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In various examples , apparatuses , systems , and techniques 
to perform offline image signal processing of source image 
data to generate target image data . In at least one embodi 
ment , data collection using exposure and calibration setting 
of an image sensor is performed to generate source image 
data , which is then processed by using offline image signal 
processing to generate target data . 
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HIGH DYNAMIC RANGE IMAGE 
PROCESSING WITH FIXED CALIBRATION 

SETTINGS 

BACKGROUND 

[ 0001 ] In High - Dynamic - Range Imaging ( HDRI ) , a High 
Dynamic Range ( HDR ) image may provide an increased 
ratio of possible pixel values ( e.g. , the largest possible 
luminosity value relative to the smallest possible luminosity 
value ) over conventional imaging methods . For example , 
pixels of smaller luminosity values render as darker ( e.g. , 
blacker ) regions of an encoded image , while pixels of larger 
luminosity values render as brighter ( e.g. , whiter ) regions of 
the image . Furthermore , conventional methods for tone 
mapping HDR image data may produce suboptimal results 
when a camera's Auto Exposure ( AE ) settings are not 
properly configured when capturing the HDR image data . 
The camera's AE settings may fail in some situations , 
resulting in a degraded image when processing the HDR 
image data . For example , controlling aspects of an HDR 
image and / or the image encoded by tone - mapped HDR 
image data , when the AE settings are suboptimal , may 
negate many of the benefits associated with HDRI , resulting 
in images appearing to be “ washed - out , ” less realistic , or 
otherwise less visually appealing . As a result , using such 
images in various applications , such as a training a model , 
may result in suboptimal results . 

a 

a 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0002 ] The present systems and methods for fixed setting 
capture image processing are described in detail below with 
reference to the attached drawing figures , wherein : 
[ 0003 ] FIG . 1 illustrates a schematic diagram of a fixed 
setting capture image processing system , in accordance with 
some embodiments of the present disclosure ; 
[ 0004 ] FIG . 2 illustrates a schematic diagram of an image 
signal processing system using data captured with fixed 
settings , in accordance with some embodiments of the 
present disclosure ; 
[ 0005 ] FIG . 3 illustrates a schematic diagram of a high 
dynamic - range imaging system , in accordance with some 
embodiments of the present disclosure ; 
[ 0006 ] FIG . 4 shows low - tone , mid - tone , high - tone , and 
flare - suppression control points embedded in 2D space 
spanned by a first basis vector for a first dimension corre 
sponding to pixel values of source image data and a second 
basis vector for a second dimension corresponding to pixel 
values of target image data ; 
[ 0007 ] FIG . 5 shows a non - limiting embodiment of a plot 
of a tone mapping function , which is in accordance with the 
various embodiments ; 
[ 0008 ] FIG . 6 is a flow diagram showing a method for 
performing image signal processing using captured with 
fixed settings , in accordance with some embodiments of the 
present disclosure ; 
[ 0009 ] FIG . 7 is a flow diagram showing a method for tone 
mapping high dynamic range image data , in accordance with 
some embodiments of the present disclosure ; 
[ 0010 ] FIG . 8 is a flow diagram showing a method for 
generating lower dynamic range image data from higher 
dynamic range image data , in accordance with some 
embodiments of the present disclosure ; 

[ 0011 ] FIG . 9 is a flow diagram showing a method for 
distributing the operations of tone mapping , in accordance 
with some embodiments of the present disclosure ; 
[ 0012 ] FIG . 10A illustrates inference and / or training logic , 
according to at least one embodiment ; 
[ 0013 ] FIG . 10B illustrates inference and / or training logic , 
according to at least one embodiment ; 
[ 0014 ] FIG . 11 illustrates training and deployment of a 
neural network , according to at least one embodiment ; 
[ 0015 ] FIG . 12 illustrates an example data center system , 
according to at least one embodiment ; 
[ 0016 ] FIG . 13A illustrates an example of an autonomous 
vehicle , according to at least one embodiment ; 
[ 0017 ] FIG . 13B illustrates an example of camera loca 
tions and fields of view for the autonomous vehicle of FIG . 
13A , according to at least one embodiment ; 
[ 0018 ] FIG . 13C is a block diagram illustrating an 
example system architecture for the autonomous vehicle of 
FIG . 13A , according to at least one embodiment ; 
[ 0019 ] FIG . 13D is a diagram illustrating a system for 
communication between cloud - based server ( s ) and the 
autonomous vehicle of FIG . 13A , according to at least one 
embodiment ; 
[ 0020 ] FIG . 14 is a block diagram illustrating a computer 
system , according to at least one embodiment ; 
[ 0021 ] FIG . 15 is a block diagram illustrating a computer 
system , according to at least one embodiment ; 
[ 0022 ] FIG . 16 illustrates a computer system , according to 
at least one embodiment ; 
[ 0023 ] FIG . 17 illustrates a computer system , according to 
at least one embodiment ; 
[ 0024 ] FIG . 18A illustrates a computer system , according 
to at least one embodiment ; 
[ 0025 ] FIG . 18B illustrates a computer system , according 
to at least one embodiment ; 
[ 0026 ] FIG . 18C illustrates a computer system , according 
to at least one embodiment ; 
[ 0027 ] FIG . 18D illustrates a computer system , according 
to at least one embodiment ; 
[ 0028 ] FIGS . 18E and 18F illustrate a shared program 
ming model , according to at least one embodiment ; 
[ 0029 ] FIG . 19 illustrates exemplary integrated circuits 
and associated graphics processors , according to at least one 
embodiment ; 
[ 0030 ] FIGS . 20A and 20B illustrate exemplary integrated 
circuits and associated graphics processors , according to at 
least one embodiment ; 
[ 0031 ] FIGS . 21A and 21B illustrate additional exemplary 
graphics processor logic according to at least one embodi 
ment ; 
[ 0032 ] FIG . 22 illustrates a computer system , according to 
at least one embodiment ; 
[ 0033 ] FIG . 23A illustrates a parallel processor , according 
to at least one embodiment ; 
[ 0034 ] FIG . 23B illustrates a partition unit , according to at 
least one embodiment ; 
[ 0035 ] FIG . 23C illustrates a processing cluster , according 
to at least one embodiment ; 
[ 0036 ] FIG . 23D illustrates a graphics multiprocessor , 
according to at least one embodiment ; 
[ 0037 ] FIG . 24 illustrates a multi - graphics processing unit 
( GPU ) system , according to at least one embodiment ; 
[ 0038 ] FIG . 25 illustrates a graphics processor , according 
to at least one embodiment ; 

a 
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[ 0039 ] FIG . 26 is a block diagram illustrating a processor 
micro - architecture for a processor , according to at least one 
embodiment ; 
[ 0040 ] FIG . 27 illustrates a deep learning application 
processor , according to at least one embodiment ; 
[ 0041 ] FIG . 28 is a block diagram illustrating an example 
neuromorphic processor , according to at least one embodi 
ment ; 
[ 0042 ] FIG . 29 illustrates at least portions of a graphics 
processor , according to one or more embodiments ; 
[ 0043 ] FIG . 30 illustrates at least portions of a graphics 
processor , according to one or more embodiments ; 
[ 0044 ] FIG . 31 illustrates at least portions of a graphics 
processor , according to one or more embodiments ; 
[ 0045 ] FIG . 32 is a block diagram of a graphics processing 
engine of a graphics processor in accordance with at least 
one embodiment ; 
[ 0046 ] FIG . 33 is a block diagram of at least portions of a 
graphics processor core , according to at least one embodi 
ment ; 
[ 0047 ] FIGS . 34A and 34B illustrate thread execution 
logic including an array of processing elements of a graphics 
processor core according to at least one embodiment ; 
[ 0048 ] FIG . 35 illustrates a parallel processing unit 
( “ PPU ” ) , according to at least one embodiment ; 
[ 0049 ] FIG . 36 illustrates a general processing cluster 
( “ GPC ” ) , according to at least one embodiment ; 
[ 0050 ] FIG . 37 illustrates a memory partition unit of a 
parallel processing unit ( “ PPU ” ) , according to at least one 
embodiment ; 
[ 0051 ] FIG . 38 illustrates a streaming multi - processor , 
according to at least one embodiment ; 
[ 0052 ] FIG . 39 is an example data flow diagram for an 
advanced computing pipeline , in accordance with at least 
one embodiment ; 
[ 0053 ] FIG . 40 is a system diagram for an example system 
for training , adapting , instantiating and deploying machine 
learning models in an advanced computing pipeline , in 
accordance with at least one embodiment ; 
[ 0054 ] FIG . 41 includes an example illustration of an 
advanced computing pipeline 4010A for processing imaging 
data , in accordance with at least one embodiment ; 
[ 0055 ] FIG . 42A includes an example data flow diagram 
of a virtual instrument supporting an ultrasound device , in 
accordance with at least one embodiment ; 
[ 0056 ] FIG . 42B includes an example data flow diagram 
of a virtual instrument supporting an CT scanner , in accor 
dance with at least one embodiment ; 
[ 0057 ] FIG . 43A illustrates a data flow diagram for a 
process to train a machine learning model , in accordance 
with at least one embodiment ; and 
[ 0058 ] FIG . 43B is an example illustration of a client 
server architecture to enhance annotation tools with pre 
trained annotation models , in accordance with at least one 
embodiment . 

generate image data suitable for a variety of applications 
( e.g. , training neural networks ) . 
[ 0060 ] In contrast to conventional systems , rather than 
relying on the configuration of Auto Exposure ( AE ) settings , 
a digital gain function , ISP settings , and / or other settings of 
an imaging device , in various embodiments , decoupling the 
raw data collection ( e.g. , sensor data ) from the image signal 
processing provides greater control of resulting images 
( HDR images , Standard Dynamic Range ( SDR ) images , 
and / or Low Dynamic Range ( LDR ) images ) which can be 
tailored to particular applications . In addition , in some 
embodiments , decoupling the raw data collection in this 
manner allows for improvements , fixes , tuning changes , and 
other adjustments to a pipeline of an ISP without the need to 
re - collect the raw data . 
[ 0061 ] In one example , when capturing raw data from a 
camera device mounted on a vehicle , the AE settings or 
other settings of the camera may result in images that are too 
bright , too dark , or otherwise produce suboptimal results . In 
various embodiments , by capturing raw data with a fixed 
exposure setting and / or other fixed calibration settings for 
the camera device , such functionality can be replaced with 
one or more components of an offline image signal process 
ing pipeline . For example , the AE functionality of the 
camera device is replaced by a tone mapping function of an 
ISP . Furthermore , in various embodiments , the offline image 
signal processing pipeline , which can include particular 
algorithms , may be tuned , added , and / or removed to produce 
different results ( e.g. , image data with various properties ) 
without the need to collect new raw data by using the same 
raw data ( e.g. , raw data collected using a fixed setting ) . 
[ 0062 ] In an embodiment , adjusting the offline image 
signal processing pipeline includes modifying one or more 
parameters of a tone mapping function . For example , the 
tone mapping function may be a parametric function that 
defines a curve ( e.g. , a Global Tone Curve ) , where the 
parameters of the function are fit such that the curve is 
constrained to pass through ( or include ) the low - tone point , 
the mid - tone point , and the high - tone point . As a result , in 
embodiments where the offline image signal processing 
pipeline includes the tone mapping function , the parameters 
of the function are adjusted to generate different image data 
from the same raw data . 
[ 0063 ] Furthermore , in various embodiments , the images 
( e.g. , lower dynamic range image data ) generated by the 
offline image signal processing pipeline is used to train a 
neural network . In one example , the images are used to train 
a neural network to perform object detection for an autono 
mous vehicle . Results from inferencing operations per 
formed by the neural network , in some bodiments , are 
also used to adjust , improve , or otherwise modify the offline 
image signal processing pipeline . For example , if the trained 
neural network , when performing inferencing , performs 
poorly in low light environments , the offline image signal 
processing pipeline is adjusted and the raw data is re 
processed to produce training data ( e.g. , images ) that , when 
used to re - train the neural network , result in better perfor 
mance of the neural network . 
[ 0064 ] With reference to FIG . 1 , FIG . 1 is an environment 
100 including a fixed setting capture system 102 and an 
image signal processing 140 system , in accordance with 
some embodiments of the present disclosure . It should be 
understood that this and other arrangements described herein 
are set forth only as examples . Other arrangements and 

DETAILED DESCRIPTION 

[ 0059 ] Embodiments of the present disclosure relate to 
processing High Dynamic Range ( HDR ) images captured 
with fixed calibration settings . Systems and methods are 
disclosed that obtain HDR image data from an image senor 
using fixed calibration settings ( e.g. , exposure setting ) 
decoupled from a pipeline of a specialized - processor ( e.g. , 
an image signal processor ( ISP ) , FPGA , or an ASIC ) used to 
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elements ( e.g. , machines , interfaces , functions , orders , 
groupings of functions , etc. ) may be used in addition to or 
instead of those shown , and some elements may be omitted 
altogether . Further , many of the elements described herein 
are functional entities that may be implemented as discrete 
or distributed components or in conjunction with other 
components , and in any suitable combination and location . 
Various functions described herein as being performed by 
entities may be carried out by hardware , firmware , and / or 
software . In one example , various functions are carried out 
by a logic device , such as but not limited to a general 
purpose processor 122 and / or an image signal processor 
( ISP ) 124 executing instructions stored in memory . In 
another example , various functions ( e.g. , image signal pro 
cessing 140 ) are carried out by a component of a server ( e.g. , 
server 1512 described in greater detail below in connection 
with FIG . 15 ) and / or a service provided by a computing 
resource service provider . 
[ 0065 ] In various embodiments , the fixed setting capture 
system 102 captures High - Dynamic - Range ( HDR ) image 
data ( e.g. , raw data , bit map , raster graphic , or other data 
structure representing a set of pixels ) based at least in part 
on digital exposure calibration data 110. In addition , various 
embodiments , include the image signal processing system 
140 to perform tone mapping of the HDR image data . For 
example , by controlling the brightness of the image encoded 
by the HDR image data and / or the image encoded by 
tone - mapped image data . 
[ 0066 ] The result of the image signal processing system 
140 , in an embodiment , includes image data that is used to 
perform model training 112. In one example , the tone 
mapped HDR image data is transformed into Standard 
Dynamic Range ( SDR ) image data or Low Dynamic Range 
( LDR ) via a compression of the pixel values ( e.g. , an 
application of a gamma - compression function on the tone 
mapped HDR image data ) . These SDR and LDR images , in 
various embodiments , are used to train one or more neural 
networks to perform various tasks such as those described in 
connection with autonomous vehicles as described below . 
One non - limiting embodiment includes capturing and / or 
receiving source image data using fixed exposure settings 
for an image sensor . For example , the source image data may 
be HDR image data and may represent and / or encode a 
source image . 
[ 0067 ] In various embodiments , the image signal process 
ing system 140 processes the image data obtained from the 
fixed setting capture system 102 based at least in part on an 
application for which the image data and / or trained model 
will be used . As illustrated in the environment 100 , example 
applications include a manned or unmanned terrestrial 
vehicle ( e.g. , a vehicle 104 ) , a manned or unmanned aerial 
vehicle ( e.g. , a drone 106 ) , or a wearable device ( e.g. , smart 
glasses 108 ) . For example , the image signal processing 
system 140 processes the captured image data for use in 
training a model to perform flight operations of the drone 
106. In another example , the image signal processing system 
140 processes the captured image data for use in training a 
model to perform object detection for use with the smart 
glasses 108. In an embodiment , as part of processing the 
capture image data for a particular application , the image 
signal processing system 140 determines tone control points 
based at least in part on source pixel values of the captured 
image data . In one example , the determined tone control 
points include a low - tone point , a mid - tone point , and / or a 

high - tone point . In some embodiments , the tone control 
points additionally include a flare - suppression point . In at 
least one embodiment , additional tone control points are 
determined . 
[ 0068 ] Although the fixed setting capture system 102 
illustrated in FIG . 1 is shown as a single camera , this is not 
intended to be limiting . In various embodiments , there may 
be any number of camera computing devices including 
camera computing devices not explicitly shown in FIG . 1. In 
various embodiments , the fixed setting capture system 102 
includes a computing device comprising one or more image 
sensors and / or cameras that can implement the digital expo 
sure calibration data 110. In one example , the fixed setting 
capture system 102 includes a dash cam with a fixed 
exposure setting . In another example , the fixed setting 
capture system 102 includes a plurality of image sensors 
positioned such that images depicting a 360 degree scene are 
captured using the digital exposure calibration data 110 . 
[ 0069 ] In addition , in various embodiments , the camera 
computing devices depicted in FIG . 1 ( e.g. , the camera 
devices included in 102-108 ) include one or more image 
sensors that are enabled to capture High - Dynamic - Range 
( HDR ) image data , as discussed throughout . The environ 
ment 100 , in various embodiments , includes other comput 
ing devices , such as but not limited to a server computing 
device . In one example , the server computing device imple 
ments the image signal processing system 140. The terres 
trial vehicle 104 and / or the aerial vehicle 106 may be at least 
partially manually operated vehicles and / or when manned , 
partially autonomous . In some embodiments , when 
unmanned , the vehicles 104 and 106 may be autonomous , 
partially autonomous , and / or remote controlled vehicles . 
Various embodiments of such vehicles are discussed in 
conjunction with FIGS . 9A - 9D . 
[ 0070 ] Various embodiments of computing devices , 
including but not limited to the computing devices 102-108 
and those implementing the image signal processing system 
140 are discussed in conjunction with FIGS . 11-14 . How 
ever , briefly here , the computing devices described in con 
nection with FIG . 1 , in an embodiment , includes one 
logic devices . For example , the fixed capture system 102 is 
shown to include logic devices 118. The logic devices 118 , 
in an embodiment , include one or more of a general purpose 
processor 122 ( e.g. , a Central Processing Unit ( CPU ) , a 
microcontroller , a microprocessor , or the like ) , an Image 
Signal Processor ( ISP ) 124 , an Application Specific Inte 
grated Circuit ( ASIC ) 126 , and / or a Field Programmable 
Gate Array ( FPGA ) 128. Although not shown in FIG . 1 , in 
some embodiments , the logic devices 118 include a Graph 
ics Processing Unit ( GPU ) . It should be noted that any of the 
computing devices 102-108 and those implementing the 
image signal processing system 140 , in various embodi 
ments , include one or more of such logic devices . In various 
embodiments , the Image Signal Processor ( ISP ) 124 , as a 
component of a computing device , implements the image 
signal processing system 140 or component thereof . For 
example , a server computer system includes the Image 
Signal Processor ( ISP ) 124 or otherwise emulates the Image 
Signal Processor ( ISP ) 124 or component thereof . 
[ 0071 ] Various components of the environment 100 ( e.g. , 
the computing devices 102-108 ) , in an embodiment , com 
municate over one or more networks . For example , the one 
or more networks include a wide area network ( WAN ) ( e.g. , 
the Internet , a public switched telephone network ( PSTN ) , 

more 
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etc. ) , a local area network ( LAN ) ( e.g. , Wi - Fi , ZigBee , 
Z - Wave , Bluetooth , Bluetooth Low Energy ( BLE ) , Ethernet , 
etc. ) , a low - power wide - area network ( LPWAN ) ( e.g. , 
LoRaWAN , Sigfox , etc. ) , a global navigation satellite sys 
tem ( GNSS ) network ( e.g. , the Global Positioning System 
( GPS ) ) , and / or another network type . 
[ 0072 ] Furthermore , in various embodiments , one or more 
of the computing devices 102-108 implement , operate , or 
otherwise execute the functions and / or operations of image 
signal processing system 140. In the example illustrated in 
FIG . 1 , the fixed capture system 102 is shown implementing 
the image signal processing system 140. For example , the 
fixed capture system 102 includes one or more image 
sensors and the logic devices 118 implementing the image 
signal processing system 140 ( e.g. , a part of an autonomous 
or partially autonomous vehicle capturing training images of 
various environments ) . However , any of the computing 
devices described in the present disclosure may be enabled 
to implement the image signal processing system 140 . 
Furthermore , in various embodiments , any of the logic 
devices 118 can implement at least some of the functions , 
operations , and / or actions of the image signal processing 
system 140 . 
[ 0073 ] The image signal processing system 140 may 
enable various methods of the tone mapping of HDR image 
data , as well as controlling the brightness of the image 
encoded by HDR image data and / or the tone - mapped image 
data . To carry out such functionality , the image signal 
processing system 140 , in various embodiments , includes 
one or more components , modules , devices , or the like . An 
example image signal processing system 140 , is described 
below in connection with FIGS . 2 and 3. Any of the 
components , modules , and / or devices described in connec 
tion with the image signal processing system 140 or those 
described below in connection with FIGS . 2 and 3 may be 
optional in some embodiments . 
[ 0074 ] As discussed throughout the image signal process 
ing system 140 , in various embodiments , implements and / or 
carries out at least portions of the processes , actions , and / or 
operations discussed in conjunction with the methods 500 , 
600 , 700 , and 800 of FIGS . 5-8 . As such , one or more of the 
logic devices 118 may implement and / or carry out at least 
portions of the methods 500 , 600 , 700 , and / or 800 . 
[ 0075 ] In various embodiments , the fixed setting capture 
system 102 includes one or more HDR image sensors 144 
that are enabled to capture image data that is HDR image 
data . For example , the captured HDR image data encodes an 
image or scene that is imaged by the HDR image sensors 
144. In an embodiment , the pixel depth of the HDR image 
data may be as great or greater than 96 bits ( 32 bits per color 
channel ) . The image data captured by the HDR image 
sensors 144 , in various embodiments , is referred to as source 
image data . The source image data , for example , includes a 
plurality of images captured using the digital exposure 
calibration data 110. As discussed above , the HDR image 
sensors 144 , which capture source image data , in various 
embodiments , is mounted on a vehicle ( e.g. , the terrestrial 
vehicle 104 or the aerial vehicle 106 ) . The vehicle , for 
example , includes an autonomous , or at least a partially 
autonomous , vehicle controlled , at least partially , based at 
least in part on the source image data and / or the target image 
data . In some embodiments , the encoding of the source 
image data is in a linear color space that lacks a non - linear 
mapping 

[ 0076 ] In various embodiments , the HDR image sensors 
144 includes , is affected by , and / or be subject to the digital 
exposure calibration data 110. The digital exposure calibra 
tion data 110 , in an embodiment , is a fixed , static , and / or 
otherwise constant exposure settings . For example , digital 
exposure calibration data 110 includes exposure settings , 
aperture , shutter speed , depth of field , image sensor sensi 
tivity , white balance , flash settings , color settings , or any 
other settings of an image sensor , camera , or computing 
device ( e.g. , computing device 104-108 which include 
image sensors ) . In at least one embodiment , a user manually 
sets at least a portion of the digital exposure calibration data 
110 which remains unchanged during the capture of the 
source image data . 
[ 0077 ] In various embodiments , the source image data is 
provided , via a network , to the image signal processing 
system 140 that is implemented at and / or by one or more 
services of the server computing device . That is , although 
the source HDR image data , in one example , is captured by 
the fixed setting device 102 , the tone mapping and control 
ling the brightness of the image data may be performed 
offline on the server computing device . To state it in another 
fashion , the tone mapping of the HDR image data may be 
offloaded to another computing device , such as but not 
limited to the server computing device , which did not 
capture the image data . The various embodiments , enable , or 
at least assist in the enablement , of various machine and / or 
computer vision features of an autonomous vehicle , such as 
but not limited to terrestrial vehicle 104 or aerial vehicle 
106. The embodiments may be deployed to enable the 
machine and / or computer vision features of other applica 
tions , such as but not limited to robotic applications . 
[ 0078 ] In various embodiments , once the source image 
data ( e.g. , data collection for machine learning training and 
inferencing ) is collected and stored , the source image data is 
processed by the image signal processing system 140 to 
generate target image data . This decoupling of the image 
signal processing and data collection , for example , allows 
for the improvement and fixes 120 and / or tuning modifica 
tions 122 to be applied to one or more components of the 
image signal processing system 140 such as a tone mapping 
function . This enables the source data to be reused over a 
long interval of time without the need to perform additional 
costly and time consuming data collection in accordance 
with embodiments described in the present disclosure . Fur 
thermore , the improvement and fixes 120 and / or tuning 
modifications 122 can be applied to any of the components 
of the image signal processing system 140 described below , 
such as those described in FIGS . 2 , 3 , 4 , and 4B . In addition , 
in various embodiments , the improvement and fixes 120 
and / or tuning modifications 122 include adding additional 
components and / or image processing algorithms to the 
image signal processing system 140. In one example , the 
improvement and fixes 120 includes adding a new tone 
mapping function to the image signal processing system 
140. In yet another example , the tuning modifications 122 
includes changes to the tone mapping function to produce 
different characteristics ( e.g. , lighter , darker , color values , 
color saturation , compression rate , dynamic range , etc. ) of 
the target image data . 
[ 0079 ] In various embodiments , the tone mapping func 
tion is determined based at least in part on at least a portion 
of the control points . For example , the tone mapping func 
tion may be a parametric function that defines a curve ( e.g. , 
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a Global Tone Curve ) . The parameters of the function may 
be fit such that the curve is constrained to pass through ( or 
include ) the low - tone point , the mid - tone point , and the 
high - tone point . In some embodiments , the curve is further 
constrained to pass through at least a portion of the addi 
tionally determined points . 
[ 0080 ] In at least one embodiment , determining the tone 
mapping function may be further based at least in part on a 
gain value . In one example , the gain value is determined 
based at least in part on the mid - tone point and at least one 
other of the tone control points , such as but not limited to the 
flare - suppression point . The gain value may be determined 
to be equivalent to the slope of a gain line that passes 
through the mid - tone point and the flare - suppression point . 
The fitting of the tone mapping function , in an embodiment , 
is further constrained such that the derivative and / or instan 
taneous rate of change of the function , evaluated at one of 
the components of the mid - tone point , is at least approxi 
mately equivalent to the gain value . In various embodi 
ments , the image signal processing system 140 generates 
target image data ( e.g. , images used to perform model 
training 112 ) by at least transforming the captured image 
data , via an application of the tone mapping function on the 
captured image data . For example , the target image data 
includes target pixel values , which are defined by the 
application of the tone mapping function on the pixel values 
of the captured image data . 
[ 0081 ] In contrast to conventional approaches , the various 
embodiments of the image capture systems use fixed digital 
exposure calibration data 110 without relying on auto expo 
sure ( AE ) settings to enable a wide range of image signal 
processing ( e.g. , offline image processing ) . As explained 
below , the images that are tone - mapped may have more 
detail and contrast . Furthermore , the various embodiments 
enable controlling the overall image brightness of the HDR 
image and / or the tone - mapped image without the application 
of the digital gain function . In addition , having captured 
image data ( e.g. , the raw data ) that is uniform as a result of 
fixed setting allows consistent and modifiable application of 
various image processing algorithms ( e.g. , tone mapping ) . 
Thus , images generated by the various embodiments are 
capable of being reprocessed , optimized , or otherwise modi 
fied based at least in part on various factors ( e.g. , applica 
tion , results of trained models , image quality , etc. ) . For 
example , a particular captured image can be reprocessed to 
suppress flares ( e.g. , a positive black point in the image data 
or errors in the black level subtraction ) , as well as compress 
highlights ( e.g. , pixels with significant luminosity values ) in 
the HDR image data . 
[ 0082 ] In various embodiments , the digital exposure cali 
bration data 110 includes an exposure setting or period for 
the capture of multiple images . In one example , the fixed 
setting capture system 102 is attached to a vehicle and 
captures images as the vehicle travels in order to generate 
training data for using in model training 112. An HDR image 
( encoded by HDR image data ) , in an embodiment , is gen 
erated by pixel values of the multiple SDR images ( e.g. , 
captured by the fixed setting capture system 102 ) . The 
digital exposure calibration data 110 , in various embodi 
ments , is determined such that the resulting images are 
modifiable to be optimally used for a particular application 
or plurality of applications . For example , using longer 
exposure settings for the digital exposure calibration data 
110 allows the HDR image's pixel values ( e.g. , after image 

