US 20220358627A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2022/0358627 A1

Deng et al.

43) Pub. Date: Nov. 10, 2022

(54) HIGH DYNAMIC RANGE IMAGE

PROCESSING WITH FIXED CALIBRATION

SETTINGS

(71) Applicant: NVIDIA Corporation, Santa Clara, CA

Us)

(72) Inventors: Yining Deng, Fremont, CA (US); Eric
Dujardin, San Jose, CA (US); Sean
Midthun Pieper, San Jose, CA (US);
Minwoo Park, Saratoga, CA (US)

(21) Appl. No.: 17/308,663

(22) Filed:

May 5, 2021

Publication Classification

(51) Int. CL
GO6T 5/00
GO6T 5/50

100

A

Locic Devices 118

GENERAL PURPOSE
| PROCESSOR 122

IMAGE SIGNAL
PROCESSOR 124

HDR Ivace
SENSOR(E) 144

(2006.01)
(2006.01)

HO4N 5/91 (2006.01)
HO4N 5/235 (2006.01)
GOG6N 3/08 (2006.01)
(52) US.CL
CPC oo GOG6T 5/009 (2013.01); GO6T 5/50

(2013.01); HO4N 5/91 (2013.01); HO4N
5/2355 (2013.01); GO6N 3/08 (2013.01); GO6T
2207/30252 (2013.01); GO6T 2207/20081
(2013.01); GO6T 2207/20084 (2013.01); GO6T
2207/20208 (2013.01)

(57) ABSTRACT

In various examples, apparatuses, systems, and techniques
to perform offline image signal processing of source image
data to generate target image data. In at least one embodi-
ment, data collection using exposure and calibration setting
of an image sensor is performed to generate source image
data, which is then processed by using offline image signal
processing to generate target data.

APPLICATIONS

é

IMAGE SIGNAL PROCESSING

140] MODEL TRANING 112

B

TUMING
IMPROVEMENTS
ol Ti
AND Fixes 120 M Dliigg ONS

|

i

DHGITAL EXPOSURE
CALIBRATION DATA 110

US 2022/0358627 Al

7T vAv(] NOLLYHEITYD
BUNSOXT VLIDI(

9 %
w,
S
° |
= |
m . PFT (shuosnag
¢ mz@?mmﬁﬁ@ GCl saxid any IOV MOH
2 W SINFWIAOU : —
& @zmzm:,.w m \\ m TT Y6 dd W
=
v u o
> ' v 7 L rosy)
4

e ovt M (AR S CEE O w

21T ONINIVH L 300K SNISSIO0OM TYNDIG SOV HUO TYNDIS SOV
S AN 2T HOSSIOOU
w <ot ~ FSOdUN TYHINID)
S R
SNOILY DI Id < §TT s3omag oo

N

ot

Patent Application Publication

US 2022/0358627 Al

Nov. 10,2022 Sheet 2 of 59

Patent Application Publication

>,

SONILLIS
FAHNSOLKT

T

280 {SPHEOMLaN A= Ve et 02 e3x14 ONY
ENEN 092 (s)zovi ? STONYH) DNINNY, SLNINFACHGIN]
SLINSIY YIVEE MY O) G3Mddy
5 N
52 (TYNOILAOD) 1554 M 85¢
HIHLO INOL m B

ﬁ FEF TINCAOW
H SULSILYLIS

Po DNIBSEO0H 4 TYNDIG TFOYIAY INMH40

{a)uoseNEg
ﬂ DV

oc
NOLLOZTION VLV

(0c

US 2022/0358627 Al

Nov. 10,2022 Sheet 3 of 59

Patent Application Publication

| Viv{] 3OV
Po1gouy]
Q6% cve
MOLY O Iddy Va0V MaH | | THNSOLKT
pog~ | _dYININOL W m HOSNIS
298~ ‘ 3 mmx
e opst) FET HOLOTES e e | e
N %NM.Q a HOLYHINTD SINIOG Nwmm w %mmwé HOLYOOT LSTHTLN (sTHosNIg
dYIA INO L TOULNOT +8 40 NOIDTN | 3OV HOH
07 aNoNT (MM DRV SINYNALT HOH

SHEAMES

828 VYO

92 DISY

TYNDIS JOVIg

CEe HOSSIDOE
FSOIMNG TVHINID

(2% S30IA3J OI00T

m)
{)
ﬁ FPE HOSSIDOH %
g |

US 2022/0358627 Al

Nov. 10,2022 Sheet 4 of 59

Patent Application Publication

INIO TOMLNCT) NOISSIHAdNS-3uYI4 = {0 'S 4) = 84
LNIOH TOMINGT SNC-HOIH = (1 M 'S A = 1H
INIOH TOEINOD aNO -GN = (LI 'S W) = 1IN

LNIOH TOHLNOD 3NOLI-MOT = (1 8 '8 &) = 11

STMTIVA 13Kl YLV IDVIN] 30HN0%

SAMIVA
REW
CARTA
OV

139V

US 2022/0358627 Al

Nov. 10,2022 Sheet 5 of 59

Patent Application Publication

01l

SAVIYA 13X YLV 3OV 308N0S

80 g0 ¥ G 0
NOLLONA]
ENI VI M
ANO L |
AN NIVE)

0

IAY.

20

80

O

STNIVA
13K
AN
IOV

13oNvl

Patent Application Publication

Nov. 10,2022 Sheet 6 of 59 US 2022/0358627 Al

a0

h)

CAPTURE SOURCE IMAGE DATA WITH FIXED EXPOSURE
CALIBRATION
BAOZ

¥

PERFORM IMAGE SIGNAL PROCESSING
8804

¥

OBTAIN TARGET IMAGE DATA
B0G

MODIFY IMAGE SIGNAL PROCESSING

8608

" DATA

+—No OPTIMAL?

*®

Yes

L 4

TRAIN NEURAL NETWORK
He12

;

Osrain RESULTS Frow NEURAL NETWORK
BG614

I3 A

RESULTS

COPTIMALY
B616

!

Yes

¥

PERFORM INFERENCING WITH NEURAL NETWORK E
BE18

Patent Application Publication Nov. 10,2022 Sheet 7 of 59 US 2022/0358627 A1

700

Dynamic RANGE IMAGE DATA
B/0Z

l

APPLY REGION OF INTEREST (RO FILTER ON
Source IMace Data
{OpTionaL) B704

¥

GENERATE STATISTICAL METRICS FOR SOURCE
(OpTionNaL) B70G

[CAPTURE SOURCE IMAGE DATA THAT 18 HiGH

IMAGE DATA

DETERMINE TONE CONTROL POINTS BASED ON
SOURCE PIXEL VALUES OF SOURCE IMAGE DATA
(SEE FIG. 4) B708

¥
DETERMINE TONE MAPPING FUNCTION BASED ON
TONE CONTROL POINTS
(SEE FIG. 4) B710

i

EMPLOY FRAME DELAY
(OpmionaL) B712

i

GENERATE TARGET IMAGE DATA BASED ON SOURCE
IMAGE DATA AND TONE MAPPING FUNCTION
B714

o

Patent Application Publication Nov. 10, 2022 Sheet 8 of 59 US 2022/0358627 A1

800 ¢ \
DETERMINE MID-TONE POINT BASED ON SOURCE IMAGE DATA

5802

v

DETERMINE LOW-TONE POINT BASED ON SOURCE IMAGE DATA
B804

3

DETERMINE HIGH-TONE POINT BASED ON SOURCE IMAGE DATA
B806

v

DETERMINE FLARE-SUPPRESSION POINT BASED ON SCURCE
IMAGE DATA
B80O8

¥
DETERMINE ADDHTIONAL CONTROL POINTS BASED ON SOURCE
IMAGE DATA
(OPTIONAL) BE1G

L v

v

PrRE-PROCESS SOURCE IMAGE DATA BASED ON CONTROL POINTS
B81Z

Y, ~

k4
DETERMINE GAIN-VALUE BASED ON MID-TONE POINT AND FLARE-
SUFPRESSION POINT
B814

v

DETERMINE TONE MAPPING FUNCTION BASED ON LOW-TONE
POINT, MID-TONE POINT, HIGH-TONE POINT, AND GAIN VALUE
5816

~,

¥
APPLY TONE MAPPING FUNCTION TO SOURCE IMAGE DATA TO
GENERATE TARGET IMAGE DATA
Ba18

LN v

¥
APPLY GAMMA-COMPRESSION FUNCTION TO TARGET IMAGE DaTa
TO GENERATE COLOR-COMPRESSED IMAGE DATA
BB20

¥

(GENERATE STANDARD DivNapmic RANGE (SDR) IMace DaTA
BASED ON COLOR COMPRESSED IMAGE DATA
BR22

Patent Application Publication Nov. 10, 2022 Sheet 9 of 59 US 2022/0358627 A1

800

EMPLOY FIRST LoGic DEVICE TO
DETERMINE TONE MAPPING FUNCTION
8904

|

EMPLOY SECOND Locic DEVICE TO
TARGET IMAGE DATA
5504

Patent Application Publication

Nov. 10, 2022 Sheet 10 of 59

US 2022/0358627 Al

TRAINING LOGIC/HARDWARE STRUCTURE(s) 1015

i
3]
§ CODE AND/OR 3
| DATA fﬁﬁmgg DATA STORAGE |
; AL 1005 !
| 5 ACTIVATION
LN Y A STORAGE
1020
ARITHMETIC LOGIC
UNIT(s) # SUU——————
1010
HARDWARE STRUCTURE(s) 1015
CODE AND/OR
DATA fgg RAGE DATA STORAGE
ek 1005
COMPUTATIONAL COMPUTATIONAL
HARDWARE HARDWARE
1002 1008

™,

.

ACTIVATION STORAGE

US 2022/0358627 Al

Nov. 10, 2022 Sheet 11 of 59

Patent Application Publication

viil
nsay

8aLL

SIOMIBN g

BINSN
poLie |

ahil

19SBIR(] MEN

GGt
SIOMIBN
BINSN pauEiun

POLL
yiomawel 4 Bunel

Buiiel

ASE
ettt =Ty

Patent Application Publication Nov. 10,2022 Sheet 12 of 59 US 2022/0358627 Al

DATA CENTER

1200

—

APPLICATION LAYER 1240

APPLICATION(s) 1242

SOFTWARE LAYER 1220

SOFTWARE 1232

FRAMEWORK LAYER 1240

JOoB CONFIGURATION
SCHEDULER 1222 MANAGER 1224

DISTRIBUTED FILE SYSTEM 1228

RESCURCE MANAGER 1226

DATA CENTER INFRASTRUCTURE LAYER 1210
RESQURCE ORCHESTRATOR 1212

GROUPED COMPUTING RESOURCES 1214
1015

(NODE C.R.|

(NODE C.R. }

®®® [NODECR. |

US 2022/0358627 Al

Nov. 10, 2022 Sheet 13 of 59

Patent Application Publication

grel
NILSAS
WOSNIS TVEL 7yET
. FAvdY HOSNIS N -
8yl NOILYHEIA J6E IWEL ohvuan oo
HOLVNLOY BYET INOHIOEIA NTLSAS 4 . g HOSNIS
ERLA HOSNIS ZSET HOSNES Q3345 aer
et . ©O3AdS (STHOLYYINEI0Y EpYat: HOSNIS
YOSNZS Hvan \\ [AUOHHE o UVl
09ET 5 0981
YOSNIS HY QY RSET (S)HOSNIS BpET HOSNIS
A SSND HOLYNLIOY) UV avY
79571 9cET ivdd ﬁwilimmMﬂ
SO (sposvnioy | o\ PE INOHAOUIIN
JINOSYHLIN y SNIYIILS {s]HOSNIS ‘
OLET (SHvHINY3 itl}.. awl P 79ET
MIAA-IQIM 05€1 7 meﬁ INILSAS 4 \‘ YOSNIS
9951 W3ILSAS i ONRIFALS et JINOSYHLIN
(slvyanvys 03u3Ls [NOISINdOUd / L. B} ZNEI]
, OveL] FHOMIIN N ggey
. TLET {STHOSNIS B 96£1 . (SIHITIOULNODD
{SIUIAYD GIUVHANI ONI¥IILS e ZEET INOHACHIIN S 9TET ,
UILSNT (SIWNNILNY
ooy ANIWNUISNI SSITIUIM
AYTASIA 1K VLET (S)YHINYD
aONNOWHNS
M 0051

US 2022/0358627 Al

Qe a6et
) Q6L YHIWYD
VHIWYD IDONYH-QIA
vigl YHINYD AONYH-DNOT
(SIVHINYD MIIA-IAIM

ONNOHHNS

pret (S)VHINTO

_AONNOXMUNS -

Nov. 10, 2022 Sheet 14 of 59

=

3

= .

c 4

= 295} 8921
£ wHIAYD VHINYD
FReENETTS 03YILS
S . (S)VNINYD ey .

2 ANNOHNNS 8651

= émgq%mwzqmg ain VHINYD GIEVHANI D

E JONYH-ONOT

z

Patent Application Publication Nov. 10,2022 Sheet 15 of 59 US 2022/0358627 A1

[anss RADAR | [uiTRasonic] | LIDAR MU |
| SENSOR(S) | | SENSOR(S) | | SENSOR(S) || SENSOR(S) | | SENSOR(S) MSCR%?;;;?NHS}
l 1358 1360 1362 1364 1366 =222

5 A

i ! i ! i
i' STEREQ || WIDE-VIEW EIENFRARED SURROUNDH[LONG-RANGE] | MID-RANGE
CAMERA(s) || CAMERA(s) CAMERA{s)] [CAMERA{s}! CAMERA(s) CAMERA(s)

| 1368 1370 || 1312 1374 | 1398 1376
INEOTAINMENT r ot 13048 PO
| SoC 1330 — 1318
T SoC 1304(A)
e " CPU(s) 1306 [GPU(s) 1308 |
J— - CERUTT) 1302~
| INSTRUMENT = N 1320
CLUSTER 1332 " PROCESSOR(S) 1310) 1015
\smnnamanmmnmnnsmmnnananmamnnannnns N

AN

™

JE—— { 1015 | HD MAP
| HMIEDISPLAY - 1322
1334

CACHE(S) 1312

et > < NETWORK
ADAS SYSTEM ACCELERATOR{S} 1314 INTEREACE
| 1338 | Tois | 1324
; 1015 A s
N

DATA STORE{S}

DATA STORE(S) 1308

1316

! E 3 § E E

sTEERING | | viBraTION | | speep || BRAKE | [prOPULSION | { STEERING |

SENSOR(s} | | SENSOR(s) | | SENSOR(s) SENSOR SYSTEM SYSTEM
1340 | 1342 1344 SYSTEM 1350 1354
i 1346] . i AN i A

" THROTTLE/ | [STEERING

BRAKE ACCELERATOR | | ACTUATORS

1348 -

US 2022/0358627 Al

Nov. 10, 2022 Sheet 16 of 59

Patent Application Publication

- TeET
(S)HHOMLAN

! m | e :
{ i] Ndo |
| m | : !
m m ! ¥ !
M sor] | | [550T] | W W ST01 w
| > GEE [T @R (T m " OEET |« ~
- ndo NdS | | | _1d9 |
¥ . | " |
¥ | T - B
m (azeeT m [IZ00 Ww m T@ZeeT TYIZEET :
Loyl HOLIMS 810d | | HOLMS 810d &4 wsﬂxu LIMS mwu&w HOLIMS 810 d & !
2. A &
) o8EL

A4 4 k4

B7ET (s)y9AM3R

Lo

Patent Application Publication

Nov. 10,2022 Sheet 17 of 59

US 2022/0358627 Al

PROCESSOR 1402

EXECUTION UNIT 1408

1015
CACHE REGISTER FILE PACKE@§§§Z§§CTEQN
1404 1406 SN
PROCESSOR BUS 1410
(414 1418 MEMORY 1420
GRAPHICS/ MEMORY
INSTRUCTION(S) 1419
VIDEO CARD @D C(}NLF;%LLER <j__§;> STRUCTION(S) 1419
1412 1416 DATA 1421
@ 1422 LEGACY 110
SATA CONTROLLER 1423
STORAGE KD DT TSERWPUTAND ™
1424 I KEYBOARD
| INTERFACES 1425 |
7o)
WIRELESS CONTROLLER
TRANSCEIVER Ky HUB SERIAL EXPANSION
1426 1430 = PORT 1427
FLASH BIOS AUDIO CONTROLLER
1428 =) = 1429
NETWORK
CONTROLLER
1434

1400 J

US 2022/0358627 Al

Nov. 10, 2022 Sheet 18 of 59

Patent Application Publication

5GT TEGT
R >5eT AHYOEATH NY -
L 20T amy sy | 28d Ty W.M» snaws | 55T ¥OSNIS
FEET 1 assyIn M 85T | | =T ag | I E T
SANOHJAYAH | | OGNV 93000 5014 WL »

'y 'y S p—
= e olany y 28d o —
SUIMYIS € 0951 0,1 | 3d0DS0HAD

S YaH | JdSa \
0251 aau w 48 ad1 e
HOass | YaH PRER
AL AL » ¥ o, SSVdNOD
oo5T (d440N) |- i SLET > ’
| 55h _ | BT HOSNES p——
LINA HLOOLAMS | « > a » ZFGT
| TS SNANS BAA IR A oy
O5GT (449N) | = Sias o T
LINONY VA |« » < o) OVGT anm
z Omm HIALINOHITZOOY
2551 WIS gIoT < » ﬁ%mﬁ.%z -1 05ST avd
SHgnS - » HONOL
GEeT (44oN) | 1 >
LNONYMWM | T o gen orsy p ,| GCGEF NIFHOS
| HOSSIOOH 3 HONOL
GEST 8dS |« »
04 HO Lyvn < » vZal
AV1dSIO
iz P
YHANYD 0 98N]
STET exaadt v/! 00S1
§

Patent Application Publication

Nov. 10, 2022 Sheet 19 of 59

US 2022/0358627 Al

Computer System

1600

Main
Memory
1604

Network
interface
1622

S
()
g
O

Display
Devices
1606

friput
Devices
1608

)

1

v

Communication

U Bus 1810

interconnect

1618
Switch
B 1620
PPU 1614 PPU 1814
1818 § E 1616
(RO T T 7 WO 15
PPU 1614
1616 E E 1616

Lo}
.
o
-

Parallel Processing System

1812

US 2022/0358627 Al

OLLE
HALNdNODO

Nov. 10, 2022 Sheet 20 of 59

arii
AOVAHALNI
g5/

ol

0521 OID07
EMEERRY
g8n

o o

O ADLS 880

SL01L

gell
LING
DONISSHO0OUd

00l
WALSAS A
HALNGWOD

Patent Application Publication

US 2022/0358627 Al

Nov. 10, 2022 Sheet 21 of 59

Patent Application Publication

(TR578T FATA]
AHCWIN NdD AHOWIN NdO
(L-NIOC
{(zBzsl ,w zvommw
A (z)osgl =
(RIGZ8T etol ||, aTaT P
»wwwwmmﬁﬁ wWoTET N TNIETET TnTeT
Ado 149 Ndo
A /. (@oval —
(NJoral = /L -Noval
FTOST sHOl Elalie
AHOWIN Rl (TTE08T
HOSSIDOY HOSSIDOH HOSSINOH
IHO LN FHOLINN

SI0V LI0CRT
NdS Nds
{LiobsL
(TTT08T
AHOWIW
HOSS3IDO0N

Asmﬁ:

US 2022/0358627 Al

Nov. 10, 2022 Sheet 22 of 59

Patent Application Publication

LBl

NI
5107 TSy
AHOYD
vFar
HOLAH
NICEST (NJZERT
NTW R ONISSIOON 1% THFET
¥4 SOIHAYHD SHILSIOAY
. BFET LIS
® LIXHINOD
AR (CITEar THaT
WNAN e ONISSIEO0N [-
XA4S SOIHAYHEHD LWOW 1dHINI
§eET
NOLLYHOI LN
rEEaT IR HOLYHATIO0V
TN M ONISSIO0N & Mw
X490 SOHdvHe 1Y
JEET 41N

SFET 3NCON NOLLYYITIODY SOiHdYHS OV8i

7oer |

ST0T 9581 HOS5300N |
(IFHOVYD GIUVHS [—— =
FANEEN v 1A
P (S)EHIWD |
m |
Y Aregt ey |
® m i
° | |
m., EOET au0s |
17067 MHHHH”HE
(S)FHOVD m HCo87 |
- RIRIEIeie] w
i
AT8aT a1 e
= | JToET a1t w
FISET 00 m :
T w
vool — | | FO9ELI00 |
SNg ADNIHIHOD P -
j veoaT |
P1o(S)aHovD |
S FAeT) @ m
Geal e
G fepunodo K= T wrmeT ey |
AXO¥ W m
AZARREEELCER

US 2022/0358627 Al

Nov. 10, 2022 Sheet 23 of 59

Patent Application Publication

i
m o
m STov
i
i
i
| (AEEET NITERT
j| W3W e ONISSIDOU
XA SOHAYHD
]
W .
1 CEEET YA
flOWNEN e ONISSIDOMNG 1
I EL! SOHAYHD
{
i
Iy (T7EEaT ITEET
D OW3W e ONISSIOOH] &8
Il %49 SOIHdvys |14V
i
|
i
{

pasiIn
4N

po o871
i) vsel HOSSIDON !
(S)FHOVD GIUVHE |, e e o m oo oo |

NN] 1
o VAR -1
5EET . I (s)aHovwD | !
IHOVYD m | m

— (ol) STeer gy | !
xmwm& ($)aHOVD M | m
p—— = b =55eT 3wo0n W !
5HET areet a1l L oTer 2 S
SHILSIDIY L LM |
GosET 3400] S14=C] w
8P8T LINOW | (8)3HOVD M |
S SNg IONIUIHOD ﬁym giogl a1l m m
LNDW LM LN | by
se8r 5787 | EOST 200 |
NOLLVHOIING e LINouID s - |
HOLYHITIOOY AXO¥d | veoal !
7 b (8)3HYD | | m

= = |
GEEl I — !
NG - | | Fresr e m w

m A

ov8l VAR I I
]

Patent Application Publication Nov. 10,2022 Sheet 24 of 59 US 2022/0358627 Al

PROCESSOR 1807

1015
§,.,, "~ APPLICATION 1880 | g APPLICATION ;
| |
; GPU INVOCATION 1881 | | g GPU INVOCATION 3
R R g, |
SYSTEM MEMORY 1814
¥ e e e o e e e e
APPLICATION EFFECTIVE { OS VIRTUAL ADDRESS |
ADDRESS SPACE 1882 : SPACE 1885 g
mmmmmmmmmmm !
E PROCESS ELEMENTS | | g
|
a 1883 : g SEGMENT/PAGE TABLES | |
s WORK ! : — 3
| | DESCRIPTOR (WD) | | : 3
5 1884 5 : x 5
o ——— ! b e oo e e e o e s e e 3

ACCELERATION INTEGRATION

SLICE 1890
MMU 1839 L
Y INT
o || REGISTERS | terrupT | P
5 1845 MGMT 1847
1891 1847
CONTEXT
MGMT 1848
SAVE/ RESTORET
¥ W
GRAPHICS ACCELERATION MODULE 1848 | 1015
EFFECTIVE
ADDRESS

1893

US 2022/0358627 Al

Nov. 10,2022 Sheet 25 of 59

Patent Application Publication

£egl
SS53H00Y
AALLOEAH4E
a,/is GLol bl ANGON NOLLYHITE00V SOIHGYHD
& A
wmmmﬁ,wmm [AAYS
gFgl LIADIW IX3INOD

z681 Lel TPET LNOW LdnyyILNG k SHOT SMILSIONY |e TEST HOLT4 M
LN
N
» Begl NINA 5EET 30118
ry NOLYEOIINI NOLLYHITIO0Y

§§§§§§§ & e e v s o mo0e seonre awnoee ooare s onsn oo vonre awoe wns sosoee woare
| i e
m | M w FagsT (o) |
Ty Emémmm 8835084 | | S3IaVL mmwwfzmgwmm m m HOLAIHOSIT HHOM | |
m ey an il !
| M w | | EEET INIWETE 833004 W
M S65T 30Vde m M SEET P o o o e o e e

wwmmam< 3y m@mgmmﬁm\wI

vl

81 AHOWIW NILEAS

muﬁaw SEEHAAY TVNLYIA wO

s

wnnn

NARAR AR AR WAARR ANAAR RRRAS SRRRC AR SRRAR AR SRS

88l 40VdS 83 aay
AALL0E443 NOLLYOddY

L0

Sast HOSIAHALAH

£

Segl SO %

0821 NOILYONddY

2081 HOSSE00H

US 2022/0358627 Al

Nov. 10, 2022 Sheet 26 of 59

Patent Application Publication

AHOWZIN A3EAING

R UGS KNRKR GO KKNNR NKRRS ARA RRARS RN GRARP ANRRA RARS GRIION oBOne TOOOS nonne DRese Weane ooonh wonse Ghe6t TGOS GnOGG WOOOE GGG NOOOL | OOUDD OO0 OOGRG KKKKK. GOKKKp | KNKRN GKNRAS RNKKR OUKKND | KRNAR RN

wiorer Vo owozer V) wmermr ! uwest) whwer Y aooET
adowan | oauowaw o agowaw Vo awowaw o axowan b AHOWIN
AdD M NdO w NdD w Ndo W HOSSIDOHd m HOSS3ID0U

misiﬁizim mgsﬁﬁsid maésﬁsgfsm mséiﬁiégm T T T
| BT | | areal ' | PG m | areal m @ VrEaL '
|| 3ONFUIHOD | | | | 30NZUIHOO | | | | 3ONIUIHOO | | | | FONJUIHOO | | | | 3ONTUIHOD | |
| 1SV m | i ' | 1518 m | 1Sv1g ' | evid w
| | | | j
{ OIESET N W | TIETET NIAN .m | SEEET NAW W { OEEEET AW .M | TETET NN ,M

ET0T SO STOT G107 SToT

TNIBTET TNBTST IETET TLIBTET ST HOSSIN0N
(do NdD Ndo Ndo FHODLLINW

Patent Application Publication

Nov. 10, 2022 Sheet 27 of 59 US 2022/0358627 Al

SOC INTEGRATED

CIRCUIT
1900
APPLICATION GRAPHICS
PROCESSOR(s} PROCESSOR
1905 1910
1015 1015
IMAGE VIDED
PROCESSOR PROCESSOR
1915 1920
1015 1015
ISR UART SPI/SDIO 1’s/1%C DISPLAY
1925 1930 1935 1940 1945
T TRAEMIORY T T
; sg;:gmzvi CON- FLASH g Mipt HOMI
| | TROLLER 1960 1955 | 1950
{1970 § — === | e
L = 1965 .

Patent Application Publication

Nov. 10, 2022 Sheet 28 of 59

US 2022/0358627 Al

GRAPHICS

PROCESSOR

2010

)

7

VERTEX PROCESSOR

2005
1015
FRAGMENT | FRAGMENT | | FRAGMENT |
PROCESSOR { PROCESSOR | { PROCESSOR |
2015A i 20150 S g 2018N-1
i @ i %
1015 ; 1015 |1 | 1015 14
M m— i) i
| FRAGMENT g [ERAGMENT § 5 FRAGMENT§
§PR®CES$®RE §PROCESSOR§ §PROCESSOR§
§ 20158 | ; 20150 | - - § 2015N '
| b ? i . ?
01 L 1015 ; L d015 ;
npna— b e i — i
mmmmmmmmmmm %
MU 5 MU |
2020A | 20208 |
e e e e e o o
mmmmmmmmmmm]
CACHE | CACHE |
20254 5 2025R |
e e e e e -
mmmmmmmmmmm 1
INTERCONNECT 5 INTERCONNECT |
2030A | 20308 |
_ e e e e e o e

Patent Application Publication

Nov. 10, 2022 Sheet 29 of 59

?/'\

/f?

INTER-CORE TASK MANAGER
{e.g., THREAD DISPATCHER)
2045
SHADER ESHADER: ESHADERi : SHADER :
CORE g CORE § g CORE : : CORE g
2085A | 1 2085C ¢ ! 2055E §mmw§2055N—1§
B o o om o o m L PO P e a
1015] 41018 % N 4015 114015 i
== O e B e g
SSHADERg ESHADERg ESHAmgai §SHADER§
{ CORE : t CORE §) CORE : ' CORE '
| 20558 E 2055D § 2055F 5“““5 2055N 1
§ e o o e o b oo PR TR, af e <8
JECEN I FOL T FGLY Y
o P b b
TILING UNIT 2088

MMU § MMU E
20204 : 20208 !
fv o 10 a ax o a0 a0 oo o 00w o oo o e o
CACHE FT eacke E
20254 ; 20258 :
B aac cx v 10 a0 ax o 10 a0 ax o o e x o o
INTERCONNECT g INTERCONNECT E
20304 ; 20308 ;
v v snn ann e a tn aan A e Amn A e e A e

(7

US 2022/0358627 Al

GRAPHICS
PROCESSOR
2040

Patent Application Publication Nov. 10,2022 Sheet 30 of 59 US 2022/0358627 Al

GRAPHICS CORE

/ 2100

SHARED INSTRUCTION CACHE ~ 2102
v o 2101A ~ 2101N
LOCAL INSTRUCTION CACHE LOCAL INSTRUCTION CACHE
21044 2104N
¥
THREAD SCHEDULER THREAD SCHEDULER
21064 21060
¥ ¥
THREAD DISPATCHER soe THREAD DISPATCHER
2108A 2108N
¥ k
Li REGISTER - 2110A REGISTER - 2110N ot

o
ACU Z
DPFPU |
MP
21134 21154 I m;’i\ i
IR B =M
]
o
L
P

¥ ¥
CACHE/SHARED MEMORY -~ 2120 ——

1015

e
.

US 2022/0358627 Al

Nov. 10, 2022 Sheet 31 of 59

Patent Application Publication

OFbC MNIT NdD

Gy Lz Yirpie
\\\ AHOWIN BETE anH o >mo§m§J
SIar ZI0T 3107 =INs)
FOETZ «A1SM10 | BT =S | 8872 9aiento | ISET2 ¥aLsSmID
JLNAWNOD JLNAWNOD FLNGNOD FLNdWN0D
el BETZ AMOWIW FHOVD !
TToT 10T TIoT TToT
OSETe H3Isn1D | SoETe waisnto | G8ETZ MaLsn1D | VE8ETE wWILsn1D
ILNGNOD FLNGHNOD TLNGRNOD JLNdWOD
PETZ HAMNAIHOS TVYE0TD

gdevic \\N

HITIOHLNGD
AHOWIN

oL ¢ JOVAUELINT LSOH

0ELT I\\A

NdSdD

m// Yirid

HITIOHANGD

AHOWIN

Patent Application Publication Nov. 10,2022 Sheet 32 of 59 US 2022/0358627 Al

2200 -
WIRELESS ﬁ%&‘f;f?gg
NETWORK ok
ADAPTER 2218
2919
DISPLAY
DEVICE(S)
22104
e dalt ADD-IN
oS DEVICE(S)
e 2290
Pu—
pe— SYSTEM
S ifOI‘E"fUB STORAGE
3 2207 5914
INPUT / 2214
DEVICE(S) \
2208
/O SUBSYSTEM 2211
COMMUNICATION
mom oo oo o LINK2208 =]
| PARALLEL
i PROCESSOR(S) MEMORY SYSTEM
s 2212 HUB MEMORY
2905 9204
AT
LINK 2213
DISPLAY e ————— iy
DEVICE(S) |1l PROCESSOR(S)
22108 § 2202 PROCESSING
SUBSYSTEM
§ 1015 2901
i\\ F oA A

Patent Application Publication Nov. 10,2022 Sheet 33 of 59 US 2022/0358627 Al

s
| PARALLEL PROCESSOR MEMORY 2322
§ MEMORY MEMORY MEMORY
5 UNIT UNIT ess UNIT
| 23047 2324B 234N
. s . , PARALLEL
| i i PROCESSOR
e = 1 v e B o bl e 2300
PARTITION PARTITION PARTITION
UNIT UNIT sse UNIT
23204 23208 2300N

MEMORY INTERFACE 2318

§

MEMORY CROSSBAR 2316 -
2314A 23148 2314N
1015 1015 1045

PROCESSING CLUSTER ARRAY 2312

S

SCHEDULER 2310

i
HOST
FRONT END INTERFACE YO UNIT

2306
i PARALLEL PROCESSING UNIT 2302

2313

MEMORY HUB 2305

2308

!
E
|
!
!
5
|
!
!
!
|
!
§ CLUSTER CLUSTER 2o e CLUSTER
E
§
!
!
§
E
!
!
!
!
! 2304
!

Patent Application Publication Nov. 10,2022 Sheet 34 of 59 US 2022/0358627 Al

TO/FROM
MEMORY UNIT
2324

T
I

FRAME BUFFER
INTERFACE
2345

ROP
2326

L2 CACHE
2321

A

PARTITION UNIT 2320

¥

TOFROM
MEMORY
CROSSBAR
2316

Patent Application Publication Nov. 10,2022 Sheet 35 of 59 US 2022/0358627 Al

70 MEMORY
CROSSBAR 1316
AND/OR OTHER

PROCESSING
CLUSTERS
A
MMU PREROP DATA CROSSBAR
34E 2342 2340
TOFROM GRAPHICS [}
MEMORY MULTIPROCESSOR TEXTURE
CROSSBAR 2334 UNIT
2316 2336
L1 CACHE 1015 =
2348
ii
PROCESSING PIPELINE MANAGER
CLUSTER £332
2314 %
TOFROM
SCHEDULER
2310

Patent Application Publication Nov. 10,2022 Sheet 36 of 59 US 2022/0358627 Al

SHARED MEMORY CACHE MEMORY
2370 2372
AY
[MEMORY AND CACHE INTERCONNECT 2368
o
il plhendiondion N gl yuupdhaiiagdigy
X :
i !
LOADY i
; GPGPU CORES | i
2368 i T i
R & F
REGISTER FILE
2358
ADDRESS
MAPPING INSTRUCTION UNIT
UNIT 23584
2356
INSTRUCTION CACHE
2352
GRAPHICS
MULTIPROCESSOR 1015
2334

i

FROM PIPELINE MANAGER 2232

Patent Application Publication Nov. 10,2022 Sheet 37 of 59 US 2022/0358627 Al

2400
P2P GPU ﬁ///
LINKS
B e,
GPGPU ”’x GPGPU
DADEA ; § 24088 |,
1815 | | 1015
§
§
o e
f
S R
]
GPGPU o GPGPU
| 2408c | 24060 | _
wi ||)| [
L AR 4 ¥y

HOST INTERFACE SWITCH
2404

PROCESSOR
2402

1018

US 2022/0358627 Al

Nov. 10, 2022 Sheet 38 of 59

Patent Application Publication

moce oo poocn omom GEONG OGS GR000 20000 000000000 00060 30005

y Wpogz 1 FEmEE !
mmmmAm§<mm y sna

N vizoror A B v eTer A
mmeAm§<mw ¢ osng

i

|

|

|

i

|

|

m
h
WM NOISE
X
|

|

i

|

|

|

i

|

LIANNOIYHIENTI DN é/v

Y08GC — 0D SOIHIVHED

YPoGe
SHATJWYS

Yagse
504

Y0USE - FH00-49NS

Y0L%C

SIANOSIY GRAVHS

gese
ANEdid
AHLINOED

Yrehe
SHATdNYS

ViS4 E
503

{NZ INOHA

YOGS Fd00-4Ns

PESC

OddiA

<74
HOS5300Hd SOIHAVYED

(“}

ge6e
40

2%

oese
30A

LE5¢ — ANIONT VIAEW

e05<
HIWYIHLS
ONYININO O

y0G2 :o\\m

ONZ-ENOHA GNMHEdd

NQ@@\\W

US 2022/0358627 Al

Nov. 10, 2022 Sheet 39 of 59

Patent Application Publication

mxuiu L 1EAI3TOL

MIQ%O L smm\ﬁ:m oL

¥29¢ uwmm 0057 gre7 R vw@m mw@m
m>e§ dd ATV MOTS 3< 15v4 3< 1574 Ny 3@{
N ,, e LLOZ
\ 4 MO0
o xm@ghmz mm4&>m . wamw IXE
T HRLSIOEY dd MNHOMLIN SSYJAS / 34 ¥ILSIDTH HIDIINI
N %, B F-N & A A
909¢ JATNa3aHos POYC HI3TNAZHDS 0496 P9 ¥ATN03HOS
d4 TS d4 TYHINIDMOTS HATNAIHDS L5V AHOWIN
& 3 7} 7 3
BFO7 3N3N0 dON INIOd ONILYOT4/HIOILNI M%mﬂwwm%wmz
B B
BPOe HINVYNIY HALSIOTHWHOLYDO TV
ol s f/ SOOZ ANIDND HIAHO 40 LNO
FEaz k ez
IN3IND 40N A IHOVD 3OVHL SIGT
cese 5207 mm,mgomm
WO 30OJ0HIIN NOLLSNNLSNI /// 00%9¢ ¥OSSAT0H
T892 4
CINT LNOMA 929¢ HAHOLH 498 d
NOLLONMLSNI

US 2022/0358627 Al

Nov. 10, 2022 Sheet 40 of 59

Patent Application Publication

WitFiZ
CINGH

Envie
CWEH

AN
CINGH

SIoT 087z
1¥0d 91X 810d
10l 13l IOl 121 1 CINY HITIOHLINGD 810d
vz | BEvie EIET ETHT =0T @evie | ©vvie
AHd 1MTHLD , UMD | AHd
wan | wan | T@IOTIZ ¥aLsno| [TO0TZZ ¥31sn 0] [OVOIZ 831810l waw | wan
SNISSIADIOH MNISSIOON SNISSIDOU
10T ET6T ST
Osic @ETIE 931snT10 | [E0T72 y3isno | | oIz ¥31sn1o
At ONISSI0Ud ONISSI00Hd ONISSID0Nd 0vle
HATIOHLINGD OIdD ‘0, 1dS
- INFWNIOYNYN 0T TIoT TIoT
WHTIE H3LSNT10 | L ©6T72 $30sm10 | | B0T7Z ¥3Lsnio
INISSIADOH SNISSIDOH ONISSIO0NH
[CH 2T KA BN FA T VA . e e vie Pie
AHd 1 HTHID VOl 410t Gl HTHLD | AHd
WEH 1 WA 0Tz waieno | | 0TZZ HALSN10 | | TUOTIZ Y3 sno (| WA 1 EH
NISSIDON SNISSID0ONH ONISSIOOH
Bere {70278 Gigere BYeie TTHEETS PiGeie g7 [T A ¥4 NI AFA
T 10 T ghe) 301 101 ais) 101 gls}

(04¢ HOSSAD0Hd NOILYONddY ONINUYIT 4330

Uve
CINEH

US 2022/0358627 Al

Nov. 10, 2022 Sheet 41 of 59

Patent Application Publication

7182 = 0182
A s A
4 ™ 4 N
=74 28T 5082 FOBZ 5082 voue 5082 FO8Z
10dino || LndnE | 1AdLNG || LNdNI 1NdiN0 | INaNl | 1 Indino |1 LndNi
NOYNAN | | NOUNAN [* | NOWNIN | | NOUNIN NOMNAN || NOHNEN 7 1 NOMNIN | | NOMNIAN
Z08Z NOWN3N 2082 NOUNaN ZORZ NOHWN3N /| 7082 NownaN
\ Y 08z
go8e 5082 908¢ 5082 5082 24 5082 074
1AdINO || LNdNE | LNdLAO || LNdNI 1Ndino |} LNdNi 1NdINO || LNdNI
NOMNAN | | NOUNIN [T [NOWNIN | | NOUN3aN NOMNEN | | NOUNEN NOYNAN | | NOYNIN
ZOBZ NOWN3AN 2082 NOHN3N 2082 NOUNIN 2082 NOMNAN
808T 7, |
G0Re 5082 908e FORZ g08e 24 | 5082 {04
L0din0o || LndNE 4 N\ LNdLNG |} LNdNI 1Ndino || LndNi Y indino [} Lndni
NOMNEN | | NOUN3N NOUNAN | | NOHNIN NOMNEN | | NOHN3N NOUNAN | | NOYNIN
20 NOWN3N 2087 NOHN3N Z0RZ NOUN3N 2082 NOYN AN

ﬁ/ﬁ 0087 HOSSE00Hd DiHAHOWOHNEN

Patent Application Publication Nov. 10,2022 Sheet 42 of 59 US 2022/0358627 Al

oo woear cacen weoor Gonn oo cooon sooar geoo oot oo oo cands oo oo waoae saoan e aoass |
MEMORY DEVICE e o e e 2y
2920 § |
PROCESSOR COREES
INSTRUCTIONS cacHe || REGISTER vt ;E
2921 2004 FILE INGTRUGTION { E
2808 SEQUENCE 2009 }
DATA - 2922 I SO N E 1015 g i E
¥
MEMORY GRAPHICS § |
AN CONTROLLER PROCESSOR(S) :
DISPLAY DEVICE 2911 == Mvss 008 ia
§ T EXTERNAL GRAPHICS “; | 015 | i §
PROCESSOR 2212 i 3 §
§ } 1015 } ! |
T —d INTERFACE BUS(ES) - 2910 !
DATA STORAGE L~ i g
DEVICE 2924 Nm— I
{
i
TOUCH SENSORS |
2925 = § §
PLATFORM CONTROLLER HUB I
2930 ;
WIRELESS . |
TRANSCEIVER 2926 1
i
i
FIRMWARE i
INTERFACE 2008 =) I
I T 7T 1
o e 2 ey
NETWORK AUDIO | ;
CONTROLLER | | CONTROLLER | LEGACY KO |
034 2046 § CONTROLLER E
— B |20
| @
Sy T T T T
USBE CONTROLLER(S)
2900 2942

o e

!
| KEYBOARD/ |} CAMERA |
|MOUSE 2g43ty 2044

=

US 2022/0358627 Al

Nov. 10, 2022 Sheet 43 of 59

Patent Application Publication

5101

gUUE
HOS8H00Hd SUIHAVHD J3LVHDI LN

5108
(SILINN
HATIOHINOD
snd

| T1OE — ONIY
7% 500 — (5).LINN IHIYD GIIVHS
HITIOHLNOD o
AYOWIN e e e =
M NFEoE 1 | THO0E mmﬂ
- , (Shnn | (S)LING iy
Mg w3 e == | 30w
HITOYLNOD | | b om = |
AYISIC Moot M EToT
5T0% 3402 m
INIDY WILSAS | NZOOE 3400 | YEOUE 3402

810%
FINAOW AHOWEN
GH0048W43

0002 H0884004Hd

US 2022/0358627 Al

Nov. 10, 2022 Sheet 44 of 59

Patent Application Publication

geis
IDIAAC
AY1dSIT
AN
pAN
BTTE ~ 30OV IINI ANOWIA
o T R U OUOR U N R0 WOUN 0N U, GND NN TNG3 CUNR GUUNGEm R woww e e n.lm
m m
| |
m |
m m
m |
| |
ST M STTE @ STTE &H STTE w FOTE FHTE
INIONT || WILSAS m
03000 | | | INN3dId -4NS 3NITEdld [| 3NIONS HITIONLNGD
03AIA | || WIaan YIGIW/aE as m 174 AY1dSIO
e e e P OLIE INIDNT
T ONISSID0H
- SOIHIYHD

™

0oie

HOSSA0Hd SOIHIYHD

US 2022/0358627 Al

Nov. 10,2022 Sheet 45 of 59

Patent Application Publication

o oo o s e oo e oo et s st ot e s st o skt oot s oo s e s s on s s o s A WBI
f M U0
M EToT :
m . HETEE m
Vozze — \9/3HOVO N (8)3400 m
M SOIHAYHED m
e e o ——
{ NOLLYZINAINOD RS ! §Eee s.w P wre b
SINAS
| ezze _ovaHiaain [T o901 K| 01907 NOILONN | K anriadid lal
M | NOIONNA . OFdvHs D owigaw
OFUYHS

j zeze) HAVA — SN M 3745
| HIAYIHLS
w PR V512 || ONYININOO
| 1228 ($)3u00 m
| SOHdYHD | K — |

m
w 7 LT aNMEdId K
| ae |
| pLZE BIEe < |
| AVHNEY 3HOO | W3ddng |
m STHHATHD AETER N ¢ M
| Q3NN |
i !
ggggggggggggggggggggggggggggggggggggggg b

0LZ8 ”

ANIDND ONISSE00Hd SOIHAYHD

US 2022/0358627 Al

Nov. 10, 2022 Sheet 46 of 59

Patent Application Publication

JEE - SEOEE .
WS 350¢8 Ty WIS SAUE e
CESETECH BN MFTINYS | S
JIGEE as . — e e \
HOSSIDOU HOSSIDOU
HIAAYHS z/v \\ HIAVHS
EeyTS TEGEE FE0EE |y 000 b0l AL0ee OO EOEE NETEE
HITAWYS VAL L AVEEY N3 | 5u0n Tuoo | T IdAYS oVaL | AVHYY N3
VICEN YICTEW
-gnNs gite -g0s
NS0T NOILLONNA
F80EE e QEXi TYNOLLIGQY g80Ee e \
s TE0EE WIS PR
MFIIAVE | S g MITINVS | g
EVII ae R HIOEE ae ,
HOSSIDOU mzﬁmma HOSSIDON
HIAYHS : HIAVHS
,/ NOILLONNA QEXi4 \\
=[5y TEOEE A qiope] TANIENOIO oo [EETHIs HEOEE GeOEE
U IINYS ST PR EELAIER | Edtriv sl AEIdAYS DUGL | AVHYEY N
VICAN ans ,mmmw VIO
Se— FIET
e tad
am.wm@ A S— ASOWIN IHOYD <MMM% sy —
3 8
HTINYS | O SAMOWAN GIHYHS — CERLTILEN BN
TInEE ae TIneE ae
HMOSSIDOU HOSSIDOY
HIAAYHS J \\ HAAYHS
N S BIeE : S S
TEE FEOeE SFS5 . - THEE TEOEE FEEE
HIANYS OUGL | AYNNY N mmwmmm umm@mﬂwmm NFid me\m HIIHANYS WAL | AvdYY N3
VIOIN “ans -ans YIGIN
Oete BETT FEET MITIOHLINODODHIN PR | TESE INM3did NOLLONNS |
INITRdld VIOIN SOIHAVED FOVAHILNGI O0S SOIHAVED || a3xid 3 Adiawoss |

US 2022/0358627 Al

/ 0OvE

SO NOLLNDEXE

M;;.,;w,i,::w P gy
(=2} 1 om0 o o dn w0 2w ax oo] § 8]
W 13 [¥ 81 8
3 PivEe ¥ % M ¥ :
& L¥0d vivd 11| GT07 |4 eHSEOT jpr STOT g1
5 ¥ T ¥ " SOVE
2 1] N8Ove 4, iod80FE i h WeOvE | FHOVD NOLLONSELSNI
»n $ 1 N3 B i 3 8t]
g i § 3 i3 e

o 4553 miiwiiw ; 3 !
S FHOVOWAVD | | ; i W
=) ONTTRE L VOETTBE i) VITRE |

i} ¥ .
= Yy e+ PP 111 B
E il H M 3 !

e

T : ¥ M
- ¥ ¥ ! ' M —
£ I SN — — BOVE A5
£ oTFe ; ; e ; ©
5 ST AAYS FRECLTLT HLE0E J e LEE0] Man0lvdsia | HOSS300Nd
= ¥] b P OvEsHL MIAYHS
= ONITEE 6 vl HIOPE Lil FITEE
u o3 Hona o3 b
S T o s o e o 3
| _Neove ! 860V 11 V6OVE
2
(=9
-
E
5
=W

US 2022/0358627 Al

Nov. 10, 2022 Sheet 48 of 59

Patent Application Publication

-

4825
LIND HONVYYE

Oeve
LINA ONES

AN

5101

g0ve

LINA NOLLNDIXT SOIHAYHD

\ ZEPE LINM HOL34 NOLLONYLSNI / /

(A — J/ya\wasa/ﬁ.xssy mfo

[10

N1

AN

COPE HALIEHY QvduHL

/

Patent Application Publication Nov. 10,2022 Sheet 49 of 59 US 2022/0358627 Al

FParallel Processing Unit (PPU) 3500

J .

3502 YO Unit Front End Unit
3508 2510

To System Bus

3
' Scheduler Unit
_ 3512
g 1i
g %E Hub z
O B,
g . 3516
3508 f g | Work Distribution Unit
[
—
Q.
&5

} 3514
"
iy
!

mmmmmmwmummwmmmmj!

ad
n
]
[

r
£y
iy
iy
iy
iy
iy
iy
iy
iy
iy

t

ooy
¢

& %ﬁﬁg
£

iy

iy

iy

iy

it

iy

iy

iy

ig

iy

iy

iy

iy

R

&
1 “?a
Memory |11 ¥
¢ § B §
3@2 T Memary Partition Unit (U) N
2244 S B O 3522 b
| T I
; ; i i3
e § 58 it
s 8 A I
T e o o e ot o Ko e m o e e e o s e o 2 et T 2 e e o o 2 e o T 2 }

Patent Application Publication Nov. 10,2022 Sheet 50 of 59 US 2022/0358627 Al

TofFrom XBar

I

General Processing i

Cluster (GPG) 3800

Pipeline Manager PRE-RGP
e 3602 D 3604
&
! ! i
MPC &
B 8100 (b
i @ b
3 d
Primitive W B
. L, {1
Engine R
- g §
sele Mgg SM E b Raster Engine
S e o 2614 i ?é ; 2608
e
1015 g E i
DECV) o E
3606 et R
L I
. s B
et Tttt et atatatatatota
k4
WX
3615
T E MMU 2618

: i

TofFrom XBar TofFrom Xbar

Patent Application Publication Nov. 10, 2022 Sheet 51 of 59

TofFrom
XBar

¢

US 2022/0358627 Al

3700

Memory Partition Unit

Raster Operations Unit
2702

L2 Cache
3704

E

Memory Interface
3706

i

e | OF - TOMN

XBar

i

TolfFrom
Memory

Patent Application Publication Nov. 10,2022 Sheet 52 of 59 US 2022/0358627 Al

Streaming Multiprocessor 280

1015
Instruction Cache
3802
Scheduler Unit (K) 3804 .
iy
Dispatch 2 §
2806 P
P
by
¥
]
© 112111Zﬁiﬁiﬁiﬁiﬁlﬁ'ﬁlE’Lﬁiﬁi’lﬁiﬁiﬁiﬁiﬁfﬂlﬁfﬁ., ;
Register File
3808
Core |1 SFU IE LSU I3
(1oly | (1TtoM) |1 (1oN) 1)
3810 - 3812 4 3814 i
§ § i § 4
i“‘s:::':.::::i::::::::::::..E.E ‘“E::i::::::fﬁ E"“a'::::.:::i:‘::::::':.::::::‘.E
irlerconnect Network

3818 A

i

Shared Memory/L1 Cache
3818

US 2022/0358627 Al

Nov. 10,2022 Sheet 53 of 59

UG Y

FHYALLAOSG

glee

OL6¢
THACK
AL

7i6t
DNINIYM |

GOBE WHISAR

INTWACTLI

_w

glet
NOILLYLONNY

GILSISSY-IY

AR
AN
DANFTD
GIF138Y] w

mewwwumuuw

PO WILSAS ONINIVHY

i

{ Auisioay |
\ 13C0M ./

pIaE

8U6T
VINTE
DNIDYIL

Patent Application Publication

00eE

US 2022/0358627 Al

Nov. 10,2022 Sheet 54 of 59

GOET WILSAS INIWACTHE

{S)ANITBdid ONINIVY L

o

FOBT WIISAL ONINIVE]

B— «,H
G7Ov %
ano1oD &
Toor w
m
mg
el
M
1]
BETF WHOLLYId DNILNGROT T IVEY d &
Y4017 IT0% ®
BT Fidw (6]
(S)EDIAYES (&) ﬁwwww {(s)aonuag "
NOILYZITYASIA S S AULNANED <
L]
S TZ0F WILSAS NOILYHLSIHON(NOILYI ddy S

. [sTEE ST | @
, §I8% AN S
ARG (8)13A0N STHCOW CANIVHL-BEd | | yziavay g
HHOYNYIN INITEI | g7oov ILEIT e = WO 2
, L dVay : szzn,wwwmmaﬁﬁ TR %

w — \] OTEe
. gLay NOOIT A v | NOLLYLONNY m
y (S)aN3did ANINACTEE T aaisissy-1y| | i®

0G0y

Patent Application Publication

US 2022/0358627 Al

Nov. 10,2022 Sheet 55 of 59

Patent Application Publication

vITE
ANdind
WODIa
=T
Sz
. ! p.3 m.ﬂm W S AS——— J— ,
} L™~ » m ge00y 2147
- - = et MILAVAY [T (S)uINYIG
4487 o 0P s =TT] SOIF % I e WOoIa | 50vd
HILRIAA NOLLYINTINDIS NOD - w3avay |, > AR N S—
nooig | {__wweuo 99 Lwoaig. o 7
m % _% <
A
)

YOLOY

US 2022/0358627 Al

(=)

"o

[

(=]

2 g EERTEER

g O0c6e STZF STeF P17

2 INANOJINOT) INIONT AHVHEIT

o mmazmm muzmmmmzm oMY VLY

>

Q |3

=

y—

w. \

z Y
| o amv GOTH)
NCILLYZIVNS] NOLLOZLE NOLLONHLENO DS
w A . 31 wooia “

ANACSYELINA + cOcy

00cy

Patent Application Publication

US 2022/0358627 Al

rOLY

SOVd

Nov. 10,2022 Sheet 57 of 59

Patent Application Publication

AN 4

(shuanuag

ER=EIRETRY
| WOOIa

LOA

4 R

Jedr

YivOv.i3n

P

culh

NI

iy NOILLOELI(mm \f

NOILYZITYNSIA fy

4

8l
Py NOLLOZ13(0
asyHvoy [

% 7

QoCy
1Y NOLLOZLIQ
LNTFNIACIH LNV S

o

{7483
i TOUWLINOD

FeNSCAXT

| noDIN L0

~_| TF |

7 TNODIT |

80LY

JEECIER]

J0L0F

0oy

US 2022/0358627 Al

TAAOW TANIETY | ADVHDOY QIACHAN] v TIGOW TVILIN

DNINIVE | T3A0W LASYLVY(]

:
s

g

:

t

s

g

HANCLSNG M
s

g

:

t

s

g

:

Nov. 10,2022 Sheet 58 of 59

STET NOILVLONNY Q3LSISSY-1Y

@ 10 a0 ane e 108 A R a1 Ann A O 106 NN AE K 1A AKK AN A M6 KON AR N JAN ANA AN A MAD KAD AN AN JAN AN A N AN AAK ANE VWY 1A AN AC NI W AR AN W M6 GAn oA N

BOBE WILSAS ONINIVML T3COW 300F ST300W
NIV LT d

/

0oey

Patent Application Publication

US 2022/0358627 Al

orey
STIAOW TINIVH-THd

Nov. 10,2022 Sheet 59 of 59

opey
HIALIZS LNYLBISSY
NOILLY LONNY
ey
M)
| B wmv M guep I 7
[YiV({] o —— 1O L NOLLY LONNY o I STV MY

ONINIVal | aaLSISSY-1Y

ceey

Patent Application Publication

US 2022/0358627 Al

HIGH DYNAMIC RANGE IMAGE
PROCESSING WITH FIXED CALIBRATION
SETTINGS

BACKGROUND

[0001] In High-Dynamic-Range Imaging (HDRI), a High
Dynamic Range (HDR) image may provide an increased
ratio of possible pixel values (e.g., the largest possible
luminosity value relative to the smallest possible luminosity
value) over conventional imaging methods. For example,
pixels of smaller luminosity values render as darker (e.g.,
blacker) regions of an encoded image, while pixels of larger
luminosity values render as brighter (e.g., whiter) regions of
the image. Furthermore, conventional methods for tone
mapping HDR image data may produce suboptimal results
when a camera’s Auto Exposure (AE) settings are not
properly configured when capturing the HDR image data.
The camera’s AE settings may fail in some situations,
resulting in a degraded image when processing the HDR
image data. For example, controlling aspects of an HDR
image and/or the image encoded by tone-mapped HDR
image data, when the AE settings are suboptimal, may
negate many of the benefits associated with HDRI, resulting
in images appearing to be “washed-out,” less realistic, or
otherwise less visually appealing. As a result, using such
images in various applications, such as a training a model,
may result in suboptimal results.

BRIEF DESCRIPTION OF THE DRAWINGS

[0002] The present systems and methods for fixed setting
capture image processing are described in detail below with
reference to the attached drawing figures, wherein:

[0003] FIG. 1 illustrates a schematic diagram of a fixed
setting capture image processing system, in accordance with
some embodiments of the present disclosure;

[0004] FIG. 2 illustrates a schematic diagram of an image
signal processing system using data captured with fixed
settings, in accordance with some embodiments of the
present disclosure;

[0005] FIG. 3 illustrates a schematic diagram of a high-
dynamic-range imaging system, in accordance with some
embodiments of the present disclosure;

[0006] FIG. 4 shows low-tone, mid-tone, high-tone, and
flare-suppression control points embedded in 2D space
spanned by a first basis vector for a first dimension corre-
sponding to pixel values of source image data and a second
basis vector for a second dimension corresponding to pixel
values of target image data;

[0007] FIG. 5 shows a non-limiting embodiment of a plot
of a tone mapping function, which is in accordance with the
various embodiments;

[0008] FIG. 6 is a flow diagram showing a method for
performing image signal processing using captured with
fixed settings, in accordance with some embodiments of the
present disclosure;

[0009] FIG. 7 is a flow diagram showing a method for tone
mapping high dynamic range image data, in accordance with
some embodiments of the present disclosure;

[0010] FIG. 8 is a flow diagram showing a method for
generating lower dynamic range image data from higher
dynamic range image data, in accordance with some
embodiments of the present disclosure;

Nov. 10, 2022

[0011] FIG. 9 is a flow diagram showing a method for
distributing the operations of tone mapping, in accordance
with some embodiments of the present disclosure;

[0012] FIG. 10A illustrates inference and/or training logic,
according to at least one embodiment;

[0013] FIG. 10B illustrates inference and/or training logic,
according to at least one embodiment;

[0014] FIG. 11 illustrates training and deployment of a
neural network, according to at least one embodiment;
[0015] FIG. 12 illustrates an example data center system,
according to at least one embodiment;

[0016] FIG. 13A illustrates an example of an autonomous
vehicle, according to at least one embodiment;

[0017] FIG. 13B illustrates an example of camera loca-
tions and fields of view for the autonomous vehicle of FIG.
13A, according to at least one embodiment;

[0018] FIG. 13C is a block diagram illustrating an
example system architecture for the autonomous vehicle of
FIG. 13A, according to at least one embodiment;

[0019] FIG. 13D is a diagram illustrating a system for
communication between cloud-based server(s) and the
autonomous vehicle of FIG. 13A, according to at least one
embodiment;

[0020] FIG. 14 is a block diagram illustrating a computer
system, according to at least one embodiment;

[0021] FIG. 15 is a block diagram illustrating a computer
system, according to at least one embodiment;

[0022] FIG. 16 illustrates a computer system, according to
at least one embodiment;

[0023] FIG. 17 illustrates a computer system, according to
at least one embodiment;

[0024] FIG. 18A illustrates a computer system, according
to at least one embodiment;

[0025] FIG. 18B illustrates a computer system, according
to at least one embodiment;

[0026] FIG. 18C illustrates a computer system, according
to at least one embodiment;

[0027] FIG. 18D illustrates a computer system, according
to at least one embodiment;

[0028] FIGS. 18E and 18F illustrate a shared program-
ming model, according to at least one embodiment;

[0029] FIG. 19 illustrates exemplary integrated circuits
and associated graphics processors, according to at least one
embodiment;

[0030] FIGS. 20A and 20B illustrate exemplary integrated
circuits and associated graphics processors, according to at
least one embodiment;

[0031] FIGS. 21A and 21B illustrate additional exemplary
graphics processor logic according to at least one embodi-
ment;

[0032] FIG. 22 illustrates a computer system, according to
at least one embodiment;

[0033] FIG. 23A illustrates a parallel processor, according
to at least one embodiment;

[0034] FIG. 23B illustrates a partition unit, according to at
least one embodiment;

[0035] FIG. 23C illustrates a processing cluster, according
to at least one embodiment;

[0036] FIG. 23D illustrates a graphics multiprocessor,
according to at least one embodiment;

[0037] FIG. 24 illustrates a multi-graphics processing unit
(GPU) system, according to at least one embodiment;
[0038] FIG. 25 illustrates a graphics processor, according
to at least one embodiment;

US 2022/0358627 Al

[0039] FIG. 26 is a block diagram illustrating a processor
micro-architecture for a processor, according to at least one
embodiment;

[0040] FIG. 27 illustrates a deep learning application
processor, according to at least one embodiment;

[0041] FIG. 28 is a block diagram illustrating an example
neuromorphic processor, according to at least one embodi-
ment;

[0042] FIG. 29 illustrates at least portions of a graphics
processor, according to one or more embodiments;

[0043] FIG. 30 illustrates at least portions of a graphics
processor, according to one or more embodiments;

[0044] FIG. 31 illustrates at least portions of a graphics
processor, according to one or more embodiments;

[0045] FIG. 32 is a block diagram of a graphics processing
engine of a graphics processor in accordance with at least
one embodiment;

[0046] FIG. 33 is a block diagram of at least portions of a
graphics processor core, according to at least one embodi-
ment;

[0047] FIGS. 34A and 34B illustrate thread execution
logic including an array of processing elements of a graphics
processor core according to at least one embodiment;
[0048] FIG. 35 illustrates a parallel processing unit
(“PPU”), according to at least one embodiment;

[0049] FIG. 36 illustrates a general processing cluster
(“GPC”), according to at least one embodiment;

[0050] FIG. 37 illustrates a memory partition unit of a
parallel processing unit (“PPU”), according to at least one
embodiment;

[0051] FIG. 38 illustrates a streaming multi-processor,
according to at least one embodiment;

[0052] FIG. 39 is an example data flow diagram for an
advanced computing pipeline, in accordance with at least
one embodiment;

[0053] FIG. 40 is a system diagram for an example system
for training, adapting, instantiating and deploying machine
learning models in an advanced computing pipeline, in
accordance with at least one embodiment;

[0054] FIG. 41 includes an example illustration of an
advanced computing pipeline 4010A for processing imaging
data, in accordance with at least one embodiment;

[0055] FIG. 42A includes an example data flow diagram
of a virtual instrument supporting an ultrasound device, in
accordance with at least one embodiment;

[0056] FIG. 42B includes an example data flow diagram
of a virtual instrument supporting an CT scanner, in accor-
dance with at least one embodiment;

[0057] FIG. 43A illustrates a data flow diagram for a
process to train a machine learning model, in accordance
with at least one embodiment; and

[0058] FIG. 43B is an example illustration of a client-
server architecture to enhance annotation tools with pre-
trained annotation models, in accordance with at least one
embodiment.

DETAILED DESCRIPTION

[0059] Embodiments of the present disclosure relate to
processing High Dynamic Range (HDR) images captured
with fixed calibration settings. Systems and methods are
disclosed that obtain HDR image data from an image senor
using fixed calibration settings (e.g., exposure setting)
decoupled from a pipeline of a specialized-processor (e.g.,
an image signal processor (ISP), FPGA, or an ASIC) used to

Nov. 10, 2022

generate image data suitable for a variety of applications
(e.g., training neural networks).

[0060] In contrast to conventional systems, rather than
relying on the configuration of Auto Exposure (AE) settings,
a digital gain function, ISP settings, and/or other settings of
an imaging device, in various embodiments, decoupling the
raw data collection (e.g., sensor data) from the image signal
processing provides greater control of resulting images
(HDR images, Standard Dynamic Range (SDR) images,
and/or Low Dynamic Range (LDR) images) which can be
tailored to particular applications. In addition, in some
embodiments, decoupling the raw data collection in this
manner allows for improvements, fixes, tuning changes, and
other adjustments to a pipeline of an ISP without the need to
re-collect the raw data.

[0061] In one example, when capturing raw data from a
camera device mounted on a vehicle, the AE settings or
other settings of the camera may result in images that are too
bright, too dark, or otherwise produce suboptimal results. In
various embodiments, by capturing raw data with a fixed
exposure setting and/or other fixed calibration settings for
the camera device, such functionality can be replaced with
one or more components of an offline image signal process-
ing pipeline. For example, the AE functionality of the
camera device is replaced by a tone mapping function of an
ISP. Furthermore, in various embodiments, the offline image
signal processing pipeline, which can include particular
algorithms, may be tuned, added, and/or removed to produce
different results (e.g., image data with various properties)
without the need to collect new raw data by using the same
raw data (e.g., raw data collected using a fixed setting).
[0062] In an embodiment, adjusting the offline image
signal processing pipeline includes modifying one or more
parameters of a tone mapping function. For example, the
tone mapping function may be a parametric function that
defines a curve (e.g., a Global Tone Curve), where the
parameters of the function are fit such that the curve is
constrained to pass through (or include) the low-tone point,
the mid-tone point, and the high-tone point. As a result, in
embodiments where the offline image signal processing
pipeline includes the tone mapping function, the parameters
of the function are adjusted to generate different image data
from the same raw data.

[0063] Furthermore, in various embodiments, the images
(e.g., lower dynamic range image data) generated by the
offline image signal processing pipeline is used to train a
neural network. In one example, the images are used to train
a neural network to perform object detection for an autono-
mous vehicle. Results from inferencing operations per-
formed by the neural network, in some embodiments, are
also used to adjust, improve, or otherwise modify the offline
image signal processing pipeline. For example, if the trained
neural network, when performing inferencing, performs
poorly in low light environments, the offline image signal
processing pipeline is adjusted and the raw data is re-
processed to produce training data (e.g., images) that, when
used to re-train the neural network, result in better perfor-
mance of the neural network.

[0064] With reference to FIG. 1, FIG. 1 is an environment
100 including a fixed setting capture system 102 and an
image signal processing 140 system, in accordance with
some embodiments of the present disclosure. It should be
understood that this and other arrangements described herein
are set forth only as examples. Other arrangements and

US 2022/0358627 Al

elements (e.g., machines, interfaces, functions, orders,
groupings of functions, etc.) may be used in addition to or
instead of those shown, and some elements may be omitted
altogether. Further, many of the elements described herein
are functional entities that may be implemented as discrete
or distributed components or in conjunction with other
components, and in any suitable combination and location.
Various functions described herein as being performed by
entities may be carried out by hardware, firmware, and/or
software. In one example, various functions are carried out
by a logic device, such as but not limited to a general
purpose processor 122 and/or an image signal processor
(ISP) 124 executing instructions stored in memory. In
another example, various functions (e.g., image signal pro-
cessing 140) are carried out by a component of a server (e.g.,
server 1512 described in greater detail below in connection
with FIG. 15) and/or a service provided by a computing
resource service provider.

