSIDERATIONS

[0100] As used herein any reference to “ one embodiment ”
or “ an embodiment ” means that a particular element , fea
ture , structure , or characteristic described in connection with
the embodiment is included in at least one embodiment . The
appearances of the phrase “ in one embodiment ” in various
places in the specification are not necessarily all referring to
the same embodiment .
[0101] Some embodiments may be described using the
expression “ coupled ” and “ connected ” along with their
derivatives . For example , some embodiments may be
described using the term " coupled ” to indicate that two or
more elements are in direct physical or electrical contact .
The term " coupled , ” however , may also mean that two or
more elements are not in direct contact with each other , but
yet still co - operate or interact with each other . The embodi
ments are not limited in this context .
[0102] As used herein , the terms " comprises , ” “ compris
ing , ” “ includes , " " including , " " has , ” “ having ” or any other
variation thereof , are intended to cover a non - exclusive
inclusion . For example , a process , method , article , or appa
ratus that comprises a list of elements is not necessarily
limited to only those elements but may include other ele
ments not expressly listed or inherent to such process ,
method , article , or apparatus . Further , unless expressly
stated to the contrary , “ or ” refers to an inclusive or and not
to an exclusive or . For example , condition A or B is
satisfied by any one of the following : A is true (or present)
and Bis false (or not present) , A is false (or not present) and
Bis true (or present) , and both A and B are true (or present) .
[0103] In addition , use of the “ a ” or “ an ” are employed to
describe elements and components of the embodiments
herein . This is done merely for convenience and to give a
general sense of the invention . This description should be
read to include one or at least one and the singular also
includes the plural unless it is obvious that it is meant
otherwise .
[0104] Upon reading this disclosure , those of skill in the
art will appreciate still additional alternative structural and
functional designs for a system and a process for creating an
interactive message through the disclosed principles herein .
Thus , while particular embodiments and applications have
been illustrated and described , it is to be understood that the
disclosed embodiments are not limited to the precise con
struction and components disclosed herein . Various apparent
modifications , changes and variations may be made in the
arrangement , operation and details of the method and appa
ratus disclosed herein without departing from the spirit and
scope defined in the appended claims .

What is claimed is :
1. A method , the method comprising :
identifying , by a processing system comprising a proces

sor , an individual component from among a plurality of
components in a target system as an identified compo
nent of a plurality of identified components ;

mapping , by the processing system , each one of the
identified components to respective ones of a target
hardware node ;

generating , by the processing system , intermediate code
for each respective one of the target hardware nodes ;

generating , by the processing system , serialization code
for each respective communication interface between
the target hardware nodes ;

transmitting , by the processing system , the respective
intermediate codes to each one of the target hardware
nodes ; and

transmitting , by the processing system , respective serial
ization codes to each communication interface of the
target hardware nodes .

2. The method of claim 1 , wherein the identifying com
prises identifying message - passing boundaries between
code paths in the target system .

3. The method of claim 1 , wherein the identifying com
prises identifying data dependencies between code paths in
the target system .

4. The method of claim 1 , wherein the generating the
intermediate code comprises accessing a library to generate
specialized code for the respective target hardware nodes .

5. The method of claim 4 , wherein the library comprises
a generic library , an architecture - optimized library , and a
part - specific library .

6. The method of claim 1 , wherein the generating the
serialization code comprises :

detecting a message type being provided between the
respective communication interface ; and

determining a serialization strategy for the message type
according to security requirements for the respective
communication interface and a channel configuration
of the respective communication interface .

7. The method of claim 1 , wherein the method further
comprises transforming the respective intermediate codes
into a format of the respective target hardware node .

8. A computer program product comprising a non - transi
tory computer readable storage medium having instructions
encoded thereon that , when executed by a processor , cause
the processor to :
consume an application specification associated with a

plurality of devices provided in a network environment
as a consumed application specification ;

identify independent components in the network by iden
tifying message - passing boundaries between code
paths as identified independent components ;

map the consumed application specification to the iden
tified independent components by leveraging one or
more code libraries ;

encode one more objects of the consumed application
specification for a target communication channel by
detecting message types that may traverse each channel
from one target node to another ; and

transform the consumed application specification into a
format suitable for a target node .

9. The computer program of claim 8 , wherein the encod
ing of the one of more objects further comprises encoding

US 2022/0276849 A1 Sep. 1 , 2022
14

2

the consumed application specification according to a deter
mined security need for the communication channel .

10. The computer program of claim 8 , wherein the code
library comprises one of a generic library , an architecture
optimized library , and a part - specific library .

11. A system , comprising :
a processing system including a processor ; and
a memory , coupled to the processing system , that stores

executable instructions and that , when executed by the
processing system , facilitate performance of opera
tions , comprising :
identifying an individual component from among a

plurality of components in a target system as an
identified component of a plurality of identified
components ;

mapping each one of the identified components to
respective ones of a target hardware node ;

generating serialization code for each respective com
munication interface between the target hardware
nodes ; and

transmitting , by the processing system , respective seri
alization codes to each communication interface of
the target hardware nodes .

12. The system of claim 11 , wherein the identifying
comprises identifying message - passing boundaries between
code paths in the target system .

13. The system of claim 11 , wherein the identifying
comprises identifying data dependencies between code
paths in the target system .

14. The system of claim 11 , wherein the generating the
serialization code comprises detecting a message type being
provided between the respective communication interface .

15. The system of claim 14 , wherein the generating the
serialization code further comprises determining a serializa
tion strategy for the message type according to security
requirements for the respective communication interface
and a channel configuration of the respective communica
tion interface .

16. The system of claim 11 , wherein the operations further
comprise generating intermediate code for each respective
one of the target hardware nodes .

17. The system of claim 16 , wherein the operations further
comprise transforming the respective intermediate codes
into a format of the respective target hardware node .

18. The system of claim 16 , wherein the operations further
comprise transmitting the respective intermediate codes to
each one of the target hardware nodes .

19. The system of claim 16 , wherein the generating the
intermediate code comprises accessing a library to generate
specialized code for the respective target hardware nodes .

20. The system of claim 19 , wherein the library comprises
a generic library , an architecture - optimized library , and a
part - specific library .