signal processing ) to capture the darker regions of an imaged 
scene with greater detail . Using the pixel values generated 
by longer exposure times may enable capturing greater 
detail and contrast in the darker regions of the scene . In 
another example , using shorter exposure settings for the 
digital exposure calibration data 110 allows for HDR pixel 
values ( e.g. , after image signal processing ) to capture the 
lighter regions of an imaged scene . Using the pixel values 
generated by shorter exposure times may prevent “ washout ” 
or an over - exposed effect on the lighter or brighter regions 
of the scene . In other embodiments , HDR image data may be 
generated from a single image , where the image sensors 
( e.g. , camera pixels ) capture the image using the digital 
exposure calibration data 110 . 
[ 0083 ] As noted above , conventional HDR cameras and 
systems rely on a user to appropriately configure the AE 
settings of their camera . Such AE settings may include Auto 
Exposure Bracketing ( AEB ) settings and / or various AE 
modes ( e.g. , night and day AE modes ) . These AE settings 
may not change or may be poorly changed to match their 
current environment . For example , a conventional HDR 
camera may not provide separate AE modes for a sunny day , 
an overcast day , or states therebetween . Therefore , by using 
fixed settings ( e.g. , the digital exposure calibration data 110 ) 
for the capture of a plurality of images ( e.g. , training 
images ) , the image signal processing system 140 is capable 
of performing improvements and fixes 120 and tuning 
modifications to the image signal processing system 140 in 
order to improve image quality without the need to capture 
all new images . 
[ 0084 ] For example , when AE modes do not adequately 
provide exposure settings that are consistent with multiple 
scenes ' lighting conditions at the time of capture , the overall 
brightness of the HDR images may not realistically reflect 
the scenes ' lighting conditions . For instance , the HDR image 
may not render the scenes as brightly lit or may be a washed 
out rendering of the HDR images ( even after image signal 
processing ) which is sub - optimal for a variety of applica 
tions . Furthermore , to compensate for this lighting mis 
match , conventional HDR cameras and systems often 
employ a digital gain function to adjust or boost the lumi 
nosity of the HDR pixel values . Under various lighting 
conditions and / or AE settings , the gain value applied to the 
pixels may be significant . Such large gains often saturate 
and / or clip the brighter regions of the HDR image , which 
may leave these regions to appear washed - out or overex 
posed . In various embodiments , by using the digital expo 
sure calibration data 110 for the capture of the multiple 
scenes consistent and optimal results are obtained as a result 
of the image signal processing system 140 . 
[ 0085 ] In addition , conventional tone mapping may result 
in lossy compression of the HDR image data , and in many 
scenarios , significantly degrade the quality of the lower 
dynamic range image or a standard dynamic range image , as 
compared to the HDR image . More specifically , conven 
tional tone mapping may be limited in its ability to conserve 
the critical information of HDR image data . Conventional 
tone mapping may not conserve a substantial amount of the 
critical information of the HDR image data especially when 
the above discussed AE settings and / or modes are inappro 
priate for the scene's current lighting conditions . For 
instance , when imaging a dimly illuminated scene , the user 
may fail to transition a conventional HDR camera from day 
mode to night mode . The HDR image may appear under 
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exposed because the HDR image data fails to encode much 
of the detail and contrast of the darker regions of the imaged 
scene . As a result , when generating an SDR ( or an LDR ) 
image from the under - exposed HDR image data the under 
exposed appearance of the SDR image may be even more 
apparent . Therefore , in various embodiments , by performing 
the image signal processing " offline " ( e.g. , after the images 
are captured using fixed calibration settings ) critical infor 
mation is conserved and the image signal processing system 
140 is capable of generating higher quality , more detailed 
images that result in better performance . 
[ 0086 ] In addition , even when the AE settings are appro 
priate for the current lighting conditions , the lighting con 
ditions may be dynamic across temporal spans , while the AE 
settings may be held constant or change slowly in response 
to the conditions . For example , conditions can change from 
bright and sunny to overcast and cloudy and the AE setting 
change may not adequately account for the change in 
conditions and / or change rapidly enough . As a result , 
because conventional tone mapping is applied at the frame 
level , conventional mapping may not readily account for 
dynamic conditions . For example , during capture of HDR 
video image data , a relatively bright object ( e.g. , a highly 
reflective object or an object that includes a light source ) 
may enter the scene and the current AE settings may be 
inappropriate for the introduction of the bright object . Con 
ventional tone mapping may render the dynamic brightly lit 
object as overexposed , and the overall brightness of the 
video image data may fluctuate . However , in various 
embodiments , using the fixed setting capture system 102 
allows the image signal processing system 140 to accurately 
process and / or adjust images to account for such dynamic 
conditions . 
[ 0087 ] In various embodiments , the tone mapping func 
tion applied by the image signal processing system 140 
include a Global Tone Mapping ( GTM ) function and / or a 
Global Tone Curve ( GTC ) . The tone mapping function , for 
example , is dynamically and / or globally determined based at 
least in part on the HDR image , the application for which the 
image will be used , or other considerations . As such , the 
tone mapping function may be employed to dynamically and 
globally tone map the HDR image data . When applied to the 
HDR image data , the tone mapping function maps the tone 
( e.g. , the brightness ) of the HDR image data such that the 
tone - transformed HDR image data may encode image 
brightness that matches the lighting conditions of the imaged 
scene . The tone mapping function may also minimize visual 
artifacts due to the HDR imaging ( e.g. , flare - suppression and 
compression of highlights ) . 
[ 0088 ] In various embodiments , upon being tone mapped , 
the HDR image data is compressed into SDR or LDR image 
data via a filtering of the Least - Significant - Bits ( LSBs ) of 
the HDR pixel values . In some embodiments , prior to the 
pixel - depth reduction , the tone mapped HDR image data is 
color compressed via a gamma compression function . For 
example , HDR image data is captured via fixed exposure 
settings ( e.g. , digital exposure calibration data 110 ) and the 
captured HDR image data is referred to as source image 
data . The tone mapping function may be dynamically deter 
mined by the image signal processing system 140 ( or 
component thereof as described in greater detail below ) 
based , at least in part , on an analysis of pixel values of the 
source image data . The tone mapping function , in an 
embodiment , is a non - linear function that maps source pixel 

values of the source image data to target pixel values of 
target image data . For non - linear embodiments , the non 
linear tone mapping function and / or GTM function are 
plotted in 2D coordinates as a Global Tone Curve ( GTC ) . 
[ 0089 ] In various embodiments , to generate the tone map 
ping function , the image signal processing system 140 ( or 
component thereof ) determines a plurality of control points 
based , at least in part , on the dynamic analysis of the source 
image data . The control points , for example , are defined in 
a plane spanned by the ranges of the source and target pixel 
values . In some embodiments , the control points are defined 
based , at least in part , on a region - of - interest ( ROI ) of the 
source image data . The tone mapping function , in one 
example , define a one - to - one non - linear mapping between 
the values of the source image pixels and the values of target 
image pixels . For example , the tone mapping function 
defines ( or at least evaluates to a numerical approximation 
thereof ) a curve in the source / target plane . In an embodi 
ment , the curve is an approximation of a curve ( e.g. , a 
plurality of piecewise linear segments with varying slopes ) . 
In one example , the tone mapping function is a spline 
function including polynomials with a degree greater than 1 . 
In some embodiments , the tone mapping function is a 
one - to - one linear mapping function . The control points 
within the plane , for example , define one or more constraints 
on the tone mapping function . In some embodiments , a 
parameterized tone mapping function is fit ( e.g. , the param 
eters defining the tone mapping may be selected by mini 
mizing a difference or cost function ) based , at least in part , 
on the one or more constraints . More specifically , the cost 
function may be defined by the one or more constraints . For 
example , a spline function , with polynomial segments of any 
degree , is fit based , at least in part , on the one or more 
constraints . 
[ 0090 ] In various embodiments , at least a portion of the 
control points indicate constraints for tone mapping of a 
specific and a finite number of source pixel values and 
corresponding target pixel values . In order to suppress flares 
and compress highlights , in various embodiments , some of 
the control points define flare - suppression or highlight com 
pression thresholds for the source image data . At least some 
of the control points , in an embodiment , are employed to 
constrain a derivative ( or at least a numerical approximation 
thereof ) of the tone mapping function , evaluated at one or 
control points . That is , some of the control points may be 
employed to constrain the slope of the gain ( e.g. , gain value ) 
of the tone mapping function at one or more other control 
points . 
[ 0091 ] In some embodiments , at least three control points 
are determined : a low - tone point , a mid - tone point , and a 
high - tone point . The low - tone point , for example , defines a 
tone mapping between the lowest pixel value of the source 
image data and the lowest pixel value of the target image 
data , as well as a flare - suppression threshold for the source 
image data . Similarly , the high - tone point , for example , 
defines a tone mapping between the highest pixel value of 
the source image data and the highest pixel value of target 
image data , as well as a highlight compression threshold for 
the source image data . The mid - tone point , for example , 
defines a tone mapping between a mid - tone value of the 
source image data and a mid - tone value of the target image 
data . As discussed below , the mid - tone point , in some 
embodiments , is additionally employed to constrain the 
derivative of the tone mapping function . 
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[ 0092 ] Because the low - tone point , in some embodiments , 
defines the mapping between tone values for the darkest or 
the " black " pixels of the source and target image data , the 
low - tone point may be a “ black point ” ( BP ) of the mapping . 
Likewise , because the high - tone point may define the map 
ping between tone values for brightest or “ white ” pixels of 
the source and target image data , the high - tone point , in 
some embodiments , is a “ white point ” ( WP ) of the mapping . 
In some embodiments , when fitting the tone mapping func 
tion , the tone mapping parameters are selected to force the 
tone mapping function to evaluate to ( or at least approxi 
mate ) these control points . The tone mapping function , in yet 
other embodiments , is constrained to evaluate to ( or at least 
approximate ) additional control points . 
[ 0093 ] In at least some embodiments , the derivative ( or at 
least the numerical approximation thereof ) of the tone 
mapping function is constrained at the mid - tone point , or 
any other such control point . That is , the slope of the 
mid - tone gain ( defined via the tone mapping function ) may 
be constrained and / or set at the mid - tone point . To constrain 
the derivative ( or the numerical approximation thereof ) of 
the tone mapping function at the mid - tone point , an addi 
tional control point is defined in various embodiments . The 
derivative of the tone mapping function , evaluated at the 
mid - tone point , for example , is constrained to be at least 
approximately equivalent to the slope of a line ( e.g. , gain 
value ) passing through the mid - tone point and an additional 
control point . In one such example , the additional control 
point is a maximum flare removal ( MFR ) point that specifies 
a threshold on the source pixel values in order to remove 
flares . 

[ 0094 ] As further examples , the slope of the mid - tone gain 
is constrained to be at least approximately equivalent to the 
ratio of the mid - tone of the target image data to mid - tone of 
the source image data . As still further examples , the slope of 
the mid - tone gain is set by other methods ( e.g. , a user 
configurable setting ) . For example , after observation by a 
user , the slope of the mid - tone gain or other parameters of 
the image signal processing system 140 are modified to 
achieve improved results . In various embodiments , when 
fitting the parameterized tone mapping function , the param 
eters are selected to force the derivative of the tone mapping 
function , evaluated at the mid - tone point , to at least approxi 
mate the mid - tone gain , defined in these or any other 

[ 0096 ] FIG . 2 illustrates an environment 200 in which 
offline image signal processing 240 is performed on raw data 
obtained during data collection 202 , in accordance with at 
least one embodiment . In various embodiments , the data 
collection 202 includes capturing with one or more image 
sensor ( s ) 244 raw data representing one or more environ 
ments . For example , data collection 202 includes capturing 
a set of images of objects in context , such as pedestrians , 
traffic signals , construction sites , equipment , or other 
objects . In various embodiments , the image sensor ( s ) 244 
include one or more different types of sensors such as global 
navigation satellite systems sensor ( s ) , radio detection and 
ranging ( RADAR ) sensor ( s ) , ultrasonic sensor ( s ) , light 
detection and ranging ( LIDAR ) sensor ( s ) , inertial measure 
ment unit ( IMU ) sensor ( s ) , stereo camera ( s ) , wide - view 
camera ( s ) , infrared camera ( s ) , surround camera ( s ) , long 
range and / or mid - range camera ( s ) , and / or other sensor types 
described in greater detail below in connection with FIGS . 
13A - 13D . The image sensor ( s ) 244 , in yet other embodi 
ments , include a variety of sensors such as the HDR image 
sensor ( s ) 344 described below in connection with FIG . 3. In 
addition , for example as illustrated in FIG . 2 , the image 
sensor ( s ) 244 operate according to exposure settings 242. In 
various embodiments , exposure settings 242 include fixed 
exposure settings for the image sensor ( s ) 244 to be used 
during data collection 202. In one example , the exposure 
settings 242 include settings for a computing device includ 
ing the image sensor ( s ) 244 such as the digital exposure 
calibration data 110 described above in connection with 
FIG . 1 . 

[ 0097 ] The offline image signal processing 240 , in various 
embodiments , includes various components such as image 
processing 258 , a statistics module 252 , tone mapping 256 , 
and / or other processing 250. The various components of the 
offline image signal processing 240 may include , for 
example , dedicated hardware and / or executable code or 
other instructions that , when executed by one or more 
processors of a computing device , cause the computing 
device to perform the operations described in the present 
disclosure . In an embodiment , image processing 258 
includes performing operations on the source image data 
( e.g. , the raw data collected during data collection 202 ) to 
prepare the source image data for tone mapping 256. For 
example , image processing 258 includes data conversion 
( e.g. , converting the raw data from one format to another ) , 
adjusting black - levels , color values , saturation , demosaic 
ing , noise removal , or other operations to prepare the source 
image data to be processed by a tone mapping function . 
[ 0098 ] In embodiments that include and / or enable the 
operability of the statistics module 252 , the statistics module 
252 determines and / or generates a plurality of statistical 
metrics based at least in part on the pixel values of the source 
image data ( or the pixel values of a portion of the source 
image data ) . In one example , the plurality of statistical 
metrics includes statistical metrics that are based , at least in 
part , on the pixel values of the source image data . The 
statistical metrics , in various embodiments , include one or 
more parameters that characterize any continuous or discrete 
statistical distribution and / or histogram that may be con 
structed from the source image data . Such parameters , for 
example , include a mean , median , and / or standard deviation 
of one or more statistical distributions derived from the pixel 
values of the source image data . 

manner . 

[ 0095 ] In an embodiment , once the tone mapping function 
is determined , the image signal processing system 140 , 
generates the target image data by applying the tone map 
ping function to the source image data ( e.g. , raw data capture 
by the fixed setting capture system 102 ) . In some embodi 
ments , statistical metrics of the source image data are 
determined , and the control points are determined from the 
statistical metrics . Some of the disclosed embodiments are 
deployed in vehicle - mounted imaging devices ( e.g. , dash 
cams ) . Further , the various embodiments are deployed in 
autonomous vehicle applications , or other such machine 
vision applications . The embodiments may be deployed in 
any application that employs one or more machine and / or 
computer vision methods . For example , the embodiments 
may be deployed to enable any of the various machine vision 
features of an autonomous vehicle ( See FIGS . 9A - 9D ) . The 
embodiments may be deployed to enable machine vision in 
a robot , such as but not limited to a manufacturing robot . 



US 2022/0358627 A1 Nov. 10 , 2022 
8 

2 

[ 0099 ] In various embodiments , once the raw data has 
been processed ( e.g. , image processing 258 ) , the system 
executing the offline image signal processing 240 , performs 
tone mapping 256. In yet other embodiments , tone mapping 
256 is performed without processing or otherwise modifying 
the raw data . The tone mapping 256 , in various embodi 
ments , includes applying one or more tone mapping func 
tions to source image data to generate target image data . 
Various different tone mapping functions , for example the 
tone mapping functions described below , may be used in 
connection with various embodiments described in the pres 
ent disclosure . In addition , various tone mapping functions 
described in U.S. Patent Application Publication No. 2021 / 
0035273 , by Deng , et al . incorporated by reference as if set 
forth in its entirety , may be used as an example of the tone 
mapping function 256 . 
[ 0100 ] In an embodiment , the system executing the offline 
image signal processing 240 , performs other processing 250 . 
As shown in FIG . 2 , the other processing 250 in various 
embodiments , is optional and may be included or removed 
based at least in part on an application of the results . For 
example , other processing 250 includes image conversion 
( e.g. , image formatting ) , data conversion ( e.g. , metadata ) , 
image filtering , pixelation , image padding , affine transfor 
mations , white balance , color correction , or any other pre or 
post image processing or other data processing techniques . 
The offline image signal processing 240 , once completed 
( e.g. , after execution by a computer system ) , produces a set 
of results including target image data . As illustrated in FIG . 
2 , in various embodiments , the results include image ( s ) 256 
( e.g. , target image data ) and neural network ( s ) 262 . 
[ 0101 ] In various embodiments , the image ( s ) 260 include 
target image data which includes target pixel values , which 
are defined by applying the tone mapping function 256 
( and / or other image processing 250 ) on the pixel values of 
the source image data . The image ( s ) 260 , for example , may 
include LDR or HDR images resulting from the offline 
image signal processing 240. In various embodiments , the 
neural network ( s ) 262 include neural networks trained based 
at least in part on the image ( s ) 260. In one example , the 
neural network ( s ) 262 include various neural networks as 
described below in connection with 13D . In at least one 
embodiment , the neural network ( s ) 262 comprise one or 
more neural networks ( or other models ) that , based at least 
in part on input data ( e.g. , the image ( s ) 260 ) , classify one or 
more aspects of input data . That is , for example , the neural 
network ( s ) 262 comprises one or more neural networks to 
perform imaging processing tasks that classify one or more 
features of imaging data ( e.g. , target image data ) . The neural 
network ( s ) 262 , in an embodiment , include various types of 
machine learning models depending on implementation 
( e.g. , the operation to be performed by the neural network ( s ) 
262 ) . That is , the neural network ( s ) 262 can include , for 
example , one or more machine learning model ( s ) using 
linear regression , logistic regression , decision trees , support 
vector machines ( SVM ) , Naive Bayes , k - nearest neighbor 
( Knn ) , K means clustering , random forest , dimensionality 
reduction algorithms , gradient boosting algorithms , neural 
networks ( e.g. , auto - encoders , convolutional , residual , 
recurrent , perceptrons , Long / Short Term Memory ( LSTM ) , 
Hopfield , Boltzmann , deep belief , deconvolutional , genera 
tive adversarial , liquid state machine , etc. ) , and / or other 
types of machine learning models . More specifically , as an 
example , a convolutional neural network ( CNN ) includes 

region - based or regional convolutional neural networks 
( RCNNs ) and Fast RCNNs ( e.g. , as used for object detec 
tion ) or other type of CNN . Furthermore , in various embodi 
ments , the neural network ( s ) 262 includes a plurality of 
models which may be static or dynamically determined 
based at least in part on an application ( e.g. , object detection , 
autonomous vehicles , etc. ) . 
[ 0102 ] In various embodiments , the results ( e.g. , the image 
( s ) 260 and / or the neural network ( s ) 262 ) are evaluated to 
determine improvements and fixes 266 and / or tuning 
changes 264 to the offline image signal processing 240 or 
components thereof . In one example , a user examines the 
image ( s ) 260 to determine if there are one or more issues 
with the image ( s ) 260 to be corrected by improvements and 
fixes 266 and / or tuning changes 264. Similarly , in another 
example , results generated by the neural network ( s ) 262 are 
evaluated to determine if there are one or more issues with 
the offline image signal processing 240 or components 
thereof to be corrected by improvements and fixes 266 
and / or tuning changes 264. In various embodiments , the one 
or more issues include bright and / or dark areas of the 
image ( s ) 260 , quality issues with the image ( s ) 260 , perfor 
mance issues with the neural network ( s ) 262 ( e.g. , failure in 
certain lighting conditions ) , issues with inferencing per 
formed by the neural network ( s ) 262 ( e.g. , misclassification 
of input data ) , or any other issues associated with the 
image ( s ) 260 and / or the neural network ( s ) 262 that is 
correctable by improvements and fixes 266 and / or tuning 
changes 264 to the offline image signal processing 240 . 
[ 0103 ] In various embodiments , the improvements and 
fixes 266 and / or tuning changes 264 are applied to the offline 
image signal processing 240 and the same raw data ( e.g. , the 
source image data used to generate the target image data 
corresponding to the results ) is reprocessed using the 
improvements and fixes 266 and / or tuning changes 264. For 
example , as a result of using the exposure settings 242 which 
are fixed , the improvements and fixes 266 and / or tuning 
changes 264 can be applied to the offline image signal 
processing 240 without the need to perform additional data 
collection 202. In various embodiments , decoupling the data 
collection 202 from the image signal processing ( e.g. , by 
performing offline image signal processing 240 ) the same 
raw data can be used to generate different results by at least 
applying the improvements and fixes 266 and / or tuning 
changes 264. For example , by using the same exposure 
settings for the data collection 202 , the offline image signal 
processing 240 can be applied to the source data to generate 
predictable and consistent target data ( e.g. , similar light 
levels , color balance , etc. ) . As a result , in various embodi 
ments , the results of the offline image signal processing 240 
( e.g. , the image ( s ) 260 and / or neural network ( s ) 262 ) are 
evaluated , the improvements and fixes 266 and / or tuning 
changes 264 are applied , then new target image data is 
generated using the source image data obviating the need to 
collect new source image data ( e.g. , conduct additional data 
collection 202 ) . 
[ 0104 ] In various embodiments , the tuning changes 264 
include modifications to the tone mapping 256 or other 
image processing algorithms used during offline image 
signal processing 240. In one example , various components 
of the tone mapping 256 such as control points , flare 
suppression , gain curves , gain lines , tone mapping functions , 
or other components of one or more tone mapping functions 
as described in the present disclosure ( e.g. , FIGS . 3-4B ) are 
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modified based at least in part on the tuning changes 264. In 
an embodiment , the improvements and fixes 266 modify one 
or more other components of the offline image signal 
processing 240. In one example , the improvements and fixes 
266 modify , add , or remove components of the image 
processing 258 and / or other processing 250 of the source 
image data . In an embodiment , the improvements and fixes 
266 and the tuning changes 264 include a single set of 
modifications to the offline image signal processing 240 . 
[ 0105 ] With reference to FIG . 3 , FIG . 3 provides a sche 
matic diagram of a system 300 , in accordance with some 
embodiments of the present disclosure . For example , the 
system 300 includes a High - Dynamic Range Imaging 
( HDRI ) system . It should be understood that this and other 
arrangements described herein are set forth only as 
examples . Other arrangements and elements ( e.g. , machines , 
interfaces , functions , orders , groupings of functions , etc. ) 
can be used in addition to or instead of those shown , and 
some elements may be omitted altogether . Further , many of 
the elements described herein are functional entities that 
may be implemented as discrete or distributed components 
or in conjunction with other components , and in any suitable 
combination and location . Various functions described 
herein as being performed by entities may be carried out by 
hardware , firmware , and / or software . For instance , various 
functions may be carried out by logic devices , such as but 
not limited to a general purpose processor 322 and / or an 
image signal processor ( ISP ) 324 executing instructions 
stored in memory . 
[ 0106 ] In various embodiments , the system 300 may 
include , among other things , computing devices that include 
one or more image sensors ( e.g. , a camera ) . Such computing 
devices , for example , include , but are not limited to , a 
mobile or stationary camera ( e.g. , a handheld camera , a 
smartphone , a tablet , or the like ) , a manned or unmanned 
terrestrial vehicle ( e.g. , a vehicle 304 ) , a manned 
unmanned aerial vehicle ( e.g. , a drone 306 ) , or a wearable 
device ( e.g. , smart glasses 308 ) . Such computing devices 
that include one or more image sensors may herein be 
referred to collectively as the camera computing devices 
302-308 . For example , the camera computing devices 
include one or more HDR image sensors 344 and HDR 
sensor exposure settings 342 . 
[ 0107 ] In various embodiments , the HDR image sensors 
344 capture image data that includes HDR image data . For 
example , the captured HDR image data encodes an image or 
scene that is imaged by the HDR image sensors 344. The 
image data captured by the HDR image sensors 344 , in 
various embodiments , is referred to as source image data . 
Thus , source image data , in at least one example , includes 
HDR image data that encodes an HDR source image . As 
discussed throughout , the HDR image sensors 344 , which 
capture source image data , in an embodiment , are mounted 
on a vehicle ( e.g. , the terrestrial vehicle 304 or the aerial 
vehicle 306 ) . For example , the vehicle may be an autono 
mous , or at least a partially autonomous , vehicle and the 
vehicle may be controlled , at least partially , based at least in 
part on the source image data and / or target image data 360 . 
In some embodiments , the encoding of the source image 
data is in a linear color space that lacks a non - linear 
mapping . The HDR image sensors 344 include , are affected 
by , and / or are subject to the one or more HDR sensor 
exposure settings 342 in accordance with at least one 
embodiment . As described above , in various embodiments , 

the HDR sensor exposure settings 342 are fixed , static , 
and / or constant exposure settings . In such embodiments , at 
least a portion of the values of the HDR sensor exposure 
settings 342 are determined based at least in part on the 
lighting conditions of the scene to be imaged and / or other 
environmental conditions . For example , the HDR sensor 
exposure settings 342 are determined such that the HDR 
image sensors 344 capture a sufficient amount of data for 
diverse environmental and lighting conditions ( e.g. , rain , 
clear skies , nigh time image , broad day light , etc. ) . In at least 
one embodiment , a user manually sets at least a portion of 
the HDR sensor exposure settings 342 to be fixed during a 
duration of data collection . 

[ 0108 ] Although some camera computing devices are 
illustrated in FIG . 3 , this is not intended to be limiting . In 
any example , there can be any number of camera computing 
devices and / or camera computing devices that are not 
explicitly shown in FIG . 3. For example , various computing 
devices that include one or more image sensors , cameras , 
and / or other sensors are capable of being included in system 
300 as described in accordance with the various embodi 
ments . 