[0065] In various embodiments, the fixed setting capture
system 102 captures High-Dynamic-Range (HDR) image
data (e.g., raw data, bit map, raster graphic, or other data
structure representing a set of pixels) based at least in part
on digital exposure calibration data 110. In addition, various
embodiments, include the image signal processing system
140 to perform tone mapping of the HDR image data. For
example, by controlling the brightness of the image encoded
by the HDR image data and/or the image encoded by
tone-mapped image data.

[0066] The result of the image signal processing system
140, in an embodiment, includes image data that is used to
perform model training 112. In one example, the tone
mapped HDR image data is transformed into Standard
Dynamic Range (SDR) image data or Low Dynamic Range
(LDR) via a compression of the pixel values (e.g., an
application of a gamma-compression function on the tone-
mapped HDR image data). These SDR and LDR images, in
various embodiments, are used to train one or more neural
networks to perform various tasks such as those described in
connection with autonomous vehicles as described below.
One non-limiting embodiment includes capturing and/or
receiving source image data using fixed exposure settings
for an image sensor. For example, the source image data may
be HDR image data and may represent and/or encode a
source image.

[0067] In various embodiments, the image signal process-
ing system 140 processes the image data obtained from the
fixed setting capture system 102 based at least in part on an
application for which the image data and/or trained model
will be used. As illustrated in the environment 100, example
applications include a manned or unmanned terrestrial
vehicle (e.g., a vehicle 104), a manned or unmanned aerial
vehicle (e.g., a drone 106), or a wearable device (e.g., smart
glasses 108). For example, the image signal processing
system 140 processes the captured image data for use in
training a model to perform flight operations of the drone
106. In another example, the image signal processing system
140 processes the captured image data for use in training a
model to perform object detection for use with the smart
glasses 108. In an embodiment, as part of processing the
capture image data for a particular application, the image
signal processing system 140 determines tone control points
based at least in part on source pixel values of the captured
image data. In one example, the determined tone control
points include a low-tone point, a mid-tone point, and/or a

Nov. 10, 2022

high-tone point. In some embodiments, the tone control
points additionally include a flare-suppression point. In at
least one embodiment, additional tone control points are
determined.

[0068] Although the fixed setting capture system 102
illustrated in FIG. 1 is shown as a single camera, this is not
intended to be limiting. In various embodiments, there may
be any number of camera computing devices including
camera computing devices not explicitly shown in FIG. 1. In
various embodiments, the fixed setting capture system 102
includes a computing device comprising one or more image
sensors and/or cameras that can implement the digital expo-
sure calibration data 110. In one example, the fixed setting
capture system 102 includes a dash cam with a fixed
exposure setting. In another example, the fixed setting
capture system 102 includes a plurality of image sensors
positioned such that images depicting a 360 degree scene are
captured using the digital exposure calibration data 110.
[0069] In addition, in various embodiments, the camera
computing devices depicted in FIG. 1 (e.g., the camera
devices included in 102-108) include one or more image
sensors that are enabled to capture High-Dynamic-Range
(HDR) image data, as discussed throughout. The environ-
ment 100, in various embodiments, includes other comput-
ing devices, such as but not limited to a server computing
device. In one example, the server computing device imple-
ments the image signal processing system 140. The terres-
trial vehicle 104 and/or the aerial vehicle 106 may be at least
partially manually operated vehicles and/or when manned,
partially autonomous. In some embodiments, when
unmanned, the vehicles 104 and 106 may be autonomous,
partially autonomous, and/or remote controlled vehicles.
Various embodiments of such vehicles are discussed in
conjunction with FIGS. 9A-9D.

[0070] Various embodiments of computing devices,
including but not limited to the computing devices 102-108
and those implementing the image signal processing system
140 are discussed in conjunction with FIGS. 11-14. How-
ever, briefly here, the computing devices described in con-
nection with FIG. 1, in an embodiment, includes one or more
logic devices. For example, the fixed capture system 102 is
shown to include logic devices 118. The logic devices 118,
in an embodiment, include one or more of a general purpose
processor 122 (e.g., a Central Processing Unit (CPU), a
microcontroller, a microprocessor, or the like), an Image
Signal Processor (ISP) 124, an Application Specific Inte-
grated Circuit (ASIC) 126, and/or a Field Programmable
Gate Array (FPGA) 128. Although not shown in FIG. 1, in
some embodiments, the logic devices 118 include a Graph-
ics Processing Unit (GPU). It should be noted that any of the
computing devices 102-108 and those implementing the
image signal processing system 140, in various embodi-
ments, include one or more of such logic devices. In various
embodiments, the Image Signal Processor (ISP) 124, as a
component of a computing device, implements the image
signal processing system 140 or component thereof. For
example, a server computer system includes the Image
Signal Processor (ISP) 124 or otherwise emulates the Image
Signal Processor (ISP) 124 or component thereof.

[0071] Various components of the environment 100 (e.g.,
the computing devices 102-108), in an embodiment, com-
municate over one or more networks. For example, the one
or more networks include a wide area network (WAN) (e.g.,
the Internet, a public switched telephone network (PSTN),

US 2022/0358627 Al

etc.), a local area network (LAN) (e.g., Wi-Fi, ZigBee,
Z-Wave, Bluetooth, Bluetooth Low Energy (BLE), Ethernet,
etc.), a low-power wide-area network (LPWAN) (e.g.,
LoRaWAN, Sigfox, etc.), a global navigation satellite sys-
tem (GNSS) network (e.g., the Global Positioning System
(GPS)), and/or another network type.

[0072] Furthermore, in various embodiments, one or more
of the computing devices 102-108 implement, operate, or
otherwise execute the functions and/or operations of image
signal processing system 140. In the example illustrated in
FIG. 1, the fixed capture system 102 is shown implementing
the image signal processing system 140. For example, the
fixed capture system 102 includes one or more image
sensors and the logic devices 118 implementing the image
signal processing system 140 (e.g., a part of an autonomous
or partially autonomous vehicle capturing training images of
various environments). However, any of the computing
devices described in the present disclosure may be enabled
to implement the image signal processing system 140.
Furthermore, in various embodiments, any of the logic
devices 118 can implement at least some of the functions,
operations, and/or actions of the image signal processing
system 140.

[0073] The image signal processing system 140 may
enable various methods of the tone mapping of HDR image
data, as well as controlling the brightness of the image
encoded by HDR image data and/or the tone-mapped image
data. To carry out such functionality, the image signal
processing system 140, in various embodiments, includes
one or more components, modules, devices, or the like. An
example image signal processing system 140, is described
below in connection with FIGS. 2 and 3. Any of the
components, modules, and/or devices described in connec-
tion with the image signal processing system 140 or those
described below in connection with FIGS. 2 and 3 may be
optional in some embodiments.

[0074] As discussed throughout, the image signal process-
ing system 140, in various embodiments, implements and/or
carries out at least portions of the processes, actions, and/or
operations discussed in conjunction with the methods 500,
600, 700, and 800 of FIGS. 5-8. As such, one or more of the
logic devices 118 may implement and/or carry out at least
portions of the methods 500, 600, 700, and/or 800.

[0075] In various embodiments, the fixed setting capture
system 102 includes one or more HDR image sensors 144
that are enabled to capture image data that is HDR image
data. For example, the captured HDR image data encodes an
image or scene that is imaged by the HDR image sensors
144. In an embodiment, the pixel depth of the HDR image
data may be as great or greater than 96 bits (32 bits per color
channel). The image data captured by the HDR image
sensors 144, in various embodiments, is referred to as source
image data. The source image data, for example, includes a
plurality of images captured using the digital exposure
calibration data 110. As discussed above, the HDR image
sensors 144, which capture source image data, in various
embodiments, is mounted on a vehicle (e.g., the terrestrial
vehicle 104 or the aerial vehicle 106). The vehicle, for
example, includes an autonomous, or at least a partially
autonomous, vehicle controlled, at least partially, based at
least in part on the source image data and/or the target image
data. In some embodiments, the encoding of the source
image data is in a linear color space that lacks a non-linear

mapping.

Nov. 10, 2022

[0076] In various embodiments, the HDR image sensors
144 includes, is affected by, and/or be subject to the digital
exposure calibration data 110. The digital exposure calibra-
tion data 110, in an embodiment, is a fixed, static, and/or
otherwise constant exposure settings. For example, digital
exposure calibration data 110 includes exposure settings,
aperture, shutter speed, depth of field, image sensor sensi-
tivity, white balance, flash settings, color settings, or any
other settings of an image sensor, camera, or computing
device (e.g., computing device 104-108 which include
image sensors). In at least one embodiment, a user manually
sets at least a portion of the digital exposure calibration data
110 which remains unchanged during the capture of the
source image data.

[0077] In various embodiments, the source image data is
provided, via a network, to the image signal processing
system 140 that is implemented at and/or by one or more
services of the server computing device. That is, although
the source HDR image data, in one example, is captured by
the fixed setting device 102, the tone mapping and control-
ling the brightness of the image data may be performed
offline on the server computing device. To state it in another
fashion, the tone mapping of the HDR image data may be
offloaded to another computing device, such as but not
limited to the server computing device, which did not
capture the image data. The various embodiments, enable, or
at least assist in the enablement, of various machine and/or
computer vision features of an autonomous vehicle, such as
but not limited to terrestrial vehicle 104 or aerial vehicle
106. The embodiments may be deployed to enable the
machine and/or computer vision features of other applica-
tions, such as but not limited to robotic applications.

[0078] In various embodiments, once the source image
data (e.g., data collection for machine learning training and
inferencing) is collected and stored, the source image data is
processed by the image signal processing system 140 to
generate target image data. This decoupling of the image
signal processing and data collection, for example, allows
for the improvement and fixes 120 and/or tuning modifica-
tions 122 to be applied to one or more components of the
image signal processing system 140 such as a tone mapping
function. This enables the source data to be reused over a
long interval of time without the need to perform additional
costly and time consuming data collection in accordance
with embodiments described in the present disclosure. Fur-
thermore, the improvement and fixes 120 and/or tuning
modifications 122 can be applied to any of the components
of the image signal processing system 140 described below,
such as those described in FIGS. 2, 3, 4, and 4B. In addition,
in various embodiments, the improvement and fixes 120
and/or tuning modifications 122 include adding additional
components and/or image processing algorithms to the
image signal processing system 140. In one example, the
improvement and fixes 120 includes adding a new tone
mapping function to the image signal processing system
140. In yet another example, the tuning modifications 122
includes changes to the tone mapping function to produce
different characteristics (e.g., lighter, darker, color values,
color saturation, compression rate, dynamic range, etc.) of
the target image data.

[0079] In various embodiments, the tone mapping func-
tion is determined based at least in part on at least a portion
of the control points. For example, the tone mapping func-
tion may be a parametric function that defines a curve (e.g.,

US 2022/0358627 Al

a Global Tone Curve). The parameters of the function may
be fit such that the curve is constrained to pass through (or
include) the low-tone point, the mid-tone point, and the
high-tone point. In some embodiments, the curve is further
constrained to pass through at least a portion of the addi-
tionally determined points.

[0080] In at least one embodiment, determining the tone
mapping function may be further based at least in part on a
gain value. In one example, the gain value is determined
based at least in part on the mid-tone point and at least one
other of the tone control points, such as but not limited to the
flare-suppression point. The gain value may be determined
to be equivalent to the slope of a gain line that passes
through the mid-tone point and the flare-suppression point.
The fitting of the tone mapping function, in an embodiment,
is further constrained such that the derivative and/or instan-
taneous rate of change of the function, evaluated at one of
the components of the mid-tone point, is at least approxi-
mately equivalent to the gain value. In various embodi-
ments, the image signal processing system 140 generates
target image data (e.g., images used to perform model
training 112) by at least transforming the captured image
data, via an application of the tone mapping function on the
captured image data. For example, the target image data
includes target pixel values, which are defined by the
application of the tone mapping function on the pixel values
of the captured image data.

[0081] In contrast to conventional approaches, the various
embodiments of the image capture systems use fixed digital
exposure calibration data 110 without relying on auto expo-
sure (AE) settings to enable a wide range of image signal
processing (e.g., offline image processing). As explained
below, the images that are tone-mapped may have more
detail and contrast. Furthermore, the various embodiments
enable controlling the overall image brightness of the HDR
image and/or the tone-mapped image without the application
of the digital gain function. In addition, having captured
image data (e.g., the raw data) that is uniform as a result of
fixed setting allows consistent and modifiable application of
various image processing algorithms (e.g., tone mapping).
Thus, images generated by the various embodiments are
capable of being reprocessed, optimized, or otherwise modi-
fied based at least in part on various factors (e.g., applica-
tion, results of trained models, image quality, etc.). For
example, a particular captured image can be reprocessed to
suppress flares (e.g., a positive black point in the image data
or errors in the black level subtraction), as well as compress
highlights (e.g., pixels with significant luminosity values) in
the HDR image data.

[0082] In various embodiments, the digital exposure cali-
bration data 110 includes an exposure setting or period for
the capture of multiple images. In one example, the fixed
setting capture system 102 is attached to a vehicle and
captures images as the vehicle travels in order to generate
training data for using in model training 112. An HDR image
(encoded by HDR image data), in an embodiment, is gen-
erated by pixel values of the multiple SDR images (e.g.,
captured by the fixed setting capture system 102). The
digital exposure calibration data 110, in various embodi-
ments, is determined such that the resulting images are
modifiable to be optimally used for a particular application
or plurality of applications. For example, using longer
exposure settings for the digital exposure calibration data
110 allows the HDR image’s pixel values (e.g., after image

Nov. 10, 2022

signal processing) to capture the darker regions of an imaged
scene with greater detail. Using the pixel values generated
by longer exposure times may enable capturing greater
detail and contrast in the darker regions of the scene. In
another example, using shorter exposure settings for the
digital exposure calibration data 110 allows for HDR pixel
values (e.g., after image signal processing) to capture the
lighter regions of an imaged scene. Using the pixel values
generated by shorter exposure times may prevent “washout”
or an over-exposed effect on the lighter or brighter regions
of'the scene. In other embodiments, HDR image data may be
generated from a single image, where the image sensors
(e.g., camera pixels) capture the image using the digital
exposure calibration data 110.

[0083] As noted above, conventional HDR cameras and
systems rely on a user to appropriately configure the AE
settings of their camera. Such AE settings may include Auto
Exposure Bracketing (AEB) settings and/or various AE
modes (e.g., night and day AE modes). These AE settings
may not change or may be poorly changed to match their
current environment. For example, a conventional HDR
camera may not provide separate AE modes for a sunny day,
an overcast day, or states therebetween. Therefore, by using
fixed settings (e.g., the digital exposure calibration data 110)
for the capture of a plurality of images (e.g., training
images), the image signal processing system 140 is capable
of performing improvements and fixes 120 and tuning
modifications to the image signal processing system 140 in
order to improve image quality without the need to capture
all new images.

[0084] For example, when AE modes do not adequately
provide exposure settings that are consistent with multiple
scenes’ lighting conditions at the time of capture, the overall
brightness of the HDR images may not realistically reflect
the scenes’ lighting conditions. For instance, the HDR image
may not render the scenes as brightly lit or may be a washed
out rendering of the HDR images (even after image signal
processing) which is sub-optimal for a variety of applica-
tions. Furthermore, to compensate for this lighting mis-
match, conventional HDR cameras and systems often
employ a digital gain function to adjust or boost the lumi-
nosity of the HDR pixel values. Under various lighting
conditions and/or AE settings, the gain value applied to the
pixels may be significant. Such large gains often saturate
and/or clip the brighter regions of the HDR image, which
may leave these regions to appear washed-out or overex-
posed. In various embodiments, by using the digital expo-
sure calibration data 110 for the capture of the multiple
scenes consistent and optimal results are obtained as a result
of the image signal processing system 140.

[0085] In addition, conventional tone mapping may result
in lossy compression of the HDR image data, and in many
scenarios, significantly degrade the quality of the lower
dynamic range image or a standard dynamic range image, as
compared to the HDR image. More specifically, conven-
tional tone mapping may be limited in its ability to conserve
the critical information of HDR image data. Conventional
tone mapping may not conserve a substantial amount of the
critical information of the HDR image data especially when
the above discussed AE settings and/or modes are inappro-
priate for the scene’s current lighting conditions. For
instance, when imaging a dimly illuminated scene, the user
may fail to transition a conventional HDR camera from day
mode to night mode. The HDR image may appear under-

US 2022/0358627 Al

exposed because the HDR image data fails to encode much
of the detail and contrast of the darker regions of the imaged
scene. As a result, when generating an SDR (or an LDR)
image from the under-exposed HDR image data the under-
exposed appearance of the SDR image may be even more
apparent. Therefore, in various embodiments, by performing
the image signal processing “offline” (e.g., after the images
are captured using fixed calibration settings) critical infor-
mation is conserved and the image signal processing system
140 is capable of generating higher quality, more detailed
images that result in better performance.

[0086] In addition, even when the AE settings are appro-
priate for the current lighting conditions, the lighting con-
ditions may be dynamic across temporal spans, while the AE
settings may be held constant or change slowly in response
to the conditions. For example, conditions can change from
bright and sunny to overcast and cloudy and the AE setting
change may not adequately account for the change in
conditions and/or change rapidly enough. As a result,
because conventional tone mapping is applied at the frame-
level, conventional mapping may not readily account for
dynamic conditions. For example, during capture of HDR
video image data, a relatively bright object (e.g., a highly-
reflective object or an object that includes a light source)
may enter the scene and the current AE settings may be
inappropriate for the introduction of the bright object. Con-
ventional tone mapping may render the dynamic brightly lit
object as overexposed, and the overall brightness of the
video image data may fluctuate. However, in various
embodiments, using the fixed setting capture system 102
allows the image signal processing system 140 to accurately
process and/or adjust images to account for such dynamic
conditions.

[0087] In various embodiments, the tone mapping func-
tion applied by the image signal processing system 140
include a Global Tone Mapping (GTM) function and/or a
Global Tone Curve (GTC). The tone mapping function, for
example, is dynamically and/or globally determined based at
least in part on the HDR image, the application for which the
image will be used, or other considerations. As such, the
tone mapping function may be employed to dynamically and
globally tone map the HDR image data. When applied to the
HDR image data, the tone mapping function maps the tone
(e.g., the brightness) of the HDR image data such that the
tone-transformed HDR image data may encode image
brightness that matches the lighting conditions of the imaged
scene. The tone mapping function may also minimize visual
artifacts due to the HDR imaging (e.g., flare-suppression and
compression of highlights).

[0088] In various embodiments, upon being tone mapped,
the HDR image data is compressed into SDR or LDR image
data via a filtering of the Least-Significant-Bits (LSBs) of
the HDR pixel values. In some embodiments, prior to the
pixel-depth reduction, the tone mapped HDR image data is
color compressed via a gamma compression function. For
example, HDR image data is captured via fixed exposure
settings (e.g., digital exposure calibration data 110) and the
captured HDR image data is referred to as source image
data. The tone mapping function may be dynamically deter-
mined by the image signal processing system 140 (or
component thereof as described in greater detail below)
based, at least in part, on an analysis of pixel values of the
source image data. The tone mapping function, in an
embodiment, is a non-linear function that maps source pixel

Nov. 10, 2022

values of the source image data to target pixel values of
target image data. For non-linear embodiments, the non-
linear tone mapping function and/or GTM function are
plotted in 2D coordinates as a Global Tone Curve (GTC).

[0089] In various embodiments, to generate the tone map-
ping function, the image signal processing system 140 (or
component thereot) determines a plurality of control points
based, at least in part, on the dynamic analysis of the source
image data. The control points, for example, are defined in
a plane spanned by the ranges of the source and target pixel
values. In some embodiments, the control points are defined
based, at least in part, on a region-of-interest (ROI) of the
source image data. The tone mapping function, in one
example, define a one-to-one non-linear mapping between
the values of the source image pixels and the values of target
image pixels. For example, the tone mapping function
defines (or at least evaluates to a numerical approximation
thereof) a curve in the source/target plane. In an embodi-
ment, the curve is an approximation of a curve (e.g., a
plurality of piecewise linear segments with varying slopes).
In one example, the tone mapping function is a spline
function including polynomials with a degree greater than 1.
In some embodiments, the tone mapping function is a
one-to-one linear mapping function. The control points
within the plane, for example, define one or more constraints
on the tone mapping function. In some embodiments, a
parameterized tone mapping function is fit (e.g., the param-
eters defining the tone mapping may be selected by mini-
mizing a difference or cost function) based, at least in part,
on the one or more constraints. More specifically, the cost
function may be defined by the one or more constraints. For
example, a spline function, with polynomial segments of any
degree, is fit based, at least in part, on the one or more
constraints.

[0090] In various embodiments, at least a portion of the
control points indicate constraints for tone mapping of a
specific and a finite number of source pixel values and
corresponding target pixel values. In order to suppress flares
and compress highlights, in various embodiments, some of
the control points define flare-suppression or highlight com-
pression thresholds for the source image data. At least some
of the control points, in an embodiment, are employed to
constrain a derivative (or at least a numerical approximation
thereof) of the tone mapping function, evaluated at one or
control points. That is, some of the control points may be
employed to constrain the slope of the gain (e.g., gain value)
of the tone mapping function at one or more other control
points.

[0091] In some embodiments, at least three control points
are determined: a low-tone point, a mid-tone point, and a
high-tone point. The low-tone point, for example, defines a
tone mapping between the lowest pixel value of the source
image data and the lowest pixel value of the target image
data, as well as a flare-suppression threshold for the source
image data. Similarly, the high-tone point, for example,
defines a tone mapping between the highest pixel value of
the source image data and the highest pixel value of target
image data, as well as a highlight compression threshold for
the source image data. The mid-tone point, for example,
defines a tone mapping between a mid-tone value of the
source image data and a mid-tone value of the target image
data. As discussed below, the mid-tone point, in some
embodiments, is additionally employed to constrain the
derivative of the tone mapping function.

US 2022/0358627 Al

[0092] Because the low-tone point, in some embodiments,
defines the mapping between tone values for the darkest or
the “black” pixels of the source and target image data, the
low-tone point may be a “black point” (BP) of the mapping.
Likewise, because the high-tone point may define the map-
ping between tone values for brightest or “white” pixels of
the source and target image data, the high-tone point, in
some embodiments, is a “white point” (WP) of the mapping.
In some embodiments, when fitting the tone mapping func-
tion, the tone mapping parameters are selected to force the
tone mapping function to evaluate to (or at least approxi-
mate) these control points. The tone mapping function, in yet
other embodiments, is constrained to evaluate to (or at least
approximate) additional control points.

[0093] In at least some embodiments, the derivative (or at
least the numerical approximation thereof) of the tone
mapping function is constrained at the mid-tone point, or
any other such control point. That is, the slope of the
mid-tone gain (defined via the tone mapping function) may
be constrained and/or set at the mid-tone point. To constrain
the derivative (or the numerical approximation thereof) of
the tone mapping function at the mid-tone point, an addi-
tional control point is defined in various embodiments. The
derivative of the tone mapping function, evaluated at the
mid-tone point, for example, is constrained to be at least
approximately equivalent to the slope of a line (e.g., gain
value) passing through the mid-tone point and an additional
control point. In one such example, the additional control
point is a maximum flare removal (MFR) point that specifies
a threshold on the source pixel values in order to remove
flares.

[0094] As further examples, the slope of the mid-tone gain
is constrained to be at least approximately equivalent to the
ratio of the mid-tone of the target image data to mid-tone of
the source image data. As still further examples, the slope of
the mid-tone gain is set by other methods (e.g., a user
configurable setting). For example, after observation by a
user, the slope of the mid-tone gain or other parameters of
the image signal processing system 140 are modified to
achieve improved results. In various embodiments, when
fitting the parameterized tone mapping function, the param-
eters are selected to force the derivative of the tone mapping
function, evaluated at the mid-tone point, to at least approxi-
mate the mid-tone gain, defined in these or any other
manner.

[0095] Inan embodiment, once the tone mapping function
is determined, the image signal processing system 140,
generates the target image data by applying the tone map-
ping function to the source image data (e.g., raw data capture
by the fixed setting capture system 102). In some embodi-
ments, statistical metrics of the source image data are
determined, and the control points are determined from the
statistical metrics. Some of the disclosed embodiments are
deployed in vehicle-mounted imaging devices (e.g., dash-
cams). Further, the various embodiments are deployed in
autonomous vehicle applications, or other such machine-
vision applications. The embodiments may be deployed in
any application that employs one or more machine and/or
computer vision methods. For example, the embodiments
may be deployed to enable any of the various machine vision
features of an autonomous vehicle (See FIGS. 9A-9D). The
embodiments may be deployed to enable machine vision in
a robot, such as but not limited to a manufacturing robot.

Nov. 10, 2022

[0096] FIG. 2 illustrates an environment 200 in which
offline image signal processing 240 is performed on raw data
obtained during data collection 202, in accordance with at
least one embodiment. In various embodiments, the data
collection 202 includes capturing with one or more image
sensor(s) 244 raw data representing one or more environ-
ments. For example, data collection 202 includes capturing
a set of images of objects in context, such as pedestrians,
traffic signals, construction sites, equipment, or other
objects. In various embodiments, the image sensor(s) 244
include one or more different types of sensors such as global
navigation satellite systems sensor(s), radio detection and
ranging (RADAR) sensor(s), ultrasonic sensor(s), light
detection and ranging (LIDAR) sensor(s), inertial measure-
ment unit (IMU) sensor(s), stereo camera(s), wide-view
camera(s), infrared camera(s), surround camera(s), long-
range and/or mid-range camera(s), and/or other sensor types
described in greater detail below in connection with FIGS.
13A-13D. The image sensor(s) 244, in yet other embodi-
ments, include a variety of sensors such as the HDR image
sensor(s) 344 described below in connection with FIG. 3. In
addition, for example as illustrated in FIG. 2, the image
sensor(s) 244 operate according to exposure settings 242. In
various embodiments, exposure settings 242 include fixed
exposure settings for the image sensor(s) 244 to be used
during data collection 202. In one example, the exposure
settings 242 include settings for a computing device includ-
ing the image sensor(s) 244 such as the digital exposure
calibration data 110 described above in connection with
FIG. 1.

[0097] The offline image signal processing 240, in various
embodiments, includes various components such as image
processing 258, a statistics module 252, tone mapping 256,
and/or other processing 250. The various components of the
offline image signal processing 240 may include, for
example, dedicated hardware and/or executable code or
other instructions that, when executed by one or more
processors of a computing device, cause the computing
device to perform the operations described in the present
disclosure. In an embodiment, image processing 258
includes performing operations on the source image data
(e.g., the raw data collected during data collection 202) to
prepare the source image data for tone mapping 256. For
example, image processing 258 includes data conversion
(e.g., converting the raw data from one format to another),
adjusting black-levels, color values, saturation, demosaic-
ing, noise removal, or other operations to prepare the source
image data to be processed by a tone mapping function.

[0098] In embodiments that include and/or enable the
operability of the statistics module 252, the statistics module
252 determines and/or generates a plurality of statistical
metrics based at least in part on the pixel values of the source
image data (or the pixel values of a portion of the source
image data). In one example, the plurality of statistical
metrics includes statistical metrics that are based, at least in
part, on the pixel values of the source image data. The
statistical metrics, in various embodiments, include one or
more parameters that characterize any continuous or discrete
statistical distribution and/or histogram that may be con-
structed from the source image data. Such parameters, for
example, include a mean, median, and/or standard deviation
of'one or more statistical distributions derived from the pixel
values of the source image data.

US 2022/0358627 Al

[0099] In various embodiments, once the raw data has
been processed (e.g., image processing 258), the system
executing the offline image signal processing 240, performs
tone mapping 256. In yet other embodiments, tone mapping
256 is performed without processing or otherwise modifying
the raw data. The tone mapping 256, in various embodi-
ments, includes applying one or more tone mapping func-
tions to source image data to generate target image data.
Various different tone mapping functions, for example the
tone mapping functions described below, may be used in
connection with various embodiments described in the pres-
ent disclosure. In addition, various tone mapping functions
described in U.S. Patent Application Publication No. 2021/
0035273, by Deng, et al. incorporated by reference as if set
forth in its entirety, may be used as an example of the tone
mapping function 256.

[0100] Inan embodiment, the system executing the offline
image signal processing 240, performs other processing 250.
As shown in FIG. 2, the other processing 250 in various
embodiments, is optional and may be included or removed
based at least in part on an application of the results. For
example, other processing 250 includes image conversion
(e.g., image formatting), data conversion (e.g., metadata),
image filtering, pixelation, image padding, affine transfor-
mations, white balance, color correction, or any other pre or
post image processing or other data processing techniques.
The offline image signal processing 240, once completed
(e.g., after execution by a computer system), produces a set
of results including target image data. As illustrated in FIG.
2, in various embodiments, the results include image(s) 256
(e.g., target image data) and neural network(s) 262.

[0101] In various embodiments, the image(s) 260 include
target image data which includes target pixel values, which
are defined by applying the tone mapping function 256
(and/or other image processing 250) on the pixel values of
the source image data. The image(s) 260, for example, may
include LDR or HDR images resulting from the offline
image signal processing 240. In various embodiments, the
neural network(s) 262 include neural networks trained based
at least in part on the image(s) 260. In one example, the
neural network(s) 262 include various neural networks as
described below in connection with 13D. In at least one
embodiment, the neural network(s) 262 comprise one or
more neural networks (or other models) that, based at least
in part on input data (e.g., the image(s) 260), classify one or
more aspects of input data. That is, for example, the neural
network(s) 262 comprises one or more neural networks to
perform imaging processing tasks that classify one or more
features of imaging data (e.g., target image data). The neural
network(s) 262, in an embodiment, include various types of
machine learning models depending on implementation
(e.g., the operation to be performed by the neural network(s)
262). That is, the neural network(s) 262 can include, for
example, one or more machine learning model(s) using
linear regression, logistic regression, decision trees, support
vector machines (SVM), Naive Bayes, k-nearest neighbor
(Knn), K means clustering, random forest, dimensionality
reduction algorithms, gradient boosting algorithms, neural
networks (e.g., auto-encoders, convolutional, residual,
recurrent, perceptrons, Long/Short Term Memory (LSTM),
Hopfield, Boltzmann, deep belief, deconvolutional, genera-
tive adversarial, liquid state machine, etc.), and/or other
types of machine learning models. More specifically, as an
example, a convolutional neural network (CNN) includes

Nov. 10, 2022

region-based or regional convolutional neural networks
(RCNNs) and Fast RCNNs (e.g., as used for object detec-
tion) or other type of CNN. Furthermore, in various embodi-
ments, the neural network(s) 262 includes a plurality of
models which may be static or dynamically determined
based at least in part on an application (e.g., object detection,
autonomous vehicles, etc.).

[0102] In various embodiments, the results (e.g., the image
(s) 260 and/or the neural network(s) 262) are evaluated to
determine improvements and fixes 266 and/or tuning
changes 264 to the offline image signal processing 240 or
components thereof. In one example, a user examines the
image(s) 260 to determine if there are one or more issues
with the image(s) 260 to be corrected by improvements and
fixes 266 and/or tuning changes 264. Similarly, in another
example, results generated by the neural network(s) 262 are
evaluated to determine if there are one or more issues with
the offline image signal processing 240 or components
thereof to be corrected by improvements and fixes 266
and/or tuning changes 264. In various embodiments, the one
or more issues include bright and/or dark areas of the
image(s) 260, quality issues with the image(s) 260, perfor-
mance issues with the neural network(s) 262 (e.g., failure in
certain lighting conditions), issues with inferencing per-
formed by the neural network(s) 262 (e.g., misclassification
of input data), or any other issues associated with the
image(s) 260 and/or the neural network(s) 262 that is
correctable by improvements and fixes 266 and/or tuning
changes 264 to the offline image signal processing 240.

[0103] In various embodiments, the improvements and
fixes 266 and/or tuning changes 264 are applied to the offline
image signal processing 240 and the same raw data (e.g., the
source image data used to generate the target image data
corresponding to the results) is reprocessed using the
improvements and fixes 266 and/or tuning changes 264. For
example, as a result of using the exposure settings 242 which
are fixed, the improvements and fixes 266 and/or tuning
changes 264 can be applied to the offline image signal
processing 240 without the need to perform additional data
collection 202. In various embodiments, decoupling the data
collection 202 from the image signal processing (e.g., by
performing offline image signal processing 240) the same
raw data can be used to generate different results by at least
applying the improvements and fixes 266 and/or tuning
changes 264. For example, by using the same exposure
settings for the data collection 202, the offline image signal
processing 240 can be applied to the source data to generate
predictable and consistent target data (e.g., similar light
levels, color balance, etc.). As a result, in various embodi-
ments, the results of the offline image signal processing 240
(e.g., the image(s) 260 and/or neural network(s) 262) are
evaluated, the improvements and fixes 266 and/or tuning
changes 264 are applied, then new target image data is
generated using the source image data obviating the need to
collect new source image data (e.g., conduct additional data
collection 202).

[0104] In various embodiments, the tuning changes 264
include modifications to the tone mapping 256 or other
image processing algorithms used during offline image
signal processing 240. In one example, various components
of the tone mapping 256 such as control points, flare
suppression, gain curves, gain lines, tone mapping functions,
or other components of one or more tone mapping functions
as described in the present disclosure (e.g., FIGS. 3-4B) are

US 2022/0358627 Al

modified based at least in part on the tuning changes 264. In
an embodiment, the improvements and fixes 266 modify one
or more other components of the offline image signal
processing 240. In one example, the improvements and fixes
266 modify, add, or remove components of the image
processing 258 and/or other processing 250 of the source
image data. In an embodiment, the improvements and fixes
266 and the tuning changes 264 include a single set of
modifications to the offline image signal processing 240.

[0105] With reference to FIG. 3, FIG. 3 provides a sche-
matic diagram of a system 300, in accordance with some
embodiments of the present disclosure. For example, the
system 300 includes a High-Dynamic-Range Imaging
(HDRI) system. It should be understood that this and other
arrangements described herein are set forth only as
examples. Other arrangements and elements (e.g., machines,
interfaces, functions, orders, groupings of functions, etc.)
can be used in addition to or instead of those shown, and
some elements may be omitted altogether. Further, many of
the elements described herein are functional entities that
may be implemented as discrete or distributed components
or in conjunction with other components, and in any suitable
combination and location. Various functions described
herein as being performed by entities may be carried out by
hardware, firmware, and/or software. For instance, various
functions may be carried out by logic devices, such as but
not limited to a general purpose processor 322 and/or an
image signal processor (ISP) 324 executing instructions
stored in memory.

[0106] In various embodiments, the system 300 may
include, among other things, computing devices that include
one or more image sensors (e.g., a camera). Such computing
devices, for example, include, but are not limited to, a
mobile or stationary camera (e.g., a handheld camera, a
smartphone, a tablet, or the like), a manned or unmanned
terrestrial vehicle (e.g., a vehicle 304), a manned or
unmanned aerial vehicle (e.g., a drone 306), or a wearable
device (e.g., smart glasses 308). Such computing devices
that include one or more image sensors may herein be
referred to collectively as the camera computing devices
302-308. For example, the camera computing devices
include one or more HDR image sensors 344 and HDR
sensor exposure settings 342.

[0107] In various embodiments, the HDR image sensors
344 capture image data that includes HDR image data. For
example, the captured HDR image data encodes an image or
scene that is imaged by the HDR image sensors 344. The
image data captured by the HDR image sensors 344, in
various embodiments, is referred to as source image data.
Thus, source image data, in at least one example, includes
HDR image data that encodes an HDR source image. As
discussed throughout, the HDR image sensors 344, which
capture source image data, in an embodiment, are mounted
on a vehicle (e.g., the terrestrial vehicle 304 or the aerial
vehicle 306). For example, the vehicle may be an autono-
mous, or at least a partially autonomous, vehicle and the
vehicle may be controlled, at least partially, based at least in
part on the source image data and/or target image data 360.
In some embodiments, the encoding of the source image
data is in a linear color space that lacks a non-linear
mapping. The HDR image sensors 344 include, are affected
by, and/or are subject to the one or more HDR sensor
exposure settings 342 in accordance with at least one
embodiment. As described above, in various embodiments,

Nov. 10, 2022

the HDR sensor exposure settings 342 are fixed, static,
and/or constant exposure settings. In such embodiments, at
least a portion of the values of the HDR sensor exposure
settings 342 are determined based at least in part on the
lighting conditions of the scene to be imaged and/or other
environmental conditions. For example, the HDR sensor
exposure settings 342 are determined such that the HDR
image sensors 344 capture a sufficient amount of data for
diverse environmental and lighting conditions (e.g., rain,
clear skies, nigh time image, broad day light, etc.). In at least
one embodiment, a user manually sets at least a portion of
the HDR sensor exposure settings 342 to be fixed during a
duration of data collection.

[0108] Although some camera computing devices are
illustrated in FIG. 3, this is not intended to be limiting. In
any example, there can be any number of camera computing
devices and/or camera computing devices that are not
explicitly shown in FIG. 3. For example, various computing
devices that include one or more image sensors, cameras,
and/or other sensors are capable of being included in system
300 as described in accordance with the various embodi-
ments.

[0109] In various embodiments, the camera computing
devices 302-308 (or other camera computing devices
included in the system 300) include one or more image
sensors that are enabled to capture High-Dynamic-Range
(HDR) image data, as discussed throughout. For example,
the camera computing devices 302-308 are used to perform
various data collection operations such as capturing images
of different environments and/or different conditions for use
in training one or more models. The system 300, in an
embodiment, includes other computing devices, such as but
not limited to a server computing device 330. The server
computing device 330, in one example, does not include an
image sensor. However, in other embodiments, the server
computing device 330 includes an image sensor (e.g., an
auxiliary camera). The terrestrial vehicle 304 and/or the
aerial vehicle 306 can be at least partially manually operated
vehicles and/or when manned, partially autonomous. In
some embodiments, when unmanned, the vehicles 304 and
306 are autonomous, partially autonomous, and/or remote
controlled vehicles. Various embodiments of such vehicles
are discussed in conjunction with FIGS. 13A-13D.

[0110] Various embodiments of computing devices,
including but not limited to the camera computing devices
302-308 and/or the server computing device 330 are dis-
cussed in conjunction with a computing device 1300 of FIG.
13. However, briefly here, the camera computing devices
302-308 and/or the server computing device 330, for
example, can include one or more logic devices. For
example, the server computing device 330 is shown to
include logic devices 320. The logic devices 320, in various
embodiments, include one or more of a general purpose
processor 322 (e.g., a Central Processing Unit (CPU), a
microcontroller, a microprocessor, or the like), an Image
Signal Processor (ISP) 324, an Application Specific Inte-
grated Circuit (ASIC) 326, and/or a Field Programmable
Gate Array (FPGA) 328. Although not shown in FIG. 3, in
some embodiments, the logic devices 320 include a Graph-
ics Processing Unit (GPU)) and/or a Data Processing Unit
(DPU). It should be noted that any of the camera computing
devices 302-308 and/or the server computing device 330 can
include one or more of such logic devices.

US 2022/0358627 Al

[0111] In various embodiments, components of the HDRI
system 300 (e.g., the camera computing devices 302-308
and/or the server computing device 330) communicate over
network(s) 332. The network(s) 332 include, for example, a
wide area network (WAN) (e.g., the Internet, a public
switched telephone network (PSTN), etc.), a local area
network (LAN) (e.g., Wi-Fi, ZigBee, Z-Wave, Bluetooth,
Bluetooth Low Energy (BLE), Ethernet, etc.), a low-power
wide-area network (LPWAN) (e.g., LoRaWAN, Sigfox,
etc.), a global navigation satellite system (GNSS) network
(e.g., the Global Positioning System (GPS)), and/or other
network type. In one example, the components of the HDRI
system 300 communicates with one or more of the other
components via one or more of the network(s) 332. For
example, the camera computing devices 302-308 perform
data collection and transmit source image data to the server
computing device 330 via one or more of the network(s)
332.

[0112] In various embodiments, the server computing
device 330 implements, operates, or otherwise executes the
functions and/or operations of a High Dynamic Range
(HDR) engine 340. In the example illustrated in FIG. 3, the
server computing device 330 is shown implementing the
HDR engine 340. However, in other examples, any of the
camera computing devices 302-308 can implement the HDR
engine 340 (e.g., any of the logic devices 320, included in
the camera computing devices 302-308, can implement at
least some of the functions, operations, and/or actions of the
HDR engine 340.

[0113] The HDR engine 340, in an embodiment, enables
various methods of the tone mapping of HDR image data, as
well as controlling the brightness of the image encoded by
HDR image data and/or the tone-mapped image data. To
carry out such functionality, for example, the HDR engine
340 includes one or more components, modules, devices, or
the like. In various embodiments, such components, mod-
ules, and/or devices include but are not limited to a Region
of Interest (ROI) locator 348, a delay unit 350, a statistics
module 352, a control points selector 354, a tone map
generator 356, and/or a tone map applicator 358. Any of
these components, modules, and/or devices are optional in
some embodiments. For example, in an embodiment, the
ROI locator 348, the delay unit 350, and the statistics
module 352 are optional.

[0114] The enumeration of components, modules, and/or
devices of the HDR engine 340, as discussed in conjunction
with FIG. 3, is not intended to be exhaustive. In other
embodiments, the HDR engine 340 may include fewer or
more components, modules, and/or devices. As discussed
throughout, the HDR engine 340 may implement and/or
carry out at least portions of the processes, actions, and/or
operations discussed in conjunction with the methods 500,
600, 700, and 800 of FIGS. 5, 6, 7, and 8 respectively. As
such, one or more of the logic devices 320, in various
embodiments, implements and/or carries out at least por-
tions of the methods 500, 600, 700, and 800.

[0115] Some computing devices in the HDRI system 300
may not include image sensors and/or cameras (e.g., the
server computing device 330). In such embodiments, the
HDR image sensors included in any of the camera comput-
ing devices 302-308 are employed to capture the source
image data. The source image data, as described above, in at
least one embodiment, is provided, via networks 332, to the
HDR engine 340 that is implemented at and/or by the server

Nov. 10, 2022

computing device 330. That is, although the source HDR
image data, in various embodiments, is captured by at least
one of the camera devices 302-308, the tone mapping, image
signal processing, controlling the brightness of the image
data, and/or otherwise modifying properties of the image
data is performed offline on the server computing device
330. To state it in another fashion, the tone mapping of the
HDR image data may be offloaded to another computing
device, such as but not limited to the server computing
device 330, which did not capture the image data. Because
the camera computing devices 302-308 may include one or
more manned or unmanned vehicles (e.g., the terrestrial
vehicle 304 and aerial vehicle 306), the source image data,
for example, is captured by a camera included in or mounted
on a vehicle. As noted above, the vehicle may be an
autonomous, or at least partially autonomous, vehicle. The
various embodiments enable, or at least assist in the enable-
ment, in various machine and/or computer vision features of
an autonomous vehicle, such as but not limited to terrestrial
vehicle 304 or aerial vehicle 306. The embodiments can be
deployed to enable the machine and/or computer vision
features of other applications, such as but not limited to
robotic applications and/or training of models (e.g., neural
networks) to perform all or a portion of the operations
described in the present disclosure. For example, the target
image data 360 can be used to train a neural network that
performs object detection used in robotic applications.

[0116] As shown in FIG. 3, the HDR engine 340 includes
two parallel pipelines for the source image data, as indicated
by the arrows. More specifically, the HDR engine 340
includes an image data pipeline 362 and an image data
pipeline 364. In various embodiments, the two pipelines are
operated in parallel. The two pipelines schematically bifur-
cate between the HDR image sensors 344 and the ROI
locator 348. The two forked pipelines schematically con-
verge at the tone map applicator 358.

[0117] The image data pipeline 362, in an embodiment, is
responsible for determining and/or generating the tone map-
ping function (e.g., a Global Tone Mapping (GTM) function,
local tone mapping function, or other tone mapping func-
tion). In various embodiments, the image data pipeline 362
(via either the delay unit 350 or the tone map generator 356)
provides the tone mapping function to the image data
pipeline 364 via the tone map applicator 358. The image data
pipeline 364, in an embodiment, is responsible for applying
the tone mapping function to the source image data (e.g.,
from a HDR image data buffer 346) to generate target image
data 360. As discussed above, the one or more HDR image
sensors 344 capture source image data, and provide the
source image data to the image data pipelines 362 and 364.
In various embodiments, the image data pipelines 362 and
364 include a set of functions where the output of one
function is input to another function. In the non-limiting
embodiment of FIG. 3, and as shown via the pipeline flow
arrows, the source image data is provided to the image data
pipeline 362 via the ROI locator 348 and the source data is
provided to the parallel image data pipeline 364 via the HDR
image data buffer 346. In other embodiments, the image data
pipeline 362 and the image data pipeline 364 are performed
in serial (e.g., the HDR image data buffer 346 provides data
directly to the ROI locator 348). Although pipelines are used
for the purpose of illustration, other image processing archi-
tectures are considered as being within the scope of the
disclosure. For example, the output of a function (e.g., the

US 2022/0358627 Al

ROI locator 348, the HDR image data buffer 346, the tone
map generator 356, etc.) can be provided to a plurality of
functions that execute operations in serial and/or in parallel.
In one example, the statistics module 352 provides data to
the control points selector 354 and the tone map generator
356. In this example, the tone map generator 356 can process
all or a portion of the data in parallel with the control points
selector 354 and can processes additional data (e.g., data
from the control points selector 354) serially (e.g., after the
control points selector 354 has generated an output).

[0118] In embodiments that involve the capturing of mul-
tiple frames of source image data (e.g., HDR video embodi-
ments), the tone mapping function is generated based at least
in part on a first frame of source image data and applied to
a second (e.g., a consecutive and/or non-consecutive) frame
of source image data. That is, in such embodiments, the tone
mapping function is generated based at least in part on the
first frame of source image data and is applicable to and
appropriate for additional frames of source image data
because the HDR sensor exposure settings 342 are fixed. In
these embodiments, there may be a one frame lag between
the source data that the tone mapping function was gener-
ated from and the source image data that the tone mapping
function is applied to. For example, the frame of the source
image data that was employed to generate the tone mapping
function may be one frame previous to the frame of the
source image data that the tone mapping function was
applied to. In such embodiments, the delay unit 350 of the
image data pipeline 362 buffers the tone mapping function
for one (or more) frames, such that when the tone mapping
function is provided to the tone map applicator 358 of the
image data pipeline 364, the tone map is applied to the next
consecutive frame of source image data. In other embodi-
ments, the lag is greater than a single frame, and the delay
unit 350 buffers the tone mapping function for multiple
frames of source image data. In at least one embodiment, the
same tone mapping function is applied to more than a single
frame of source image data. For example, the same tone
mapping function is applied to five consecutive frames of
source image data. In such embodiments, the image data
pipeline 362 generates a tone mapping function for every
fifth frame.

[0119] As shown in FIG. 3, the HDR engine 340 outputs
the target image data 360. As discussed throughout, the
target image data 360, in various embodiments, encodes the
image encoded by the source image data. However, rather
than the pixel values of the source image data captured by
the HDR image sensors 344, the pixel values of the target
image data 360, for example, are defined by applying (via
the image data pipeline 364) the tone mapping function
(determined via the image data pipeline 362) to the source
image data. That is, the pixel values of the target image data
360 may be representative of a tone-mapped version of the
pixel values of the source image data. In some embodiments,
the outputted target image data 360 may be either HDR,
Standard Dynamic Range (SDR) image data, or Low
Dynamic Range (LDR) image data. In some embodiments,
at least a portion of the operations of the image data pipeline
362 are performed by a first logic device (e.g., the general
purpose processor 322) and at least a portion of the opera-
tions of the image data pipeline 364 are performed by a
second logic device (e.g., the ISP 324). In at least one

Nov. 10, 2022

embodiment, one or more pipelines within the ISP 324 are
employed by the image data pipeline 364 of the HDR engine
340.

[0120] As shown in FIG. 3, at least a portion of the source
image data may be provided and/or received by the image
data pipeline 364 via an HDR image data buffer 346. The
HDR image data buffer 346, for example, buffers or at least
temporarily stores the source image data. As discussed in
more detail below, the image data pipeline 362 generates a
tone mapping function and provides the tone mapping
function to the image data pipeline 364 in accordance with
at least one embodiment. More specifically, as shown in
FIG. 3, the delay unit buffers the tone mapping function for
at least one frame, and then provides the tone mapping
function to the tone map applicator 358 of the image data
pipeline 364. In various embodiments, the tone map appli-
cator 358 obtains source image data from the HDR image
data buffer 346 and applies the tone mapping function to the
source image data to generate the target image data 360.
[0121] As noted above, the source image data received by
the tone map applicator 358 may be a next frame of source
image data, as compared to the frame in source image data
that was employed to generate the tone mapping function. In
embodiments that do not include the delay unit 350, the
source image data is provided to the tone map applicator 358
directly from the tone map generator 356. In such embodi-
ments, the tone mapping function is applied to the same
frame of source image data that was employed to generate
the tone mapping function.

[0122] In embodiments that include the ROI locator 348,
the source image data is provided to and/or received by the
image data pipeline 362 via ROI locator 348. In embodi-
ments that do not include the ROI locator 348, but do include
the statistics module 352, the source image data is provided
to the image data pipeline 362 via the statistics module 352.
In embodiments that lack both the ROI locator 348 and the
statistics module 352, the source image data is provided to
the image data pipeline 362 via the control points selector
354. It should be noted that while embodiments may include
either the ROI locator 348 and/or the statistics module 352,
their operability may be optional. For example, a user may
choose to enable the operability of one or both of the ROI
locator 348 and/or the statistics module 352 via one or more
software switches and/or flags. Likewise, the user may
choose to disable the operability of one or both of the ROI
locator 348 and/or the statistics module 352 via the one or
more software switches and/or flags.

[0123] In embodiments that include and/or enable the
operability of the ROI locator 348, the ROI locator 348
determines an ROI within the source image data. For
example, one or more methods relating to computer vision
and/or image processing (e.g., the ROI may be an output of
a neural network trained to identify the ROI) are employed
to determine an interesting region (e.g., the region of the
image that includes the subject and/or focus point of the
image) within the image encoded by the source image data.
For example, an ROI is a region within the image that
includes more contrast, detail, and/or more varied pixel
values than other regions. In various embodiments, the ROI
is a region in the image, where the dynamic range of the
pixel values is maximized, or at least increased, as compared
to other regions in the image.

[0124] In various embodiments, the ROI is a region of the
image that includes or corresponds to the subject of the

US 2022/0358627 Al

image or the point of focus of the image. In some embodi-
ments, the ROI locator 348 includes a filter or mask that
masks away the pixels outside of the determined ROI. Thus,
when the image data travels down the image data pipeline
362, the image data, in such embodiments, includes only the
pixel values that correspond to the ROIL. In one example, a
determination of the control points and the generation of the
tone mapping function, as well as other operations of the
image data pipeline 362 (e.g., a determination of statistical
metrics and/or a determination of a plurality of control
points) is based at least in part on the portion of the source
image data that corresponds to the ROI in the encoded
source image, rather than the entirety of the source image
data that encodes the source image.

[0125] In embodiments that include and/or enable the
operability of the statistics module 352, the statistics module
352 determines and/or generates a plurality of statistical
metrics based at least in part on the pixel values of the source
image data (or the pixel values of the portion of the source
image data that corresponds to the ROI of the encoded
source image). The plurality of statistical metrics, for
example, includes statistical metrics that are based at least in
part on the pixel values of the source image data. In an
embodiment, the statistical metrics include one or more
parameters that characterize continuous or discrete statisti-
cal distribution and/or histograms that are constructed from
the source image data. For example, such parameters include
a mean, median, and/or standard deviation of one or more
statistical distributions derived from the pixel values of the
source image data.

[0126] The source image data, the portion of the source
image data that corresponds to the ROI, and/or the plurality
of statistical metrics, in various embodiments, are provided
to the control points selector 354. In an embodiment, the
control points selector 354 is responsible for determining a
plurality of tone control points based at least in part on the
source image data, the portion of the source image data that
corresponds to the ROI, and/or the plurality of statistical
metrics. More particularly, at least a portion of the tone
control points are determined based at least in part on pixel
values of the source image data, the statistical metrics
determined and/or derived from the pixel values, or a
combination thereof, in accordance with at least one
embodiment. Control points selector 354, in an embodiment,
employs the general purpose processor 322 to determine the
plurality of tone control points.

[0127] In various embodiments, the plurality of control
points include one or more of a low-tone point, a mid-tone
point, and a high-tone point. In an embodiment, the plurality
of control points includes a flare-suppression point. In some
embodiments, the plurality of tone control points include
additional tone control points. For example, a tone control
point can include a 2D point and/or a 2D vector, which
includes two scalar values (e.g., an x-component and a
y-component), although other dimensions could be added.
Thus, a tone control point, in such examples, can be repre-
sented via the vector notation (TC_x, TC_y), where TC_x
and TC_y are scalar values. In various embodiments, the
abscissa scalar value (e.g., the x-component and/or x-value)
of the tone control point is indicated as TC_x. The ordinate
scalar value (e.g., the y-component and/or y-value) of the
tone control point is indicated as TC_y, in accordance with
at least one embodiment. For example, the 2D space that the
control points are embedded within are spanned by an

Nov. 10, 2022

orthonormal basis that includes an abscissa basis vector
(e.g., the x-axis) corresponding the pixel values of the source
image data and an ordinate basis vector (e.g., the y-axis)
corresponding to the pixel values of the target image data.
[0128] In various embodiments, the low-tone, mid-tone,
and high-tone control points indicate specific mappings of
the pixel values of the source image data to the pixel values
of the target image data. For example, the low-tone point
indicates the pixel value of the source image data that is to
be tone mapped to the lowest pixel value (e.g., the pixel
value that corresponds to the darkest or blackest pixels) of
the target image data. Likewise, in an example, the high-tone
point indicates the pixel value of the source image data that
is to be tone mapped to the highest pixel value (e.g., the pixel
value that corresponds to the brightest or whitest pixels) of
the target image data. In an embodiment, the low-tone point
is referred to as the black point (BP) and the high-tone point
is referred to as the white point (WP). Furthermore, in
another example, the mid-tone point indicates the pixel
value of the source image data that is to be tone mapped to
a middle pixel value of the target image data. The determi-
nation of the mid-point, in various embodiments, controls
the overall mid-tone brightness (or tone) of the target image
encoded by the tone mapped target image data 360, while the
low-tone point controls the tone of the blackest (or darkest)
pixels in the target image data and the high-tone point
controls the tone of the whitest (or brightest) of the pixels in
the target image data 360.

[0129] Referring to FIG. 4, FIG. 4 shows the low-tone,
mid-tone, high-tone, and flare-suppression control points
embedded in the 4D space spanned by a first basis vector for
a first dimension corresponding to the pixel values of the
source image data (e.g., the x-axis) and a second basis vector
for a second dimension corresponding to the pixel values of
the target image data (e.g., the y-axis). In the non-limiting
embodiment of FIG. 4, the pixel values of the source image
data and target image data have been normalized to have a
range of: [0, 1]. However, in other embodiments, the pixel
values can be normalized to other ranges, or need not be
normalized. For example, the raw pixel values of the cap-
tured image data are used as the source image data. In other
embodiments, the raw pixel values are normalized and/or
pre-processed prior to being provided to the image data
pipelines 364 and 364 of the HDR engine 340 described
above in connection with FIG. 3.

[0130] In FIG. 4, the low-tone point is indicated as:
LT=(B_s, B_t), the mid-tone point is indicated as: MT=(IM_
s, M_t), and the high-tone point is indicated as: HT=(W_s,
W_t), where the x and y components are all non-negative
scalar values. More specifically, in the non-limiting embodi-
ment of FIG. 4, LT=(B_s, 0) and HT=(W_s, 1), where
0.0<B_s<W_s<1.0. In other examples, B_t need not be
equal to 0.0 and W_t need not be equal to 1. FIG. 4 shows
another control point, the flare-suppression point, indicated
as: FS=(F_s, F_t), where F_t is set to 0.0. The flare-
suppression point is discussed further below.

[0131] In an embodiment, with regards to the mid-tone
point, pixels in the source image data with the pixel value
equivalent to M_s are tone mapped, via a tone mapping
function, to the value of M_t for the target image data. The
determination and/or selection of M_t controls the mid-tone
brightness of the target image in accordance with an embodi-
ment. Thus, the determination of M_t, for example, is based
at least in part on a mid-tone pixel value for the pixel values

US 2022/0358627 Al

of the target image data. In some embodiments, M_t=0.5. In
other embodiments, M_t includes other values. In some
examples, a user selects or sets a value for M_t. In further
examples, M_s is determined via a linearly-weighted aver-
age of the pixel values of the source image data. In addi-
tional examples, M_s is determined via a logarithmic aver-
aging (e.g., log-averaging) of the pixel values of the source
image data. In such examples, the log-averaging may be
performed in one or more bases (e.g., log base 10). In other
embodiments, the logarithm function employed to transform
the source image data to the log values includes the natural
logarithm function. The log-averaged value of the pixel
values, in an embodiment, can then be exponentiated (via
the corresponding base) to determine M_s. For example,
log-transformed source image data pixel values are deter-
mined based at least in part on the pixel values of the source
image data. In an embodiment, an average value of the
log-transformed image data values is determined via a
linearly-weighted sum of the log-transformed image data
values. In one example, M_s is determined based at least in
part on an exponentiation of the averaged value of the
log-transformed image data values.

[0132] In some embodiments, a portion of the source
image data is employed to determine M_s. For instance, the
pixels of the source image data with the highest and the
lowest values can be vetoed and/or filtered from the analysis.
That is, a high-tone threshold (or filter value), for example,
is employed to veto the high-tone pixels from the determi-
nation of M_s. Likewise, a low-dtone threshold (or filter or
filter value) can be employed to veto the low-tone pixels
from the determination of M_s. In various embodiments,
M_s is determined based at least in part on a linear-
averaging or log-averaging of the pixel values that pass both
the low-tone and high-tone filters (e.g., the pixel values that
are not thresholded from the analysis). The thresholds for the
filters, in one example, are relative thresholds (e.g., percent-
ages), or absolute values. In some embodiments, M_s and/or
M_t are determined based at least in part on the statistical
metrics generated by the statistics module 352 of FIG. 3. In
some embodiments, the various methods discussed above,
with respect to determining M_s and/or M_t can be com-
bined with the statistical metrics to determine M_s and/or
M_t. In at least one embodiment, M_s and/or M_t are
determined, based at least in part on the digital exposure and
calibration data 110 of FIG. 1. For example, a prediction
model for M_s and/or M_t is generated based at least in part
on the analysis of historical, training, and/or learning data
generated by at least aggregating the statistical metrics from
large numbers of source image data and/or target image data.

[0133] In various embodiments, with regards to the low-
tone point, pixels in the source image data with the pixel
value equivalent to B_s (or less than B_s) may be tone
mapped to the value of B_t for the target image data. That
is, pixel values of the source image data that are less than
B_s are clipped and set to have a pixel value of B_s in
accordance with at least one embodiment. For example, the
determination and/or selection of B_t controls the low-tone
brightness of the target image. Thus, the determination of
B_t, in an embodiment, is based at least in part on a
minimum pixel value for the pixel values of the target image
data. In some embodiments, B_t=0. In other embodiments,
B_t includes a positive value that is less than M_t. In some
examples, a user selects or otherwise sets a value for B_t. In
an example, a positive black pixel value may be caused by

Nov. 10, 2022

a flare, or other errors (e.g., a sensor black level subtraction
error), in the image sensor that captured the source image
data for the pixel. Thus, because source image data with
pixel values less than B_s are clipped and set to B_s, the
selection of B_s, in such examples, controls flare suppres-
sion. Accordingly, B_s may be referred to as a flare-
suppression threshold.

[0134] In examples, B_s is determined based at least in
part on the pixels of the source image data with the lowest
pixel values. For instance, a low-tone subset of the pixel
values of the source image data is determined based at least
in part on a low-tone point threshold. In various embodi-
ments, pixel values included in the low-tone subset are less
than or equal to the low-tone point threshold. In addition, in
such embodiments, pixel values excluded from the low-tone
subset are greater than the low-tone point threshold. The
low-tone point threshold, for example, can be either an
absolute or a relative threshold. In various embodiments, the
value of B_s are determined based at least in part on the
pixel values included in the low-tone subset of pixel values.
For example, B_s is set to the weighted average of the pixel
values in the low-tone subset (which may include average
values). In another embodiment, B_s are set to a percentage
of the pixel values in the low-tone subset. In some embodi-
ments, B_s and/or B_t are determined based at least in part
on the statistical metrics generated by the statistics module
352 of FIG. 3. Any of the various methods discussed above,
with respect to determining B_s and/or B_t can be combined
with the statistical metrics to determine B_s and/or B_t. In
at least one embodiment, B_s and/or B_t are determined,
based at least in part on the HDR sensor exposure settings
344. A prediction model for B_s and/or B_t, in an embodi-
ment, is generated based at least in part on the analysis of
training and/or learning data generated by aggregating the
statistical metrics from large numbers of source image data
and/or target image data.

[0135] In various embodiments, with regards to the high-
tone point, pixels in the source image data with the pixel
value equivalent to W_s (or greater than W_s) are tone
mapped to the value of W_t for the target image data. That
is, pixel values of the source image data that are greater than
W_s, for example, are clipped and set to have a value of
W_s. Thus, because source image data with pixel values
greater than W_s are clipped and set to W_s, the selection of
W_s controls highlight (e.g., pixels with large pixel values)
suppression in accordance with at least one embodiment.
Accordingly, W_s may be referred to as a highlight-sup-
pression threshold. For example, the determination and/or
selection of W_t controls the high-tone brightness of the
target image. Thus, the determination of W_t, in various
embodiments, is based at least in part on a maximum pixel
value for the pixel values of the target image data. In some
embodiments, W_t=1. In other embodiments, W_t includes
a positive value that is less than 1 but greater than M_t. In
some examples, a user selects or otherwise sets a value for
W_t. In additional examples, W_s is determined based at
least in part on the pixels of the source image data with the
highest pixel values. For instance, a high-tone subset of the
pixel values of the source image data can be determined
based at least in part on a high-tone point threshold. In
various embodiments, pixel values included in the high-tone
subset are greater than or equal to the high-tone point

US 2022/0358627 Al

threshold. In such embodiments, pixel values excluded from
the high-tone subset are less than the high-tone point thresh-
old.

[0136] For example, the high-tone point threshold can be
either an absolute or a relative threshold. In various embodi-
ments, the value of W_s is determined based at least in part
on the pixel values included in the high-tone subset of pixel
values. For example, W_s is set to the weighted average of
the pixel values in the high-tone subset. As another example,
W_s is set to a percentage of the pixel values in the high-tone
subset. In some embodiments, W_s and/or W_t may be
determined based at least in part on the statistical metrics
generated by the statistics module 352 of FIG. 3. Any of the
various methods discussed above, with respect to determin-
ing W_s and/or W_t can be combined with the statistical
metrics to determine W_s and/or W_t. In at least one
embodiment, W_s and/or W_t are determined, based at least
in part on the HDR sensor exposure settings 342. A predic-
tion model for W_s and/or W_t, in an embodiment, is
determined based at least in part on the analysis of training
and/or learning data generated by aggregating the statistical
metrics from large numbers of source image data and/or
target image data.

[0137] FIG. 4 also shows a flare-suppression point: FS=
(F_s, 0). In various embodiments, F_s indicates a maximum
flare removal threshold. In some embodiments, F_s is user
specified and/or selected. In other embodiments, F_s is
dynamically determined based at least in part on the statis-
tical metrics of the source image data. In at least one
embodiments, F_s is determined based at least in part on a
percentage of M_s and/or a value of a percentage of the
lowest pixel values of the source image data.

[0138] Returning to FIG. 3, the control points selector
354, in various embodiments, determines one or more
additional tone control points. For example, the additional
tone control points are determined based at least in part on
the plurality of statistical metrics. Tone map generator 356,
in various embodiments, is responsible for determining the
tone mapping function based at least in part on the plurality
of control points. Tone map generator 356, for example,
utilizes the general purpose processor 344 to determine the
tone mapping function. For example, to determine the tone
mapping function, the tone map generator 356 generates
and/or determines a gain line. The generation of the gain
line, in an embodiment, is based at least in part on a portion
of the plurality of tone control points. For example, a gain
value is determined as the slope, derivative, and/or rate of
change of the gain line. In some embodiments, the gain line
is determined as the unique line that includes, or passes
through, at least two of the control points. In the example
shown in FIG. 4, the gain line is the line that includes both
the mid-tone point and the flare-suppression point. In an
embodiment, the gain value is equivalent to the slope of the
gain line.

[0139] In various embodiments, the tone map generator
356 determines the tone mapping function based at least in
part on the gain value and at least a portion of the plurality
of tone control points. For example, the tone mapping
function maps a pixel value of the source image data to a
pixel value of the target image data. As such, the tone
mapping function can be a scalar function of a single scalar
variable (e.g., a pixel value), where the value of the function
is the pixel value of the target image data that corresponds
to the pixel value of the source image data that is the

Nov. 10, 2022

argument (or independent variable) of the function. In one
example, the tone mapping is a non-linear mapping. In some
embodiments, the tone map generator 356 performs a fit of
the tone mapping function to one or more of the tone control
points. In one example, the tone mapping function is con-
strained to include or approximately include one or more of
the tone control points. In at least one embodiment, the tone
mapping function is constrained to include the low-tone
point, the mid-tone point, and/or the high-tone point. In
some embodiments, the tone mapping function is con-
strained by the gain value. The derivative, or instantaneous
rate of change, of the tone mapping function (evaluated at
one or more of the tone control points) is constrained based
at least in part on the gain value in accordance with at least
one embodiment. For example, the fitting of the tone map-
ping function is constrained such that the derivative, or
instantaneous rate of change of a tangent line at the mid-tone
control point is at least approximately equivalent to the gain
value.

[0140] Turning to FIG. 5, FIG. 5 shows a non-limiting
example of a plot of a tone mapping function, which is in
accordance with the various embodiments. In various
embodiments, the tone mapping function of FIG. 5 is
constrained such that the plot of the tone mapping function
includes the low-tone point, the mid-tone point, and the
high-tone point. In such embodiments, the tone mapping
function is further constrained such that the derivative or
instantaneous rate of change of a tangent line, at the mid-
tone control point is equivalent to the gain value. Although
not illustrated in FIG. 5, it should be noted that the tone
mapping function can be further constrained based at least in
part on additional tone control points in accordance with at
least one embodiment. FIG. 5 also shows the corresponding
low-tone point, the mid-tone point, the high-tone point, and
the gain line.