[ 0109 ] In various embodiments , the camera computing 
devices 302-308 ( or other camera computing devices 
included in the system 300 ) include one or more image 
sensors that are enabled to capture High - Dynamic - Range 
( HDR ) image data , as discussed throughout . For example , 
the camera computing devices 302-308 are used to perform 
various data collection operations such as capturing images 
of different environments and / or different conditions for use 
in training one or more models . The system 300 , in an 
embodiment , includes other computing devices , such as but 
not limited to a server computing device 330. The server 
computing device 330 , in one example , does not include an 
image sensor . However , in other embodiments , the server 
computing device 330 includes an image sensor ( e.g. , an 
auxiliary camera ) . The terrestrial vehicle 304 and / or the 
aerial vehicle 306 can be at least partially manually operated 
vehicles and / or when manned , partially autonomous . In 
some embodiments , when unmanned , the vehicles 304 and 
306 are autonomous , partially autonomous , and / or remote 
controlled vehicles . Various embodiments of such vehicles 
are discussed in conjunction with FIGS . 13A - 13D . 
[ 0110 ] Various embodiments of computing devices , 
including but not limited to the camera computing devices 
302-308 and / or the server computing device 330 are dis 
cussed in conjunction with a computing device 1300 of FIG . 
13. However , briefly here , the camera computing devices 
302-308 and / or the server computing device 330 , for 
example , can include one or more logic devices . For 
example , the server computing device 330 is shown to 
include logic devices 320. The logic devices 320 , in various 
embodiments , include one or more of a general purpose 
processor 322 ( e.g. , a Central Processing Unit ( CPU ) , a 
microcontroller , a microprocessor , or the like ) , an Image 
Signal Processor ( ISP ) 324 , an Application Specific Inte 
grated Circuit ( ASIC ) 326 , and / or a Field Programmable 
Gate Array ( FPGA ) 328. Although not shown in FIG . 3 , in 
some embodiments , the logic devices 320 include a Graph 
ics Processing Unit ( GPU ) ) and / or a Data Processing Unit 
( DPU ) . It should be noted that any of the camera computing 
devices 302-308 and / or the server computing device 330 can 
include one or more of such logic devices . 

or 



US 2022/0358627 A1 Nov. 10 , 2022 
10 

2 

[ 0111 ] In various embodiments , components of the HDRI 
system 300 ( e.g. , the camera computing devices 302-308 
and / or the server computing device 330 ) communicate over 
network ( s ) 332. The network ( s ) 332 include , for example , a 
wide area network ( WAN ) ( e.g. , the Internet , a public 
switched telephone network ( PSTN ) , etc. ) , a local area 
network ( LAN ) ( e.g. , Wi - Fi , ZigBee , Z - Wave , Bluetooth , 
Bluetooth Low Energy ( BLE ) , Ethernet , etc. ) , a low - power 
wide - area network ( LPWAN ) ( e.g. , LoRaWAN , Sigfox , 
etc. ) , a global navigation satellite system ( GNSS ) network 
( e.g. , the Global Positioning System ( GPS ) ) , and / or other 
network type . In one example , the components of the HDRI 
system 300 communicates with one or more of the other 
components via one or more of the network ( s ) 332. For 
example , the camera computing devices 302-308 perform 
data collection and transmit source image data to the server 
computing device 330 via one or more of the network ( s ) 
332 . 
[ 0112 ] In various embodiments , the server computing 
device 330 implements , operates , or otherwise executes the 
functions and / or operations of a High Dynamic Range 
( HDR ) engine 340. In the example illustrated in FIG . 3 , the 
server computing device 330 is shown implementing the 
HDR engine 340. However , in other examples , any of the 
camera computing devices 302-308 can implement the HDR 
engine 340 ( e.g. , any of the logic devices 320 , included in 
the camera computing devices 302-308 , can implement at 
least some of the functions , operations , and / or actions of the 
HDR engine 340 . 
[ 0113 ] The HDR engine 340 , in an embodiment , enables 
various methods of the tone mapping of HDR image data , as 
well as controlling the brightness of the image encoded by 
HDR image data and / or the tone - mapped image data . To 
carry out such functionality , for example , the HDR engine 
340 includes one or more components , modules , devices , or 
the like . In various embodiments , such components , mod 
ules , and / or devices include but are not limited to a Region 
of Interest ( ROI ) locator 348 , a delay unit 350 , a statistics 
module 352 , a control points selector 354 , a tone map 
generator 356 , and / or a tone map applicator 358. Any of 
these components , modules , and / or devices are optional in 
some embodiments . For example , in an embodiment , the 
ROI locator 348 , the delay unit 350 , and the statistics 
module 352 are optional . 
[ 0114 ] The enumeration of components , modules , and / or 
devices of the HDR engine 340 , as discussed in conjunction 
with FIG . 3 , is not intended to be exhaustive . In other 
embodiments , the HDR engine 340 may include fewer or 
more components , modules , and / or devices . As discussed 
throughout , the HDR engine 340 may implement and / or 
carry out at least portions of the processes , actions , and / or 
operations discussed in conjunction with the methods 500 , 
600 , 700 , and 800 of FIGS . 5 , 6 , 7 , and 8 respectively . As 
such , one or more of the logic devices 320 , in various 
embodiments , implements and / or carries out at least por 
tions of the methods 500 , 600 , 700 , and 800 . 
[ 0115 ] Some computing devices in the HDRI system 300 
may not include image sensors and / or cameras ( e.g. , the 
server computing device 330 ) . In such embodiments , the 
HDR image sensors included in any of the camera comput 
ing devices 302-308 are employed to capture the source 
image data . The source image data , as described above , in at 
least one embodiment , is provided , via networks 332 , to the 
HDR engine 340 that is implemented at and / or by the server 

computing device 330. That is , although the source HDR 
image data , in various embodiments , is captured by at least 
one of the camera devices 302-308 , the tone mapping , image 
signal processing , controlling the brightness of the image 
data , and / or otherwise modifying properties of the image 
data is performed offline on the server computing device 
330. To state it in another fashion , the tone mapping of the 
HDR image data may be offloaded to another computing 
device , such as but not limited to the server computing 
device 330 , which did not capture the image data . Because 
the camera computing devices 302-308 may include one or 
more manned or unmanned vehicles ( e.g. , the terrestrial 
vehicle 304 and aerial vehicle 306 ) , the source image data , 
for example , is captured by a camera included in or mounted 
on a vehicle . As noted above , the vehicle may be an 
autonomous , or at least partially autonomous , vehicle . The 
various embodiments enable , or at least assist in the enable 
ment , in various machine and / or computer vision features of 
an autonomous vehicle , such as but not limited to terrestrial 
vehicle 304 or aerial vehicle 306. The embodiments can be 
deployed to enable the machine and / or computer vision 
features of other applications , such as but not limited to 
robotic applications and / or training of models ( e.g. , neural 
networks ) to perform all or a portion of the operations 
described in the present disclosure . For example , the target 
image data 360 can be used to train a neural network that 
performs object detection used in robotic applications . 
[ 0116 ] As shown in FIG . 3 , the HDR engine 340 includes 
two parallel pipelines for the source image data , as indicated 
by the arrows . More specifically , the HDR engine 340 
includes an image data pipeline 362 and an image data 
pipeline 364. In various embodiments , the two pipelines are 
operated in parallel . The two pipelines schematically bifur 
cate between the HDR image sensors 344 and the ROI 
locator 348. The two forked pipelines schematically con 
verge at the tone map applicator 358 . 
[ 0117 ] The image data pipeline 362 , in an embodiment , is 
responsible for determining and / or generating the tone map 
ping function ( e.g. , a Global Tone Mapping ( GTM ) function , 
local tone mapping function , or other tone mapping func 
tion ) . In various embodiments , the image data pipeline 362 
( via either the delay unit 350 or the tone map generator 356 ) 
provides the tone mapping function to the image data 
pipeline 364 via the tone map applicator 358. The image data 
pipeline 364 , in an embodiment , is responsible for applying 
the tone mapping function to the source image data ( e.g. , 
from a HDR image data buffer 346 ) to generate target image 
data 360. As discussed above , the one or more HDR image 
sensors 344 capture source image data , and provide the 
source image data to the image data pipelines 362 and 364 . 
In various embodiments , the image data pipelines 362 and 
364 include a set of functions where the output of one 
function is input to another function . In the non - limiting 
embodiment of FIG . 3 , and as shown via the pipeline flow 
arrows , the source image data is provided to the image data 
pipeline 362 via the ROI locator 348 and the source data is 
provided to the parallel image data pipeline 364 via the HDR 
image data buffer 346. In other embodiments , the image data 
pipeline 362 and the image data pipeline 364 are performed 
in serial ( e.g. , the HDR image data buffer 346 provides data 
directly to the ROI locator 348 ) . Although pipelines are used 
for the purpose of illustration , other image processing archi 
tectures are considered as being within the scope of the 
disclosure . For example , the output of a function ( e.g. , the 
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ROI locator 348 , the HDR image data buffer 346 , the tone 
map generator 356 , etc. ) can be provided to a plurality of 
functions that execute operations in serial and / or in parallel . 
In one example , the statistics module 352 provides data to 
the control points selector 354 and the tone map generator 
356. In this example , the tone map generator 356 can process 
all or a portion of the data in parallel with the control points 
selector 354 and can processes additional data ( e.g. , data 
from the control points selector 354 ) serially ( e.g. , after the 
control points selector 354 has generated an output ) . 
[ 0118 ] In embodiments that involve the capturing of mul 
tiple frames of source image data ( e.g. , HDR video embodi 
ments ) , the tone mapping function is generated based at least 
in part on a first frame of source image data and applied to 
a second ( e.g. , a consecutive and / or non - consecutive ) frame 
of source image data . That is , in such embodiments , the tone 
mapping function is generated based at least in part on the 
first frame of source image data and is applicable to and 
appropriate for additional frames of source image data 
because the HDR sensor exposure settings 342 are fixed . In 
these embodiments , there may be a one frame lag between 
the source data that the tone mapping function was gener 
ated from and the source image data that the tone mapping 
function is applied to . For example , the frame of the source 
image data that was employed to generate the tone mapping 
function may be one frame previous to the frame of the 
source image data that the tone mapping function was 
applied to . In such embodiments , the delay unit 350 of the 
image data pipeline 362 buffers the tone mapping function 
for one ( or more ) frames , such that when the tone mapping 
function is provided to the tone map applicator 358 of the 
image data pipeline 364 , the tone map is applied to the next 
consecutive frame of source image data . In other embodi 
ments , the lag is greater than a single frame , and the delay 
unit 350 buffers the tone mapping function for multiple 
frames of source image data . In at least one embodiment , the 
same tone mapping function is applied to more than a single 
frame of source image data . For example , the same tone 
mapping function is applied to five consecutive frames of 
source image data . In such embodiments , the image data 
pipeline 362 generates a tone mapping function for every 
fifth frame . 

[ 0119 ] As shown in FIG . 3 , the HDR engine 340 outputs 
the target image data 360. As discussed throughout , the 
target image data 360 , in various embodiments , encodes the 
image encoded by the source image data . However , rather 
than the pixel values of the source image data captured by 
the HDR image sensors 344 , the pixel values of the target 
image data 360 , for example , are defined by applying ( via 
the image data pipeline 364 ) the tone mapping function 
( determined via the image data pipeline 362 ) to the source 
image data . That is , the pixel values of the target image data 
360 may be representative of a tone - mapped version of the 
pixel values of the source image data . In some embodiments , 
the outputted target image data 360 may be either HDR , 
Standard Dynamic Range ( SDR ) image data , or Low 
Dynamic Range ( LDR ) image data . In some embodiments , 
at least a portion of the operations of the image data pipeline 
362 are performed by a first logic device ( e.g. , the general 
purpose processor 322 ) and at least a portion of the opera 
tions of the image data pipeline 364 are performed by a 
second logic device ( e.g. , the ISP 324 ) . In at least one 

embodiment , one or more pipelines within the ISP 324 are 
employed by the image data pipeline 364 of the HDR engine 
340 . 
[ 0120 ] As shown in FIG . 3 , at least a portion of the source 
image data may be provided and / or received by the image 
data pipeline 364 via an HDR image data buffer 346. The 
HDR image data buffer 346 , for example , buffers or at least 
temporarily stores the source image data . As discussed in 
more detail below , the image data pipeline 362 generates a 
tone mapping function and provides the tone mapping 
function to the image data pipeline 364 in accordance with 
at least one embodiment . More specifically , as shown in 
FIG . 3 , the delay unit buffers the tone mapping function for 
at least one frame , and then provides the tone mapping 
function to the tone map applicator 358 of the image data 
pipeline 364. In various embodiments , the tone map appli 
cator 358 obtains source image data from the HDR image 
data buffer 346 and applies the tone mapping function to the 
source image data to generate the target image data 360 . 
[ 0121 ] As noted above , the source image data received by 
the tone map applicator 358 may be a next frame of source 
image data , as compared to the frame in source image data 
that was employed to generate the tone mapping function . In 
embodiments that do not include the delay unit 350 , the 
source image data is provided to the tone map applicator 358 
directly from the tone map generator 356. In such embodi 
ments , the tone mapping function is applied to the same 
frame of source image data that was employed to generate 
the tone mapping function . 
[ 0122 ] In embodiments that include the ROI locator 348 , 
the source image data is provided to and / or received by the 
image data pipeline 362 via ROI locator 348. In embodi 
ments that do not include the ROI locator 348 , but do include 
the statistics module 352 , the source image data is provided 
to the image data pipeline 362 via the statistics module 352 . 
In embodiments that lack both the ROI locator 348 and the 
statistics module 352 , the source image data is provided to 
the image data pipeline 362 via the control points selector 
354. It should be noted that while embodiments may include 
either the ROI locator 348 and / or the statistics module 352 , 
their operability may be optional . For example , a user may 
choose to enable the operability of one or both of the ROI 
locator 348 and / or the statistics module 352 via one or more 
software switches and / or flags . Likewise , the user may 
choose to disable the operability of one or both of the ROI 
locator 348 and / or the statistics module 352 via the one or 
more software switches and / or flags . 
[ 0123 ] In embodiments that include and / or enable the 
operability of the ROI locator 348 , the ROI locator 348 
determines an ROI within the source image data . For 
example , one or more methods relating to computer vision 
and / or image processing ( e.g. , the ROI may be an output of 
a neural network trained to identify the ROI ) are employed 
to determine an interesting region ( e.g. , the region of the 
image that includes the subject and / or focus point of the 
image ) within the image encoded by the source image data . 
For example , an ROI is a region within the image that 
includes more contrast , detail , and / or more varied pixel 
values than other regions . In various embodiments , the ROI 
is a region in the image , where the dynamic range of the 
pixel values is maximized , or at least increased , as compared 
to other regions in the image . 
[ 0124 ] In various embodiments , the ROI is a region of the 
image that includes or corresponds to the subject of the 
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image or the point of focus of the image . In some embodi 
ments , the ROI locator 348 includes a filter or mask that 
masks away the pixels outside of the determined ROI . Thus , 
when the image data travels down the image data pipeline 
362 , the image data , in such embodiments , includes only the 
pixel values that correspond to the ROI . In one example , a 
determination of the control points and the generation of the 
tone mapping function , as well as other operations of the 
image data pipeline 362 ( e.g. , a determination of statistical 
metrics and / or a determination of a plurality of control 
points ) is based at least in part on the portion of the source 
image data that corresponds to the ROI in the encoded 
source image , rather than the entirety of the source image 
data that encodes the source image . 
[ 0125 ] In embodiments that include and / or enable the 
operability of the statistics module 352 , the statistics module 
352 determines and / or generates a plurality of statistical 
metrics based at least in part on the pixel values of the source 
image data ( or the pixel values of the portion of the source 
image data that corresponds to the ROI of the encoded 
source image ) . The plurality of statistical metrics , for 
example , includes statistical metrics that are based at least in 
part on the pixel values of the source image data . In an 
embodiment , the statistical metrics include one or more 
parameters that characterize continuous or discrete statisti 
cal distribution and / or histograms that are constructed from 
the source image data . For example , such parameters include 
a mean , median , and / or standard deviation of one or more 
statistical distributions derived from the pixel values of the 
source image data . 
[ 0126 ] The source image data , the portion of the source 
image data that corresponds to the ROI , and / or the plurality 
of statistical metrics , in various embodiments , are provided 
to the control points selector 354. In an embodiment , the 
control points selector 354 is responsible for determining a 
plurality of tone control points based at least in part on the 
source image data , the portion of the source image data that 
corresponds to the ROI , and / or the plurality of statistical 
metrics . More particularly , at least a portion of the tone 
control points are determined based at least in part on pixel 
values of the source image data , the statistical metrics 
determined and / or derived from the pixel values , or a 
combination thereof , in accordance with at least one 
embodiment . Control points selector 354 , in an embodiment , 
employs the general purpose processor 322 to determine the 
plurality of tone control points . 
[ 0127 ] In various embodiments , the plurality of control 
points include one or more of a low - tone point , a mid - tone 
point , and a high - tone point . In an embodiment , the plurality 
of control points includes a flare - suppression point . In some 
embodiments , the plurality of tone control points include 
additional tone control points . For example , a tone control 
point can include a 2D point and / or a 2D vector , which 
includes two scalar values ( e.g. , an x - component and a 
y - component ) , although other dimensions could be added . 
Thus , a tone control point , in such examples , can be repre 
sented via the vector notation ( TC_x , TC_y ) , where TC_x 
and TC_y are scalar values . In various embodiments , the 
abscissa scalar value ( e.g. , the x - component and / or X - value ) 
of the tone control point is indicated as TC_x . The ordinate 
scalar value ( e.g. , the y - component and / or y - value ) of the 
tone control point is indicated as TC_y , in accordance with 
at least one embodiment . For example , the 2D space that the 
control points are embedded within are spanned by an 

orthonormal basis that includes an abscissa basis vector 
( e.g. , the x - axis ) corresponding the pixel values of the source 
image data and an ordinate basis vector ( e.g. , the y - axis ) 
corresponding to the pixel values of the target image data . 
[ 0128 ] In various embodiments , the low - tone , mid - tone , 
and high - tone control points indicate specific mappings of 
the pixel values of the source image data to the pixel values 
of the target image data . For example , the low - tone point 
indicates the pixel value of the source image data that is to 
be tone mapped to the lowest pixel value ( e.g. , the pixel 
value that corresponds to the darkest or blackest pixels ) of 
the target image data . Likewise , in an example , the high - tone 
point indicates the pixel value of the source image data that 
is to be tone mapped to the highest pixel value ( e.g. , the pixel 
value that corresponds to the brightest or whitest pixels ) of 
the target image data . In an embodiment , the low - tone point 
is referred to as the black point ( BP ) and the high - tone point 
is referred to as the white point ( WP ) . Furthermore , in 
another example , the mid - tone point indicates the pixel 
value of the source image data that is to be tone mapped to 
a middle pixel value of the target image data . The determi 
nation of the mid - point , in various embodiments , controls 
the overall mid - tone brightness ( or tone ) of the target image 
encoded by the tone mapped target image data 360 , while the 
low - tone point controls the tone of the blackest ( or darkest ) 
pixels in the target image data and the high - tone point 
controls the tone of the whitest ( or brightest ) of the pixels in 
the target image data 360 . 
[ 0129 ] Referring to FIG . 4 , FIG . 4 shows the low - tone , 
mid - tone , high - tone , and flare - suppression control points 
embedded in the 4D space spanned by a first basis vector for 
a first dimension corresponding to the pixel values of the 
source image data ( e.g. , the x - axis ) and a second basis vector 
for a second dimension corr orresponding to the pixel values of 
the target image data ( e.g. , the y - axis ) . In the non - limiting 
embodiment of FIG . 4 , the pixel values of the source image 
data and target image data have been normalized to have a 
range of : [ 0 , 1 ] . However , in other embodiments , the pixel 
values can be normalized to other ranges , or need not be 
normalized . For example , the raw pixel values of the cap 
tured image data are used as the source image data . In other 
embodiments , the raw pixel values are normalized and / or pre - processed prior to being provided to the image data 
pipelines 364 and 364 of the HDR engine 340 described 
above in connection with FIG . 3 . 
[ 0130 ] In FIG . 4 , the low - tone point is indicated as : 
LT = ( B_s , B_t ) , the mid - tone point is indicated as : MT = M_ 
s , M_t ) , and the high - tone point is indicated as : HT = ( W_S , 
W_t ) , where the x and y components are all non - negative 
scalar values . More specifically , in the non - limiting embodi 
ment of FIG . 4 , LT = ( B_S , 0 ) and HT = ( W_s , 1 ) , where 
0.0 < B_s < W_s < 1.0 . In other examples , B_t need not be 
equal to 0.0 and W_t need not be equal to 1. FIG . 4 shows 
another control point , the flare - suppression point , indicated 
as : FS = ( F_s , F_t ) , where F_t is set to 0.0 . The flare 
suppression point is discussed further below . 
[ 0131 ] In an embodiment , with regards to the mid - tone 
point , pixels in the source image data with the pixel value 
equivalent to M_s are tone mapped , via a tone mapping 
function , to the value of M_t for the target image data . The 
determination and / or selection of M_t controls the mid - tone 
brightness of the target image in accordance with an embodi 
ment . Thus , the determination of M_t , for example , is based 
at least in part on a mid - tone pixel value for the pixel values 
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of the target image data . In some embodiments , M_t = 0.5 . In 
other embodiments , M_t includes other values . In some 
examples , a user selects or sets a value for M_t . In further 
examples , M_s is determined via a linearly - weighted aver 
age of the pixel values of the source image data . In addi 
tional examples , M_s is determined via a logarithmic aver 
aging ( e.g. , log - averaging ) of the pixel values of the source 
image data . In such examples , the log - averaging may be 
performed in one or more bases ( e.g. , log base 10 ) . In other 
embodiments , the logarithm function employed to transform 
the source image data to the log values includes the natural 
logarithm function . The log - averaged value of the pixel 
values , in an embodiment , can then be exponentiated ( via 
the corresponding base ) to determine M_s . For example , 
log - transformed source image data pixel values are deter 
mined based at least in part on the pixel values of the source 
image data . In an embodiment , an average value of the 
log - transformed image data values is determined via a 
linearly - weighted sum of the log - transformed image data 
values . In one example , M_s is determined based at least in 
part on an exponentiation of the averaged value of the 
log - transformed image data values . 
[ 0132 ] In some embodiments , a portion of the source 
image data is employed to determine M_s . For instance , the 
pixels of the source image data with the highest and the 
lowest values can be vetoed and / or filtered from the analysis . 
That is , a high - tone threshold ( or filter value ) , for example , 
is employed to veto the high - tone pixels from the determi 
nation of M_s . Likewise , a low - dtone threshold ( or filter or 
filter value ) can be employed to veto the low - tone pixels 
from the determination of M_s . In various embodiments , 
M_s is determined based at least in part on a linear 
averaging or log - averaging of the pixel values that pass both 
the low - tone and high - tone filters ( e.g. , the pixel values that 
are not thresholded from the analysis ) . The thresholds for the 
filters , in one example , are relative thresholds ( e.g. , percent 
ages ) , or absolute values . In some embodiments , M_s and / or 
M_t are determined based at least in part on the statistical 
metrics generated by the statistics module 352 of FIG . 3. In 
some embodiments , the various methods discussed above , 
with respect to determining M_s and / or M_t can be com 
bined with the statistical metrics to determine M_s and / or 
M_t . In at least one embodiment , M_s and / or M_t are 
determined , based at least in part on the digital exposure and 
calibration data 110 of FIG . 1. For example , a prediction 
model for M_s and / or M_t is generated based at least in part 
on the analysis of historical , training , and / or learning data 
generated by at least aggregating the statistical metrics from 
large numbers of source image data and / or target image data . 
[ 0133 ] In various embodiments , with regards to the low 
tone point , pixels in the source image data with the pixel 
value equivalent to B_s ( or less than B_s ) may be tone 
mapped to the value of B_t for the target image data . That 
is , pixel values of the source image data that are less than 
B_s are clipped and set to have a pixel value of B_s in 
accordance with at least one embodiment . For example , the 
determination and / or selection of B_t controls the low - tone 
brightness of the target image . Thus , the determination of 
B_t , in an embodiment , is based at least in part on a 
minimum pixel value for the pixel values of the target image 
data . In some embodiments , B_t = 0 . In other embodiments , 
B_t includes a positive value that is less than M_t . In some 
examples , a user selects or otherwise sets a value for B_t . In 
an example , a positive black pixel value may be caused by 

a flare , or other errors ( e.g. , a sensor black level subtraction 
error ) , in the image sensor that captured the source image 
data for the pixel . Thus , because source image data with 
pixel values less than B_s are clipped and set to B_s , the 
selection of B_s , in such examples , controls flare suppres 
sion . Accordingly , B_s may be referred to as a flare 
suppression threshold . 
[ 0134 ] In examples , B_s is determined based at least in 
part on the pixels of the source image data with the lowest 
pixel values . For instance , a low - tone subset of the pixel 
values of the source image data is determined based at least 
in part on a low - tone point threshold . In various embodi 
ments , pixel values included in the low - tone subset are less 
than or equal to the low - tone point threshold . In addition , in 
such embodiments , pixel values excluded from the low - tone 
subset are greater than the low - tone point threshold . The 
low - tone point threshold , for example , can be either an 
absolute or a relative threshold . In various embodiments , the 
value of B_s are determined based at least in part on the 
pixel values included in the low - tone subset of pixel values . 
For example , B_s is set to the weighted average of the pixel 
values in the low - tone subset ( which may include average 
values ) . In another embodiment , B_s are set to a percentage 
of the pixel values in the low - tone subset . In some embodi 
ments , B_s and / or B_t are determined based at least in part 
on the statistical metrics generated by the statistics module 
352 of FIG . 3. Any of the various methods discussed above , 
with respect to determining B_s and / or B_t can be combined 
with the statistical metrics to determine B_s and / or B_t . In 
at least one embodiment , B_s and / or B_t are determined , 
based at least in part on the HDR sensor exposure settings 
344. A prediction model for B_s and / or B_t , in an embodi 
ment , is generated based at least in part on the analysis of 
training and / or learning data generated by aggregating the 
statistical metrics from large numbers of source image data 
and / or target image data . 
[ 0135 ] In various embodiments , with regards to the high 
tone point , pixels in the source image data with the pixel 
value equivalent to W_s ( or greater than W_s ) are tone 
mapped to the value of W_t for the target image data . That 
is , pixel values of the source image data that are greater than 

for example , are clipped and set to have a value of 
W_s . Thus , because source image data with pixel values 
greater than W_s are clipped and set to W_s , the selection of 
W_s controls highlight ( e.g. , pixels with large pixel values ) 
suppression in accordance with at least one embodiment . 
Accordingly , W_s may be referred to as a highlight - sup 
pression threshold . For example , the determination and / or 
selection of W_t controls the high - tone brightness of the 
target image . Thus , the determination of W_t , in various 
embodiments , is based at least in part on a maximum pixel 
value for the pixel values of the target image data . In some 
embodiments , W_t = 1 . In other embodiments , W_t includes 
a positive value that is less than 1 but greater than M_t . In 
some examples , a user selects or otherwise sets a value for 
W_t . In additional examples , W_s is determined based at 
least in part on the pixels of the source image data with the 
highest pixel values . For instance , a high - tone subset of the 
pixel values of the source image data can be determined 
based at least in part on a high - tone point threshold . In 
various embodiments , pixel values included in the high - tone 
subset are greater than or equal to the high - tone point 

W_s , 
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threshold . In such embodiments , pixel values excluded from 
the high - tone subset are less than the high - tone point thresh 
old . 
[ 0136 ] For example , the high - tone point threshold can be 
either an absolute or a relative threshold . In various embodi 
ments , the value of W_s is determined based at least in part 
on the pixel values included in the high - tone subset of pixel 
values . For example , W_s is set to the weighted average of 
the pixel values in the high - tone subset . As another example , 
W_s is set to a percentage of the pixel values in the high - tone 
subset . In some embodiments , W_s and / or W_t may be 
determined based at least in part on the statistical metrics 
generated by the statistics module 352 of FIG . 3. Any of the 
various methods discussed above , with respect to determin 
ing W_s and / or W_t can be combined with the statistical 
metrics to determine W_s and / or W_t . In at least one 
embodiment , W_s and / or W_t are determined , based at least 
in part on the HDR sensor exposure settings 342. A predic 
tion model for W_s and / or W_t , in an embodiment , is 
determined based at least in part on the analysis of training 
and / or learning data generated by aggregating the statistical 
metrics from large numbers of source image data and / or 
target image data . 
[ 0137 ] FIG . 4 also shows a flare - suppression point : FS = 
( F_s , 0 ) . In various embodiments , F_s indicates a maximum 
flare removal threshold . In some embodiments , F_s is user 
specified and / or selected . In other embodiments , F_s is 
dynamically determined based at least in part on the statis 
tical metrics of the source image data . In at least one 
embodiments , F_s is determined based at least in part on a 
percentage of M_s and / or a value of a percentage of the 
lowest pixel values of the source image data . 
[ 0138 ] Returning to FIG . 3 , the control points selector 
354 , in various embodiments , determines one or more 
additional tone control points . For example , the additional 
tone control points are determined based at least in part on 
the plurality of statistical metrics . Tone map generator 356 , 
in various embodiments , is responsible for determining the 
tone mapping function based at least in part on the plurality 
of control points . Tone map generator 356 , for example , 
utilizes the general purpose processor 344 to determine the 
tone mapping function . For example , to determine the tone 
mapping function , the tone map generator 356 generates 
and / or determines a gain line . The generation of the gain 
line , in an embodiment , is based at least in part on a portion 
of the plurality of tone control points . For example , a gain 
value is determined as the slope , derivative , and / or rate of 
change of the gain line . In some embodiments , the gain line 
is determined as the unique line that includes , or passes 
through , at least two of the control points . In the example 
shown in FIG . 4 , the gain line is the line that includes both 
the mid - tone point and the flare - suppression point . In an 
embodiment , the gain value is equivalent to the slope of the 
gain line . 
[ 0139 ] In various embodiments , the tone map generator 
356 determines the tone mapping function based at least in 
part on the gain value and at least a portion of the plurality 
of tone control points . For example , the tone mapping 
function maps a pixel value of the source image data to a 
pixel value of the target image data . As such , the tone 
mapping function can be a scalar function of a single scalar 
variable ( e.g. , a pixel value ) , where the value of the function 
is the pixel value of the target image data that corresponds 
to the pixel value of the source image data that is the 

argument ( or independent variable ) of the function . In one 
example , the tone mapping is a non - linear mapping . In some 
embodiments , the tone map generator 356 performs a fit of 
the tone mapping function to one or more of the tone control 
points . In one example , the tone mapping function is con 
strained to include or approximately include one or more of 
the tone control points . In at least one embodiment , the tone 
mapping function is constrained to include the low - tone 
point , the mid - tone point , and / or the high - tone point . In 
some embodiments , the tone mapping function is con 
strained by the gain value . The derivative , or instantaneous 
rate of change , of the tone mapping function ( evaluated at 
one or more of the tone control points ) is constrained based 
at least in part on the gain value in accordance with at least 
one embodiment . For example , the fitting of the tone map 
ping function is constrained such that the derivative , or 
instantaneous rate of change of a tangent line at the mid - tone 
control point is at least approximately equivalent to the gain 
value . 

[ 0140 ] Turning to FIG . 5 , FIG . 5 shows a non - limiting 
example of a plot of a tone mapping function , which is in 
accordance with the various embodiments . In various 
embodiments , the tone mapping function of FIG . 5 is 
constrained such that the plot of the tone mapping function 
includes the low - tone point , the mid - tone point , and the 
high - tone point . In such embodiments , the tone mapping 
function is further constrained such that the derivative or 
instantaneous rate of change of a tangent line , at the mid 
tone control point is equivalent to the gain value . Although 
not illustrated in FIG . 5 , it should be noted that the tone 
mapping function can be further constrained based at least in 
part on additional tone control points in accordance with at 
least one embodiment . FIG . 5 also shows the corresponding 
low - tone point , the mid - tone point , the high - tone point , and 
the gain line . 
[ 0141 ] In various embodiments , to determine the tone 
mapping function , one or more parametric functions are fit , 
where the fit is constrained by at least a portion of the 
plurality of tone control points . The parametric functions , 
for example , includes one or more polynomials of at least a 
degree . In some embodiments , the fitting of the tone map 
ping function is constrained , such that the tone mapping 
function includes and / or intersects with at least the low - tone 
point , the mid - tone point , and the high - tone point . In still 
further embodiments , the fitting of the tone mapping func 
tion is constrained , such that the tone mapping function 
includes and / or intersects the additional tone control points . 
In some embodiments , the fitting of the tone mapping 
function is constrained , such that the derivative and / or the 
instantaneous rate of change of the tone mapping function , 
evaluated at the x - component of the mid - tone points is 
equivalent to the gain value . 
[ 0142 ] Various spline methods , in at least one example , are 
employed to fit and / or generate the tone mapping function . 
In various embodiments , generating the tone mapping func 
tion includes generating and / or constructing a non - linear 

The non - linear curve , for example , is a global tone 
curve ( GTC ) . In an embodiment , the curve includes a 
plurality of linear or curved segments ( e.g. , a plurality of 
splines ) . In other embodiments , the curve include a Bezier 
curve , e.g. , a quadratic or a cubic Bezier curve . The curve , 
for example , can be constructed via second , third , or higher 
order parametric equations . In various embodiments , vari 
ous spline methods are employed to generate the curve . 

. 
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Furthermore , in such embodiments , the joint between the 
splines or segments are constructed to ensure that the 
derivative of the tone mapping function is continuous . 
[ 0143 ] In various embodiments , a tone map applicator 
receives the source image data and the tone mapping func 
tion . Tone map applicator , in such embodiments , applies the 
tone mapping function to the source image data to generate 
the target image data . That is , tone map applicator , for 
example , transforms the source image data ( e.g. , either the 
frame of source image data that was employed to generate 
the tone mapping function and / or one or more subsequent 
frames of source image data ) to generate the target image 
data . In various embodiments , the tone map applicator 
utilizes an ISP to apply the tone mapping function to the 
source image data . In some embodiments , a pipeline of the 
ISP is employed to apply the tone mapping function to the 
source image data . As noted above , the tone mapping 
function may provide a non - linear mapping of the pixel 
values of the source image data to the pixel values of the 
target image data . In some embodiments , the mapping is a 
one - to - one mapping . In other embodiments , the tone map 
ping is not a one - to - one mapping . For instance , in embodi 
ments where the x - component of the low - tone point is 
greater than 0.0 and / or where the x - component of the 
high - tone point is less than one , the source image data is 
clipped via the corresponding X - components . 
[ 0144 ] In some embodiments , the tone map applicator 
transforms the tone mapped target image data into SDR or 
LDR target image data . In such embodiments , a gamma 
compression function is applied to the tone mapped target 
image data to generate color - compressed target image data . 
Either SDR or LDR target image data may be outputted by 
a HDR engine based at least in part on the color - compressed 
target image data in accordance with at least one embodi 
ment . 

[ 0145 ] Now referring to FIGS . 6-9 , the blocks of methods 
600 , 700 , 800 , and 900 , described in the present disclosure , 
comprises a computing process that may be performed using 
any combination of hardware , firmware , and / or software . 
For instance , various functions may be carried out by a 
processor executing instructions stored in memory . The 
methods may also be embodied as computer - usable instruc 
tions stored on computer storage media . The methods may 
be provided by a standalone application , a service or hosted 
service ( standalone or in combination with another hosted 
service ) , or a plug - in to another product , to name a few . In 
addition , the methods 600 , 700 , 800 , and 900 are described , 
by way of example , with respect to the offline signal 
processing system descried in connection with FIG . 2 . 
However , these methods may additionally or alternatively be 
executed by any one system , or any combination of systems , 
including , but not limited to , those described herein . Fur 
thermore , blocks of the methods 600 , 700 , 800 , and 900 may 
be performed in various order including in serial and / or 
parallel and one or more blocks may be omitted . 
[ 0146 ] FIG . 6 is a flow diagram showing a method 600 for 
performing offline signal processing , in accordance with 
some embodiments of the present disclosure . The method 
600 , at block B602 , includes capturing source image data 
with fixed exposure calibration . In various embodiments , the 
source image data is captured during data collection . For 
example , a camera device integrated and / or mounted on a 
vehicle captures the source image data ( e.g. , HDR images 
and / or video ) . In an embodiment , the source image data is 

captured and stored until image signal processing is per 
formed . In other embodiments , the source image data is 
processed contemporaneously or near contemporaneously 
with capture . 
[ 0147 ] At block B604 , the system executing the method 
600 , performs image signal processing using the source 
image data . The image signal processing , in various embodi 
ments , includes one or more components of the office image 
signal processing 240 described above in connection with 
FIG . 2 and / or the HDR engine 340 described above in 
connection with FIG . 3. For example , the image signal 
processing determines and applies a tone mapping function 
to the source image data to generate target image data as 
described above . 

[ 0148 ] At block B606 , the system executing the method 
600 , obtains the target image data . In one example , the 
system executing the method 600 obtains the target image 
data from an ISP . In another example , the system executing 
the method 600 obtains the target image data from a server 
computer system ( e.g. , implementing the ISP ) over a net 
work . At block B610 , the system executing the method 600 , 
determines if the target image data is optimal . In various 
embodiments , the target image data is optimal if it is suitable 
for a particular application . In one example , the target image 
data is optimal if the brightness of an image included in the 
target image data is within a range such that the image has 
sufficient detail ( e.g. , it is not too dark that detail is lost or 
too bright that the image is washed out ) . In another example , 
the target image data may be considered optimal if it can be 
used to train a model . In various embodiments , the deter 
mination is made by a user . For example , the user examines 
the target image data and indicates whether the target image 
data is optimal . In other embodiments , a model ( e.g. , neural 
network ) is trained to determine whether the target image 
data is optimal . 
[ 0149 ] If the target image data is not optimal , the system 
executing the method 600 , continues to block B608 . At 
block B608 , the system executing the method 600 , modifies 
the image signal processing . In various embodiments , modi 
fication to the image signal processing include improvement 
and fixes 266 and / or tuning changes 264 as described above 
in connection with FIG . 2. In one example , modification to 
the image signal processing includes modification to one or 
more control points of a tone mapping function . In other 
examples , modification to the image signal processing 
includes the addition and / or removal of image processing 
algorithms . In various embodiments , tone mapping func 
tions applied to the source image data to generate the target 
image data are modified , added , or removed in order to 
generate improved results ( e.g. , optimal target image data ) . 
[ 0150 ] However , if the target image data is optimal , the 
system executing the method 600 , continues to block B612 . 
At block B612 , the system executing the method 600 , trains 
a neural network based at least in part on the target image 
data . For example , the target image data can be used to train 
an object detection model or other model described in 
connection with FIGS . 13A - 13D . The neural network , in an 
embodiment , is trained to determine a characteristic and / or 
aspect of the target image data . At block B614 , the system 
executing the method 600 , obtains results from the neural 
network . For example , the system executing the method 
600 , prior to deployment of the neural network , performs 
one or more tests of the neural network . In another example , 

2 9 

a 

2 



US 2022/0358627 A1 Nov. 10 , 2022 
16 

the trained neural network is deployed and the results 
include information indicating the performance of the 
trained neural network . 
[ 0151 ] At block B616 , the system executing the method 
600 , determines if the results are optimal . For example , the 
system executing the method 600 , determines whether the 
trained neural network performs a task as intended . In 
another example , the system executing the method 600 , 
determines a success rate of the trained neural network ( e.g. , 
how successful the neural network is at categorizing a 
particular class of objects ) . In various embodiments , a user 
determines if the results of the trained neural network is 
optimal . In yet other embodiments , the determination is 
made based at least in part on a set of rules and / or heuristics . 
For example , the results are optimal if the success rate of the 
trained neural network is at or above a threshold . 
[ 0152 ] If the results are not optimal , the system executing 
the method 600 returns to block B608 . As described above , 
at block B608 , one or more modifications are made to the 
image signal processing and the source data is reprocessed 
at block B604 . In various embodiments , the modifications 
are determined by a user . In yet other embodiments , the 
modifications are determined by a model ( e.g. , neural net 
work ) or otherwise determined without user input ( e.g. , 
rules , heuristics , etc. ) . If the results are optimal , the system 
executing the method 600 continues to block B618 . At block 
618 , the system executing the method 600 performs infer 
encing with the neural network . In various embodiments , the 
neural network is deployed for use performing a task . For 
example , the neural network is deployed in a vehicle as 
described in connection with FIGS . 13A - 13D . 
[ 0153 ] FIG . 7 is a flow diagram showing the method 700 
for tone mapping high dynamic range image data , in accor 
dance with some embodiments of the present disclosure . The 
method 700 begins at block B702 , where source image data 
is captured by one or more image sensors ( e.g. , the HDR 
image sensors 144 of FIG . 1 ) . In one example , the source 
image data is HDR image data . The source image data , in an 
embodiment , includes a first frame of source image data 

.g . , a frame of a video ) . In at least some embodiments ( e.g. , 
video embodiments ) , one or more additional and / or con 
secutive frames of source image data ( e.g. , a second con 
secutive frame of source image data ) are captured subse 
quent to the first frame of source image data . For example , 
the source image data encodes a source image that depicts a 
scene . If additional frames of source image data are cap 
tured , the additional frames of source image data , in an 
example , encode one or more additional source images . 
Thus , capturing source image data at block B702 can include 
capturing one or more frames of source image data . For 
example , during performance of data collection as described 
above . 
[ 0154 ] In various embodiments , the source image data is 
captured by at least one image sensor ( e.g. , of a camera 
device ) that is mounted on a manned or unmanned terrestrial 
or aerial vehicle ( e.g. , the terrestrial vehicle 104 and / or aerial 
vehicle 106 of FIG . 1 ) . As described above , the vehicle may 
be a manually operated vehicle , an autonomous vehicle , a 
partially autonomous vehicle , and / or a remote controlled 
vehicle . In at least some embodiments , the vehicle is con 
trolled at least partially based at least in part on the target 
image data , generated at block B714 ( e.g. , the target image 
data is used to train one or more models used to perform one 
or more operations corresponding to perception , planning , or 

control of the vehicle ) . However , image sensors described 
herein may be part of any suitable device , such as a handheld 
or stationary camera , dashboard camera , security camera , 
mobile device , or other device including one or more image 
sensors . In at least one embodiment , the image sensors are 
included in one or more robots . 
[ 0155 ] At block B702 , the source image data , in various 
embodiments , is received at and / or provided to an offline 
signal processing system , such as but not limited to offline 
signal processing 240 of FIG . 2. In at least one embodiment , 
the source image data may be provided to and / or received by 
at least one of : a HDR image data buffer , a ROI locator , the 
statistics module 252 , the control points selector , and / or 
image processing 258 of the offline signal processing 240 . 
[ 0156 ] At optional block B704 , a Region of Interest Filter 
( ROI ) filter is applied to the received source image data . For 
example , the ROI locator 348 of FIG . 3 determines an ROI 
of the source image data . The ROI locator 348 , in an 
embodiment , applies a filter and / or mask to the source image 
data pixels corresponding to the ROI of the source image 
such that the filtered source image data includes only image 
data corresponding to the determined ROI of the source 
image . Note that block B704 is optional , and the source 
image data need not be filtered and / or analyzed based at least 
in part on an ROI . 
[ 0157 ] At optional block B706 , one or more statistical 
metrics are generated and / or determined from the filtered ( or 
unfiltered ) source image data . For example , the statistics 
module 352 of FIG . 3 determines and / or generates a plural 
ity of statistical metrics based at least in part on the pixel 
values of the source image data ( or the pixel values of the 
portion of the source image data that corresponds to the ROI 
of the encoded source image ) . 
[ 0158 ] At block B708 , a plurality of tone control points are 
determined for the source image data . For example , the 
control points selector 354 of the HDR engine 340 deter 
mines and / or selects a low - tone point , a mid - tone point , 
and / or a high - tone point based at least in part on the source 
image data . In embodiments where the source image data 
was filtered based at least in part on an ROI , the tone control 
points are determined based at least in part on the portion of 
the source image data that correspond to the ROI of the 
source image . In embodiments where a plurality of statisti 
cal metrics were determined at block B706 , at least a portion 
of the tone control points are determined based at least part 
on a portion of the statistical metrics . In at least some 
embodiments , additional control points are determined at 
block B708 . For example , at least a flare - suppression control 
point is additionally determined at block B708 . Various 
embodiments of determining a plurality of control points are 
discussed in conjunction with at least the method 800 of 
FIG . 8. Further embodiments of determining a low - tone 
point , a mid - tone point , a high - tone point , and a flare 
suppression point are discussed in conjunction with FIG . 4 . 
[ 0159 ] At block B710 , a tone mapping function is deter 
mined based at least in part on the tone control points . For 
example , the tone map generator 356 of FIG . 3 determines 
and / or generates a tone mapping function based at least in 
part on the tone control points . Thus , the tone mapping 
function may be based at least in part on the source image 
data that corresponds to the ROI of the source image and / or 
the plurality of statistical metrics of the source image data . 
[ 0160 ] Various embodiments of determining a tone map 
ping function are discussed in conjunction with at least 
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FIGS . 4 , 5 , and 8. In an embodiment , a gain line is 
determined based at least in part on at least the mid - tone 
point and the flare - suppression point . A gain value , in one 
example , is determined based at least in part on the gain line . 
More specifically , the gain value , in an embodiment , is at 
least approximately equivalent to the slope of the gain line , 
which is the line that includes both the mid - tone point and 
the flare - suppression point . In various embodiments , the 
tone mapping function is based at least on the low - tone 
point , the mid - tone point , the high - tone point , and the gain 
value . For example , the tone mapping function is a fitted 
function that is constrained to include and / or pass through 
each of the low - tone point , the mid - tone point , and the 
high - tone point . 
[ 0161 ] In at least one embodiment , the fitting of the tone 
mapping function is constrained such that the derivative 
and / or instantaneous rate of change of the tone mapping 
function , when evaluated at the mid - tone point , is at least approximately equivalent to the gain value . In at least one 
embodiment , a first logic device ( e.g. , the general purpose 
processor 322 of FIG . 3 ) is employed to determine the tone 
mapping function . In at least one embodiment , the logic 
device employed to determine and / or generate the tone 
mapping function is a general purpose processor of the 
computer system that is separate from the camera device that 
captured the source image data . 
[ 0162 ] As noted throughout , the tone mapping function 
provides a mapping from the pixel values of the source 
image data to the pixel values of the target image data . Thus , 
the tone mapping function , in an embodiment , is a scalar 
function , which is dependent upon a single scalar variable 
( e.g. , the scalar value of a single pixel of the source image 
data ) . For example , the scalar value of the function , as 
evaluated at the scalar pixel value of the source image data , 
is the tone mapped scalar value of the target image data for 
the corresponding pixel . As noted throughout , the mapping 
may be a one - to - one non - linear mapping . Because the tone 
mapping function may be constrained to include the low 
tone point , the tone mapping function may map a pixel of the 
source image that has the scalar value of the x - component of 
the low - tone point to the scalar value of the y - component of 
the low - tone point . 
[ 0163 ] In some embodiments , any pixel of the source 
image data that has a value less than the x - component of the 
low - tone point is clipped , such that the value of the clipped 
pixel is set to the x - component of the low - tone point . In at 
least one embodiment , pixels of the source image data that 
have a value less than the x - component of the flare suppres 
sion point are clipped , such that the value of the clipped 
pixel is set to the x - component of the flare - suppression 
point . Because the tone mapping function , in various 
embodiments , is constrained to include the mid - tone point , 
the tone mapping function may map a pixel of the source 
image that has the scalar value of the x - component of the 
mid - tone point to the scalar value of the y - component of the 
mid - tone point . Similarly , because the tone mapping func 
tion , in other embodiments , is constrained to include the 
high - tone point , the tone mapping function maps a pixel of 
the source image that has the scalar value of the x - compo 
nent of the high - tone point to the scalar value of the 
y - component of the high - tone point . In some embodiments , 
any pixel of the source image data that has a value greater 
than the x - component of the high - tone point is clipped , such 
that the value of the clipped pixel is set to the x - component 

of the high - tone point . One non - limiting embodiment of a 
non - linear tone mapping function is shown in FIG . 5 . 
[ 0164 ] At optional block B712 , a frame delay is employed . 
For example , the delay unit 350 of FIG . 3 buffers the tone 
mapping function , while the HDR image sensors 144 cap 
ture one or more additional frames of source image data 
( e.g. , a subsequent and / or consecutive second frame of 
source image data ) . The frame delay of block B712 , in one 
example , includes buffering the first frame of image data 
( that was employed to generate the tone mapping at block 
B710 ) , while the second frame of image data is being 
captured , or at least until the second frame of image data is 
provided to for offline image signal processing . 
[ 0165 ] At block B714 , target image data is generated 
based at least in part on the source image data and the tone 
mapping function . For example , the tone map applicator 358 
applies the tone mapping function to source image data . In 
various embodiments , the target image data encodes a target 
image , where the pixel values of the target image data are 
defined by the tone mapping function being applied to the 
source image data . Applying the tone mapping function to 
the source image data , for example , includes applying the 
tone mapping function to the pixel values of the source 
image data . In an embodiment , applying the tone mapping 
function to the source image data includes transforming 
and / or mapping the source image data to the target image 
data via the non - linear and one - to - one mapping and / or 
correspondence between source and target image data pro 
vided by the tone mapping function . In embodiments that 
include a frame delay , the tone mapping function is applied 
to the frame of source image data ( e.g. , a second frame of 
source image data ) that is subsequent and / or consecutive to 
the frame of source image data that was employed to 
generate the tone mapping function ( e.g. , a first frame of 
source image data ) . 
[ 0166 ] In some embodiments , generating target image 
data includes generating Standard Dynamic Range ( SDR ) or 
Low Dynamic Range ( LDR ) target image data . For example , 
the SDR or LDR target image data is based at least in part 
on the tone apping function and / or the pixel values of the 
tone mapped target image data . In an embodiment , a gamma 
compression function is applied to the tone mapped target 
image data to generate color - compressed target image data . 
SDR or LDR target image data , in such embodiments , is 
generated based at least in part on the color - compressed 
target image data . 
[ 0167 ] FIG . 8 is a flow diagram showing the method 800 
for generating lower dynamic range image data from higher 
dynamic range image data , in accordance with some 
embodiments of the present disclosure . Blocks B802 - B810 
of the method 800 include selecting and / or determining a 
plurality of tone control points . As noted throughout , the 
plurality of tone control points may be selected and / or 
determined via the control points selector 354 of FIG . 3 . 
Various embodiments of determining the plurality of control 
points are discussed in conjunction with at least block B808 
of the method 800 of FIG . 8. In various embodiments , the 
determination of the plurality of control tone points is based 
at least in part on the pixel values of the source image data , 
the pixel values of the portion of the source image data that 
corresponds to the ROI in the source image , and / or the 
plurality of statistical metrics that are based at least in part 
on the pixel values of the source image data . As also noted 
throughout , the plurality of tone control points , in various 
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examples , include at least a low - tone point , a mid - tone point , 
and / or a high - tone point . In some embodiments , the plurality 
of tone control points additionally include a flare - suppres 
sion point . Such tone control points are shown in at least 
FIGS . 4-5 . It should also be noted that portions of the 
method 800 may be carried out by a first logical device ( e.g. , 
the general purpose processor 322 of FIG . 3 ) and other 
portions of the method 800 may be carried out by a second 
logical device ( e.g. , the Image Signal Processor ( ISP ) 324 of 
FIG . 3 ) . 
[ 0168 ] In some embodiments , prior to initialization of the 
method 800 , the pixel values of the source image data is 
normalized , such that the pixel values of the normalized 
source image data range from [ 0 , 1 ] . The method 800 begins 
at block B802 , where the mid - tone point is determined based 
at least in part on the source image data . In some embodi 
ments , to determine the x - component of the mid - tone point , 
the source image data is filtered by a high - tone filter and a 
low - tone filter , to generate filtered source image data . The 
high - tone filter filters out the portion of source image data 
that includes pixel values greater than a high - tone threshold 
value . The low - tone filter filters out the portion of the source 
image data that includes pixel values less than a low - tone 
threshold value . The x - component of the mid - tone point , in 
an embodiment , is determined by averaging the pixel values 
of the portion of the source image data that remains subse 
quent to the application of the high - tone and low - tone filters . 
In other embodiments the high - tone and low - tone filters are 
not applied to the source image data . 
[ 0169 ] In some embodiments , the averaging of the pixel 
values includes log - averaging the pixel values . In such 
embodiments , log - transformed image data pixel values is 
generated by applying a logarithm function to the filtered or 
unfiltered source image data . In an embodiment , the base of 
the logarithm function is selected based at least in part on the 
source image data . In one embodiment , the base of the 
logarithm function is ten . In other embodiments , the loga 
rithm function is the natural logarithm function . In various 
embodiments , an average value of the log - transformed pixel 
values is determined . The average value of the log - trans 
formed pixel values , in one example , is exponentiated by the 
corresponding base of the logarithm function . In various 
embodiments , the x - component of the mid - tone point is set 
to the exponentiation of the average value of the log 
transformed pixel values of the source image data . Further 
more , in some embodiments , the y - component of the mid 
tone point is set to a specified mid - tone value for the target 
image data . 
[ 0170 ] At block B804 , the low - tone point is determined 
based at least in part on the source image data . In one 
non - limiting embodiment , a subset of the pixel values of the 
source image data is determined and / or generated , where 
values for the pixels included in the subset are less than the 
pixel values for the pixels that are excluded from the subset . 
That is , the source image data may be filtered via a low - tone 
filter , such that the only pixel values that remain after the 
filtering are those pixels with pixel values that are less than 
a low - tone threshold . In one non - limiting embodiment , the 
X - component of the low - tone point is determined based at 
least in part on the subset of pixel values . For example , the 
pixel values that survive the low - tone filtering process are 
averaged to determine the x - component of the low - tone 
point . In one non - limiting embodiment , the y - component of 
the low - tone point is determined and / or selected to be the 

smallest pixel value for the target image data . In at least one 
embodiment , the y - component of the low - tone point is set to 
0.0 . For example , the low - tone point can be a black point . 
[ 0171 ] At block B806 , the high - tone point is determined 
based at least in part on the source image data . In one 
non - limiting embodiment , a subset of the pixel values of the 
source image data is determined and / or generated , where 
values for the pixels included in the subset are greater than 
the pixel values for the pixels that are excluded from the 
subset . That is , the source image data may be filtered via a 
high - tone filter , such that the only pixel values that remain 
after the filtering are pixels with pixel values that are greater 
than a high - tone threshold . In an embodiment , the x - com 
ponent of the high - tone point is determined based at least in 
part on the subset of pixel values . For example , the pixel 
values that survive the high - tone filtering process are aver 
aged to determine the x - component of the high - tone point . 
In an embodiment , the y - component of the high - tone point 
is determined and / or selected to be the largest pixel value for 
the target image data . In at least one embodiment , the 
y - component of the low - tone point is set to 1.0 . For 
example , the high - tone can be the white point . In an embodi 
ment , by setting the y - component of the low - tone point to 
0.0 and the y - component of the high - tone component , the 
target image data is normalized to the range of [ 0 , 1 ] . 
[ 0172 ] At block B808 , a flare suppression point is deter 
mined . In an embodiment , the x - component of the flare 
suppression point is set to a value that is to be the maximal 
flare that will be suppressed in the tone . In some embodi 
ments , the x - component of the flare - suppression point is 
user selected . In other embodiments , the x - component is 
dynamically determined based at least in part on the pixel 
values of the source image and / or the determined plurality of 
the statistical metrics for the source image data . For 
example , the x - component of the flare - suppression point is 
set based at least in part on a percentage of the mid - tone 
pixel values or the value of the pixel values that are low - tone 
thresholded . In various embodiments , the x - component of 
the flare - suppression point is selected to be greater than the 
X - component of the low - tone point , but less than the x - com 
ponent of the mid - tone point . In various non - limiting 
embodiments , the y - component of the flare - suppression 
point is set to 0.0 . In other embodiments , the y - component 
of the flare - suppression point is set or selected to be greater 
than 0.0 , but less than the y - component of the mid - tone 
point . 
[ 0173 ] At optional block B810 , one or more additional 
control points are determined based at least in part on the 
source image data . At block B812 , the source data , in an 
example , is pre - processed based at least in part on the 
control points . For example , each of the pixels of the source 
image data with pixel values that are less than the x - com 
ponent of the low - tone point are clipped , such that the pixel 
values of such pixels are set to the scalar value of the 
X - component of the low - tone point . In at least one embodi 
ment , pixels of the source image data with pixel values that 
are less than the x - component of the flare - suppression point 
are clipped , such that the pixel values of such pixels are set 
to the scalar value of the x - component of the flare - suppres 
sion point . Furthermore , each of the pixels of the source 
image data with pixel values that are greater than the 
X - component of the high - tone point , in various embodi 
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[ 0179 ] Blocks B820 and B822 are optional blocks to 
generate SDR target image data or LDR image date from the 
tone mapped target image data . At block B820 , a gamma 
compression function is applied to the tone mapped image 
data to generate color - compressed image data . At block 
B822 , either SDR or LDR target image data is generated 
based at least in part on the color compressed source image 
data . 
[ 0180 ] FIG . 9 is a flow diagram showing the method 900 
for distributing the operations of tone mapping , in accor 
dance with some embodiments of the present disclosure . At 
block B902 , a first logic device determines the tone mapping 
function . At block B902 , the first logic device includes any 
of the logic devices 320 of FIG . 3 , such as but not limited 
to the general purpose processor 322 , the image signal 
processor ( ISP ) 324 , the ASIC 326 , and / or the FPGA 328. In 
some embodiments , the first logic device that determines the 
tone mapping function is the general purpose processor 322 . 
In at least one embodiment , a Graphics Processing Unit 
( GPU ) is employed to determine the tone mapping function . 
[ 0181 ] At block B904 , a second logic device is employed 
to apply the tone mapping function to the source image data 
and generate the target image source data . At block B904 , 
the second logic device includes any of the logic devices 
320 , such as but not limited to the general purpose processor 
322 , the ISP 324 , the ASIC 326 , and / or the FPGA 328. In 
some embodiments , the second logic device that is 
employed to apply the tone mapping function is the ISP 324 . 
A pipeline of the ISP 324 applies the tone mapping function 
and transforms the source image data to the target image 
data . In at least one embodiment , a GPU is employed to 
determine the tone mapping function . 

ments , are clipped , such that the pixel values of such pixels 
are set to the scalar value of the x - component of the 
high - tone point . 
[ 0174 ] At block B814 , a gain value is determined based at 
least in part on the mid - tone point and the flare - suppression 
point . For example , a gain line is constructed through the 
mid - tone point and the flare - suppression point . The gain 
value , in an embodiment , is set to be the slope of the gain 
value line . In various embodiments the slope is positive . An 
embodiment of a gain value line , and corresponding slope , 
are shown in FIG . 4 . 
[ 0175 ] At block B816 , the tone mapping function is deter 
mined based at least in part on the low - tone point , the 
mid - tone point , and the high - tone point . In some embodi 
ments , the determination of the tone mapping function is 
further based at least in part on the gain value . In still other 
embodiments , the determination of the tone mapping func 
tion is further based at least in part on the one or more 
additional tone control points determined in block B810 . In 
various embodiments , the tone map generator 356 of FIG . 3 
may be employed to determine the tone mapping function . 
More specifically , the tone map generator 356 may employ 
the general purpose processor 322 of FIG . 3 to generate the 
tone mapping function . 
[ 0176 ] In various embodiments , to determine the tone 
mapping functions , one or more parametric functions are fit , 
wherein the fit is constrained by at least a portion of the 
various tone control points . For example , the parametric 
functions include one or more polynomials , which may be of 
virtually any degree . In some embodiments , the fitting of the 
tone mapping function is constrained , such that the tone 
mapping function includes and / or intersects at least the 
low - tone point , the mid - tone point , and the high - tone point . 
In still further embodiments , the fitting of the tone mapping 
function is constrained , such that the tone mapping function 
includes and / or intersects the additional tone control points . 
In some embodiments , the fitting of the tone mapping 
function is constrained , such that the derivative and / or the 
instantaneous rate of change of the tone mapping function , 
evaluated at the x - component of the mid - tone points is 
equivalent to the gain value . An embodiment of a tone 
mapping function is shown in FIG . 5 . 
( 0177 ] In various embodiments , spline methods are 
employed to fit and / or generate the tone mapping function . 
Generating the tone mapping function includes generating 
and / or constructing a non - linear curve in accordance with at 
least one embodiment . In various embodiments , the non 
linear curve is a global tone curve ( GTC ) . For example , the 
curve includes a plurality of linear or curved segments ( e.g. , 
a plurality of splines ) . The curve may be a Bezier curve , e.g. , 
a quadratic or a cubic Bezier curve . In yet other examples , 
the curve is constructed via second , third , or higher order 
parametric equations . 
[ 0178 ] At block B818 , the tone mapping function is 
applied to generate the target image data . In various embodi 
ments , the tone map applicator 358 of FIG . 3 is employed to 
transform the source image data into target image data , via 
the tone mapping function . Tone map applicator 358 , in 
various embodiments , causes the ISP 324 of FIG . 3 to apply 
the non - linear transformation of the source image data . In at 
least one embodiment , a pipeline of the ISP 324 is employed 
to apply the transformation and generate the target image 
data . 