[0141] In various embodiments, to determine the tone
mapping function, one or more parametric functions are fit,
where the fit is constrained by at least a portion of the
plurality of tone control points. The parametric functions,
for example, includes one or more polynomials of at least a
degree. In some embodiments, the fitting of the tone map-
ping function is constrained, such that the tone mapping
function includes and/or intersects with at least the low-tone
point, the mid-tone point, and the high-tone point. In still
further embodiments, the fitting of the tone mapping func-
tion is constrained, such that the tone mapping function
includes and/or intersects the additional tone control points.
In some embodiments, the fitting of the tone mapping
function is constrained, such that the derivative and/or the
instantaneous rate of change of the tone mapping function,
evaluated at the x-component of the mid-tone points is
equivalent to the gain value.

[0142] Various spline methods, in at least one example, are
employed to fit and/or generate the tone mapping function.
In various embodiments, generating the tone mapping func-
tion includes generating and/or constructing a non-linear
curve. The non-linear curve, for example, is a global tone
curve (GTC). In an embodiment, the curve includes a
plurality of linear or curved segments (e.g., a plurality of
splines). In other embodiments, the curve include a Bezier
curve, e.g., a quadratic or a cubic Bezier curve. The curve,
for example, can be constructed via second, third, or higher
order parametric equations. In various embodiments, vari-
ous spline methods are employed to generate the curve.

US 2022/0358627 Al

Furthermore, in such embodiments, the joint between the
splines or segments are constructed to ensure that the
derivative of the tone mapping function is continuous.
[0143] In various embodiments, a tone map applicator
receives the source image data and the tone mapping func-
tion. Tone map applicator, in such embodiments, applies the
tone mapping function to the source image data to generate
the target image data. That is, tone map applicator, for
example, transforms the source image data (e.g., either the
frame of source image data that was employed to generate
the tone mapping function and/or one or more subsequent
frames of source image data) to generate the target image
data. In various embodiments, the tone map applicator
utilizes an ISP to apply the tone mapping function to the
source image data. In some embodiments, a pipeline of the
ISP is employed to apply the tone mapping function to the
source image data. As noted above, the tone mapping
function may provide a non-linear mapping of the pixel
values of the source image data to the pixel values of the
target image data. In some embodiments, the mapping is a
one-to-one mapping. In other embodiments, the tone map-
ping is not a one-to-one mapping. For instance, in embodi-
ments where the x-component of the low-tone point is
greater than 0.0 and/or where the x-component of the
high-tone point is less than one, the source image data is
clipped via the corresponding x-components.

[0144] In some embodiments, the tone map applicator
transforms the tone mapped target image data into SDR or
LDR target image data. In such embodiments, a gamma-
compression function is applied to the tone mapped target
image data to generate color-compressed target image data.
Either SDR or LDR target image data may be outputted by
a HDR engine based at least in part on the color-compressed
target image data in accordance with at least one embodi-
ment.

[0145] Now referring to FIGS. 6-9, the blocks of methods
600, 700, 800, and 900, described in the present disclosure,
comprises a computing process that may be performed using
any combination of hardware, firmware, and/or software.
For instance, various functions may be carried out by a
processor executing instructions stored in memory. The
methods may also be embodied as computer-usable instruc-
tions stored on computer storage media. The methods may
be provided by a standalone application, a service or hosted
service (standalone or in combination with another hosted
service), or a plug-in to another product, to name a few. In
addition, the methods 600, 700, 800, and 900 are described,
by way of example, with respect to the offline signal
processing system descried in connection with FIG. 2.
However, these methods may additionally or alternatively be
executed by any one system, or any combination of systems,
including, but not limited to, those described herein. Fur-
thermore, blocks of the methods 600, 700, 800, and 900 may
be performed in various order including in serial and/or
parallel and one or more blocks may be omitted.

[0146] FIG. 6 is a flow diagram showing a method 600 for
performing offline signal processing, in accordance with
some embodiments of the present disclosure. The method
600, at block B602, includes capturing source image data
with fixed exposure calibration. In various embodiments, the
source image data is captured during data collection. For
example, a camera device integrated and/or mounted on a
vehicle captures the source image data (e.g., HDR images
and/or video). In an embodiment, the source image data is

Nov. 10, 2022

captured and stored until image signal processing is per-
formed. In other embodiments, the source image data is
processed contemporaneously or near contemporaneously
with capture.

[0147] At block B604, the system executing the method
600, performs image signal processing using the source
image data. The image signal processing, in various embodi-
ments, includes one or more components of the office image
signal processing 240 described above in connection with
FIG. 2 and/or the HDR engine 340 described above in
connection with FIG. 3. For example, the image signal
processing determines and applies a tone mapping function
to the source image data to generate target image data as
described above.

[0148] At block B606, the system executing the method
600, obtains the target image data. In one example, the
system executing the method 600 obtains the target image
data from an ISP. In another example, the system executing
the method 600 obtains the target image data from a server
computer system (e.g., implementing the ISP) over a net-
work. At block B610, the system executing the method 600,
determines if the target image data is optimal. In various
embodiments, the target image data is optimal if it is suitable
for a particular application. In one example, the target image
data is optimal if the brightness of an image included in the
target image data is within a range such that the image has
sufficient detail (e.g., it is not too dark that detail is lost or
too bright that the image is washed out). In another example,
the target image data may be considered optimal if it can be
used to train a model. In various embodiments, the deter-
mination is made by a user. For example, the user examines
the target image data and indicates whether the target image
data is optimal. In other embodiments, a model (e.g., neural
network) is trained to determine whether the target image
data is optimal.

[0149] If the target image data is not optimal, the system
executing the method 600, continues to block B608. At
block B608, the system executing the method 600, modifies
the image signal processing. In various embodiments, modi-
fication to the image signal processing include improvement
and fixes 266 and/or tuning changes 264 as described above
in connection with FIG. 2. In one example, modification to
the image signal processing includes modification to one or
more control points of a tone mapping function. In other
examples, modification to the image signal processing
includes the addition and/or removal of image processing
algorithms. In various embodiments, tone mapping func-
tions applied to the source image data to generate the target
image data are modified, added, or removed in order to
generate improved results (e.g., optimal target image data).

[0150] However, if the target image data is optimal, the
system executing the method 600, continues to block B612.
At block B612, the system executing the method 600, trains
a neural network based at least in part on the target image
data. For example, the target image data can be used to train
an object detection model or other model described in
connection with FIGS. 13A-13D. The neural network, in an
embodiment, is trained to determine a characteristic and/or
aspect of the target image data. At block B614, the system
executing the method 600, obtains results from the neural
network. For example, the system executing the method
600, prior to deployment of the neural network, performs
one or more tests of the neural network. In another example,

US 2022/0358627 Al

the trained neural network is deployed and the results
include information indicating the performance of the
trained neural network.

[0151] At block B616, the system executing the method
600, determines if the results are optimal. For example, the
system executing the method 600, determines whether the
trained neural network performs a task as intended. In
another example, the system executing the method 600,
determines a success rate of the trained neural network (e.g.,
how successful the neural network is at categorizing a
particular class of objects). In various embodiments, a user
determines if the results of the trained neural network is
optimal. In yet other embodiments, the determination is
made based at least in part on a set of rules and/or heuristics.
For example, the results are optimal if the success rate of the
trained neural network is at or above a threshold.

[0152] If the results are not optimal, the system executing
the method 600 returns to block B608. As described above,
at block B608, one or more modifications are made to the
image signal processing and the source data is reprocessed
at block B604. In various embodiments, the modifications
are determined by a user. In yet other embodiments, the
modifications are determined by a model (e.g., neural net-
work) or otherwise determined without user input (e.g.,
rules, heuristics, etc.). If the results are optimal, the system
executing the method 600 continues to block B618. At block
618, the system executing the method 600 performs infer-
encing with the neural network. In various embodiments, the
neural network is deployed for use performing a task. For
example, the neural network is deployed in a vehicle as
described in connection with FIGS. 13A-13D.

[0153] FIG. 7 is a flow diagram showing the method 700
for tone mapping high dynamic range image data, in accor-
dance with some embodiments of the present disclosure. The
method 700 begins at block B702, where source image data
is captured by one or more image sensors (e.g., the HDR
image sensors 144 of FIG. 1). In one example, the source
image data is HDR image data. The source image data, in an
embodiment, includes a first frame of source image data
(e.g., a frame of a video). In at least some embodiments (e.g.,
video embodiments), one or more additional and/or con-
secutive frames of source image data (e.g., a second con-
secutive frame of source image data) are captured subse-
quent to the first frame of source image data. For example,
the source image data encodes a source image that depicts a
scene. If additional frames of source image data are cap-
tured, the additional frames of source image data, in an
example, encode one or more additional source images.
Thus, capturing source image data at block B702 can include
capturing one or more frames of source image data. For
example, during performance of data collection as described
above.

[0154] In various embodiments, the source image data is
captured by at least one image sensor (e.g., of a camera
device) that is mounted on a manned or unmanned terrestrial
or aerial vehicle (e.g., the terrestrial vehicle 104 and/or aerial
vehicle 106 of FIG. 1). As described above, the vehicle may
be a manually operated vehicle, an autonomous vehicle, a
partially autonomous vehicle, and/or a remote controlled
vehicle. In at least some embodiments, the vehicle is con-
trolled at least partially based at least in part on the target
image data, generated at block B714 (e.g., the target image
data is used to train one or more models used to perform one
or more operations corresponding to perception, planning, or

Nov. 10, 2022

control of the vehicle). However, image sensors described
herein may be part of any suitable device, such as a handheld
or stationary camera, dashboard camera, security camera,
mobile device, or other device including one or more image
sensors. In at least one embodiment, the image sensors are
included in one or more robots.

[0155] At block B702, the source image data, in various
embodiments, is received at and/or provided to an offline
signal processing system, such as but not limited to offline
signal processing 240 of FIG. 2. In at least one embodiment,
the source image data may be provided to and/or received by
at least one of: a HDR image data buffer, a ROI locator, the
statistics module 252, the control points selector, and/or
image processing 258 of the offline signal processing 240.
[0156] At optional block B704, a Region of Interest Filter
(ROI) filter is applied to the received source image data. For
example, the ROI locator 348 of FIG. 3 determines an ROI
of the source image data. The ROI locator 348, in an
embodiment, applies a filter and/or mask to the source image
data pixels corresponding to the ROI of the source image
such that the filtered source image data includes only image
data corresponding to the determined ROI of the source
image. Note that block B704 is optional, and the source
image data need not be filtered and/or analyzed based at least
in part on an ROL.

[0157] At optional block B706, one or more statistical
metrics are generated and/or determined from the filtered (or
unfiltered) source image data. For example, the statistics
module 352 of FIG. 3 determines and/or generates a plural-
ity of statistical metrics based at least in part on the pixel
values of the source image data (or the pixel values of the
portion of the source image data that corresponds to the ROI
of the encoded source image).

[0158] Atblock B708, a plurality of tone control points are
determined for the source image data. For example, the
control points selector 354 of the HDR engine 340 deter-
mines and/or selects a low-tone point, a mid-tone point,
and/or a high-tone point based at least in part on the source
image data. In embodiments where the source image data
was filtered based at least in part on an ROI, the tone control
points are determined based at least in part on the portion of
the source image data that correspond to the ROI of the
source image. In embodiments where a plurality of statisti-
cal metrics were determined at block B706, at least a portion
of the tone control points are determined based at least part
on a portion of the statistical metrics. In at least some
embodiments, additional control points are determined at
block B708. For example, at least a flare-suppression control
point is additionally determined at block B708. Various
embodiments of determining a plurality of control points are
discussed in conjunction with at least the method 800 of
FIG. 8. Further embodiments of determining a low-tone
point, a mid-tone point, a high-tone point, and a flare-
suppression point are discussed in conjunction with FIG. 4.
[0159] At block B710, a tone mapping function is deter-
mined based at least in part on the tone control points. For
example, the tone map generator 356 of FIG. 3 determines
and/or generates a tone mapping function based at least in
part on the tone control points. Thus, the tone mapping
function may be based at least in part on the source image
data that corresponds to the ROI of the source image and/or
the plurality of statistical metrics of the source image data.
[0160] Various embodiments of determining a tone map-
ping function are discussed in conjunction with at least

US 2022/0358627 Al

FIGS. 4, 5, and 8. In an embodiment, a gain line is
determined based at least in part on at least the mid-tone
point and the flare-suppression point. A gain value, in one
example, is determined based at least in part on the gain line.
More specifically, the gain value, in an embodiment, is at
least approximately equivalent to the slope of the gain line,
which is the line that includes both the mid-tone point and
the flare-suppression point. In various embodiments, the
tone mapping function is based at least on the low-tone
point, the mid-tone point, the high-tone point, and the gain
value. For example, the tone mapping function is a fitted
function that is constrained to include and/or pass through
each of the low-tone point, the mid-tone point, and the
high-tone point.

[0161] In at least one embodiment, the fitting of the tone
mapping function is constrained such that the derivative
and/or instantaneous rate of change of the tone mapping
function, when evaluated at the mid-tone point, is at least
approximately equivalent to the gain value. In at least one
embodiment, a first logic device (e.g., the general purpose
processor 322 of FIG. 3) is employed to determine the tone
mapping function. In at least one embodiment, the logic
device employed to determine and/or generate the tone
mapping function is a general purpose processor of the
computer system that is separate from the camera device that
captured the source image data.

[0162] As noted throughout, the tone mapping function
provides a mapping from the pixel values of the source
image data to the pixel values of the target image data. Thus,
the tone mapping function, in an embodiment, is a scalar
function, which is dependent upon a single scalar variable
(e.g., the scalar value of a single pixel of the source image
data). For example, the scalar value of the function, as
evaluated at the scalar pixel value of the source image data,
is the tone mapped scalar value of the target image data for
the corresponding pixel. As noted throughout, the mapping
may be a one-to-one non-linear mapping. Because the tone
mapping function may be constrained to include the low-
tone point, the tone mapping function may map a pixel of the
source image that has the scalar value of the x-component of
the low-tone point to the scalar value of the y-component of
the low-tone point.

[0163] In some embodiments, any pixel of the source
image data that has a value less than the x-component of the
low-tone point is clipped, such that the value of the clipped
pixel is set to the x-component of the low-tone point. In at
least one embodiment, pixels of the source image data that
have a value less than the x-component of the flare suppres-
sion point are clipped, such that the value of the clipped
pixel is set to the x-component of the flare-suppression
point. Because the tone mapping function, in various
embodiments, is constrained to include the mid-tone point,
the tone mapping function may map a pixel of the source
image that has the scalar value of the x-component of the
mid-tone point to the scalar value of the y-component of the
mid-tone point. Similarly, because the tone mapping func-
tion, in other embodiments, is constrained to include the
high-tone point, the tone mapping function maps a pixel of
the source image that has the scalar value of the x-compo-
nent of the high-tone point to the scalar value of the
y-component of the high-tone point. In some embodiments,
any pixel of the source image data that has a value greater
than the x-component of the high-tone point is clipped, such
that the value of the clipped pixel is set to the x-component

Nov. 10, 2022

of the high-tone point. One non-limiting embodiment of a
non-linear tone mapping function is shown in FIG. 5.
[0164] Atoptional block B712, a frame delay is employed.
For example, the delay unit 350 of FIG. 3 buffers the tone
mapping function, while the HDR image sensors 144 cap-
ture one or more additional frames of source image data
(e.g., a subsequent and/or consecutive second frame of
source image data). The frame delay of block B712, in one
example, includes buffering the first frame of image data
(that was employed to generate the tone mapping at block
B710), while the second frame of image data is being
captured, or at least until the second frame of image data is
provided to for offline image signal processing.

[0165] At block B714, target image data is generated
based at least in part on the source image data and the tone
mapping function. For example, the tone map applicator 358
applies the tone mapping function to source image data. In
various embodiments, the target image data encodes a target
image, where the pixel values of the target image data are
defined by the tone mapping function being applied to the
source image data. Applying the tone mapping function to
the source image data, for example, includes applying the
tone mapping function to the pixel values of the source
image data. In an embodiment, applying the tone mapping
function to the source image data includes transforming
and/or mapping the source image data to the target image
data via the non-linear and one-to-one mapping and/or
correspondence between source and target image data pro-
vided by the tone mapping function. In embodiments that
include a frame delay, the tone mapping function is applied
to the frame of source image data (e.g., a second frame of
source image data) that is subsequent and/or consecutive to
the frame of source image data that was employed to
generate the tone mapping function (e.g., a first frame of
source image data).

[0166] In some embodiments, generating target image
data includes generating Standard Dynamic Range (SDR) or
Low Dynamic Range (LDR) target image data. For example,
the SDR or LDR target image data is based at least in part
on the tone mapping function and/or the pixel values of the
tone mapped target image data. In an embodiment, a gamma
compression function is applied to the tone mapped target
image data to generate color-compressed target image data.
SDR or LDR target image data, in such embodiments, is
generated based at least in part on the color-compressed
target image data.

[0167] FIG. 8 is a flow diagram showing the method 800
for generating lower dynamic range image data from higher
dynamic range image data, in accordance with some
embodiments of the present disclosure. Blocks B802-B810
of the method 800 include selecting and/or determining a
plurality of tone control points. As noted throughout, the
plurality of tone control points may be selected and/or
determined via the control points selector 354 of FIG. 3.
Various embodiments of determining the plurality of control
points are discussed in conjunction with at least block B§808
of the method 800 of FIG. 8. In various embodiments, the
determination of the plurality of control tone points is based
at least in part on the pixel values of the source image data,
the pixel values of the portion of the source image data that
corresponds to the ROI in the source image, and/or the
plurality of statistical metrics that are based at least in part
on the pixel values of the source image data. As also noted
throughout, the plurality of tone control points, in various

US 2022/0358627 Al

examples, include at least a low-tone point, a mid-tone point,
and/or a high-tone point. In some embodiments, the plurality
of tone control points additionally include a flare-suppres-
sion point. Such tone control points are shown in at least
FIGS. 4-5. It should also be noted that portions of the
method 800 may be carried out by a first logical device (e.g.,
the general purpose processor 322 of FIG. 3) and other
portions of the method 800 may be carried out by a second
logical device (e.g., the Image Signal Processor (ISP) 324 of
FIG. 3).

[0168] In some embodiments, prior to initialization of the
method 800, the pixel values of the source image data is
normalized, such that the pixel values of the normalized
source image data range from [0, 1]. The method 800 begins
at block B802, where the mid-tone point is determined based
at least in part on the source image data. In some embodi-
ments, to determine the x-component of the mid-tone point,
the source image data is filtered by a high-tone filter and a
low-tone filter, to generate filtered source image data. The
high-tone filter filters out the portion of source image data
that includes pixel values greater than a high-tone threshold
value. The low-tone filter filters out the portion of the source
image data that includes pixel values less than a low-tone
threshold value. The x-component of the mid-tone point, in
an embodiment, is determined by averaging the pixel values
of the portion of the source image data that remains subse-
quent to the application of the high-tone and low-tone filters.
In other embodiments the high-tone and low-tone filters are
not applied to the source image data.

[0169] In some embodiments, the averaging of the pixel
values includes log-averaging the pixel values. In such
embodiments, log-transformed image data pixel values is
generated by applying a logarithm function to the filtered or
unfiltered source image data. In an embodiment, the base of
the logarithm function is selected based at least in part on the
source image data. In one embodiment, the base of the
logarithm function is ten. In other embodiments, the loga-
rithm function is the natural logarithm function. In various
embodiments, an average value of the log-transformed pixel
values is determined. The average value of the log-trans-
formed pixel values, in one example, is exponentiated by the
corresponding base of the logarithm function. In various
embodiments, the x-component of the mid-tone point is set
to the exponentiation of the average value of the log-
transformed pixel values of the source image data. Further-
more, in some embodiments, the y-component of the mid-
tone point is set to a specified mid-tone value for the target
image data.

[0170] At block B804, the low-tone point is determined
based at least in part on the source image data. In one
non-limiting embodiment, a subset of the pixel values of the
source image data is determined and/or generated, where
values for the pixels included in the subset are less than the
pixel values for the pixels that are excluded from the subset.
That is, the source image data may be filtered via a low-tone
filter, such that the only pixel values that remain after the
filtering are those pixels with pixel values that are less than
a low-tone threshold. In one non-limiting embodiment, the
x-component of the low-tone point is determined based at
least in part on the subset of pixel values. For example, the
pixel values that survive the low-tone filtering process are
averaged to determine the x-component of the low-tone
point. In one non-limiting embodiment, the y-component of
the low-tone point is determined and/or selected to be the

Nov. 10, 2022

smallest pixel value for the target image data. In at least one
embodiment, the y-component of the low-tone point is set to
0.0. For example, the low-tone point can be a black point.

[0171] At block B806, the high-tone point is determined
based at least in part on the source image data. In one
non-limiting embodiment, a subset of the pixel values of the
source image data is determined and/or generated, where
values for the pixels included in the subset are greater than
the pixel values for the pixels that are excluded from the
subset. That is, the source image data may be filtered via a
high-tone filter, such that the only pixel values that remain
after the filtering are pixels with pixel values that are greater
than a high-tone threshold. In an embodiment, the x-com-
ponent of the high-tone point is determined based at least in
part on the subset of pixel values. For example, the pixel
values that survive the high-tone filtering process are aver-
aged to determine the x-component of the high-tone point.
In an embodiment, the y-component of the high-tone point
is determined and/or selected to be the largest pixel value for
the target image data. In at least one embodiment, the
y-component of the low-tone point is set to 1.0. For
example, the high-tone can be the white point. In an embodi-
ment, by setting the y-component of the low-tone point to
0.0 and the y-component of the high-tone component, the
target image data is normalized to the range of [0, 1].

[0172] At block B808, a flare suppression point is deter-
mined. In an embodiment, the x-component of the flare-
suppression point is set to a value that is to be the maximal
flare that will be suppressed in the tone. In some embodi-
ments, the x-component of the flare-suppression point is
user selected. In other embodiments, the x-component is
dynamically determined based at least in part on the pixel
values of the source image and/or the determined plurality of
the statistical metrics for the source image data. For
example, the x-component of the flare-suppression point is
set based at least in part on a percentage of the mid-tone
pixel values or the value of the pixel values that are low-tone
thresholded. In various embodiments, the x-component of
the flare-suppression point is selected to be greater than the
x-component of the low-tone point, but less than the x-com-
ponent of the mid-tone point. In various non-limiting
embodiments, the y-component of the flare-suppression
point is set to 0.0. In other embodiments, the y-component
of the flare-suppression point is set or selected to be greater
than 0.0, but less than the y-component of the mid-tone
point.

[0173] At optional block B810, one or more additional
control points are determined based at least in part on the
source image data. At block B812, the source data, in an
example, is pre-processed based at least in part on the
control points. For example, each of the pixels of the source
image data with pixel values that are less than the x-com-
ponent of the low-tone point are clipped, such that the pixel
values of such pixels are set to the scalar value of the
x-component of the low-tone point. In at least one embodi-
ment, pixels of the source image data with pixel values that
are less than the x-component of the flare-suppression point
are clipped, such that the pixel values of such pixels are set
to the scalar value of the x-component of the flare-suppres-
sion point. Furthermore, each of the pixels of the source
image data with pixel values that are greater than the
x-component of the high-tone point, in various embodi-

US 2022/0358627 Al

ments, are clipped, such that the pixel values of such pixels
are set to the scalar value of the x-component of the
high-tone point.

[0174] At block B814, a gain value is determined based at
least in part on the mid-tone point and the flare-suppression
point. For example, a gain line is constructed through the
mid-tone point and the flare-suppression point. The gain
value, in an embodiment, is set to be the slope of the gain
value line. In various embodiments the slope is positive. An
embodiment of a gain value line, and corresponding slope,
are shown in FIG. 4.

[0175] At block B816, the tone mapping function is deter-
mined based at least in part on the low-tone point, the
mid-tone point, and the high-tone point. In some embodi-
ments, the determination of the tone mapping function is
further based at least in part on the gain value. In still other
embodiments, the determination of the tone mapping func-
tion is further based at least in part on the one or more
additional tone control points determined in block B810. In
various embodiments, the tone map generator 356 of FI1G. 3
may be employed to determine the tone mapping function.
More specifically, the tone map generator 356 may employ
the general purpose processor 322 of FIG. 3 to generate the
tone mapping function.

[0176] In various embodiments, to determine the tone
mapping functions, one or more parametric functions are fit,
wherein the fit is constrained by at least a portion of the
various tone control points. For example, the parametric
functions include one or more polynomials, which may be of
virtually any degree. In some embodiments, the fitting of the
tone mapping function is constrained, such that the tone
mapping function includes and/or intersects at least the
low-tone point, the mid-tone point, and the high-tone point.
In still further embodiments, the fitting of the tone mapping
function is constrained, such that the tone mapping function
includes and/or intersects the additional tone control points.
In some embodiments, the fitting of the tone mapping
function is constrained, such that the derivative and/or the
instantaneous rate of change of the tone mapping function,
evaluated at the x-component of the mid-tone points is
equivalent to the gain value. An embodiment of a tone
mapping function is shown in FIG. 5.

[0177] In various embodiments, spline methods are
employed to fit and/or generate the tone mapping function.
Generating the tone mapping function includes generating
and/or constructing a non-linear curve in accordance with at
least one embodiment. In various embodiments, the non-
linear curve is a global tone curve (GTC). For example, the
curve includes a plurality of linear or curved segments (e.g.,
a plurality of splines). The curve may be a Bezier curve, e.g.,
a quadratic or a cubic Bezier curve. In yet other examples,
the curve is constructed via second, third, or higher order
parametric equations.

[0178] At block B818, the tone mapping function is
applied to generate the target image data. In various embodi-
ments, the tone map applicator 358 of FIG. 3 is employed to
transform the source image data into target image data, via
the tone mapping function. Tone map applicator 358, in
various embodiments, causes the ISP 324 of FIG. 3 to apply
the non-linear transformation of the source image data. In at
least one embodiment, a pipeline of the ISP 324 is employed
to apply the transformation and generate the target image
data.

Nov. 10, 2022

[0179] Blocks B820 and B822 are optional blocks to
generate SDR target image data or LDR image date from the
tone mapped target image data. At block B820, a gamma-
compression function is applied to the tone mapped image
data to generate color-compressed image data. At block
B822, either SDR or LDR target image data is generated
based at least in part on the color compressed source image
data.

[0180] FIG. 9 is a flow diagram showing the method 900
for distributing the operations of tone mapping, in accor-
dance with some embodiments of the present disclosure. At
block B902, a first logic device determines the tone mapping
function. At block B902, the first logic device includes any
of the logic devices 320 of FIG. 3, such as but not limited
to the general purpose processor 322, the image signal
processor (ISP) 324, the ASIC 326, and/or the FPGA 328. In
some embodiments, the first logic device that determines the
tone mapping function is the general purpose processor 322.
In at least one embodiment, a Graphics Processing Unit
(GPU) is employed to determine the tone mapping function.
[0181] At block B904, a second logic device is employed
to apply the tone mapping function to the source image data
and generate the target image source data. At block B904,
the second logic device includes any of the logic devices
320, such as but not limited to the general purpose processor
322, the ISP 324, the ASIC 326, and/or the FPGA 328. In
some embodiments, the second logic device that is
employed to apply the tone mapping function is the ISP 324.
A pipeline of the ISP 324 applies the tone mapping function
and transforms the source image data to the target image
data. In at least one embodiment, a GPU is employed to
determine the tone mapping function.

Inference and Training Logic

[0182] FIG. 10A illustrates inference and/or training logic
1015 used to perform inferencing and/or training operations
associated with one or more embodiments. Details regarding
inference and/or training logic 1015 are provided below in
conjunction with FIGS. 10A and/or 10B.

[0183] In at least one embodiment, inference and/or train-
ing logic 1015 may include, without limitation, code and/or
data storage 1001 to store forward and/or output weight
and/or input/output data, and/or other parameters to config-
ure neurons or layers of a neural network trained and/or used
for inferencing in aspects of one or more embodiments. In
at least one embodiment, training logic 1015 may include, or
be coupled to code and/or data storage 1001 to store graph
code or other software to control timing and/or order, in
which weight and/or other parameter information is to be
loaded to configure, logic, including integer and/or floating
point units (collectively, arithmetic logic units (ALUs)). In
at least one embodiment, code, such as graph code, loads
weight or other parameter information into processor AL Us
based on an architecture of a neural network to which such
code corresponds. In at least one embodiment, code and/or
data storage 1001 stores weight parameters and/or input/
output data of each layer of a neural network trained or used
in conjunction with one or more embodiments during for-
ward propagation of input/output data and/or weight param-
eters during training and/or inferencing using aspects of one
or more embodiments. In at least one embodiment, any
portion of code and/or data storage 1001 may be included
with other on-chip or off-chip data storage, including a
processor’s L1, L2, or L3 cache or system memory.

US 2022/0358627 Al

[0184] In at least one embodiment, any portion of code
and/or data storage 1001 may be internal or external to one
or more processors or other hardware logic devices or
circuits. In at least one embodiment, code and/or code and/or
data storage 1001 may be cache memory, dynamic randomly
addressable memory (“DRAM”), static randomly address-
able memory (“SRAM”), non-volatile memory (e.g., flash
memory), or other storage. In at least one embodiment, a
choice of whether code and/or code and/or data storage 1001
is internal or external to a processor, for example, or
comprising DRAM, SRAM, flash or some other storage type
may depend on available storage on-chip versus off-chip,
latency requirements of training and/or inferencing func-
tions being performed, batch size of data used in inferencing
and/or training of a neural network, or some combination of
these factors.

[0185] In at least one embodiment, inference and/or train-
ing logic 1015 may include, without limitation, a code
and/or data storage 1005 to store backward and/or output
weight and/or input/output data corresponding to neurons or
layers of a neural network trained and/or used for inferenc-
ing in aspects of one or more embodiments. In at least one
embodiment, code and/or data storage 1005 stores weight
parameters and/or input/output data of each layer of a neural
network trained or used in conjunction with one or more
embodiments during backward propagation of input/output
data and/or weight parameters during training and/or infer-
encing using aspects of one or more embodiments. In at least
one embodiment, training logic 1015 may include, or be
coupled to code and/or data storage 1005 to store graph code
or other software to control timing and/or order, in which
weight and/or other parameter information is to be loaded to
configure, logic, including integer and/or floating point units
(collectively, arithmetic logic units (ALUs)).

[0186] In at least one embodiment, code, such as graph
code, causes the loading of weight or other parameter
information into processor ALLUs based on an architecture of
a neural network to which such code corresponds. In at least
one embodiment, any portion of code and/or data storage
1005 may be included with other on-chip or off-chip data
storage, including a processor’s L1, L2, or L3 cache or
system memory. In at least one embodiment, any portion of
code and/or data storage 1005 may be internal or external to
one or more processors or other hardware logic devices or
circuits. In at least one embodiment, code and/or data
storage 1005 may be cache memory, DRAM, SRAM, non-
volatile memory (e.g., flash memory), or other storage. In at
least one embodiment, a choice of whether code and/or data
storage 1005 is internal or external to a processor, for
example, or comprising DRAM, SRAM, flash memory or
some other storage type may depend on available storage
on-chip versus off-chip, latency requirements of training
and/or inferencing functions being performed, batch size of
data used in inferencing and/or training of a neural network,
or some combination of these factors.

[0187] In at least one embodiment, code and/or data
storage 1001 and code and/or data storage 1005 may be
separate storage structures. In at least one embodiment, code
and/or data storage 1001 and code and/or data storage 1005
may be a combined storage structure. In at least one embodi-
ment, code and/or data storage 1001 and code and/or data
storage 1005 may be partially combined and partially sepa-
rate. In at least one embodiment, any portion of code and/or
data storage 1001 and code and/or data storage 1005 may be

Nov. 10, 2022

included with other on-chip or off-chip data storage, includ-
ing a processor’s L1, [.2, or L3 cache or system memory.

[0188] In at least one embodiment, inference and/or train-
ing logic 1015 may include, without limitation, one or more
arithmetic logic unit(s) (“ALU(s)”) 1010, including integer
and/or floating point units, to perform logical and/or math-
ematical operations based, at least in part on, or indicated by,
training and/or inference code (e.g., graph code), a result of
which may produce activations (e.g., output values from
layers or neurons within a neural network) stored in an
activation storage 1020 that are functions of input/output
and/or weight parameter data stored in code and/or data
storage 1001 and/or code and/or data storage 1005. In at
least one embodiment, activations stored in activation stor-
age 1020 are generated according to linear algebraic and or
matrix-based mathematics performed by ALU(s) 1010 in
response to performing instructions or other code, wherein
weight values stored in code and/or data storage 1005 and/or
data storage 1001 are used as operands along with other
values, such as bias values, gradient information, momen-
tum values, or other parameters or hyperparameters, any or
all of which may be stored in code and/or data storage 1005
or code and/or data storage 1001 or another storage on or
off-chip.

[0189] In at least one embodiment, ALLU(s) 1010 are
included within one or more processors or other hardware
logic devices or circuits, whereas in another embodiment,
ALU(s) 1010 may be external to a processor or other
hardware logic device or circuit that uses them (e.g., a
co-processor). In at least one embodiment, ALUs 1010 may
be included within a processor’s execution units or other-
wise within a bank of ALUs accessible by a processor’s
execution units either within same processor or distributed
between different processors of different types (e.g., central
processing units, graphics processing units, fixed function
units, etc.). In at least one embodiment, code and/or data
storage 1001, code and/or data storage 1005, and activation
storage 1020 may share a processor or other hardware logic
device or circuit, whereas in another embodiment, they may
be in different processors or other hardware logic devices or
circuits, or some combination of same and different proces-
sors or other hardware logic devices or circuits. In at least
one embodiment, any portion of activation storage 1020
may be included with other on-chip or off-chip data storage,
including a processor’s .1, .2, or L3 cache or system
memory. Furthermore, inferencing and/or training code may
be stored with other code accessible to a processor or other
hardware logic or circuit and fetched and/or processed using
a processor’s fetch, decode, scheduling, execution, retire-
ment and/or other logical circuits.

[0190] In atleast one embodiment, activation storage 1020
may be cache memory, DRAM, SRAM, non-volatile
memory (e.g., flash memory), or other storage. In at least
one embodiment, activation storage 1020 may be com-
pletely or partially within or external to one or more pro-
cessors or other logical circuits. In at least one embodiment,
a choice of whether activation storage 1020 is internal or
external to a processor, for example, or comprising DRAM,
SRAM, flash memory or some other storage type may
depend on available storage on-chip versus off-chip, latency
requirements of training and/or inferencing functions being
performed, batch size of data used in inferencing and/or
training of a neural network, or some combination of these
factors.

US 2022/0358627 Al

[0191] In at least one embodiment, inference and/or train-
ing logic 1015 illustrated in FIG. 10A may be used in
conjunction with an application-specific integrated circuit
(“ASIC”), such as a TensorFlow® Processing Unit from
Google, an inference processing unit (IPU) from
Graphcore™, or a Nervana® (e.g., “Lake Crest”) processor
from Intel Corp. In at least one embodiment, inference
and/or training logic 1015 illustrated in FIG. 10A may be
used in conjunction with central processing unit (“CPU”)
hardware, graphics processing unit (“GPU”) hardware or
other hardware, such as field programmable gate arrays
(“FPGAs”).

[0192] FIG. 10B illustrates inference and/or training logic
1015, according to at least one embodiment. In at least one
embodiment, inference and/or training logic 1015 may
include, without limitation, hardware logic in which com-
putational resources are dedicated or otherwise exclusively
used in conjunction with weight values or other information
corresponding to one or more layers of neurons within a
neural network. In at least one embodiment, inference and/or
training logic 1015 illustrated in FIG. 10B may be used in
conjunction with an application-specific integrated circuit
(ASIC), such as TensorFlow® Processing Unit from
Google, an inference processing unit (IPU) from
Graphcore™, or a Nervana® (e.g., “Lake Crest”) processor
from Intel Corp. In at least one embodiment, inference
and/or training logic 1015 illustrated in FIG. 10B may be
used in conjunction with central processing unit (CPU)
hardware, graphics processing unit (GPU) hardware or other
hardware, such as field programmable gate arrays (FPGAs).
In at least one embodiment, inference and/or training logic
1015 includes, without limitation, code and/or data storage
1001 and code and/or data storage 1005, which may be used
to store code (e.g., graph code), weight values and/or other
information, including bias values, gradient information,
momentum values, and/or other parameter or hyperparam-
eter information. In at least one embodiment illustrated in
FIG. 10B, each of code and/or data storage 1001 and code
and/or data storage 1005 is associated with a dedicated
computational resource, such as computational hardware
1002 and computational hardware 1006, respectively. In at
least one embodiment, each of computational hardware
1002 and computational hardware 1006 comprises one or
more ALUs that perform mathematical functions, such as
linear algebraic functions, only on information stored in
code and/or data storage 1001 and code and/or data storage
1005, respectively, result of which is stored in activation
storage 1020.

[0193] In at least one embodiment, each of code and/or
data storage 1001 and 1005 and corresponding computa-
tional hardware 1002 and 1006, respectively, correspond to
different layers of a neural network, such that resulting
activation from one storage/computational pair 1001/1002
of code and/or data storage 1001 and computational hard-
ware 1002 is provided as an input to a next storage/
computational pair 1005/1006 of code and/or data storage
1005 and computational hardware 1006, in order to mirror
a conceptual organization of a neural network. In at least one
embodiment, each of storage/computational pairs 1001/
1002 and 1005/1006 may correspond to more than one
neural network layer. In at least one embodiment, additional
storage/computation pairs (not shown) subsequent to or in

Nov. 10, 2022

parallel with storage/computation pairs 1001/1002 and
1005/1006 may be included in inference and/or training
logic 1015.

Neural Network Training and Deployment

[0194] FIG. 11 illustrates training and deployment of a
deep neural network, according to at least one embodiment.
In at least one embodiment, untrained neural network 1106
is trained using a training dataset 1102. In at least one
embodiment, training framework 1104 is a PyTorch frame-
work, whereas in other embodiments, training framework
1104 is a TensorFlow, Boost, Caffe, Microsoft Cognitive
Toolkit/CNTK, MXNet, Chainer, Keras, Deeplearning4], or
other training framework. In at least one embodiment,
training framework 1104 trains an untrained neural network
1106 and enables it to be trained using processing resources
described herein to generate a trained neural network 1108.
In at least one embodiment, weights may be chosen ran-
domly or by pre-training using a deep belief network. In at
least one embodiment, training may be performed in either
a supervised, partially supervised, or unsupervised manner.
[0195] In at least one embodiment, untrained neural net-
work 1106 is trained using supervised learning, wherein
training dataset 1102 includes an input paired with a desired
output for an input, or where training dataset 1102 includes
input having a known output and an output of neural
network 1106 is manually graded. In at least one embodi-
ment, untrained neural network 1106 is trained in a super-
vised manner and processes inputs from training dataset
1102 and compares resulting outputs against a set of
expected or desired outputs. In at least one embodiment,
errors are then propagated back through untrained neural
network 1106. In at least one embodiment, training frame-
work 1104 adjusts weights that control untrained neural
network 1106. In at least one embodiment, training frame-
work 1104 includes tools to monitor how well untrained
neural network 1106 is converging towards a model, such as
trained neural network 1108, suitable to generating correct
answers, such as in result 1114, based on input data such as
a new dataset 1112. In at least one embodiment, training
framework 1104 trains untrained neural network 1106
repeatedly while adjust weights to refine an output of
untrained neural network 1106 using a loss function and
adjustment algorithm, such as stochastic gradient descent. In
at least one embodiment, training framework 1104 trains
untrained neural network 1106 until untrained neural net-
work 1106 achieves a desired accuracy. In at least one
embodiment, trained neural network 1108 can then be
deployed to implement any number of machine learning
operations.

[0196] In at least one embodiment, untrained neural net-
work 1106 is trained using unsupervised learning, wherein
untrained neural network 1106 attempts to train itself using
unlabeled data. In at least one embodiment, unsupervised
learning training dataset 1102 will include input data without
any associated output data or “ground truth” data. In at least
one embodiment, untrained neural network 1106 can learn
groupings within training dataset 1102 and can determine
how individual inputs are related to untrained dataset 1102.
In at least one embodiment, unsupervised training can be
used to generate a self-organizing map in trained neural
network 1108 capable of performing operations useful in
reducing dimensionality of new dataset 1112. In at least one
embodiment, unsupervised training can also be used to

US 2022/0358627 Al

perform anomaly detection, which allows identification of
data points in new dataset 1112 that deviate from normal
patterns of new dataset 1112.

[0197] In at least one embodiment, semi-supervised learn-
ing may be used, which is a technique in which in training
dataset 1102 includes a mix of labeled and unlabeled data.
In at least one embodiment, training framework 1104 may be
used to perform incremental learning, such as through
transferred learning techniques. In at least one embodiment,
incremental learning enables trained neural network 1108 to
adapt to new dataset 1112 without forgetting knowledge
instilled within trained neural network 1108 during initial
training.

Data Center

[0198] FIG. 12 illustrates an example data center 1200, in
which at least one embodiment may be used. In at least one
embodiment, data center 1200 includes a data center infra-
structure layer 1210, a framework layer 1220, a software
layer 1230 and an application layer 1240.

[0199] In at least one embodiment, as shown in FIG. 12,
data center infrastructure layer 1210 may include a resource
orchestrator 1212, grouped computing resources 1214, and
node computing resources (“node C.R.s”) 1216(1)-1216(N),
where “N” represents a positive integer (which may be a
different integer “N” than used in other figures). In at least
one embodiment, node C.R.s 1216(1)-1216(N) may include,
but are not limited to, any number of central processing units
(“CPUSs”) or other processors (including accelerators, field
programmable gate arrays (FPGAs), graphics processors,
etc.), memory storage devices 1218(1)-1218(N) (e.g.,
dynamic read-only memory, solid state storage or disk
drives), network input/output (“NW 1/0”) devices, network
switches, virtual machines (“VMs”), power modules, and
cooling modules, etc. In at least one embodiment, one or
more node C.R.s from among node C.R.s 1216(1)-1216(N)
may be a server having one or more of above-mentioned
computing resources.

[0200] In at least one embodiment, grouped computing
resources 1214 may include separate groupings of node
C.R.s housed within one or more racks (not shown), or many
racks housed in data centers at various geographical loca-
tions (also not shown). In at least one embodiment, separate
groupings of node C.R.s within grouped computing
resources 1214 may include grouped compute, network,
memory or storage resources that may be configured or
allocated to support one or more workloads. In at least one
embodiment, several node C.R.s including CPUs or proces-
sors may grouped within one or more racks to provide
compute resources to support one or more workloads. In at
least one embodiment, one or more racks may also include
any number of power modules, cooling modules, and net-
work switches, in any combination.

[0201] In at least one embodiment, resource orchestrator
1212 may configure or otherwise control one or more node
C.R.s1216(1)-1216(N) and/or grouped computing resources
1214. In at least one embodiment, resource orchestrator
1212 may include a software design infrastructure (“SDI”)
management entity for data center 1200. In at least one
embodiment, resource orchestrator 1012 may include hard-
ware, software or some combination thereof.

[0202] In at least one embodiment, as shown in FIG. 12,
framework layer 1220 includes a job scheduler 1222, a
configuration manager 1224, a resource manager 1226 and

Nov. 10, 2022

a distributed file system 1228. In at least one embodiment,
framework layer 1220 may include a framework to support
software 1232 of software layer 1230 and/or one or more
application(s) 1242 of application layer 1240. In at least one
embodiment, software 1232 or application(s) 1242 may
respectively include web-based service software or applica-
tions, such as those provided by Amazon Web Services,
Google Cloud and Microsoft Azure. In at least one embodi-
ment, framework layer 1220 may be, but is not limited to, a
type of free and open-source software web application
framework such as Apache Spark™ (hereinafter “Spark™)
that may utilize distributed file system 1228 for large-scale
data processing (e.g., “big data”). In at least one embodi-
ment, job scheduler 1222 may include a Spark driver to
facilitate scheduling of workloads supported by various
layers of data center 1200. In at least one embodiment,
configuration manager 1224 may be capable of configuring
different layers such as software layer 1230 and framework
layer 1220 including Spark and distributed file system 1228
for supporting large-scale data processing. In at least one
embodiment, resource manager 1226 may be capable of
managing clustered or grouped computing resources
mapped to or allocated for support of distributed file system
1228 and job scheduler 1222. In at least one embodiment,
clustered or grouped computing resources may include
grouped computing resources 1214 at data center infrastruc-
ture layer 1210. In at least one embodiment, resource
manager 1226 may coordinate with resource orchestrator
1212 to manage these mapped or allocated computing
resources.

[0203] In at least one embodiment, software 1232
included in software layer 1230 may include software used
by at least portions of node C.R.s 1216(1)-1216(N), grouped
computing resources 1214, and/or distributed file system
1228 of framework layer 1220. In at least one embodiment,
one or more types of software may include, but are not
limited to, Internet web page search software, e-mail virus
scan software, database software, and streaming video con-
tent software.

[0204] In at least one embodiment, application(s) 1242
included in application layer 1240 may include one or more
types of applications used by at least portions of node C.R.s
1216(1)-1216(N), grouped computing resources 1214, and/
or distributed file system 1228 of framework layer 1220. In
at least one embodiment, one or more types of applications
may include, but are not limited to, any number of a
genomics application, a cognitive compute, application and
a machine learning application, including training or infer-
encing software, machine learning framework software
(e.g., PyTorch, TensorFlow, Caffe, etc.) or other machine
learning applications used in conjunction with one or more
embodiments.

[0205] In at least one embodiment, any of configuration
manager 1224, resource manager 1226, and resource orches-
trator 1212 may implement any number and type of self-
modifying actions based on any amount and type of data
acquired in any technically feasible fashion. In at least one
embodiment, self-modifying actions may relieve a data
center operator of data center 1200 from making possibly
bad configuration decisions and possibly avoiding underuti-
lized and/or poor performing portions of a data center.
[0206] In at least one embodiment, data center 1200 may
include tools, services, software or other resources to train
one or more machine learning models or predict or infer

US 2022/0358627 Al

information using one or more machine learning models
according to one or more embodiments described herein.
For example, in at least one embodiment, a machine learning
model may be trained by calculating weight parameters
according to a neural network architecture using software
and computing resources described above with respect to
data center 1200. In at least one embodiment, trained
machine learning models corresponding to one or more
neural networks may be used to infer or predict information
using resources described above with respect to data center
1200 by using weight parameters calculated through one or
more training techniques described herein.

[0207] In at least one embodiment, data center may use
CPUs, application-specific integrated circuits (ASICs),
GPUs, FPGAs, or other hardware to perform training and/or
inferencing using above-described resources. Moreover, one
or more software and/or hardware resources described above
may be configured as a service to allow users to train or
performing inferencing of information, such as image rec-
ognition, speech recognition, or other artificial intelligence
services.

[0208] Inference and/or training logic 1015 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 1015 are provided herein in conjunc-
tion with FIGS. 10A and/or 10B. In at least one embodiment,
inference and/or training logic 1015 may be used in system
FIG. 12 for inferencing or predicting operations based, at
least in part, on weight parameters calculated using neural
network training operations, neural network functions and/
or architectures, or neural network use cases described
herein. In various embodiments, the inference and/or train-
ing logic 1015 utilize the target image data generated by the
offline image signal processing 240 as described above in
connection with FIG. 2.

Autonomous Vehicle

[0209] FIG. 13A illustrates an example of an autonomous
vehicle 1300, according to at least one embodiment. In at
least one embodiment, autonomous vehicle 1300 (alterna-
tively referred to herein as “vehicle 1300”°) may be, without
limitation, a passenger vehicle, such as a car, a truck, a bus,
and/or another type of vehicle that accommodates one or
more passengers. In at least one embodiment, vehicle 1300
may be a semi-tractor-trailer truck used for hauling cargo. In
at least one embodiment, vehicle 1300 may be an airplane,
robotic vehicle, or other kind of vehicle.

[0210] Autonomous vehicles may be described in terms of
automation levels, defined by National Highway Traffic
Safety Administration (“NHTSA”), a division of US Depart-
ment of Transportation, and Society of Automotive Engi-
neers (“SAE”) “Taxonomy and Definitions for Terms
Related to Driving Automation Systems for On-Road Motor
Vehicles” (e.g., Standard No. J3016-201806, published on
Jun. 15, 2018, Standard No. J3016-201609, published on
Sep. 30, 2016, and previous and future versions of this
standard). In at least one embodiment, vehicle 1300 may be
capable of functionality in accordance with one or more of
Level 1 through Level 5 of autonomous driving levels. For
example, in at least one embodiment, vehicle 1300 may be
capable of conditional automation (Level 3), high automa-
tion (Level 4), and/or full automation (Level 5), depending
on embodiment.

Nov. 10, 2022

[0211] In at least one embodiment, vehicle 1300 may
include, without limitation, components such as a chassis, a
vehicle body, wheels (e.g., 2, 4, 6, 8, 18, etc.), tires, axles,
and other components of a vehicle. In at least one embodi-
ment, vehicle 1300 may include, without limitation, a pro-
pulsion system 1350, such as an internal combustion engine,
hybrid electric power plant, an all-electric engine, and/or
another propulsion system type. In at least one embodiment,
propulsion system 1350 may be connected to a drive train of
vehicle 1300, which may include, without limitation, a
transmission, to enable propulsion of vehicle 1300. In at
least one embodiment, propulsion system 1350 may be
controlled in response to receiving signals from a throttle/
accelerator(s) 1352.

[0212] Inatleast one embodiment, a steering system 1354,
which may include, without limitation, a steering wheel, is
used to steer vehicle 1300 (e.g., along a desired path or
route) when propulsion system 1350 is operating (e.g., when
vehicle 1300 is in motion). In at least one embodiment,
steering system 1354 may receive signals from steering
actuator(s) 1356. In at least one embodiment, a steering
wheel may be optional for full automation (Level 5) func-
tionality. In at least one embodiment, a brake sensor system
1346 may be used to operate vehicle brakes in response to
receiving signals from brake actuator(s) 1348 and/or brake
sensors.

[0213] In at least one embodiment, controller(s) 1336,
which may include, without limitation, one or more system
on chips (“SoCs”) (not shown in FIG. 13A) and/or graphics
processing unit(s) (“GPU(s)”), provide signals (e.g., repre-
sentative of commands) to one or more components and/or
systems of vehicle 1300. For instance, in at least one
embodiment, controller(s) 1336 may send signals to operate
vehicle brakes via brake actuator(s) 1348, to operate steering
system 1354 via steering actuator(s) 1356, to operate pro-
pulsion system 1350 via throttle/accelerator(s) 1352. In at
least one embodiment, controller(s) 1336 may include one
or more onboard (e.g., integrated) computing devices that
process sensor signals, and output operation commands
(e.g., signals representing commands) to enable autonomous
driving and/or to assist a human driver in driving vehicle
1300. In at least one embodiment, controller(s) 1336 may
include a first controller for autonomous driving functions,
a second controller for functional safety functions, a third
controller for artificial intelligence functionality (e.g., com-
puter vision), a fourth controller for infotainment function-
ality, a fifth controller for redundancy in emergency condi-
tions, and/or other controllers. In at least one embodiment,
a single controller may handle two or more of above
functionalities, two or more controllers may handle a single
functionality, and/or any combination thereof.

[0214] In at least one embodiment, controller(s) 1336
provide signals for controlling one or more components
and/or systems of vehicle 1300 in response to sensor data
received from one or more sensors (e.g., sensor inputs). In
at least one embodiment, sensor data may be received from,
for example and without limitation, global navigation sat-
ellite systems (“GNSS”) sensor(s) 1358 (e.g., Global Posi-
tioning System sensor(s)), RADAR sensor(s) 1360, ultra-
sonic sensor(s) 1362, LIDAR sensor(s) 1364, inertial
measurement unit (“IMU”) sensor(s) 1366 (e.g., accelerom-
eter(s), gyroscope(s), a magnetic compass or magnetic com-
passes, magnetometer(s), etc.), microphone(s) 1396, stereo
camera(s) 1368, wide-view camera(s) 1370 (e.g., fisheye

US 2022/0358627 Al

cameras), infrared camera(s) 1372, surround camera(s) 1374
(e.g., 360 degree cameras), long-range cameras (not shown
in FIG. 13A), mid-range camera(s) (not shown in FIG. 13A),
speed sensor(s) 1344 (e.g., for measuring speed of vehicle
1300), vibration sensor(s) 1342, steering sensor(s) 1340,
brake sensor(s) (e.g., as part of brake sensor system 1346),
and/or other sensor types.

[0215] In at least one embodiment, one or more of con-
troller(s) 1336 may receive inputs (e.g., represented by input
data) from an instrument cluster 1332 of vehicle 1300 and
provide outputs (e.g., represented by output data, display
data, etc.) via a human-machine interface (“HMI”) display
1334, an audible annunciator, a loudspeaker, and/or via other
components of vehicle 1300. In at least one embodiment,
outputs may include information such as vehicle velocity,
speed, time, map data (e.g., a High Definition map (not
shown in FIG. 13A)), location data (e.g., vehicle’s 1300
location, such as on a map), direction, location of other
vehicles (e.g., an occupancy grid), information about objects
and status of objects as perceived by controller(s) 1336, etc.
For example, in at least one embodiment, HMI display 1334
may display information about presence of one or more
objects (e.g., a street sign, caution sign, traffic light chang-
ing, etc.), and/or information about driving maneuvers
vehicle has made, is making, or will make (e.g., changing
lanes now, taking exit 34B in two miles, etc.).

[0216] In at least one embodiment, vehicle 1300 further
includes a network interface 1324 which may use wireless
antenna(s) 1326 and/or modem(s) to communicate over one
or more networks. For example, in at least one embodiment,
network interface 1324 may be capable of communication
over Long-Term Evolution (“LTE”), Wideband Code Divi-
sion Multiple Access (“WCDMA”), Universal Mobile Tele-
communications System (“UMTS”), Global System for
Mobile communication (“GSM”), IMT-CDMA Multi-Car-
rier (“CDMA2000”) networks, etc. In at least one embodi-
ment, wireless antenna(s) 1326 may also enable communi-
cation between objects in environment (e.g., vehicles,
mobile devices, etc.), using local area network(s), such as
Bluetooth, Bluetooth Low Energy (“LE”), Z-Wave, ZigBee,
etc., and/or low power wide-area network(s) (“LPWANs”),
such as LoRaWAN, SigFox, etc. protocols.

[0217] Inference and/or training logic 1015 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 1015 are provided herein in conjunc-
tion with FIGS. 10A and/or 10B. In at least one embodiment,
inference and/or training logic 1015 may be used in system
FIG. 13A for inferencing or predicting operations based, at
least in part, on weight parameters calculated using neural
network training operations, neural network functions and/
or architectures, or neural network use cases described
herein. In various embodiments, the inference and/or train-
ing logic 1015 utilize the target image data generated by the
offline image signal processing 240 as described above in
connection with FIG. 2. In addition, the data collection 202
described above in connection with FIG. 2, in various
embodiments is performed by the vehicle 1300.

[0218] FIG. 13B illustrates an example of camera loca-
tions and fields of view for autonomous vehicle 1300 of FIG.
13 A, according to at least one embodiment. In at least one
embodiment, cameras and respective fields of view are one
example embodiment and are not intended to be limiting.
For instance, in at least one embodiment, additional and/or

Nov. 10, 2022

alternative cameras may be included and/or cameras may be
located at different locations on vehicle 1300.

[0219] In at least one embodiment, camera types for
cameras may include, but are not limited to, digital cameras
that may be adapted for use with components and/or systems
of vehicle 1300. In at least one embodiment, camera(s) may
operate at automotive safety integrity level (“ASIL”) B
and/or at another ASIL. In at least one embodiment, camera
types may be capable of any image capture rate, such as 60
frames per second (fps), 1220 fps, 240 fps, etc., depending
on embodiment. In at least one embodiment, cameras may
be capable of using rolling shutters, global shutters, another
type of shutter, or a combination thereof. In at least one
embodiment, color filter array may include a red clear clear
clear (“RCCC”) color filter array, a red clear clear blue
(“RCCB”) color filter array, a red blue green clear
(“RBGC”) color filter array, a Foveon X3 color filter array,
a Bayer sensor (“RGGB”) color filter array, a monochrome
sensor color filter array, and/or another type of color filter
array. In at least one embodiment, clear pixel cameras, such
as cameras with an RCCC, an RCCB, and/or an RBGC color
filter array, may be used in an effort to increase light
sensitivity.

[0220] In at least one embodiment, one or more of camera
(s) may be used to perform advanced driver assistance
systems (“ADAS”) functions (e.g., as part of a redundant or
fail-safe design). For example, in at least one embodiment,
a Multi-Function Mono Camera may be installed to provide
functions including lane departure warning, traffic sign
assist and intelligent headlamp control. In at least one
embodiment, one or more of camera(s) (e.g., all cameras)
may record and provide image data (e.g., video) simultane-
ously.

[0221] In at least one embodiment, one or more camera
may be mounted in a mounting assembly, such as a custom
designed (three-dimensional (“3D”) printed) assembly, in
order to cut out stray light and reflections from within
vehicle 1300 (e.g., reflections from dashboard reflected in
windshield mirrors) which may interfere with camera image
data capture abilities. With reference to wing-mirror mount-
ing assemblies, in at least one embodiment, wing-mirror
assemblies may be custom 3D printed so that a camera
mounting plate matches a shape of a wing-mirror. In at least
one embodiment, camera(s) may be integrated into wing-
mirrors. In at least one embodiment, for side-view cameras,
camera(s) may also be integrated within four pillars at each
corner of a cabin.

[0222] In at least one embodiment, cameras with a field of
view that include portions of an environment in front of
vehicle 1300 (e.g., front-facing cameras) may be used for
surround view, to help identify forward facing paths and
obstacles, as well as aid in, with help of one or more of
controller(s) 1336 and/or control SoCs, providing informa-
tion critical to generating an occupancy grid and/or deter-
mining preferred vehicle paths. In at least one embodiment,
front-facing cameras may be used to perform many similar
ADAS functions as LIDAR, including, without limitation,
emergency braking, pedestrian detection, and collision
avoidance. In at least one embodiment, front-facing cameras
may also be used for ADAS functions and systems includ-
ing, without limitation, Lane Departure Warnings (“LDW”),
Autonomous Cruise Control (“ACC”), and/or other func-
tions such as traffic sign recognition.

US 2022/0358627 Al

[0223] In at least one embodiment, a variety of cameras
may be used in a front-facing configuration, including, for
example, a monocular camera platform that includes a
CMOS (“complementary metal oxide semiconductor’) color
imager. In at least one embodiment, a wide-view camera
1370 may be used to perceive objects coming into view from
a periphery (e.g., pedestrians, crossing traffic or bicycles).
Although only one wide-view camera 1370 is illustrated in
FIG. 13B, in other embodiments, there may be any number
(including zero) wide-view cameras on vehicle 1300. In at
least one embodiment, any number of long-range camera(s)
1398 (e.g., a long-view stereo camera pair) may be used for
depth-based object detection, especially for objects for
which a neural network has not yet been trained. In at least
one embodiment, long-range camera(s) 1398 may also be
used for object detection and classification, as well as basic
object tracking.

[0224] In at least one embodiment, any number of stereo
camera(s) 1368 may also be included in a front-facing
configuration. In at least one embodiment, one or more of
stereo camera(s) 1368 may include an integrated control unit
comprising a scalable processing unit, which may provide a
programmable logic (“FPGA”) and a multi-core micro-
processor with an integrated Controller Area Network
(“CAN”) or Ethernet interface on a single chip. In at least
one embodiment, such a unit may be used to generate a 3D
map of an environment of vehicle 1300, including a distance
estimate for all points in an image. In at least one embodi-
ment, one or more of stereo camera(s) 1368 may include,
without limitation, compact stereo vision sensor(s) that may
include, without limitation, two camera lenses (one each on
left and right) and an image processing chip that may
measure distance from vehicle 1300 to target object and use
generated information (e.g., metadata) to activate autono-
mous emergency braking and lane departure warning func-
tions. In at least one embodiment, other types of stereo
camera(s) 1368 may be used in addition to, or alternatively
from, those described herein.

[0225] In at least one embodiment, cameras with a field of
view that include portions of environment to sides of vehicle
1300 (e.g., side-view cameras) may be used for surround
view, providing information used to create and update an
occupancy grid, as well as to generate side impact collision
warnings. For example, in at least one embodiment, sur-
round camera(s) 1374 (e.g., four surround cameras as illus-
trated in FIG. 13B) could be positioned on vehicle 1300. In
at least one embodiment, surround camera(s) 1374 may
include, without limitation, any number and combination of
wide-view cameras, fisheye camera(s), 360 degree camera
(s), and/or similar cameras. For instance, in at least one
embodiment, four fisheye cameras may be positioned on a
front, a rear, and sides of vehicle 1300. In at least one
embodiment, vehicle 1300 may use three surround camera
(s) 1374 (e.g., left, right, and rear), and may leverage one or
more other camera(s) (e.g., a forward-facing camera) as a
fourth surround-view camera.

[0226] In at least one embodiment, cameras with a field of
view that include portions of an environment behind vehicle
1300 (e.g., rear-view cameras) may be used for parking
assistance, surround view, rear collision warnings, and cre-
ating and updating an occupancy grid. In at least one
embodiment, a wide variety of cameras may be used includ-
ing, but not limited to, cameras that are also suitable as a
front-facing camera(s) (e.g., long-range cameras 1398 and/

Nov. 10, 2022

or mid-range camera(s) 1376, stereo camera(s) 1368, infra-
red camera(s) 1372, etc.), as described herein.

[0227] Inference and/or training logic 1015 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 1015 are provided herein in conjunc-
tion with FIGS. 10A and/or 10B. In at least one embodiment,
inference and/or training logic 1015 may be used in system
FIG. 13B for inferencing or predicting operations based, at
least in part, on weight parameters calculated using neural
network training operations, neural network functions and/
or architectures, or neural network use cases described
herein. In various embodiments, the inference and/or train-
ing logic 1015 utilize the target image data generated by the
offline image signal processing 240 as described above in
connection with FIG. 2. In addition, the data collection 202
described above in connection with FIG. 2, in various
embodiments is performed by the vehicle 1300.

[0228] FIG. 13C is a block diagram illustrating an
example system architecture for autonomous vehicle 1300
of FIG. 13A, according to at least one embodiment. In at
least one embodiment, each of components, features, and
systems of vehicle 1300 in FIG. 13C is illustrated as being
connected via a bus 1302. In at least one embodiment, bus
1302 may include, without limitation, a CAN data interface
(alternatively referred to herein as a “CAN bus”™). In at least
one embodiment, a CAN may be a network inside vehicle
1300 used to aid in control of various features and func-
tionality of vehicle 1300, such as actuation of brakes,
acceleration, braking, steering, windshield wipers, etc. In at
least one embodiment, bus 1302 may be configured to have
dozens or even hundreds of nodes, each with its own unique
identifier (e.g., a CAN ID). In at least one embodiment, bus
1302 may be read to find steering wheel angle, ground
speed, engine revolutions per minute (“RPMs”), button
positions, and/or other vehicle status indicators. In at least
one embodiment, bus 1302 may be a CAN bus that is ASIL
B compliant.

[0229] In at least one embodiment, in addition to, or
alternatively from CAN, FlexRay and/or Ethernet protocols
may be used. In at least one embodiment, there may be any
number of busses forming bus 1302, which may include,
without limitation, zero or more CAN busses, zero or more
FlexRay busses, zero or more Ethernet busses, and/or zero
or more other types of busses using different protocols. In at
least one embodiment, two or more busses may be used to
perform different functions, and/or may be used for redun-
dancy. For example, a first bus may be used for collision
avoidance functionality and a second bus may be used for
actuation control. In at least one embodiment, each bus of
bus 1302 may communicate with any of components of
vehicle 1300, and two or more busses of bus 1302 may
communicate with corresponding components. In at least
one embodiment, each of any number of system(s) on
chip(s) (“SoC(s)”) 1304 (such as SoC 1304(A) and SoC
1304(B)), each of controller(s) 1336, and/or each computer
within vehicle may have access to same input data (e.g.,
inputs from sensors of vehicle 1300), and may be connected
to a common bus, such CAN bus.

[0230] In at least one embodiment, vehicle 1300 may
include one or more controller(s) 1336, such as those
described herein with respect to FIG. 13A. In at least one
embodiment, controller(s) 1336 may be used for a variety of
functions. In at least one embodiment, controller(s) 1336

US 2022/0358627 Al

may be coupled to any of various other components and
systems of vehicle 1300, and may be used for control of
vehicle 1300, artificial intelligence of vehicle 1300, info-
tainment for vehicle 1300, and/or other functions.

[0231] In at least one embodiment, vehicle 1300 may
include any number of SoCs 1304. In at least one embodi-
ment, each of SoCs 1304 may include, without limitation,
central processing units (“CPU(s)”") 1306, graphics process-
ing units (“GPU(s)”) 1308, processor(s) 1310, cache(s)
1312, accelerator(s) 1314, data store(s) 1316, and/or other
components and features not illustrated. In at least one
embodiment, SoC(s) 1304 may be used to control vehicle
1300 in a variety of platforms and systems. For example, in
at least one embodiment, SoC(s) 1304 may be combined in
a system (e.g., system of vehicle 1300) with a High Defi-
nition (“HD”) map 1322 which may obtain map refreshes
and/or updates via network interface 1324 from one or more
servers (not shown in FIG. 13C).

[0232] In at least one embodiment, CPU(s) 1306 may
include a CPU cluster or CPU complex (alternatively
referred to herein as a “CCPLEX”). In at least one embodi-
ment, CPU(s) 1306 may include multiple cores and/or level
two (“L2”) caches. For instance, in at least one embodiment,
CPU(s) 1306 may include eight cores in a coherent multi-
processor configuration. In at least one embodiment, CPU(s)
1306 may include four dual-core clusters where each cluster
has a dedicated [.2 cache (e.g., a 2 megabyte (MB) L2
cache). In at least one embodiment, CPU(s) 1306 (e.g.,
CCPLEX) may be configured to support simultaneous clus-
ter operations enabling any combination of clusters of
CPU(s) 1306 to be active at any given time.