Inference and Training Logic 
[ 0182 ] FIG . 10A illustrates inference and / or training logic 
1015 used to perform inferencing and / or training operations 
associated with one or more embodiments . Details regarding 
inference and / or training logic 1015 are provided below in 
conjunction with FIGS . 10A and / or 10B . 
[ 0183 ] In at least one embodiment , inference and / or train 
ing logic 1015 may include , without limitation , code and / or 
data storage 1001 to store forward and / or output weight 
and / or input / output data , and / or other parameters to config 
ure neurons or layers of a neural network trained and / or used 
for inferencing in aspects of one or more embodiments . In 
at least one embodiment , training logic 1015 may include , or 
be coupled to code and / or data storage 1001 to store graph 
code or other software to control timing and / or order , in 
which weight and / or other parameter information is to be 
loaded to configure , logic , including integer and / or floating 
point units ( collectively , arithmetic logic units ( ALU ) ) . In 
at least one embodiment , code , such as graph code , loads 
weight or other parameter information into processor ALUS 
based on an architecture of a neural network to which such 
code corresponds . In at least one embodiment , code and / or 
data storage 1001 stores weight parameters and / or input / 
output data of each layer of a neural network trained or used 
in conjunction with one or more embodiments during for 
ward propagation of input / output data and / or weight param 
eters during training and / or inferencing using aspects of one 
or more embodiments . In at least one embodiment , any 
portion of code and / or data storage 1001 may be included 
with other on - chip or off - chip data storage , including a 
processor's L1 , L2 , or L3 cache or system memory . 
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[ 0184 ] In at least one embodiment , any portion of code 
and / or data storage 1001 may be internal or external to one 
or more processors or other hardware logic devices or 
circuits . In at least one embodiment , code and / or code and / or 
data storage 1001 may be cache memory , dynamic randomly 
addressable memory ( “ DRAM ” ) , static randomly address 
able memory ( " SRAM ” ) , non - volatile memory ( e.g. , flash 
memory ) , or other storage . In at least one embodiment , a 
choice of whether code and / or code and / or data storage 1001 
is internal or external to a processor , for example , or 
comprising DRAM , SRAM , flash or some other storage type 
may depend on available storage on - chip versus off - chip , 
latency requirements of training and / or inferencing func 
tions being performed , batch size of data used in inferencing 
and / or training of a neural network , or some combination of 
these factors . 
[ 0185 ] In at least one embodiment , inference and / or train 
ing logic 1015 may include , without limitation , a code 
and / or data storage 1005 to store backward and / or output 
weight and / or input / output data corresponding to neurons or 
layers of a neural network trained and / or used for inferenc 
ing in aspects of one or more embodiments . In at least one 
embodiment , code and / or data storage 1005 stores weight 
parameters and / or input / output data of each layer of a neural 
network trained or used in conjunction with one or more 
embodiments during backward propagation of input / output 
data and / or weight parameters during training and / or infer 
encing using aspects of one or more embodiments . In at least 
one embodiment , training logic 1015 may include , or be 
coupled to code and / or data storage 1005 to store graph code 
or other software to control timing and / or order , in which 
weight and / or other parameter information is to be loaded to 
configure , logic , including integer and / or floating point units 
( collectively , arithmetic logic units ( ALU ) ) . 
[ 0186 ] In at least one embodiment , code , such as graph 
code , causes the loading of weight or other parameter 
information into processor ALUs based on an architecture of 
a neural network to which such code corresponds . In at least 
one embodiment , any portion of code and / or data storage 
1005 may be included with other on - chip or off - chip data 
storage , including a processor's L1 , L2 , or L3 cache or 
system memory . In at least one embodiment , any portion of 
code and / or data storage 1005 may be internal or external to 
one or more processors or other hardware logic devices or 
circuits . In at least one embodiment , code and / or data 
storage 1005 may be cache memory , DRAM , SRAM , non 
volatile memory ( e.g. , flash memory ) , or other storage . In at 
least one embodiment , a choice of whether code and / or data 
storage 1005 is internal or external to a processor , for 
example , or comprising DRAM , SRAM , flash memory or 
some other storage type may depend on available storage 
on - chip versus off - chip , latency requirements of training 
and / or inferencing functions being performed , batch size of 
data used in inferencing and / or training of a neural network , 
or some combination of these factors . 
[ 0187 ] In at least one embodiment , code and / or data 
storage 1001 and code and / or data storage 1005 may be 
separate storage structures . In at least one embodiment , code 
and / or data storage 1001 and code and / or data storage 1005 
may be a combined storage structure . In at least one embodi 
ment , code and / or data storage 1001 and code and / or data 
storage 1005 may be partially combined and partially sepa 
rate . In at least one embodiment , any portion of code and / or 
data storage 1001 and code and / or data storage 1005 may be 

included with other on - chip or off - chip data storage , includ 
ing a processor's L1 , L2 , or L3 cache or system memory . 
[ 0188 ] In at least one embodiment , inference and / or train 
ing logic 1015 may include , without limitation , one or more 
arithmetic logic unit ( s ) ( “ ALU ( s ) " ) 1010 , including integer 
and / or floating point units , to perform logical and / or math 
ematical operations based , at least in part on , or indicated by , 
training and / or inference code ( e.g. , graph code ) , a result of 
which may produce activations ( e.g. , output values from 
layers or neurons within a neural network ) stored in an 
activation storage 1020 that are functions of input / output 
and / or weight parameter data stored in code and / or data 
storage 1001 and / or code and / or data storage 1005. In at 
least one embodiment , activations stored in activation stor 
age 1020 are generated according to linear algebraic and or 
matrix - based mathematics performed by ALU ( s ) 1010 in 
response to performing instructions or other code , wherein 
weight values stored in code and / or data storage 1005 and / or 
data storage 1001 are used as operands along with other 
values , such as bias values , gradient information , momen 
tum values , or other parameters or hyperparameters , any or 
all of which may be stored in code and / or data storage 1005 
or code and / or data storage 1001 or another storage on or 
off - chip . 
[ 0189 ] In at least one embodiment , ALU ( s ) 1010 are 
included within one or more processors or other hardware 
logic devices or circuits , whereas in another embodiment , 
ALU ( S ) 1010 may be external to a processor or other 
hardware logic device or circuit that uses them ( e.g. , a 
co - processor ) . In at least one embodiment , ALUS 1010 may 
be included within a processor's execution units or other 
wise within a bank of ALUs accessible by a processor's 
execution units either within same processor or distributed 
between different processors of different types ( e.g. , central 
processing units , graphics processing units , fixed function 
units , etc. ) . In at least one embodiment , code and / or data 
storage 1001 , code and / or data storage 1005 , and activation 
storage 1020 may share a processor or other hardware logic 
device or circuit , whereas in another embodiment , they may 
be in different processors or other hardware logic devices or 
circuits , or some combination of same and different proces 
sors or other hardware logic devices or circuits . In at least 
one embodiment , any portion of activation storage 1020 
may be included with other on - chip or off - chip data storage , 
including a processor's L1 , L2 , or L3 cache or system 
memory . Furthermore , inferencing and / or training code may 
be stored with other code accessible to a processor or other 
hardware logic or circuit and fetched and / or processed using 
a processor's fetch , decode , scheduling , execution , retire 
ment and / or other logical circuits . 
[ 0190 ] In at least one embodiment , activation storage 1020 
may be cache memory , DRAM , SRAM , non - volatile 
memory ( e.g. , flash memory ) , or other storage . In at least 
one embodiment , activation storage 1020 may be com 
pletely or partially within or external to one or more pro 
cessors or other logical circuits . In at least one embodiment , 
a choice of whether activation storage 1020 is internal or 
external to a processor , for example , or comprising DRAM , 
SRAM , flash memory or some other storage type may 
depend on available storage on - chip versus off - chip , latency 
requirements of training and / or inferencing functions being 
performed , batch size of data used in inferencing and / or 
training of a neural network , or some combination of these 
factors . 
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[ 0191 ] In at least one embodiment , inference and / or train 
ing logic 1015 illustrated in FIG . 10A may be used in 
conjunction with an application - specific integrated circuit 
( “ ASIC ” ) , such as a TensorFlow® Processing Unit from 
Google , inference processing unit ( IPU ) from 
GraphcoreTM , or a Nervana® ( e.g. , “ Lake Crest ” ) processor 
from Intel Corp. In at least one embodiment , inference 
and / or training logic 1015 illustrated in FIG . 10A may be 
used in conjunction with central processing unit ( “ CPU ” ) 
hardware , graphics processing unit ( “ GPU ” ) hardware or 
other hardware , such as field programmable gate arrays 
( “ FPGAs " ) . 
[ 0192 ] FIG . 10B illustrates inference and / or training logic 
1015 , according to at least one embodiment . In at least one 
embodiment , inference and / or training logic 1015 may 
include , without limitation , hardware logic in which com 
putational resources are dedicated or otherwise exclusively 
used in conjunction with weight values or other information 
corresponding to one or more layers of neurons within a 
neural network . In at least one embodiment , inference and / or 
training logic 1015 illustrated in FIG . 10B may be used in 
conjunction with an application - specific integrated circuit 
( ASIC ) , such as TensorFlow® Processing Unit from 
Google , inference processing unit ( IPU ) from 
GraphcoreTM , or a Nervana® ( e.g. , “ Lake Crest ” ) processor 
from Intel Corp. In at least one embodiment , inference 
and / or training logic 1015 illustrated in FIG . 10B may be 
used in conjunction with central processing unit ( CPU ) 
hardware , graphics processing unit ( GPU ) hardware or other 
hardware , such as field programmable gate arrays ( FPGAs ) . 
In at least one embodiment , inference and / or training logic 
1015 includes , without limitation , code and / or data storage 
1001 and code and / or data storage 1005 , which may be used 
to store code ( e.g. , graph code ) , weight values and / or other 
information , including bias values , gradient information , 
momentum values , and / or other parameter or hyperparam 
eter information . In at least one embodiment illustrated in 
FIG . 10B , each of code and / or data storage 1001 and code 
and / or data storage 1005 is associated with a dedicated 
computational resource , such as computational hardware 
1002 and computational hardware 1006 , respectively . In at 
least one embodiment , each of computational hardware 
1002 and computational hardware 1006 comprises one or 
more ALUS that perform mathematical functions , such as 
linear algebraic functions , only on information stored in 
code and / or data storage 1001 and code and / or data storage 
1005 , respectively , result of which is stored in activation 
storage 1020 . 
[ 0193 ] In at least one embodiment , each of code and / or 
data storage 1001 and 1005 and corresponding computa 
tional hardware 1002 and 1006 , respectively , correspond to 
different layers of a neural network , such that resulting 
activation from one storage / computational pair 1001/1002 
of code and / or data storage 1001 and computational hard 
ware 1002 is provided as an input to a next storage / 
computational pair 1005/1006 of code and / or data storage 
1005 and computational hardware 1006 , in order to mirror 
a conceptual organization of a neural network . In at least one 
embodiment , each of storage / computational pairs 1001 / 
1002 and 1005/1006 may correspond to more than one 
neural network layer . In at least one embodiment , additional 
storage / computation pairs ( not shown ) subsequent to or in 

Neural Network Training and Deployment 
[ 0194 ] FIG . 11 illustrates training and deployment of a 
deep neural network , according to at least one embodiment . 
In at least one embodiment , untrained neural network 1106 
is trained using a training dataset 1102. In at least one 
embodiment , training framework 1104 is a PyTorch frame 
work , whereas in other embodiments , training framework 
1104 is a TensorFlow , Boost , Caffe , Microsoft Cognitive 
Toolkit / CNTK , MXNet , Chainer , Keras , Deeplearning4j , or 
other training framework . In at least one embodiment , 
training framework 1104 trains an untrained neural network 
1106 and enables it to be trained using processing resources 
described herein to generate a trained neural network 1108 . 
In at least one embodiment , weights may be chosen ran 
domly or by pre - training using a deep belief network . In at 
least one embodiment , training may be performed in either 
a supervised , partially supervised , or unsupervised manner . 
[ 0195 ] In at least one embodiment , untrained neural net 
work 1106 is trained using supervised learning , wherein 
training dataset 1102 includes an input paired with a desired 
output for an input , or where training dataset 1102 includes 
input having a known output and an output of neural 
network 1106 is manually graded . In at least one embodi 
ment , untrained neural network 1106 is trained in a super 
vised manner and processes inputs from training dataset 
1102 and compares resulting outputs against a set of 
expected or desired outputs . In at least one embodiment , 
errors are then propagated back through untrained neural 
network 1106. In at least one embodiment , training frame 
work 1104 adjusts weights that control untrained neural 
network 1106. In at least one embodiment , training frame 
work 1104 includes tools to monitor how well untrained 
neural network 1106 is converging towards a model , such as 
trained neural network 1108 , suitable to generating correct 
answers , such as in result 1114 , based on input data such as 
a new dataset 1112. In at least one embodiment , training 
framework 1104 trains untrained neural network 1106 
repeatedly while adjust weights to refine an output of 
untrained neural network 1106 using a loss function and 
adjustment algorithm , such as stochastic gradient descent . In 
at least one embodiment , training framework 1104 trains 
untrained neural network 1106 until untrained neural net 
work 1106 achieves a desired accuracy . In at least one 
embodiment , trained neural network 1108 can then be 
deployed to implement any number of machine learning 
operations . 
[ 0196 ] In at least one embodiment , untrained neural net 
work 1106 is trained using unsupervised learning , wherein 
untrained neural network 1106 attempts to train itself using 
unlabeled data . In at least one embodiment , unsupervised 
learning training dataset 1102 will include input data without 
any associated output data or “ ground truth ” data . In at least 
one embodiment , untrained neural network 1106 can learn 
groupings within training dataset 1102 and can determine 
how individual inputs are related to untrained dataset 1102 . 
In at least one embodiment , unsupervised training can be 
used to generate a self - organizing map in trained neural 
network 1108 capable of performing operations useful in 
reducing dimensionality of new dataset 1112. In at least one 
embodiment , unsupervised training can also be used to 
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perform anomaly detection , which allows identification of 
data points in new dataset 1112 that deviate from normal 
patterns of new dataset 1112 . 
[ 0197 ] In at least one embodiment , semi - supervised learn 
ing may be used , which is a technique in which in training 
dataset 1102 includes a mix of labeled and unlabeled data . 
In at least one embodiment , training framework 1104 may be 
used to perform incremental learning , such as through 
transferred learning techniques . In at least one embodiment , 
incremental learning enables trained neural network 1108 to 
adapt to new dataset 1112 without forgetting knowledge 
instilled within trained neural network 1108 during initial 
training 

Data Center 

a resource 

[ 0198 ] FIG . 12 illustrates an example data center 1200 , in 
which at least one embodiment may be used . In at least one 
embodiment , data center 1200 includes a data center infra 
structure layer 1210 , a framework layer 1220 , a software 
layer 1230 and an application layer 1240 . 
[ 0199 ] In at least one embodiment , as shown in FIG . 12 , 
data center infrastructure layer 1210 may include 
orchestrator 1212 , grouped computing resources 1214 , and 
node computing resources ( “ node C.R.s ” ) 1216 ( 1 ) -1216 ( N ) , 
where “ N ” represents a positive integer ( which may be a 
different integer “ N ” than used in other figures ) . In at least 
one embodiment , node C.R.s 1216 ( 1 ) -1216 ( N ) may include , 
but are not limited to , any number of central processing units 
( “ CPUs ” ) or other processors ( including accelerators , field 
programmable gate arrays ( FPGAs ) , graphics processors , 
etc. ) , memory storage devices 1218 ( 1 ) -1218 ( N ) ( e.g. , 
dynamic read - only memory , solid state storage or disk 
drives ) , network input / output ( “ NW 1/0 ” ) devices , network 
switches , virtual machines ( “ VMs ” ) , power modules , and 
cooling modules , etc. In at least one embodiment , one or 
more node C.R.s from among node C.R.s 1216 ( 1 ) -1216 ( N ) 
may be a server having one or more of above - mentioned 
computing resources . 
[ 0200 ] In at least one embodiment , grouped computing 
resources 1214 may include separate groupings of node 
C.R.s housed within one or more racks ( not shown ) , or many 
racks housed in data centers at various geographical loca 
tions ( also not shown ) . In at least one embodiment , separate 
groupings of node C.R.s within grouped computing 
resources 1214 may include grouped compute , network , 
memory or storage resources that may be configured or 
allocated to support one or more workloads . In at least one 
embodiment , several node C.R.s including CPUs or proces 
sors may grouped within one or more racks to provide 
compute resources to support one or more workloads . In at 
least one embodiment , one or more racks may also include 
any number of power modules , cooling modules , and net 
work switches , in any combination . 
[ 0201 ] In at least one embodiment , resource orchestrator 
1212 may configure or otherwise control one or more node 
C.R.s 1216 ( 1 ) -1216 ( N ) and / or grouped computing resources 
1214. In at least one embodiment , resource orchestrator 
1212 may include a software design infrastructure ( " SDI ” ) 
management entity for data center 1200. In at least one 
embodiment , resource orchestrator 1012 may include hard 
ware , software or some combination thereof . 
[ 0202 ] In at least one embodiment , as shown in FIG . 12 , 
framework layer 1220 includes a job scheduler 1222 , a 
configuration manager 1224 , a resource manager 1226 and 

a distributed file system 1228. In at least one embodiment , 
framework layer 1220 may include a framework to support 
software 1232 of software layer 1230 and / or one or more 
application ( s ) 1242 of application layer 1240. In at least one 
embodiment , software 1232 or application ( s ) 1242 may 
respectively include web - based service software or applica 
tions , such as those provided by Amazon Web Services , 
Google Cloud and Microsoft Azure . In at least one embodi 
ment , framework layer 1220 may be , but is not limited to , a 
type of free and open - source software web application 
framework such as Apache SparkTM ( hereinafter “ Spark ” ) 
that may utilize distributed file system 1228 for large - scale 
data processing ( e.g. , “ big data ” ) . In at least one embodi 
ment , job scheduler 1222 may include Spark driver to 
facilitate scheduling of workloads supported by various 
layers of data center 1200. In at least one embodiment , 
configuration manager 1224 may be capable of configuring 
different layers such as software layer 1230 and framework 
layer 1220 including Spark and distributed file system 1228 
for supporting large - scale data processing . In at least one 
embodiment , resource manager 1226 may be capable of 
managing clustered or grouped computing resources 
mapped to or allocated for support of distributed file system 
1228 and job scheduler 1222. In at least one embodiment , 
clustered or grouped computing resources may include 
grouped computing resources 1214 at data center infrastruc 
ture layer 1210. In at least one embodiment , resource 
manager 1226 may coordinate with resource orchestrator 
1212 to manage these mapped or allocated computing 
resources . 

[ 0203 ] In at least one embodiment , software 1232 
included in software layer 1230 may include software used 
by at least portions of node C.R.s 1216 ( 1 ) -1216 ( N ) , grouped 
computing resources 1214 , and / or distributed file system 
1228 of framework layer 1220. In at least one embodiment , 
one or more types of software may include , but are not 
limited to , Internet web page search software , e - mail virus 
scan software , database software , and streaming video con 
tent software . 
[ 0204 ] In at least one embodiment , application ( s ) 1242 
included in application layer 1240 may include one or more 
types of applications used by at least portions of node C.R.s 
1216 ( 1 ) -1216 ( N ) , grouped computing resources 1214 , and / 
or distributed file system 1228 of framework layer 1220. In 
at least one embodiment , one or more types of applications 
may include , but are not limited to , any number of a 
genomics application , a cognitive compute , application and 
a machine learning application , including training or infer 
encing software , machine learning framework software 
( e.g. , PyTorch , TensorFlow , Caffe , etc. ) or other machine 
learning applications used in conjunction with one or more 
embodiments . 
[ 0205 ] In at least one embodiment , any of configuration 
manager 1224 , resource manager 1226 , and resource orches 
trator 1212 may implement any number and type of self 
modifying actions based on any amount and type of data 
acquired in any technically feasible fashion . In at least one 
embodiment , self - modifying actions may relieve a data 
center operator of data center 1200 from making possibly 
bad configuration decisions and possibly avoiding underuti 
lized and / or poor performing portions of a data center . 
[ 0206 ] In at least one embodiment , data center 1200 may 
include tools , services , software or other resources to train 
one or more machine learning models or predict or infer 
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information using one or more machine learning models 
according to one or more embodiments described herein . 
For example , in at least one embodiment , a machine learning 
model may be trained by calculating weight parameters 
according to a neural network architecture using software 
and computing resources described above with respect to 
data center 1200. In at least one embodiment , trained 
machine learning models corresponding to one or more 
neural networks may be used to infer or predict information 
using resources described above with respect to data center 
1200 by using weight parameters calculated through one or 
more training techniques described herein . 
[ 0207 ] In at least one embodiment , data center may use 
CPUs , application - specific integrated circuits ( ASICs ) , 
GPUs , FPGAs , or other hardware to perform training and / or 
inferencing using above - described resources . Moreover , one 
or more software and / or hardware resources described above 
may be configured as a service to allow users to train or 
performing inferencing of information , such as image rec 
ognition , speech recognition , or other artificial intelligence 
services . 

[ 0208 ] Inference and / or training logic 1015 are used to 
perform inferencing and / or training operations associated 
with one or more embodiments . Details regarding inference 
and / or training logic 1015 are provided herein in conjunc 
tion with FIGS . 10A and / or 10B . In at least one embodiment , 
inference and / or training logic 1015 may be used in system 
FIG . 12 for inferencing or predicting operations based , at 
least in part , on weight parameters calculated using neural 
network training operations , neural network functions and / 
or architectures , or neural network use cases described 
herein . In various embodiments , the inference and / or train 
ing logic 1015 utilize the target image data generated by the 
offline image signal processing 240 as described above in 
connection with FIG . 2 . 

[ 0211 ] In at least one embodiment , vehicle 1300 may 
include , without limitation , components such as a chassis , a 
vehicle body , wheels ( e.g. , 2 , 4 , 6 , 8 , 18 , etc. ) , tires , axles , 
and other components of a vehicle . In at least one embodi 
ment , vehicle 1300 may include , without limitation , a pro 
pulsion system 1350 , such as an internal combustion engine , 
hybrid electric power plant , an all - electric engine , and / or 
another propulsion system type . In at least one embodiment , 
propulsion system 1350 may be connected to a drive train of 
vehicle 1300 , which may include , without limitation , a 
transmission , to enable propulsion of vehicle 1300. In at 
least one embodiment , propulsion system 1350 may be 
controlled in response to receiving signals from a throttle / 
accelerator ( s ) 1352 . 
[ 0212 ] In at least one embodiment , a steering system 1354 , 
which may include , without limitation , a steering wheel , is 
used to steer vehicle 1300 ( e.g. , along a desired path or 
route ) when propulsion system 1350 is operating ( e.g. , when 
vehicle 1300 is in motion ) . In at least one embodiment , 
steering system 1354 may receive signals from steering 
actuator ( s ) 1356. In at least one embodiment , a steering 
wheel may be optional for full automation ( Level 5 ) func 
tionality . In at least one embodiment , a brake sensor system 
1346 may be used to operate vehicle brakes in response to 
receiving signals from brake actuator ( s ) 1348 and / or brake 
sensors . 

Autonomous Vehicle 

[ 0213 ] In at least one embodiment , controller ( s ) 1336 , 
which may include , without limitation , one or more system 
on chips ( “ SoCs ” ) ( not shown in FIG . 13A ) and / or graphics 
processing unit ( s ) ( " GPU ( s ) " ) , provide signals ( e.g. , repre 
sentative of commands ) to one or more components and / or 
systems of vehicle 1300. For instance , in at least one 
embodiment , controller ( s ) 1336 may send signals to operate 
vehicle brakes via brake actuator ( s ) 1348 , to operate steering 
system 1354 via steering actuator ( s ) 1356 , to operate pro 
pulsion system 1350 via throttle / accelerator ( s ) 1352. In at 
least one embodiment , controller ( s ) 1336 may include one 
or more onboard ( e.g. , integrated ) computing devices that 
process sensor signals , and output operation commands 
( e.g. , signals representing commands ) to enable autonomous 
driving and / or to assist a human driver in driving vehicle 
1300. In at least one embodiment , controller ( s ) 1336 may 
include a first controller for autonomous driving functions , 
a second controller for functional safety functions , a third 
controller for artificial intelligence functionality ( e.g. , com 
puter vision ) , a fourth controller for infotainment function 
ality , a fifth controller for redundancy in emergency condi 
tions , and / or other controllers . In at least one embodiment , 
a single controller may handle two or more of above 
functionalities , two or more controllers may handle a single 
functionality , and / or any combination thereof . 
[ 0214 ] In at least one embodiment , controller ( s ) 1336 
provide signals for controlling one or more components 
and / or systems of vehicle 1300 in response to sensor data 
received from one or more sensors ( e.g. , sensor inputs ) . In 
at least one embodiment , sensor data may be received from , 
for example and without limitation , global navigation sat 
ellite systems ( “ GNSS ” ) sensor ( s ) 1358 ( e.g. , Global Posi 
tioning System sensor ( s ) ) , RADAR sensor ( s ) 1360 , ultra 
sonic sensor ( s ) 1362 , LIDAR sensor ( s ) 1364 , inertial 
measurement unit ( “ IMU ” ) sensor ( s ) 1366 ( e.g. , accelerom 
eter ( s ) , gyroscope ( s ) , a magnetic compass or magnetic com 
passes , magnetometer ( s ) , etc. ) , microphone ( s ) 1396 , stereo 
camera ( s ) 1368 , wide - view camera ( s ) 1370 ( e.g. , fisheye 

[ 0209 ] FIG . 13A illustrates an example of an autonomous 
vehicle 1300 , according to at least one embodiment . In at 
least one embodiment , autonomous vehicle 1300 ( alterna 
tively referred to herein as “ vehicle 1300 ” ) may be , without 
limitation , a passenger vehicle , such as a car , a truck , a bus , 
and / or another type of vehicle that accommodates one or 
more passengers . In at least one embodiment , vehicle 1300 
may be a semi - tractor - trailer truck used for hauling cargo . In 
at least one embodiment , vehicle 1300 may be an airplane , 
robotic vehicle , or other kind of vehicle . 
[ 0210 ] Autonomous vehicles may be described in terms of 
automation levels , defined by National Highway Traffic 
Safety Administration ( “ NHTSA ” ) , a division of US Depart 
ment of Transportation , and Society of Automotive Engi 
neers ( “ SAE ” ) “ Taxonomy and Definitions for Terms 
Related to Driving Automation Systems for On - Road Motor 
Vehicles ” ( e.g. , Standard No. J3016-201806 , published on 
Jun . 15 , 2018 , Standard No. 93016-201609 , published on 
Sep. 30 , 2016 , and previous and future versions of this 
standard ) . In at least one embodiment , vehicle 1300 may be 
capable of functionality in accordance with one or more of 
Level 1 through Level 5 of autonomous driving levels . For 
example , in at least one embodiment , vehicle 1300 may be 
capable of conditional automation ( Level 3 ) , high automa 
tion ( Level 4 ) , and / or full automation ( Level 5 ) , depending 
on embodiment . 

a 

2 



US 2022/0358627 A1 Nov. 10 , 2022 
24 

a 

cameras ) , infrared camera ( s ) 1372 , surround camera ( s ) 1374 
( e.g. , 360 degree cameras ) , long - range cameras ( not shown 
in FIG . 13A ) , mid - range camera ( s ) ( not shown in FIG . 13A ) , 
speed sensor ( s ) 1344 ( e.g. , for measuring speed of vehicle 
1300 ) , vibration sensor ( s ) 1342 , steering sensor ( s ) 1340 , 
brake sensor ( s ) ( e.g. , as part of brake sensor system 1346 ) , 
and / or other sensor types . 
[ 0215 ] In at least one embodiment , one or more of con 
troller ( s ) 1336 may receive inputs ( e.g. , represented by input 
data ) from an instrument cluster 1332 of vehicle 1300 and 
provide outputs ( e.g. , represented by output data , display 
data , etc. ) via a human - machine interface ( “ HMI ” ) display 
1334 , an audible annunciator , a loudspeaker , and / or via other 
components of vehicle 1300. In at least one embodiment , 
outputs may include information such as vehicle velocity , 
speed , time , map data ( e.g. , a High Definition map ( not 
shown in FIG . 13A ) ) , location data ( e.g. , vehicle's 1300 
location , such as on a map ) , direction , location of other 
vehicles ( e.g. , an occupancy grid ) , information about objects 
and status of objects as perceived by controller ( s ) 1336 , etc. 
For example , in at least one embodiment , HMI display 1334 
may display information about presence of one or more 
objects ( e.g. , a street sign , caution sign , traffic light chang 
ing , etc. ) , and / or information about driving maneuvers 
vehicle has made , is making , or will make ( e.g. , changing 
lanes now , taking exit 34B in two miles , etc. ) . 
[ 0216 ] In at least one embodiment , vehicle 1300 further 
includes a network interface 1324 which may use wireless 
antenna ( s ) 1326 and / or modem ( s ) to communicate over one 
or more networks . For example , in at least one embodiment , 
network interface 1324 may be capable of communication 
over Long - Term Evolution ( “ LTE ” ) , Wideband Code Divi 
sion Multiple Access ( “ WCDMA ” ) , Universal Mobile Tele 
communications System ( “ UMTS ” ) , Global System for 
Mobile communication ( “ GSM ” ) , IMT - CDMA Multi - Car 
rier ( “ CDMA2000 ” ) networks , etc. In at least one embodi 
ment , wireless antenna ( s ) 1326 may also enable communi 
cation between objects in environment ( e.g. , vehicles , 
mobile devices , etc. ) , using local area network ( s ) , such as 
Bluetooth , Bluetooth Low Energy ( “ LE ” ) , Z - Wave , ZigBee , 
etc. , and / or low power wide - area network ( s ) ( “ LPWANs ” ) , 
such as LoRaWAN , SigFox , etc. protocols . 
[ 0217 ] Inference and / or training logic 1015 are used to 
perform inferencing and / or training operations associated 
with one or more embodiments . Details regarding inference 
and / or training logic 1015 are provided herein in conjunc 
tion with FIGS . 10A and / or 10B . In at least one embodiment , 
inference and / or training logic 1015 may be used in system 
FIG . 13A for inferencing or predicting operations based , at 
least in part , on weight parameters calculated using neural 
network training operations , neural network functions and / 
or architectures , or neural network use cases described 
herein . In various embodiments , the inference and / or train 
ing logic 1015 utilize the target image data generated by the 
offline image signal processing 240 as described above in 
connection with FIG . 2. In addition , the data collection 202 
described above in connection with FIG . 2 , in various 
embodiments is performed by the vehicle 1300 . 
[ 0218 ] FIG . 13B illustrates an example of camera loca 
tions and fields of view for autonomous vehicle 1300 of FIG . 
13A , according to at least one embodiment . In at least one 
embodiment , cameras and respective fields of view are one 
example embodiment and are not intended to be limiting . 
For instance , in at least one embodiment , additional and / or 

alternative cameras may be included and / or cameras may be 
located at different locations on vehicle 1300 . 

[ 0219 ] In at least one embodiment , camera types for 
cameras may include , but are not limited to , digital cameras 
that may be adapted for use with components and / or systems 
of vehicle 1300. In at least one embodiment , camera ( s ) may 
operate at automotive safety integrity level ( “ ASIL ” ) B 
and / or at another ASIL . In at least one embodiment , camera 
types may be capable of any image capture rate , such as 60 
frames per second ( fps ) , 1220 fps , 240 fps , etc. , depending 
on embodiment . In at least one embodiment , cameras may 
be capable of using rolling shutters , global shutters , another 
type of shutter , or a combination thereof . In at least one 
embodiment , color filter array may include a red clear clear 
clear ( “ RCCC " ) color filter array , a red clear clear blue 
( “ RCCB ” ) color filter array , a red blue green clear 
( “ RBGC ” ) color filter array , a Foveon X3 color filter array , 
a Bayer sensor ( “ RGGB ” ) color filter array , a monochrome 
sensor color filter array , and / or another type of color filter 
array . In at least one embodiment , clear pixel cameras , such 
as cameras with an RCCC , an RCCB , and / or an RBGC color 
filter array , may be used in an effort to increase light 
sensitivity 
[ 0220 ] In at least one embodiment , one or more of camera 
( s ) may be used to perform advanced driver assistance 
systems ( “ ADAS ” ) functions ( e.g. , as part of a redundant or 
fail - safe design ) . For example , in at least one embodiment , 
a Multi - Function Mono Camera may be installed to provide 
functions including lane departure warning , traffic sign 
assist and intelligent headlamp control . In at least one 
embodiment , one or more of camera ( s ) ( e.g. , all cameras ) 
may record and provide image data ( e.g. , video ) simultane 
ously . 

[ 0221 ] In at least one embodiment , one or more camera 
may be mounted in a mounting assembly , such as a custom 
designed ( three - dimensional ( " 3D " ) printed ) assembly , in 
order to cut out stray light and reflections from within 
vehicle 1300 ( e.g. , reflections from dashboard reflected in 
windshield mirrors ) which may interfere with camera image 
data capture abilities . With reference to wing - mirror mount 
ing assemblies , in at least one embodiment , wing - mirror 
assemblies may be custom 3D printed so that a camera 
mounting plate matches a shape of a wing - mirror . In at least 
one embodiment , camera ( s ) may be integrated into wing 
mirrors . In at least one embodiment , for side - view cameras , 
camera ( s ) may also be integrated within four pillars at each 
corner of a cabin . 
[ 0222 ] In at least one embodiment , cameras with a field of 
view that include portions of an environment in front of 
vehicle 1300 ( e.g. , front - facing cameras ) may be used for 
surround view , to help identify forward facing paths and 
obstacles , as well as aid in , with help of one or more of 
controller ( s ) 1336 and / or control SoCs , providing informa 
tion critical to generating an occupancy grid and / or deter 
mining preferred vehicle paths . In at least one embodiment , 
front - facing cameras may be used to perform many similar 
ADAS functions as LIDAR , including , without limitation , 
emergency braking , pedestrian detection , and collision 
avoidance . In at least one embodiment , front - facing cameras 
may also be used for ADAS functions and systems includ 
ing , without limitation , Lane Departure Warnings ( “ LDW ” ) , 
Autonomous Cruise Control ( " ACC " ) , and / or other func 
tions such as traffic sign recognition . 
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[ 0223 ] In at least one embodiment , a variety of cameras may be used in a front - facing configuration , including , for 
example , a monocular camera platform that includes a 
CMOS ( “ complementary metal oxide semiconductor ” ) color 
imager . In at least one embodiment , a wide - view camera 
1370 may be used to perceive objects coming into view from 
a periphery ( e.g. , pedestrians , crossing traffic or bicycles ) . 
Although only one wide - view camera 1370 is illustrated in 
FIG . 13B , in other embodiments , there may be any number 
( including zero ) wide - view cameras on vehicle 1300. In at 
least one embodiment , any number of long - range camera ( s ) 
1398 ( e.g. , a long - view stereo camera pair ) may be used for 
depth - based object detection , especially for objects for 
which a neural network has not yet been trained . In at least 
one embodiment , long - range camera ( s ) 1398 may also be 
used for object detection and classification , as well as basic 
object tracking . 
[ 0224 ] In at least one embodiment , any number of stereo 
camera ( s ) 1368 may also be included in a front - facing 
configuration . In at least one embodiment , one or more of 
stereo camera ( s ) 1368 may include an integrated control unit 
comprising a scalable processing unit , which may provide a 
programmable logic ( “ FPGA ” ) and a multi - core micro 
processor with an integrated Controller Area Network 
( " CAN ” ) or Ethernet interface on a single chip . In at least 
one embodiment , such a unit may be used to generate a 3D 
map of an environment of vehicle 1300 , including a distance 
estimate for all points in an image . In at least one embodi 
ment , one or more of stereo camera ( s ) 1368 may include , 
without limitation , compact stereo vision sensor ( s ) that may 
include , without limitation , two camera lenses ( one each on 
left and right ) and an image processing chip that may 
measure distance from vehicle 1300 to target object and use 
generated information ( e.g. , metadata ) to activate autono 
mous emergency braking and lane departure warning func 
tions . In at least one embodiment , other types of stereo 
camera ( s ) 1368 may be used in addition to , or alternatively 
from , those described herein . 
[ 0225 ] In at least one embodiment , cameras with a field of 
view that include portions of environment to sides of vehicle 
1300 ( e.g. , side - view cameras ) may be used for surround 
view , providing information used to create and update an 
occupancy grid , as well as to generate side impact collision 
warnings . For example , in at least one embodiment , sur 
round camera ( s ) 1374 ( e.g. , four surround cameras as illus 
trated in FIG . 13B ) could be positioned on vehicle 1300. In 
at least one embodiment , surround camera ( s ) 1374 may 
include , without limitation , any number and combination of 
wide - view cameras , fisheye camera ( s ) , 360 degree camera 
( s ) , and / or similar cameras . For instance , in at least one 
embodiment , four fisheye cameras may be positioned on a 
front , a rear , and sides of vehicle 1300. In at least one 
embodiment , vehicle 1300 may use three surround camera 
( s ) 1374 ( e.g. , left , right , and rear ) , and may leverage one or 
more other camera ( s ) ( e.g. , a forward - facing camera ) as a 
fourth surround - view camera . 
[ 0226 ] In at least one embodiment , cameras with a field of 
view that include portions of an environment behind vehicle 
1300 ( e.g. , rear - view cameras ) may be used for parking 
assistance , surround view , rear collision warnings , and cre 
ating and updating an occupancy grid . In at least one 
embodiment , a wide variety of cameras may be used includ 
ing , but not limited to , cameras that are also suitable as a 
front - facing camera ( s ) ( e.g. , long - range cameras 1398 and / 

or mid - range camera ( s ) 1376 , stereo camera ( s ) 1368 , infra 
red camera ( s ) 1372 , etc. ) , as described herein . 
[ 0227 ] Inference and / or training logic 1015 are used to 
perform inferencing and / or training operations associated 
with one or more embodiments . Details regarding inference 
and / or training logic 1015 are provided herein in conjunc 
tion with FIGS . 10A and / or 10B . In at least one embodiment , 
inference and / or training logic 1015 may be used in system 
FIG . 13B for inferencing or predicting operations based , at 
least in part , on weight parameters calculated using neural 
network training operations , neural network functions and / 
or architectures , or neural network use cases described 
herein . In various embodiments , the inference and / or train 
ing logic 1015 utilize the target image data generated by the 
offline image signal processing 240 as described above in 
connection with FIG . 2. In addition , the data collection 202 
described above in connection with FIG . 2 , in various 
embodiments is performed by the vehicle 1300 . 
[ 0228 ] FIG . 13C is a block diagram illustrating an 
example system architecture for autonomous vehicle 1300 
of FIG . 13A , according to at least one embodiment . In at 
least one embodiment , each of components , features , and 
systems of vehicle 1300 in FIG . 13C is illustrated as being 
connected via a bus 1302. In at least one embodiment , bus 
1302 may include , without limitation , a CAN data interface 
( alternatively referred to herein as a “ CAN bus ” ) . In at least 
one embodiment , a CAN may be a network inside vehicle 
1300 used to aid in control of various features and func 
tionality of vehicle 1300 , such as actuation of brakes , 
acceleration , braking , steering , windshield wipers , etc. In at 
least one embodiment , bus 1302 may be configured to have 
dozens or even hundreds of nodes , each with its own unique 
identifier ( e.g. , a CAN ID ) . In at least one embodiment , bus 
1302 may be read to find steering wheel angle , ground 
speed , engine revolutions per minute ( “ RPMs ” ) , button 
positions , and / or other vehicle status indicators . In at least 
one embodiment , bus 1302 may be a CAN bus that is ASIL 
B compliant 
[ 0229 ] In at least one embodiment , in addition to , or 
alternatively from CAN , FlexRay and / or Ethernet protocols 
may be used . In at least one embodiment , there may be any 
number of busses forming bus 1302 , which may include , 
without limitation , zero or more CAN busses , zero or more 
FlexRay busses , zero or more Ethernet busses , and / or zero 
or more other types of busses using different protocols . In at 
least one embodiment , two or more busses may be used to 
perform different functions , and / or may be used for redun 
dancy . For example , a first bus may be used for collision 
avoidance functionality and a second bus may be used for 
actuation control . In at least one mbodiment , each bus of 
bus 1302 may communicate with any of components of 
vehicle 1300 , and two or more busses of bus 1302 may 
communicate with corresponding components . In at least 
one embodiment , each of any number of system ( s ) on 
chip ( s ) ( “ SoC ( s ) " ) 1304 ( such as SoC 1304 ( A ) and SoC 
1304 ( B ) ) , each of controller ( s ) 1336 , and / or each computer 
within vehicle may have access to same input data ( e.g. , 
inputs from sensors of vehicle 1300 ) , and may be connected 
to a common bus , such CAN bus . 
[ 0230 ] In at least one embodiment , vehicle 1300 may 
include one or more controller ( s ) 1336 , such as those 
described herein with respect to FIG . 13A . In at least one 
embodiment , controller ( s ) 1336 may be used for a variety of 
functions . In at least one embodiment , controller ( s ) 1336 
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may be coupled to any of various other components and 
systems of vehicle 1300 , and may be used for control of 
vehicle 1300 , artificial intelligence of vehicle 1300 , info 
tainment for vehicle 1300 , and / or other functions . 
[ 0231 ] In at least one embodiment , vehicle 1300 may 
include any number of SoCs 1304. In at least one embodi 
ment , each of SoCs 1304 may include , without limitation , 
central processing units ( “ CPU ( s ) ” ) 1306 , graphics process 
ing units ( “ GPU ( s ) " ) 1308 , processor ( s ) 1310 , cache ( s ) 
1312 , accelerator ( s ) 1314 , data store ( s ) 1316 , and / or other 
components and features not illustrated . In at least one 
embodiment , SoC ( s ) 1304 may be used to control vehicle 
1300 in a variety of platforms and systems . For example , in 
at least one embodiment , SoC ( s ) 1304 may be combined in 
a system ( e.g. , system of vehicle 1300 ) with a High Defi 
nition ( “ HD ” ) map 1322 which may obtain map refreshes 
and / or updates via network interface 1324 from one or more 
servers ( not shown in FIG . 13C ) . 
[ 0232 ] In at least one embodiment , CPU ( S ) 1306 may 
include a CPU cluster or CPU complex ( alternatively 
referred to herein as a " CCPLEX ” ) . In at least one embodi 
ment , CPU ( S ) 1306 may include multiple cores and / or level 
two ( “ L2 ” ) caches . For instance , in at least one embodiment , 
CPU ( s ) 1306 may include eight cores in a coherent multi 
processor configuration . In at least one embodiment , CPU ( s ) 
1306 may include four dual - core clusters where each cluster 
has a dedicated L2 cache ( e.g. , a 2 megabyte ( MB ) L2 
cache ) . In at least one embodiment , CPU ( S ) 1306 ( e.g. , 
CCPLEX ) may be configured to support simultaneous clus 
ter operations enabling any combination of clusters of 
CPU ( s ) 1306 to be active at any given time . 
[ 0233 ] In at least one embodiment , one or more of CPU ( s ) 
1306 may implement power management capabilities that 
include , without limitation , one or more of following fea 
tures : individual hardware blocks may be clock - gated auto 
matically when idle to save dynamic power ; each core clock 
may be gated when such core is not actively executing 
instructions due to execution of Wait for Interrupt ( “ WFI ” ) / 
Wait for Event ( “ WFE ” ) instructions ; each core may be 
independently power - gated ; each core cluster may be inde 
pendently clock - gated when all cores are clock - gated or 
power - gated ; and / or each core cluster may be independently 
power - gated when all cores are power - gated . In at least one 
embodiment , CPU ( s ) 1306 may further implement an 
enhanced algorithm for managing power states , where 
allowed power states and expected wakeup times are speci 
fied , and hardware / microcode determines which best power 
state to enter for core , cluster , and CCPLEX . In at least one 
embodiment , processing cores may support simplified 
power state entry sequences in software with work offloaded 
to microcode . 
[ 0234 ] In at least one embodiment , GPU ( s ) 1308 may 
include an integrated GPU ( alternatively referred to herein 
as an “ iGPU ” ) . In at least one embodiment , GPU ( s ) 1308 
may be programmable and may be efficient for parallel 
workloads . In at least one embodiment , GPU ( s ) 1308 may 
use an enhanced tensor instruction set . In at least one 
embodiment , GPU ( s ) 1308 may include one or more stream 
ing microprocessors , where each streaming microprocessor 
may include a level one ( “ L1 ” ) cache ( e.g. , an Ll cache with 
at least 96 KB storage capacity ) , and two or more streaming 
microprocessors may share an L2 cache ( e.g. , an L2 cache 
with a 512 KB storage capacity ) . In at least one embodiment , 
GPU ( s ) 1308 may include at least eight streaming micro 

processors . In at least one embodiment , GPU ( s ) 1308 may 
use compute application programming interface ( s ) ( API ( ) ) . 
In at least one embodiment , GPU ( s ) 1308 may use one or 
more parallel computing platforms and / or programming 
models ( e.g. , NVIDIA's CUDA model ) . 
[ 0235 ] In at least one embodiment , one or more of GPU ( s ) 
1308 may be power - optimized for best performance in 
automotive and embedded use cases . For example , in at least 
one embodiment , GPU ( s ) 1308 could be fabricated on Fin 
field - effect transistor ( “ FinFET " ) circuitry . In at least one 
embodiment , each streaming microprocessor may incorpo 
rate a number of mixed - precision processing cores parti 
tioned into multiple blocks . For example , and without limi 
tation , 64 PF32 cores and 32 PF64 cores could be partitioned 
into four processing blocks . In at least one embodiment , 
each processing block could be allocated 16 FP32 cores , 8 
FP64 cores , 16 INT32 cores , two mixed - precision NVIDIA 
Tensor cores for deep learning matrix arithmetic , a level zero 
( “ LO ” ) instruction cache , a warp scheduler , a dispatch unit , 
and / or a 64 KB register file . In at least one embodiment , 
streaming microprocessors may include independent paral 
lel integer and floating - point data paths to provide for 
efficient execution of workloads with a mix of computation 
and addressing calculations . In at least one embodiment , 
streaming microprocessors may include independent thread 
scheduling capability to enable finer - grain synchronization 
and cooperation between parallel threads . In at least one 
embodiment , streaming microprocessors may include a 
combined L1 data cache and shared memory unit in order to 
improve performance while simplifying programming . 
[ 0236 ] In at least one embodiment , one or more of GPU ( S ) 
1308 may include a high bandwidth memory ( “ HBM ” ) 
and / or a 16 GB HBM2 memory subsystem to provide , in 
some examples , about 900 GB / second peak memory band 
width . In at least one embodiment , in addition to , or alter 
natively from , HBM memory , a synchronous graphics ran 
dom - access memory ( " SGRAM ” ) may be used , such as a 
graphics double data rate type five synchronous random 
access memory ( " GDDR5 ” ) . 
[ 0237 ] In at least one embodiment , GPU ( s ) 1308 may 
include unified memory technology . In at least one embodi 
ment , address translation services ( “ ATS ” ) support may be 
used to allow GPU ( s ) 1308 to access CPU ( S ) 1306 page 
tables directly . In at least one embodiment , embodiment , 
when a GPU of GPU ( s ) 1308 memory management unit 
( “ MMU ” ) experiences a miss , an address translation request 
may be transmitted to CPU ( s ) 1306. In response , 2 CPU of 
CPU ( s ) 1306 may look in its page tables for a virtual - to 
physical mapping for an address and transmit translation 
back to GPU ( s ) 1308 , in at least one embodiment . In at least 
one embodiment , unified memory technology may allow a 
single unified virtual address space for memory of both 
CPU ( s ) 1306 and GPU ( s ) 1308 , thereby simplifying GPU ( s ) 
1308 programming and porting of applications to GPU ( S ) 
1308 . 

[ 0238 ] In at least one embodiment , GPU ( s ) 1308 may 
include any number of access counters that may keep track 
of frequency of access of GPU ( s ) 1308 to memory of other 
processors . In at least one embodiment , access counter ( s ) 
may help ensure that memory pages are moved to physical 
memory of a processor that is accessing pages most fre 
quently , thereby improving efficiency for memory ranges 
shared between processors . 
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[ 0239 ] In at least one embodiment , one or more of SoC ( s ) 
1304 may include any number of cache ( s ) 1312 , including 
those described herein . For example , in at least one embodi 
ment , cache ( s ) 1312 could include a level three ( “ L3 ” ) cache 
that is available to both CPU ( s ) 1306 and GPU ( S ) 1308 ( e.g. , 
that is connected to CPU ( s ) 1306 and GPU ( s ) 1308 ) . In at 
least one embodiment , cache ( s ) 1312 may include a write 
back cache that may keep track of states of lines , such as by 
using a cache coherence protocol ( e.g. , MEI , MESI , MSI , 
etc. ) . In at least one embodiment , a L3 cache may include 4 
MB of memory or more , depending on embodiment , 
although smaller cache sizes may be used . 
[ 0240 ] In at least one embodiment , one or more of SoC ( s ) 
1304 may include one or more accelerator ( s ) 1314 ( e.g. , 
hardware accelerators , software accelerators , or a combina 
tion thereof ) . In at least one embodiment , SoC ( s ) 1304 may 
include a hardware acceleration cluster that may include 
optimized hardware accelerators and / or large on - chip 
memory . In at least one embodiment , large on - chip memory 
( e.g. , 4 MB of SRAM ) , may enable a hardware acceleration 
cluster to accelerate neural networks and other calculations . 
In at least one embodiment , a hardware acceleration cluster 
may be used to complement GPU ( s ) 1308 and to off - load 
some of tasks of GPU ( S ) 1308 ( e.g. , to free up more cycles 
of GPU ( s ) 1308 for performing other tasks ) . In at least one 
embodiment , accelerator ( s ) 1314 could be used for targeted 
workloads ( e.g. , perception , convolutional neural networks 
( “ CNNs ” ) , recurrent neural networks ( “ RNNs ” ) , etc. ) that 
are stable enough to be amenable to acceleration . In at least 
one embodiment , a CNN may include a region - based or 
regional convolutional neural networks ( " RCNNs ” ) and Fast 
RCNNs ( e.g. , as used for object detection ) or other type of 
CNN . 

[ 0241 ] In at least one embodiment , accelerator ( s ) 1314 
( e.g. , hardware acceleration cluster ) may include one or 
more deep learning accelerator ( “ DLA ” ) . In at least one 
embodiment , DLA ( s ) may include , without limitation , one 
or more Tensor processing units ( “ TPUs ” ) that may be 
configured to provide an additional ten trillion operations 
per second for deep learning applications and inferencing . In 
at least one embodiment , TPUs may be accelerators config 
ured to , and optimized for , performing image processing 
functions ( e.g. , for CNNs , RCNNs , etc. ) . In at least one 
embodiment , DLA ( s ) may further be optimized for a spe 
cific set of neural network types and floating point opera 
tions , as well as inferencing . In at least one embodiment , 
design of DLA ( s ) may provide more performance per mil 
limeter than a typical general - purpose GPU , and typically 
vastly exceeds performance of a CPU . In at least one 
embodiment , TPU ( s ) may perform several functions , includ 
ing a single - instance convolution function , supporting , for 
example , INT8 , INT16 , and FP16 data types for both 
features and weights , as well as post - processor functions . In 
at least one embodiment , DLA ( s ) may quickly and effi 
ciently execute neural networks , especially CNNs , on pro 
cessed or unprocessed data for any of a variety of functions , 
including , for example and without limitation : a CNN for 
object identification and detection using data from camera 
sensors ; a CNN for distance estimation using data from 
camera sensors ; a CNN for emergency vehicle detection and 
identification and detection using data from microphones ; a 
CNN for facial recognition and vehicle owner identification 
using data from camera sensors ; and / or a CNN for security 
and / or safety related events . 