[0233] In at least one embodiment, one or more of CPU(s)
1306 may implement power management capabilities that
include, without limitation, one or more of following fea-
tures: individual hardware blocks may be clock-gated auto-
matically when idle to save dynamic power; each core clock
may be gated when such core is not actively executing
instructions due to execution of Wait for Interrupt (“WFI”)/
Wait for Event (“WFE”) instructions; each core may be
independently power-gated; each core cluster may be inde-
pendently clock-gated when all cores are clock-gated or
power-gated; and/or each core cluster may be independently
power-gated when all cores are power-gated. In at least one
embodiment, CPU(s) 1306 may further implement an
enhanced algorithm for managing power states, where
allowed power states and expected wakeup times are speci-
fied, and hardware/microcode determines which best power
state to enter for core, cluster, and CCPLEX. In at least one
embodiment, processing cores may support simplified
power state entry sequences in software with work offloaded
to microcode.

[0234] In at least one embodiment, GPU(s) 1308 may
include an integrated GPU (alternatively referred to herein
as an “iGPU”). In at least one embodiment, GPU(s) 1308
may be programmable and may be efficient for parallel
workloads. In at least one embodiment, GPU(s) 1308 may
use an enhanced tensor instruction set. In at least one
embodiment, GPU(s) 1308 may include one or more stream-
ing microprocessors, where each streaming microprocessor
may include a level one (“LL17) cache (e.g., an .1 cache with
at least 96 KB storage capacity), and two or more streaming
microprocessors may share an .2 cache (e.g., an [.2 cache
with a 512 KB storage capacity). In at least one embodiment,
GPU(s) 1308 may include at least eight streaming micro-

Nov. 10, 2022

processors. In at least one embodiment, GPU(s) 1308 may
use compute application programming interface(s) (API(s)).
In at least one embodiment, GPU(s) 1308 may use one or
more parallel computing platforms and/or programming
models (e.g., NVIDIA’s CUDA model).

[0235] In at least one embodiment, one or more of GPU(s)
1308 may be power-optimized for best performance in
automotive and embedded use cases. For example, in at least
one embodiment, GPU(s) 1308 could be fabricated on Fin
field-effect transistor (“FinFET”) circuitry. In at least one
embodiment, each streaming microprocessor may incorpo-
rate a number of mixed-precision processing cores parti-
tioned into multiple blocks. For example, and without limi-
tation, 64 PF32 cores and 32 PF64 cores could be partitioned
into four processing blocks. In at least one embodiment,
each processing block could be allocated 16 FP32 cores, 8
FP64 cores, 16 INT32 cores, two mixed-precision NVIDIA
Tensor cores for deep learning matrix arithmetic, a level zero
(“L0”) instruction cache, a warp scheduler, a dispatch unit,
and/or a 64 KB register file. In at least one embodiment,
streaming microprocessors may include independent paral-
lel integer and floating-point data paths to provide for
efficient execution of workloads with a mix of computation
and addressing calculations. In at least one embodiment,
streaming microprocessors may include independent thread
scheduling capability to enable finer-grain synchronization
and cooperation between parallel threads. In at least one
embodiment, streaming microprocessors may include a
combined [.1 data cache and shared memory unit in order to
improve performance while simplifying programming.

[0236] In at least one embodiment, one or more of GPU(s)
1308 may include a high bandwidth memory (“HBM™)
and/or a 16 GB HBM2 memory subsystem to provide, in
some examples, about 900 GB/second peak memory band-
width. In at least one embodiment, in addition to, or alter-
natively from, HBM memory, a synchronous graphics ran-
dom-access memory (“SGRAM”) may be used, such as a
graphics double data rate type five synchronous random-
access memory (“GDDRS5”).

[0237] In at least one embodiment, GPU(s) 1308 may
include unified memory technology. In at least one embodi-
ment, address translation services (“ATS”) support may be
used to allow GPU(s) 1308 to access CPU(s) 1306 page
tables directly. In at least one embodiment, embodiment,
when a GPU of GPU(s) 1308 memory management unit
(“MMU”) experiences a miss, an address translation request
may be transmitted to CPU(s) 1306. In response, 2 CPU of
CPU(s) 1306 may look in its page tables for a virtual-to-
physical mapping for an address and transmit translation
back to GPU(s) 1308, in at least one embodiment. In at least
one embodiment, unified memory technology may allow a
single unified virtual address space for memory of both
CPU(s) 1306 and GPU(s) 1308, thereby simplifying GPU(s)
1308 programming and porting of applications to GPU(s)
1308.

[0238] In at least one embodiment, GPU(s) 1308 may
include any number of access counters that may keep track
of frequency of access of GPU(s) 1308 to memory of other
processors. In at least one embodiment, access counter(s)
may help ensure that memory pages are moved to physical
memory of a processor that is accessing pages most fre-
quently, thereby improving efficiency for memory ranges
shared between processors.

US 2022/0358627 Al

[0239] In at least one embodiment, one or more of SoC(s)
1304 may include any number of cache(s) 1312, including
those described herein. For example, in at least one embodi-
ment, cache(s) 1312 could include a level three (“L3”) cache
that is available to both CPU(s) 1306 and GPU(s) 1308 (e.g.,
that is connected to CPU(s) 1306 and GPU(s) 1308). In at
least one embodiment, cache(s) 1312 may include a write-
back cache that may keep track of states of lines, such as by
using a cache coherence protocol (e.g., MEI, MESI, MSI,
etc.). In at least one embodiment, a [.3 cache may include 4
MB of memory or more, depending on embodiment,
although smaller cache sizes may be used.

[0240] In at least one embodiment, one or more of SoC(s)
1304 may include one or more accelerator(s) 1314 (e.g.,
hardware accelerators, software accelerators, or a combina-
tion thereof). In at least one embodiment, SoC(s) 1304 may
include a hardware acceleration cluster that may include
optimized hardware accelerators and/or large on-chip
memory. In at least one embodiment, large on-chip memory
(e.g., 4 MB of SRAM), may enable a hardware acceleration
cluster to accelerate neural networks and other calculations.
In at least one embodiment, a hardware acceleration cluster
may be used to complement GPU(s) 1308 and to off-load
some of tasks of GPU(s) 1308 (e.g., to free up more cycles
of GPU(s) 1308 for performing other tasks). In at least one
embodiment, accelerator(s) 1314 could be used for targeted
workloads (e.g., perception, convolutional neural networks
(“CNNs”), recurrent neural networks (“RNNs”), etc.) that
are stable enough to be amenable to acceleration. In at least
one embodiment, a CNN may include a region-based or
regional convolutional neural networks (“RCNNs”) and Fast
RCNNS (e.g., as used for object detection) or other type of
CNN.

[0241] In at least one embodiment, accelerator(s) 1314
(e.g., hardware acceleration cluster) may include one or
more deep learning accelerator (“DLA”). In at least one
embodiment, DLA(s) may include, without limitation, one
or more Tensor processing units (“TPUs”) that may be
configured to provide an additional ten trillion operations
per second for deep learning applications and inferencing. In
at least one embodiment, TPUs may be accelerators config-
ured to, and optimized for, performing image processing
functions (e.g., for CNNs, RCNNs, etc.). In at least one
embodiment, DLLA(s) may further be optimized for a spe-
cific set of neural network types and floating point opera-
tions, as well as inferencing. In at least one embodiment,
design of DLA(s) may provide more performance per mil-
limeter than a typical general-purpose GPU, and typically
vastly exceeds performance of a CPU. In at least one
embodiment, TPU(s) may perform several functions, includ-
ing a single-instance convolution function, supporting, for
example, INT8, INT16, and FP16 data types for both
features and weights, as well as post-processor functions. In
at least one embodiment, DLA(s) may quickly and effi-
ciently execute neural networks, especially CNNs, on pro-
cessed or unprocessed data for any of a variety of functions,
including, for example and without limitation: a CNN for
object identification and detection using data from camera
sensors; a CNN for distance estimation using data from
camera sensors; a CNN for emergency vehicle detection and
identification and detection using data from microphones; a
CNN for facial recognition and vehicle owner identification
using data from camera sensors; and/or a CNN for security
and/or safety related events.

Nov. 10, 2022

[0242] In at least one embodiment, DLA(s) may perform
any function of GPU(s) 1308, and by using an inference
accelerator, for example, a designer may target either DLA
(s) or GPU(s) 1308 for any function. For example, in at least
one embodiment, a designer may focus processing of CNNs
and floating point operations on DLA(s) and leave other
functions to GPU(s) 1308 and/or accelerator(s) 1314.

[0243] In at least one embodiment, accelerator(s) 1314
may include programmable vision accelerator (“PVA”),
which may alternatively be referred to herein as a computer
vision accelerator. In at least one embodiment, PVA may be
designed and configured to accelerate computer vision algo-
rithms for advanced driver assistance system (“ADAS”)
1338, autonomous driving, augmented reality (“AR”) appli-
cations, and/or virtual reality (“VR”) applications. In at least
one embodiment, PVA may provide a balance between
performance and flexibility. For example, in at least one
embodiment, each PVA may include, for example and with-
out limitation, any number of reduced instruction set com-
puter (“RISC”) cores, direct memory access (“DMA”),
and/or any number of vector processors.

[0244] In at least one embodiment, RISC cores may inter-
act with image sensors (e.g., image sensors of any cameras
described herein), image signal processor(s), etc. In at least
one embodiment, each RISC core may include any amount
of memory. In at least one embodiment, RISC cores may use
any of a number of protocols, depending on embodiment. In
at least one embodiment, RISC cores may execute a real-
time operating system (“RTOS”). In at least one embodi-
ment, RISC cores may be implemented using one or more
integrated circuit devices, application specific integrated
circuits (“ASICs”), and/or memory devices. For example, in
at least one embodiment, RISC cores could include an
instruction cache and/or a tightly coupled RAM.

[0245] In at least one embodiment, DMA may enable
components of PVA to access system memory independently
of CPU(s) 1306. In at least one embodiment, DMA may
support any number of features used to provide optimization
to a PVA including, but not limited to, supporting multi-
dimensional addressing and/or circular addressing. In at
least one embodiment, DMA may support up to six or more
dimensions of addressing, which may include, without limi-
tation, block width, block height, block depth, horizontal
block stepping, vertical block stepping, and/or depth step-
ping.

[0246] In at least one embodiment, vector processors may
be programmable processors that may be designed to effi-
ciently and flexibly execute programming for computer
vision algorithms and provide signal processing capabilities.
In at least one embodiment, a PVA may include a PVA core
and two vector processing subsystem partitions. In at least
one embodiment, a PVA core may include a processor
subsystem, DMA engine(s) (e.g., two DMA engines), and/or
other peripherals. In at least one embodiment, a vector
processing subsystem may operate as a primary processing
engine of a PVA, and may include a vector processing unit
(“VPU”), an instruction cache, and/or vector memory (e.g.,
“VMEM”). In at least one embodiment, VPU core may
include a digital signal processor such as, for example, a
single instruction, multiple data (“SIMD”), very long
instruction word (“VLIW”) digital signal processor. In at
least one embodiment, a combination of SIMD and VLIW
may enhance throughput and speed.

US 2022/0358627 Al

[0247] In at least one embodiment, each of vector proces-
sors may include an instruction cache and may be coupled
to dedicated memory. As a result, in at least one embodi-
ment, each of vector processors may be configured to
execute independently of other vector processors. In at least
one embodiment, vector processors that are included in a
particular PVA may be configured to employ data parallel-
ism. For instance, in at least one embodiment, plurality of
vector processors included in a single PVA may execute a
common computer vision algorithm, but on different regions
of an image. In at least one embodiment, vector processors
included in a particular PVA may simultaneously execute
different computer vision algorithms, on one image, or even
execute different algorithms on sequential images or por-
tions of an image. In at least one embodiment, among other
things, any number of PVAs may be included in hardware
acceleration cluster and any number of vector processors
may be included in each PVA. In at least one embodiment,
PVA may include additional error correcting code (“ECC”)
memory, to enhance overall system safety.

[0248] In at least one embodiment, accelerator(s) 1314
may include a computer vision network on-chip and static
random-access memory (“SRAM”™), for providing a high-
bandwidth, low latency SRAM for accelerator(s) 1314. In at
least one embodiment, on-chip memory may include at least
4 MB SRAM, comprising, for example and without limita-
tion, eight field-configurable memory blocks, that may be
accessible by both a PVA and a DLA. In at least one
embodiment, each pair of memory blocks may include an
advanced peripheral bus (“APB”) interface, configuration
circuitry, a controller, and a multiplexer. In at least one
embodiment, any type of memory may be used. In at least
one embodiment, a PVA and a DLLA may access memory via
a backbone that provides a PVA and a DL A with high-speed
access to memory. In at least one embodiment, a backbone
may include a computer vision network on-chip that inter-
connects a PVA and a DLA to memory (e.g., using APB).

[0249] In at least one embodiment, a computer vision
network on-chip may include an interface that determines,
before transmission of any control signal/address/data, that
both a PVA and a DLA provide ready and valid signals. In
at least one embodiment, an interface may provide for
separate phases and separate channels for transmitting con-
trol signals/addresses/data, as well as burst-type communi-
cations for continuous data transfer. In at least one embodi-
ment, an interface may comply with International
Organization for Standardization (“ISO”) 26262 or Interna-
tional Electrotechnical Commission (“IEC”) 61508 stan-
dards, although other standards and protocols may be used.
[0250] In at least one embodiment, one or more of SoC(s)
1304 may include a real-time ray-tracing hardware accel-
erator. In at least one embodiment, real-time ray-tracing
hardware accelerator may be used to quickly and efficiently
determine positions and extents of objects (e.g., within a
world model), to generate real-time visualization simula-
tions, for RADAR signal interpretation, for sound propaga-
tion synthesis and/or analysis, for simulation of SONAR
systems, for general wave propagation simulation, for com-
parison to LIDAR data for purposes of localization and/or
other functions, and/or for other uses.

[0251] In atleast one embodiment, accelerator(s) 1314 can
have a wide array of uses for autonomous driving. In at least
one embodiment, a PVA may be used for key processing
stages in ADAS and autonomous vehicles. In at least one

Nov. 10, 2022

embodiment, a PVA’s capabilities are a good match for
algorithmic domains needing predictable processing, at low
power and low latency. In other words, a PVA performs well
on semi-dense or dense regular computation, even on small
data sets, which might require predictable run-times with
low latency and low power. In at least one embodiment, such
as in vehicle 1300, PVAs might be designed to run classic
computer vision algorithms, as they can be efficient at object
detection and operating on integer math.

[0252] For example, according to at least one embodiment
of technology, a PVA is used to perform computer stereo
vision. In at least one embodiment, a semi-global matching-
based algorithm may be used in some examples, although
this is not intended to be limiting. In at least one embodi-
ment, applications for Level 3-5 autonomous driving use
motion estimation/stereo matching on-the-fly (e.g., structure
from motion, pedestrian recognition, lane detection, etc.). In
at least one embodiment, a PVA may perform computer
stereo vision functions on inputs from two monocular cam-
eras.

[0253] In at least one embodiment, a PVA may be used to
perform dense optical flow. For example, in at least one
embodiment, a PVA could process raw RADAR data (e.g.,
using a 4D Fast Fourier Transform) to provide processed
RADAR data. In at least one embodiment, a PVA is used for
time of flight depth processing, by processing raw time of
flight data to provide processed time of flight data, for
example.

[0254] In at least one embodiment, a DLLA may be used to
run any type of network to enhance control and driving
safety, including for example and without limitation, a
neural network that outputs a measure of confidence for each
object detection. In at least one embodiment, confidence
may be represented or interpreted as a probability, or as
providing a relative “weight” of each detection compared to
other detections. In at least one embodiment, a confidence
measure enables a system to make further decisions regard-
ing which detections should be considered as true positive
detections rather than false positive detections. In at least
one embodiment, a system may set a threshold value for
confidence and consider only detections exceeding threshold
value as true positive detections. In an embodiment in which
an automatic emergency braking (“AEB”) system is used,
false positive detections would cause vehicle to automati-
cally perform emergency braking, which is obviously unde-
sirable. In at least one embodiment, highly confident detec-
tions may be considered as triggers for AEB. In at least one
embodiment, a DLA may run a neural network for regress-
ing confidence value. In at least one embodiment, neural
network may take as its input at least some subset of
parameters, such as bounding box dimensions, ground plane
estimate obtained (e.g., from another subsystem), output
from IMU sensor(s) 1366 that correlates with vehicle 1300
orientation, distance, 3D location estimates of object
obtained from neural network and/or other sensors (e.g.,
LIDAR sensor(s) 1364 or RADAR sensor(s) 1360), among
others.

[0255] In at least one embodiment, one or more of SoC(s)
1304 may include data store(s) 1316 (e.g., memory). In at
least one embodiment, data store(s) 1316 may be on-chip
memory of SoC(s) 1304, which may store neural networks
to be executed on GPU(s) 1308 and/or a DLA. In at least one
embodiment, data store(s) 1316 may be large enough in
capacity to store multiple instances of neural networks for

US 2022/0358627 Al

redundancy and safety. In at least one embodiment, data
store(s) 1316 may comprise L2 or .3 cache(s).

[0256] In at least one embodiment, one or more of SoC(s)
1304 may include any number of processor(s) 1310 (e.g.,
embedded processors). In at least one embodiment, proces-
sor(s) 1310 may include a boot and power management
processor that may be a dedicated processor and subsystem
to handle boot power and management functions and related
security enforcement. In at least one embodiment, a boot and
power management processor may be a part of a boot
sequence of SoC(s) 1304 and may provide runtime power
management services. In at least one embodiment, a boot
power and management processor may provide clock and
voltage programming, assistance in system low power state
transitions, management of SoC(s) 1304 thermals and tem-
perature sensors, and/or management of SoC(s) 1304 power
states. In at least one embodiment, each temperature sensor
may be implemented as a ring-oscillator whose output
frequency is proportional to temperature, and SoC(s) 1304
may use ring-oscillators to detect temperatures of CPU(s)
1306, GPU(s) 1308, and/or accelerator(s) 1314. In at least
one embodiment, if temperatures are determined to exceed
a threshold, then a boot and power management processor
may enter a temperature fault routine and put SoC(s) 1304
into a lower power state and/or put vehicle 1300 into a
chauffeur to safe stop mode (e.g., bring vehicle 1300 to a
safe stop).

[0257] In at least one embodiment, processor(s) 1310 may
further include a set of embedded processors that may serve
as an audio processing engine which may be an audio
subsystem that enables full hardware support for multi-
channel audio over multiple interfaces, and a broad and
flexible range of audio I/O interfaces. In at least one embodi-
ment, an audio processing engine is a dedicated processor
core with a digital signal processor with dedicated RAM.
[0258] In at least one embodiment, processor(s) 1310 may
further include an always-on processor engine that may
provide necessary hardware features to support low power
sensor management and wake use cases. In at least one
embodiment, an always-on processor engine may include,
without limitation, a processor core, a tightly coupled RAM,
supporting peripherals (e.g., timers and interrupt control-
lers), various I/O controller peripherals, and routing logic.
[0259] In at least one embodiment, processor(s) 1310 may
further include a safety cluster engine that includes, without
limitation, a dedicated processor subsystem to handle safety
management for automotive applications. In at least one
embodiment, a safety cluster engine may include, without
limitation, two or more processor cores, a tightly coupled
RAM, support peripherals (e.g., timers, an interrupt control-
ler, etc.), and/or routing logic. In a safety mode, two or more
cores may operate, in at least one embodiment, in a lockstep
mode and function as a single core with comparison logic to
detect any differences between their operations. In at least
one embodiment, processor(s) 1310 may further include a
real-time camera engine that may include, without limita-
tion, a dedicated processor subsystem for handling real-time
camera management. In at least one embodiment, processor
(s) 1310 may further include a high-dynamic range signal
processor that may include, without limitation, an image
signal processor that is a hardware engine that is part of a
camera processing pipeline.

[0260] In at least one embodiment, processor(s) 1310 may
include a video image compositor that may be a processing

Nov. 10, 2022

block (e.g., implemented on a microprocessor) that imple-
ments video post-processing functions needed by a video
playback application to produce a final image for a player
window. In at least one embodiment, a video image com-
positor may perform lens distortion correction on wide-view
camera(s) 1370, surround camera(s) 1374, and/or on in-
cabin monitoring camera sensor(s). In at least one embodi-
ment, in-cabin monitoring camera sensor(s) are preferably
monitored by a neural network running on another instance
of SoC 1304, configured to identify in cabin events and
respond accordingly. In at least one embodiment, an in-cabin
system may perform, without limitation, lip reading to
activate cellular service and place a phone call, dictate
emails, change a vehicle’s destination, activate or change a
vehicle’s infotainment system and settings, or provide
voice-activated web surfing. In at least one embodiment,
certain functions are available to a driver when a vehicle is
operating in an autonomous mode and are disabled other-
wise.

[0261] In at least one embodiment, a video image com-
positor may include enhanced temporal noise reduction for
both spatial and temporal noise reduction. For example, in at
least one embodiment, where motion occurs in a video,
noise reduction weights spatial information appropriately,
decreasing weights of information provided by adjacent
frames. In at least one embodiment, where an image or
portion of an image does not include motion, temporal noise
reduction performed by video image compositor may use
information from a previous image to reduce noise in a
current image.

[0262] In at least one embodiment, a video image com-
positor may also be configured to perform stereo rectifica-
tion on input stereo lens frames. In at least one embodiment,
a video image compositor may further be used for user
interface composition when an operating system desktop is
in use, and GPU(s) 1308 are not required to continuously
render new surfaces. In at least one embodiment, when
GPU(s) 1308 are powered on and active doing 3D rendering,
a video image compositor may be used to offload GPU(s)
1308 to improve performance and responsiveness.

[0263] In at least one embodiment, one or more SoC of
SoC(s) 1304 may further include a mobile industry proces-
sor interface (“MIPI”) camera serial interface for receiving
video and input from cameras, a high-speed interface, and/or
avideo input block that may be used for a camera and related
pixel input functions. In at least one embodiment, one or
more of SoC(s) 1304 may further include an input/output
controller(s) that may be controlled by software and may be
used for receiving I/O signals that are uncommitted to a
specific role.

[0264] In at least one embodiment, one or more Soc of
SoC(s) 1304 may further include abroad range of peripheral
interfaces to enable communication with peripherals, audio
encoders/decoders (“codecs™), power management, and/or
other devices. In at least one embodiment, SoC(s) 1304 may
be used to process data from cameras (e.g., connected over
Gigabit Multimedia Serial Link and Ethernet channels),
sensors (e.g., LIDAR sensor(s) 1364, RADAR sensor(s)
1360, ctc. that may be connected over Ethernet channels),
data from bus 1302 (e.g., speed of vehicle 1300, steering
wheel position, etc.), data from GNSS sensor(s) 1358 (e.g.,
connected over a Ethernet bus or a CAN bus), etc. In at least
one embodiment, one or more SoC of SoC(s) 1304 may
further include dedicated high-performance mass storage

US 2022/0358627 Al

controllers that may include their own DMA engines, and
that may be used to free CPU(s) 1306 from routine data
management tasks.

[0265] In atleast one embodiment, SoC(s) 1304 may be an
end-to-end platform with a flexible architecture that spans
automation Levels 3-5, thereby providing a comprehensive
functional safety architecture that leverages and makes
efficient use of computer vision and ADAS techniques for
diversity and redundancy, and provides a platform for a
flexible, reliable driving software stack, along with deep
learning tools. In at least one embodiment, SoC(s) 1304 may
be faster, more reliable, and even more energy-efficient and
space-efficient than conventional systems. For example, in at
least one embodiment, accelerator(s) 1314, when combined
with CPU(s) 1306, GPU(s) 1308, and data store(s) 1316,
may provide for a fast, efficient platform for Level 3-5
autonomous vehicles.

[0266] In at least one embodiment, computer vision algo-
rithms may be executed on CPUs, which may be configured
using a high-level programming language, such as C, to
execute a wide variety of processing algorithms across a
wide variety of visual data. However, in at least one embodi-
ment, CPUs are oftentimes unable to meet performance
requirements of many computer vision applications, such as
those related to execution time and power consumption, for
example. In at least one embodiment, many CPUs are unable
to execute complex object detection algorithms in real-time,
which is used in in-vehicle ADAS applications and in
practical Level 3-5 autonomous vehicles.

[0267] Embodiments described herein allow for multiple
neural networks to be performed simultaneously and/or
sequentially, and for results to be combined together to
enable Level 3-5 autonomous driving functionality. For
example, in at least one embodiment, a CNN executing on
a DLA or a discrete GPU (e.g., GPU(s) 1320) may include
text and word recognition, allowing reading and understand-
ing of traffic signs, including signs for which a neural
network has not been specifically trained. In at least one
embodiment, a DLLA may further include a neural network
that is able to identify, interpret, and provide semantic
understanding of a sign, and to pass that semantic under-
standing to path planning modules running on a CPU
Complex.

[0268] In at least one embodiment, multiple neural net-
works may be run simultaneously, as for Level 3, 4, or 5
driving. For example, in at least one embodiment, a warning
sign stating “Caution: flashing lights indicate icy condi-
tions,” along with an electric light, may be independently or
collectively interpreted by several neural networks. In at
least one embodiment, such warning sign itself may be
identified as a traffic sign by a first deployed neural network
(e.g., a neural network that has been trained), text “flashing
lights indicate icy conditions” may be interpreted by a
second deployed neural network, which informs a vehicle’s
path planning software (preferably executing on a CPU
Complex) that when flashing lights are detected, icy condi-
tions exist. In at least one embodiment, a flashing light may
be identified by operating a third deployed neural network
over multiple frames, informing a vehicle’s path-planning
software of a presence (or an absence) of flashing lights. In
at least one embodiment, all three neural networks may run
simultaneously, such as within a DLA and/or on GPU(s)
1308.

Nov. 10, 2022

[0269] In at least one embodiment, a CNN for facial
recognition and vehicle owner identification may use data
from camera sensors to identify presence of an authorized
driver and/or owner of vehicle 1300. In at least one embodi-
ment, an always-on sensor processing engine may be used to
unlock a vehicle when an owner approaches a driver door
and turns on lights, and, in a security mode, to disable such
vehicle when an owner leaves such vehicle. In this way,
SoC(s) 1304 provide for security against theft and/or car-
jacking.

[0270] In at least one embodiment, a CNN for emergency
vehicle detection and identification may use data from
microphones 1396 to detect and identify emergency vehicle
sirens. In at least one embodiment, SoC(s) 1304 use a CNN
for classifying environmental and urban sounds, as well as
classifying visual data. In at least one embodiment, a CNN
running on a DLA is trained to identify a relative closing
speed of an emergency vehicle (e.g., by using a Doppler
effect). In at least one embodiment, a CNN may also be
trained to identify emergency vehicles specific to a local area
in which a vehicle is operating, as identified by GNSS
sensor(s) 1358. In at least one embodiment, when operating
in Europe, a CNN will seek to detect European sirens, and
when in North America, a CNN will seek to identify only
North American sirens. In at least one embodiment, once an
emergency vehicle is detected, a control program may be
used to execute an emergency vehicle safety routine, slow-
ing a vehicle, pulling over to a side of a road, parking a
vehicle, and/or idling a vehicle, with assistance of ultrasonic
sensor(s) 1362, until emergency vehicles pass.

[0271] In at least one embodiment, vehicle 1300 may
include CPU(s) 1318 (e.g., discrete CPU(s), or dCPU(s)),
that may be coupled to SoC(s) 1304 via a high-speed
interconnect (e.g., PCle). In at least one embodiment, CPU
(s) 1318 may include an X86 processor, for example.
CPU(s) 1318 may be used to perform any of a variety of
functions, including arbitrating potentially inconsistent
results between ADAS sensors and SoC(s) 1304, and/or
monitoring status and health of controller(s) 1336 and/or an
infotainment system on a chip (“infotainment SoC”) 1330,
for example.

[0272] In at least one embodiment, vehicle 1300 may
include GPU(s) 1320 (e.g., discrete GPU(s), or dGPU(s)),
that may be coupled to SoC(s) 1304 via a high-speed
interconnect (e.g., NVIDIA’s NVLINK channel). In at least
one embodiment, GPU(s) 1320 may provide additional
artificial intelligence functionality, such as by executing
redundant and/or different neural networks, and may be used
to train and/or update neural networks based at least in part
on input (e.g., sensor data) from sensors of a vehicle 1300.
[0273] In at least one embodiment, vehicle 1300 may
further include network interface 1324 which may include,
without limitation, wireless antenna(s) 1326 (e.g., one or
more wireless antennas for different communication proto-
cols, such as a cellular antenna, a Bluetooth antenna, etc.).
In at least one embodiment, network interface 1324 may be
used to enable wireless connectivity to Internet cloud ser-
vices (e.g., with server(s) and/or other network devices),
with other vehicles, and/or with computing devices (e.g.,
client devices of passengers). In at least one embodiment, to
communicate with other vehicles, a direct link may be
established between vehicle 130 and another vehicle and/or
an indirect link may be established (e.g., across networks
and over the Internet). In at least one embodiment, direct

US 2022/0358627 Al

links may be provided using a vehicle-to-vehicle commu-
nication link. In at least one embodiment, a vehicle-to-
vehicle communication link may provide vehicle 1300 infor-
mation about vehicles in proximity to vehicle 1300 (e.g.,
vehicles in front of, on a side of, and/or behind vehicle
1300). In at least one embodiment, such aforementioned
functionality may be part of a cooperative adaptive cruise
control functionality of vehicle 1300.

[0274] In atleast one embodiment, network interface 1324
may include an SoC that provides modulation and demodu-
lation functionality and enables controller(s) 1336 to com-
municate over wireless networks. In at least one embodi-
ment, network interface 1324 may include a radio frequency
front-end for up-conversion from baseband to radio fre-
quency, and down conversion from radio frequency to
baseband. In at least one embodiment, frequency conver-
sions may be performed in any technically feasible fashion.
For example, frequency conversions could be performed
through well-known processes, and/or using super-hetero-
dyne processes. In at least one embodiment, radio frequency
front end functionality may be provided by a separate chip.
In at least one embodiment, network interfaces may include
wireless functionality for communicating over LTE,
WCDMA, UMTS, GSM, CDMA2000, Bluetooth, Blu-
etooth LE, Wi-Fi, Z-Wave, ZigBee, LoRaWAN, and/or other
wireless protocols.

[0275] In at least one embodiment, vehicle 1300 may
further include data store(s) 1328 which may include, with-
out limitation, off-chip (e.g., off SoC(s) 1304) storage. In at
least one embodiment, data store(s) 1328 may include,
without limitation, one or more storage elements including
RAM, SRAM, dynamic random-access memory
(“DRAM”), video random-access memory (“VRAM”), flash
memory, hard disks, and/or other components and/or devices
that may store at least one bit of data.

[0276] In at least one embodiment, vehicle 1300 may
further include GNSS sensor(s) 1358 (e.g., GPS and/or
assisted GPS sensors), to assist in mapping, perception,
occupancy grid generation, and/or path planning functions.
In at least one embodiment, any number of GNSS sensor(s)
1358 may be used, including, for example and without
limitation, a GPS using a USB connector with an Ethernet-
to-Serial (e.g., RS-232) bridge.

[0277] In at least one embodiment, vehicle 1300 may
further include RADAR sensor(s) 1360. In at least one
embodiment, RADAR sensor(s) 1360 may be used by
vehicle 1300 for long-range vehicle detection, even in
darkness and/or severe weather conditions. In at least one
embodiment, RADAR functional safety levels may be ASIL
B. In at least one embodiment, RADAR sensor(s) 1360 may
use a CAN bus and/or bus 1302 (e.g., to transmit data
generated by RADAR sensor(s) 1360) for control and to
access object tracking data, with access to Ethernet channels
to access raw data in some examples. In at least one
embodiment, a wide variety of RADAR sensor types may be
used. For example, and without limitation, RADAR sensor
(s) 1360 may be suitable for front, rear, and side RADAR
use. In at least one embodiment, one or more sensor of
RADAR sensors(s) 1360 is a Pulse Doppler RADAR sensor.
[0278] In at least one embodiment, RADAR sensor(s)
1360 may include different configurations, such as long-
range with narrow field of view, short-range with wide field
of view, short-range side coverage, etc. In at least one
embodiment, long-range RADAR may be used for adaptive

Nov. 10, 2022

cruise control functionality. In at least one embodiment,
long-range RADAR systems may provide a broad field of
view realized by two or more independent scans, such as
within a 250 m (meter) range. In at least one embodiment,
RADAR sensor(s) 1360 may help in distinguishing between
static and moving objects, and may be used by ADAS
system 1338 for emergency brake assist and forward colli-
sion warning. In at least one embodiment, sensors 1360(s)
included in a long-range RADAR system may include,
without limitation, monostatic multimodal RADAR with
multiple (e.g., six or more) fixed RADAR antennae and a
high-speed CAN and FlexRay interface. In at least one
embodiment, with six antennae, a central four antennae may
create a focused beam pattern, designed to record vehicle’s
1300 surroundings at higher speeds with minimal interfer-
ence from traffic in adjacent lanes. In at least one embodi-
ment, another two antennae may expand field of view,
making it possible to quickly detect vehicles entering or
leaving a lane of vehicle 1300.

[0279] In at least one embodiment, mid-range RADAR
systems may include, as an example, a range of up to 160 m
(front) or 80 m (rear), and a field of view of up to 42 degrees
(front) or 150 degrees (rear). In at least one embodiment,
short-range RADAR systems may include, without limita-
tion, any number of RADAR sensor(s) 1360 designed to be
installed at both ends of a rear bumper. When installed at
both ends of a rear bumper, in at least one embodiment, a
RADAR sensor system may create two beams that con-
stantly monitor blind spots in a rear direction and next to a
vehicle. In at least one embodiment, short-range RADAR
systems may be used in ADAS system 1338 for blind spot
detection and/or lane change assist.

[0280] In at least one embodiment, vehicle 1300 may
further include ultrasonic sensor(s) 1362. In at least one
embodiment, ultrasonic sensor(s) 1362, which may be posi-
tioned at a front, a back, and/or side location of vehicle 1300,
may be used for parking assist and/or to create and update
an occupancy grid. In at least one embodiment, a wide
variety of ultrasonic sensor(s) 1362 may be used, and
different ultrasonic sensor(s) 1362 may be used for different
ranges of detection (e.g., 2.5 m, 4 m). In at least one
embodiment, ultrasonic sensor(s) 1362 may operate at func-
tional safety levels of ASIL B.

[0281] In at least one embodiment, vehicle 1300 may
include LIDAR sensor(s) 1364. In at least one embodiment,
LIDAR sensor(s) 1364 may be used for object and pedes-
trian detection, emergency braking, collision avoidance,
and/or other functions. In at least one embodiment, LIDAR
sensor(s) 1364 may operate at functional safety level ASK.
B. In at least one embodiment, vehicle 1300 may include
multiple LIDAR sensors 1364 (e.g., two, four, six, etc.) that
may use an Ethernet channel (e.g., to provide data to a
Gigabit Ethernet switch).

[0282] In at least one embodiment, LIDAR sensor(s) 1364
may be capable of providing a list of objects and their
distances for a 360-degree field of view. In at least one
embodiment, commercially available LIDAR sensor(s)
1364 may have an advertised range of approximately 100 m,
with an accuracy of 2 cm to 3 cm, and with support for a 100
Mbps Ethernet connection, for example. In at least one
embodiment, one or more non-protruding LIDAR sensors
may be used. In such an embodiment, LIDAR sensor(s)
1364 may include a small device that may be embedded into
a front, a rear, a side, and/or a corner location of vehicle

US 2022/0358627 Al

1300. In at least one embodiment, LIDAR sensor(s) 1364, in
such an embodiment, may provide up to a 120-degree
horizontal and 35-degree vertical field-of-view, with a 200 m
range even for low-reflectivity objects. In at least one
embodiment, front-mounted LIDAR sensor(s) 1364 may be
configured for a horizontal field of view between 45 degrees
and 135 degrees.

[0283] In at least one embodiment, LIDAR technologies,
such as 3D flash LIDAR, may also be used. In at least one
embodiment, 3D flash LIDAR uses a flash of a laser as a
transmission source, to illuminate surroundings of vehicle
1300 up to approximately 200 m. In at least one embodi-
ment, a flash LIDAR unit includes, without limitation, a
receptor, which records laser pulse transit time and reflected
light on each pixel, which in turn corresponds to a range
from vehicle 1300 to objects. In at least one embodiment,
flash LIDAR may allow for highly accurate and distortion-
free images of surroundings to be generated with every laser
flash. In at least one embodiment, four flash LIDAR sensors
may be deployed, one at each side of vehicle 1300. In at least
one embodiment, 3D flash LIDAR systems include, without
limitation, a solid-state 3D staring array LIDAR camera
with no moving parts other than a fan (e.g., a non-scanning
LIDAR device). In at least one embodiment, flash LIDAR
device may use a 5 nanosecond class I (eye-safe) laser pulse
per frame and may capture reflected laser light as a 3D range
point cloud and co-registered intensity data.

[0284] In at least one embodiment, vehicle 1300 may
further include IMU sensor(s) 1366. In at least one embodi-
ment, IMU sensor(s) 1366 may be located at a center of a
rear axle of vehicle 1300. In at least one embodiment, IMU
sensor(s) 1366 may include, for example and without limi-
tation, accelerometer(s), magnetometer(s), gyroscope(s), a
magnetic compass, magnetic compasses, and/or other sensor
types. In at least one embodiment, such as in six-axis
applications, IMU sensor(s) 1366 may include, without
limitation, accelerometers and gyroscopes. In at least one
embodiment, such as in nine-axis applications, IMU sensor
(s) 1366 may include, without limitation, accelerometers,
gyroscopes, and magnetometers.

[0285] In at least one embodiment, IMU sensor(s) 1366
may be implemented as a miniature, high performance
GPS-Aided Inertial Navigation System (“GPS/INS”) that
combines micro-electro-mechanical systems (“MEMS”)
inertial sensors, a high-sensitivity GPS receiver, and
advanced Kalman filtering algorithms to provide estimates
of position, velocity, and attitude. In at least one embodi-
ment, IMU sensor(s) 1366 may enable vehicle 1300 to
estimate its heading without requiring input from a magnetic
sensor by directly observing and correlating changes in
velocity from a GPS to IMU sensor(s) 1366. In at least one
embodiment, IMU sensor(s) 1366 and GNSS sensor(s) 1358
may be combined in a single integrated unit.

[0286] In at least one embodiment, vehicle 1300 may
include microphone(s) 1396 placed in and/or around vehicle
1300. In at least one embodiment, microphone(s) 1396 may
be used for emergency vehicle detection and identification,
among other things.

[0287] In at least one embodiment, vehicle 1300 may
further include any number of camera types, including stereo
camera(s) 1368, wide-view camera(s) 1370, infrared camera
(s) 1372, surround camera(s) 1374, long-range camera(s)
1398, mid-range camera(s) 1376, and/or other camera types.
In at least one embodiment, cameras may be used to capture

Nov. 10, 2022

image data around an entire periphery of vehicle 1300. In at
least one embodiment, which types of cameras used depends
on vehicle 1300. In at least one embodiment, any combina-
tion of camera types may be used to provide necessary
coverage around vehicle 1300. In at least one embodiment,
a number of cameras deployed may differ depending on
embodiment. For example, in at least one embodiment,
vehicle 1300 could include six cameras, seven cameras, ten
cameras, twelve cameras, or another number of cameras. In
at least one embodiment, cameras may support, as an
example and without limitation, Gigabit Multimedia Serial
Link (“GMSL”) and/or Gigabit Ethernet communications.
In at least one embodiment, each camera might be as
described with more detail previously herein with respect to
FIG. 13A and FIG. 13B.

[0288] In at least one embodiment, vehicle 1300 may
further include vibration sensor(s) 1342. In at least one
embodiment, vibration sensor(s) 1342 may measure vibra-
tions of components of vehicle 1300, such as axle(s). For
example, in at least one embodiment, changes in vibrations
may indicate a change in road surfaces. In at least one
embodiment, when two or more vibration sensors 1342 are
used, differences between vibrations may be used to deter-
mine friction or slippage of road surface (e.g., when a
difference in vibration is between a power-driven axle and a
freely rotating axle).

[0289] In at least one embodiment, vehicle 1300 may
include ADAS system 1338. In at least one embodiment,
ADAS system 1338 may include, without limitation, an
SoC, in some examples. In at least one embodiment, ADAS
system 1338 may include, without limitation, any number
and combination of an autonomous/adaptive/automatic
cruise control (“ACC”) system, a cooperative adaptive
cruise control (“CACC”) system, a forward crash warning
(“FCW?) system, an automatic emergency braking (“AEB”)
system, a lane departure warning (“LDW)” system, a lane
keep assist (“LKA”) system, a blind spot warning (“BSW”)
system, a rear cross-traffic warning (“RCTW”) system, a
collision warning (“CW”) system, a lane centering (“L.C”)
system, and/or other systems, features, and/or functionality.
[0290] In at least one embodiment, ACC system may use
RADAR sensor(s) 1360, LIDAR sensor(s) 1364, and/or any
number of camera(s). In at least one embodiment, ACC
system may include a longitudinal ACC system and/or a
lateral ACC system. In at least one embodiment, a longitu-
dinal ACC system monitors and controls distance to another
vehicle immediately ahead of vehicle 1300 and automati-
cally adjusts speed of vehicle 1300 to maintain a safe
distance from vehicles ahead. In at least one embodiment, a
lateral ACC system performs distance keeping, and advises
vehicle 1300 to change lanes when necessary. In at least one
embodiment, a lateral ACC is related to other ADAS appli-
cations, such as LC and CW.

[0291] In at least one embodiment, a CACC system uses
information from other vehicles that may be received via
network interface 1324 and/or wireless antenna(s) 1326
from other vehicles via a wireless link, or indirectly, over a
network connection (e.g., over the Internet). In at least one
embodiment, direct links may be provided by a vehicle-to-
vehicle (“V2V”) communication link, while indirect links
may be provided by an infrastructure-to-vehicle (“12V”)
communication link. In general, V2V communication pro-
vides information about immediately preceding vehicles
(e.g., vehicles immediately ahead of and in same lane as

US 2022/0358627 Al

vehicle 1300), while 12V communication provides informa-
tion about traffic further ahead. In at least one embodiment,
a CACC system may include either or both 12V and V2V
information sources. In at least one embodiment, given
information of vehicles ahead of vehicle 1300, a CACC
system may be more reliable and it has potential to improve
traffic flow smoothness and reduce congestion on road.
[0292] In at least one embodiment, an FCW system is
designed to alert a driver to a hazard, so that such driver may
take corrective action. In at least one embodiment, an FCW
system uses a front-facing camera and/or RADAR sensor(s)
1360, coupled to a dedicated processor, DSP, FPGA, and/or
ASIC, that is electrically coupled to provide driver feedback,
such as a display, speaker, and/or vibrating component. In at
least one embodiment, an FCW system may provide a
warning, such as in form of a sound, visual warning,
vibration and/or a quick brake pulse.

[0293] In atleast one embodiment, an AEB system detects
an impending forward collision with another vehicle or other
object, and may automatically apply brakes if a driver does
not take corrective action within a specified time or distance
parameter. In at least one embodiment, AEB system may use
front-facing camera(s) and/or RADAR sensor(s) 1360,
coupled to a dedicated processor, DSP, FPGA, and/or ASIC.
In at least one embodiment, when an AEB system detects a
hazard, it will typically first alert a driver to take corrective
action to avoid collision and, if that driver does not take
corrective action, that AEB system may automatically apply
brakes in an effort to prevent, or at least mitigate, an impact
of a predicted collision. In at least one embodiment, an AEB
system may include techniques such as dynamic brake
support and/or crash imminent braking.

[0294] In at least one embodiment, an LDW system pro-
vides visual, audible, and/or tactile warnings, such as steer-
ing wheel or seat vibrations, to alert driver when vehicle
1300 crosses lane markings. In at least one embodiment, an
LDW system does not activate when a driver indicates an
intentional lane departure, such as by activating a turn
signal. In at least one embodiment, an LDW system may use
front-side facing cameras, coupled to a dedicated processor,
DSP, FPGA, and/or ASIC, that is electrically coupled to
provide driver feedback, such as a display, speaker, and/or
vibrating component. In at least one embodiment, an LKA
system is a variation of an LDW system. In at least one
embodiment, an LKA system provides steering input or
braking to correct vehicle 1300 if vehicle 1300 starts to exit
its lane.

[0295] In at least one embodiment, a BSW system detects
and warns a driver of vehicles in an automobile’s blind spot.
In at least one embodiment, a BSW system may provide a
visual, audible, and/or tactile alert to indicate that merging
or changing lanes is unsafe. In at least one embodiment, a
BSW system may provide an additional warning when a
driver uses a turn signal. In at least one embodiment, a BSW
system may use rear-side facing camera(s) and/or RADAR
sensor(s) 1360, coupled to a dedicated processor, DSP,
FPGA, and/or ASIC, that is electrically coupled to driver
feedback, such as a display, speaker, and/or vibrating com-
ponent.

[0296] In at least one embodiment, an RCTW system may
provide visual, audible, and/or tactile notification when an
object is detected outside a rear-camera range when vehicle
1300 is backing up. In at least one embodiment, an RCTW
system includes an AEB system to ensure that vehicle brakes

Nov. 10, 2022

are applied to avoid a crash. In at least one embodiment, an
RCTW system may use one or more rear-facing RADAR
sensor(s) 1360, coupled to a dedicated processor, DSP,
FPGA, and/or ASIC, that is electrically coupled to provide
driver feedback, such as a display, speaker, and/or vibrating
component.

[0297] In at least one embodiment, conventional ADAS
systems may be prone to false positive results which may be
annoying and distracting to a driver, but typically are not
catastrophic, because conventional ADAS systems alert a
driver and allow that driver to decide whether a safety
condition truly exists and act accordingly. In at least one
embodiment, vehicle 1300 itself decides, in case of conflict-
ing results, whether to heed result from a primary computer
or a secondary computer (e.g., a first controller or a second
controller of controllers 1336). For example, in at least one
embodiment, ADAS system 1338 may be a backup and/or
secondary computer for providing perception information to
a backup computer rationality module. In at least one
embodiment, a backup computer rationality monitor may
run redundant diverse software on hardware components to
detect faults in perception and dynamic driving tasks. In at
least one embodiment, outputs from ADAS system 1338
may be provided to a supervisory MCU. In at least one
embodiment, if outputs from a primary computer and out-
puts from a secondary computer conflict, a supervisory
MCU determines how to reconcile conflict to ensure safe
operation.

[0298] In at least one embodiment, a primary computer
may be configured to provide a supervisory MCU with a
confidence score, indicating that primary computer’s confi-
dence in a chosen result. In at least one embodiment, if that
confidence score exceeds a threshold, that supervisory MCU
may follow that primary computer’s direction, regardless of
whether that secondary computer provides a conflicting or
inconsistent result. In at least one embodiment, where a
confidence score does not meet a threshold, and where
primary and secondary computers indicate different results
(e.g., a conflict), a supervisory MCU may arbitrate between
computers to determine an appropriate outcome.

[0299] In at least one embodiment, a supervisory MCU
may be configured to run a neural network(s) that is trained
and configured to determine, based at least in part on outputs
from a primary computer and outputs from a secondary
computer, conditions under which that secondary computer
provides false alarms. In at least one embodiment, neural
network(s) in a supervisory MCU may learn when a sec-
ondary computer’s output may be trusted, and when it
cannot. For example, in at least one embodiment, when that
secondary computer is a RADAR-based FCW system, a
neural network(s) in that supervisory MCU may learn when
an FCW system is identifying metallic objects that are not,
in fact, hazards, such as a drainage grate or manhole cover
that triggers an alarm. In at least one embodiment, when a
secondary computer is a camera-based LDW system, a
neural network in a supervisory MCU may learn to override
LDW when bicyclists or pedestrians are present and a lane
departure is, in fact, a safest maneuver. In at least one
embodiment, a supervisory MCU may include at least one of
a DLA or a GPU suitable for running neural network(s) with
associated memory. In at least one embodiment, a supervi-
sory MCU may comprise and/or be included as a component
of SoC(s) 1304.

US 2022/0358627 Al

[0300] In at least one embodiment, ADAS system 1338
may include a secondary computer that performs ADAS
functionality using traditional rules of computer vision. In at
least one embodiment, that secondary computer may use
classic computer vision rules (if-then), and presence of a
neural network(s) in a supervisory MCU may improve
reliability, safety and performance. For example, in at least
one embodiment, diverse implementation and intentional
non-identity makes an overall system more fault-tolerant,
especially to faults caused by software (or software-hard-
ware interface) functionality. For example, in at least one
embodiment, if there is a software bug or error in software
running on a primary computer, and non-identical software
code running on a secondary computer provides a consistent
overall result, then a supervisory MCU may have greater
confidence that an overall result is correct, and a bug in
software or hardware on that primary computer is not
causing a material error.

[0301] In at least one embodiment, an output of ADAS
system 1338 may be fed into a primary computer’s percep-
tion block and/or a primary computer’s dynamic driving task
block. For example, in at least one embodiment, if ADAS
system 1338 indicates a forward crash warning due to an
object immediately ahead, a perception block may use this
information when identifying objects. In at least one
embodiment, a secondary computer may have its own neural
network that is trained and thus reduces a risk of false
positives, as described herein.

[0302] In at least one embodiment, vehicle 1300 may
further include infotainment SoC 1330 (e.g., an in-vehicle
infotainment system (IVI)). Although illustrated and
described as an SoC, infotainment system SoC 1330, in at
least one embodiment, may not be an SoC, and may include,
without limitation, two or more discrete components. In at
least one embodiment, infotainment SoC 1330 may include,
without limitation, a combination of hardware and software
that may be used to provide audio (e.g., music, a personal
digital assistant, navigational instructions, news, radio, etc.),
video (e.g., TV, movies, streaming, etc.), phone (e.g., hands-
free calling), network connectivity (e.g., LTE, WiFi, etc.),
and/or information services (e.g., navigation systems, rear-
parking assistance, a radio data system, vehicle related
information such as fuel level, total distance covered, brake
fuel level, oil level, door open/close, air filter information,
etc.) to vehicle 1300. For example, infotainment SoC 1330
could include radios, disk players, navigation systems, video
players, USB and Bluetooth connectivity, carputers, in-car
entertainment, WiFi, steering wheel audio controls, hands
free voice control, a heads-up display (“HUD”), HMI dis-
play 1334, a telematics device, a control panel (e.g., for
controlling and/or interacting with various components,
features, and/or systems), and/or other components. In at
least one embodiment, infotainment SoC 1330 may further
be used to provide information (e.g., visual and/or audible)
to user(s) of vehicle 1300, such as information from ADAS
system 1338, autonomous driving information such as
planned vehicle maneuvers, trajectories, surrounding envi-
ronment information (e.g., intersection information, vehicle
information, road information, etc.), and/or other informa-
tion.

[0303] In atleast one embodiment, infotainment SoC 1330
may include any amount and type of GPU functionality. In
at least one embodiment, infotainment SoC 1330 may com-
municate over bus 1302 with other devices, systems, and/or

Nov. 10, 2022

components of vehicle 1300. In at least one embodiment,
infotainment SoC 1330 may be coupled to a supervisory
MCU such that a GPU of an infotainment system may
perform some self-driving functions in event that primary
controller(s) 1336 (e.g., primary and/or backup computers of
vehicle 1300) fail. In at least one embodiment, infotainment
SoC 1330 may put vehicle 1300 into a chauffeur to safe stop
mode, as described herein.

[0304] In at least one embodiment, vehicle 1300 may
further include instrument cluster 1332 (e.g., a digital dash,
an electronic instrument cluster, a digital instrument panel,
etc.). In at least one embodiment, instrument cluster 1332
may include, without limitation, a controller and/or super-
computer (e.g., a discrete controller or supercomputer). In at
least one embodiment, instrument cluster 1332 may include,
without limitation, any number and combination of a set of
instrumentation such as a speedometer, fuel level, oil pres-
sure, tachometer, odometer, turn indicators, gearshift posi-
tion indicator, seat belt warning light(s), parking-brake
warning light(s), engine-malfunction light(s), supplemental
restraint system (e.g., airbag) information, lighting controls,
safety system controls, navigation information, etc. In some
examples, information may be displayed and/or shared
among infotainment SoC 1330 and instrument cluster 1332.
In at least one embodiment, instrument cluster 1332 may be
included as part of infotainment SoC 1330, or vice versa.

[0305] Inference and/or training logic 1015 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 1015 are provided herein in conjunc-
tion with FIGS. 10A and/or 10B. In at least one embodiment,
inference and/or training logic 1015 may be used in system
FIG. 13C for inferencing or predicting operations based, at
least in part, on weight parameters calculated using neural
network training operations, neural network functions and/
or architectures, or neural network use cases described
herein. In various embodiments, the inference and/or train-
ing logic 1015 utilize the target image data generated by the
offline image signal processing 240 as described above in
connection with FIG. 2. In addition, the data collection 202
described above in connection with FIG. 2, in various
embodiments is performed by the vehicle 1300.

[0306] FIG. 13D is a diagram of a system for communi-
cation between cloud-based server(s) and autonomous
vehicle 1300 of FIG. 13A, according to at least one embodi-
ment. In at least one embodiment, system may include,
without limitation, server(s) 1378, network(s) 1390, and any
number and type of vehicles, including vehicle 1300. In at
least one embodiment, server(s) 1378 may include, without
limitation, a plurality of GPUs 1384(A)-1384(H) (collec-
tively referred to herein as GPUs 1384), PCle switches
1382(A)-1382(D) (collectively referred to herein as PCle
switches 1382), and/or CPUs 1380(A)-1380(B) (collectively
referred to herein as CPUs 1380). In at least one embodi-
ment, GPUs 1384, CPUs 1380, and PCle switches 1382 may
be interconnected with high-speed interconnects such as, for
example and without limitation, NVLink interfaces 1388
developed by NVIDIA and/or PCle connections 1386. In at
least one embodiment, GPUs 1384 are connected via an
NVLink and/or NVSwitch SoC and GPUs 1384 and PCle
switches 1382 are connected via PCle interconnects.
Although eight GPUs 1384, two CPUs 1380, and four PCle
switches 1382 are illustrated, this is not intended to be
limiting. In at least one embodiment, each of server(s) 1378

US 2022/0358627 Al

may include, without limitation, any number of GPUs 1384,
CPUs 1380, and/or PCle switches 1382, in any combination.
For example, in at least one embodiment, server(s) 1378
could each include eight, sixteen, thirty-two, and/or more
GPUs 1384.

[0307] In at least one embodiment, server(s) 1378 may
receive, over network(s) 1390 and from vehicles, image data
representative of images showing unexpected or changed
road conditions, such as recently commenced road-work. In
at least one embodiment, server(s) 1378 may transmit, over
network(s) 1390 and to vehicles, neural networks 1392,
updated or otherwise, and/or map information 1394, includ-
ing, without limitation, information regarding traffic and
road conditions. In at least one embodiment, updates to map
information 1394 may include, without limitation, updates
for HD map 1322, such as information regarding construc-
tion sites, potholes, detours, flooding, and/or other obstruc-
tions. In at least one embodiment, neural networks 1392,
and/or map information 1394 may have resulted from new
training and/or experiences represented in data received
from any number of vehicles in an environment, and/or
based at least in part on training performed at a data center
(e.g., using server(s) 1378 and/or other servers).

[0308] In at least one embodiment, server(s) 1378 may be
used to train machine learning models (e.g., neural net-
works) based at least in part on training data. In at least one
embodiment, training data may be generated by vehicles,
and/or may be generated in a simulation (e.g., using a game
engine). In at least one embodiment, any amount of training
data is tagged (e.g., where associated neural network ben-
efits from supervised learning) and/or undergoes other pre-
processing. In at least one embodiment, any amount of
training data is not tagged and/or pre-processed (e.g., where
associated neural network does not require supervised learn-
ing). In at least one embodiment, once machine learning
models are trained, machine learning models may be used by
vehicles (e.g., transmitted to vehicles over network(s) 1390),
and/or machine learning models may be used by server(s)
1378 to remotely monitor vehicles.

[0309] In at least one embodiment, server(s) 1378 may
receive data from vehicles and apply data to up-to-date
real-time neural networks for real-time intelligent inferenc-
ing. In at least one embodiment, server(s) 1378 may include
deep-learning supercomputers and/or dedicated Al comput-
ers powered by GPU(s) 1384, such as a DGX and DGX
Station machines developed by NVIDIA. However, in at
least one embodiment, server(s) 1378 may include deep
learning infrastructure that uses CPU-powered data centers.
[0310] In at least one embodiment, deep-learning infra-
structure of server(s) 1378 may be capable of fast, real-time
inferencing, and may use that capability to evaluate and
verify health of processors, software, and/or associated
hardware in vehicle 1300. For example, in at least one
embodiment, deep-learning infrastructure may receive peri-
odic updates from vehicle 1300, such as a sequence of
images and/or objects that vehicle 1300 has located in that
sequence of images (e.g., via computer vision and/or other
machine learning object classification techniques). In at least
one embodiment, deep-learning infrastructure may run its
own neural network to identify objects and compare them
with objects identified by vehicle 1300 and, if results do not
match and deep-learning infrastructure concludes that Al in
vehicle 1300 is malfunctioning, then server(s) 1378 may
transmit a signal to vehicle 1300 instructing a fail-safe

Nov. 10, 2022

computer of vehicle 1300 to assume control, notify passen-
gers, and complete a safe parking maneuver.

[0311] In at least one embodiment, server(s) 1378 may
include GPU(s) 1384 and one or more programmable infer-
ence accelerators (e.g., NVIDIA’s TensorRT 3 devices). In
at least one embodiment, a combination of GPU-powered
servers and inference acceleration may make real-time
responsiveness possible. In at least one embodiment, such as
where performance is less critical, servers powered by
CPUs, FPGAs, and other processors may be used for infer-
encing. In at least one embodiment, hardware structure(s)
1015 are used to perform one or more embodiments. Details
regarding hardware structure(x) 1015 are provided herein in
conjunction with FIGS. 10A and/or 10B.

Computer Systems

[0312] FIG. 14 is a block diagram illustrating an exem-
plary computer system, which may be a system with inter-
connected devices and components, a system-on-a-chip
(SOC) or some combination thereof formed with a processor
that may include execution units to execute an instruction,
according to at least one embodiment. In at least one
embodiment, a computer system 1400 may include, without
limitation, a component, such as a processor 1402 to employ
execution units including logic to perform algorithms for
process data, in accordance with present disclosure, such as
in embodiment described herein. In at least one embodi-
ment, computer system 1400 may include processors, such
as PENTIUM® Processor family, Xeon™, Itanium®,
XScale™ and/or StrongARM™, Intel® Core™, or Intel®
Nervana™ microprocessors available from Intel Corpora-
tion of Santa Clara, Calif., although other systems (including
PCs having other microprocessors, engineering worksta-
tions, set-top boxes and like) may also be used. In at least
one embodiment, computer system 1400 may execute a
version of WINDOWS operating system available from
Microsoft Corporation of Redmond, Wash., although other
operating systems (UNIX and Linux, for example), embed-
ded software, and/or graphical user interfaces, may also be
used.

[0313] Embodiments may be used in other devices such as
handheld devices and embedded applications. Some
examples of handheld devices include cellular phones, Inter-
net Protocol devices, digital cameras, personal digital assis-
tants (“PDAs”), and handheld PCs. In at least one embodi-
ment, embedded applications may include a microcontroller,
a digital signal processor (“DSP”), system on a chip, net-
work computers (“NetPCs”), set-top boxes, network hubs,
wide area network (“WAN”) switches, or any other system
that may perform one or more instructions in accordance
with at least one embodiment.

[0314] In at least one embodiment, computer system 1400
may include, without limitation, processor 1402 that may
include, without limitation, one or more execution units
1408 to perform machine learning model training and/or
inferencing according to techniques described herein. In at
least one embodiment, computer system 1400 is a single
processor desktop or server system, but in another embodi-
ment, computer system 1400 may be a multiprocessor
system. In at least one embodiment, processor 1402 may
include, without limitation, a complex instruction set com-
puter (“CISC”) microprocessor, a reduced instruction set
computing (“RISC”) microprocessor, a very long instruction
word (“VLIW”) microprocessor, a processor implementing

US 2022/0358627 Al

a combination of instruction sets, or any other processor
device, such as a digital signal processor, for example. In at
least one embodiment, processor 1402 may be coupled to a
processor bus 1410 that may transmit data signals between
processor 1402 and other components in computer system
1400.

[0315] In at least one embodiment, processor 1402 may
include, without limitation, a Level 1 (“L1”) internal cache
memory (“cache”) 1404. In at least one embodiment, pro-
cessor 1402 may have a single internal cache or multiple
levels of internal cache. In at least one embodiment, cache
memory may reside external to processor 1402. Other
embodiments may also include a combination of both inter-
nal and external caches depending on particular implemen-
tation and needs. In at least one embodiment, a register file
1406 may store different types of data in various registers
including, without limitation, integer registers, floating point
registers, status registers, and an instruction pointer register.
[0316] In at least one embodiment, execution unit 1408,
including, without limitation, logic to perform integer and
floating point operations, also resides in processor 1402. In
at least one embodiment, processor 1402 may also include
a microcode (“ucode”) read only memory (“ROM”) that
stores microcode for certain macro instructions. In at least
one embodiment, execution unit 1408 may include logic to
handle a packed instruction set 1409. In at least one embodi-
ment, by including packed instruction set 1409 in an instruc-
tion set of a general-purpose processor, along with associ-
ated circuitry to execute instructions, operations used by
many multimedia applications may be performed using
packed data in processor 1402. In at least one embodiment,
many multimedia applications may be accelerated and
executed more efficiently by using a full width of a proces-
sor’s data bus for performing operations on packed data,
which may eliminate a need to transfer smaller units of data
across that processor’s data bus to perform one or more
operations one data element at a time.

[0317] In at least one embodiment, execution unit 1408
may also be used in microcontrollers, embedded processors,
graphics devices, DSPs, and other types of logic circuits. In
at least one embodiment, computer system 1400 may
include, without limitation, a memory 1420. In at least one
embodiment, memory 1420 may be a Dynamic Random
Access Memory (“DRAM”) device, a Static Random Access
Memory (“SRAM”) device, a flash memory device, or
another memory device. In at least one embodiment,
memory 1420 may store instruction(s) 1419 and/or data
1421 represented by data signals that may be executed by
processor 1402.

[0318] In at least one embodiment, a system logic chip
may be coupled to processor bus 1410 and memory 1420. In
at least one embodiment, a system logic chip may include,
without limitation, a memory controller hub (“MCH”) 1416,
and processor 1402 may communicate with MCH 1416 via
processor bus 1410. In at least one embodiment, MCH 1416
may provide a high bandwidth memory path 1418 to
memory 1420 for instruction and data storage and for
storage of graphics commands, data and textures. In at least
one embodiment, MCH 1416 may direct data signals
between processor 1402, memory 1420, and other compo-
nents in computer system 1400 and to bridge data signals
between processor bus 1410, memory 1420, and a system
1/0 interface 1422. In at least one embodiment, a system
logic chip may provide a graphics port for coupling to a

Nov. 10, 2022

graphics controller. In at least one embodiment, MCH 1416
may be coupled to memory 1420 through high bandwidth
memory path 1418 and a graphics/video card 1412 may be
coupled to MCH 1416 through an Accelerated Graphics Port
(“AGP”) interconnect 1414.

[0319] In at least one embodiment, computer system 1400
may use system l/O interface 1422 as a proprietary hub
interface bus to couple MCH 1416 to an /O controller hub
(“ICH”) 1430. In at least one embodiment, ICH 1430 may
provide direct connections to some I/O devices via a local
1/O bus. In at least one embodiment, a local [/O bus may
include, without limitation, a high-speed I/O bus for con-
necting peripherals to memory 1420, a chipset, and proces-
sor 1402. Examples may include, without limitation, an
audio controller 1429, a firmware hub (“flash BIOS”) 1428,
a wireless transceiver 1426, a data storage 1424, a legacy /O
controller 1423 containing user input and keyboard inter-
faces 1425, a serial expansion port 1427, such as a Universal
Serial Bus (“USB”) port, and a network controller 1434. In
at least one embodiment, data storage 1424 may comprise a
hard disk drive, a floppy disk drive, a CD-ROM device, a
flash memory device, or other mass storage device.

[0320] In at least one embodiment, FIG. 14 illustrates a
system, which includes interconnected hardware devices or
“chips”, whereas in other embodiments, FIG. 14 may illus-
trate an exemplary SoC. In at least one embodiment, devices
illustrated in FIG. 14 may be interconnected with propri-
etary interconnects, standardized interconnects (e.g., PCle)
or some combination thereof. In at least one embodiment,
one or more components of computer system 1400 are
interconnected using compute express link (CXL) intercon-
nects.

[0321] Inference and/or training logic 1015 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 1015 are provided herein in conjunc-
tion with FIGS. 10A and/or 10B. In at least one embodiment,
inference and/or training logic 1015 may be used in system
FIG. 14 for inferencing or predicting operations based, at
least in part, on weight parameters calculated using neural
network training operations, neural network functions and/
or architectures, or neural network use cases described
herein.

[0322] FIG. 15 is a block diagram illustrating an electronic
device 1500 for utilizing a processor 1510, according to at
least one embodiment. In at least one embodiment, elec-
tronic device 1500 may be, for example and without limi-
tation, a notebook, a tower server, a rack server, a blade
server, a laptop, a desktop, a tablet, a mobile device, a phone,
an embedded computer, or any other suitable electronic
device.

[0323] In at least one embodiment, electronic device 1500
may include, without limitation, processor 1510 communi-
catively coupled to any suitable number or kind of compo-
nents, peripherals, modules, or devices. In at least one
embodiment, processor 1510 is coupled using a bus or
interface, such as a I°C bus, a System Management Bus
(“SMBus”), a Low Pin Count (LLPC) bus, a Serial Peripheral
Interface (“SPI”), a High Definition Audio (“HDA”) bus, a
Serial Advance Technology Attachment (“SATA”) bus, a
Universal Serial Bus (“USB”) (versions 1, 2, 3, etc.), or a
Universal Asynchronous Receiver/Transmitter (“UART”)
bus. In at least one embodiment, FIG. 15 illustrates a system,
which includes interconnected hardware devices or “chips”,

US 2022/0358627 Al

whereas in other embodiments, FIG. 15 may illustrate an
exemplary SoC. In at least one embodiment, devices illus-
trated in FIG. 15 may be interconnected with proprietary
interconnects, standardized interconnects (e.g., PCle) or
some combination thereof. In at least one embodiment, one
or more components of FIG. 15 are interconnected using
compute express link (CXL) interconnects.