[ 0242 ] In at least one embodiment , DLA ( s ) may perform 
any function of GPU ( s ) 1308 , and by using an inference 
accelerator , for example , a designer may target either DLA 
( s ) or GPU ( s ) 1308 for any function . For example , in at least 
one embodiment , a designer may focus processing of CNNs 
and floating point operations on DLA ( s ) and leave other 
functions to GPU ( s ) 1308 and / or accelerator ( s ) 1314 . 
[ 0243 ] In at least one embodiment , accelerator ( s ) 1314 
may include programmable vision accelerator ( “ PVA ” ) , 
which may alternatively be referred to herein as a computer 
vision accelerator . In at least one embodiment , PVA may be 
designed and configured to accelerate computer vision algo 
rithms for advanced driver assistance system ( “ ADAS ” ) 
1338 , autonomous driving , augmented reality ( “ AR ” ) appli 
cations , and / or virtual reality ( “ VR ” ) applications . In at least 
one embodiment , PVA may provide a balance between 
performance and flexibility . For example , in at least one 
embodiment , each PVA may include , for example and with 
out limitation , any number of reduced instruction set com 
puter ( “ RISC ” ) cores , direct memory access ( “ DMA ” ) , 
and / or any number of vector processors . 
[ 0244 ] In at least one embodiment , RISC cores may inter 
act with image sensors ( e.g. , image sensors of any cameras 
described herein ) , image signal processor ( s ) , etc. In at least 
one embodiment , each RISC core may include any amount 
of memory . In at least one embodiment , RISC cores may use 
any of a number of protocols , depending on embodiment . In 
at least one embodiment , RISC cores may execute a real 
time operating system ( “ RTOS ” ) . In at least one embodi 
ment , RISC cores may be implemented using one or more 
integrated circuit devices , application specific integrated 
circuits ( “ ASICs ” ) , and / or memory devices . For example , in 
at least one embodiment , RISC cores could include an 
instruction cache and / or a tightly coupled RAM . 
[ 0245 ] In at least one embodiment , DMA may enable 
components of PVA to access system memory independently 
of CPU ( s ) 1306. In at least one embodiment , DMA may 
support any number of features used to provide optimization 
to a PVA including , but not limited to , supporting multi 
dimensional addressing and / or circular addressing . In at 
least one embodiment , DMA may support up to six or more 
dimensions of addressing , which may include , without limi 
tation , block width , block height , block depth , horizontal 
block stepping , vertical block stepping , and / or depth step 
ping . 
[ 0246 ] In at least one embodiment , vector processors may 
be programmable processors that may be designed to effi 
ciently and flexibly execute programming for computer 
vision algorithms and provide signal processing capabilities . 
In at least one embodiment , a PVA may include a PVA core 
and two vector processing subsystem partitions . In at least 
one embodiment , a PVA core may include a processor 
subsystem , DMA engine ( s ) ( e.g. , two DMA engines ) , and / or 
other peripherals . In at least one embodiment , a vector 
processing subsystem may operate as a primary processing 
engine of a PVA , and may include a vector processing unit 
( “ VPU ” ) , an instruction cache , and / or vector memory ( e.g. , 
“ VMEM ” ) . In at least one embodiment , VPU core may 
include a digital signal processor such as , for example , a 
single instruction , multiple data ( “ SIMD ” ) , very long 
instruction word ( “ VLIW ” ) digital signal processor . In at 
least one embodiment , a combination of SIMD and VLIW 
may enhance throughput and speed . 
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embodiment , a PVA's capabilities are a good match for 
algorithmic domains needing predictable processing , at low 
power and low latency . In other words , a PVA performs well 
on semi - dense or dense regular computation , even on small 
data sets , which might require predictable run - times with 
low latency and low power . In at least one embodiment , such 
as in vehicle 1300 , PVAs might be designed to run classic 
computer vision algorithms , as they can be efficient at object 
detection and operating on integer math . 
[ 0252 ] For example , according to at least one embodiment 
of technology , a PVA is used to perform computer stereo 
vision . In at least one embodiment , a semi - global matching 
based algorithm may be used in some examples , although 
this is not intended to be limiting . In at least one embodi 
ment , applications for Level 3-5 autonomous driving use 
motion estimation / stereo matching on - the - fly ( e.g. , structure 
from motion , pedestrian recognition , lane detection , etc. ) . In 
at least one embodiment , a PVA may perform computer 
stereo vision functions on inputs from two monocular cam 
eras . 

2 
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[ 0247 ] In at least one embodiment , each of vector proces 
sors may include an instruction cache and may be coupled 
to dedicated memory . As a result , in at least one embodi 
ment , each of vector processors may be configured to 
execute independently of other vector processors . In at least 
one embodiment , vector processors that are included in a 
particular PVA may be configured to employ data parallel 
ism . For instance , in at least one embodiment , plurality of 
vector processors included in a single PVA may execute a 
common computer vision algorithm , but on different regions 
of an image . In at least one embodiment , vector processors 
included in a particular PVA may simultaneously execute 
different computer vision algorithms , on one image , or even 
execute different algorithms on sequential images or por 
tions of an image . In at least one embodiment , among other 
things , any number of PVAs may be included in hardware 
acceleration cluster and any number of vector processors 
may be included in each PVA . In at least one embodiment , 
PVA may include additional error correcting code ( “ ECC ” ) 
memory , to enhance overall system safety . 
[ 0248 ] In at least one embodiment , accelerator ( s ) 1314 
may include a computer vision network on - chip and static 
random - access memory ( “ SRAM ” ) , for providing a high 
bandwidth , low latency SRAM for accelerator ( s ) 1314. In at 
least one embodiment , on - chip memory may include at least 
4 MB SRAM , comprising , for example and without limita 
tion , eight field - configurable memory blocks , that may be 
accessible by both a PVA and a DLA . In at least one 
embodiment , each pair of may include an 
advanced peripheral bus ( " APB ” ) interface , configuration 
circuitry , a controller , and a multiplexer . In at least one 
embodiment , any type of memory may be used . In at least 
one embodiment , a PVA and a DLA may access memory via 
a backbone that provides a PVA and a DLA with high - speed 
access to memory . In at least one embodiment , a backbone 
may include a computer vision network on - chip that inter 
connects a PVA and a DLA to memory ( e.g. , using APB ) . 
[ 0249 ] In at least one embodiment , a computer vision 
network on - chip may include an interface that determines , 
before transmission of any control signal / address / data , that 
both a PVA and a DLA provide ready and valid signals . In 
at least one embodiment , an interface may provide for 
separate phases and separate channels for transmitting con 
trol signals / addresses / data , as well as burst - type communi 
cations for continuous data transfer . In at least one embodi 
ment , interface may comply with International 
Organization for Standardization ( “ ISO " ) 26262 or Interna 
tional Electrotechnical Commission ( “ IEC ” ) 61508 stan 
dards , although other standards and protocols may be used . 
[ 0250 ] In at least one embodiment , one or more of SoC ( s ) 
1304 may include a real - time ray - tracing hardware accel 
erator . In at least one embodiment , real - time ray - tracing 
hardware accelerator may be used to quickly and efficiently 
determine positions and extents of objects ( e.g. , within a 
world model ) , to generate real - time visualization simula 
tions , for RADAR signal interpretation , for sound propaga 
tion synthesis and / or analysis , for simulation of SONAR 
systems , for general wave propagation simulation , for com 
parison to LIDAR data for purposes of localization and / or 
other functions , and / or for other uses . 
[ 0251 ] In at least one embodiment , accelerator ( s ) 1314 can 
have a wide array of uses for autonomous driving . In at least 
one embodiment , a PVA may be used for key processing 
stages in ADAS and autonomous vehicles . In at least one 

[ 0253 ] In at least one embodiment , a PVA may be used to 
perform dense optical flow . For example , in at least one 
embodiment , a PVA could process raw RADAR data ( e.g. , 
using a 4D Fast Fourier Transform ) to provide processed 
RADAR data . In at least one embodiment , a PVA is used for 
time of flight depth processing , by processing raw time of 
flight data to provide processed time of flight data , for 
example . 
[ 0254 ] In at least one embodiment , a DLA may be used to 
run any type of network to enhance control and driving 
safety , including for example and without limitation , a 
neural network that outputs a measure of confidence for each 
object detection . In at least one embodiment , confidence 
may be represented or interpreted as a probability , or as 
providing a relative " weight " of each detection compared to 
other detections . In at least one embodiment , a confidence 
measure enables a system to make further decisions regard 
ing which detections should be considered as true positive 
detections rather than false positive detections . In at least 
one embodiment , system may set a threshold value for 
confidence and consider only detections exceeding threshold 
value as true positive detections . In an embodiment in which 
an automatic emergency braking ( “ AEB ” ) system is used , 
false positive detections would cause vehicle to automati cally perform emergency braking , which is obviously unde 
sirable . In at least one embodiment , highly confident detec 
tions may be considered as triggers for AEB . In at least one 
embodiment , a DLA may run a neural network for regress 
ing confidence value . In at least one embodiment , neural 
network may take as its input at least some subset of 
parameters , such as bounding box dimensions , ground plane 
estimate obtained ( e.g. , from another subsystem ) , output 
from IMU sensor ( s ) 1366 that correlates with vehicle 1300 
orientation , distance , 3D location estimates of object 
obtained from neural network and / or other sensors ( e.g. , 
LIDAR sensor ( s ) 1364 or RADAR sensor ( s ) 1360 ) , among 
others . 
[ 0255 ] In at least one embodiment , one or more of SoC ( s ) 
1304 may include data store ( s ) 1316 ( e.g. , memory ) . In at 
least one embodiment , data store ( s ) 1316 may be on - chip 
memory of SoC ( s ) 1304 , which may store neural networks 
to be executed on GPU ( S ) 1308 and / or a DLA . In at least one 
embodiment , data store ( s ) 1316 may be large enough in 
capacity to store multiple instances of neural networks for 
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redundancy and safety . In at least one embodiment , data 
store ( s ) 1316 may comprise L2 or L3 cache ( s ) . 
[ 0256 ] In at least one embodiment , one or more of SoC ( s ) 
1304 may include any number of processor ( s ) 1310 ( e.g. , 
embedded processors ) . In at least one embodiment , proces 
sor ( s ) 1310 may include a boot and power management 
processor that may be a dedicated processor and subsystem 
to handle boot power and management functions and related 
security enforcement . In at least one embodiment , a boot and 
power management processor may be a part of a boot 
sequence of SoC ( s ) 1304 and may provide runtime power 
management services . In at least one embodiment , a boot 
power and management processor may provide clock and 
voltage programming , assistance in system low power state 
transitions , management of SoC ( s ) 1304 thermals and tem 
perature sensors , and / or management of SoC ( s ) 1304 power 
states . In at least one embodiment , each temperature sensor 
may be implemented as a ring - oscillator whose output 
frequency is proportional to temperature , and SoC ( s ) 1304 
may use ring - oscillators to detect temperatures of CPU ( s ) 
1306 , GPU ( s ) 1308 , and / or accelerator ( s ) 1314. In at least 
one embodiment , if temperatures are determined to exceed 
a threshold , then a boot and power management processor 
may enter a temperature fault routine and put SoC ( s ) 1304 
into a lower power state and / or put vehicle 1300 into a 
chauffeur to safe stop mode ( e.g. , bring vehicle 1300 to a 
safe stop ) . 
[ 0257 ] In at least one embodiment , processor ( s ) 1310 may 
further include a set of embedded processors that may serve 
as an audio processing engine which may be an audio 
subsystem that enables full hardware support for multi 
channel audio over multiple interfaces , and a broad and 
flexible range of audio I / O interfaces . In at least one embodi 
ment , an audio processing engine is a dedicated processor 
core with a digital signal processor with dedicated RAM . 
[ 0258 ] In at least one embodiment , processor ( s ) 1310 may 
further include an always - on processor engine that may 
provide necessary hardware features to support low power 
sensor management and wake use cases . In at least one 
embodiment , an always - on processor engine may include , 
without limitation , a processor core , a tightly coupled RAM , 
supporting peripherals ( e.g. , timers and interrupt control 
lers ) , various 1/0 controller peripherals , and routing logic . 
[ 0259 ] In at least one embodiment , processor ( s ) 1310 may 
further include a safety cluster engine that includes , without 
limitation , a dedicated processor subsystem to handle safety 
management for automotive applications . In at least one 
embodiment , a safety cluster engine may include , without 
limitation , two or more processor cores , a tightly coupled 
RAM , support peripherals ( e.g. , timers , an interrupt control 
ler , etc. ) , and / or routing logic . In a safety mode , two or more 
cores may operate , in at least one embodiment , in a lockstep 
mode and function as a single core with comparison logic to 
detect any differences between their operations . In at least 
one embodiment , processor ( s ) 1310 may further include a 
real - time camera engine that may include , without limita 
tion , a dedicated processor subsystem for handling real - time 
camera management . In at least one embodiment , processor 
( s ) 1310 may further include a high - dynamic range signal 
processor that may include , without limitation , an image 
signal processor that is a hardware engine that is part of a 
camera processing pipeline . 
[ 0260 ] In at least one embodiment , processor ( s ) 1310 may 
include a video image compositor that may be a processing 

block ( e.g. , implemented on a microprocessor ) that imple 
ments video post - processing functions needed by a video 
playback application to produce a final image for a player 
window . In at least one embodiment , a video image com 
positor may perform lens distortion correction on wide - view 
camera ( s ) 1370 , surround camera ( s ) 1374 , and / or on in 
cabin monitoring camera sensor ( s ) . In at least one embodi 
ment , in - cabin monitoring camera sensor ( s ) are preferably 
monitored by a neural network running on another instance 
of SoC 1304 , configured to identify in cabin events and 
respond accordingly . In at least one embodiment , an in - cabin 
system may perform , without limitation , lip reading to 
activate cellular service and place a phone call , dictate 
emails , change a vehicle's destination , activate or change a 
vehicle's infotainment system and settings , or provide 
voice - activated web surfing . In at least one embodiment , 
certain functions are available to a driver when a vehicle is 
operating in an autonomous mode and are disabled other 
wise . 
[ 0261 ] In at least one embodiment , a video image com 
positor may include enhanced temporal noise reduction for 
both spatial and temporal noise reduction . For example , in at 
least one embodiment , where motion occurs in a video , 
noise reduction weights spatial information appropriately , 
decreasing weights of information provided by adjacent 
frames . In at least one embodiment , where an image or 
portion of an image does not include motion , temporal noise 
reduction performed by video image compositor may use 
information from a previous image to reduce noise in a 
current image . 
[ 0262 ] In at least one embodiment , a video image com 
positor may also be configured to perform stereo rectifica 
tion on input stereo lens frames . In at least one embodiment , 
a video image compositor may further be used for user 
interface composition when an operating system desktop is 
in use , and GPU ( s ) 1308 are not required to continuously 
render new surfaces . In at least one embodiment , when 
GPU ( s ) 1308 are powered on and active doing 3D rendering , 
a video image compositor may be used to offload GPU ( s ) 
1308 to improve performance and responsiveness . 
[ 0263 ] In at least one embodiment , one or more SoC of 
SoC ( s ) 1304 may further include a mobile industry proces 
sor interface ( “ MIPI ” ) camera serial interface for receiving 
video and input from cameras , a high - speed interface , and / or 
a video input block that may be used for a camera and related 
pixel input functions . In at least one embodiment , one or 
more of SoC ( s ) 1304 may further include an input / output 
controller ( s ) that may be controlled by software and may be 
used for receiving 1/0 signals that are uncommitted to a 
specific role . 
[ 0264 ] In at least one embodiment , one or more Soc of 
SOC ( s ) 1304 may further include abroad range of peripheral 
interfaces to enable communication with peripherals , audio 
encoders / decoders ( “ codecs ” ) , power management , and / or 
other devices . In at least one embodiment , SoC ( s ) 1304 may 
be used to process data from cameras ( e.g. , connected over 
Gigabit Multimedia Serial Link and Ethernet channels ) , 
sensors ( e.g. , LIDAR sensor ( s ) 1364 , RADAR sensor ( s ) 
1360 , etc. that may be connected over Ethernet channels ) , 
data from bus 1302 ( e.g. , speed of vehicle 1300 , steering 
wheel position , etc. ) , data from GNSS sensor ( s ) 1358 ( e.g. , 
connected over a Ethernet bus or a CAN bus ) , etc. In at least 
one embodiment , one or more SoC of SoC ( s ) 1304 may 
further include dedicated high - performance mass storage 
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controllers that may include their own DMA engines , and 
that may be used to free CPU ( s ) 1306 from routine data 
management tasks . 
[ 0265 ] In at least one embodiment , SoC ( s ) 1304 may be an 
end - to - end platform with a flexible architecture that spans 
automation Levels 3-5 , thereby providing a comprehensive 
functional safety architecture that leverages and makes 
efficient use of computer vision and ADAS techniques for 
diversity and redundancy , and provides a platform for a 
flexible , reliable driving software stack , along with deep 
learning tools . In at least one embodiment , SoC ( s ) 1304 may 
be faster , more reliable , and even more energy - efficient and 
space - efficient than conventional systems . For example , in at 
least one embodiment , accelerator ( s ) 1314 , when combined 
with CPU ( s ) 1306 , GPU ( s ) 1308 , and data store ( s ) 1316 , 
may provide for a fast , efficient platform for Level 3-5 
autonomous vehicles . 
[ 0266 ] In at least one embodiment , computer vision algo 
rithms may be executed on CPUs , which may be configured 
using a high - level programming language , such as C , to 
execute a wide variety of processing algorithms across a 
wide variety of visual data . However , in at least one embodi 
ment , CPUs are oftentimes unable to meet performance 
requirements of many computer vision applications , such as 
those related to execution time and power consumption , for 
example . In at least one embodiment , many CPUs are unable 
to execute complex object detection algorithms in real - time , 
which is used in in - vehicle ADAS applications and in 
practical Level 3-5 autonomous vehicles . 
[ 0267 ] Embodiments described herein allow for multiple 
neural networks to be performed simultaneously and / or 
sequentially , and for results to be combined together to 
enable Level 3-5 autonomous driving functionality . For 
example , in at least one embodiment , a CNN executing on 
a DLA or a discrete GPU ( e.g. , GPU ( s ) 1320 ) may include 
text and word recognition , allowing reading and understand 
ing of traffic signs , including signs for which a neural 
network has not been specifically trained . In at least one 
embodiment , a DLA may further include a neural network 
that is able to identify , interpret , and provide semantic 
understanding of a sign , and to pass that semantic under 
standing to path planning modules running on a CPU 
Complex . 
[ 0268 ] In at least one embodiment , multiple neural net 
works may be run simultaneously , as for Level 3 , 4 , or 5 
driving . For example , in at least one embodiment , a warning 
sign stating “ Caution : flashing lights indicate icy condi 
tions , ” along with an electric light , may be independently or 
collectively interpreted by several neural networks . In at 
least one embodiment , such warning sign itself may be 
identified as a traffic sign by a first deployed neural network 
( e.g. , a neural network that has been trained ) , text “ flashing 
lights indicate icy conditions ” may be interpreted by a 
second deployed neural network , which informs a vehicle's 
path planning software ( preferably executing on a CPU 
Complex ) that when flashing lights are detected , icy condi 
tions exist . In at least one embodiment , a flashing light may 
be identified by operating a third deployed neural network 
over multiple frames , informing a vehicle's path - planning 
software of a presence ( or an absence ) of flashing lights . In 
at least one embodiment , all three neural networks may run 
simultaneously , such as within a DLA and / or on GPU ( s ) 
1308 . 

[ 0269 ] In at least one embodiment , a CNN for facial 
recognition and vehicle owner identification may use data 
from camera sensors to identify presence of an authorized 
driver and / or owner of vehicle 1300. In at least one embodi 
ment , an always - on sensor processing engine may be used to 
unlock a vehicle when an owner approaches a driver door 
and turns on lights , and , in a security mode , to disable such 
vehicle when an owner leaves such vehicle . In this way , 
SoC ( s ) 1304 provide for security against theft and / or car 
jacking 
[ 0270 ] In at least one embodiment , a CNN for emergency 
vehicle detection and identification may use data from 
microphones 1396 to detect and identify emergency vehicle 
sirens . In at least one embodiment , SoC ( s ) 1304 use a CNN 
for classifying environmental and urban sounds , as well as 
classifying visual data . In at least one embodiment , a CNN 
running on a DLA is trained to identify a relative closing 
speed of an emergency vehicle ( e.g. , by using a Doppler 
effect ) . In at least one embodiment , a CNN may also be 
trained to identify emergency vehicles specific to a local area 
in which a vehicle is operating , as identified by GNSS 
sensor ( s ) 1358. In at least one embodiment , when operating 
in Europe , a CNN will seek to detect European sirens , and 
when in North America , a CNN will seek to identify only 
North American sirens . In at least one embodiment , once an 
emergency vehicle is detected , a control program may be 
used to execute an emergency vehicle safety routine , slow 
ing a vehicle , pulling over to a side of a road , parking a 
vehicle , and / or idling a vehicle , with assistance of ultrasonic 
sensor ( s ) 1362 , until emergency vehicles pass . 
[ 0271 ] In at least one embodiment , vehicle 1300 may 
include CPU ( s ) 1318 ( e.g. , discrete CPU ( s ) , or dCPU ( s ) ) , 
that may be coupled to SoC ( s ) 1304 via a high - speed 
interconnect ( e.g. , PCIe ) . In at least one embodiment , CPU 
( s ) 1318 may include an X86 processor , for example . 
CPU ( s ) 1318 may be used to perform any of a variety of 
functions , including arbitrating potentially inconsistent 
results between ADAS sensors and Soc ( s ) 1304 , and / or 
monitoring status and health of controller ( s ) 1336 and / or an 
infotainment system on a chip ( " infotainment SoC ” ) 1330 , 
for example . 
[ 0272 ] In at least one embodiment , vehicle 1300 may 
include GPU ( s ) 1320 ( e.g. , discrete GPU ( s ) , or dGPU ( s ) ) , 
that may be coupled to SoC ( s ) 1304 via a high - speed 
interconnect ( e.g. , NVIDIA's NVLINK channel ) . In at least 
one embodiment , GPU ( s ) 1320 may provide additional 
artificial intelligence functionality , such as by executing 
redundant and / or different neural networks , and may be used 
to train and / or update neural networks based at least in part 
on input ( e.g. , sensor data ) from sensors of a vehicle 1300 . 
[ 0273 ] In at least one embodiment , vehicle 1300 may 
further include network interface 1324 which may include , 
without limitation , wireless antenna ( s ) 1326 ( e.g. , one or 
more wireless antennas for different communication proto 
cols , such as a cellular antenna , a Bluetooth antenna , etc. ) . 
In at least one embodiment , network interface 1324 may be 
used to enable wireless connectivity to Internet cloud ser 
vices ( e.g. , with server ( s ) and / or other network devices ) , 
with other vehicles , and / or with computing devices ( e.g. , 
client devices of passengers ) . In at least one embodiment , to 
communicate with other vehicles , a direct link may be 
established between vehicle 130 and another vehicle and / or 
an indirect link may be established ( e.g. , across networks 
and over the Internet ) . In at least one embodiment , direct 
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links may be provided using a vehicle - to - vehicle commu 
nication link . In at least one embodiment , a vehicle - to 
vehicle communication link may provide vehicle 1300 infor 
mation about vehicles in proximity to vehicle 1300 ( e.g. , 
vehicles in front of , on a side of , and / or behind vehicle 
1300 ) . In at least one embodiment , such aforementioned 
functionality may be part of a cooperative adaptive cruise 
control functionality of vehicle 1300 . 
[ 0274 ] In at least one embodiment , network interface 1324 
may include an SoC that provides modulation and demodu 
lation functionality and enables controller ( s ) 1336 to com 
municate over wireless networks . In at least one embodi 
ment , network interface 1324 may include a radio frequency 
front - end for up - conversion from baseband to radio fre 
quency , and down conversion from radio frequency to 
baseband . In at least one embodiment , frequency conver 
sions may be performed in any technically feasible fashion . 
For example , frequency conversions could be performed 
through well - known processes , and / or using super - hetero 
dyne processes . In at least one embodiment , radio frequency 
front end functionality may be provided by a separate chip . 
In at least one embodiment , network interfaces may include 
wireless functionality for communicating over LTE , 
WCDMA , UMTS , GSM , CDMA2000 , Bluetooth , Blu 
etooth LE , Wi - Fi , Z - Wave , ZigBee , LoRaWAN , and / or other 
wireless protocols . 
[ 0275 ] In at least one embodiment , vehicle 1300 may 
further include data store ( s ) 1328 which may include , with 
out limitation , off - chip ( e.g. , off SoC ( s ) 1304 ) storage . In at 
least one embodiment , data store ( s ) 1328 may include , 
without limitation , one or more storage elements including 
RAM , SRAM , dynamic random - access memory 
( “ DRAM ” ) , video random - access memory ( “ VRAM ” ) , flash 
memory , hard disks , and / or other components and / or devices 
that may store at least one bit of data . 
[ 0276 ] In at least one embodiment , vehicle 1300 may 
further include GNSS sensor ( s ) 1358 ( e.g. , GPS and / or 
assisted GPS sensors ) , to assist in mapping , perception , 
occupancy grid generation , and / or path planning functions . 
In at least one embodiment , any number of GNSS sensor ( s ) 
1358 may be used , including , for example and without 
limitation , a GPS using a USB connector with an Ethernet 
to - Serial ( e.g. , RS - 232 ) bridge . 
[ 0277 ] In at least one embodiment , vehicle 1300 may 
further include RADAR sensor ( s ) 1360. In at least one 
embodiment , RADAR sensor ( s ) 1360 may be used by 
vehicle 1300 for long - range vehicle detection , even in 
darkness and / or severe weather conditions . In at least one 
embodiment , RADAR functional safety levels may be ASIL 
B. In at least one embodiment , RADAR sensor ( s ) 1360 may 
use a CAN bus and / or bus 1302 ( e.g. , to transmit data 
generated by RADAR sensor ( s ) 1360 ) for control and to 
access object tracking data , with access to Ethernet channels 
to access raw data in some examples . In at least one 
embodiment , a wide variety of RADAR sensor types may be 
used . For example , and without limitation , RADAR sensor 
( s ) 1360 may be suitable for front , rear , and side RADAR 
use . In at least one embodiment , one or more sensor of 
RADAR sensors ( s ) 1360 is a Pulse Doppler RADAR sensor . 
[ 0278 ] In at least one embodiment , RADAR sensor ( s ) 
1360 may include different configurations , such as long 
range with narrow field of view , short - range with wide field 
of view , short - range side coverage , etc. In at least one 
embodiment , long - range RADAR may be used for adaptive 