[0324] In at least one embodiment, FIG. 15 may include a
display 1524, a touch screen 1525, a touch pad 1530, a Near
Field Communications unit (“NFC”) 1545, a sensor hub
1540, a thermal sensor 1546, an Express Chipset (“EC”)
1535, a Trusted Platform Module (“TPM”) 1538, BIOS/
firmware/flash memory (“BIOS, FW Flash”) 1522, a DSP
1560, a drive 1520 such as a Solid State Disk (“SSD”) or a
Hard Disk Drive (“HDD”), a wireless local area network
unit (“WLAN”) 1550, a Bluetooth unit 1552, a Wireless
Wide Area Network unit (“WWAN”) 1556, a Global Posi-
tioning System (GPS) unit 1555, a camera (“USB 3.0
camera”) 1554 such as a USB 3.0 camera, and/or a Low
Power Double Data Rate (“LPDDR”) memory unit
(“LPDDR3”) 1515 implemented in, for example, an
LPDDR3 standard. These components may each be imple-
mented in any suitable manner.

[0325] In at least one embodiment, other components may
be communicatively coupled to processor 1510 through
components described herein. In at least one embodiment,
an accelerometer 1541, an ambient light sensor (“ALS”)
1542, a compass 1543, and a gyroscope 1544 may be
communicatively coupled to sensor hub 1540. In at least one
embodiment, a thermal sensor 1539, a fan 1537, a keyboard
1536, and touch pad 1530 may be communicatively coupled
to EC 1535. In at least one embodiment, speakers 1563,
headphones 1564, and a microphone (“mic”) 1565 may be
communicatively coupled to an audio unit (“audio codec and
class D amp™) 1562, which may in turn be communicatively
coupled to DSP 1560. In at least one embodiment, audio unit
1562 may include, for example and without limitation, an
audio coder/decoder (“codec”) and a class D amplifier. In at
least one embodiment, a SIM card (“SIM”) 1557 may be
communicatively coupled to WWAN unit 1556. In at least
one embodiment, components such as WLAN unit 1550 and
Bluetooth unit 1552, as well as WWAN unit 1556 may be
implemented in a Next Generation Form Factor (“NGFF”).

[0326] Inference and/or training logic 1015 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 1015 are provided herein in conjunc-
tion with FIGS. 10A and/or 10B. In at least one embodiment,
inference and/or training logic 1015 may be used in system
FIG. 15 for inferencing or predicting operations based, at
least in part, on weight parameters calculated using neural
network training operations, neural network functions and/
or architectures, or neural network use cases described
herein. In various embodiments, the inference and/or train-
ing logic 1015 utilize the target image data generated by the
offline image signal processing 240 as described above in
connection with FIG. 2. In addition, the data collection 202
described above in connection with FIG. 2, in various
embodiments is performed by the vehicle 1300.

[0327] FIG. 16 illustrates a computer system 1600,
according to at least one embodiment. In at least one
embodiment, computer system 1600 is configured to imple-
ment various processes and methods described throughout
this disclosure.

Nov. 10, 2022

[0328] In at least one embodiment, computer system 1600
comprises, without limitation, at least one central processing
unit (“CPU”) 1602 that is connected to a communication bus
1610 implemented using any suitable protocol, such as PCI
(“Peripheral Component Interconnect™), peripheral compo-
nent interconnect express (“PCI-Express™), AGP (“Acceler-
ated Graphics Port”), HyperTransport, or any other bus or
point-to-point communication protocol(s). In at least one
embodiment, computer system 1600 includes, without limi-
tation, a main memory 1604 and control logic (e.g., imple-
mented as hardware, software, or a combination thereof) and
data are stored in main memory 1604, which may take form
of random access memory (“RAM?”). In at least one embodi-
ment, a network interface subsystem (“network interface”)
1622 provides an interface to other computing devices and
networks for receiving data from and transmitting data to
other systems with computer system 1600.

[0329] In atleast one embodiment, computer system 1600,
in at least one embodiment, includes, without limitation,
input devices 1608, a parallel processing system 1612, and
display devices 1606 that can be implemented using a
conventional cathode ray tube (“CRT”™), a liquid crystal
display (“LCD”), a light emitting diode (“LED”) display, a
plasma display, or other suitable display technologies. In at
least one embodiment, user input is received from input
devices 1608 such as keyboard, mouse, touchpad, micro-
phone, etc. In at least one embodiment, each module
described herein can be situated on a single semiconductor
platform to form a processing system.

[0330] Inference and/or training logic 1015 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 1015 are provided herein in conjunc-
tion with FIGS. 10A and/or 10B. In at least one embodiment,
inference and/or training logic 1015 may be used in system
FIG. 16 for inferencing or predicting operations based, at
least in part, on weight parameters calculated using neural
network training operations, neural network functions and/
or architectures, or neural network use cases described
herein. In various embodiments, the inference and/or train-
ing logic 1015 utilize the target image data generated by the
offline image signal processing 240 as described above in
connection with FIG. 2. In addition, the data collection 202
described above in connection with FIG. 2, in various
embodiments is performed by the vehicle 1300.

[0331] FIG. 17 illustrates a computer system 1700,
according to at least one embodiment. In at least one
embodiment, computer system 1700 includes, without limi-
tation, a computer 1710 and a USB stick 1720. In at least one
embodiment, computer 1710 may include, without limita-
tion, any number and type of processor(s) (not shown) and
a memory (not shown). In at least one embodiment, com-
puter 1710 includes, without limitation, a server, a cloud
instance, a laptop, and a desktop computer.

[0332] In at least one embodiment, USB stick 1720
includes, without limitation, a processing unit 1730, a USB
interface 1740, and USB interface logic 1750. In at least one
embodiment, processing unit 1730 may be any instruction
execution system, apparatus, or device capable of executing
instructions. In at least one embodiment, processing unit
1730 may include, without limitation, any number and type
of processing cores (not shown). In at least one embodiment,
processing unit 1730 comprises an application specific inte-
grated circuit (“ASIC”) that is optimized to perform any

US 2022/0358627 Al

amount and type of operations associated with machine
learning. For instance, in at least one embodiment, process-
ing unit 1730 is a tensor processing unit (“TPC”) that is
optimized to perform machine learning inference operations.
In at least one embodiment, processing unit 1730 is a vision
processing unit (“VPU”) that is optimized to perform
machine vision and machine learning inference operations.
[0333] In at least one embodiment, USB interface 1740
may be any type of USB connector or USB socket. For
instance, in at least one embodiment, USB interface 1740 is
a USB 3.0 Type-C socket for data and power. In at least one
embodiment, USB interface 1740 is a USB 3.0 Type-A
connector. In at least one embodiment, USB interface logic
1750 may include any amount and type of logic that enables
processing unit 1730 to interface with devices (e.g., com-
puter 1710) via USB connector 1740.

[0334] Inference and/or training logic 1015 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 1015 are provided herein in conjunc-
tion with FIGS. 10A and/or 10B. In at least one embodiment,
inference and/or training logic 1015 may be used in system
FIG. 17 for inferencing or predicting operations based, at
least in part, on weight parameters calculated using neural
network training operations, neural network functions and/
or architectures, or neural network use cases described
herein.

[0335] FIG. 18A illustrates an exemplary architecture in
which a plurality of GPUs 1810(1)-1810(N) is communica-
tively coupled to a plurality of multi-core processors 1805
(1)-1805(M) over high-speed links 1840(1)-1840(N) (e.g.,
buses, point-to-point interconnects, etc.). In at least one
embodiment, high-speed links 1840(1)-1840(N) support a
communication throughput of 4 GB/s, 30 GB/s, 80 GB/s or
higher. In at least one embodiment, various interconnect
protocols may be used including, but not limited to, PCle 4.0
or 5.0 and NVLink 2.0. In various figures, “N” and “M”
represent positive integers, values of which may be different
from figure to figure.

[0336] In addition, and in at least one embodiment, two or
more of GPUs 1810 are interconnected over high-speed
links 1829(1)-1829(2), which may be implemented using
similar or different protocols/links than those used for high-
speed links 1840(1)-1840(N). Similarly, two or more of
multi-core processors 1805 may be connected over a high-
speed link 1828 which may be symmetric multi-processor
(SMP) buses operating at 20 GB/s, 30 GB/s, 120 GB/s or
higher. Alternatively, all communication between various
system components shown in FIG. 18A may be accom-
plished using similar protocols/links (e.g., over a common
interconnection fabric).

[0337] In at least one embodiment, each multi-core pro-
cessor 1805 is communicatively coupled to a processor
memory 1801(1)-1801(M), via memory interconnects 1826
(1)-1826(M), respectively, and each GPU 1810(1)-1810(N)
is communicatively coupled to GPU memory 1820(1)-1820
(N) over GPU memory interconnects 1850(1)-1850(N),
respectively. In at least one embodiment, memory intercon-
nects 1826 and 1850 may utilize similar or different memory
access technologies. By way of example, and not limitation,
processor memories 1801(1)-1801(M) and GPU memories
1820 may be volatile memories such as dynamic random
access memories (DRAMs) (including stacked DRAMs),
Graphics DDR SDRAM (GDDR) (e.g., GDDRS5, GDDR6),

Nov. 10, 2022

or High Bandwidth Memory (HBM) and/or may be non-
volatile memories such as 3D XPoint or Nano-Ram. In at
least one embodiment, some portion of processor memories
1801 may be volatile memory and another portion may be
non-volatile memory (e.g., using a two-level memory (2LM)
hierarchy).

[0338] As described herein, although various multi-core
processors 1805 and GPUs 1810 may be physically coupled
to a particular memory 1801, 1820, respectively, and/or a
unified memory architecture may be implemented in which
a virtual system address space (also referred to as “effective
address” space) is distributed among various physical
memories. For example, processor memories 1801(1)-1801
(M) may each comprise 64 GB of system memory address
space and GPU memories 1820(1)-1820(N) may each com-
prise 32 GB of system memory address space resulting in a
total of 256 GB addressable memory when M=2 and N=4.
Other values for N and M are possible.

[0339] FIG. 18B illustrates additional details for an inter-
connection between a multi-core processor 1807 and a
graphics acceleration module 1846 in accordance with one
exemplary embodiment. In at least one embodiment, graph-
ics acceleration module 1846 may include one or more GPU
chips integrated on a line card which is coupled to processor
1807 via high-speed link 1840 (e.g., a PCle bus, NVLink,
etc.). In at least one embodiment, graphics acceleration
module 1846 may alternatively be integrated on a package
or chip with processor 1807.

[0340] In at least one embodiment, processor 1807
includes a plurality of cores 1860A-1860D, each with a
translation lookaside buffer (“TL.B”) 1861A-1861D and one
or more caches 1862A-1862D. In at least one embodiment,
cores 1860A-1860D may include various other components
for executing instructions and processing data that are not
illustrated. In at least one embodiment, caches 1862A-
1862D may comprise Level 1 (1) and Level 2 (L2) caches.
In addition, one or more shared caches 1856 may be
included in caches 1862A-1862D and shared by sets of cores
1860A-1860D. For example, one embodiment of processor
1807 includes 24 cores, each with its own L1 cache, twelve
shared L2 caches, and twelve shared L3 caches. In this
embodiment, one or more 1.2 and .3 caches are shared by
two adjacent cores. In at least one embodiment, processor
1807 and graphics acceleration module 1846 connect with
system memory 1814, which may include processor memo-
ries 1801(1)-1801(M) of FIG. 18A.

[0341] In at least one embodiment, coherency is main-
tained for data and instructions stored in various caches
1862A-1862D, 1856 and system memory 1814 via inter-
core communication over a coherence bus 1864. In at least
one embodiment, for example, each cache may have cache
coherency logic/circuitry associated therewith to communi-
cate to over coherence bus 1864 in response to detected
reads or writes to particular cache lines. In at least one
embodiment, a cache snooping protocol is implemented
over coherence bus 1864 to snoop cache accesses.

[0342] In at least one embodiment, a proxy circuit 1825
communicatively couples graphics acceleration module
1846 to coherence bus 1864, allowing graphics acceleration
module 1846 to participate in a cache coherence protocol as
a peer of cores 1860A-1860D. In particular, in at least one
embodiment, an interface 1835 provides connectivity to

US 2022/0358627 Al

proxy circuit 1825 over high-speed link 1840 and an inter-
face 1837 connects graphics acceleration module 1846 to
high-speed link 1840.

[0343] In at least one embodiment, an accelerator integra-
tion circuit 1836 provides cache management, memory
access, context management, and interrupt management
services on behalf of a plurality of graphics processing
engines 1831(1)-1831(N) of graphics acceleration module
1846. In at least one embodiment, graphics processing
engines 1831(1)-1831(N) may each comprise a separate
graphics processing unit (GPU). In at least one embodiment,
graphics processing engines 1831(1)-1831(N) alternatively
may comprise different types of graphics processing engines
within a GPU, such as graphics execution units, media
processing engines (e.g., video encoders/decoders), sam-
plers, and blit engines. In at least one embodiment, graphics
acceleration module 1846 may be a GPU with a plurality of
graphics processing engines 1831(1)-1831(N) or graphics
processing engines 1831(1)-1831(N) may be individual
GPUs integrated on a common package, line card, or chip.
[0344] In at least one embodiment, accelerator integration
circuit 1836 includes a memory management unit (MMU)
1839 for performing various memory management functions
such as virtual-to-physical memory translations (also
referred to as effective-to-real memory translations) and
memory access protocols for accessing system memory
1814. In at least one embodiment, MMU 1839 may also
include a translation lookaside buffer (TLB) (not shown) for
caching virtual/effective to physical/real address transla-
tions. In at least one embodiment, a cache 1838 can store
commands and data for efficient access by graphics process-
ing engines 1831(1)-1831(N). In at least one embodiment,
data stored in cache 1838 and graphics memories 1833(1)-
1833(M) is kept coherent with core caches 1862A-1862D,
1856 and system memory 1814, possibly using a fetch unit
1844. As mentioned, this may be accomplished via proxy
circuit 1825 on behalf of cache 1838 and memories 1833
(1)-1833(M) (e.g., sending updates to cache 1838 related to
modifications/accesses of cache lines on processor caches
1862A-1862D, 1856 and receiving updates from cache
1838).

[0345] In at least one embodiment, a set of registers 1845
store context data for threads executed by graphics process-
ing engines 1831(1)-1831(N) and a context management
circuit 1848 manages thread contexts. For example, context
management circuit 1848 may perform save and restore
operations to save and restore contexts of various threads
during contexts switches (e.g., where a first thread is saved
and a second thread is stored so that a second thread can be
execute by a graphics processing engine). For example, on
a context switch, context management circuit 1848 may
store current register values to a designated region in
memory (e.g., identified by a context pointer). It may then
restore register values when returning to a context. In at least
one embodiment, an interrupt management circuit 1847
receives and processes interrupts received from system
devices.

[0346] In at least one embodiment, virtual/effective
addresses from a graphics processing engine 1831 are trans-
lated to real/physical addresses in system memory 1814 by
MMU 1839. In at least one embodiment, accelerator inte-
gration circuit 1836 supports multiple (e.g., 4, 8, 16) graph-
ics accelerator modules 1846 and/or other accelerator
devices. In at least one embodiment, graphics accelerator

Nov. 10, 2022

module 1846 may be dedicated to a single application
executed on processor 1807 or may be shared between
multiple applications. In at least one embodiment, a virtu-
alized graphics execution environment is presented in which
resources of graphics processing engines 1831(1)-1831(N)
are shared with multiple applications or virtual machines
(VMs). In at least one embodiment, resources may be
subdivided into “slices” which are allocated to different
VMs and/or applications based on processing requirements
and priorities associated with VMs and/or applications.
[0347] In at least one embodiment, accelerator integration
circuit 1836 performs as a bridge to a system for graphics
acceleration module 1846 and provides address translation
and system memory cache services. In addition, in at least
one embodiment, accelerator integration circuit 1836 may
provide virtualization facilities for a host processor to man-
age virtualization of graphics processing engines 1831(1)-
1831(N), interrupts, and memory management.

[0348] In at least one embodiment, because hardware
resources of graphics processing engines 1831(1)-1831(N)
are mapped explicitly to a real address space seen by host
processor 1807, any host processor can address these
resources directly using an effective address value. In at least
one embodiment, one function of accelerator integration
circuit 1836 is physical separation of graphics processing
engines 1831(1)-1831(N) so that they appear to a system as
independent units.

[0349] In at least one embodiment, one or more graphics
memories 1833(1)-1833(M) are coupled to each of graphics
processing engines 1831(1)-1831(N), respectively and
N=M. In at least one embodiment, graphics memories
1833(1)-1833(M) store instructions and data being pro-
cessed by each of graphics processing engines 1831(1)-1831
(N). In at least one embodiment, graphics memories 1833
(1)-1833(M) may be volatile memories such as DRAMs
(including stacked DRAMs), GDDR memory (e.g.,
GDDRS5, GDDR6), or HBM, and/or may be non-volatile
memories such as 3D XPoint or Nano-Ram.

[0350] In at least one embodiment, to reduce data traffic
over high-speed link 1840, biasing techniques can be used to
ensure that data stored in graphics memories 1833(1)-1833
(M) is data that will be used most frequently by graphics
processing engines 1831(1)-1831(N) and preferably not
used by cores 1860A-1860D (at least not frequently). Simi-
larly, in at least one embodiment, a biasing mechanism
attempts to keep data needed by cores (and preferably not
graphics processing engines 1831(1)-1831(N)) within
caches 1862A-1862D, 1856 and system memory 1814.

[0351] FIG. 18C illustrates another exemplary embodi-
ment in which accelerator integration circuit 1836 is inte-
grated within processor 1807. In this embodiment, graphics
processing engines 1831(1)-1831(N) communicate directly
over high-speed link 1840 to accelerator integration circuit
1836 via interface 1837 and interface 1835 (which, again,
may be any form of bus or interface protocol). In at least one
embodiment, accelerator integration circuit 1836 may per-
form similar operations as those described with respect to
FIG. 18B, but potentially at a higher throughput given its
close proximity to coherence bus 1864 and caches 1862A-
1862D, 1856. In at least one embodiment, an accelerator
integration circuit supports different programming models
including a dedicated-process programming model (no
graphics acceleration module virtualization) and shared pro-
gramming models (with virtualization), which may include

US 2022/0358627 Al

programming models which are controlled by accelerator
integration circuit 1836 and programming models which are
controlled by graphics acceleration module 1846.

[0352] In at least one embodiment, graphics processing
engines 1831(1)-1831(N) are dedicated to a single applica-
tion or process under a single operating system. In at least
one embodiment, a single application can funnel other
application requests to graphics processing engines 1831(1)-
1831(N), providing virtualization within a VM/partition.
[0353] In at least one embodiment, graphics processing
engines 1831(1)-1831(N), may be shared by multiple
VM/application partitions. In at least one embodiment,
shared models may use a system hypervisor to virtualize
graphics processing engines 1831(1)-1831(N) to allow
access by each operating system. In at least one embodi-
ment, for single-partition systems without a hypervisor,
graphics processing engines 1831(1)-1831(N) are owned by
an operating system. In at least one embodiment, an oper-
ating system can virtualize graphics processing engines
1831(1)-1831(N) to provide access to each process or appli-
cation.

[0354] In at least one embodiment, graphics acceleration
module 1846 or an individual graphics processing engine
1831(1)-1831(N) selects a process element using a process
handle. In at least one embodiment, process elements are
stored in system memory 1814 and are addressable using an
effective address to real address translation technique
described herein. In at least one embodiment, a process
handle may be an implementation-specific value provided to
a host process when registering its context with graphics
processing engine 1831(1)-1831(N) (that is, calling system
software to add a process element to a process element
linked list). In at least one embodiment, a lower 16-bits of
a process handle may be an offset of a process element
within a process element linked list.

[0355] FIG. 18D illustrates an exemplary accelerator inte-
gration slice 1890. In at least one embodiment, a “slice”
comprises a specified portion of processing resources of
accelerator integration circuit 1836. In at least one embodi-
ment, an application is effective address space 1882 within
system memory 1814 stores process elements 1883. In at
least one embodiment, process clements 1883 are stored in
response to GPU invocations 1881 from applications 1880
executed on processor 1807. In at least one embodiment, a
process element 1883 contains process state for correspond-
ing application 1880. In at least one embodiment, a work
descriptor (WD) 1884 contained in process element 1883
can be a single job requested by an application or may
contain a pointer to a queue of jobs. In at least one embodi-
ment, WD 1884 is a pointer to a job request queue in an
application’s effective address space 1882.

[0356] In at least one embodiment, graphics acceleration
module 1846 and/or individual graphics processing engines
1831(1)-1831(N) can be shared by all or a subset of pro-
cesses in a system. In at least one embodiment, an infra-
structure for setting up process states and sending a WD
1884 to a graphics acceleration module 1846 to start a job in
a virtualized environment may be included.

[0357] In at least one embodiment, a dedicated-process
programming model is implementation-specific. In at least
one embodiment, in this model, a single process owns
graphics acceleration module 1846 or an individual graphics
processing engine 1831. In at least one embodiment, when
graphics acceleration module 1846 is owned by a single

Nov. 10, 2022

process, a hypervisor initializes accelerator integration cir-
cuit 1836 for an owning partition and an operating system
initializes accelerator integration circuit 1836 for an owning
process when graphics acceleration module 1846 is
assigned.

[0358] In at least one embodiment, in operation, a WD
fetch unit 1891 in accelerator integration slice 1890 fetches
next WD 1884, which includes an indication of work to be
done by one or more graphics processing engines of graph-
ics acceleration module 1846. In at least one embodiment,
data from WD 1884 may be stored in registers 1845 and used
by MMU 1839, interrupt management circuit 1847 and/or
context management circuit 1848 as illustrated. For
example, one embodiment of MMU 1839 includes segment/
page walk circuitry for accessing segment/page tables 1886
within an OS virtual address space 1885. In at least one
embodiment, interrupt management circuit 1847 may pro-
cess interrupt events 1892 received from graphics accelera-
tion module 1846. In at least one embodiment, when per-
forming graphics operations, an effective address 1893
generated by a graphics processing engine 1831(1)-1831(N)
is translated to a real address by MMU 1839.

[0359] In at least one embodiment, registers 1845 are
duplicated for each graphics processing engine 1831(1)-
1831(N) and/or graphics acceleration module 1846 and may
be initialized by a hypervisor or an operating system. In at
least one embodiment, each of these duplicated registers
may be included in an accelerator integration slice 1890.
Exemplary registers that may be initialized by a hypervisor
are shown in Table 1.

TABLE 1

Hypervisor Initialized Registers

Register
Description

1 Slice Control Register
2 Real Address (RA) Scheduled Processes Area Pointer
3 Authority Mask Override Register
4 Interrupt Vector Table Entry Offset
5 Interrupt Vector Table Entry Limit
6 State Register
7 Logical Partition ID
8 Real address (RA) Hypervisor Accelerator Utilization Record
Pointer
9 Storage Description Register
[0360] Exemplary registers that may be initialized by an

operating system are shown in Table 2.

TABLE 2

Operating System Initialized Registers

Register
Description

1 Process and Thread Identification
2 Effective Address (EA) Context Save/Restore Pointer
3 Virtual Address (VA) Accelerator Utilization Record Pointer
4 Virtual Address (VA) Storage Segment Table Pointer
5 Authority Mask
6 Work descriptor
[0361] In at least one embodiment, each WD 1884 is

specific to a particular graphics acceleration module 1846
and/or graphics processing engines 1831(1)-1831(N). In at

US 2022/0358627 Al

least one embodiment, it contains all information required
by a graphics processing engine 1831(1)-1831(N) to do
work, or it can be a pointer to a memory location where an
application has set up a command queue of work to be
completed.

[0362] FIG. 18E illustrates additional details for one
exemplary embodiment of a shared model. This embodi-
ment includes a hypervisor real address space 1898 in which
a process eclement list 1899 is stored. In at least one
embodiment, hypervisor real address space 1898 is acces-
sible via a hypervisor 1896 which virtualizes graphics
acceleration module engines for operating system 1895.
[0363] In at least one embodiment, shared programming
models allow for all or a subset of processes from all or a
subset of partitions in a system to use a graphics acceleration
module 1846. In at least one embodiment, there are two
programming models where graphics acceleration module
1846 is shared by multiple processes and partitions, namely
time-sliced shared and graphics directed shared.

[0364] In at least one embodiment, in this model, system
hypervisor 1896 owns graphics acceleration module 1846
and makes its function available to all operating systems
1895. In at least one embodiment, for a graphics acceleration
module 1846 to support virtualization by system hypervisor
1896, graphics acceleration module 1846 may adhere to
certain requirements, such as (1) an application’s job request
must be autonomous (that is, state does not need to be
maintained between jobs), or graphics acceleration module
1846 must provide a context save and restore mechanism,
(2) an application’s job request is guaranteed by graphics
acceleration module 1846 to complete in a specified amount
of time, including any translation faults, or graphics accel-
eration module 1846 provides an ability to preempt process-
ing of a job, and (3) graphics acceleration module 1846 must
be guaranteed fairness between processes when operating in
a directed shared programming model.

[0365] In at least one embodiment, application 1880 is
required to make an operating system 1895 system call with
a graphics acceleration module type, a work descriptor
(WD), an authority mask register (AMR) value, and a
context save/restore area pointer (CSRP). In at least one
embodiment, graphics acceleration module type describes a
targeted acceleration function for a system call. In at least
one embodiment, graphics acceleration module type may be
a system-specific value. In at least one embodiment, WD is
formatted specifically for graphics acceleration module
1846 and can be in a form of a graphics acceleration module
1846 command, an effective address pointer to a user-
defined structure, an effective address pointer to a queue of
commands, or any other data structure to describe work to
be done by graphics acceleration module 1846.

[0366] In at least one embodiment, an AMR value is an
AMR state to use for a current process. In at least one
embodiment, a value passed to an operating system is
similar to an application setting an AMR. In at least one
embodiment, if accelerator integration circuit 1836 (not
shown) and graphics acceleration module 1846 implemen-
tations do not support a User Authority Mask Override
Register (UAMOR), an operating system may apply a
current UAMOR value to an AMR value before passing an
AMR in a hypervisor call. In at least one embodiment,
hypervisor 1896 may optionally apply a current Authority
Mask Override Register (AMOR) value before placing an
AMR into process element 1883. In at least one embodi-

Nov. 10, 2022

ment, CSRP is one of registers 1845 containing an effective
address of an area in an application’s effective address space
1882 for graphics acceleration module 1846 to save and
restore context state. In at least one embodiment, this pointer
is optional if no state is required to be saved between jobs
or when a job is preempted. In at least one embodiment,
context save/restore area may be pinned system memory.
[0367] Upon receiving a system call, operating system
1895 may verify that application 1880 has registered and
been given authority to use graphics acceleration module
1846. In at least one embodiment, operating system 1895
then calls hypervisor 1896 with information shown in Table
3.

TABLE 3

OS to Hypervisor Call Parameters

Parameter
Description

1 A work descriptor (WD)

2 An Authority Mask Register (AMR) value (potentially
masked)

3 An effective address (EA) Context Save/Restore Area Pointer
(CSRP)

4 A process ID (PID) and optional thread ID (TID)

A virtual address (VA) accelerator utilization record pointer

(AURP)

Virtual address of storage segment table pointer (SSTP)

7 A logical interrupt service number (LISN)

w

[N

[0368] In at least one embodiment, upon receiving a
hypervisor call, hypervisor 1896 verifies that operating
system 1895 has registered and been given authority to use
graphics acceleration module 1846. In at least one embodi-
ment, hypervisor 1896 then puts process element 1883 into
a process element linked list for a corresponding graphics
acceleration module 1846 type. In at least one embodiment,
a process element may include information shown in Table
4.

TABLE 4

Process Element Information

Element
Description

1 A work descriptor (WD)

2 An Authority Mask Register (AMR) value (potentially masked).

3 An effective address (EA) Context Save/Restore Area Pointer
(CSRP)

4 A process ID (PID) and optional thread ID (TID)

5 Avirtual address (VA) accelerator utilization record pointer

(AURP)

Virtual address of storage segment table pointer (SSTP)

A logical interrupt service number (LISN)

Interrupt vector table, derived from hypervisor call parameters

A state register (SR) value

A logical partition ID (LPID)

A real address (RA) hypervisor accelerator utilization record

pointer

12 Storage Descriptor Register (SDR)

— O\ 0~

—_ =

[0369] In at least one embodiment, hypervisor initializes a
plurality of accelerator integration slice 1890 registers 1845.
[0370] As illustrated in FIG. 18F, in at least one embodi-
ment, a unified memory is used, addressable via a common
virtual memory address space used to access physical pro-
cessor memories 1801(1)-1801(N) and GPU memories 1820

US 2022/0358627 Al

(1)-1820(N). In this implementation, operations executed on
GPUs 1810(1)-1810(N) utilize a same virtual/effective
memory address space to access processor memories 1801
(1)-1801(M) and vice versa, thereby simplifying program-
mability. In at least one embodiment, a first portion of a
virtual/effective address space is allocated to processor
memory 1801(1), a second portion to second processor
memory 1801(N), a third portion to GPU memory 1820(1),
and so on. In at least one embodiment, an entire virtual/
effective memory space (sometimes referred to as an effec-
tive address space) is thereby distributed across each of
processor memories 1801 and GPU memories 1820, allow-
ing any processor or GPU to access any physical memory
with a virtual address mapped to that memory.

[0371] In at least one embodiment, bias/coherence man-
agement circuitry 1894-1894EF within one or more of MMUSs
1839A-1839E ensures cache coherence between caches of
one or more host processors (e.g., 1805) and GPUs 1810 and
implements biasing techniques indicating physical memo-
ries in which certain types of data should be stored. In at
least one embodiment, while multiple instances of bias/
coherence management circuitry 1894-1894FE are illustrated
in FIG. 18F, bias/coherence circuitry may be implemented
within an MMU of one or more host processors 1805 and/or
within accelerator integration circuit 1836.

[0372] One embodiment allows GPU memories 1820 to
be mapped as part of system memory, and accessed using
shared virtual memory (SVM) technology, but without suf-
fering performance drawbacks associated with full system
cache coherence. In at least one embodiment, an ability for
GPU memories 1820 to be accessed as system memory
without onerous cache coherence overhead provides a ben-
eficial operating environment for GPU offload. In at least
one embodiment, this arrangement allows software of host
processor 1805 to setup operands and access computation
results, without overhead of tradition I/O DMA data copies.
In at least one embodiment, such traditional copies involve
driver calls, interrupts and memory mapped /O (MMIO)
accesses that are all inefficient relative to simple memory
accesses. In at least one embodiment, an ability to access
GPU memories 1820 without cache coherence overheads
can be critical to execution time of an offloaded computa-
tion. In at least one embodiment, in cases with substantial
streaming write memory traffic, for example, cache coher-
ence overhead can significantly reduce an effective write
bandwidth seen by a GPU 1810. In at least one embodiment,
efficiency of operand setup, efficiency of results access, and
efficiency of GPU computation may play a role in deter-
mining effectiveness of a GPU offload.

[0373] In at least one embodiment, selection of GPU bias
and host processor bias is driven by a bias tracker data
structure. In at least one embodiment, a bias table may be
used, for example, which may be a page-granular structure
(e.g., controlled at a granularity of a memory page) that
includes 1 or 2 bits per GPU-attached memory page. In at
least one embodiment, a bias table may be implemented in
a stolen memory range of one or more GPU memories 1820,
with or without a bias cache in a GPU 1810 (e.g., to cache
frequently/recently used entries of a bias table). Alterna-
tively, in at least one embodiment, an entire bias table may
be maintained within a GPU.

[0374] In at least one embodiment, a bias table entry
associated with each access to a GPU attached memory 1820
is accessed prior to actual access to a GPU memory, causing

Nov. 10, 2022

following operations. In at least one embodiment, local
requests from a GPU 1810 that find their page in GPU bias
are forwarded directly to a corresponding GPU memory
1820. In at least one embodiment, local requests from a GPU
that find their page in host bias are forwarded to processor
1805 (e.g., over a high-speed link as described herein). In at
least one embodiment, requests from processor 1805 that
find a requested page in host processor bias complete a
request like a normal memory read. Alternatively, requests
directed to a GPU-biased page may be forwarded to a GPU
1810. In at least one embodiment, a GPU may then transition
a page to a host processor bias if it is not currently using a
page. In at least one embodiment, a bias state of a page can
be changed either by a software-based mechanism, a hard-
ware-assisted software-based mechanism, or, for a limited
set of cases, a purely hardware-based mechanism.

[0375] In at least one embodiment, one mechanism for
changing bias state employs an API call (e.g., OpenCL),
which, in turn, calls a GPU’s device driver which, in turn,
sends a message (or enqueues a command descriptor) to a
GPU directing it to change a bias state and, for some
transitions, perform a cache flushing operation in a host. In
at least one embodiment, a cache flushing operation is used
for a transition from host processor 1805 bias to GPU bias,
but is not for an opposite transition.

[0376] In at least one embodiment, cache coherency is
maintained by temporarily rendering GPU-biased pages
uncacheable by host processor 1805. In at least one embodi-
ment, to access these pages, processor 1805 may request
access from GPU 1810, which may or may not grant access
right away. In at least one embodiment, thus, to reduce
communication between processor 1805 and GPU 1810 it is
beneficial to ensure that GPU-biased pages are those which
are required by a GPU but not host processor 1805 and vice
versa.

[0377] Hardware structure(s) 1015 are used to perform
one or more embodiments. Details regarding a hardware
structure(s) 1015 may be provided herein in conjunction
with FIGS. 10A and/or 10B.

[0378] FIG. 19 illustrates exemplary integrated circuits
and associated graphics processors that may be fabricated
using one or more IP cores, according to various embodi-
ments described herein. In addition to what is illustrated,
other logic and circuits may be included in at least one
embodiment, including additional graphics processors/
cores, peripheral interface controllers, or general-purpose
processor cores.

[0379] FIG. 19 is a block diagram illustrating an exem-
plary system on a chip integrated circuit 1900 that may be
fabricated using one or more IP cores, according to at least
one embodiment. In at least one embodiment, integrated
circuit 1900 includes one or more application processor(s)
1905 (e.g., CPUs), at least one graphics processor 1910, and
may additionally include an image processor 1915 and/or a
video processor 1920, any of which may be a modular IP
core. In at least one embodiment, integrated circuit 1900
includes peripheral or bus logic including a USB controller
1925, a UART controller 1930, an SPI/SDIO controller
1935, and an I°2S/1°2C controller 1940. In at least one
embodiment, integrated circuit 1900 can include a display
device 1945 coupled to one or more of a high-definition
multimedia interface (HDMI) controller 1950 and a mobile
industry processor interface (MIPI) display interface 1955.
In at least one embodiment, storage may be provided by a

US 2022/0358627 Al

flash memory subsystem 1960 including flash memory and
a flash memory controller. In at least one embodiment, a
memory interface may be provided via a memory controller
1965 for access to SDRAM or SRAM memory devices. In
at least one embodiment, some integrated circuits addition-
ally include an embedded security engine 1970.

[0380] Inference and/or training logic 1015 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 1015 are provided herein in conjunc-
tion with FIGS. 10A and/or 10B. In at least one embodiment,
inference and/or training logic 1015 may be used in inte-
grated circuit 1900 for inferencing or predicting operations
based, at least in part, on weight parameters calculated using
neural network training operations, neural network functions
and/or architectures, or neural network use cases described
herein. In various embodiments, the inference and/or train-
ing logic 1015 utilize the target image data generated by the
offline image signal processing 240 as described above in
connection with FIG. 2. In addition, the data collection 202
described above in connection with FIG. 2, in various
embodiments is performed by the vehicle 1300.

[0381] FIGS. 20A-20B illustrate exemplary integrated cir-
cuits and associated graphics processors that may be fabri-
cated using one or more IP cores, according to various
embodiments described herein. In addition to what is illus-
trated, other logic and circuits may be included in at least
one embodiment, including additional graphics processors/
cores, peripheral interface controllers, or general-purpose
processor cores.

[0382] FIGS. 20A-20B are block diagrams illustrating
exemplary graphics processors for use within an SoC,
according to embodiments described herein. FIG. 20A illus-
trates an exemplary graphics processor 2010 of a system on
a chip integrated circuit that may be fabricated using one or
more IP cores, according to at least one embodiment. FIG.
20B illustrates an additional exemplary graphics processor
2040 of a system on a chip integrated circuit that may be
fabricated using one or more IP cores, according to at least
one embodiment. In at least one embodiment, graphics
processor 2010 of FIG. 20A is a low power graphics
processor core. In at least one embodiment, graphics pro-
cessor 2040 of FIG. 20B is a higher performance graphics
processor core. In at least one embodiment, each of graphics
processors 2010, 2040 can be variants of graphics processor
1910 of FIG. 19.

[0383] In at least one embodiment, graphics processor
2010 includes a vertex processor 2005 and one or more
fragment processor(s) 2015A-2015N (e.g., 2015A, 20158,
2015C, 2015D, through 2015N-1, and 2015N). In at least
one embodiment, graphics processor 2010 can execute dif-
ferent shader programs via separate logic, such that vertex
processor 2005 is optimized to execute operations for vertex
shader programs, while one or more fragment processor(s)
2015A-2015N execute fragment (e.g., pixel) shading opera-
tions for fragment or pixel shader programs. In at least one
embodiment, vertex processor 2005 performs a vertex pro-
cessing stage of a 3D graphics pipeline and generates
primitives and vertex data. In at least one embodiment,
fragment processor(s) 2015A-2015N use primitive and ver-
tex data generated by vertex processor 2005 to produce a
framebuffer that is displayed on a display device. In at least
one embodiment, fragment processor(s) 2015A-2015N are
optimized to execute fragment shader programs as provided

Nov. 10, 2022

for in an OpenGL API, which may be used to perform
similar operations as a pixel shader program as provided for
in a Direct 3D APL

[0384] In at least one embodiment, graphics processor
2010 additionally includes one or more memory manage-
ment units (MMUs) 2020A-2020B, cache(s) 2025A-2025B,
and circuit interconnect(s) 2030A-2030B. In at least one
embodiment, one or more MMU(s) 2020A-2020B provide
for virtual to physical address mapping for graphics proces-
sor 2010, including for vertex processor 2005 and/or frag-
ment processor(s) 2015A-2015N, which may reference ver-
tex or image/texture data stored in memory, in addition to
vertex or image/texture data stored in one or more cache(s)
2025A-2025B. In at least one embodiment, one or more
MMU(s) 2020A-2020B may be synchronized with other
MMUs within a system, including one or more MMUs
associated with one or more application processor(s) 1905,
image processors 1915, and/or video processors 1920 of
FIG. 19, such that each processor 1905-1920 can participate
in a shared or unified virtual memory system. In at least one
embodiment, one or more circuit interconnect(s) 2030A-
2030B enable graphics processor 2010 to interface with
other IP cores within SoC, either via an internal bus of SoC
or via a direct connection.

[0385] In at least one embodiment, graphics processor
2040 includes one or more shader core(s) 2055A-2055N
(e.g., 2055A, 20558, 2055C, 2055D, 2055E, 2055F, through
2055N-1, and 2055N) as shown in FIG. 20B, which provides
for a unified shader core architecture in which a single core
or type or core can execute all types of programmable shader
code, including shader program code to implement vertex
shaders, fragment shaders, and/or compute shaders. In at
least one embodiment, a number of shader cores can vary. In
at least one embodiment, graphics processor 2040 includes
an inter-core task manager 2045, which acts as a thread
dispatcher to dispatch execution threads to one or more
shader cores 2055A-2055N and a tiling unit 2058 to accel-
erate tiling operations for tile-based rendering, in which
rendering operations for a scene are subdivided in image
space, for example to exploit local spatial coherence within
a scene or to optimize use of internal caches.

[0386] Inference and/or training logic 1015 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 1015 are provided herein in conjunc-
tion with FIGS. 10A and/or 10B. In at least one embodiment,
inference and/or training logic 1015 may be used in inte-
grated circuit 20A and/or 20B for inferencing or predicting
operations based, at least in part, on weight parameters
calculated using neural network training operations, neural
network functions and/or architectures, or neural network
use cases described herein. In various embodiments, the
inference and/or training logic 1015 utilize the target image
data generated by the offline image signal processing 240 as
described above in connection with FIG. 2. In addition, the
data collection 202 described above in connection with FIG.
2, in various embodiments is performed by the vehicle 1300.
[0387] FIGS. 21A-21B illustrate additional exemplary
graphics processor logic according to embodiments
described herein. FIG. 21A illustrates a graphics core 2100
that may be included within graphics processor 1910 of FIG.
19, in at least one embodiment, and may be a unified shader
core 2055A-2055N as in FIG. 20B in at least one embodi-
ment. FIG. 21B illustrates a highly-parallel general-purpose

US 2022/0358627 Al

graphics processing unit (“GPGPU”) 2130 suitable for
deployment on a multi-chip module in at least one embodi-
ment.

[0388] In at least one embodiment, graphics core 2100
includes a shared instruction cache 2102, a texture unit 2118,
and a cache/shared memory 2120 that are common to
execution resources within graphics core 2100. In at least
one embodiment, graphics core 2100 can include multiple
slices 2101A-2101N or a partition for each core, and a
graphics processor can include multiple instances of graph-
ics core 2100. In at least one embodiment, slices 2101A-
2101N can include support logic including a local instruc-
tion cache 2104-2104N, a thread scheduler 2106A-2106N, a
thread dispatcher 2108A-2108N, and a set of registers
2110A-2110N. In at least one embodiment, slices 2101A-
2101N can include a set of additional function units (AFUs
2112A-2112N), floating-point units (FPUs 2114-2114N),
integer arithmetic logic units (ALUs 2116A-2116N), address
computational units (ACUs 2113A-2113N), double-preci-
sion floating-point units (DPFPUs 2115A-2115N), and
matrix processing units (MPUs 2117A-2117N).

[0389] In at least one embodiment, FPUs 2114-2114N can
perform single-precision (32-bit) and half-precision (16-bit)
floating point operations, while DPFPUs 2115A-2115N per-
form double precision (64-bit) floating point operations. In
at least one embodiment, ALLUs 2116A-2116N can perform
variable precision integer operations at 8-bit, 16-bit, and
32-bit precision, and can be configured for mixed precision
operations. In at least one embodiment, MPUs 2117A-
2117N can also be configured for mixed precision matrix
operations, including half-precision floating point and 8-bit
integer operations. In at least one embodiment, MPUs
2117-2117N can perform a variety of matrix operations to
accelerate machine learning application frameworks, includ-
ing enabling support for accelerated general matrix to matrix
multiplication (GEMM). In at least one embodiment, AFUs
2112A-2112N can perform additional logic operations not
supported by floating-point or integer units, including trigo-
nometric operations (e.g., sine, cosine, etc.).

[0390] Inference and/or training logic 1015 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 1015 are provided herein in conjunc-
tion with FIGS. 10A and/or 10B. In at least one embodiment,
inference and/or training logic 1015 may be used in graphics
core 2100 for inferencing or predicting operations based, at
least in part, on weight parameters calculated using neural
network training operations, neural network functions and/
or architectures, or neural network use cases described
herein. In various embodiments, the inference and/or train-
ing logic 1015 utilize the target image data generated by the
offline image signal processing 240 as described above in
connection with FIG. 2. In addition, the data collection 202
described above in connection with FIG. 2, in various
embodiments is performed by the vehicle 1300.

[0391] FIG. 21B illustrates a general-purpose processing
unit (GPGPU) 2130 that can be configured to enable highly-
parallel compute operations to be performed by an array of
graphics processing units, in at least one embodiment. In at
least one embodiment, GPGPU 2130 can be linked directly
to other instances of GPGPU 2130 to create a multi-GPU
cluster to improve training speed for deep neural networks.
In at least one embodiment, GPGPU 2130 includes a host
interface 2132 to enable a connection with a host processor.

Nov. 10, 2022

In at least one embodiment, host interface 2132 is a PCI
Express interface. In at least one embodiment, host interface
2132 can be a vendor-specific communications interface or
communications fabric. In at least one embodiment, GPGPU
2130 receives commands from a host processor and uses a
global scheduler 2134 to distribute execution threads asso-
ciated with those commands to a set of compute clusters
2136A-2136H. In at least one embodiment, compute clusters
2136A-2136H share a cache memory 2138. In at least one
embodiment, cache memory 2138 can serve as a higher-
level cache for cache memories within compute clusters
2136A-2136H.

[0392] In at least one embodiment, GPGPU 2130 includes
memory 2144-2144B coupled with compute clusters
2136A-2136H via a set of memory controllers 2142A-
2142B. In at least one embodiment, memory 2144-2144B
can include various types of memory devices including
dynamic random access memory (DRAM) or graphics ran-
dom access memory, such as synchronous graphics random
access memory (SGRAM), including graphics double data
rate (GDDR) memory.

[0393] In at least one embodiment, compute clusters
2136A-2136H each include a set of graphics cores, such as
graphics core 2100 of FIG. 21A, which can include multiple
types of integer and floating point logic units that can
perform computational operations at a range of precisions
including suited for machine learning computations. For
example, in at least one embodiment, at least a subset of
floating point units in each of compute clusters 2136A-
2136H can be configured to perform 16-bit or 32-bit floating
point operations, while a different subset of floating point
units can be configured to perform 64-bit floating point
operations.

[0394] In at least one embodiment, multiple instances of
GPGPU 2130 can be configured to operate as a compute
cluster. In at least one embodiment, communication used by
compute clusters 2136A-2136H for synchronization and
data exchange varies across embodiments. In at least one
embodiment, multiple instances of GPGPU 2130 commu-
nicate over host interface 2132. In at least one embodiment,
GPGPU 2130 includes an /O hub 2139 that couples
GPGPU 2130 with a GPU link 2140 that enables a direct
connection to other instances of GPGPU 2130. In at least
one embodiment, GPU link 2140 is coupled to a dedicated
GPU-to-GPU bridge that enables communication and syn-
chronization between multiple instances of GPGPU 2130. In
at least one embodiment, GPU link 2140 couples with a
high-speed interconnect to transmit and receive data to other
GPGPUs or parallel processors. In at least one embodiment,
multiple instances of GPGPU 2130 are located in separate
data processing systems and communicate via a network
device that is accessible via host interface 2132. In at least
one embodiment GPU link 2140 can be configured to enable
a connection to a host processor in addition to or as an
alternative to host interface 2132.

[0395] In at least one embodiment, GPGPU 2130 can be
configured to train neural networks. In at least one embodi-
ment, GPGPU 2130 can be used within an inferencing
platform. In at least one embodiment, in which GPGPU
2130 is used for inferencing, GPGPU 2130 may include
fewer compute clusters 2136A-2136H relative to when
GPGPU 2130 is used for training a neural network. In at
least one embodiment, memory technology associated with
memory 2144-2144B may differ between inferencing and

US 2022/0358627 Al

training configurations, with higher bandwidth memory
technologies devoted to training configurations. In at least
one embodiment, an inferencing configuration of GPGPU
2130 can support inferencing specific instructions. For
example, in at least one embodiment, an inferencing con-
figuration can provide support for one or more 8-bit integer
dot product instructions, which may be used during infer-
encing operations for deployed neural networks.

[0396] Inference and/or training logic 1015 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 1015 are provided herein in conjunc-
tion with FIGS. 10A and/or 10B. In at least one embodiment,
inference and/or training logic 1015 may be used in GPGPU
2130 for inferencing or predicting operations based, at least
in part, on weight parameters calculated using neural net-
work training operations, neural network functions and/or
architectures, or neural network use cases described herein.
In various embodiments, the inference and/or training logic
1015 utilize the target image data generated by the offline
image signal processing 240 as described above in connec-
tion with FIG. 2. In addition, the data collection 202
described above in connection with FIG. 2, in various
embodiments is performed by the vehicle 1300.

[0397] FIG. 22 is a block diagram illustrating a computing
system 2200 according to at least one embodiment. In at
least one embodiment, computing system 2200 includes a
processing subsystem 2201 having one or more processor(s)
2202 and a system memory 2204 communicating via an
interconnection path that may include a memory hub 2205.
In at least one embodiment, memory hub 2205 may be a
separate component within a chipset component or may be
integrated within one or more processor(s) 2202. In at least
one embodiment, memory hub 2205 couples with an 1/O
subsystem 2211 via a communication link 2206. In at least
one embodiment, [/O subsystem 2211 includes an I/O hub
2207 that can enable computing system 2200 to receive
input from one or more input device(s) 2208. In at least one
embodiment, I/O hub 2207 can enable a display controller,
which may be included in one or more processor(s) 2202, to
provide outputs to one or more display device(s) 2210A. In
at least one embodiment, one or more display device(s)
2210A coupled with I/O hub 2207 can include a local,
internal, or embedded display device.

[0398] In at least one embodiment, processing subsystem
2201 includes one or more parallel processor(s) 2212
coupled to memory hub 2205 via a bus or other communi-
cation link 2213. In at least one embodiment, communica-
tion link 2213 may use one of any number of standards
based communication link technologies or protocols, such
as, but not limited to PCI Express, or may be a vendor-
specific communications interface or communications fab-
ric. In at least one embodiment, one or more parallel
processor(s) 2212 form a computationally focused parallel
or vector processing system that can include a large number
of processing cores and/or processing clusters, such as a
many-integrated core (MIC) processor. In at least one
embodiment, some or all of parallel processor(s) 2212 form
a graphics processing subsystem that can output pixels to
one of one or more display device(s) 2210A coupled via [/O
Hub 2207. In at least one embodiment, parallel processor(s)
2212 can also include a display controller and display
interface (not shown) to enable a direct connection to one or
more display device(s) 2210B.

Nov. 10, 2022

[0399] In at least one embodiment, a system storage unit
2214 can connect to /O hub 2207 to provide a storage
mechanism for computing system 2200. In at least one
embodiment, an [/O switch 2216 can be used to provide an
interface mechanism to enable connections between I/O hub
2207 and other components, such as a network adapter 2218
and/or a wireless network adapter 2219 that may be inte-
grated into platform, and various other devices that can be
added via one or more add-in device(s) 2220. In at least one
embodiment, network adapter 2218 can be an Ethernet
adapter or another wired network adapter. In at least one
embodiment, wireless network adapter 2219 can include one
or more of a Wi-Fi, Bluetooth, near field communication
(NFC), or other network device that includes one or more
wireless radios.

[0400] In at least one embodiment, computing system
2200 can include other components not explicitly shown,
including USB or other port connections, optical storage
drives, video capture devices, and like, may also be con-
nected to I/O hub 2207. In at least one embodiment, com-
munication paths interconnecting various components in
FIG. 22 may be implemented using any suitable protocols,
such as PCI (Peripheral Component Interconnect) based
protocols (e.g., PCI-Express), or other bus or point-to-point
communication interfaces and/or protocol(s), such as NV-
Link high-speed interconnect, or interconnect protocols.

[0401] In at least one embodiment, parallel processor(s)
2212 incorporate circuitry optimized for graphics and video
processing, including, for example, video output circuitry,
and constitutes a graphics processing unit (GPU). In at least
one embodiment, parallel processor(s) 2212 incorporate
circuitry optimized for general purpose processing. In at
least embodiment, components of computing system 2200
may be integrated with one or more other system elements
on a single integrated circuit. For example, in at least one
embodiment, parallel processor(s) 2212, memory hub 2205,
processor(s) 2202, and I/O hub 2207 can be integrated into
a system on chip (SoC) integrated circuit. In at least one
embodiment, components of computing system 2200 can be
integrated into a single package to form a system in package
(SIP) configuration. In at least one embodiment, at least a
portion of components of computing system 2200 can be
integrated into a multi-chip module (MCM), which can be
interconnected with other multi-chip modules into a modular
computing system.

[0402] Inference and/or training logic 1015 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 1015 are provided herein in conjunc-
tion with FIGS. 10A and/or 10B. In at least one embodiment,
inference and/or training logic 1015 may be used in system
FIG. 2200 for inferencing or predicting operations based, at
least in part, on weight parameters calculated using neural
network training operations, neural network functions and/
or architectures, or neural network use cases described
herein. In various embodiments, the inference and/or train-
ing logic 1015 utilize the target image data generated by the
offline image signal processing 240 as described above in
connection with FIG. 2. In addition, the data collection 202
described above in connection with FIG. 2, in various
embodiments is performed by the vehicle 1300.

US 2022/0358627 Al

Processors

[0403] FIG. 23A illustrates a parallel processor 2300
according to at least one embodiment. In at least one
embodiment, various components of parallel processor 2300
may be implemented using one or more integrated circuit
devices, such as programmable processors, application spe-
cific integrated circuits (ASICs), or field programmable gate
arrays (FPGA). In at least one embodiment, illustrated
parallel processor 2300 is a variant of one or more parallel
processor(s) 2212 shown in FIG. 22 according to an exem-
plary embodiment.

[0404] In atleast one embodiment, parallel processor 2300
includes a parallel processing unit 2302. In at least one
embodiment, parallel processing unit 2302 includes an /O
unit 2304 that enables communication with other devices,
including other instances of parallel processing unit 2302. In
at least one embodiment, I/O unit 2304 may be directly
connected to other devices. In at least one embodiment, I/O
unit 2304 connects with other devices via use of a hub or
switch interface, such as a memory hub 2305. In at least one
embodiment, connections between memory hub 2305 and
1/O unit 2304 form a communication link 2313. In at least
one embodiment, I/O unit 2304 connects with a host inter-
face 2306 and a memory crossbar 2316, where host interface
2306 receives commands directed to performing processing
operations and memory crossbar 2316 receives commands
directed to performing memory operations.

[0405] In at least one embodiment, when host interface
2306 receives a command buffer via I/O unit 2304, host
interface 2306 can direct work operations to perform those
commands to a front end 2308. In at least one embodiment,
front end 2308 couples with a scheduler 2310, which is
configured to distribute commands or other work items to a
processing cluster array 2312. In at least one embodiment,
scheduler 2310 ensures that processing cluster array 2312 is
properly configured and in a valid state before tasks are
distributed to a cluster of processing cluster array 2312. In
at least one embodiment, scheduler 2310 is implemented via
firmware logic executing on a microcontroller. In at least one
embodiment, microcontroller implemented scheduler 2310
is configurable to perform complex scheduling and work
distribution operations at coarse and fine granularity,
enabling rapid preemption and context switching of threads
executing on processing array 2312. In at least one embodi-
ment, host software can prove workloads for scheduling on
processing cluster array 2312 via one of multiple graphics
processing paths. In at least one embodiment, workloads can
then be automatically distributed across processing array
cluster 2312 by scheduler 2310 logic within a microcon-
troller including scheduler 2310.

[0406] In at least one embodiment, processing cluster
array 2312 can include up to “N” processing clusters (e.g.,
cluster 2314, cluster 2314B, through cluster 2314N), where
“N” represents a positive integer (which may be a different
integer “N” than used in other figures). In at least one
embodiment, each cluster 2314-2314N of processing cluster
array 2312 can execute a large number of concurrent
threads. In at least one embodiment, scheduler 2310 can
allocate work to clusters 2314-2314N of processing cluster
array 2312 using various scheduling and/or work distribu-
tion algorithms, which may vary depending on workload
arising for each type of program or computation. In at least
one embodiment, scheduling can be handled dynamically by
scheduler 2310, or can be assisted in part by compiler logic

Nov. 10, 2022

during compilation of program logic configured for execu-
tion by processing cluster array 2312. In at least one
embodiment, different clusters 2314-2314N of processing
cluster array 2312 can be allocated for processing different
types of programs or for performing different types of
computations.

[0407] In at least one embodiment, processing cluster
array 2312 can be configured to perform various types of
parallel processing operations. In at least one embodiment,
processing cluster array 2312 is configured to perform
general-purpose parallel compute operations. For example,
in at least one embodiment, processing cluster array 2312
can include logic to execute processing tasks including
filtering of video and/or audio data, performing modeling
operations, including physics operations, and performing
data transformations.

[0408] In at least one embodiment, processing cluster
array 2312 is configured to perform parallel graphics pro-
cessing operations. In at least one embodiment, processing
cluster array 2312 can include additional logic to support
execution of such graphics processing operations, including
but not limited to, texture sampling logic to perform texture
operations, as well as tessellation logic and other vertex
processing logic. In at least one embodiment, processing
cluster array 2312 can be configured to execute graphics
processing related shader programs such as, but not limited
to, vertex shaders, tessellation shaders, geometry shaders,
and pixel shaders. In at least one embodiment, parallel
processing unit 2302 can transfer data from system memory
via I/O unit 2304 for processing. In at least one embodiment,
during processing, transferred data can be stored to on-chip
memory (e.g., parallel processor memory 2322) during
processing, then written back to system memory.

[0409] In at least one embodiment, when parallel process-
ing unit 2302 is used to perform graphics processing,
scheduler 2310 can be configured to divide a processing
workload into approximately equal sized tasks, to better
enable distribution of graphics processing operations to
multiple clusters 2314-2314N of processing cluster array
2312. In at least one embodiment, portions of processing
cluster array 2312 can be configured to perform different
types of processing. For example, in at least one embodi-
ment, a first portion may be configured to perform vertex
shading and topology generation, a second portion may be
configured to perform tessellation and geometry shading,
and a third portion may be configured to perform pixel
shading or other screen space operations, to produce a
rendered image for display. In at least one embodiment,
intermediate data produced by one or more of clusters
2314-2314N may be stored in buffers to allow intermediate
data to be transmitted between clusters 2314-2314N for
further processing.

[0410] In at least one embodiment, processing cluster
array 2312 can receive processing tasks to be executed via
scheduler 2310, which receives commands defining process-
ing tasks from front end 2308. In at least one embodiment,
processing tasks can include indices of data to be processed,
e.g., surface (patch) data, primitive data, vertex data, and/or
pixel data, as well as state parameters and commands
defining how data is to be processed (e.g., what program is
to be executed). In at least one embodiment, scheduler 2310
may be configured to fetch indices corresponding to tasks or
may receive indices from front end 2308. In at least one
embodiment, front end 2308 can be configured to ensure

US 2022/0358627 Al

processing cluster array 2312 is configured to a valid state
before a workload specified by incoming command buffers
(e.g., batch-buffers, push buffers, etc.) is initiated.

[0411] In at least one embodiment, each of one or more
instances of parallel processing unit 2302 can couple with a
parallel processor memory 2322. In at least one embodi-
ment, parallel processor memory 2322 can be accessed via
memory crossbar 2316, which can receive memory requests
from processing cluster array 2312 as well as /O unit 2304.
In at least one embodiment, memory crossbar 2316 can
access parallel processor memory 2322 via a memory inter-
face 2318. In at least one embodiment, memory interface
2318 can include multiple partition units (e.g., partition unit
2320A, partition unit 2320B, through partition unit 2320N)
that can each couple to a portion (e.g., memory unit) of
parallel processor memory 2322. In at least one embodi-
ment, a number of partition units 2320A-2320N is config-
ured to be equal to a number of memory units, such that a
first partition unit 2320A has a corresponding first memory
unit 2324, a second partition unit 2320B has a corresponding
memory unit 2324B, and an N-th partition unit 2320N has
a corresponding N-th memory unit 2324N. In at least one
embodiment, a number of partition units 2320A-2320N may
not be equal to a number of memory units.

[0412] In at least one embodiment, memory units 2324-
2324N can include various types of memory devices, includ-
ing dynamic random access memory (DRAM) or graphics
random access memory, such as synchronous graphics ran-
dom access memory (SGRAM), including graphics double
data rate (GDDR) memory. In at least one embodiment,
memory units 2324-2324N may also include 3D stacked
memory, including but not limited to high bandwidth
memory (HBM). In at least one embodiment, render targets,
such as frame buffers or texture maps may be stored across
memory units 2324-2324N, allowing partition units 2320 A-
2320N to write portions of each render target in parallel to
efficiently use available bandwidth of parallel processor
memory 2322. In at least one embodiment, a local instance
of parallel processor memory 2322 may be excluded in favor
of a unified memory design that utilizes system memory in
conjunction with local cache memory.

[0413] In at least one embodiment, any one of clusters
2314-2314N of processing cluster array 2312 can process
data that will be written to any of memory units 2324-2324N
within parallel processor memory 2322. In at least one
embodiment, memory crossbar 2316 can be configured to
transfer an output of each cluster 2314-2314N to any par-
tition unit 2320A-2320N or to another cluster 2314-2314N,
which can perform additional processing operations on an
output. In at least one embodiment, each cluster 2314-
2314N can communicate with memory interface 2318
through memory crossbar 2316 to read from or write to
various external memory devices. In at least one embodi-
ment, memory crossbar 2316 has a connection to memory
interface 2318 to communicate with I/O unit 2304, as well
as a connection to a local instance of parallel processor
memory 2322, enabling processing units within different
processing clusters 2314-2314N to communicate with sys-
tem memory or other memory that is not local to parallel
processing unit 2302. In at least one embodiment, memory
crossbar 2316 can use virtual channels to separate traffic
streams between clusters 2314-2314N and partition units
2320A-2320N.

Nov. 10, 2022

[0414] In at least one embodiment, multiple instances of
parallel processing unit 2302 can be provided on a single
add-in card, or multiple add-in cards can be interconnected.
In at least one embodiment, different instances of parallel
processing unit 2302 can be configured to interoperate even
if different instances have different numbers of processing
cores, different amounts of local parallel processor memory,
and/or other configuration differences. For example, in at
least one embodiment, some instances of parallel processing
unit 2302 can include higher precision floating point units
relative to other instances. In at least one embodiment,
systems incorporating one or more instances of parallel
processing unit 2302 or parallel processor 2300 can be
implemented in a variety of configurations and form factors,
including but not limited to desktop, laptop, or handheld
personal computers, servers, workstations, game consoles,
and/or embedded systems.

[0415] FIG. 23B is a block diagram of a partition unit
2320 according to at least one embodiment. In at least one
embodiment, partition unit 2320 is an instance of one of
partition units 2320A-2320N of FIG. 23A. In at least one
embodiment, partition unit 2320 includes an L2 cache 2321,
a frame buffer interface 2325, and a ROP 2326 (raster
operations unit). In at least one embodiment, [.2 cache 2321
is a read/write cache that is configured to perform load and
store operations received from memory crossbar 2316 and
ROP 2326. In at least one embodiment, read misses and
urgent write-back requests are output by 1.2 cache 2321 to
frame buffer interface 2325 for processing. In at least one
embodiment, updates can also be sent to a frame buffer via
frame buffer interface 2325 for processing. In at least one
embodiment, frame buffer interface 2325 interfaces with one
of memory units in parallel processor memory, such as
memory units 2324-2324N of FIG. 23 (e.g., within parallel
processor memory 2322).

[0416] In at least one embodiment, ROP 2326 is a pro-
cessing unit that performs raster operations such as stencil,
7 test, blending, etc. In at least one embodiment, ROP 2326
then outputs processed graphics data that is stored in graph-
ics memory. In at least one embodiment, ROP 2326 includes
compression logic to compress depth or color data that is
written to memory and decompress depth or color data that
is read from memory. In at least one embodiment, compres-
sion logic can be lossless compression logic that makes use
of one or more of multiple compression algorithms. In at
least one embodiment, a type of compression that is per-
formed by ROP 2326 can vary based on statistical charac-
teristics of data to be compressed. For example, in at least
one embodiment, delta color compression is performed on
depth and color data on a per-tile basis.

[0417] In at least one embodiment, ROP 2326 is included
within each processing cluster (e.g., cluster 2314-2314N of
FIG. 23A) instead of within partition unit 2320. In at least
one embodiment, read and write requests for pixel data are
transmitted over memory crossbar 2316 instead of pixel
fragment data. In at least one embodiment, processed graph-
ics data may be displayed on a display device, such as one
of one or more display device(s) 2210 of FIG. 22, routed for
further processing by processor(s) 2202, or routed for further
processing by one of processing entities within parallel
processor 2300 of FIG. 23A.

[0418] FIG. 23C is a block diagram of a processing cluster
2314 within a parallel processing unit according to at least
one embodiment. In at least one embodiment, a processing

US 2022/0358627 Al

cluster is an instance of one of processing clusters 2314-
2314N of FIG. 23A. In at least one embodiment, processing
cluster 2314 can be configured to execute many threads in
parallel, where “thread” refers to an instance of a particular
program executing on a particular set of input data. In at
least one embodiment, single-instruction, multiple-data
(SIMD) instruction issue techniques are used to support
parallel execution of a large number of threads without
providing multiple independent instruction units. In at least
one embodiment, single-instruction, multiple-thread (SIMT)
techniques are used to support parallel execution of a large
number of generally synchronized threads, using a common
instruction unit configured to issue instructions to a set of
processing engines within each one of processing clusters.

[0419] In at least one embodiment, operation of process-
ing cluster 2314 can be controlled via a pipeline manager
2332 that distributes processing tasks to SIMT parallel
processors. In at least one embodiment, pipeline manager
2332 receives instructions from scheduler 2310 of FIG. 23A
and manages execution of those instructions via a graphics
multiprocessor 2334 and/or a texture unit 2336. In at least
one embodiment, graphics multiprocessor 2334 is an exem-
plary instance of a SIMT parallel processor. However, in at
least one embodiment, various types of SIMT parallel pro-
cessors of differing architectures may be included within
processing cluster 2314. In at least one embodiment, one or
more instances of graphics multiprocessor 2334 can be
included within a processing cluster 2314. In at least one
embodiment, graphics multiprocessor 2334 can process data
and a data crossbar 2340 can be used to distribute processed
data to one of multiple possible destinations, including other
shader units. In at least one embodiment, pipeline manager
2332 can facilitate distribution of processed data by speci-
fying destinations for processed data to be distributed via
data crossbar 2340.

[0420] In at least one embodiment, each graphics multi-
processor 2334 within processing cluster 2314 can include
an identical set of functional execution logic (e.g., arithmetic
logic units, load-store units, etc.). In at least one embodi-
ment, functional execution logic can be configured in a
pipelined manner in which new instructions can be issued
before previous instructions are complete. In at least one
embodiment, functional execution logic supports a variety
of operations including integer and floating point arithmetic,
comparison operations, Boolean operations, bit-shifting, and
computation of various algebraic functions. In at least one
embodiment, same functional-unit hardware can be lever-
aged to perform different operations and any combination of
functional units may be present.

[0421] In at least one embodiment, instructions transmit-
ted to processing cluster 2314 constitute a thread. In at least
one embodiment, a set of threads executing across a set of
parallel processing engines is a thread group. In at least one
embodiment, a thread group executes a common program on
different input data. In at least one embodiment, each thread
within a thread group can be assigned to a different pro-
cessing engine within a graphics multiprocessor 2334. In at
least one embodiment, a thread group may include fewer
threads than a number of processing engines within graphics
multiprocessor 2334. In at least one embodiment, when a
thread group includes fewer threads than a number of
processing engines, one or more of processing engines may
be idle during cycles in which that thread group is being
processed. In at least one embodiment, a thread group may

Nov. 10, 2022

also include more threads than a number of processing
engines within graphics multiprocessor 2334. In at least one
embodiment, when a thread group includes more threads
than number of processing engines within graphics multi-
processor 2334, processing can be performed over consecu-
tive clock cycles. In at least one embodiment, multiple
thread groups can be executed concurrently on a graphics
multiprocessor 2334.

[0422] In at least one embodiment, graphics multiproces-
sor 2334 includes an internal cache memory to perform load
and store operations. In at least one embodiment, graphics
multiprocessor 2334 can forego an internal cache and use a
cache memory (e.g., L1 cache 2348) within processing
cluster 2314. In at least one embodiment, each graphics
multiprocessor 2334 also has access to L2 caches within
partition units (e.g., partition units 2320A-2320N of FIG.
23A) that are shared among all processing clusters 2314 and
may be used to transfer data between threads. In at least one
embodiment, graphics multiprocessor 2334 may also access
off-chip global memory, which can include one or more of
local parallel processor memory and/or system memory. In
at least one embodiment, any memory external to parallel
processing unit 2302 may be used as global memory. In at
least one embodiment, processing cluster 2314 includes
multiple instances of graphics multiprocessor 2334 and can
share common instructions and data, which may be stored in
L1 cache 2348.

[0423] In atleast one embodiment, each processing cluster
2314 may include an MMU 2345 (memory management
unit) that is configured to map virtual addresses into physical
addresses. In at least one embodiment, one or more instances
of MMU 2345 may reside within memory interface 2318 of
FIG. 23A. In at least one embodiment, MMU 2345 includes
a set of page table entries (PTEs) used to map a virtual
address to a physical address of a tile and optionally a cache
line index. In at least one embodiment, MMU 2345 may
include address translation lookaside buffers (TLB) or
caches that may reside within graphics multiprocessor 2334
or [.1 2348 cache or processing cluster 2314. In at least one
embodiment, a physical address is processed to distribute
surface data access locally to allow for efficient request
interleaving among partition units. In at least one embodi-
ment, a cache line index may be used to determine whether
a request for a cache line is a hit or miss.

[0424] In at least one embodiment, a processing cluster
2314 may be configured such that each graphics multipro-
cessor 2334 is coupled to a texture unit 2336 for performing
texture mapping operations, e.g., determining texture
sample positions, reading texture data, and filtering texture
data. In at least one embodiment, texture data is read from
an internal texture L1 cache (not shown) or from an L1
cache within graphics multiprocessor 2334 and is fetched
from an [.2 cache, local parallel processor memory, or
system memory, as needed. In at least one embodiment, each
graphics multiprocessor 2334 outputs processed tasks to
data crossbar 2340 to provide processed task to another
processing cluster 2314 for further processing or to store
processed task in an L2 cache, local parallel processor
memory, or system memory via memory crossbar 2316. In
at least one embodiment, a preROP 2342 (pre-raster opera-
tions unit) is configured to receive data from graphics
multiprocessor 2334, and direct data to ROP units, which
may be located with partition units as described herein (e.g.,
partition units 2320A-2320N of FIG. 23A). In at least one

US 2022/0358627 Al

embodiment, preROP 2342 unit can perform optimizations
for color blending, organizing pixel color data, and perform-
ing address translations.

[0425] Inference and/or training logic 1015 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 1015 are provided herein in conjunc-
tion with FIGS. 10A and/or 10B. In at least one embodiment,
inference and/or training logic 1015 may be used in graphics
processing cluster 2314 for inferencing or predicting opera-
tions based, at least in part, on weight parameters calculated
using neural network training operations, neural network
functions and/or architectures, or neural network use cases
described herein.

[0426] FIG. 23D shows a graphics multiprocessor 2334
according to at least one embodiment. In at least one
embodiment, graphics multiprocessor 2334 couples with
pipeline manager 2332 of processing cluster 2314. In at least
one embodiment, graphics multiprocessor 2334 has an
execution pipeline including but not limited to an instruction
cache 2352, an instruction unit 2354, an address mapping
unit 2356, a register file 2358, one or more general purpose
graphics processing unit (GPGPU) cores 2362, and one or
more load/store units 2366. In at least one embodiment,
GPGPU cores 2362 and load/store units 2366 are coupled
with cache memory 2372 and shared memory 2370 via a
memory and cache interconnect 2368.

[0427] In at least one embodiment, instruction cache 2352
receives a stream of instructions to execute from pipeline
manager 2332. In at least one embodiment, instructions are
cached in instruction cache 2352 and dispatched for execu-
tion by an instruction unit 2354. In at least one embodiment,
instruction unit 2354 can dispatch instructions as thread
groups (e.g., warps), with each thread of thread group
assigned to a different execution unit within GPGPU cores
2362. In at least one embodiment, an instruction can access
any of a local, shared, or global address space by specifying
an address within a unified address space. In at least one
embodiment, address mapping unit 2356 can be used to
translate addresses in a unified address space into a distinct
memory address that can be accessed by load/store units
2366.

[0428] In at least one embodiment, register file 2358
provides a set of registers for functional units of graphics
multiprocessor 2334. In at least one embodiment, register
file 2358 provides temporary storage for operands connected
to data paths of functional units (e.g., GPGPU cores 2362,
load/store units 2366) of graphics multiprocessor 2334. In at
least one embodiment, register file 2358 is divided between
each of functional units such that each functional unit is
allocated a dedicated portion of register file 2358. In at least
one embodiment, register file 2358 is divided between
different warps being executed by graphics multiprocessor
2334.

[0429] In at least one embodiment, GPGPU cores 2362
can each include floating point units (FPUs) and/or integer
arithmetic logic units (ALUs) that are used to execute
instructions of graphics multiprocessor 2334. In at least one
embodiment, GPGPU cores 2362 can be similar in archi-
tecture or can differ in architecture. In at least one embodi-
ment, a first portion of GPGPU cores 2362 include a single
precision FPU and an integer ALU while a second portion of
GPGPU cores include a double precision FPU. In at least
one embodiment, FPUs can implement IEEE 754-2008

Nov. 10, 2022

standard floating point arithmetic or enable variable preci-
sion floating point arithmetic. In at least one embodiment,
graphics multiprocessor 2334 can additionally include one
or more fixed function or special function units to perform
specific functions such as copy rectangle or pixel blending
operations. In at least one embodiment, one or more of
GPGPU cores 2362 can also include fixed or special func-
tion logic.

[0430] In at least one embodiment, GPGPU cores 2362
include SIMD logic capable of performing a single instruc-
tion on multiple sets of data. In at least one embodiment,
GPGPU cores 2362 can physically execute SIMD4, SIMDS,
and SIMDI16 instructions and logically execute SIMDI1,
SIMD2, and SIMD32 instructions. In at least one embodi-
ment, SIMD instructions for GPGPU cores can be generated
at compile time by a shader compiler or automatically
generated when executing programs written and compiled
for single program multiple data (SPMD) or SIMT archi-
tectures. In at least one embodiment, multiple threads of a
program configured for an SIMT execution model can
executed via a single SIMD instruction. For example, in at
least one embodiment, eight SIMT threads that perform
same or similar operations can be executed in parallel via a
single SIMDS8 logic unit.

[0431] In at least one embodiment, memory and cache
interconnect 2368 is an interconnect network that connects
each functional unit of graphics multiprocessor 2334 to
register file 2358 and to shared memory 2370. In at least one
embodiment, memory and cache interconnect 2368 is a
crossbar interconnect that allows load/store unit 2366 to
implement load and store operations between shared
memory 2370 and register file 2358. In at least one embodi-
ment, register file 2358 can operate at a same frequency as
GPGPU cores 2362, thus data transfer between GPGPU
cores 2362 and register file 2358 can have very low latency.
In at least one embodiment, shared memory 2370 can be
used to enable communication between threads that execute
on functional units within graphics multiprocessor 2334. In
at least one embodiment, cache memory 2372 can be used
as a data cache for example, to cache texture data commu-
nicated between functional units and texture unit 2336. In at
least one embodiment, shared memory 2370 can also be
used as a program managed cache. In at least one embodi-
ment, threads executing on GPGPU cores 2362 can pro-
grammatically store data within shared memory in addition
to automatically cached data that is stored within cache
memory 2372.

[0432] In at least one embodiment, a parallel processor or
GPGPU as described herein is communicatively coupled to
host/processor cores to accelerate graphics operations,
machine-learning operations, pattern analysis operations,
and various general purpose GPU (GPGPU) functions. In at
least one embodiment, a GPU may be communicatively
coupled to host processor/cores over a bus or other inter-
connect (e.g., a high-speed interconnect such as PCle or
NVLink). In at least one embodiment, a GPU may be
integrated on a package or chip as cores and communica-
tively coupled to cores over an internal processor bus/
interconnect internal to a package or chip. In at least one
embodiment, regardless a manner in which a GPU is con-
nected, processor cores may allocate work to such GPU in
a form of sequences of commands/instructions contained in

US 2022/0358627 Al

awork descriptor. In at least one embodiment, that GPU then
uses dedicated circuitry/logic for efficiently processing these
commands/instructions.

[0433] Inference and/or training logic 1015 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 1015 are provided herein in conjunc-
tion with FIGS. 10A and/or 10B. In at least one embodiment,
inference and/or training logic 1015 may be used in graphics
multiprocessor 2334 for inferencing or predicting operations
based, at least in part, on weight parameters calculated using
neural network training operations, neural network functions
and/or architectures, or neural network use cases described
herein.

[0434] FIG. 24 illustrates a multi-GPU computing system
2400, according to at least one embodiment. In at least one
embodiment, multi-GPU computing system 2400 can
include a processor 2402 coupled to multiple general pur-
pose graphics processing units (GPGPUs) 2406A-D via a
host interface switch 2404. In at least one embodiment, host
interface switch 2404 is a PCI express switch device that
couples processor 2402 to a PCI express bus over which
processor 2402 can communicate with GPGPUs 2406A-D.
In at least one embodiment, GPGPUs 2406A-D can inter-
connect via a set of high-speed point-to-point GPU-to-GPU
links 2416. In at least one embodiment, GPU-to-GPU links
2416 connect to each of GPGPUs 2406A-D via a dedicated
GPU link. In at least one embodiment, P2P GPU links 2416
enable direct communication between each of GPGPUs
2406 A-D without requiring communication over host inter-
face bus 2404 to which processor 2402 is connected. In at
least one embodiment, with GPU-to-GPU traffic directed to
P2P GPU links 2416, host interface bus 2404 remains
available for system memory access or to communicate with
other instances of multi-GPU computing system 2400, for
example, via one or more network devices. While in at least
one embodiment GPGPUs 2406A-D connect to processor
2402 via host interface switch 2404, in at least one embodi-
ment processor 2402 includes direct support for P2P GPU
links 2416 and can connect directly to GPGPUs 2406A-D.
[0435] Inference and/or training logic 1015 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 1015 are provided herein in conjunc-
tion with FIGS. 10A and/or 10B. In at least one embodiment,
inference and/or training logic 1015 may be used in multi-
GPU computing system 2400 for inferencing or predicting
operations based, at least in part, on weight parameters
calculated using neural network training operations, neural
network functions and/or architectures, or neural network
use cases described herein.

[0436] FIG. 25 is a block diagram of a graphics processor
2500, according to at least one embodiment. In at least one
embodiment, graphics processor 2500 includes a ring inter-
connect 2502, a pipeline front-end 2504, a media engine
2537, and graphics cores 2580A-2580N. In at least one
embodiment, ring interconnect 2502 couples graphics pro-
cessor 2500 to other processing units, including other graph-
ics processors or one or more general-purpose processor
cores. In at least one embodiment, graphics processor 2500
is one of many processors integrated within a multi-core
processing system.

[0437] In at least one embodiment, graphics processor
2500 receives batches of commands via ring interconnect

Nov. 10, 2022

2502. In at least one embodiment, incoming commands are
interpreted by a command streamer 2503 in pipeline front-
end 2504. In at least one embodiment, graphics processor
2500 includes scalable execution logic to perform 3D geom-
etry processing and media processing via graphics core(s)
2580A-2580N. In at least one embodiment, for 3D geometry
processing commands, command streamer 2503 supplies
commands to geometry pipeline 2536. In at least one
embodiment, for at least some media processing commands,
command streamer 2503 supplies commands to a video front
end 2534, which couples with media engine 2537. In at least
one embodiment, media engine 2537 includes a Video
Quality Engine (VQE) 2530 for video and image post-
processing and a multi-format encode/decode (MFX) 2533
engine to provide hardware-accelerated media data encod-
ing and decoding. In at least one embodiment, geometry
pipeline 2536 and media engine 2537 each generate execu-
tion threads for thread execution resources provided by at
least one graphics core 2580.

[0438] In at least one embodiment, graphics processor
2500 includes scalable thread execution resources featuring
graphics cores 2580A-2580N (which can be modular and are
sometimes referred to as core slices), each having multiple
sub-cores 2550A-50N, 2560A-2560N (sometimes referred
to as core sub-slices). In at least one embodiment, graphics
processor 2500 can have any number of graphics cores
2580A. In at least one embodiment, graphics processor 2500
includes a graphics core 2580A having at least a first
sub-core 2550A and a second sub-core 2560A. In at least
one embodiment, graphics processor 2500 is a low power
processor with a single sub-core (e.g., 2550A). In at least
one embodiment, graphics processor 2500 includes multiple
graphics cores 2580A-2580N, each including a set of first
sub-cores 2550A-2550N and a set of second sub-cores
2560A-2560N. In at least one embodiment, each sub-core in
first sub-cores 2550A-2550N includes at least a first set of
execution units 2552A-2552N and media/texture samplers
2554-2554N. In at least one embodiment, each sub-core in
second sub-cores 2560A-2560N includes at least a second
set of execution units 2562A-2562N and samplers 2564-
2564N. In at least one embodiment, each sub-core 2550A-
2550N, 2560A-2560N shares a set of shared resources
2570A-2570N. In at least one embodiment, shared resources
include shared cache memory and pixel operation logic.

[0439] Inference and/or training logic 1015 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 1015 are provided herein in conjunc-
tion with FIGS. 10A and/or 10B. In at least one embodiment,
inference and/or training logic 1015 may be used in graphics
processor 2500 for inferencing or predicting operations
based, at least in part, on weight parameters calculated using
neural network training operations, neural network functions
and/or architectures, or neural network use cases described
herein.

[0440] FIG. 26 is a block diagram illustrating micro-
architecture for a processor 2600 that may include logic
circuits to perform instructions, according to at least one
embodiment. In at least one embodiment, processor 2600
may perform instructions, including x86 instructions, ARM
instructions, specialized instructions for application-specific
integrated circuits (ASICs), etc. In at least one embodiment,
processor 2600 may include registers to store packed data,
such as 64-bit wide MMX™ registers in microprocessors

US 2022/0358627 Al

enabled with MMX technology from Intel Corporation of
Santa Clara, Calif. In at least one embodiment, MMX
registers, available in both integer and floating point forms,
may operate with packed data elements that accompany
single instruction, multiple data (“SIMID”) and streaming
SIMD extensions (“SSE”) instructions. In at least one
embodiment, 128-bit wide XMM registers relating to SSE2,
SSE3, SSE4, AVX, or beyond (referred to generically as
“SSEx”) technology may hold such packed data operands.
In at least one embodiment, processor 2600 may perform
instructions to accelerate machine learning or deep learning
algorithms, training, or inferencing.

[0441] In at least one embodiment, processor 2600
includes an in-order front end (“front end”) 2601 to fetch
instructions to be executed and prepare instructions to be
used later in a processor pipeline. In at least one embodi-
ment, front end 2601 may include several units. In at least
one embodiment, an instruction prefetcher 2626 fetches
instructions from memory and feeds instructions to an
instruction decoder 2628 which in turn decodes or interprets
instructions. For example, in at least one embodiment,
instruction decoder 2628 decodes a received instruction into
one or more operations called “micro-instructions” or
“micro-operations” (also called “micro ops” or “vops”) that
a machine may execute. In at least one embodiment, instruc-
tion decoder 2628 parses an instruction into an opcode and
corresponding data and control fields that may be used by
micro-architecture to perform operations in accordance with
at least one embodiment. In at least one embodiment, a trace
cache 2630 may assemble decoded uops into program
ordered sequences or traces in a uop queue 2634 for execu-
tion. In at least one embodiment, when trace cache 2630
encounters a complex instruction, a microcode ROM 2632
provides uops needed to complete an operation.

[0442] In at least one embodiment, some instructions may
be converted into a single micro-op, whereas others need
several micro-ops to complete full operation. In at least one
embodiment, if more than four micro-ops are needed to
complete an instruction, instruction decoder 2628 may
access microcode ROM 2632 to perform that instruction. In
at least one embodiment, an instruction may be decoded into
a small number of micro-ops for processing at instruction
decoder 2628. In at least one embodiment, an instruction
may be stored within microcode ROM 2632 should a
number of micro-ops be needed to accomplish such opera-
tion. In at least one embodiment, trace cache 2630 refers to
an entry point programmable logic array (“PLA”) to deter-
mine a correct micro-instruction pointer for reading micro-
code sequences to complete one or more instructions from
microcode ROM 2632 in accordance with at least one
embodiment. In at least one embodiment, after microcode
ROM 2632 finishes sequencing micro-ops for an instruction,
front end 2601 of a machine may resume fetching micro-ops
from trace cache 2630.

[0443] In at least one embodiment, out-of-order execution
engine (“out of order engine”) 2603 may prepare instruc-
tions for execution. In at least one embodiment, out-of-order
execution logic has a number of buffers to smooth out and
re-order flow of instructions to optimize performance as they
go down a pipeline and get scheduled for execution. In at
least one embodiment, out-of-order execution engine 2603
includes, without limitation, an allocator/register renamer
2640, a memory uop queue 2642, an integer/floating point
uop queue 2644, a memory scheduler 2646, a fast scheduler

Nov. 10, 2022

2602, a slow/general floating point scheduler (“slow/general
FP scheduler”) 2604, and a simple floating point scheduler
(“simple FP scheduler”) 2606. In at least one embodiment,
fast schedule 2602, slow/general floating point scheduler
2604, and simple floating point scheduler 2606 are also
collectively referred to herein as “uop schedulers 2602,
2604, 2606.” In at least one embodiment, allocator/register
renamer 2640 allocates machine buffers and resources that
each vop needs in order to execute. In at least one embodi-
ment, allocator/register renamer 2640 renames logic regis-
ters onto entries in a register file. In at least one embodiment,
allocator/register renamer 2640 also allocates an entry for
each uop in one of two uop queues, memory uop queue 2642
for memory operations and integer/floating point uop queue
2644 for non-memory operations, in front of memory sched-
uler 2646 and uop schedulers 2602, 2604, 2606. In at least
one embodiment, uop schedulers 2602, 2604, 2606, deter-
mine when a uop is ready to execute based on readiness of
their dependent input register operand sources and avail-
ability of execution resources uops need to complete their
operation. In at least one embodiment, fast scheduler 2602
may schedule on each half of a main clock cycle while
slow/general floating point scheduler 2604 and simple float-
ing point scheduler 2606 may schedule once per main
processor clock cycle. In at least one embodiment, uop
schedulers 2602, 2604, 2606 arbitrate for dispatch ports to
schedule uops for execution.

[0444] In at least one embodiment, execution block 2611
includes, without limitation, an integer register file/bypass
network 2608, a floating point register file/bypass network
(“FP register file/bypass network™) 2610, address generation
units (“AGUs”) 2612 and 2614, fast Arithmetic Logic Units
(ALUs) (“fast ALUs™) 2616 and 2618, a slow Arithmetic
Logic Unit (“slow ALU”) 2620, a floating point ALU (“FP”)
2622, and a floating point move unit (“FP move™) 2624. In
at least one embodiment, integer register file/bypass network
2608 and floating point register file/bypass network 2610 are
also referred to herein as “register files 2608, 2610.” In at
least one embodiment, AGUSs 2612 and 2614, fast ALUs
2616 and 2618, slow ALU 2620, floating point ALU 2622,
and floating point move unit 2624 are also referred to herein
as “execution units 2612, 2614, 2616, 2618, 2620, 2622, and
2624.” In at least one embodiment, execution block 2611
may include, without limitation, any number (including
zero) and type of register files, bypass networks, address
generation units, and execution units, in any combination.

[0445] In at least one embodiment, register networks
2608, 2610 may be arranged between uop schedulers 2602,
2604, 2606, and execution units 2612, 2614, 2616, 2618,
2620, 2622, and 2624. In at least one embodiment, integer
register file/bypass network 2608 performs integer opera-
tions. In at least one embodiment, floating point register
file/bypass network 2610 performs floating point operations.
In at least one embodiment, each of register networks 2608,
2610 may include, without limitation, a bypass network that
may bypass or forward just completed results that have not
yet been written into a register file to new dependent uops.
In at least one embodiment, register networks 2608, 2610
may communicate data with each other. In at least one
embodiment, integer register file/bypass network 2608 may
include, without limitation, two separate register files, one
register file for a low-order thirty-two bits of data and a
second register file for a high order thirty-two bits of data.
In at least one embodiment, floating point register file/

US 2022/0358627 Al

bypass network 2610 may include, without limitation, 128-
bit wide entries because floating point instructions typically
have operands from 64 to 128 bits in width.

[0446] In at least one embodiment, execution units 2612,
2614, 2616, 2618, 2620, 2622, 2624 may execute instruc-
tions. In at least one embodiment, register networks 2608,
2610 store integer and floating point data operand values
that micro-instructions need to execute. In at least one
embodiment, processor 2600 may include, without limita-
tion, any number and combination of execution units 2612,
2614, 2616, 2618, 2620, 2622, 2624. In at least one embodi-
ment, floating point ALU 2622 and floating point move unit
2624, may execute floating point, MMX, SIMD, AVX and
SSE, or other operations, including specialized machine
learning instructions. In at least one embodiment, floating
point ALU 2622 may include, without limitation, a 64-bit by
64-bit floating point divider to execute divide, square root,
and remainder micro ops. In at least one embodiment,
instructions involving a floating point value may be handled
with floating point hardware. In at least one embodiment,
ALU operations may be passed to fast ALUs 2616, 2618. In
at least one embodiment, fast ALUS 2616, 2618 may
execute fast operations with an effective latency of half a
clock cycle. In at least one embodiment, most complex
integer operations go to slow ALU 2620 as slow ALU 2620
may include, without limitation, integer execution hardware
for long-latency type of operations, such as a multiplier,
shifts, flag logic, and branch processing. In at least one
embodiment, memory load/store operations may be
executed by AGUs 2612, 2614. In at least one embodiment,
fast ALU 2616, fast ALU 2618, and slow ALU 2620 may
perform integer operations on 64-bit data operands. In at
least one embodiment, fast AL U 2616, fast ALU 2618, and
slow ALU 2620 may be implemented to support a variety of
data bit sizes including sixteen, thirty-two, 128, 256, etc. In
at least one embodiment, floating point ALU 2622 and
floating point move unit 2624 may be implemented to
support a range of operands having bits of various widths,
such as 128-bit wide packed data operands in conjunction
with SIMD and multimedia instructions.

[0447] In at least one embodiment, uop schedulers 2602,
2604, 2606 dispatch dependent operations before a parent
load has finished executing. In at least one embodiment, as
uops may be speculatively scheduled and executed in pro-
cessor 2600, processor 2600 may also include logic to
handle memory misses. In at least one embodiment, if a data
load misses in a data cache, there may be dependent opera-
tions in flight in a pipeline that have left a scheduler with
temporarily incorrect data. In at least one embodiment, a
replay mechanism tracks and re-executes instructions that
use incorrect data. In at least one embodiment, dependent
operations might need to be replayed and independent ones
may be allowed to complete. In at least one embodiment,
schedulers and a replay mechanism of at least one embodi-
ment of a processor may also be designed to catch instruc-
tion sequences for text string comparison operations.

[0448] In atleastone embodiment, “registers” may refer to
on-board processor storage locations that may be used as
part of instructions to identify operands. In at least one
embodiment, registers may be those that may be usable from
outside of a processor (from a programmer’s perspective). In
at least one embodiment, registers might not be limited to a
particular type of circuit. Rather, in at least one embodiment,
a register may store data, provide data, and perform func-

Nov. 10, 2022

tions described herein. In at least one embodiment, registers
described herein may be implemented by circuitry within a
processor using any number of different techniques, such as
dedicated physical registers, dynamically allocated physical
registers using register renaming, combinations of dedicated
and dynamically allocated physical registers, etc. In at least
one embodiment, integer registers store 32-bit integer data.
A register file of at least one embodiment also contains eight
multimedia SIMD registers for packed data.

[0449] Inference and/or training logic 1015 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 1015 are provided herein in conjunc-
tion with FIGS. 10A and/or 10B. In at least one embodiment
portions or all of inference and/or training logic 1015 may
be incorporated into execution block 2611 and other
memory or registers shown or not shown. For example, in at
least one embodiment, training and/or inferencing tech-
niques described herein may use one or more of ALUs
illustrated in execution block 2611. Moreover, weight
parameters may be stored in on-chip or off-chip memory
and/or registers (shown or not shown) that configure AL Us
of execution block 2611 to perform one or more machine
learning algorithms, neural network architectures, use cases,
or training techniques described herein.

[0450] FIG. 27 illustrates a deep learning application
processor 2700, according to at least one embodiment. In at
least one embodiment, deep learning application processor
2700 uses instructions that, if executed by deep learning
application processor 2700, cause deep learning application
processor 2700 to perform some or all of processes and
techniques described throughout this disclosure. In at least
one embodiment, deep learning application processor 2700
is an application-specific integrated circuit (ASIC). In at
least one embodiment, application processor 2700 performs
matrix multiply operations either “hard-wired” into hard-
ware as a result of performing one or more instructions or
both. In at least one embodiment, deep learning application
processor 2700 includes, without limitation, processing
clusters 2710(1)-2710(12), Inter-Chip Links (“ICLs”) 2720
(1)-2720(12), Inter-Chip Controllers (“ICCs”) 2730(1)-2730
(2), high-bandwidth memory second generation (“HBM2”)
2740(1)-2740(4), memory controllers (“Mem Ctrlrs™) 2742
(1)-2742(4), high bandwidth memory physical layer (“HBM
PHY™) 2744(1)-2744(4), a management-controller central
processing unit (“management controller CPU”) 2750, a
Serial Peripheral Interface, Inter-Integrated Circuit, and
General Purpose Input/Output block (“SPI, I°C, GPIO”)
2760, a peripheral component interconnect express control-
ler and direct memory access block (“PCle Controller and
DMA”) 2770, and a sixteen-lane peripheral component
interconnect express port (“PCI Expressx16”) 2780.

[0451] In at least one embodiment, processing clusters
2710 may perform deep learning operations, including infer-
ence or prediction operations based on weight parameters
calculated one or more training techniques, including those
described herein. In at least one embodiment, each process-
ing cluster 2710 may include, without limitation, any num-
ber and type of processors. In at least one embodiment, deep
learning application processor 2700 may include any num-
ber and type of processing clusters 2700. In at least one
embodiment, Inter-Chip Links 2720 are bi-directional. In at
least one embodiment, Inter-Chip Links 2720 and Inter-Chip
Controllers 2730 enable multiple deep learning application

US 2022/0358627 Al

processors 2700 to exchange information, including activa-
tion information resulting from performing one or more
machine learning algorithms embodied in one or more
neural networks. In at least one embodiment, deep learning
application processor 2700 may include any number (includ-
ing zero) and type of ICLs 2720 and ICCs 2730.

[0452] In at least one embodiment, HBM2s 2740 provide
a total of 32 Gigabytes (GB) of memory. In at least one
embodiment, HBM2 2740(i) is associated with both
memory controller 2742(i) and HBM PHY 2744(i) where “i”
is an arbitrary integer. In at least one embodiment, any
number of HBM2s 2740 may provide any type and total
amount of high bandwidth memory and may be associated
with any number (including zero) and type of memory
controllers 2742 and HBM PHYs 2744. In at least one
embodiment, SPI, IC, GPIO 2760, PCle Controller and
DMA 2770, and/or PCle 2780 may be replaced with any
number and type of blocks that enable any number and type
of communication standards in any technically feasible
fashion.

[0453] Inference and/or training logic 1015 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 1015 are provided herein in conjunc-
tion with FIGS. 10A and/or 10B. In at least one embodiment,
deep learning application processor is used to train a
machine learning model, such as a neural network, to predict
or infer information provided to deep learning application
processor 2700. In at least one embodiment, deep learning
application processor 2700 is used to infer or predict infor-
mation based on a trained machine learning model (e.g.,
neural network) that has been trained by another processor
or system or by deep learning application processor 2700. In
at least one embodiment, processor 2700 may be used to
perform one or more neural network use cases described
herein.

[0454] FIG. 28 is a block diagram of a neuromorphic
processor 2800, according to at least one embodiment. In at
least one embodiment, neuromorphic processor 2800 may
receive one or more inputs from sources external to neuro-
morphic processor 2800. In at least one embodiment, these
inputs may be transmitted to one or more neurons 2802
within neuromorphic processor 2800. In at least one
embodiment, neurons 2802 and components thereof may be
implemented using circuitry or logic, including one or more
arithmetic logic units (ALUs). In at least one embodiment,
neuromorphic processor 2800 may include, without limita-
tion, thousands or millions of instances of neurons 2802, but
any suitable number of neurons 2802 may be used. In at least
one embodiment, each instance of neuron 2802 may include
aneuron input 2804 and a neuron output 2806. In at least one
embodiment, neurons 2802 may generate outputs that may
be transmitted to inputs of other instances of neurons 2802.
For example, in at least one embodiment, neuron inputs
2804 and neuron outputs 2806 may be interconnected via
synapses 2808.

[0455] In at least one embodiment, neurons 2802 and
synapses 2808 may be interconnected such that neuromor-
phic processor 2800 operates to process or analyze infor-
mation received by neuromorphic processor 2800. In at least
one embodiment, neurons 2802 may transmit an output
pulse (or “fire” or “spike”) when inputs received through
neuron input 2804 exceed a threshold. In at least one
embodiment, neurons 2802 may sum or integrate signals

Nov. 10, 2022

received at neuron inputs 2804. For example, in at least one
embodiment, neurons 2802 may be implemented as leaky
integrate-and-fire neurons, wherein if a sum (referred to as
a “membrane potential”) exceeds a threshold value, neuron
2802 may generate an output (or “fire”) using a transfer
function such as a sigmoid or threshold function. In at least
one embodiment, a leaky integrate-and-fire neuron may sum
signals received at neuron inputs 2804 into a membrane
potential and may also apply a decay factor (or leak) to
reduce a membrane potential. In at least one embodiment, a
leaky integrate-and-fire neuron may fire if multiple input
signals are received at neuron inputs 2804 rapidly enough to
exceed a threshold value (i.e., before a membrane potential
decays too low to fire). In at least one embodiment, neurons
2802 may be implemented using circuits or logic that
receive inputs, integrate inputs into a membrane potential,
and decay a membrane potential. In at least one embodi-
ment, inputs may be averaged, or any other suitable transfer
function may be used. Furthermore, in at least one embodi-
ment, neurons 2802 may include, without limitation, com-
parator circuits or logic that generate an output spike at
neuron output 2806 when result of applying a transfer
function to neuron input 2804 exceeds a threshold. In at least
one embodiment, once neuron 2802 fires, it may disregard
previously received input information by, for example, reset-
ting a membrane potential to 0 or another suitable default
value. In at least one embodiment, once membrane potential
is reset to 0, neuron 2802 may resume normal operation after
a suitable period of time (or refractory period).

[0456] In at least one embodiment, neurons 2802 may be
interconnected through synapses 2808. In at least one
embodiment, synapses 2808 may operate to transmit signals
from an output of a first neuron 2802 to an input of a second
neuron 2802. In at least one embodiment, neurons 2802 may
transmit information over more than one instance of synapse
2808. In at least one embodiment, one or more instances of
neuron output 2806 may be connected, via an instance of
synapse 2808, to an instance of neuron input 2804 in same
neuron 2802. In at least one embodiment, an instance of
neuron 2802 generating an output to be transmitted over an
instance of synapse 2808 may be referred to as a “pre-
synaptic neuron” with respect to that instance of synapse
2808. In at least one embodiment, an instance of neuron
2802 receiving an input transmitted over an instance of
synapse 2808 may be referred to as a “post-synaptic neuron”
with respect to that instance of synapse 2808. Because an
instance of neuron 2802 may receive inputs from one or
more instances of synapse 2808, and may also transmit
outputs over one or more instances of synapse 2808, a single
instance of neuron 2802 may therefore be both a “pre-
synaptic neuron” and “post-synaptic neuron,” with respect
to various instances of synapses 2808, in at least one
embodiment.

[0457] In at least one embodiment, neurons 2802 may be
organized into one or more layers. In at least one embodi-
ment, each instance of neuron 2802 may have one neuron
output 2806 that may fan out through one or more synapses
2808 to one or more neuron inputs 2804. In at least one
embodiment, neuron outputs 2806 of neurons 2802 in a first
layer 2810 may be connected to neuron inputs 2804 of
neurons 2802 in a second layer 2812. In at least one
embodiment, layer 2810 may be referred to as a “feed-
forward layer.” In at least one embodiment, each instance of
neuron 2802 in an instance of first layer 2810 may fan out

US 2022/0358627 Al

to each instance of neuron 2802 in second layer 2812. In at
least one embodiment, first layer 2810 may be referred to as
a “fully connected feed-forward layer.” In at least one
embodiment, each instance of neuron 2802 in an instance of
second layer 2812 may fan out to fewer than all instances of
neuron 2802 in a third layer 2814. In at least one embodi-
ment, second layer 2812 may be referred to as a “sparsely
connected feed-forward layer.” In at least one embodiment,
neurons 2802 in second layer 2812 may fan out to neurons
2802 in multiple other layers, including to neurons 2802 also
in second layer 2812. In at least one embodiment, second
layer 2812 may be referred to as a “recurrent layer.” In at
least one embodiment, neuromorphic processor 2800 may
include, without limitation, any suitable combination of
recurrent layers and feed-forward layers, including, without
limitation, both sparsely connected feed-forward layers and
fully connected feed-forward layers.

[0458] In at least one embodiment, neuromorphic proces-
sor 2800 may include, without limitation, a reconfigurable
interconnect architecture or dedicated hard-wired intercon-
nects to connect synapse 2808 to neurons 2802. In at least
one embodiment, neuromorphic processor 2800 may
include, without limitation, circuitry or logic that allows
synapses to be allocated to different neurons 2802 as needed
based on neural network topology and neuron fan-in/out.
For example, in at least one embodiment, synapses 2808
may be connected to neurons 2802 using an interconnect
fabric, such as network-on-chip, or with dedicated connec-
tions. In at least one embodiment, synapse interconnections
and components thereof may be implemented using circuitry
or logic.

[0459] FIG. 29 is a block diagram of a processing system,
according to at least one embodiment. In at least one
embodiment, system 2900 includes one or more processors
2902 and one or more graphics processors 2908, and may be
a single processor desktop system, a multiprocessor work-
station system, or a server system having a large number of
processors 2902 or processor cores 2907. In at least one
embodiment, system 2900 is a processing platform incor-
porated within a system-on-a-chip (SoC) integrated circuit
for use in mobile, handheld, or embedded devices.

[0460] In at least one embodiment, system 2900 can
include, or be incorporated within a server-based gaming
platform, a game console, including a game and media
console, a mobile gaming console, a handheld game con-
sole, or an online game console. In at least one embodiment,
system 2900 is a mobile phone, a smart phone, a tablet
computing device or a mobile Internet device. In at least one
embodiment, processing system 2900 can also include,
couple with, or be integrated within a wearable device, such
as a smart watch wearable device, a smart eyewear device,
an augmented reality device, or a virtual reality device. In at
least one embodiment, processing system 2900 is a televi-
sion or set top box device having one or more processors
2902 and a graphical interface generated by one or more
graphics processors 2908.

[0461] In atleast one embodiment, one or more processors
2902 each include one or more processor cores 2907 to
process instructions which, when executed, perform opera-
tions for system and user software. In at least one embodi-
ment, each of one or more processor cores 2907 is config-
ured to process a specific instruction sequence 2909. In at
least one embodiment, instruction sequence 2909 may facili-
tate Complex Instruction Set Computing (CISC), Reduced

Nov. 10, 2022

Instruction Set Computing (RISC), or computing via a Very
Long Instruction Word (VLIW). In at least one embodiment,
processor cores 2907 may each process a different instruc-
tion sequence 2909, which may include instructions to
facilitate emulation of other instruction sequences. In at least
one embodiment, processor core 2907 may also include
other processing devices, such a Digital Signal Processor
(DSP).

[0462] In at least one embodiment, processor 2902
includes a cache memory 2904. In at least one embodiment,
processor 2902 can have a single internal cache or multiple
levels of internal cache. In at least one embodiment, cache
memory is shared among various components of processor
2902. In at least one embodiment, processor 2902 also uses
an external cache (e.g., a Level-3 (L3) cache or Last Level
Cache (LLC)) (not shown), which may be shared among
processor cores 2907 using known cache coherency tech-
niques. In at least one embodiment, a register file 2906 is
additionally included in processor 2902, which may include
different types of registers for storing different types of data
(e.g., integer registers, floating point registers, status regis-
ters, and an instruction pointer register). In at least one
embodiment, register file 2906 may include general-purpose
registers or other registers.

[0463] In at least one embodiment, one or more processor
(s) 2902 are coupled with one or more interface bus(es) 2910
to transmit communication signals such as address, data, or
control signals between processor 2902 and other compo-
nents in system 2900. In at least one embodiment, interface
bus 2910 can be a processor bus, such as a version of a
Direct Media Interface (DMI) bus. In at least one embodi-
ment, interface bus 2910 is not limited to a DMI bus, and
may include one or more Peripheral Component Intercon-
nect buses (e.g., PCI, PCI Express), memory busses, or other
types of interface busses. In at least one embodiment pro-
cessor(s) 2902 include an integrated memory controller
2916 and a platform controller hub 2930. In at least one
embodiment, memory controller 2916 facilitates communi-
cation between a memory device and other components of
system 2900, while platform controller hub (PCH) 2930
provides connections to /O devices via a local /O bus.

[0464] In at least one embodiment, a memory device 2920
can be a dynamic random access memory (DRAM) device,
a static random access memory (SRAM) device, flash
memory device, phase-change memory device, or some
other memory device having suitable performance to serve
as process memory. In at least one embodiment, memory
device 2920 can operate as system memory for system 2900,
to store data 2922 and instructions 2921 for use when one or
more processors 2902 executes an application or process. In
at least one embodiment, memory controller 2916 also
couples with an optional external graphics processor 2912,
which may communicate with one or more graphics pro-
cessors 2908 in processors 2902 to perform graphics and
media operations. In at least one embodiment, a display
device 2911 can connect to processor(s) 2902. In at least one
embodiment, display device 2911 can include one or more
of'an internal display device, as in a mobile electronic device
or a laptop device, or an external display device attached via
a display interface (e.g., DisplayPort, etc.). In at least one
embodiment, display device 2911 can include a head
mounted display (HMD) such as a stereoscopic display
device for use in virtual reality (VR) applications or aug-
mented reality (AR) applications.

US 2022/0358627 Al

[0465] In atleast one embodiment, platform controller hub
2930 enables peripherals to connect to memory device 2920
and processor 2902 via a high-speed 1/O bus. In at least one
embodiment, I/O peripherals include, but are not limited to,
an audio controller 2946, a network controller 2934, a
firmware interface 2928, a wireless transceiver 2926, touch
sensors 2925, a data storage device 2924 (e.g., hard disk
drive, flash memory, etc.). In at least one embodiment, data
storage device 2924 can connect via a storage interface (e.g.,
SATA) or via a peripheral bus, such as a Peripheral Com-
ponent Interconnect bus (e.g., PCI, PCI Express). In at least
one embodiment, touch sensors 2925 can include touch
screen sensors, pressure sensors, or fingerprint sensors. In at
least one embodiment, wireless transceiver 2926 can be a
Wi-Fi transceiver, a Bluetooth transceiver, or a mobile
network transceiver such as a 3G, 4G, or Long Term
Evolution (LTE) transceiver. In at least one embodiment,
firmware interface 2928 enables communication with sys-
tem firmware, and can be, for example, a unified extensible
firmware interface (UEFI). In at least one embodiment,
network controller 2934 can enable a network connection to
a wired network. In at least one embodiment, a high-
performance network controller (not shown) couples with
interface bus 2910. In at least one embodiment, audio
controller 2946 is a multi-channel high definition audio
controller. In at least one embodiment, system 2900 includes
an optional legacy I/O controller 2940 for coupling legacy
(e.g., Personal System 2 (PS/2)) devices to system 2900. In
at least one embodiment, platform controller hub 2930 can
also connect to one or more Universal Serial Bus (USB)
controllers 2942 connect input devices, such as keyboard
and mouse 2943 combinations, a camera 2944, or other USB
input devices.

[0466] In at least one embodiment, an instance of memory
controller 2916 and platform controller hub 2930 may be
integrated into a discreet external graphics processor, such
as external graphics processor 2912. In at least one embodi-
ment, platform controller hub 2930 and/or memory control-
ler 2916 may be external to one or more processor(s) 2902.
For example, in at least one embodiment, system 2900 can
include an external memory controller 2916 and platform
controller hub 2930, which may be configured as a memory
controller hub and peripheral controller hub within a system
chipset that is in communication with processor(s) 2902.

[0467] Inference and/or training logic 1015 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 1015 are provided herein in conjunc-
tion with FIGS. 10A and/or 10B. In at least one embodiment
portions or all of inference and/or training logic 1015 may
be incorporated into graphics processor 2908. For example,
in at least one embodiment, training and/or inferencing
techniques described herein may use one or more of ALUs
embodied in a 3D pipeline. Moreover, in at least one
embodiment, inferencing and/or training operations
described herein may be done using logic other than logic
illustrated in FIG. 10A or 10B. In at least one embodiment,
weight parameters may be stored in on-chip or off-chip
memory and/or registers (shown or not shown) that config-
ure ALUs of graphics processor 2908 to perform one or
more machine learning algorithms, neural network architec-
tures, use cases, or training techniques described herein.

[0468] FIG. 30 is a block diagram of a processor 3000
having one or more processor cores 3002A-3002N, an

Nov. 10, 2022

integrated memory controller 3014, and an integrated graph-
ics processor 3008, according to at least one embodiment. In
at least one embodiment, processor 3000 can include addi-
tional cores up to and including additional core 3002N
represented by dashed lined boxes. In at least one embodi-
ment, each of processor cores 3002A-3002N includes one or
more internal cache units 3004-3004N. In at least one
embodiment, each processor core also has access to one or
more shared cached units 3006.

[0469] In at least one embodiment, internal cache units
3004-3004N and shared cache units 3006 represent a cache
memory hierarchy within processor 3000. In at least one
embodiment, cache memory units 3004-3004N may include
at least one level of instruction and data cache within each
processor core and one or more levels of shared mid-level
cache, such as a Level 2 (1.2), Level 3 (L3), Level 4 (L4),
or other levels of cache, where a highest level of cache
before external memory is classified as an LLC. In at least
one embodiment, cache coherency logic maintains coher-
ency between various cache units 3006 and 3004-3004N.
[0470] In at least one embodiment, processor 3000 may
also include a set of one or more bus controller units 3016
and a system agent core 3010. In at least one embodiment,
bus controller units 3016 manage a set of peripheral buses,
such as one or more PCI or PCI express busses. In at least
one embodiment, system agent core 3010 provides manage-
ment functionality for various processor components. In at
least one embodiment, system agent core 3010 includes one
or more integrated memory controllers 3014 to manage
access to various external memory devices (not shown).
[0471] In at least one embodiment, one or more of pro-
cessor cores 3002A-3002N include support for simultaneous
multi-threading. In at least one embodiment, system agent
core 3010 includes components for coordinating and oper-
ating cores 3002A-3002N during multi-threaded processing.
In at least one embodiment, system agent core 3010 may
additionally include a power control unit (PCU), which
includes logic and components to regulate one or more
power states of processor cores 3002A-3002N and graphics
processor 3008.

[0472] In at least one embodiment, processor 3000 addi-
tionally includes graphics processor 3008 to execute graph-
ics processing operations. In at least one embodiment,
graphics processor 3008 couples with shared cache units
3006, and system agent core 3010, including one or more
integrated memory controllers 3014. In at least one embodi-
ment, system agent core 3010 also includes a display con-
troller 3011 to drive graphics processor output to one or
more coupled displays. In at least one embodiment, display
controller 3011 may also be a separate module coupled with
graphics processor 3008 via at least one interconnect, or may
be integrated within graphics processor 3008.

[0473] In at least one embodiment, a ring-based intercon-
nect unit 3012 is used to couple internal components of
processor 3000. In at least one embodiment, an alternative
interconnect unit may be used, such as a point-to-point
interconnect, a switched interconnect, or other techniques.
In at least one embodiment, graphics processor 3008 couples
with ring interconnect 3012 via an [/O link 3013.

[0474] In at least one embodiment, 1/O link 3013 repre-
sents at least one of multiple varieties of I/O interconnects,
including an on package I/O interconnect which facilitates
communication between various processor components and
a high-performance embedded memory module 3018, such

US 2022/0358627 Al

as an eDRAM module. In at least one embodiment, each of
processor cores 3002A-3002N and graphics processor 3008
use embedded memory module 3018 as a shared Last Level
Cache.

[0475] In at least one embodiment, processor cores
3002A-3002N are homogeneous cores executing a common
instruction set architecture. In at least one embodiment,
processor cores 3002A-3002N are heterogeneous in terms of
instruction set architecture (ISA), where one or more of
processor cores 3002A-3002N execute a common instruc-
tion set, while one or more other cores of processor cores
3002A-3002N executes a subset of a common instruction set
or a different instruction set. In at least one embodiment,
processor cores 3002A-3002N are heterogeneous in terms of
microarchitecture, where one or more cores having a rela-
tively higher power consumption couple with one or more
power cores having a lower power consumption. In at least
one embodiment, processor 3000 can be implemented on
one or more chips or as an SoC integrated circuit.

[0476] Inference and/or training logic 1015 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 1015 are provided herein in conjunc-
tion with FIGS. 10A and/or 10B. In at least one embodiment
portions or all of inference and/or training logic 1015 may
be incorporated into graphics processor 3008. For example,
in at least one embodiment, training and/or inferencing
techniques described herein may use one or more of ALUs
embodied in a 3D pipeline, graphics core(s) 3002, shared
function logic, or other logic in FIG. 30. Moreover, in at
least one embodiment, inferencing and/or training opera-
tions described herein may be done using logic other than
logic illustrated in FIG. 10A or 10B. In at least one embodi-
ment, weight parameters may be stored in on-chip or off-
chip memory and/or registers (shown or not shown) that
configure AL Us of processor 3000 to perform one or more
machine learning algorithms, neural network architectures,
use cases, or training techniques described herein.

[0477] FIG. 31 is a block diagram of a graphics processor
3100, which may be a discrete graphics processing unit, or
may be a graphics processor integrated with a plurality of
processing cores. In at least one embodiment, graphics
processor 3100 communicates via a memory mapped 1/O
interface to registers on graphics processor 3100 and with
commands placed into memory. In at least one embodiment,
graphics processor 3100 includes a memory interface 3114
to access memory. In at least one embodiment, memory
interface 3114 is an interface to local memory, one or more
internal caches, one or more shared external caches, and/or
to system memory.

[0478] In at least one embodiment, graphics processor
3100 also includes a display controller 3102 to drive display
output data to a display device 3120. In at least one
embodiment, display controller 3102 includes hardware for
one or more overlay planes for display device 3120 and
composition of multiple layers of video or user interface
elements. In at least one embodiment, display device 3120
can be an internal or external display device. In at least one
embodiment, display device 3120 is a head mounted display
device, such as a virtual reality (VR) display device or an
augmented reality (AR) display device. In at least one
embodiment, graphics processor 3100 includes a video
codec engine 3106 to encode, decode, or transcode media to,
from, or between one or more media encoding formats,

Nov. 10, 2022

including, but not limited to Moving Picture Experts Group
(MPEG) formats such as MPEG-2, Advanced Video Coding
(AVC) formats such as H.264/MPEG-4 AVC, as well as the
Society of Motion Picture & Television Engineers (SMPTE)
421M/VC-1, and Joint Photographic Experts Group (JPEG)
formats such as JPEG, and Motion JPEG (MJPEG) formats.
[0479] In at least one embodiment, graphics processor
3100 includes a block image transter (BLIT) engine 3104 to
perform two-dimensional (2D) rasterizer operations includ-
ing, for example, bit-boundary block transfers. However, in
at least one embodiment, 2D graphics operations are per-
formed using one or more components of a graphics pro-
cessing engine (GPE) 3110. In at least one embodiment,
GPE 3110 is a compute engine for performing graphics
operations, including three-dimensional (3D) graphics
operations and media operations.

[0480] In at least one embodiment, GPE 3110 includes a
3D pipeline 3112 for performing 3D operations, such as
rendering three-dimensional images and scenes using pro-
cessing functions that act upon 3D primitive shapes (e.g.,
rectangle, triangle, etc.). In at least one embodiment, 3D
pipeline 3112 includes programmable and fixed function
elements that perform various tasks and/or spawn execution
threads to a 3D/Media sub-system 3115. While 3D pipeline
3112 can be used to perform media operations, in at least one
embodiment, GPE 3110 also includes a media pipeline 3116
that is used to perform media operations, such as video
post-processing and image enhancement.

[0481] In at least one embodiment, media pipeline 3116
includes fixed function or programmable logic units to
perform one or more specialized media operations, such as
video decode acceleration, video de-interlacing, and video
encode acceleration in place of, or on behalf of, video codec
engine 3106. In at least one embodiment, media pipeline
3116 additionally includes a thread spawning unit to spawn
threads for execution on 3D/Media sub-system 3115. In at
least one embodiment, spawned threads perform computa-
tions for media operations on one or more graphics execu-
tion units included in 3D/Media sub-system 3115.

[0482] In at least one embodiment, 3D/Media subsystem
3115 includes logic for executing threads spawned by 3D
pipeline 3112 and media pipeline 3116. In at least one
embodiment, 3D pipeline 3112 and media pipeline 3116
send thread execution requests to 3D/Media subsystem
3115, which includes thread dispatch logic for arbitrating
and dispatching various requests to available thread execu-
tion resources. In at least one embodiment, execution
resources include an array of graphics execution units to
process 3D and media threads. In at least one embodiment,
3D/Media subsystem 3115 includes one or more internal
caches for thread instructions and data. In at least one
embodiment, subsystem 3115 also includes shared memory,
including registers and addressable memory, to share data
between threads and to store output data.

[0483] Inference and/or training logic 1015 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 1015 are provided herein in conjunc-
tion with FIGS. 10A and/or 10B. In at least one embodiment
portions or all of inference and/or training logic 1015 may
be incorporated into graphics processor 3100. For example,
in at least one embodiment, training and/or inferencing
techniques described herein may use one or more of ALUs
embodied in 3D pipeline 3112. Moreover, in at least one

US 2022/0358627 Al

embodiment, inferencing and/or training operations
described herein may be done using logic other than logic
illustrated in FIG. 10A or 10B. In at least one embodiment,
weight parameters may be stored in on-chip or off-chip
memory and/or registers (shown or not shown) that config-
ure ALUs of graphics processor 3100 to perform one or
more machine learning algorithms, neural network architec-
tures, use cases, or training techniques described herein.

[0484] FIG. 32 is a block diagram of a graphics processing
engine 3210 of a graphics processor in accordance with at
least one embodiment. In at least one embodiment, graphics
processing engine (GPE) 3210 is a version of GPE 3110
shown in FIG. 31. In at least one embodiment, a media
pipeline 3216 is optional and may not be explicitly included
within GPE 3210. In at least one embodiment, a separate
media and/or image processor is coupled to GPE 3210.

[0485] In at least one embodiment, GPE 3210 is coupled
to or includes a command streamer 3203, which provides a
command stream to a 3D pipeline 3212 and/or media
pipeline 3216. In at least one embodiment, command
streamer 3203 is coupled to memory, which can be system
memory, or one or more of internal cache memory and
shared cache memory. In at least one embodiment, com-
mand streamer 3203 receives commands from memory and
sends commands to 3D pipeline 3212 and/or media pipeline
3216. In at least one embodiment, commands are instruc-
tions, primitives, or micro-operations fetched from a ring
buffer, which stores commands for 3D pipeline 3212 and
media pipeline 3216. In at least one embodiment, a ring
buffer can additionally include batch command buffers stor-
ing batches of multiple commands. In at least one embodi-
ment, commands for 3D pipeline 3212 can also include
references to data stored in memory, such as, but not limited
to, vertex and geometry data for 3D pipeline 3212 and/or
image data and memory objects for media pipeline 3216. In
at least one embodiment, 3D pipeline 3212 and media
pipeline 3216 process commands and data by performing
operations or by dispatching one or more execution threads
to a graphics core array 3214. In at least one embodiment,
graphics core array 3214 includes one or more blocks of
graphics cores (e.g., graphics core(s) 3215A, graphics core
(s) 3215B), each block including one or more graphics
cores. In at least one embodiment, each graphics core
includes a set of graphics execution resources that includes
general-purpose and graphics specific execution logic to
perform graphics and compute operations, as well as fixed
function texture processing and/or machine learning and
artificial intelligence acceleration logic, including inference
and/or training logic 1015 in FIG. 10A and FIG. 10B.

[0486] In at least one embodiment, 3D pipeline 3212
includes fixed function and programmable logic to process
one or more shader programs, such as vertex shaders,
geometry shaders, pixel shaders, fragment shaders, compute
shaders, or other shader programs, by processing instruc-
tions and dispatching execution threads to graphics core
array 3214. In at least one embodiment, graphics core array
3214 provides a unified block of execution resources for use
in processing shader programs. In at least one embodiment,
a multi-purpose execution logic (e.g., execution units)
within graphics core(s) 3215A-3215B of graphic core array
3214 includes support for various 3D API shader languages
and can execute multiple simultaneous execution threads
associated with multiple shaders.

Nov. 10, 2022

[0487] In at least one embodiment, graphics core array
3214 also includes execution logic to perform media func-
tions, such as video and/or image processing. In at least one
embodiment, execution units additionally include general-
purpose logic that is programmable to perform parallel
general-purpose computational operations, in addition to
graphics processing operations.

[0488] In at least one embodiment, output data generated
by threads executing on graphics core array 3214 can output
data to memory in a unified return buffer (URB) 3218. In at
least one embodiment, URB 3218 can store data for multiple
threads. In at least one embodiment, URB 3218 may be used
to send data between different threads executing on graphics
core array 3214. In at least one embodiment, URB 3218 may
additionally be used for synchronization between threads on
graphics core array 3214 and fixed function logic within
shared function logic 3220.

[0489] In at least one embodiment, graphics core array
3214 is scalable, such that graphics core array 3214 includes
a variable number of graphics cores, each having a variable
number of execution units based on a target power and
performance level of GPE 3210. In at least one embodiment,
execution resources are dynamically scalable, such that
execution resources may be enabled or disabled as needed.
[0490] In at least one embodiment, graphics core array
3214 is coupled to shared function logic 3220 that includes
multiple resources that are shared between graphics cores in
graphics core array 3214. In at least one embodiment, shared
functions performed by shared function logic 3220 are
embodied in hardware logic units that provide specialized
supplemental functionality to graphics core array 3214. In at
least one embodiment, shared function logic 3220 includes
but is not limited to a sampler unit 3221, a math unit 3222,
and inter-thread communication (ITC) logic 3223. In at least
one embodiment, one or more cache(s) 3225 are included in,
or coupled to, shared function logic 3220.

[0491] In at least one embodiment, a shared function is
used if demand for a specialized function is insufficient for
inclusion within graphics core array 3214. In at least one
embodiment, a single instantiation of a specialized function
is used in shared function logic 3220 and shared among
other execution resources within graphics core array 3214.
In at least one embodiment, specific shared functions within
shared function logic 3220 that are used extensively by
graphics core array 3214 may be included within shared
function logic 3226 within graphics core array 3214. In at
least one embodiment, shared function logic 3226 within
graphics core array 3214 can include some or all logic within
shared function logic 3220. In at least one embodiment, all
logic elements within shared function logic 3220 may be
duplicated within shared function logic 3226 of graphics
core array 3214. In at least one embodiment, shared function
logic 3220 is excluded in favor of shared function logic 3226
within graphics core array 3214.

[0492] Inference and/or training logic 1015 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 1015 are provided herein in conjunc-
tion with FIGS. 10A and/or 10B. In at least one embodiment
portions or all of inference and/or training logic 1015 may
be incorporated into graphics processor 3210. For example,
in at least one embodiment, training and/or inferencing
techniques described herein may use one or more of ALUs
embodied in 3D pipeline 3212, graphics core(s) 3215,

US 2022/0358627 Al

shared function logic 3226, shared function logic 3220, or
other logic in FIG. 32. Moreover, in at least one embodi-
ment, inferencing and/or training operations described
herein may be done using logic other than logic illustrated
in FIG. 10A or 10B. In at least one embodiment, weight
parameters may be stored in on-chip or off-chip memory
and/or registers (shown or not shown) that configure AL Us
of graphics processor 3210 to perform one or more machine
learning algorithms, neural network architectures, use cases,
or training techniques described herein.

[0493] FIG. 33 is a block diagram of hardware logic of a
graphics processor core 3300, according to at least one
embodiment described herein. In at least one embodiment,
graphics processor core 3300 is included within a graphics
core array. In at least one embodiment, graphics processor
core 3300, sometimes referred to as a core slice, can be one
or multiple graphics cores within a modular graphics pro-
cessor. In at least one embodiment, graphics processor core
3300 is exemplary of one graphics core slice, and a graphics
processor as described herein may include multiple graphics
core slices based on target power and performance enve-
lopes. In at least one embodiment, each graphics core 3300
can include a fixed function block 3330 coupled with
multiple sub-cores 3301A-3301F, also referred to as sub-
slices, that include modular blocks of general-purpose and
fixed function logic.

[0494] In at least one embodiment, fixed function block
3330 includes a geometry and fixed function pipeline 3336
that can be shared by all sub-cores in graphics processor
3300, for example, in lower performance and/or lower
power graphics processor implementations. In at least one
embodiment, geometry and fixed function pipeline 3336
includes a 3D fixed function pipeline, a video front-end unit,
a thread spawner and thread dispatcher, and a unified return
buffer manager, which manages unified return buffers.
[0495] In at least one embodiment, fixed function block
3330 also includes a graphics SoC interface 3337, a graphics
microcontroller 3338, and a media pipeline 3339. In at least
one embodiment, graphics SoC interface 3337 provides an
interface between graphics core 3300 and other processor
cores within a system on a chip integrated circuit. In at least
one embodiment, graphics microcontroller 3338 is a pro-
grammable sub-processor that is configurable to manage
various functions of graphics processor 3300, including
thread dispatch, scheduling, and preemption. In at least one
embodiment, media pipeline 3339 includes logic to facilitate
decoding, encoding, pre-processing, and/or post-processing
of multimedia data, including image and video data. In at
least one embodiment, media pipeline 3339 implements
media operations via requests to compute or sampling logic
within sub-cores 3301A-3301F.

[0496] In at least one embodiment, SoC interface 3337
enables graphics core 3300 to communicate with general-
purpose application processor cores (e.g., CPUs) and/or
other components within an SoC, including memory hier-
archy elements such as a shared last level cache memory,
system RAM, and/or embedded on-chip or on-package
DRAM. In at least one embodiment, SoC interface 3337 can
also enable communication with fixed function devices
within an SoC, such as camera imaging pipelines, and
enables use of and/or implements global memory atomics
that may be shared between graphics core 3300 and CPUs
within an SoC. In at least one embodiment, graphics SoC
interface 3337 can also implement power management con-

Nov. 10, 2022

trols for graphics processor core 3300 and enable an inter-
face between a clock domain of graphics processor core
3300 and other clock domains within an SeC. In at least one
embodiment, SoC interface 3337 enables receipt of com-
mand buffers from a command streamer and global thread
dispatcher that are configured to provide commands and
instructions to each of one or more graphics cores within a
graphics processor. In at least one embodiment, commands
and instructions can be dispatched to media pipeline 3339,
when media operations are to be performed, or a geometry
and fixed function pipeline (e.g., geometry and fixed func-
tion pipeline 3336, and/or a geometry and fixed function
pipeline 3314) when graphics processing operations are to
be performed.

[0497] In at least one embodiment, graphics microcon-
troller 3338 can be configured to perform various scheduling
and management tasks for graphics core 3300. In at least one
embodiment, graphics microcontroller 3338 can perform
graphics and/or compute workload scheduling on various
graphics parallel engines within execution unit (EU) arrays
3302A-3302F, 3304-3304F within sub-cores 3301A-3301F.
In at least one embodiment, host software executing on a
CPU core of an SoC including graphics core 3300 can
submit workloads to one of multiple graphic processor
paths, which invokes a scheduling operation on an appro-
priate graphics engine. In at least one embodiment, sched-
uling operations include determining which workload to run
next, submitting a workload to a command streamer, pre-
empting existing workloads running on an engine, monitor-
ing progress of a workload, and notifying host software
when a workload is complete. In at least one embodiment,
graphics microcontroller 3338 can also facilitate low-power
or idle states for graphics core 3300, providing graphics core
3300 with an ability to save and restore registers within
graphics core 3300 across low-power state transitions inde-
pendently from an operating system and/or graphics driver
software on a system.

[0498] In at least one embodiment, graphics core 3300
may have greater than or fewer than illustrated sub-cores
3301A-3301F, up to N modular sub-cores. For each set of N
sub-cores, in at least one embodiment, graphics core 3300
can also include shared function logic 3310, shared and/or
cache memory 3312, geometry/fixed function pipeline 3314,
as well as additional fixed function logic 3316 to accelerate
various graphics and compute processing operations. In at
least one embodiment, shared function logic 3310 can
include logic units (e.g., sampler, math, and/or inter-thread
communication logic) that can be shared by each N sub-
cores within graphics core 3300. In at least one embodiment,
shared and/or cache memory 3312 can be a last-level cache
for N sub-cores 3301A-3301F within graphics core 3300
and can also serve as shared memory that is accessible by
multiple sub-cores. In at least one embodiment, geometry/
fixed function pipeline 3314 can be included instead of
geometry/fixed function pipeline 3336 within fixed function
block 3330 and can include similar logic units.

[0499] In at least one embodiment, graphics core 3300
includes additional fixed function logic 3316 that can
include various fixed function acceleration logic for use by
graphics core 3300. In at least one embodiment, additional
fixed function logic 3316 includes an additional geometry
pipeline for use in position-only shading. In position-only
shading, at least two geometry pipelines exist, whereas in a
full geometry pipeline within geometry and fixed function

US 2022/0358627 Al

pipelines 3314, 3336, and a cull pipeline, which is an
additional geometry pipeline that may be included within
additional fixed function logic 3316. In at least one embodi-
ment, a cull pipeline is a trimmed down version of a full
geometry pipeline. In at least one embodiment, a full pipe-
line and a cull pipeline can execute different instances of an
application, each instance having a separate context. In at
least one embodiment, position only shading can hide long
cull runs of discarded triangles, enabling shading to be
completed earlier in some instances. For example, in at least
one embodiment, cull pipeline logic within additional fixed
function logic 3316 can execute position shaders in parallel
with a main application and generally generates critical
results faster than a full pipeline, as a cull pipeline fetches
and shades position attributes of vertices, without perform-
ing rasterization and rendering of pixels to a frame buffer. In
at least one embodiment, a cull pipeline can use generated
critical results to compute visibility information for all
triangles without regard to whether those triangles are
culled. In at least one embodiment, a full pipeline (which in
this instance may be referred to as a replay pipeline) can
consume visibility information to skip culled triangles to
shade only visible triangles that are finally passed to a
rasterization phase.

[0500] In at least one embodiment, additional fixed func-
tion logic 3316 can also include machine-learning accelera-
tion logic, such as fixed function matrix multiplication logic,
for implementations including optimizations for machine
learning training or inferencing.

[0501] In at least one embodiment, within each graphics
sub-core 3301A-3301F includes a set of execution resources
that may be used to perform graphics, media, and compute
operations in response to requests by graphics pipeline,
media pipeline, or shader programs. In at least one embodi-
ment, graphics sub-cores 3301A-3301F include multiple EU
arrays 3302A-3302F, 3304-3304F, thread dispatch and inter-
thread communication (TD/IC) logic 3303A-3303F, a 3D
(e.g., texture) sampler 3305A-3305F, a media sampler
3306A-3306F, a shader processor 3307A-3307F, and shared
local memory (SLM) 3308A-3308F. In at least one embodi-
ment, EU arrays 3302A-3302F, 3304-3304F each include
multiple execution units, which are general-purpose graph-
ics processing units capable of performing floating-point and
integer/fixed-point logic operations in service of a graphics,
media, or compute operation, including graphics, media, or
compute shader programs. In at least one embodiment,
TD/IC logic 3303A-3303F performs local thread dispatch
and thread control operations for execution units within a
sub-core and facilitates communication between threads
executing on execution units of a sub-core. In at least one
embodiment, 3D samplers 3305A-3305F can read texture or
other 3D graphics related data into memory. In at least one
embodiment, 3D samplers can read texture data differently
based on a configured sample state and texture format
associated with a given texture. In at least one embodiment,
media samplers 3306A-3306F can perform similar read
operations based on a type and format associated with media
data. In at least one embodiment, each graphics sub-core
3301A-3301F can alternately include a unified 3D and
media sampler. In at least one embodiment, threads execut-
ing on execution units within each of sub-cores 3301A-
3301F can make use of shared local memory 3308A-3308F

Nov. 10, 2022

within each sub-core, to enable threads executing within a
thread group to execute using a common pool of on-chip
memory.

[0502] Inference and/or training logic 1015 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 1015 are provided herein in conjunc-
tion with FIGS. 10A and/or 10B. In at least one embodiment,
portions or all of inference and/or training logic 1015 may
be incorporated into graphics processor 3300. For example,
in at least one embodiment, training and/or inferencing
techniques described herein may use one or more of ALUs
embodied in a 3D pipeline, graphics microcontroller 3338,
geometry and fixed function pipeline 3314 and 3336, or
other logic in FIG. 33. Moreover, in at least one embodi-
ment, inferencing and/or training operations described
herein may be done using logic other than logic illustrated
in FIG. 10A or 10B. In at least one embodiment, weight
parameters may be stored in on-chip or off-chip memory
and/or registers (shown or not shown) that configure AL Us
of graphics processor 3300 to perform one or more machine
learning algorithms, neural network architectures, use cases,
or training techniques described herein.

[0503] FIGS. 34A-34B illustrate thread execution logic
3400 including an array of processing elements of a graphics
processor core according to at least one embodiment. FIG.
34A illustrates at least one embodiment, in which thread
execution logic 3400 is used. FIG. 34B illustrates exemplary
internal details of a graphics execution unit 3408, according
to at least one embodiment.

[0504] As illustrated in FIG. 34A, in at least one embodi-
ment, thread execution logic 3400 includes a shader proces-
sor 3402, a thread dispatcher 3404, an instruction cache
3406, a scalable execution unit array including a plurality of
execution units 3407A-3407N and 3408A-3408N, a sampler
3410, a data cache 3412, and a data port 3414. In at least one
embodiment, a scalable execution unit array can dynami-
cally scale by enabling or disabling one or more execution
units (e.g., any of execution unit 3408A-N or 3407A-N)
based on computational requirements of a workload, for
example. In at least one embodiment, scalable execution
units are interconnected via an interconnect fabric that links
to each execution unit. In at least one embodiment, thread
execution logic 3400 includes one or more connections to
memory, such as system memory or cache memory, through
one or more of instruction cache 3406, data port 3414,
sampler 3410, and execution units 3407 or 3408. In at least
one embodiment, each execution unit (e.g., 3407A) is a
stand-alone programmable general-purpose computational
unit that is capable of executing multiple simultaneous
hardware threads while processing multiple data elements in
parallel for each thread. In at least one embodiment, array of
execution units 3407 and/or 3408 is scalable to include any
number individual execution units.

[0505] In at least one embodiment, execution units 3407
and/or 3408 are primarily used to execute shader programs.
In at least one embodiment, shader processor 3402 can
process various shader programs and dispatch execution
threads associated with shader programs via a thread dis-
patcher 3404. In at least one embodiment, thread dispatcher
3404 includes logic to arbitrate thread initiation requests
from graphics and media pipelines and instantiate requested
threads on one or more execution units in execution units
3407 and/or 3408. For example, in at least one embodiment,

US 2022/0358627 Al

a geometry pipeline can dispatch vertex, tessellation, or
geometry shaders to thread execution logic for processing.
In at least one embodiment, thread dispatcher 3404 can also
process runtime thread spawning requests from executing
shader programs.

[0506] In at least one embodiment, execution units 3407
and/or 3408 support an instruction set that includes native
support for many standard 3D graphics shader instructions,
such that shader programs from graphics libraries (e.g.,
Direct 3D and OpenGL) are executed with a minimal
translation. In at least one embodiment, execution units
support vertex and geometry processing (e.g., vertex pro-
grams, geometry programs, and/or vertex shaders), pixel
processing (e.g., pixel shaders, fragment shaders) and gen-
eral-purpose processing (e.g., compute and media shaders).
In at least one embodiment, each of execution units 3407
and/or 3408, which include one or more arithmetic logic
units (ALUs), is capable of multi-issue single instruction
multiple data (SIMD) execution and multi-threaded opera-
tion enables an efficient execution environment despite
higher latency memory accesses. In at least one embodi-
ment, each hardware thread within each execution unit has
a dedicated high-bandwidth register file and associated
independent thread-state. In at least one embodiment, execu-
tion is multi-issue per clock to pipelines capable of integer,
single and double precision floating point operations, SIMD
branch capability, logical operations, transcendental opera-
tions, and other miscellaneous operations. In at least one
embodiment, while waiting for data from memory or one of
shared functions, dependency logic within execution units
3407 and/or 3408 causes a waiting thread to sleep until
requested data has been returned. In at least one embodi-
ment, while an awaiting thread is sleeping, hardware
resources may be devoted to processing other threads. For
example, in at least one embodiment, during a delay asso-
ciated with a vertex shader operation, an execution unit can
perform operations for a pixel shader, fragment shader, or
another type of shader program, including a different vertex
shader.

[0507] In at least one embodiment, each execution unit in
execution units 3407 and/or 3408 operates on arrays of data
elements. In at least one embodiment, a number of data
elements is an “execution size,” or number of channels for
an instruction. In at least one embodiment, an execution
channel is a logical unit of execution for data element
access, masking, and flow control within instructions. In at
least one embodiment, a number of channels may be inde-
pendent of a number of physical arithmetic logic units
(ALUs) or floating point units (FPUs) for a particular
graphics processor. In at least one embodiment, execution
units 3407 and/or 3408 support integer and floating-point
data types.

[0508] In at least one embodiment, an execution unit
instruction set includes SIMD instructions. In at least one
embodiment, various data elements can be stored as a
packed data type in a register and execution unit will process
various elements based on data size of elements. For
example, in at least one embodiment, when operating on a
256-bit wide vector, 256 bits of a vector are stored in a
register and an execution unit operates on a vector as four
separate 64-bit packed data elements (Quad-Word (QW)
size data elements), eight separate 32-bit packed data ele-
ments (Double Word (DW) size data elements), sixteen
separate 16-bit packed data elements (Word (W) size data

Nov. 10, 2022

elements), or thirty-two separate 8-bit data elements (byte
(B) size data elements). However, in at least one embodi-
ment, different vector widths and register sizes are possible.

[0509] In at least one embodiment, one or more execution
units can be combined into a fused execution unit 3409A-
3409N having thread control logic (3411A-3411N) that is
common to fused EUs such as execution unit 3407A fused
with execution unit 3408 A into fused execution unit 3409A.
In at least one embodiment, multiple EUs can be fused into
an EU group. In at least one embodiment, each EU in a fused
EU group can be configured to execute a separate SIMD
hardware thread, with a number of EUs in a fused EU group
possibly varying according to various embodiments. In at
least one embodiment, various SIMD widths can be per-
formed per-EU, including but not limited to SIMDS,
SIMD16, and SIMD32. In at least one embodiment, each
fused graphics execution unit 3409A-3409N includes at
least two execution units. For example, in at least one
embodiment, fused execution unit 3409A includes a first EU
3407A, second EU 3408A, and thread control logic 3411A
that is common to first EU 3407 A and second EU 3408A. In
at least one embodiment, thread control logic 3411A con-
trols threads executed on fused graphics execution unit
3409A, allowing each EU within fused execution units
3409A-3409N to execute using a common instruction
pointer register.

[0510] In at least one embodiment, one or more internal
instruction caches (e.g., 3406) are included in thread execu-
tion logic 3400 to cache thread instructions for execution
units. In at least one embodiment, one or more data caches
(e.g., 3412) are included to cache thread data during thread
execution. In at least one embodiment, sampler 3410 is
included to provide texture sampling for 3D operations and
media sampling for media operations. In at least one
embodiment, sampler 3410 includes specialized texture or
media sampling functionality to process texture or media
data during sampling process before providing sampled data
to an execution unit.

[0511] During execution, in at least one embodiment,
graphics and media pipelines send thread initiation requests
to thread execution logic 3400 via thread spawning and
dispatch logic. In at least one embodiment, once a group of
geometric objects has been processed and rasterized into
pixel data, pixel processor logic (e.g., pixel shader logic,
fragment shader logic, etc.) within shader processor 3402 is
invoked to further compute output information and cause
results to be written to output surfaces (e.g., color buffers,
depth buffers, stencil buffers, etc.). In at least one embodi-
ment, a pixel shader or a fragment shader calculates values
of various vertex attributes that are to be interpolated across
a rasterized object. In at least one embodiment, pixel pro-
cessor logic within shader processor 3402 then executes an
application programming interface (API)-supplied pixel or
fragment shader program. In at least one embodiment, to
execute a shader program, shader processor 3402 dispatches
threads to an execution unit (e.g., 3408A) via thread dis-
patcher 3404. In at least one embodiment, shader processor
3402 uses texture sampling logic in sampler 3410 to access
texture data in texture maps stored in memory. In at least one
embodiment, arithmetic operations on texture data and input
geometry data compute pixel color data for each geometric
fragment, or discards one or more pixels from further
processing.

US 2022/0358627 Al

[0512] In at least one embodiment, data port 3414 pro-
vides a memory access mechanism for thread execution
logic 3400 to output processed data to memory for further
processing on a graphics processor output pipeline. In at
least one embodiment, data port 3414 includes or couples to
one or more cache memories (e.g., data cache 3412) to cache
data for memory access via a data port.

[0513] As illustrated in FIG. 34B, in at least one embodi-
ment, a graphics execution unit 3408 can include an instruc-
tion fetch unit 3437, a general register file array (GRF) 3424,
an architectural register file array (ARF) 3426, a thread
arbiter 3422, a send unit 3430, a branch unit 3432, a set of
SIMD floating point units (FPUs) 3434, and a set of dedi-
cated integer SIMD ALUs 3435. In at least one embodiment,
GRF 3424 and ARF 3426 includes a set of general register
files and architecture register files associated with each
simultaneous hardware thread that may be active in graphics
execution unit 3408. In at least one embodiment, per thread
architectural state is maintained in ARF 3426, while data
used during thread execution is stored in GRF 3424. In at
least one embodiment, execution state of each thread,
including instruction pointers for each thread, can be held in
thread-specific registers in ARF 3426.

[0514] In atleast one embodiment, graphics execution unit
3408 has an architecture that is a combination of Simulta-
neous Multi-Threading (SMT) and fine-grained Interleaved
Multi-Threading (IMT). In at least one embodiment, archi-
tecture has a modular configuration that can be fine-tuned at
design time based on a target number of simultaneous
threads and number of registers per execution unit, where
execution unit resources are divided across logic used to
execute multiple simultaneous threads.

[0515] In atleast one embodiment, graphics execution unit
3408 can co-issue multiple instructions, which may each be
different instructions. In at least one embodiment, thread
arbiter 3422 of graphics execution unit thread 3408 can
dispatch instructions to one of send unit 3430, branch unit
3432, or SIMD FPU(s) 3434 for execution. In at least one
embodiment, each execution thread can access 128 general-
purpose registers within GRF 3424, where each register can
store 32 bytes, accessible as a SIMD 8-element vector of
32-bit data elements. In at least one embodiment, each
execution unit thread has access to 4 kilobytes within GRF
3424, although embodiments are not so limited, and greater
or fewer register resources may be provided in other
embodiments. In at least one embodiment, up to seven
threads can execute simultaneously, although a number of
threads per execution unit can also vary according to
embodiments. In at least one embodiment, in which seven
threads may access 4 kilobytes, GRF 3424 can store a total
of 28 kilobytes. In at least one embodiment, flexible address-
ing modes can permit registers to be addressed together to
build effectively wider registers or to represent strided
rectangular block data structures.

[0516] In at least one embodiment, memory operations,
sampler operations, and other longer-latency system com-
munications are dispatched via “send” instructions that are
executed by message passing to send unit 3430. In at least
one embodiment, branch instructions are dispatched to
branch unit 3432 to facilitate SIMD divergence and eventual
convergence.

[0517] Inatleast one embodiment, graphics execution unit
3408 includes one or more SIMD floating point units
(FPU(s)) 3434 to perform floating-point operations. In at

Nov. 10, 2022

least one embodiment, FPU(s) 3434 also support integer
computation. In at least one embodiment, FPU(s) 3434 can
SIMD execute up to M number of 32-bit floating-point (or
integer) operations, or SIMD execute up to 2M 16-bit
integer or 16-bit floating-point operations. In at least one
embodiment, at least one FPU provides extended math
capability to support high-throughput transcendental math
functions and double precision 64-bit floating-point. In at
least one embodiment, a set of 8-bit integer SIMD ALUs
3435 are also present, and may be specifically optimized to
perform operations associated with machine learning com-
putations.

[0518] In at least one embodiment, arrays of multiple
instances of graphics execution unit 3408 can be instantiated
in a graphics sub-core grouping (e.g., a sub-slice). In at least
one embodiment, execution unit 3408 can execute instruc-
tions across a plurality of execution channels. In at least one
embodiment, each thread executed on graphics execution
unit 3408 is executed on a different channel.

[0519] Inference and/or training logic 1015 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 1015 are provided herein in conjunc-
tion with FIGS. 10A and/or 10B. In at least one embodiment,
portions or all of inference and/or training logic 1015 may
be incorporated into thread execution logic 3400. Moreover,
in at least one embodiment, inferencing and/or training
operations described herein may be done using logic other
than logic illustrated in FIG. 10A or 10B. In at least one
embodiment, weight parameters may be stored in on-chip or
off-chip memory and/or registers (shown or not shown) that
configure AL Us thread of execution logic 3400 to perform
one or more machine learning algorithms, neural network
architectures, use cases, or training techniques described
herein.

[0520] FIG. 35 illustrates a parallel processing unit
(“PPU”) 3500, according to at least one embodiment. In at
least one embodiment, PPU 3500 is configured with
machine-readable code that, if executed by PPU 3500,
causes PPU 3500 to perform some or all of processes and
techniques described throughout this disclosure. In at least
one embodiment, PPU 3500 is a multi-threaded processor
that is implemented on one or more integrated circuit
devices and that utilizes multithreading as a latency-hiding
technique designed to process computer-readable instruc-
tions (also referred to as machine-readable instructions or
simply instructions) on multiple threads in parallel. In at
least one embodiment, a thread refers to a thread of execu-
tion and is an instantiation of a set of instructions configured
to be executed by PPU 3500. In at least one embodiment,
PPU 3500 is a graphics processing unit (“GPU”) configured
to implement a graphics rendering pipeline for processing
three-dimensional (“3D”) graphics data in order to generate
two-dimensional (“2D") image data for display on a display
device such as a liquid crystal display (“LCD”) device. In at
least one embodiment, PPU 3500 is utilized to perform
computations such as linear algebra operations and machine-
learning operations. FIG. 35 illustrates an example parallel
processor for illustrative purposes only and should be con-
strued as a non-limiting example of processor architectures
contemplated within scope of this disclosure and that any
suitable processor may be employed to supplement and/or
substitute for same.

US 2022/0358627 Al

[0521] In at least one embodiment, one or more PPUs
3500 are configured to accelerate High Performance Com-
puting (“HPC”), data center, and machine learning applica-
tions. In at least one embodiment, PPU 3500 is configured
to accelerate deep learning systems and applications includ-
ing following non-limiting examples: autonomous vehicle
platforms, deep learning, high-accuracy speech, image, text
recognition systems, intelligent video analytics, molecular
simulations, drug discovery, disease diagnosis, weather fore-
casting, big data analytics, astronomy, molecular dynamics
simulation, financial modeling, robotics, factory automation,
real-time language translation, online search optimizations,
and personalized user recommendations, and more.

[0522] In at least one embodiment, PPU 3500 includes,
without limitation, an Input/Output (“I/O”) unit 3506, a
front-end unit 3510, a scheduler unit 3512, a work distri-
bution unit 3514, a hub 3516, a crossbar (“XBar”) 3520, one
or more general processing clusters (“GPCs”) 3518, and one
or more partition units (“memory partition units”) 3522. In
at least one embodiment, PPU 3500 is connected to a host
processor or other PPUs 3500 via one or more high-speed
GPU interconnects (“GPU interconnects™) 3508. In at least
one embodiment, PPU 3500 is connected to a host processor
or other peripheral devices via a system bus 3502. In at least
one embodiment, PPU 3500 is connected to a local memory
comprising one or more memory devices (“memory”) 3504.
In at least one embodiment, memory devices 3504 include,
without limitation, one or more dynamic random access
memory (“DRAM?”) devices. In at least one embodiment,
one or more DRAM devices are configured and/or config-
urable as high-bandwidth memory (“HBM”) subsystems,
with multiple DRAM dies stacked within each device.
[0523] In at least one embodiment, high-speed GPU inter-
connect 3508 may refer to a wire-based multi-lane commu-
nications link that is used by systems to scale and include
one or more PPUs 3500 combined with one or more central
processing units (“CPUs™), supports cache coherence
between PPUs 3500 and CPUs, and CPU mastering. In at
least one embodiment, data and/or commands are transmit-
ted by high-speed GPU interconnect 3508 through hub 3516
to/from other units of PPU 3500 such as one or more copy
engines, video encoders, video decoders, power manage-
ment units, and other components which may not be explic-
itly illustrated in FIG. 35.

[0524] In at least one embodiment, I/O unit 3506 is
configured to transmit and receive communications (e.g.,
commands, data) from a host processor (not illustrated in
FIG. 35) over system bus 3502. In at least one embodiment,
1/0 unit 3506 communicates with host processor directly via
system bus 3502 or through one or more intermediate
devices such as a memory bridge. In at least one embodi-
ment, [/O unit 3506 may communicate with one or more
other processors, such as one or more of PPUs 3500 via
system bus 3502. In at least one embodiment, I/O unit 3506
implements a Peripheral Component Interconnect Express
(“PCle”) interface for communications over a PCle bus. In
at least one embodiment, /O unit 3506 implements inter-
faces for communicating with external devices.

[0525] In at least one embodiment, I/O unit 3506 decodes
packets received via system bus 3502. In at least one
embodiment, at least some packets represent commands
configured to cause PPU 3500 to perform various opera-
tions. In at least one embodiment, I/O unit 3506 transmits
decoded commands to various other units of PPU 3500 as

Nov. 10, 2022

specified by commands. In at least one embodiment, com-
mands are transmitted to front-end unit 3510 and/or trans-
mitted to hub 3516 or other units of PPU 3500 such as one
or more copy engines, a video encoder, a video decoder, a
power management unit, etc. (not explicitly illustrated in
FIG. 35). In at least one embodiment, I/O unit 3506 is
configured to route communications between and among
various logical units of PPU 3500.

[0526] In at least one embodiment, a program executed by
host processor encodes a command stream in a buffer that
provides workloads to PPU 3500 for processing. In at least
one embodiment, a workload comprises instructions and
data to be processed by those instructions. In at least one
embodiment, a buffer is a region in a memory that is
accessible (e.g., read/write) by both a host processor and
PPU 3500—a host interface unit may be configured to
access that buffer in a system memory connected to system
bus 3502 via memory requests transmitted over system bus
3502 by 1/O unit 3506. In at least one embodiment, a host
processor writes a command stream to a buffer and then
transmits a pointer to a start of a command stream to PPU
3500 such that front-end unit 3510 receives pointers to one
or more command streams and manages one or more com-
mand streams, reading commands from command streams
and forwarding commands to various units of PPU 3500.

[0527] In at least one embodiment, front-end unit 3510 is
coupled to scheduler unit 3512 that configures various GPCs
3518 to process tasks defined by one or more command
streams. In at least one embodiment, scheduler unit 3512 is
configured to track state information related to various tasks
managed by scheduler unit 3512 where state information
may indicate which of GPCs 3518 a task is assigned to,
whether task is active or inactive, a priority level associated
with task, and so forth. In at least one embodiment, sched-
uler unit 3512 manages execution of a plurality of tasks on
one or more of GPCs 3518.

[0528] In at least one embodiment, scheduler unit 3512 is
coupled to work distribution unit 3514 that is configured to
dispatch tasks for execution on GPCs 3518. In at least one
embodiment, work distribution unit 3514 tracks a number of
scheduled tasks received from scheduler unit 3512 and work
distribution unit 3514 manages a pending task pool and an
active task pool for each of GPCs 3518. In at least one
embodiment, pending task pool comprises a number of slots
(e.g., 32 slots) that contain tasks assigned to be processed by
a particular GPC 3518; an active task pool may comprise a
number of slots (e.g., 4 slots) for tasks that are actively being
processed by GPCs 3518 such that as one of GPCs 3518
completes execution of a task, that task is evicted from that
active task pool for GPC 3518 and another task from a
pending task pool is selected and scheduled for execution on
GPC 3518. In at least one embodiment, if an active task is
idle on GPC 3518, such as while waiting for a data depen-
dency to be resolved, then that active task is evicted from
GPC 3518 and returned to that pending task pool while
another task in that pending task pool is selected and
scheduled for execution on GPC 3518.

[0529] In at least one embodiment, work distribution unit
3514 communicates with one or more GPCs 3518 via XBar
3520. In at least one embodiment, XBar 3520 is an inter-
connect network that couples many of units of PPU 3500 to
other units of PPU 3500 and can be configured to couple
work distribution unit 3514 to a particular GPC 3518. In at

US 2022/0358627 Al

least one embodiment, one or more other units of PPU 3500
may also be connected to XBar 3520 via hub 3516.
[0530] In at least one embodiment, tasks are managed by
scheduler unit 3512 and dispatched to one of GPCs 3518 by
work distribution unit 3514. In at least one embodiment,
GPC 3518 is configured to process task and generate results.
In at least one embodiment, results may be consumed by
other tasks within GPC 3518, routed to a different GPC 3518
via XBar 3520, or stored in memory 3504. In at least one
embodiment, results can be written to memory 3504 via
partition units 3522, which implement a memory interface
for reading and writing data to/from memory 3504. In at
least one embodiment, results can be transmitted to another
PPU or CPU via high-speed GPU interconnect 3508. In at
least one embodiment, PPU 3500 includes, without limita-
tion, a number U of partition units 3522 that is equal to a
number of separate and distinct memory devices 3504
coupled to PPU 3500, as described in more detail herein in
conjunction with FIG. 37.

[0531] In at least one embodiment, a host processor
executes a driver kernel that implements an application
programming interface (“API”) that enables one or more
applications executing on a host processor to schedule
operations for execution on PPU 3500. In at least one
embodiment, multiple compute applications are simultane-
ously executed by PPU 3500 and PPU 3500 provides
isolation, quality of service (“QoS”), and independent
address spaces for multiple compute applications. In at least
one embodiment, an application generates instructions (e.g.,
in form of API calls) that cause a driver kernel to generate
one or more tasks for execution by PPU 3500 and that driver
kernel outputs tasks to one or more streams being processed
by PPU 3500. In at least one embodiment, each task com-
prises one or more groups of related threads, which may be
referred to as a warp. In at least one embodiment, a warp
comprises a plurality of related threads (e.g., 32 threads) that
can be executed in parallel. In at least one embodiment,
cooperating threads can refer to a plurality of threads includ-
ing instructions to perform task and that exchange data
through shared memory. In at least one embodiment, threads
and cooperating threads are described in more detail in
conjunction with FIG. 37.

[0532] Inference and/or training logic 1015 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 1015 are provided herein in conjunc-
tion with FIGS. 10A and/or 10B. In at least one embodiment,
deep learning application processor is used to train a
machine learning model, such as a neural network, to predict
or infer information provided to PPU 3500. In at least one
embodiment, deep learning application processor is used to
infer or predict information based on a trained machine
learning model (e.g., neural network) that has been trained
by another processor or system or by PPU 3500. In at least
one embodiment, PPU 3500 may be used to perform one or
more neural network use cases described herein.

[0533] FIG. 36 illustrates a general processing cluster
(“GPC”) 3600, according to at least one embodiment. In at
least one embodiment, GPC 3600 is GPC 3518 of FIG. 35.
In at least one embodiment, each GPC 3600 includes,
without limitation, a number of hardware units for process-
ing tasks and each GPC 3600 includes, without limitation, a
pipeline manager 3602, a pre-raster operations unit
(“preROP”) 3604, a raster engine 3608, a work distribution

Nov. 10, 2022

crossbar (“WDX”) 3616, a memory management unit
(“MMU”) 3618, one or more Data Processing Clusters
(“DPCs”) 3606, and any suitable combination of parts.

[0534] In atleast one embodiment, operation of GPC 3600
is controlled by pipeline manager 3602. In at least one
embodiment, pipeline manager 3602 manages configuration
of one or more DPCs 3606 for processing tasks allocated to
GPC 3600. In at least one embodiment, pipeline manager
3602 configures at least one of one or more DPCs 3606 to
implement at least a portion of a graphics rendering pipeline.
In at least one embodiment, DPC 3606 is configured to
execute a vertex shader program on a programmable stream-
ing multi-processor (“SM”) 3614. In at least one embodi-
ment, pipeline manager 3602 is configured to route packets
received from a work distribution unit to appropriate logical
units within GPC 3600, in at least one embodiment, and
some packets may be routed to fixed function hardware units
in preROP 3604 and/or raster engine 3608 while other
packets may be routed to DPCs 3606 for processing by a
primitive engine 3612 or SM 3614. In at least one embodi-
ment, pipeline manager 3602 configures at least one of
DPCs 3606 to implement a neural network model and/or a
computing pipeline.

[0535] In at least one embodiment, preROP unit 3604 is
configured, in at least one embodiment, to route data gen-
erated by raster engine 3608 and DPCs 3606 to a Raster
Operations (“ROP”) unit in partition unit 3522, described in
more detail above in conjunction with FIG. 35. In at least
one embodiment, preROP unit 3604 is configured to perform
optimizations for color blending, organize pixel data, per-
form address translations, and more. In at least one embodi-
ment, raster engine 3608 includes, without limitation, a
number of fixed function hardware units configured to
perform various raster operations, in at least one embodi-
ment, and raster engine 3608 includes, without limitation, a
setup engine, a coarse raster engine, a culling engine, a
clipping engine, a fine raster engine, a tile coalescing engine,
and any suitable combination thereof. In at least one
embodiment, setup engine receives transformed vertices and
generates plane equations associated with geometric primi-
tive defined by vertices; plane equations are transmitted to a
coarse raster engine to generate coverage information (e.g.,
an X, y coverage mask for a tile) for primitive; output of a
coarse raster engine is transmitted to a culling engine where
fragments associated with a primitive that fail a z-test are
culled, and transmitted to a clipping engine where fragments
lying outside a viewing frustum are clipped. In at least one
embodiment, fragments that survive clipping and culling are
passed to a fine raster engine to generate attributes for pixel
fragments based on plane equations generated by a setup
engine. In at least one embodiment, an output of raster
engine 3608 comprises fragments to be processed by any
suitable entity, such as by a fragment shader implemented
within DPC 3606.

[0536] In at least one embodiment, each DPC 3606
included in GPC 3600 comprises, without limitation, an
M-Pipe Controller (“MPC”) 3610; primitive engine 3612;
one or more SMs 3614; and any suitable combination
thereof. In at least one embodiment, MPC 3610 controls
operation of DPC 3606, routing packets received from
pipeline manager 3602 to appropriate units in DPC 3606. In
at least one embodiment, packets associated with a vertex
are routed to primitive engine 3612, which is configured to
fetch vertex attributes associated with a vertex from

US 2022/0358627 Al

memory; in contrast, packets associated with a shader pro-
gram may be transmitted to SM 3614.

[0537] In at least one embodiment, SM 3614 comprises,
without limitation, a programmable streaming processor that
is configured to process tasks represented by a number of
threads. In at least one embodiment, SM 3614 is multi-
threaded and configured to execute a plurality of threads
(e.g., 32 threads) from a particular group of threads concur-
rently and implements a Single-Instruction, Multiple-Data
(“SIMD”) architecture where each thread in a group of
threads (e.g., a warp) is configured to process a different set
of data based on same set of instructions. In at least one
embodiment, all threads in group of threads execute a
common set of instructions. In at least one embodiment, SM
3614 implements a Single-Instruction, Multiple Thread
(“SIMT”) architecture wherein each thread in a group of
threads is configured to process a different set of data based
on that common set of instructions, but where individual
threads in a group of threads are allowed to diverge during
execution. In at least one embodiment, a program counter,
call stack, and execution state is maintained for each warp,
enabling concurrency between warps and serial execution
within warps when threads within a warp diverge. In another
embodiment, a program counter, call stack, and execution
state is maintained for each individual thread, enabling equal
concurrency between all threads, within and between warps.
In at least one embodiment, execution state is maintained for
each individual thread and threads executing common
instructions may be converged and executed in parallel for
better efficiency. At least one embodiment of SM 3614 is
described in more detail herein.

[0538] In at least one embodiment, MMU 3618 provides
an interface between GPC 3600 and a memory partition unit
(e.g., partition unit 3522 of FIG. 35) and MMU 3618
provides translation of virtual addresses into physical
addresses, memory protection, and arbitration of memory
requests. In at least one embodiment, MMU 3618 provides
one or more translation lookaside buffers (“TLBs”) for
performing translation of virtual addresses into physical
addresses in memory.

[0539] Inference and/or training logic 1015 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 1015 are provided herein in conjunc-
tion with FIGS. 10A and/or 10B. In at least one embodiment,
deep learning application processor is used to train a
machine learning model, such as a neural network, to predict
or infer information provided to GPC 3600. In at least one
embodiment, GPC 3600 is used to infer or predict informa-
tion based on a trained machine learning model (e.g., neural
network) that has been trained by another processor or
system or by GPC 3600. In at least one embodiment, GPC
3600 may be used to perform one or more neural network
use cases described herein.

[0540] FIG. 37 illustrates a memory partition unit 3700 of
a parallel processing unit (“PPU”), in accordance with at
least one embodiment. In at least one embodiment, memory
partition unit 3700 includes, without limitation, a Raster
Operations (“ROP”) unit 3702, a level two (“L2”) cache
3704, a memory interface 3706, and any suitable combina-
tion thereof. In at least one embodiment, memory interface
3706 is coupled to memory. In at least one embodiment,
memory interface 3706 may implement 32, 64, 128, 1024-
bit data buses, or like, for high-speed data transfer. In at least

Nov. 10, 2022

one embodiment, PPU incorporates U memory interfaces
3706 where U is a positive integer, with one memory
interface 3706 per pair of partition units 3700, where each
pair of partition units 3700 is connected to a corresponding
memory device. For example, in at least one embodiment,
PPU may be connected to up to Y memory devices, such as
high bandwidth memory stacks or graphics double-data-rate,
version 5, synchronous dynamic random access memory
(“GDDRS5 SDRAM™).

[0541] In atleast one embodiment, memory interface 3706
implements a high bandwidth memory second generation
(“HBM2”) memory interface and Y equals half of U. In at
least one embodiment, HBM2 memory stacks are located on
a physical package with a PPU, providing substantial power
and area savings compared with conventional GDDRS
SDRAM systems. In at least one embodiment, each HBM2
stack includes, without limitation, four memory dies with
Y=4, with each HBM2 stack including two 128-bit channels
per die for a total of 8 channels and a data bus width of 1024
bits. In at least one embodiment, that memory supports
Single-Error ~ Correcting Double-Error Detecting
(“SECDED”) Error Correction Code (“ECC”) to protect
data. In at least one embodiment, ECC can provide higher
reliability for compute applications that are sensitive to data
corruption.

[0542] In at least one embodiment, PPU implements a
multi-level memory hierarchy. In at least one embodiment,
memory partition unit 3700 supports a unified memory to
provide a single unified virtual address space for central
processing unit (“CPU”) and PPU memory, enabling data
sharing between virtual memory systems. In at least one
embodiment frequency of accesses by a PPU to a memory
located on other processors is traced to ensure that memory
pages are moved to physical memory of PPU that is access-
ing pages more frequently. In at least one embodiment,
high-speed GPU interconnect 3508 supports address trans-
lation services allowing PPU to directly access a CPU’s
page tables and providing full access to CPU memory by a
PPU.

[0543] In at least one embodiment, copy engines transfer
data between multiple PPUs or between PPUs and CPUs. In
at least one embodiment, copy engines can generate page
faults for addresses that are not mapped into page tables and
memory partition unit 3700 then services page faults, map-
ping addresses into page table, after which copy engine
performs a transfer. In at least one embodiment, memory is
pinned (i.e., non-pageable) for multiple copy engine opera-
tions between multiple processors, substantially reducing
available memory. In at least one embodiment, with hard-
ware page faulting, addresses can be passed to copy engines
without regard as to whether memory pages are resident, and
a copy process is transparent.

[0544] Data from memory 3504 of FIG. 35 or other system
memory is fetched by memory partition unit 3700 and stored
in L2 cache 3704, which is located on-chip and is shared
between various GPCs, in accordance with at least one
embodiment. Each memory partition unit 3700, in at least
one embodiment, includes, without limitation, at least a
portion of L2 cache associated with a corresponding
memory device. In at least one embodiment, lower level
caches are implemented in various units within GPCs. In at
least one embodiment, each of SMs 3614 in FIG. 36 may
implement a Level 1 (“L.1”) cache wherein that L1 cache is
private memory that is dedicated to a particular SM 3614

US 2022/0358627 Al

and data from L2 cache 3704 is fetched and stored in each
L1 cache for processing in functional units of SMs 3614. In
at least one embodiment, 1.2 cache 3704 is coupled to
memory interface 3706 and XBar 3520 shown in FIG. 35.
[0545] ROP unit 3702 performs graphics raster operations
related to pixel color, such as color compression, pixel
blending, and more, in at least one embodiment. ROP unit
3702, in at least one embodiment, implements depth testing
in conjunction with raster engine 3608, receiving a depth for
a sample location associated with a pixel fragment from a
culling engine of raster engine 3608. In at least one embodi-
ment, depth is tested against a corresponding depth in a
depth buffer for a sample location associated with a frag-
ment. In at least one embodiment, if that fragment passes
that depth test for that sample location, then ROP unit 3702
updates depth buffer and transmits a result of that depth test
to raster engine 3608. It will be appreciated that a number of
partition units 3700 may be different than a number of GPCs
and, therefore, each ROP unit 3702 can, in at least one
embodiment, be coupled to each GPC. In at least one
embodiment, ROP unit 3702 tracks packets received from
different GPCs and determines whether a result generated by
ROP unit 3702 is to be routed to through XBar 3520.
[0546] FIG. 38 illustrates a streaming multi-processor
(“SM”) 3800, according to at least one embodiment. In at
least one embodiment, SM 3800 is SM of FIG. 36. In at least
one embodiment, SM 3800 includes, without limitation, an
instruction cache 3802, one or more scheduler units 3804, a
register file 3808, one or more processing cores (“cores”
3810, one or more special function units (“SFUs™) 3812, one
or more load/store units (“LSUs™) 3814, an interconnect
network 3816, a shared memory/level one (“L.1”) cache
3818, and/or any suitable combination thereof.

[0547] In at least one embodiment, a work distribution
unit dispatches tasks for execution on general processing
clusters (“GPCs”) of parallel processing units (“PPUs”) and
each task is allocated to a particular Data Processing Cluster
(“DPC”) within a GPC and, if a task is associated with a
shader program, that task is allocated to one of SMs 3800.
In at least one embodiment, scheduler unit 3804 receives
tasks from a work distribution unit and manages instruction
scheduling for one or more thread blocks assigned to SM
3800. In at least one embodiment, scheduler unit 3804
schedules thread blocks for execution as warps of parallel
threads, wherein each thread block is allocated at least one
warp. In at least one embodiment, each warp executes
threads. In at least one embodiment, scheduler unit 3804
manages a plurality of different thread blocks, allocating
warps to different thread blocks and then dispatching
instructions from plurality of different cooperative groups to
various functional units (e.g., processing cores 3810, SFUs
3812, and L.SUs 3814) during each clock cycle.

[0548] In at least one embodiment, Cooperative Groups
may refer to a programming model for organizing groups of
communicating threads that allows developers to express
granularity at which threads are communicating, enabling
expression of richer, more efficient parallel decompositions.
In at least one embodiment, cooperative launch APIs support
synchronization amongst thread blocks for execution of
parallel algorithms. In at least one embodiment, applications
of conventional programming models provide a single,
simple construct for synchronizing cooperating threads: a
barrier across all threads of a thread block (e.g., syncthreads(
) function). However, in at least one embodiment, program-

Nov. 10, 2022

mers may define groups of threads at smaller than thread
block granularities and synchronize within defined groups to
enable greater performance, design flexibility, and software
reuse in form of collective group-wide function interfaces.
In at least one embodiment, Cooperative Groups enables
programmers to define groups of threads explicitly at sub-
block (i.e., as small as a single thread) and multi-block
granularities, and to perform collective operations such as
synchronization on threads in a cooperative group. In at least
one embodiment, that programming model supports clean
composition across software boundaries, so that libraries
and utility functions can synchronize safely within their
local context without having to make assumptions about
convergence. In at least one embodiment, Cooperative
Groups primitives enable new patterns of cooperative par-
allelism, including, without limitation, producer-consumer
parallelism, opportunistic parallelism, and global synchro-
nization across an entire grid of thread blocks.

[0549] In at least one embodiment, a dispatch unit 3806 is
configured to transmit instructions to one or more functional
units and scheduler unit 3804 and includes, without limita-
tion, two dispatch units 3806 that enable two different
instructions from a common warp to be dispatched during
each clock cycle. In at least one embodiment, each scheduler
unit 3804 includes a single dispatch unit 3806 or additional
dispatch units 3806.

[0550] In at least one embodiment, each SM 3800, in at
least one embodiment, includes, without limitation, register
file 3808 that provides a set of registers for functional units
of SM 3800. In at least one embodiment, register file 3808
is divided between each functional unit such that each
functional unit is allocated a dedicated portion of register file
3808. In at least one embodiment, register file 3808 is
divided between different warps being executed by SM 3800
and register file 3808 provides temporary storage for oper-
ands connected to data paths of functional units. In at least
one embodiment, each SM 3800 comprises, without limita-
tion, a plurality of L. processing cores 3810, where L is a
positive integer. In at least one embodiment, SM 3800
includes, without limitation, a large number (e.g., 128 or
more) of distinct processing cores 3810. In at least one
embodiment, each processing core 3810 includes, without
limitation, a fully-pipelined, single-precision, double-preci-
sion, and/or mixed precision processing unit that includes,
without limitation, a floating point arithmetic logic unit and
an integer arithmetic logic unit. In at least one embodiment,
floating point arithmetic logic units implement IEEE 754-
2008 standard for floating point arithmetic. In at least one
embodiment, processing cores 3810 include, without limi-
tation, 64 single-precision (32-bit) floating point cores, 64
integer cores, 32 double-precision (64-bit) floating point
cores, and 8 tensor cores.

[0551] Tensor cores are configured to perform matrix
operations in accordance with at least one embodiment. In at
least one embodiment, one or more tensor cores are included
in processing cores 3810. In at least one embodiment, tensor
cores are configured to perform deep learning matrix arith-
metic, such as convolution operations for neural network
training and inferencing. In at least one embodiment, each
tensor core operates on a 4x4 matrix and performs a matrix
multiply and accumulate operation, D=AxB+C, where A, B,
C, and D are 4x4 matrices.

[0552] In at least one embodiment, matrix multiply inputs
A and B are 16-bit floating point matrices and accumulation

US 2022/0358627 Al

matrices C and D are 16-bit floating point or 32-bit floating
point matrices. In at least one embodiment, tensor cores
operate on 16-bit floating point input data with 32-bit
floating point accumulation. In at least one embodiment,
16-bit floating point multiply uses 64 operations and results
in a full precision product that is then accumulated using
32-bit floating point addition with other intermediate prod-
ucts for a 4x4x4 matrix multiply. Tensor cores are used to
perform much larger two-dimensional or higher dimensional
matrix operations, built up from these smaller elements, in
at least one embodiment. In at least one embodiment, an
API, such as a CUDA 9 C++ APIL exposes specialized
matrix load, matrix multiply and accumulate, and matrix
store operations to efficiently use tensor cores from a
CUDA-C++ program. In at least one embodiment, at a
CUDA level, a warp-level interface assumes 16x16 size
matrices spanning all 32 threads of warp.

[0553] In at least one embodiment, each SM 3800 com-
prises, without limitation, M SFUs 3812 that perform special
functions (e.g., attribute evaluation, reciprocal square root,
and like). In at least one embodiment, SFUs 3812 include,
without limitation, a tree traversal unit configured to traverse
a hierarchical tree data structure. In at least one embodiment,
SFUs 3812 include, without limitation, a texture unit con-
figured to perform texture map filtering operations. In at
least one embodiment, texture units are configured to load
texture maps (e.g., a 2D array of texels) from memory and
sample texture maps to produce sampled texture values for
use in shader programs executed by SM 3800. In at least one
embodiment, texture maps are stored in shared memory/L.1
cache 3818. In at least one embodiment, texture units
implement texture operations such as filtering operations
using mip-maps (e.g., texture maps of varying levels of
detail), in accordance with at least one embodiment. In at
least one embodiment, each SM 3800 includes, without
limitation, two texture units.

[0554] Each SM 3800 comprises, without limitation, N
LSUs 3814 that implement load and store operations
between shared memory/[.1 cache 3818 and register file
3808, in at least one embodiment. Interconnect network
3816 connects each functional unit to register file 3808 and
LSU 3814 to register file 3808 and shared memory/I.1 cache
3818 in at least one embodiment. In at least one embodi-
ment, interconnect network 3816 is a crossbar that can be
configured to connect any functional units to any registers in
register file 3808 and connect L.SUs 3814 to register file
3808 and memory locations in shared memory/L1 cache
3818.

[0555] In at least one embodiment, shared memory/I.1
cache 3818 is an array of on-chip memory that allows for
data storage and communication between SM 3800 and
primitive engine and between threads in SM 3800, in at least
one embodiment. In at least one embodiment, shared
memory/L.1 cache 3818 comprises, without limitation, 128
KB of storage capacity and is in a path from SM 3800 to a
partition unit. In at least one embodiment, shared memory/
L1 cache 3818, in at least one embodiment, is used to cache
reads and writes. In at least one embodiment, one or more of
shared memory/L.1 cache 3818, L2 cache, and memory are
backing stores.

[0556] Combining data cache and shared memory func-
tionality into a single memory block provides improved
performance for both types of memory accesses, in at least
one embodiment. In at least one embodiment, capacity is

Nov. 10, 2022

used or is usable as a cache by programs that do not use
shared memory, such as if shared memory is configured to
use half of a capacity, and texture and load/store operations
can use remaining capacity. Integration within shared
memory/[.1 cache 3818 enables shared memory/L.1 cache
3818 to function as a high-throughput conduit for streaming
data while simultaneously providing high-bandwidth and
low-latency access to frequently reused data, in accordance
with at least one embodiment. In at least one embodiment,
when configured for general purpose parallel computation, a
simpler configuration can be used compared with graphics
processing. In at least one embodiment, fixed function
graphics processing units are bypassed, creating a much
simpler programming model. In a general purpose parallel
computation configuration, a work distribution unit assigns
and distributes blocks of threads directly to DPCs, in at least
one embodiment. In at least one embodiment, threads in a
block execute a common program, using a unique thread ID
in calculation to ensure each thread generates unique results,
using SM 3800 to execute program and perform calcula-
tions, shared memory/[.1 cache 3818 to communicate
between threads, and L.SU 3814 to read and write global
memory through shared memory/[.1 cache 3818 and
memory partition unit. In at least one embodiment, when
configured for general purpose parallel computation, SM
3800 writes commands that scheduler unit 3804 can use to
launch new work on DPCs.

[0557] In at least one embodiment, a PPU is included in or
coupled to a desktop computer, a laptop computer, a tablet
computer, servers, supercomputers, a smart-phone (e.g., a
wireless, hand-held device), personal digital assistant
(“PDA”), a digital camera, a vehicle, a head mounted
display, a hand-held electronic device, and more. In at least
one embodiment, a PPU is embodied on a single semicon-
ductor substrate. In at least one embodiment, a PPU is
included in a system-on-a-chip (“SoC”) along with one or
more other devices such as additional PPUs, memory, a
reduced instruction set computer (“RISC”) CPU, a memory
management unit (“MMU”), a digital-to-analog converter
(“DAC”), and like.

[0558] In atleast one embodiment, a PPU may be included
on a graphics card that includes one or more memory
devices. In at least one embodiment, that graphics card may
be configured to interface with a PCle slot on a motherboard
of'a desktop computer. In at least one embodiment, that PPU
may be an integrated graphics processing unit (“iGPU”)
included in chipset of a motherboard.

[0559] Inference and/or training logic 1015 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 1015 are provided herein in conjunc-
tion with FIGS. 10A and/or 10B. In at least one embodiment,
deep learning application processor is used to train a
machine learning model, such as a neural network, to predict
or infer information provided to SM 3800. In at least one
embodiment, SM 3800 is used to infer or predict information
based on a trained machine learning model (e.g., neural
network) that has been trained by another processor or
system or by SM 3800. In at least one embodiment, SM
3800 may be used to perform one or more neural network
use cases described herein.

[0560] Embodiments are disclosed related a virtualized
computing platform for advanced computing, such as image
inferencing and image processing in medical applications.

US 2022/0358627 Al

Without limitation, embodiments may include radiography,
magnetic resonance imaging (MRI), nuclear medicine, ultra-
sound, sonography, elastography, photoacoustic imaging,
tomography, echocardiography, functional near-infrared
spectroscopy, and magnetic particle imaging, or a combina-
tion thereof. In at least one embodiment, a virtualized
computing platform and associated processes described
herein may additionally or alternatively be used, without
limitation, in forensic science analysis, sub-surface detec-
tion and imaging (e.g., oil exploration, archaeology, pale-
ontology, etc.), topography, oceanography, geology, osteol-
ogy, meteorology, intelligent area or object tracking and
monitoring, sensor data processing (e.g., RADAR, SONAR,
LIDAR, etc.), and/or genomics and gene sequencing.

[0561] With reference to FIG. 39, FIG. 39 is an example
data flow diagram for a process 3900 of generating and
deploying an image processing and inferencing pipeline, in
accordance with at least one embodiment. In at least one
embodiment, process 3900 may be deployed for use with
imaging devices, processing devices, genomics devices,
gene sequencing devices, radiology devices, and/or other
device types at one or more facilities 3902, such as medical
facilities, hospitals, healthcare institutes, clinics, research or
diagnostic labs, etc. In at least one embodiment, process
3900 may be deployed to perform genomics analysis and
inferencing on sequencing data. Examples of genomic
analyses that may be performed using systems and processes
described herein include, without limitation, variant calling,
mutation detection, and gene expression quantification.

[0562] In at least one embodiment, process 3900 may be
executed within a training system 3904 and/or a deployment
system 3906. In at least one embodiment, training system
3904 may be used to perform training, deployment, and
implementation of machine learning models (e.g., neural
networks, object detection algorithms, computer vision
algorithms, etc.) for use in deployment system 3906. In at
least one embodiment, deployment system 3906 may be
configured to offload processing and compute resources
among a distributed computing environment to reduce infra-
structure requirements at facility 3902. In at least one
embodiment, deployment system 3906 may provide a
streamlined platform for selecting, customizing, and imple-
menting virtual instruments for use with imaging devices
(e.g., MRI, CT Scan, X-Ray, Ultrasound, etc.) or sequencing
devices at facility 3902. In at least one embodiment, virtual
instruments may include software-defined applications for
performing one or more processing operations with respect
to imaging data generated by imaging devices, sequencing
devices, radiology devices, and/or other device types. In at
least one embodiment, one or more applications in a pipeline
may use or call upon services (e.g., inference, visualization,
compute, Al, etc.) of deployment system 3906 during execu-
tion of applications.

[0563] In at least one embodiment, some of applications
used in advanced processing and inferencing pipelines may
use machine learning models or other Al to perform one or
more processing steps. In at least one embodiment, machine
learning models may be trained at facility 3902 using data
3908 (such as imaging data) generated at facility 3902 (and
stored on one or more picture archiving and communication
system (PACS) servers at facility 3902), may be trained
using imaging or sequencing data 3908 from another facility
or facilities (e.g., a different hospital, lab, clinic, etc.), or a
combination thereof. In at least one embodiment, training

Nov. 10, 2022

system 3904 may be used to provide applications, services,
and/or other resources for generating working, deployable
machine learning models for deployment system 3906.

[0564] In at least one embodiment, a model registry 3924
may be backed by object storage that may support version-
ing and object metadata. In at least one embodiment, object
storage may be accessible through, for example, a cloud
storage (e.g., a cloud 4026 of FIG. 40) compatible applica-
tion programming interface (API) from within a cloud
platform. In at least one embodiment, machine learning
models within model registry 3924 may uploaded, listed,
modified, or deleted by developers or partners of a system
interacting with an API. In at least one embodiment, an API
may provide access to methods that allow users with appro-
priate credentials to associate models with applications, such
that models may be executed as part of execution of con-
tainerized instantiations of applications.

[0565] In at least one embodiment, a training pipeline
4004 (FIG. 40) may include a scenario where facility 3902
is training their own machine learning model, or has an
existing machine learning model that needs to be optimized
or updated. In at least one embodiment, imaging data 3908
generated by imaging device(s), sequencing devices, and/or
other device types may be received. In at least one embodi-
ment, once imaging data 3908 is received, Al-assisted
annotation 3910 may be used to aid in generating annota-
tions corresponding to imaging data 3908 to be used as
ground truth data for a machine learning model. In at least
one embodiment, Al-assisted annotation 3910 may include
one or more machine learning models (e.g., convolutional
neural networks (CNNs)) that may be trained to generate
annotations corresponding to certain types of imaging data
3908 (e.g., from certain devices) and/or certain types of
anomalies in imaging data 3908. In at least one embodiment,
Al-assisted annotations 3910 may then be used directly, or
may be adjusted or fine-tuned using an annotation tool (e.g.,
by a researcher, a clinician, a doctor, a scientist, etc.), to
generate ground truth data. In at least one embodiment, in
some examples, labeled clinic data 3912 (e.g., annotations
provided by a clinician, doctor, scientist, technician, etc.)
may be used as ground truth data for training a machine
learning model. In at least one embodiment, Al-assisted
annotations 3910, labeled clinic data 3912, or a combination
thereof may be used as ground truth data for training a
machine learning model. In at least one embodiment, a
trained machine learning model may be referred to as an
output model 3916, and may be used by deployment system
3906, as described herein.

[0566] In at least one embodiment, training pipeline 4004
(FIG. 40) may include a scenario where facility 3902 needs
a machine learning model for use in performing one or more
processing tasks for one or more applications in deployment
system 3906, but facility 3902 may not currently have such
a machine learning model (or may not have a model that is
optimized, efficient, or effective for such purposes). In at
least one embodiment, an existing machine learning model
may be selected from model registry 3924. In at least one
embodiment, model registry 3924 may include machine
learning models trained to perform a variety of different
inference tasks on imaging data. In at least one embodiment,
machine learning models in model registry 3924 may have
been trained on imaging data from different facilities than
facility 3902 (e.g., facilities remotely located). In at least one
embodiment, machine learning models may have been

US 2022/0358627 Al

trained on imaging data from one location, two locations, or
any number of locations. In at least one embodiment, when
being trained on imaging data from a specific location,
training may take place at that location, or at least in a
manner that protects confidentiality of imaging data or
restricts imaging data from being transferred off-premises
(e.g., to comply with HIPAA regulations, privacy regula-
tions, etc.). In at least one embodiment, once a model is
trained—or partially trained—at one location, a machine
learning model may be added to model registry 3924. In at
least one embodiment, a machine learning model may then
be retrained, or updated, at any number of other facilities,
and a retrained or updated model may be made available in
model registry 3924. In at least one embodiment, a machine
learning model may then be selected from model registry
3924—and referred to as output model 3916—and may be
used in deployment system 3906 to perform one or more
processing tasks for one or more applications of a deploy-
ment system.

[0567] In at least one embodiment, training pipeline 4004
(FIG. 40) may be used in a scenario that includes facility
3902 requiring a machine learning model for use in per-
forming one or more processing tasks for one or more
applications in deployment system 3906, but facility 3902
may not currently have such a machine learning model (or
may not have a model that is optimized, efficient, or effective
for such purposes). In at least one embodiment, a machine
learning model selected from model registry 3924 might not
be fine-tuned or optimized for imaging data 3908 generated
at facility 3902 because of differences in populations,
genetic variations, robustness of training data used to train
a machine learning model, diversity in anomalies of training
data, and/or other issues with training data. In at least one
embodiment, Al-assisted annotation 3910 may be used to
aid in generating annotations corresponding to imaging data
3908 to be used as ground truth data for retraining or
updating a machine learning model. In at least one embodi-
ment, labeled clinic data 3912 (e.g., annotations provided by
a clinician, doctor, scientist, etc.) may be used as ground
truth data for training a machine learning model. In at least
one embodiment, retraining or updating a machine learning
model may be referred to as model training 3914. In at least
one embodiment, model training 3914—e.g., Al-assisted
annotations 3910, labeled clinic data 3912, or a combination
thereof—may be used as ground truth data for retraining or
updating a machine learning model.

[0568] In at least one embodiment, deployment system
3906 may include software 3918, services 3920, hardware
3922, and/or other components, features, and functionality.
In at least one embodiment, deployment system 3906 may
include a software “stack,” such that software 3918 may be
built on top of services 3920 and may use services 3920 to
perform some or all of processing tasks, and services 3920
and software 3918 may be built on top of hardware 3922 and
use hardware 3922 to execute processing, storage, and/or
other compute tasks of deployment system 3906.

[0569] In at least one embodiment, software 3918 may
include any number of different containers, where each
container may execute an instantiation of an application. In
at least one embodiment, each application may perform one
or more processing tasks in an advanced processing and
inferencing pipeline (e.g., inferencing, object detection, fea-
ture detection, segmentation, image enhancement, calibra-
tion, etc.). In at least one embodiment, for each type of

Nov. 10, 2022

imaging device (e.g., CT, MRI, X-Ray, ultrasound, sonog-
raphy, echocardiography, etc.), sequencing device, radiology
device, genomics device, etc., there may be any number of
containers that may perform a data processing task with
respect to imaging data 3908 (or other data types, such as
those described herein) generated by a device. In at least one
embodiment, an advanced processing and inferencing pipe-
line may be defined based on selections of different con-
tainers that are desired or required for processing imaging
data 3908, in addition to containers that receive and con-
figure imaging data for use by each container and/or for use
by facility 3902 after processing through a pipeline (e.g., to
convert outputs back to a usable data type, such as digital
imaging and communications in medicine (DICOM) data,
radiology information system (RIS) data, clinical informa-
tion system (CIS) data, remote procedure call (RPC) data,
data substantially compliant with a representation state
transfer (REST) interface, data substantially compliant with
a file-based interface, and/or raw data, for storage and
display at facility 3902). In at least one embodiment, a
combination of containers within software 3918 (e.g., that
make up a pipeline) may be referred to as a virtual instru-
ment (as described in more detail herein), and a virtual
instrument may leverage services 3920 and hardware 3922
to execute some or all processing tasks of applications
instantiated in containers.

[0570] In at least one embodiment, a data processing
pipeline may receive input data (e.g., imaging data 3908) in
a DICOM, RIS, CIS, REST compliant, RPC, raw, and/or
other format in response to an inference request (e.g., a
request from a user of deployment system 3906, such as a
clinician, a doctor, a radiologist, etc.). In at least one
embodiment, input data may be representative of one or
more images, video, and/or other data representations gen-
erated by one or more imaging devices, sequencing devices,
radiology devices, genomics devices, and/or other device
types. In at least one embodiment, data may undergo pre-
processing as part of data processing pipeline to prepare data
for processing by one or more applications. In at least one
embodiment, post-processing may be performed on an out-
put of one or more inferencing tasks or other processing
tasks of a pipeline to prepare an output data for a next
application and/or to prepare output data for transmission
and/or use by a user (e.g., as a response to an inference
request). In at least one embodiment, inferencing tasks may
be performed by one or more machine learning models, such
as trained or deployed neural networks, which may include
output models 3916 of training system 3904.

[0571] In at least one embodiment, tasks of data process-
ing pipeline may be encapsulated in a container(s) that each
represent a discrete, fully functional instantiation of an
application and virtualized computing environment that is
able to reference machine learning models. In at least one
embodiment, containers or applications may be published
into a private (e.g., limited access) arca of a container
registry (described in more detail herein), and trained or
deployed models may be stored in model registry 3924 and
associated with one or more applications. In at least one
embodiment, images of applications (e.g., container images)
may be available in a container registry, and once selected
by a user from a container registry for deployment in a
pipeline, an image may be used to generate a container for
an instantiation of an application for use by a user’s system.

US 2022/0358627 Al

[0572] In at least one embodiment, developers (e.g., soft-
ware developers, clinicians, doctors, etc.) may develop,
publish, and store applications (e.g., as containers) for
performing image processing and/or inferencing on supplied
data. In at least one embodiment, development, publishing,
and/or storing may be performed using a software develop-
ment kit (SDK) associated with a system (e.g., to ensure that
an application and/or container developed is compliant with
or compatible with a system). In at least one embodiment, an
application that is developed may be tested locally (e.g., at
a first facility, on data from a first facility) with an SDK
which may support at least some of services 3920 as a
system (e.g., system 4000 of FIG. 40). In at least one
embodiment, because DICOM objects may contain any-
where from one to hundreds of images or other data types,
and due to a variation in data, a developer may be respon-
sible for managing (e.g., setting constructs for, building
pre-processing into an application, etc.) extraction and
preparation of incoming DICOM data. In at least one
embodiment, once validated by system 4000 (e.g., for accu-
racy, safety, patient privacy, etc.), an application may be
available in a container registry for selection and/or imple-
mentation by a user (e.g., a hospital, clinic, lab, healthcare
provider, etc.) to perform one or more processing tasks with
respect to data at a facility (e.g., a second facility) of a user.

[0573] In at least one embodiment, developers may then
share applications or containers through a network for
access and use by users of a system (e.g., system 4000 of
FIG. 40). In at least one embodiment, completed and vali-
dated applications or containers may be stored in a container
registry and associated machine learning models may be
stored in model registry 3924. In at least one embodiment,
a requesting entity (e.g., a user at a medical facility)—who
provides an inference or image processing request—may
browse a container registry and/or model registry 3924 for
an application, container, dataset, machine learning model,
etc., select a desired combination of elements for inclusion
in data processing pipeline, and submit an imaging process-
ing request. In at least one embodiment, a request may
include input data (and associated patient data, in some
examples) that is necessary to perform a request, and/or may
include a selection of application(s) and/or machine learning
models to be executed in processing a request. In at least one
embodiment, a request may then be passed to one or more
components of deployment system 3906 (e.g., a cloud) to
perform processing of data processing pipeline. In at least
one embodiment, processing by deployment system 3906
may include referencing selected elements (e.g., applica-
tions, containers, models, etc.) from a container registry
and/or model registry 3924. In at least one embodiment,
once results are generated by a pipeline, results may be
returned to a user for reference (e.g., for viewing in a
viewing application suite executing on a local, on-premises
workstation or terminal). In at least one embodiment, a
radiologist may receive results from an data processing
pipeline including any number of application and/or con-
tainers, where results may include anomaly detection in
X-rays, CT scans, MRIs, etc.

[0574] In at least one embodiment, to aid in processing or
execution of applications or containers in pipelines, services
3920 may be leveraged. In at least one embodiment, services
3920 may include compute services, artificial intelligence
(AD) services, visualization services, and/or other service
types. In at least one embodiment, services 3920 may

Nov. 10, 2022

provide functionality that is common to one or more appli-
cations in software 3918, so functionality may be abstracted
to a service that may be called upon or leveraged by
applications. In at least one embodiment, functionality pro-
vided by services 3920 may run dynamically and more
efficiently, while also scaling well by allowing applications
to process data in parallel (e.g., using a parallel computing
platform 4030 (FIG. 40)). In at least one embodiment, rather
than each application that shares a same functionality
offered by a service 3920 being required to have a respective
instance of service 3920, service 3920 may be shared
between and among various applications. In at least one
embodiment, services may include an inference server or
engine that may be used for executing detection or segmen-
tation tasks, as non-limiting examples. In at least one
embodiment, a model training service may be included that
may provide machine learning model training and/or retrain-
ing capabilities. In at least one embodiment, a data augmen-
tation service may further be included that may provide
GPU accelerated data (e.g., DICOM, RIS, CIS, REST
compliant, RPC, raw, etc.) extraction, resizing, scaling,
and/or other augmentation. In at least one embodiment, a
visualization service may be used that may add image
rendering effects—such as ray-tracing, rasterization, denois-
ing, sharpening, etc.—to add realism to two-dimensional
(2D) and/or three-dimensional (3D) models. In at least one
embodiment, virtual instrument services may be included
that provide for beam-forming, segmentation, inferencing,
imaging, and/or support for other applications within pipe-
lines of virtual instruments.

[0575] In at least one embodiment, where a service 3920
includes an Al service (e.g., an inference service), one or
more machine learning models associated with an applica-
tion for anomaly detection (e.g., tumors, growth abnormali-
ties, scarring, etc.) may be executed by calling upon (e.g., as
an API call) an inference service (e.g., an inference server)
to execute machine learning model(s), or processing thereof,
as part of application execution. In at least one embodiment,
where another application includes one or more machine
learning models for segmentation tasks, an application may
call upon an inference service to execute machine learning
models for performing one or more of processing operations
associated with segmentation tasks. In at least one embodi-
ment, software 3918 implementing advanced processing and
inferencing pipeline that includes segmentation application
and anomaly detection application may be streamlined
because each application may call upon a same inference
service to perform one or more inferencing tasks.

[0576] In at least one embodiment, hardware 3922 may
include GPUs, CPUs, graphics cards, an Al/deep learning
system (e.g., an Al supercomputer, such as NVIDIA’s DGX
supercomputer system), a cloud platform, or a combination
thereof. In at least one embodiment, different types of
hardware 3922 may be used to provide efficient, purpose-
built support for software 3918 and services 3920 in deploy-
ment system 3906. In at least one embodiment, use of GPU
processing may be implemented for processing locally (e.g.,
at facility 3902), within an Al/deep learning system, in a
cloud system, and/or in other processing components of
deployment system 3906 to improve efficiency, accuracy,
and efficacy of image processing, image reconstruction,
segmentation, MRI exams, stroke or heart attack detection
(e.g., in real-time), image quality in rendering, etc. In at least
one embodiment, a facility may include imaging devices,

US 2022/0358627 Al

genomics devices, sequencing devices, and/or other device
types on-premises that may leverage GPUs to generate
imaging data representative of a subject’s anatomy.

[0577] In at least one embodiment, software 3918 and/or
services 3920 may be optimized for GPU processing with
respect to deep learning, machine learning, and/or high-
performance computing, as non-limiting examples. In at
least one embodiment, at least some of computing environ-
ment of deployment system 3906 and/or training system
3904 may be executed in a datacenter one or more super-
computers or high performance computing systems, with
GPU optimized software (e.g., hardware and software com-
bination of NVIDIA’s DGX system). In at least one embodi-
ment, datacenters may be compliant with provisions of
HIPAA, such that receipt, processing, and transmission of
imaging data and/or other patient data is securely handled
with respect to privacy of patient data. In at least one
embodiment, hardware 3922 may include any number of
GPUs that may be called upon to perform processing of data
in parallel, as described herein. In at least one embodiment,
cloud platform may further include GPU processing for
GPU-optimized execution of deep learning tasks, machine
learning tasks, or other computing tasks. In at least one
embodiment, cloud platform (e.g., NVIDIA’s NGC) may be
executed using an Al/deep learning supercomputer(s) and/or
GPU-optimized software (e.g., as provided on NVIDIA’s
DGX systems) as a hardware abstraction and scaling plat-
form. In at least one embodiment, cloud platform may
integrate an application container clustering system or
orchestration system (e.g., KUBERNETES) on multiple
GPUs to enable seamless scaling and load balancing.

[0578] FIG. 40 is a system diagram for an example system
4000 for generating and deploying an imaging deployment
pipeline, in accordance with at least one embodiment. In at
least one embodiment, system 4000 may be used to imple-
ment process 3900 of FIG. 39 and/or other processes includ-
ing advanced processing and inferencing pipelines. In at
least one embodiment, system 4000 may include training
system 3904 and deployment system 3906. In at least one
embodiment, training system 3904 and deployment system
3906 may be implemented using software 3918, services
3920, and/or hardware 3922, as described herein.

[0579] In at least one embodiment, system 4000 (e.g.,
training system 3904 and/or deployment system 3906) may
implemented in a cloud computing environment (e.g., using
cloud 4026). In at least one embodiment, system 4000 may
be implemented locally with respect to a healthcare services
facility, or as a combination of both cloud and local com-
puting resources. In at least one embodiment, in embodi-
ments where cloud computing is implemented, patient data
may be separated from, or unprocessed by, by one or more
components of system 4000 that would render processing
non-compliant with HIPAA and/or other data handling and
privacy regulations or laws. In at least one embodiment,
access to APIs in cloud 4026 may be restricted to authorized
users through enacted security measures or protocols. In at
least one embodiment, a security protocol may include web
tokens that may be signed by an authentication (e.g., AuthN,
AuthZ, Gluecon, etc.) service and may carry appropriate
authorization. In at least one embodiment, APIs of virtual
instruments (described herein), or other instantiations of
system 4000, may be restricted to a set of public IPs that
have been vetted or authorized for interaction.

Nov. 10, 2022

[0580] In at least one embodiment, various components of
system 4000 may communicate between and among one
another using any of a variety of different network types,
including but not limited to local area networks (LANs)
and/or wide area networks (WANs) via wired and/or wire-
less communication protocols. In at least one embodiment,
communication between facilities and components of sys-
tem 4000 (e.g., for transmitting inference requests, for
receiving results of inference requests, etc.) may be com-
municated over a data bus or data busses, wireless data
protocols (Wi-Fi), wired data protocols (e.g., Ethernet), etc.

[0581] In at least one embodiment, training system 3904
may execute training pipelines 4004, similar to those
described herein with respect to FIG. 39. In at least one
embodiment, where one or more machine learning models
are to be used in deployment pipelines 4010 by deployment
system 3906, training pipelines 4004 may be used to train or
retrain one or more (e.g., pre-trained) models, and/or imple-
ment one or more of pre-trained models 4006 (e.g., without
a need for retraining or updating). In at least one embodi-
ment, as a result of training pipelines 4004, output model(s)
3916 may be generated. In at least one embodiment, training
pipelines 4004 may include any number of processing steps,
such as but not limited to imaging data (or other input data)
conversion or adaption (e.g., using DICOM adapter 4002A
to convert DICOM images to another format suitable for
processing by respective machine learning models, such as
Neuroimaging Informatics Technology Initiative (NIfTT)
format), Al-assisted annotation 3910, labeling or annotating
of imaging data 3908 to generate labeled clinic data 3912,
model selection from a model registry, model training 3914,
training, retraining, or updating models, and/or other pro-
cessing steps. In at least one embodiment, for different
machine learning models used by deployment system 3906,
different training pipelines 4004 may be used. In at least one
embodiment, training pipeline 4004 similar to a first
example described with respect to FIG. 39 may be used for
a first machine learning model, training pipeline 4004 simi-
lar to a second example described with respect to FIG. 39
may be used for a second machine learning model, and
training pipeline 4004 similar to a third example described
with respect to FIG. 39 may be used for a third machine
learning model. In at least one embodiment, any combina-
tion of tasks within training system 3904 may be used
depending on what is required for each respective machine
learning model. In at least one embodiment, one or more of
machine learning models may already be trained and ready
for deployment so machine learning models may not
undergo any processing by training system 3904, and may
be implemented by deployment system 3906.

[0582] In at least one embodiment, output model(s) 3916
and/or pre-trained model(s) 4006 may include any types of
machine learning models depending on implementation or
embodiment. In at least one embodiment, and without
limitation, machine learning models used by system 4000
may include machine learning model(s) using linear regres-
sion, logistic regression, decision trees, support vector
machines (SVM), Naive Bayes, k-nearest neighbor (Knn), K
means clustering, random forest, dimensionality reduction
algorithms, gradient boosting algorithms, neural networks
(e.g., auto-encoders, convolutional, recurrent, perceptrons,
Long/Short Term Memory (LSTM), Hopfield, Boltzmann,

US 2022/0358627 Al

deep belief, deconvolutional, generative adversarial, liquid
state machine, etc.), and/or other types of machine learning
models.

[0583] In at least one embodiment, training pipelines 4004
may include Al-assisted annotation, as described in more
detail herein with respect to at least FIG. 43B. In at least one
embodiment, labeled clinic data 3912 (e.g., traditional anno-
tation) may be generated by any number of techniques. In at
least one embodiment, labels or other annotations may be
generated within a drawing program (e.g., an annotation
program), a computer aided design (CAD) program, a
labeling program, another type of program suitable for
generating annotations or labels for ground truth, and/or
may be hand drawn, in some examples. In at least one
embodiment, ground truth data may be synthetically pro-
duced (e.g., generated from computer models or renderings),
real produced (e.g., designed and produced from real-world
data), machine-automated (e.g., using feature analysis and
learning to extract features from data and then generate
labels), human annotated (e.g., labeler, or annotation expert,
defines location of labels), and/or a combination thereof. In
at least one embodiment, for each instance of imaging data
3908 (or other data type used by machine learning models),
there may be corresponding ground truth data generated by
training system 3904. In at least one embodiment, Al-
assisted annotation may be performed as part of deployment
pipelines 4010; either in addition to, or in lieu of Al-assisted
annotation included in training pipelines 4004. In at least
one embodiment, system 4000 may include a multi-layer
platform that may include a software layer (e.g., software
3918) of diagnostic applications (or other application types)
that may perform one or more medical imaging and diag-
nostic functions. In at least one embodiment, system 4000
may be communicatively coupled to (e.g., via encrypted
links) PACS server networks of one or more facilities. In at
least one embodiment, system 4000 may be configured to
access and referenced data (e.g., DICOM data, RIS data, raw
data, CIS data, REST compliant data, RPC data, raw data,
etc.) from PACS servers (e.g., via a DICOM adapter 4002,
or another data type adapter such as RIS, CIS, REST
compliant, RPC, raw, etc.) to perform operations, such as
training machine learning models, deploying machine learn-
ing models, image processing, inferencing, and/or other
operations.

[0584] In at least one embodiment, a software layer may
be implemented as a secure, encrypted, and/or authenticated
API through which applications or containers may be
invoked (e.g., called) from an external environment(s) (e.g.,
facility 3902). In at least one embodiment, applications may
then call or execute one or more services 3920 for perform-
ing compute, Al, or visualization tasks associated with
respective applications, and software 3918 and/or services
3920 may leverage hardware 3922 to perform processing
tasks in an effective and efficient manner.

[0585] In at least one embodiment, deployment system
3906 may execute deployment pipelines 4010. In at least one
embodiment, deployment pipelines 4010 may include any
number of applications that may be sequentially, non-se-
quentially, or otherwise applied to imaging data (and/or
other data types) generated by imaging devices, sequencing
devices, genomics devices, etc.—including Al-assisted
annotation, as described above. In at least one embodiment,
as described herein, a deployment pipeline 4010 for an
individual device may be referred to as a virtual instrument

Nov. 10, 2022

for a device (e.g., a virtual ultrasound instrument, a virtual
CT scan instrument, a virtual sequencing instrument, etc.).
In at least one embodiment, for a single device, there may be
more than one deployment pipeline 4010 depending on
information desired from data generated by a device. In at
least one embodiment, where detections of anomalies are
desired from an MRI machine, there may be a first deploy-
ment pipeline 4010, and where image enhancement is
desired from output of an MRI machine, there may be a
second deployment pipeline 4010.

[0586] In at least one embodiment, applications available
for deployment pipelines 4010 may include any application
that may be used for performing processing tasks on imag-
ing data or other data from devices. In at least one embodi-
ment, different applications may be responsible for image
enhancement, segmentation, reconstruction, anomaly detec-
tion, object detection, feature detection, treatment planning,
dosimetry, beam planning (or other radiation treatment pro-
cedures), and/or other analysis, image processing, or infer-
encing tasks. In at least one embodiment, deployment sys-
tem 3906 may define constructs for each of applications,
such that users of deployment system 3906 (e.g., medical
facilities, labs, clinics, etc.) may understand constructs and
adapt applications for implementation within their respec-
tive facility. In at least one embodiment, an application for
image reconstruction may be selected for inclusion in
deployment pipeline 4010, but data type generated by an
imaging device may be different from a data type used
within an application. In at least one embodiment, DICOM
adapter 4002B (and/or a DICOM reader) or another data
type adapter or reader (e.g., RIS, CIS, REST compliant,
RPC, raw, etc.) may be used within deployment pipeline
4010 to convert data to a form useable by an application
within deployment system 3906. In at least one embodiment,
access to DICOM, RIS, CIS, REST compliant, RPC, raw,
and/or other data type libraries may be accumulated and
pre-processed, including decoding, extracting, and/or per-
forming any convolutions, color corrections, sharpness,
gamma, and/or other augmentations to data. In at least one
embodiment, DICOM, RIS, CIS, REST compliant, RPC,
and/or raw data may be unordered and a pre-pass may be
executed to organize or sort collected data. In at least one
embodiment, because various applications may share com-
mon image operations, in some embodiments, a data aug-
mentation library (e.g., as one of services 3920) may be used
to accelerate these operations. In at least one embodiment, to
avoid bottlenecks of conventional processing approaches
that rely on CPU processing, parallel computing platform
4030 may be used for GPU acceleration of these processing
tasks.

[0587] In at least one embodiment, an image reconstruc-
tion application may include a processing task that includes
use of a machine learning model. In at least one embodi-
ment, a user may desire to use their own machine learning
model, or to select a machine learning model from model
registry 3924. In at least one embodiment, a user may
implement their own machine learning model or select a
machine learning model for inclusion in an application for
performing a processing task. In at least one embodiment,
applications may be selectable and customizable, and by
defining constructs of applications, deployment and imple-
mentation of applications for a particular user are presented
as a more seamless user experience. In at least one embodi-
ment, by leveraging other features of system 4000—such as

US 2022/0358627 Al

services 3920 and hardware 3922—deployment pipelines
4010 may be even more user friendly, provide for easier
integration, and produce more accurate, efficient, and timely
results.

[0588] In at least one embodiment, deployment system
3906 may include a user interface 4014 (e.g., a graphical
user interface, a web interface, etc.) that may be used to
select applications for inclusion in deployment pipeline(s)
4010, arrange applications, modify or change applications or
parameters or constructs thereof, use and interact with
deployment pipeline(s) 4010 during set-up and/or deploy-
ment, and/or to otherwise interact with deployment system
3906. In at least one embodiment, although not illustrated
with respect to training system 3904, user interface 4014 (or
a different user interface) may be used for selecting models
for use in deployment system 3906, for selecting models for
training, or retraining, in training system 3904, and/or for
otherwise interacting with training system 3904.

[0589] In atleast one embodiment, pipeline manager 4012
may be used, in addition to an application orchestration
system 4028, to manage interaction between applications or
containers of deployment pipeline(s) 4010 and services 3920
and/or hardware 3922. In at least one embodiment, pipeline
manager 4012 may be configured to facilitate interactions
from application to application, from application to service
3920, and/or from application or service to hardware 3922.
In at least one embodiment, although illustrated as included
in software 3918, this is not intended to be limiting, and in
some examples (e.g., as illustrated in FIG. 41) pipeline
manager 4012 may be included in services 3920. In at least
one embodiment, application orchestration system 4028
(e.g., Kubernetes, DOCKER, etc.) may include a container
orchestration system that may group applications into con-
tainers as logical units for coordination, management, scal-
ing, and deployment. In at least one embodiment, by asso-
ciating applications from deployment pipeline(s) 4010 (e.g.,
a reconstruction application, a segmentation application,
etc.) with individual containers, each application may
execute in a self-contained environment (e.g., at a kernel
level) to increase speed and efficiency.

[0590] In atleast one embodiment, each application and/or
container (or image thereof) may be individually developed,
modified, and deployed (e.g., a first user or developer may
develop, modify, and deploy a first application and a second
user or developer may develop, modify, and deploy a second
application separate from a first user or developer), which
may allow for focus on, and attention to, a task of a single
application and/or container(s) without being hindered by
tasks of another application(s) or container(s). In at least one
embodiment, communication, and cooperation between dif-
ferent containers or applications may be aided by pipeline
manager 4012 and application orchestration system 4028. In
at least one embodiment, so long as an expected input and/or
output of each container or application is known by a system
(e.g., based on constructs of applications or containers),
application orchestration system 4028 and/or pipeline man-
ager 4012 may facilitate communication among and
between, and sharing of resources among and between, each
of applications or containers. In at least one embodiment,
because one or more of applications or containers in deploy-
ment pipeline(s) 4010 may share same services and
resources, application orchestration system 4028 may
orchestrate, load balance, and determine sharing of services
or resources between and among various applications or

Nov. 10, 2022

containers. In at least one embodiment, a scheduler may be
used to track resource requirements of applications or con-
tainers, current usage or planned usage of these resources,
and resource availability. In at least one embodiment, a
scheduler may thus allocate resources to different applica-
tions and distribute resources between and among applica-
tions in view of requirements and availability of a system. In
some examples, a scheduler (and/or other component of
application orchestration system 4028) may determine
resource availability and distribution based on constraints
imposed on a system (e.g., user constraints), such as quality
of service (QoS), urgency of need for data outputs (e.g., to
determine whether to execute real-time processing or
delayed processing), etc.

[0591] In at least one embodiment, services 3920 lever-
aged by and shared by applications or containers in deploy-
ment system 3906 may include compute services 4016, Al
services 4018, visualization services 4020, and/or other
service types. In at least one embodiment, applications may
call (e.g., execute) one or more of services 3920 to perform
processing operations for an application. In at least one
embodiment, compute services 4016 may be leveraged by
applications to perform super-computing or other high-
performance computing (HPC) tasks. In at least one embodi-
ment, compute service(s) 4016 may be leveraged to perform
parallel processing (e.g., using a parallel computing plat-
form 4030) for processing data through one or more of
applications and/or one or more tasks of a single application,
substantially simultaneously. In at least one embodiment,
parallel computing platform 4030 (e.g., NVIDIA’s CUDA)
may enable general purpose computing on GPUs (GPGPU)
(e.g., GPUs 4022). In at least one embodiment, a software
layer of parallel computing platform 4030 may provide
access to virtual instruction sets and parallel computational
elements of GPUs, for execution of compute kernels. In at
least one embodiment, parallel computing platform 4030
may include memory and, in some embodiments, a memory
may be shared between and among multiple containers,
and/or between and among different processing tasks within
a single container. In at least one embodiment, inter-process
communication (IPC) calls may be generated for multiple
containers and/or for multiple processes within a container
to use same data from a shared segment of memory of
parallel computing platform 4030 (e.g., where multiple
different stages of an application or multiple applications are
processing same information). In at least one embodiment,
rather than making a copy of data and moving data to
different locations in memory (e.g., a read/write operation),
same data in same location of a memory may be used for any
number of processing tasks (e.g., at a same time, at different
times, etc.). In at least one embodiment, as data is used to
generate new data as a result of processing, this information
of'a new location of data may be stored and shared between
various applications. In at least one embodiment, location of
data and a location of updated or modified data may be part
of a definition of how a payload is understood within
containers.

[0592] In at least one embodiment, Al services 4018 may
be leveraged to perform inferencing services for executing
machine learning model(s) associated with applications
(e.g., tasked with performing one or more processing tasks
of an application). In at least one embodiment, Al services
4018 may leverage Al system 4024 to execute machine
learning model(s) (e.g., neural networks, such as CNNs) for

US 2022/0358627 Al

segmentation, reconstruction, object detection, feature
detection, classification, and/or other inferencing tasks. In at
least one embodiment, applications of deployment pipeline
(s) 4010 may use one or more of output models 3916 from
training system 3904 and/or other models of applications to
perform inference on imaging data (e.g., DICOM data, RIS
data, CIS data, REST compliant data, RPC data, raw data,
etc.). In at least one embodiment, two or more examples of
inferencing using application orchestration system 4028
(e.g., a scheduler) may be available. In at least one embodi-
ment, a first category may include a high priority/low
latency path that may achieve higher service level agree-
ments, such as for performing inference on urgent requests
during an emergency, or for a radiologist during diagnosis.
In at least one embodiment, a second category may include
a standard priority path that may be used for requests that
may be non-urgent or where analysis may be performed at
a later time. In at least one embodiment, application orches-
tration system 4028 may distribute resources (e.g., services
3920 and/or hardware 3922) based on priority paths for
different inferencing tasks of Al services 4018.

[0593] In at least one embodiment, shared storage may be
mounted to Al services 4018 within system 4000. In at least
one embodiment, shared storage may operate as a cache (or
other storage device type) and may be used to process
inference requests from applications. In at least one embodi-
ment, when an inference request is submitted, a request may
be received by a set of API instances of deployment system
3906, and one or more instances may be selected (e.g., for
best fit, for load balancing, etc.) to process a request. In at
least one embodiment, to process a request, a request may be
entered into a database, a machine learning model may be
located from model registry 3924 if not already in a cache,
a validation step may ensure appropriate machine learning
model is loaded into a cache (e.g., shared storage), and/or a
copy of a model may be saved to a cache. In at least one
embodiment, a scheduler (e.g., of pipeline manager 4012)
may be used to launch an application that is referenced in a
request if an application is not already running or if there are
not enough instances of an application. In at least one
embodiment, if an inference server is not already launched
to execute a model, an inference server may be launched. In
at least one embodiment, any number of inference servers
may be launched per model. In at least one embodiment, in
a pull model, in which inference servers are clustered,
models may be cached whenever load balancing is advan-
tageous. In at least one embodiment, inference servers may
be statically loaded in corresponding, distributed servers.

[0594] In at least one embodiment, inferencing may be
performed using an inference server that runs in a container.
In at least one embodiment, an instance of an inference
server may be associated with a model (and optionally a
plurality of versions of a model). In at least one embodiment,
if an instance of an inference server does not exist when a
request to perform inference on a model is received, a new
instance may be loaded. In at least one embodiment, when
starting an inference server, a model may be passed to an
inference server such that a same container may be used to
serve different models so long as inference server is running
as a different instance.

[0595] In at least one embodiment, during application
execution, an inference request for a given application may
be received, and a container (e.g., hosting an instance of an
inference server) may be loaded (if not already), and a start

Nov. 10, 2022

procedure may be called. In at least one embodiment,
pre-processing logic in a container may load, decode, and/or
perform any additional pre-processing on incoming data
(e.g., using a CPU(s) and/or GPU(s)). In at least one
embodiment, once data is prepared for inference, a container
may perform inference as necessary on data. In at least one
embodiment, this may include a single inference call on one
image (e.g., a hand X-ray), or may require inference on
hundreds of images (e.g., a chest CT). In at least one
embodiment, an application may summarize results before
completing, which may include, without limitation, a single
confidence score, pixel level-segmentation, voxel-level seg-
mentation, generating a visualization, or generating text to
summarize findings. In at least one embodiment, different
models or applications may be assigned different priorities.
For example, some models may have a real-time (TAT less
than one minute) priority while others may have lower
priority (e.g., TAT less than 10 minutes). In at least one
embodiment, model execution times may be measured from
requesting institution or entity and may include partner
network traversal time, as well as execution on an inference
service.

[0596] In at least one embodiment, transfer of requests
between services 3920 and inference applications may be
hidden behind a software development kit (SDK), and
robust transport may be provide through a queue. In at least
one embodiment, a request will be placed in a queue via an
API for an individual application/tenant ID combination and
an SDK will pull a request from a queue and give a request
to an application. In at least one embodiment, a name of a
queue may be provided in an environment from where an
SDK will pick it up. In at least one embodiment, asynchro-
nous communication through a queue may be useful as it
may allow any instance of an application to pick up work as
it becomes available. In at least one embodiment, results
may be transferred back through a queue, to ensure no data
is lost. In at least one embodiment, queues may also provide
an ability to segment work, as highest priority work may go
to a queue with most instances of an application connected
to it, while lowest priority work may go to a queue with a
single instance connected to it that processes tasks in an
order received. In at least one embodiment, an application
may run on a GPU-accelerated instance generated in cloud
4026, and an inference service may perform inferencing on
a GPU.

[0597] In at least one embodiment, visualization services
4020 may be leveraged to generate visualizations for view-
ing outputs of applications and/or deployment pipeline(s)
4010. In at least one embodiment, GPUs 4022 may be
leveraged by visualization services 4020 to generate visu-
alizations. In at least one embodiment, rendering effects,
such as ray-tracing, may be implemented by visualization
services 4020 to generate higher quality visualizations. In at
least one embodiment, visualizations may include, without
limitation, 2D image renderings, 3D volume renderings, 3D
volume reconstruction, 2D tomographic slices, virtual real-
ity displays, augmented reality displays, etc. In at least one
embodiment, virtualized environments may be used to gen-
erate a virtual interactive display or environment (e.g., a
virtual environment) for interaction by users of a system
(e.g., doctors, nurses, radiologists, etc.). In at least one
embodiment, visualization services 4020 may include an
internal visualizer, cinematics, and/or other rendering or

US 2022/0358627 Al

image processing capabilities or functionality (e.g., ray
tracing, rasterization, internal optics, etc.).

[0598] In at least one embodiment, hardware 3922 may
include GPUs 4022, Al system 4024, cloud 4026, and/or any
other hardware used for executing training system 3904
and/or deployment system 3906. In at least one embodiment,
GPUs 4022 (e.g., NVIDIA’s TESLA and/or QUADRO
GPUs) may include any number of GPUs that may be used
for executing processing tasks of compute services 4016, Al
services 4018, visualization services 4020, other services,
and/or any of features or functionality of software 3918. For
example, with respect to Al services 4018, GPUs 4022 may
be used to perform pre-processing on imaging data (or other
data types used by machine learning models), post-process-
ing on outputs of machine learning models, and/or to per-
form inferencing (e.g., to execute machine learning models).
In at least one embodiment, cloud 4026, Al system 4024,
and/or other components of system 4000 may use GPUs
4022. In at least one embodiment, cloud 4026 may include
a GPU-optimized platform for deep learning tasks. In at least
one embodiment, Al system 4024 may use GPUs, and cloud
4026—or at least a portion tasked with deep learning or
inferencing—may be executed using one or more Al sys-
tems 4024. As such, although hardware 3922 is illustrated as
discrete components, this is not intended to be limiting, and
any components of hardware 3922 may be combined with,
or leveraged by, any other components of hardware 3922.

[0599] In at least one embodiment, Al system 4024 may
include a purpose-built computing system (e.g., a super-
computer or an HPC) configured for inferencing, deep
learning, machine learning, and/or other artificial intelli-
gence tasks. In at least one embodiment, Al system 4024
(e.g., NVIDIA’s DGX) may include GPU-optimized soft-
ware (e.g., a software stack) that may be executed using a
plurality of GPUs 4022, in addition to CPUs, RAM, storage,
and/or other components, features, or functionality. In at
least one embodiment, one or more Al systems 4024 may be
implemented in cloud 4026 (e.g., in a data center) for
performing some or all of Al-based processing tasks of
system 4000.

[0600] In at least one embodiment, cloud 4026 may
include a GPU-accelerated infrastructure (e.g., NVIDIA’s
NGC) that may provide a GPU-optimized platform for
executing processing tasks of system 4000. In at least one
embodiment, cloud 4026 may include an Al system(s) 4024
for performing one or more of Al-based tasks of system
4000 (e.g., as a hardware abstraction and scaling platform).
In at least one embodiment, cloud 4026 may integrate with
application orchestration system 4028 leveraging multiple
GPUs to enable seamless scaling and load balancing
between and among applications and services 3920. In at
least one embodiment, cloud 4026 may tasked with execut-
ing at least some of services 3920 of system 4000, including
compute services 4016, Al services 4018, and/or visualiza-
tion services 4020, as described herein. In at least one
embodiment, cloud 4026 may perform small and large batch
inference (e.g., executing NVIDIA’s TENSOR RT), provide
an accelerated parallel computing API and platform 4030
(e.g., NVIDIA’s CUDA), execute application orchestration
system 4028 (e.g., KUBERNETES), provide a graphics
rendering API and platform (e.g., for ray-tracing, 2D graph-
ics, 3D graphics, and/or other rendering techniques to pro-
duce higher quality cinematics), and/or may provide other
functionality for system 4000.

Nov. 10, 2022

[0601] In at least one embodiment, in an effort to preserve
patient confidentiality (e.g., where patient data or records are
to be used off-premises), cloud 4026 may include a regis-
try—such as a deep learning container registry. In at least
one embodiment, a registry may store containers for instan-
tiations of applications that may perform pre-processing,
post-processing, or other processing tasks on patient data. In
at least one embodiment, cloud 4026 may receive data that
includes patient data as well as sensor data in containers,
perform requested processing for just sensor data in those
containers, and then forward a resultant output and/or visu-
alizations to appropriate parties and/or devices (e.g., on-
premises medical devices used for visualization or diagno-
ses), all without having to extract, store, or otherwise access
patient data. In at least one embodiment, confidentiality of
patient data is preserved in compliance with HIPAA and/or
other data regulations.

[0602] FIG. 41 includes an example illustration of a
deployment pipeline 4010A for processing imaging data, in
accordance with at least one embodiment. In at least one
embodiment, system 4000—and specifically deployment
system 3906—may be used to customize, update, and/or
integrate deployment pipeline(s) 4010A into one or more
production environments. In at least one embodiment,
deployment pipeline 4010A of FIG. 41 includes a non-
limiting example of a deployment pipeline 4010A that may
be custom defined by a particular user (or team of users) at
a facility (e.g., at a hospital, clinic, lab, research environ-
ment, etc.). In at least one embodiment, to define deploy-
ment pipelines 4010A for a CT scanner 4102, a user may
select—from a container registry, for example—one or more
applications that perform specific functions or tasks with
respect to imaging data generated by CT scanner 4102. In at
least one embodiment, applications may be applied to
deployment pipeline 4010A as containers that may leverage
services 3920 and/or hardware 3922 of system 4000. In
addition, deployment pipeline 4010A may include additional
processing tasks or applications that may be implemented to
prepare data for use by applications (e.g., DICOM adapter
4002B and DICOM reader 4106 may be used in deployment
pipeline 4010A to prepare data for use by CT reconstruction
4108, organ segmentation 4110, etc.). In at least one embodi-
ment, deployment pipeline 4010A may be customized or
selected for consistent deployment, one time use, or for
another frequency or interval. In at least one embodiment, a
user may desire to have CT reconstruction 4108 and organ
segmentation 4110 for several subjects over a specific inter-
val, and thus may deploy pipeline 4010A for that period of
time. In at least one embodiment, a user may select, for each
request from system 4000, applications that a user wants to
perform processing on that data for that request. In at least
one embodiment, deployment pipeline 4010A may be
adjusted at any interval and, because of adaptability and
scalability of a container structure within system 4000, this
may be a seamless process.

[0603] In at least one embodiment, deployment pipeline
4010A of FIG. 41 may include CT scanner 4102 generating
imaging data of a patient or subject. In at least one embodi-
ment, imaging data from CT scanner 4102 may be stored on
a PACS server(s) 4104 associated with a facility housing CT
scanner 4102. In at least one embodiment, PACS server(s)
4104 may include software and/or hardware components
that may directly interface with imaging modalities (e.g., CT
scanner 4102) at a facility. In at least one embodiment,

US 2022/0358627 Al

DICOM adapter 4002B may enable sending and receipt of
DICOM objects using DICOM protocols. In at least one
embodiment, DICOM adapter 4002B may aid in preparation
or configuration of DICOM data from PACS server(s) 4104
for use by deployment pipeline 4010A. In at least one
embodiment, once DICOM data is processed through
DICOM adapter 4002B, pipeline manager 4012 may route
data through to deployment pipeline 4010A. In at least one
embodiment, DICOM reader 4106 may extract image files
and any associated metadata from DICOM data (e.g., raw
sinogram data, as illustrated in visualization 4116A). In at
least one embodiment, working files that are extracted may
be stored in a cache for faster processing by other applica-
tions in deployment pipeline 4010A. In at least one embodi-
ment, once DICOM reader 4106 has finished extracting
and/or storing data, a signal of completion may be commu-
nicated to pipeline manager 4012. In at least one embodi-
ment, pipeline manager 4012 may then initiate or call upon
one or more other applications or containers in deployment
pipeline 4010A.

[0604] In at least one embodiment, CT reconstruction
4108 application and/or container may be executed once
data (e.g., raw sinogram data) is available for processing by
CT reconstruction 4108 application. In at least one embodi-
ment, CT reconstruction 4108 may read raw sinogram data
from a cache, reconstruct an image file out of raw sinogram
data (e.g., as illustrated in visualization 4116B), and store
resulting image file in a cache. In at least one embodiment,
at completion of reconstruction, pipeline manager 4012 may
be signaled that reconstruction task is complete. In at least
one embodiment, once reconstruction is complete, and a
reconstructed image file may be stored in a cache (or other
storage device), organ segmentation 4110 application and/or
container may be triggered by pipeline manager 4012. In at
least one embodiment, organ segmentation 4110 application
and/or container may read an image file from a cache,
normalize or convert an image file to format suitable for
inference (e.g., convert an image file to an input resolution
of' a machine learning model), and run inference against a
normalized image. In at least one embodiment, to run
inference on a normalized image, organ segmentation 4110
application and/or container may rely on services 3920, and
pipeline manager 4012 and/or application orchestration sys-
tem 4028 may facilitate use of services 3920 by organ
segmentation 4110 application and/or container. In at least
one embodiment, for example, organ segmentation 4110
application and/or container may leverage Al services 4018
to perform inference on a normalized image, and Al services
4018 may leverage hardware 3922 (e.g., Al system 4024) to
execute Al services 4018. In at least one embodiment, a
result of an inference may be a mask file (e.g., as illustrated
in visualization 4116C) that may be stored in a cache (or
other storage device).

[0605] In at least one embodiment, once applications that
process DICOM data and/or data extracted from DICOM
data have completed processing, a signal may be generated
for pipeline manager 4012. In at least one embodiment,
pipeline manager 4012 may then execute DICOM writer
4112 to read results from a cache (or other storage device),
package results into a DICOM format (e.g., as DICOM
output 4114) for use by users at a facility who generated a
request. In at least one embodiment, DICOM output 4114
may then be transmitted to DICOM adapter 4002B to
prepare DICOM output 4114 for storage on PACS server(s)

Nov. 10, 2022

4104 (e.g., for viewing by a DICOM viewer at a facility). In
at least one embodiment, in response to a request for
reconstruction and segmentation, visualizations 41168 and
4116C may be generated and available to a user for diag-
noses, research, and/or for other purposes.

[0606] Although illustrated as consecutive application in
deployment pipeline 4010A, CT reconstruction 4108 and
organ segmentation 4110 applications may be processed in
parallel in at least one embodiment. In at least one embodi-
ment, where applications do not have dependencies on one
another, and data is available for each application (e.g., after
DICOM reader 4106 extracts data), applications may be
executed at a same time, substantially at a same time, or with
some overlap. In at least one embodiment, where two or
more applications require similar services 3920, a scheduler
of system 4000 may be used to load balance and distribute
compute or processing resources between and among vari-
ous applications. In at least one embodiment, in some
embodiments, parallel computing platform 4030 may be
used to perform parallel processing for applications to
decrease run-time of deployment pipeline 4010A to provide
real-time results.

[0607] In at least one embodiment, and with reference to
FIGS. 42A-42B, deployment system 3906 may be imple-
mented as one or more virtual instruments to perform
different functionalities—such as image processing, seg-
mentation, enhancement, Al, visualization, and inferenc-
ing—with imaging devices (e.g., CT scanners, X-ray
machines, MRI machines, etc.), sequencing devices, genom-
ics devices, and/or other device types. In at least one
embodiment, system 4000 may allow for creation and pro-
vision of virtual instruments that may include a software-
defined deployment pipeline 4010 that may receive raw/
unprocessed input data generated by a device(s) and output
processed/reconstructed data. In at least one embodiment,
deployment pipelines 4010 (e.g., 4010A and 4010B) that
represent virtual instruments may implement intelligence
into a pipeline, such as by leveraging machine learning
models, to provide containerized inference support to a
system. In at least one embodiment, virtual instruments may
execute any number of containers each including instantia-
tions of applications. In at least one embodiment, such as
where real-time processing is desired, deployment pipelines
4010 representing virtual instruments may be static (e.g.,
containers and/or applications may be set), while in other
examples, container and/or applications for virtual instru-
ments may be selected (e.g., on a per-request basis) from a
pool of applications or resources (e.g., within a container
registry).

[0608] In at least one embodiment, system 4000 may be
instantiated or executed as one or more virtual instruments
on-premise at a facility in, for example, a computing system
deployed next to or otherwise in communication with a
radiology machine, an imaging device, and/or another
device type at a facility. In at least one embodiment, how-
ever, an on-premise installation may be instantiated or
executed within a computing system of a device itself (e.g.,
a computing system integral to an imaging device), in a local
datacenter (e.g., a datacenter on-premise), and/or in a cloud-
environment (e.g., in cloud 4026). In at least one embodi-
ment, deployment system 3906, operating as a virtual instru-
ment, may be instantiated by a supercomputer or other HPC
system in some examples. In at least one embodiment,
on-premise installation may allow for high-bandwidth uses

US 2022/0358627 Al

(via, for example, higher throughput local communication
interfaces, such as RF over Ethernet) for real-time process-
ing. In at least one embodiment, real-time or near real-time
processing may be particularly useful where a virtual instru-
ment supports an ultrasound device or other imaging modal-
ity where immediate visualizations are expected or required
for accurate diagnoses and analyses. In at least one embodi-
ment, a cloud-computing architecture may be capable of
dynamic bursting to a cloud computing service provider, or
other compute cluster, when local demand exceeds on-
premise capacity or capability. In at least one embodiment,
a cloud architecture, when implemented, may be tuned for
training neural networks or other machine learning models,
as described herein with respect to training system 3904. In
at least one embodiment, with training pipelines in place,
machine learning models may be continuously learn and
improve as they process additional data from devices they
support. In at least one embodiment, virtual instruments may
be continually improved using additional data, new data,
existing machine learning models, and/or new or updated
machine learning models.

[0609] In at least one embodiment, a computing system
may include some or all of hardware 3922 described herein,
and hardware 3922 may be distributed in any of a number of
ways including within a device, as part of a computing
device coupled to and located proximate a device, in a local
datacenter at a facility, and/or in cloud 4026. In at least one
embodiment, because deployment system 3906 and associ-
ated applications or containers are created in software (e.g.,
as discrete containerized instantiations of applications),
behavior, operation, and configuration of virtual instru-
ments, as well as outputs generated by virtual instruments,
may be modified or customized as desired, without having
to change or alter raw output of a device that a virtual
instrument supports.

[0610] FIG. 42A includes an example data flow diagram
of a virtual instrument supporting an ultrasound device, in
accordance with at least one embodiment. In at least one
embodiment, deployment pipeline 4010B may leverage one
or more of services 3920 of system 4000. In at least one
embodiment, deployment pipeline 4010B and services 3920
may leverage hardware 3922 of a system either locally or in
cloud 4026. In at least one embodiment, although not
illustrated, process 4200 may be facilitated by pipeline
manager 4012, application orchestration system 4028, and/
or parallel computing platform 4030.

[0611] In at least one embodiment, process 4200 may
include receipt of imaging data from an ultrasound device
4202. In at least one embodiment, imaging data may be
stored on PACS server(s) in a DICOM format (or other
format, such as RIS, CIS, REST compliant, RPC, raw, etc.),
and may be received by system 4000 for processing through
deployment pipeline 4010 selected or customized as a
virtual instrument (e.g., a virtual ultrasound) for ultrasound
device 4202. In at least one embodiment, imaging data may
be received directly from an imaging device (e.g., ultrasound
device 4202) and processed by a virtual instrument. In at
least one embodiment, a transducer or other signal converter
communicatively coupled between an imaging device and a
virtual instrument may convert signal data generated by an
imaging device to image data that may be processed by a
virtual instrument. In at least one embodiment, raw data
and/or image data may be applied to DICOM reader 4106 to
extract data for use by applications or containers of deploy-

Nov. 10, 2022

ment pipeline 4010B. In at least one embodiment, DICOM
reader 4106 may leverage data augmentation library 4214
(e.g., NVIDIA’s DALI) as a service 3920 (e.g., as one of
compute service(s) 4016) for extracting, resizing, rescaling,
and/or otherwise preparing data for use by applications or
containers.

[0612] In at least one embodiment, once data is prepared,
a reconstruction 4206 application and/or container may be
executed to reconstruct data from ultrasound device 4202
into an image file. In at least one embodiment, after recon-
struction 4206, or at a same time as reconstruction 4206, a
detection 4208 application and/or container may be executed
for anomaly detection, object detection, feature detection,
and/or other detection tasks related to data. In at least one
embodiment, an image file generated during reconstruction
4206 may be used during detection 4208 to identify anoma-
lies, objects, features, etc. In at least one embodiment,
detection 4208 application may leverage an inference engine
4216 (e.g., as one of Al service(s) 4018) to perform infer-
ence on data to generate detections. In at least one embodi-
ment, one or more machine learning models (e.g., from
training system 3904) may be executed or called by detec-
tion 4208 application.

[0613] In at least one embodiment, once reconstruction
4206 and/or detection 4208 is/are complete, data output
from these application and/or containers may be used to
generate visualizations 4210, such as visualization 4212
(e.g., a grayscale output) displayed on a workstation or
display terminal. In at least one embodiment, visualization
may allow a technician or other user to visualize results of
deployment pipeline 4010B with respect to ultrasound
device 4202. In at least one embodiment, visualization 4210
may be executed by leveraging a render component 4218 of
system 4000 (e.g., one of visualization service(s) 4020). In
at least one embodiment, render component 4218 may
execute a 2D, OpenGL, or ray-tracing service to generate
visualization 4212.

[0614] FIG. 42B includes an example data flow diagram
of a virtual instrument supporting a CT scanner, in accor-
dance with at least one embodiment. In at least one embodi-
ment, deployment pipeline 4010C may leverage one or more
of services 3920 of system 4000. In at least one embodiment,
deployment pipeline 4010C and services 3920 may leverage
hardware 3922 of a system either locally or in cloud 4026.
In at least one embodiment, although not illustrated, process
4220 may be facilitated by pipeline manager 4012, appli-
cation orchestration system 4028, and/or parallel computing
platform 4030.

[0615] In at least one embodiment, process 4220 may
include CT scanner 4222 generating raw data that may be
received by DICOM reader 4106 (e.g., directly, via a PACS
server 4104, after processing, etc.). In at least one embodi-
ment, a Virtual CT (instantiated by deployment pipeline
4010C) may include a first, real-time pipeline for monitoring
a patient (e.g., patient movement detection Al 4226) and/or
for adjusting or optimizing exposure of CT scanner 4222
(e.g., using exposure control Al 4224). In at least one
embodiment, one or more of applications (e.g., 4224 and
4226) may leverage a service 3920, such as Al service(s)
4018. In at least one embodiment, outputs of exposure
control Al 4224 application (or container) and/or patient
movement detection Al 4226 application (or container) may
be used as feedback to CT scanner 4222 and/or a technician

US 2022/0358627 Al

for adjusting exposure (or other settings of CT scanner 4222)
and/or informing a patient to move less.

[0616] In at least one embodiment, deployment pipeline
4010C may include a non-real-time pipeline for analyzing
data generated by CT scanner 4222. In at least one embodi-
ment, a second pipeline may include CT reconstruction 4108
application and/or container, a coarse detection Al 4228
application and/or container, a fine detection Al 4232 appli-
cation and/or container (e.g., where certain results are
detected by coarse detection Al 4228), a visualization 4230
application and/or container, and a DICOM writer 4112
(and/or other data type writer, such as RIS, CIS, REST
compliant, RPC, raw, etc.) application and/or container. In at
least one embodiment, raw data generated by CT scanner
4222 may be passed through pipelines of deployment pipe-
line 4010C (instantiated as a virtual CT instrument) to
generate results. In at least one embodiment, results from
DICOM writer 4112 may be transmitted for display and/or
may be stored on PACS server(s) 4104 for later retrieval,
analysis, or display by a technician, practitioner, or other
user.

[0617] FIG. 43A illustrates a data flow diagram for a
process 4300 to train, retrain, or update a machine learning
model, in accordance with at least one embodiment. In at
least one embodiment, process 4300 may be executed using,
as a non-limiting example, system 4000 of FIG. 40. In at
least one embodiment, process 4300 may leverage services
3920 and/or hardware 3922 of system 4000, as described
herein. In at least one embodiment, refined models 4312
generated by process 4300 may be executed by deployment
system 3906 for one or more containerized applications in
deployment pipelines 4010.

[0618] In at least one embodiment, model training 3914
may include retraining or updating an initial model 4304
(e.g., a pre-trained model) using new training data (e.g., new
input data, such as customer dataset 4306, and/or new
ground truth data associated with input data). In at least one
embodiment, to retrain, or update, initial model 4304, output
or loss layer(s) of initial model 4304 may be reset, or
deleted, and/or replaced with an updated or new output or
loss layer(s). In at least one embodiment, initial model 4304
may have previously fine-tuned parameters (e.g., weights
and/or biases) that remain from prior training, so training or
retraining 3914 may not take as long or require as much
processing as training a model from scratch. In at least one
embodiment, during model training 3914, by having reset or
replaced output or loss layer(s) of initial model 4304,
parameters may be updated and re-tuned for a new data set
based on loss calculations associated with accuracy of
output or loss layer(s) at generating predictions on new,
customer dataset 4306 (e.g., image data 3908 of FIG. 39).

[0619] In at least one embodiment, pre-trained models
4006 may be stored in a data store, or registry (e.g., model
registry 3924 of FIG. 39). In at least one embodiment,
pre-trained models 4006 may have been trained, at least in
part, at one or more facilities other than a facility executing
process 4300. In at least one embodiment, to protect privacy
and rights of patients, subjects, or clients of different facili-
ties, pre-trained models 4006 may have been trained, on-
premise, using customer or patient data generated on-prem-
ise. In at least one embodiment, pre-trained models 4006
may be trained using cloud 4026 and/or other hardware
3922, but confidential, privacy protected patient data may
not be transferred to, used by, or accessible to any compo-

Nov. 10, 2022

nents of cloud 4026 (or other off premise hardware). In at
least one embodiment, where a pre-trained model 4006 is
trained at using patient data from more than one facility,
pre-trained model 4006 may have been individually trained
for each facility prior to being trained on patient or customer
data from another facility. In at least one embodiment, such
as where a customer or patient data has been released of
privacy concerns (e.g., by waiver, for experimental use,
etc.), or where a customer or patient data is included in a
public data set, a customer or patient data from any number
of facilities may be used to train pre-trained model 4006
on-premise and/or off premise, such as in a datacenter or
other cloud computing infrastructure. In various embodi-
ments, the inference and/or training logic 1015 utilize the
target image data generated by the offline image signal
processing 240 as described above in connection with FIG.
2. In addition, the data collection 202 described above in
connection with FIG. 2, in various embodiments is per-
formed by the vehicle 1300. Furthermore, in an embodi-
ment, the cloud 4026 and/or components thereof are used to
implement the offline image signal processing 240 as
described above in connection with FIG. 2.

[0620] In at least one embodiment, when selecting appli-
cations for use in deployment pipelines 4010, a user may
also select machine learning models to be used for specific
applications. In at least one embodiment, a user may not
have a model for use, so a user may select a pre-trained
model 4006 to use with an application. In at least one
embodiment, pre-trained model 4006 may not be optimized
for generating accurate results on customer dataset 4306 of
a facility of a user (e.g., based on patient diversity, demo-
graphics, types of medical imaging devices used, etc.). In at
least one embodiment, prior to deploying pre-trained model
4006 into deployment pipeline 4010 for use with an appli-
cation(s), pre-trained model 4006 may be updated, retrained,
and/or fine-tuned for use at a respective facility.

[0621] In at least one embodiment, a user may select
pre-trained model 4006 that is to be updated, retrained,
and/or fine-tuned, and pre-trained model 4006 may be
referred to as initial model 4304 for training system 3904
within process 4300. In at least one embodiment, customer
dataset 4306 (e.g., imaging data, genomics data, sequencing
data, or other data types generated by devices at a facility)
may be used to perform model training 3914 (which may
include, without limitation, transfer learning) on initial
model 4304 to generate refined model 4312. In at least one
embodiment, ground truth data corresponding to customer
dataset 4306 may be generated by training system 3904. In
at least one embodiment, ground truth data may be gener-
ated, at least in part, by clinicians, scientists, doctors,
practitioners, at a facility (e.g., as labeled clinic data 3912 of
FIG. 39).

[0622] In at least one embodiment, Al-assisted annotation
3910 may be used in some examples to generate ground
truth data. In at least one embodiment, Al-assisted annota-
tion 3910 (e.g., implemented using an Al-assisted annotation
SDK) may leverage machine learning models (e.g., neural
networks) to generate suggested or predicted ground truth
data for a customer dataset. In at least one embodiment, user
4310 may use annotation tools within a user interface (a
graphical user interface (GUI)) on computing device 4308.
[0623] In at least one embodiment, user 4310 may interact
with a GUI via computing device 4308 to edit or fine-tune
annotations or auto-annotations. In at least one embodiment,

US 2022/0358627 Al

a polygon editing feature may be used to move vertices of
a polygon to more accurate or fine-tuned locations.

[0624] In at least one embodiment, once customer dataset
4306 has associated ground truth data, ground truth data
(e.g., from Al-assisted annotation, manual labeling, etc.)
may be used by during model training 3914 to generate
refined model 4312. In at least one embodiment, customer
dataset 4306 may be applied to initial model 4304 any
number of times, and ground truth data may be used to
update parameters of initial model 4304 until an acceptable
level of accuracy is attained for refined model 4312. In at
least one embodiment, once refined model 4312 is gener-
ated, refined model 4312 may be deployed within one or
more deployment pipelines 4010 at a facility for performing
one or more processing tasks with respect to medical imag-
ing data.

[0625] In at least one embodiment, refined model 4312
may be uploaded to pre-trained models 4006 in model
registry 3924 to be selected by another facility. In at least
one embodiment, his process may be completed at any
number of facilities such that refined model 4312 may be
further refined on new datasets any number of times to
generate a more universal model.

[0626] FIG. 43B is an example illustration of a client-
server architecture 4332 to enhance annotation tools with
pre-trained annotation models, in accordance with at least
one embodiment. In at least one embodiment, Al-assisted
annotation tools 4336 may be instantiated based on a client-
server architecture 4332. In at least one embodiment, anno-
tation tools 4336 in imaging applications may aid radiolo-
gists, for example, identify organs and abnormalities. In at
least one embodiment, imaging applications may include
software tools that help user 4310 to identify, as a non-
limiting example, a few extreme points on a particular organ
of interest in raw images 4334 (e.g., in a 3D MRI or CT
scan) and receive auto-annotated results for all 2D slices of
a particular organ. In at least one embodiment, results may
be stored in a data store as training data 4338 and used as
(for example and without limitation) ground truth data for
training. In at least one embodiment, when computing
device 4308 sends extreme points for Al-assisted annotation
3910, a deep learning model, for example, may receive this
data as input and return inference results of a segmented
organ or abnormality. In at least one embodiment, pre-
instantiated annotation tools, such as Al-Assisted Annota-
tion Tool 4336B in FIG. 43B, may be enhanced by making
API calls (e.g., API Call 4344) to a server, such as an
Annotation Assistant Server 4340 that may include a set of
pre-trained models 4342 stored in an annotation model
registry, for example. In at least one embodiment, an anno-
tation model registry may store pre-trained models 4342
(e.g., machine learning models, such as deep learning mod-
els) that are pre-trained to perform Al-assisted annotation on
a particular organ or abnormality. In at least one embodi-
ment, these models may be further updated by using training
pipelines 4004. In at least one embodiment, pre-installed
annotation tools may be improved over time as new labeled
clinic data 3912 is added.

[0627] Inference and/or training logic 1015 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 1015 are provided herein in conjunc-
tion with FIGS. 10A and/or 10B.

Nov. 10, 2022

[0628] At least one embodiment of the disclosure can be
described in view of the following clauses:

[0629] 1. A method comprising: obtaining stored sensor
data representing a set of scenes captured by an image sensor
utilizing an exposure setting corresponding to a first
dynamic range; selecting, based at least in part on at least
one scene of the set of scenes, a set of image processing
algorithms of an image signal processor (ISP); and causing
the ISP to apply the set of image processing algorithms to the
sensor data to obtain a set of images having one or more
pixels within a second dynamic range that is different from
the first dynamic range.

[0630] 2. The method of clause 1, wherein capturing the
sensor data is decoupled from the ISP.

[0631] 3. The method of clauses 1 or 2, wherein the set of
image processing algorithms further comprises a tone map-
ping algorithm.

[0632] 4. The method of clauses 1 to 3, wherein the sensor
data further comprises data generated by the image sensor
prior to conversion to an image format.

[0633] 5. The method of clauses 1 to 4, wherein the set of
images further comprises a low dynamic range (SDR)
image.

[0634] 6. The method of clauses 1 to 5, wherein the sensor
data was captured by a camera device mounted on at least
one of: a vehicle; a robot; or a drone.

[0635] 7. The method of clauses 1 to 6, wherein the sensor
data was captured by a camera device including the image
Sensor.

[0636] 8. The method of clauses 1 to 7, wherein the sensor
data is stored in a persistent storage.

[0637] 9. The method of clauses 1 to 8, wherein the
method further comprises training a model based at least in
part on the set of images.

[0638] 10. The method of clauses 1 to 9, wherein the
model is a neural network.

[0639] 11. The method of clauses 1 to 10, wherein the
method further comprises: obtaining a result of an inferenc-
ing operation of the model; and moditying the ISP based at
least in part on the result.

[0640] 12. The method of clauses 1 to 11, wherein modi-
fying the ISP further comprises modifying a set of param-
eters of a tone mapping function included in the ISP.
[0641] 13. The method of clauses 1 to 12, wherein the
method further comprises modifying the ISP based at least
in part on the set of images.

[0642] 14. The method of clauses 1 to 13, wherein the
application further comprises object detection performed by
a neural network.

[0643] 15. The method of clauses 1 to 14, wherein the
application further comprises a model executed by one or
more arithmetic logic units (ALUs) incorporated in an
autonomous vehicle.

[0644] 16. A processor comprising: one or more process-
ing units to obtain stored sensor data representing a set of
scenes captured by an image sensor utilizing an exposure
setting corresponding to a first dynamic range, select a set of
image processing algorithms of an image signal processor
(ISP) based at least in part on at least one scene of the set of
scenes, and cause the ISP to apply the set of image process-
ing algorithms to the sensor data to obtain a set of images
within a second dynamic range that is different from the first
dynamic range.

US 2022/0358627 Al

[0645] 17. The processor of clauses 1 to 16, wherein the
one or more processing units are further to train a neural
network based at least in part on the plurality of images.
[0646] 18. The processor of clauses 1 to 17, wherein the
one or more processing units are further to: obtain a result
of the neural network; and adjust at least one parameter of
a tone mapping algorithm included in the ISP based at least
in part on the result, where the tone mapping algorithm is a
member of the set of image processing algorithms.

[0647] 19. The processor of clauses 1 to 18, wherein the
one or more processing units are further to modify at least
one parameter of a tone mapping algorithm based at least in
part on an image of the plurality of images, where the tone
mapping algorithm is a member of the set of image pro-
cessing algorithms.

[0648] 20. The processor of clauses 1 to 19, wherein the
sensor data further comprises raster scale data.

[0649] 21. The processor of clauses 1 to 20, wherein the
sensor is mounted on a vehicle.

[0650] 22. The processor of clauses 1 to 21, wherein the
sensor is incorporated in a camera device mounted on an
autonomous vehicle.

[0651] 23. The processor of clauses 1 to 22, wherein the
ISP is implemented by a computing device in a data center.
[0652] 24. The processor of clauses 1 to 23, wherein the
ISP is implemented by a graphic processing unit (GPU)
accelerated system.

[0653] 25. The processor of clauses 1 to 24, wherein the
exposure calibration is not modified during capture of the set
of scenes by the sensor.

[0654] 26. A non-transitory machine-readable medium
having stored thereon a set of instructions, which if per-
formed by one or more processors, cause the one or more
processors to at least: obtain stored sensor data representa-
tive of a set of scenes captured by a sensor utilizing an
exposure calibration, the sensor data comprising a first
dynamic range associated with the exposure calibration;
determine a set of image processing algorithms based at
least in part on a second dynamic range for a plurality of
images to be used in an application, where the second
dynamic range and the first dynamic range are different; and
obtain, as a result of processing the sensor data by an image
signal processor (ISP), the plurality of images, and the ISP
implementing the set of image processing algorithms.
[0655] In at least one embodiment, a single semiconductor
platform may refer to a sole unitary semiconductor-based
integrated circuit or chip. In at least one embodiment,
multi-chip modules may be used with increased connectivity
which simulate on-chip operation, and make substantial
improvements over utilizing a conventional central process-
ing unit (“CPU”) and bus implementation. In at least one
embodiment, various modules may also be situated sepa-
rately or in various combinations of semiconductor plat-
forms per desires of user.

[0656] In at least one embodiment, referring back to FIG.
16, computer programs in form of machine-readable execut-
able code or computer control logic algorithms are stored in
main memory 1604 and/or secondary storage. Computer
programs, if executed by one or more processors, enable
system 1600 to perform various functions in accordance
with at least one embodiment. In at least one embodiment,
memory 1604, storage, and/or any other storage are possible
examples of computer-readable media. In at least one
embodiment, secondary storage may refer to any suitable

Nov. 10, 2022

storage device or system such as a hard disk drive and/or a
removable storage drive, representing a floppy disk drive, a
magnetic tape drive, a compact disk drive, digital versatile
disk (“DVD”) drive, recording device, universal serial bus
(“USB”) flash memory, etc. In at least one embodiment,
architecture and/or functionality of various previous figures
are implemented in context of CPU 1602, parallel process-
ing system 1612, an integrated circuit capable of at least a
portion of capabilities of both CPU 1602, parallel processing
system 1612, a chipset (e.g., a group of integrated circuits
designed to work and sold as a unit for performing related
functions, etc.), and/or any suitable combination of inte-
grated circuit(s).

[0657] In at least one embodiment, architecture and/or
functionality of various previous figures are implemented in
context of a general computer system, a circuit board
system, a game console system dedicated for entertainment
purposes, an application-specific system, and more. In at
least one embodiment, computer system 1600 may take
form of a desktop computer, a laptop computer, a tablet
computer, servers, supercomputers, a smart-phone (e.g., a
wireless, hand-held device), personal digital assistant
(“PDA”), a digital camera, a vehicle, a head mounted
display, a hand-held electronic device, a mobile phone
device, a television, workstation, game consoles, embedded
system, and/or any other type of logic.

[0658] In at least one embodiment, parallel processing
system 1612 includes, without limitation, a plurality of
parallel processing units (“PPUs”) 1614 and associated
memories 1616. In at least one embodiment, PPUs 1614 are
connected to a host processor or other peripheral devices via
an interconnect 1618 and a switch 1620 or multiplexer. In at
least one embodiment, parallel processing system 1612
distributes computational tasks across PPUs 1614 which can
be parallelizable for example, as part of distribution of
computational tasks across multiple graphics processing unit
(“GPU”) thread blocks. In at least one embodiment, memory
is shared and accessible (e.g., for read and/or write access)
across some or all of PPUs 1614, although such shared
memory may incur performance penalties relative to use of
local memory and registers resident to a PPU 1614. In at
least one embodiment, operation of PPUs 1614 is synchro-
nized through use of a command such as _syncthreads(),
wherein all threads in a block (e.g., executed across multiple
PPUs 1614) to reach a certain point of execution of code
before proceeding.

[0659] Other variations are within spirit of present disclo-
sure. Thus, while disclosed techniques are susceptible to
various modifications and alternative constructions, certain
illustrated embodiments thereof are shown in drawings and
have been described above in detail. It should be understood,
however, that there is no intention to limit disclosure to
specific form or forms disclosed, but on contrary, intention
is to cover all modifications, alternative constructions, and
equivalents falling within spirit and scope of disclosure, as
defined in appended claims.

[0660] Use of terms “a” and “an” and “the” and similar
referents in context of describing disclosed embodiments
(especially in context of following claims) are to be con-
strued to cover both singular and plural, unless otherwise
indicated herein or clearly contradicted by context, and not
as a definition of a term. Terms “comprising,” “having,”
“including,” and “containing” are to be construed as open-
ended terms (meaning “including, but not limited to,”)

US 2022/0358627 Al

unless otherwise noted. “Connected,” when unmodified and
referring to physical connections, is to be construed as partly
or wholly contained within, attached to, or joined together,
even if there is something intervening. Recitation of ranges
of values herein are merely intended to serve as a shorthand
method of referring individually to each separate value
falling within range, unless otherwise indicated herein and
each separate value is incorporated into specification as if it
were individually recited herein. In at least one embodiment,
use of term “set” (e.g., “a set of items”™) or “subset” unless
otherwise noted or contradicted by context, is to be con-
strued as a nonempty collection comprising one or more
members. Further, unless otherwise noted or contradicted by
context, term “subset” of a corresponding set does not
necessarily denote a proper subset of corresponding set, but
subset and corresponding set may be equal.

[0661] Conjunctive language, such as phrases of form “at
least one of A, B, and C,” or “at least one of A, B and C,”
unless specifically stated otherwise or otherwise clearly
contradicted by context, is otherwise understood with con-
text as used in general to present that an item, term, etc., may
be either A or B or C, or any nonempty subset of set of A and
B and C. For instance, in illustrative example of a set having
three members, conjunctive phrases “at least one of A, B,
and C” and “at least one of A, B and C” refer to any of
following sets: {A}, {B}, {C}, {A, B}, {A, C}, {B, C}, {A,
B, C}. Thus, such conjunctive language is not generally
intended to imply that certain embodiments require at least
one of A, at least one of B and at least one of C each to be
present. In addition, unless otherwise noted or contradicted
by context, term “plurality” indicates a state of being plural
(e.g., “a plurality of items” indicates multiple items). In at
least one embodiment, number of items in a plurality is at
least two, but can be more when so indicated either explic-
itly or by context. Further, unless stated otherwise or oth-
erwise clear from context, phrase “based on” means “based
at least in part on” and not “based solely on.”

[0662] Operations of processes described herein can be
performed in any suitable order unless otherwise indicated
herein or otherwise clearly contradicted by context. In at
least one embodiment, a process such as those processes
described herein (or variations and/or combinations thereof)
is performed under control of one or more computer systems
configured with executable instructions and is implemented
as code (e.g., executable instructions, one or more computer
programs or one or more applications) executing collec-
tively on one or more processors, by hardware or combina-
tions thereof. In at least one embodiment, code is stored on
a computer-readable storage medium, for example, in form
of'a computer program comprising a plurality of instructions
executable by one or more processors. In at least one
embodiment, a computer-readable storage medium is a
non-transitory computer-readable storage medium that
excludes transitory signals (e.g., a propagating transient
electric or electromagnetic transmission) but includes non-
transitory data storage circuitry (e.g., buffers, cache, and
queues) within transceivers of transitory signals. In at least
one embodiment, code (e.g., executable code or source
code) is stored on a set of one or more non-transitory
computer-readable storage media having stored thereon
executable instructions (or other memory to store executable
instructions) that, when executed (i.e., as a result of being
executed) by one or more processors of a computer system,
cause computer system to perform operations described

Nov. 10, 2022

herein. In at least one embodiment, set of non-transitory
computer-readable storage media comprises multiple non-
transitory computer-readable storage media and one or more
of individual non-transitory storage media of multiple non-
transitory computer-readable storage media lack all of code
while multiple non-transitory computer-readable storage
media collectively store all of code. In at least one embodi-
ment, executable instructions are executed such that differ-
ent instructions are executed by different processors for
example, a non-transitory computer-readable storage
medium store instructions and a main central processing unit
(“CPU”) executes some of instructions while a graphics
processing unit (“GPU”) executes other instructions. In at
least one embodiment, different components of a computer
system have separate processors and different processors
execute different subsets of instructions.

[0663] In atleast one embodiment, an arithmetic logic unit
is a set of combinational logic circuitry that takes one or
more inputs to produce a result. In at least one embodiment,
an arithmetic logic unit is used by a processor to implement
mathematical operation such as addition, subtraction, or
multiplication. In at least one embodiment, an arithmetic
logic unit is used to implement logical operations such as
logical AND/OR or XOR. In at least one embodiment, an
arithmetic logic unit is stateless, and made from physical
switching components such as semiconductor transistors
arranged to form logical gates. In at least one embodiment,
an arithmetic logic unit may operate internally as a stateful
logic circuit with an associated clock. In at least one
embodiment, an arithmetic logic unit may be constructed as
an asynchronous logic circuit with an internal state not
maintained in an associated register set. In at least one
embodiment, an arithmetic logic unit is used by a processor
to combine operands stored in one or more registers of the
processor and produce an output that can be stored by the
processor in another register or a memory location.

[0664] In at least one embodiment, as a result of process-
ing an instruction retrieved by the processor, the processor
presents one or more inputs or operands to an arithmetic
logic unit, causing the arithmetic logic unit to produce a
result based at least in part on an instruction code provided
to inputs of the arithmetic logic unit. In at least one embodi-
ment, the instruction codes provided by the processor to the
ALU are based at least in part on the instruction executed by
the processor. In at least one embodiment combinational
logic in the ALU processes the inputs and produces an
output which is placed on a bus within the processor. In at
least one embodiment, the processor selects a destination
register, memory location, output device, or output storage
location on the output bus so that clocking the processor
causes the results produced by the ALU to be sent to the
desired location.

[0665] In the scope of this application, the term arithmetic
logic unit, or ALU, is used to refer to any computational
logic circuit that processes operands to produce a result. For
example, in the present document, the term ALU can refer
to a floating point unit, a DSP, a tensor core, a shader core,
a coprocessor, or a CPU.

[0666] Accordingly, in at least one embodiment, computer
systems are configured to implement one or more services
that singly or collectively perform operations of processes
described herein and such computer systems are configured
with applicable hardware and/or software that enable per-
formance of operations. Further, a computer system that

US 2022/0358627 Al

implements at least one embodiment of present disclosure is
a single device and, in another embodiment, is a distributed
computer system comprising multiple devices that operate
differently such that distributed computer system performs
operations described herein and such that a single device
does not perform all operations.

[0667] Use of any and all examples, or exemplary lan-
guage (e.g., “such as”) provided herein, is intended merely
to better illuminate embodiments of disclosure and does not
pose a limitation on scope of disclosure unless otherwise
claimed. No language in specification should be construed
as indicating any non-claimed element as essential to prac-
tice of disclosure.

[0668] All references, including publications, patent appli-
cations, and patents, cited herein are hereby incorporated by
reference to same extent as if each reference were individu-
ally and specifically indicated to be incorporated by refer-
ence and were set forth in its entirety herein.

[0669] In description and claims, terms “coupled” and
“connected,” along with their derivatives, may be used. It
should be understood that these terms may be not intended
as synonyms for each other. Rather, in particular examples,
“connected” or “coupled” may be used to indicate that two
or more elements are in direct or indirect physical or
electrical contact with each other. “Coupled” may also mean
that two or more elements are not in direct contact with each
other, but yet still cooperate or interact with each other.
[0670] Unless specifically stated otherwise, it may be
appreciated that throughout specification terms such as
“processing,” “computing,” “calculating,” “determining,” or
like, refer to action and/or processes of a computer or
computing system, or similar electronic computing device,
that manipulate and/or transform data represented as physi-
cal, such as electronic, quantities within computing system’s
registers and/or memories into other data similarly repre-
sented as physical quantities within computing system’s
memories, registers or other such information storage, trans-
mission or display devices.

[0671] In a similar manner, term “processor” may refer to
any device or portion of a device that processes electronic
data from registers and/or memory and transform that elec-
tronic data into other electronic data that may be stored in
registers and/or memory. As non-limiting examples, “pro-
cessor” may be a CPU or a GPU. A “computing platform”
may comprise one or more processors. As used herein,
“software” processes may include, for example, software
and/or hardware entities that perform work over time, such
as tasks, threads, and intelligent agents. Also, each process
may refer to multiple processes, for carrying out instructions
in sequence or in parallel, continuously or intermittently. In
at least one embodiment, terms “system” and “method” are
used herein interchangeably insofar as system may embody
one or more methods and methods may be considered a
system.

[0672] In present document, references may be made to
obtaining, acquiring, receiving, or inputting analog or digital
data into a subsystem, computer system, or computer-imple-
mented machine. In at least one embodiment, process of
obtaining, acquiring, receiving, or inputting analog and
digital data can be accomplished in a variety of ways such
as by receiving data as a parameter of a function call or a call
to an application programming interface. In at least one
embodiment, processes of obtaining, acquiring, receiving, or
inputting analog or digital data can be accomplished by

29 <

Nov. 10, 2022

transferring data via a serial or parallel interface. In at least
one embodiment, processes of obtaining, acquiring, receiv-
ing, or inputting analog or digital data can be accomplished
by transferring data via a computer network from providing
entity to acquiring entity. In at least one embodiment,
references may also be made to providing, outputting,
transmitting, sending, or presenting analog or digital data. In
various examples, processes of providing, outputting, trans-
mitting, sending, or presenting analog or digital data can be
accomplished by transferring data as an input or output
parameter of a function call, a parameter of an application
programming interface or interprocess communication
mechanism.
[0673] Although descriptions herein set forth example
implementations of described techniques, other architec-
tures may be used to implement described functionality, and
are intended to be within scope of this disclosure. Further-
more, although specific distributions of responsibilities may
be defined above for purposes of description, various func-
tions and responsibilities might be distributed and divided in
different ways, depending on circumstances.
[0674] Furthermore, although subject matter has been
described in language specific to structural features and/or
methodological acts, it is to be understood that subject
matter claimed in appended claims is not necessarily limited
to specific features or acts described. Rather, specific fea-
tures and acts are disclosed as exemplary forms of imple-
menting the claims.
What is claimed is:
1. A method comprising:
obtaining stored sensor data representing a set of scenes
captured by an image sensor utilizing an exposure
setting corresponding to a first dynamic range;

selecting, based at least in part on at least one scene of the
set of scenes, a set of image processing algorithms of
an image signal processor (ISP); and

causing the ISP to apply the set of image processing

algorithms to the sensor data to obtain a set of images
having one or more pixels within a second dynamic
range that is different from the first dynamic range.

2. The method of claim 1, wherein capturing the sensor
data is decoupled from the ISP.

3. The method of claim 1, wherein the set of image
processing algorithms further comprises a tone mapping
algorithm.

4. The method of claim 1, wherein the sensor data further
comprises data generated by the image sensor prior to
conversion to an image format.

5. The method of claim 1, wherein the set of images
further comprises a low dynamic range (SDR) image.

6. The method of claim 1, wherein the sensor data was
captured by a camera device mounted on at least one of:

a vehicle;

a robot; or

a drone.

7. The method of claim 1, wherein the sensor data was
captured by a camera device including the image sensor.

8. The method of claim 1, wherein the sensor data is
stored in a persistent storage.

9. The method of claim 1, wherein the method further
comprises training a model based at least in part on the set
of images.

10. The method of claim 9, wherein the model is a neural
network.

US 2022/0358627 Al

11. The method of claim 9, wherein the method further
comprises:

obtaining a result of an inferencing operation of the

model; and

modifying the ISP based at least in part on the result.

12. The method of claim 11, wherein modifying the ISP
further comprises modifying a set of parameters of a tone
mapping function included in the ISP.

13. The method of claim 1, wherein the method further
comprises modifying the ISP based at least in part on the set
of images.

14. The method of claim 1, wherein the application further
comprises object detection performed by a neural network.

15. The method of claim 1, wherein the application further
comprises a model executed by one or more arithmetic logic
units (ALUs) incorporated in an autonomous vehicle.

16. A processor comprising:

one or more processing units to obtain stored sensor data

representing a set of scenes captured by an image
sensor utilizing an exposure setting corresponding to a
first dynamic range, select a set of image processing
algorithms of an image signal processor (ISP) based at
least in part on at least one scene of the set of scenes,
and cause the ISP to apply the set of image processing
algorithms to the sensor data to obtain a set of images
within a second dynamic range that is different from the
first dynamic range.

17. The processor of claim 16, wherein the one or more
processing units are further to train a neural network based
at least in part on the plurality of images.

18. The processor of claim 17, wherein the one or more
processing units are further to:

obtain a result of the neural network; and

adjust at least one parameter of a tone mapping algorithm

included in the ISP based at least in part on the result,
where the tone mapping algorithm is a member of the
set of image processing algorithms.

19. The processor of claim 16, wherein the one or more
processing units are further to modify at least one parameter

Nov. 10, 2022

of a tone mapping algorithm based at least in part on an
image of the plurality of images, where the tone mapping
algorithm is a member of the set of image processing
algorithms.

20. The processor of claim 16, wherein the sensor data
further comprises raster scale data.

21. The processor of claim 16, wherein the sensor is
mounted on a vehicle.

22. The processor of claim 16, wherein the sensor is
incorporated in a camera device mounted on an autonomous
vehicle.

23. The processor of claim 16, wherein the ISP is imple-
mented by a computing device in a data center.

24. The processor of claim 16, wherein the ISP is imple-
mented by a graphic processing unit (GPU) accelerated
system.

25. The processor of claim 16, wherein the exposure
calibration is not modified during capture of the set of scenes
by the sensor.

26. A non-transitory machine-readable medium having
stored thereon a set of instructions, which if performed by
one or more processors, cause the one or more processors to
at least:

obtain stored sensor data representative of a set of scenes

captured by a sensor utilizing an exposure calibration,
the sensor data comprising a first dynamic range asso-
ciated with the exposure calibration;

determine a set of image processing algorithms based at

least in part on a second dynamic range for a plurality
of images to be used in an application, where the
second dynamic range and the first dynamic range are
different; and

obtain, as a result of processing the sensor data by an

image signal processor (ISP), the plurality of images,
and the ISP implementing the set of image processing
algorithms.