cruise control functionality . In at least one embodiment , long - range RADAR systems may provide a broad field of 
view realized by two or more independent scans , such as 
within a 250 m ( meter ) range . In at least one embodiment , 
RADAR sensor ( s ) 1360 may help in distinguishing between 
static and moving objects , and may be used by ADAS 
system 1338 for emergency brake assist and forward colli 
sion warning . In at least one embodiment , sensors 1360 ( s ) 
included in a long - range RADAR system may include , 
without limitation , monostatic multimodal RADAR with 
multiple ( e.g. , six or more ) fixed RADAR antennae and a 
high - speed CAN and FlexRay interface . In at least one 
embodiment , with six antennae , a central four antennae may 
create a focused beam pattern , designed to record vehicle's 
1300 surroundings at higher speeds with minimal interfer 
ence from traffic in adjacent lanes . In at least one embodi 
ment , another two antennae may expand field of view , 
making it possible to quickly detect vehicles entering or 
leaving a lane of vehicle 1300 . 
[ 0279 ] In at least one embodiment , mid - range RADAR 
systems may include , as an example , a range of up to 160 m 
( front ) or 80 m ( rear ) , and a field of view of up to 42 degrees 
( front ) or 150 degrees ( rear ) . In at least one embodiment , 
short - range RADAR systems may include , without limita 
tion , any number of RADAR sensor ( s ) 1360 designed to be 
installed at both ends of a rear bumper . When installed at 
both ends of a rear bumper , in at least one embodiment , a 
RADAR sensor system may create two beams that con 
stantly monitor blind spots in a rear direction and next to a 
vehicle . In at least one embodiment , short - range RADAR 
systems may be used in ADAS system 1338 for blind spot 
detection and / or lane change assist . 
[ 0280 ] In at least one embodiment , vehicle 1300 may 
further include ultrasonic sensor ( s ) 1362. In at least one 
embodiment , ultrasonic sensor ( s ) 1362 , which may be posi 
tioned at a front , a back , and / or side location of vehicle 1300 , 
may be used for parking assist and / or to create and update 
an occupancy grid . In at least one embodiment , a wide 
variety of ultrasonic sensor ( s ) 1362 may be used , and 
different ultrasonic sensor ( s ) 1362 may be used for different 
ranges of detection ( e.g. , 2.5 m , 4 m ) . In at least one 
embodiment , ultrasonic sensor ( s ) 1362 may operate at func 
tional safety levels of ASIL B. 
[ 0281 ] In at least one embodiment , vehicle 1300 may 
include LIDAR sensor ( s ) 1364. In at least one embodiment , 
LIDAR sensor ( s ) 1364 may be used for object and pedes 
trian detection , emergency braking , collision avoidance , 
and / or other functions . In at least one embodiment , LIDAR 
sensor ( s ) 1364 may operate at functional safety level ASK . 
B. In at least one embodiment , vehicle 1300 may include 
multiple LIDAR sensors 1364 ( e.g. , two , four , six , etc. ) that 
may use an Ethernet channel ( e.g. , to provide data to a 
Gigabit Ethernet switch ) . 
[ 0282 ] In at least one embodiment , LIDAR sensor ( s ) 1364 
may be capable of providing a list of objects and their 
distances for a 360 - degree field of view . In at least one 
embodiment , commercially available LIDAR sensor ( s ) 
1364 may have an advertised range of approximately 100 m , 
with an accuracy of 2 cm to 3 cm , and with support for a 100 
Mbps Ethernet connection , for example . In at least one 
embodiment , one or more non - protruding LIDAR sensors 
may be used . In such an embodiment , LIDAR sensor ( s ) 
1364 may include a small device that may be embedded into 
a front , a rear , a side , and / or a corner location of vehicle 
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1300. In at least one embodiment , LIDAR sensor ( s ) 1364 , in 
such an embodiment , may provide up to a 120 - degree 
horizontal and 35 - degree vertical field - of - view , with a 200 m 
range even for low - reflectivity objects . In at least one 
embodiment , front - mounted LIDAR sensor ( s ) 1364 may be 
configured for a horizontal field of view between 45 degrees 
and 135 degrees . 
[ 0283 ] In at least one embodiment , LIDAR technologies , 
such as 3D flash LIDAR , may also be used . In at least one 
embodiment , 3D flash LIDAR uses a flash of a laser as a 
transmission source , to illuminate surroundings of vehicle 
1300 up to approximately 200 m . In at least one embodi 
ment , a flash LIDAR unit includes , without limitation , a 
receptor , which records laser pulse transit time and reflected 
light on each pixel , which in turn corresponds to a range 
from vehicle 1300 to objects . In at least one embodiment , 
flash LIDAR may allow for highly accurate and distortion 
free images of surroundings to be generated with every laser 
flash . In at least one embodiment , four flash LIDAR sensors 
may be deployed , one at each side of vehicle 1300. In at least 
one embodiment , 3D flash LIDAR systems include , without 
limitation , a solid - state 3D staring array LIDAR camera 
with no moving parts other than a fan ( e.g. , a non - scanning 
LIDAR device ) . In at least one embodiment , flash LIDAR 
device may use a 5 nanosecond class I ( eye - safe ) laser pulse 
per frame and may capture reflected laser light as a 3D range 
point cloud and co - registered intensity data . 
[ 0284 ] In at least one embodiment , vehicle 1300 may 
further include IMU sensor ( s ) 1366. In at least one embodi 
ment , IMU sensor ( s ) 1366 may be located at a center of a 
rear axle of vehicle 1300. In at least one embodiment , IMU 
sensor ( s ) 1366 may include , for example and without limi 
tation , accelerometer ( s ) , magnetometer ( s ) , gyroscope ( s ) , a 
magnetic compass , magnetic compasses , and / or other sensor 
types . In at least one embodiment , such as in six - axis 
applications , IMU sensor ( s ) 1366 may include , without 
limitation , accelerometers and gyroscopes . In at least one 
embodiment , such as in nine - axis applications , IMU sensor 
( s ) 1366 may include , without limitation , accelerometers , 
gyroscopes , and magnetometers . 
[ 0285 ] In at least one embodiment , IMU sensor ( s ) 1366 
may be implemented as a miniature , high performance 
GPS - Aided Inertial Navigation System ( “ GPS / INS ” ) that 
combines micro - electro - mechanical systems ( “ MEMS ” ) 
inertial sensors , a high - sensitivity GPS receiver , and 
advanced Kalman filtering algorithms to provide estimates 
of position , velocity , and attitude . In at least one embodi 
ment , IMU sensor ( s ) 1366 may enable vehicle 1300 to 
estimate its heading without requiring input from a magnetic 
sensor by directly observing and correlating changes in 
velocity from a GPS to IMU sensor ( s ) 1366. In at least one 
embodiment , IMU sensor ( s ) 1366 and GNSS sensor ( s ) 1358 
may be combined in a single integrated unit . 
[ 0286 ] In at least one embodiment , vehicle 1300 may 
include microphone ( s ) 1396 placed in and / or around vehicle 
1300. In at least one embodiment , microphone ( s ) 1396 may 
be used for emergency vehicle detection and identification , 
among other things . 
[ 0287 ] In at least one embodiment , vehicle 1300 may 
further include any number of camera types , including stereo 
camera ( s ) 1368 , wide - view camera ( s ) 1370 , infrared camera 
( s ) 1372 , surround camera ( s ) 1374 , long - range camera ( s ) 
1398 , mid - range camera ( s ) 1376 , and / or other camera types . 
In at least one embodiment , cameras may be used to capture 

image data around an entire periphery of vehicle 1300. In at 
least one embodiment , which types of cameras used depends 
on vehicle 1300. In at least one embodiment , any combina 
tion of camera types may be used to provide necessary 
coverage around vehicle 1300. In at least one embodiment , 
a number of cameras deployed may differ depending on 
embodiment . For example , in at least one embodiment , 
vehicle 1300 could include six cameras , seven cameras , ten 
cameras , twelve cameras , or another number of cameras . In 
at least one embodiment , cameras may support , as an 
example and without limitation , Gigabit Multimedia Serial 
Link ( “ GMSL ” ) and / or Gigabit Ethernet communications . 
In at least one embodiment , each camera might be as 
described with more detail previously herein with respect to 
FIG . 13A and FIG . 13B . 
[ 0288 ] In at least one embodiment , vehicle 1300 may 
further include vibration sensor ( s ) 1342. In at least one 
embodiment , vibration sensor ( s ) 1342 may measure vibra 
tions of components of vehicle 1300 , such as axle ( s ) . For 
example , in at least one embodiment , changes in vibrations 
may indicate a change in road surfaces . In at least one 
embodiment , when two or more vibration sensors 1342 are 
used , differences between vibrations may be used to deter 
mine friction or slippage of road surface ( e.g. , when a 
difference in vibration is between a power - driven axle and a 
freely rotating axle ) . 
[ 0289 ] In at least one embodiment , vehicle 1300 may 
include ADAS system 1338. In at least one embodiment , 
ADAS system 1338 may include , without limitation , an 
SoC , in some examples . In at least one embodiment , ADAS 
system 1338 may include , without limitation , any number 
and combination of an autonomous / adaptive automatic 
cruise control ( " ACC " ) system , a cooperative adaptive 
cruise control ( " CACC ” ) system , a forward crash warning 
( “ FCW ” ) system , an automatic emergency braking ( “ AEB ” ) 
system , a lane departure warning ( “ LDW ) ” system , a lane 
keep assist ( “ LKA ” ) system , a blind spot warning ( “ BSW ” ) 
system , a rear cross - traffic warning ( “ RCTW ” ) system , a 
collision warning ( “ CW " ) system , a lane centering ( “ LC " ) 
system , and / or other systems , features , and / or functionality . 
[ 0290 ] In at least one embodiment , ACC system may use 
RADAR sensor ( s ) 1360 , LIDAR sensor ( s ) 1364 , and / or any 
number of camera ( s ) . In at least one embodiment , ACC 
system may include a longitudinal ACC system and / or a 
lateral ACC system . In at least one embodiment , a longitu 
dinal ACC system monitors and controls distance to another 
vehicle immediately ahead of vehicle 1300 and automati 
cally adjusts speed of vehicle 1300 to maintain a safe 
distance from vehicles ahead . In at least one embodiment , a 
lateral ACC system performs distance keeping , and advises 
vehicle 1300 to change lanes when necessary . In at least one 
embodiment , a lateral ACC is related to other ADAS appli 
cations , such as LC and CW . 
[ 0291 ] In at least one embodiment , a CACC system uses 
information from other vehicles that may be received via 
network interface 1324 and / or wireless antenna ( s ) 1326 
from other vehicles via a wireless link , or indirectly , over a 
network connection ( e.g. , over the Internet ) . In at least one 
embodiment , direct links may be provided by a vehicle - to 
vehicle ( “ V2V ” ) communication link , while indirect links 
may be provided by an infrastructure - to - vehicle ( “ 12V ” ) 
communication link . In general , V2V communication pro 
vides information about immediately preceding vehicles 
( e.g. , vehicles immediately ahead of and in same lane as 
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vehicle 1300 ) , while 12V communication provides informa 
tion about traffic further ahead . In at least one embodiment , 
a CACC system may include either or both 12V and V2V 
information sources . In at least one embodiment , given 
information of vehicles ahead of vehicle 1300 , a CACC 
system may be more reliable and it has potential to improve 
traffic flow smoothness and reduce congestion on road . 
[ 0292 ] In at least one embodiment , an FCW system is 
designed to alert a driver to a hazard , so that such driver may 
take corrective action . In at least one embodiment , an FCW 
system uses a front - facing camera and / or RADAR sensor ( s ) 
1360 , coupled to a dedicated processor , DSP , FPGA , and / or 
ASIC , that is electrically coupled to provide driver feedback , 
such as a display , speaker , and / or vibrating component . In at 
least one embodiment , an FCW system may provide a 
warning , such as in form of a sound , visual warning , 
vibration and / or a quick brake pulse . 
[ 0293 ] In at least one embodiment , an AEB system detects 
an impending forward collision with another vehicle or other 
object , and may automatically apply brakes if a driver does 
not take corrective action within a specified time or distance 
parameter . In at least one embodiment , AEB system may use 
front - facing camera ( s ) and / or RADAR sensor ( s ) 1360 , 
coupled to a dedicated processor , DSP , FPGA , and / or ASIC . 
In at least one embodiment , when an AEB system detects a 
hazard , it will typically first alert a driver to take corrective 
action to avoid collision and , if that driver does not take 
corrective action , that AEB system may automatically apply 
brakes in an effort to prevent , or at least mitigate , an impact 
of a predicted collision . In at least one embodiment , an AEB 
system may include techniques such as dynamic brake 
support and / or crash imminent braking . 
[ 0294 ] In at least one embodiment , an LDW system pro 
vides visual , audible , and / or tactile warnings , such as steer 
ing wheel or seat vibrations , to alert driver when vehicle 
1300 crosses lane markings . In at least one embodiment , an 
LDW system does not activate when a driver indicates an 
intentional lane departure , such as by activating a turn 
signal . In at least one embodiment , an LDW system may use 
front - side facing cameras , coupled to a dedicated processor , 
DSP , FPGA , and / or ASIC , that is electrically coupled to 
provide driver feedback , such as a display , speaker , and / or 
vibrating component . In at least one embodiment , an LKA 
system is a variation of an LDW system . In at least one 
embodiment , an LKA system provides steering input or 
braking to correct vehicle 1300 if vehicle 1300 starts to exit 
its lane . 
[ 0295 ] In at least one embodiment , a BSW system detects 
and warns a driver of vehicles in an automobile's blind spot . 
In at least one embodiment , a BSW system may provide a 
visual , audible , and / or tactile alert to indicate that merging 
or changing lanes is unsafe . In at least one embodiment , a 
BSW system may provide an additional warning when a 
driver uses a turn signal . In at least one embodiment , a BSW 
system may use rear - side facing camera ( s ) and / or RADAR 
sensor ( s ) 1360 , coupled to a dedicated processor , DSP , 
FPGA , and / or ASIC , that is electrically coupled to driver 
feedback , such as a display , speaker , and / or vibrating com 
ponent . 
[ 0296 ] In at least one embodiment , an RCTW system may 
provide visual , audible , and / or tactile notification when an 
object is detected outside a rear - camera range when vehicle 
1300 is backing up . In at least one embodiment , an RCTW 
system includes an AEB system to ensure that vehicle brakes 

are applied to avoid a crash . In at least one embodiment , an 
RCTW system may use one or more rear - facing RADAR 
sensor ( s ) 1360 , coupled to a dedicated processor , DSP , 
FPGA , and / or ASIC , that is electrically coupled to provide 
driver feedback , such as a display , speaker , and / or vibrating 
component 
[ 0297 ] In at least one embodiment , conventional ADAS 
systems may be prone to false positive results which may be 
annoying and distracting to a driver , but typically are not 
catastrophic , because conventional ADAS systems alert a 
driver and allow that driver to decide whether a safety 
condition truly exists and act accordingly . In at least one 
embodiment , vehicle 1300 itself decides , in case of conflict 
ing results , whether to heed result from a primary computer 
or a secondary computer ( e.g. , a first controller or a second 
controller of controllers 1336 ) . For example , in at least one 
embodiment , ADAS system 1338 may be a backup and / or 
secondary computer for providing perception information to 
a backup computer rationality module . In at least one 
embodiment , a backup computer rationality monitor may 
run redundant diverse software on hardware components to 
detect faults in perception and dynamic driving tasks . In at 
least one embodiment , outputs from ADAS system 1338 
may be provided to a supervisory MCU . In at least one 
embodiment , if outputs from a primary computer and out 
puts from a secondary computer conflict , a supervisory 
MCU determines how to reconcile conflict to ensure safe 
operation . 
[ 0298 ] In at least one embodiment , a primary computer 
may be configured to provide a supervisory MCU with a 
confidence score , indicating that primary computer's confi 
dence in a chosen result . In at least one embodiment , if that 
confidence score exceeds a threshold , that supervisory MCU 
may follow that primary computer's direction , regardless of 
whether that secondary computer provides a conflicting or 
inconsistent result . In at least one embodiment , where a 
confidence score does not meet a threshold , and where 
primary and secondary computers indicate different results 
( e.g. , a conflict ) , a supervisory MCU may arbitrate between 
computers to determine an appropriate outcome . 
[ 0299 ] In at least one embodiment , a supervisory MCU 
may be configured to run a neural network ( s ) that is trained 
and configured to determine , based at least in part on outputs 
from a primary computer and outputs from a secondary 
computer , conditions under which that secondary computer 
provides false alarms . In at least one embodiment , neural 
network ( s ) in a supervisory MCU may learn when 
ondary computer's output may be trusted , and when it 
cannot . For example , in at least one embodiment , when that 
secondary computer is a RADAR - based FCW system , a 
neural network ( s ) in that supervisory MCU may learn when 
an FCW system is identifying metallic objects that are not , 
in fact , hazards , such as a drainage grate or manhole cover 
that triggers an alarm . In at least one embodiment , when a 
secondary computer is a camera - based LDW system , a 
neural network in a supervisory MCU may learn to override 
LDW when bicyclists or pedestrians are present and a lane 
departure is , in fact , a safest maneuver . In at least one 
embodiment , a supervisory MCU may include at least one of 
a DLA or a GPU suitable for running neural network ( s ) with 
associated memory . In at least one embodiment , a supervi 
sory MCU may comprise and / or be included as a component 
of SoC ( s ) 1304 . 
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[ 0300 ] In at least one embodiment , ADAS system 1338 
may include a secondary computer that performs ADAS 
functionality using traditional rules of computer vision . In at 
least one embodiment , that secondary computer may use 
classic computer vision rules ( if - then ) , and presence of a 
neural network ( s ) in a supervisory MCU may improve 
reliability , safety and performance . For example , in at least 
one embodiment , diverse implementation and intentional 
non - identity makes an overall system more fault - tolerant , 
especially to faults caused by software ( or software - hard 
ware interface ) functionality . For example , in at least one 
embodiment , if there is a software bug or error in software 
running on a primary computer , and non - identical software 
code running on a secondary computer provides a consistent 
overall result , then a supervisory MCU may have greater 
confidence that an overall result is correct , and a bug in 
software or hardware on that primary computer is not 
causing a material error . 
[ 0301 ] In at least one embodiment , an output of ADAS 
system 1338 may be fed into a primary computer's percep 
tion block and / or a primary computer's dynamic driving task 
block . For example , in at least one embodiment , if ADAS 
system 1338 indicates a forward crash warning due to an 
object immediately ahead , a perception block may use this 
information when identifying objects . In at least one 
embodiment , a secondary computer may have its own neural 
network that is trained and thus reduces a risk of false 
positives , as described herein . 
[ 0302 ] In at least one embodiment , vehicle 1300 may 
further include infotainment SoC 1330 ( e.g. , an in - vehicle 
infotainment system ( IVI ) ) . Although illustrated and 
described as an SoC , infotainment system SoC 1330 , in at 
least one embodiment , may not be an SoC , and may include , 
without limitation , two or more discrete components . In at 
least one embodiment , infotainment SoC 1330 may include , 
without limitation , a combination of hardware and software 
that may be used to provide audio ( e.g. , music , a personal 
digital assistant , navigational instructions , news , radio , etc. ) , 
video ( e.g. , TV , movies , streaming , etc. ) , phone ( e.g. , hands 
free calling ) , network connectivity ( e.g. , LTE , WiFi , etc. ) , 
and / or information services ( e.g. , navigation systems , rear 
parking assistance , a radio data system , vehicle related 
information such as fuel level , total distance covered , brake 
fuel level , oil level , door open / close , air filter information , 
etc. ) to vehicle 1300. For example , infotainment SoC 1330 
could include radios , disk players , navigation systems , video 
players , USB and Bluetooth connectivity , carputers , in - car 
entertainment , WiFi , steering wheel audio controls , hands 
free voice control , a heads - up display ( “ HUD " ) , HMI dis 
play 1334 , a telematics device , a control panel ( e.g. , for 
controlling and / or interacting with various components , 
features , and / or systems ) , and / or other components . In at 
least one embodiment , infotainment SoC 1330 may further 
be used to provide information ( e.g. , visual and / or audible ) 
to user ( s ) of vehicle 1300 , such as information from ADAS 
system 1338 , autonomous driving information such as 
planned vehicle maneuvers , trajectories , surrounding envi 
ronment information ( e.g. , intersection information , vehicle 
information , road information , etc. ) , and / or other informa 
tion . 

[ 0303 ] In at least one embodiment , infotainment SoC 1330 
may include any amount and type of GPU functionality . In 
at least one embodiment , infotainment SoC 1330 may com 
municate over bus 1302 with other devices , systems , and / or 

components of vehicle 1300. In at least one embodiment , 
infotainment SoC 1330 may be coupled to a supervisory 
MCU such that a GPU of an infotainment system may 
perform some self - driving functions in event that primary 
controller ( s ) 1336 ( e.g. , primary and / or backup computers of 
vehicle 1300 ) fail . In at least one embodiment , infotainment 
SoC 1330 may put vehicle 1300 into a chauffeur to safe stop 
mode , as described herein . 
[ 0304 ] In at least one embodiment , vehicle 1300 may 
further include instrument cluster 1332 ( e.g. , a digital dash , 
an electronic instrument cluster , a digital instrument panel , 
etc. ) . In at least one embodiment , instrument cluster 1332 
may include , without limitation , a controller and / or super 
computer ( e.g. , a discrete controller or supercomputer ) . In at 
least one embodiment , instrument cluster 1332 may include , 
without limitation , any number and combination of a set of 
instrumentation such as a speedometer , fuel level , oil pres 
sure , tachometer , odometer , turn indicators , gearshift posi 
tion indicator , seat belt warning light ( s ) , parking - brake 
warning light ( s ) , engine - malfunction light ( s ) , supplemental 
restraint system ( e.g. , airbag ) information , lighting controls , 
safety system controls , navigation information , etc. In some 
examples , information may be displayed and / or shared 
among infotainment SoC 1330 and instrument cluster 1332 . 
In at least one embodiment , instrument cluster 1332 may be 
included as part of infotainment SoC 1330 , or vice versa . 
[ 0305 ] Inference and / or training logic 1015 are used to 
perform inferencing and / or training operations associated 
with one or more embodiments . Details regarding inference 
and / or training logic 1015 are provided herein in conjunc 
tion with FIGS . 10A and / or 10B . In at least one embodiment , 
inference and / or training logic 1015 may be used in system 
FIG . 13C for inferencing or predicting operations based , at 
least in part , on weight parameters calculated using neural 
network training operations , neural network functions and / 
or architectures , or neural network use cases described 
herein . In various embodiments , the inference and / or train 
ing logic 1015 utilize the target image data generated by the 
offline image signal processing 240 as described above in 
connection with FIG . 2. In addition , the data collection 202 
described above in connection with FIG . 2 , in various 
embodiments is performed by the vehicle 1300 . 
[ 0306 ] FIG . 13D is a diagram of a system for communi 
cation between cloud - based server ( s ) and autonomous 
vehicle 1300 of FIG . 13A , according to at least one embodi 
ment . In at least one embodiment , system may include , 
without limitation , server ( s ) 1378 , network ( s ) 1390 , and any 
number and type of vehicles , including vehicle 1300. In at 
least one embodiment , server ( s ) 1378 may include , without 
limitation , a plurality of GPUs 1384 ( A ) -1384 ( H ) ( collec 
tively referred to herein as GPUs 1384 ) , PCIe switches 
1382 ( A ) -1382 ( D ) ( collectively referred to herein as PCIe 
switches 1382 ) , and / or CPUs 1380 ( A ) -1380 ( B ) ( collectively 
referred to herein as CPUs 1380 ) . In at least one embodi 
ment , GPUs 1384 , CPUs 1380 , and PCIe switches 1382 may 
be interconnected with high - speed interconnects such as , for 
example and without limitation , NVLink interfaces 1388 
developed by NVIDIA and / or PCIe connections 1386. In at 
least one embodiment , GPUs 1384 are connected via an 
NVLink and / or NVSwitch SoC and GPUs 1384 and PCIe 
switches 1382 are connected via PCIe interconnects . 
Although eight GPUs 1384 , two CPUs 1380 , and four PCIe 
switches 1382 are illustrated , this is not intended to be 
limiting . In at least one embodiment , each of server ( s ) 1378 
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computer of vehicle 1300 to assume control , notify passen 
gers , and complete a safe parking maneuver . 
[ 0311 ] In at least one embodiment , server ( s ) 1378 may 
include GPU ( s ) 1384 and one or more programmable infer 
ence accelerators ( e.g. , NVIDIA's TensorRT 3 devices ) . In 
at least one embodiment , a combination of GPU - powered 
servers and inference acceleration may make real - time 
responsiveness possible . In at least one embodiment , such as 
where performance is less critical , servers powered by 
CPUs , FPGAs , and other processors may be used for infer 
encing . In at least one embodiment , hardware structure ( s ) 
1015 are used to perform one or more embodiments . Details 
regarding hardware structure ( x ) 1015 are provided herein in 
conjunction with FIGS . 10A and / or 10B . 

2 

may include , without limitation , any number of GPUs 1384 , 
CPUs 1380 , and / or PCIe switches 1382 , in any combination . 
For example , in at least one embodiment , server ( s ) 1378 
could each include eight , sixteen , thirty - two , and / or more 
GPUs 1384 . 

[ 0307 ] In at least one embodiment , server ( s ) 1378 may 
receive , over network ( s ) 1390 and from vehicles , image data 
representative of images showing unexpected or changed 
road conditions , such as recently commenced road - work . In 
at least one embodiment , server ( s ) 1378 may transmit , over 
network ( s ) 1390 and to vehicles , neural networks 1392 , 
updated or otherwise , and / or map information 1394 , includ 
ing , without limitation , information regarding traffic and 
road conditions . In at least one embodiment , updates to map 
information 1394 may include , without limitation , updates 
for HD map 1322 , such as information regarding construc 
tion sites , potholes , detours , flooding , and / or other obstruc 
tions . In at least one embodiment , neural networks 1392 , 
and / or map information 1394 may have resulted from new 
training and / or experiences represented in data received 
from any number of vehicles in an environment , and / or 
based at least in part on training performed at a data center 
( e.g. , using server ( s ) 1378 and / or other servers ) . 
[ 0308 ] In at least one embodiment , server ( s ) 1378 may be 
used to train machine learning models ( e.g. , neural net 
works ) based at least in part on training data . In at least one 
embodiment , training data may be generated by vehicles , 
and / or may be generated in a simulation ( e.g. , using a game 
engine ) . In at least one embodiment , any amount of training 
data is tagged ( e.g. , where associated neural network ben 
efits from supervised learning ) and / or undergoes other pre 
processing . In at least one embodiment , any amount of 
training data is not tagged and / or pre - processed ( e.g. , where 
associated neural network does not require supervised learn 
ing ) . In at least one embodiment , once machine learning 
models are trained , machine learning models may be used by 
vehicles ( e.g. , transmitted to vehicles over network ( s ) 1390 ) , 
and / or machine learning models may be used by server ( s ) 
1378 to remotely monitor vehicles . 
[ 0309 ] In at least one embodiment , server ( s ) 1378 may 
receive data from vehicles and apply data to up - to - date 
real - time neural networks for real - time intelligent inferenc 
ing . In at least one embodiment , server ( s ) 1378 may include 
deep - learning supercomputers and / or dedicated Al comput 
ers powered by GPU ( s ) 1384 , such as a DGX and DGX 
Station machines developed by NVIDIA . However , in at 
least one embodiment , server ( s ) 1378 may include deep 
learning infrastructure that uses CPU - powered data centers . 
[ 0310 ] In at least one embodiment , deep - learning infra 
structure of server ( s ) 1378 may be capable of fast , real - time 
inferencing , and may use that capability to evaluate and 
verify health of processors , software , and / or associated 
hardware in vehicle 1300. For example , in at least one 
embodiment , deep - learning infrastructure may receive peri 
odic updates from vehicle 1300 , such as a sequence of 
images and / or objects that vehicle 1300 has located in that 
sequence of images ( e.g. , via computer vision and / or other 
machine learning object classification techniques ) . In at least 
one embodiment , deep - learning infrastructure may run its 
own neural network to identify objects and compare them 
with objects identified by vehicle 1300 and , if results do not 
match and deep - learning infrastructure concludes that Al in 
vehicle 1300 is malfunctioning , then server ( s ) 1378 may 
transmit a signal to vehicle 1300 instructing a fail - safe 

Computer Systems 
[ 0312 ] FIG . 14 is a block diagram illustrating an exem 
plary computer system , which may be a system with inter 
connected devices and components , a system - on - a - chip 
( SOC ) or some combination thereof formed with a processor 
that may include execution units to execute an instruction , 
according to at least one embodiment . In at least one 
embodiment , a computer system 1400 may include , without 
limitation , a component , such as a processor 1402 to employ 
execution units including logic to perform algorithms for 
process data , in accordance with present disclosure , such as 
in embodiment described herein . In at least one embodi 
ment , computer system 1400 may include processors , such 
as PENTIUM® Processor family , XeonTM , Itanium® , 
XScaleTM and / or StrongARMTM , Intel® CoreTM , or Intel® 
NervanaTM microprocessors available from Intel Corpora 
tion of Santa Clara , Calif . , although other systems ( including 
PCs having other microprocessors , engineering worksta 
tions , set - top boxes and like ) may also be used . In at least 
one embodiment , computer system 1400 may execute a 
version of WINDOWS operating system available from 
Microsoft Corporation of Redmond , Wash . , although other 
operating systems ( UNIX and Linux , for example ) , embed 
ded software , and / or graphical user interfaces , may also be 
used . 
[ 0313 ] Embodiments may be used in other devices such as 
handheld devices and embedded applications . Some 
examples of handheld devices include cellular phones , Inter 
net Protocol devices , digital cameras , personal digital assis 
tants ( “ PDAs ” ) , and handheld PCs . In at least one embodi 
ment , embedded applications may include a microcontroller , 
a digital signal processor ( “ DSP ” ) , system on a chip , net 
work computers ( “ NetPCs ” ) , set - top boxes , network hubs , 
wide area network ( “ WAN ” ) switches , or any other system 
that may perform one or more instructions in accordance 
with at least one embodiment . 
[ 0314 ] In at least one embodiment , computer system 1400 
may include , without limitation , processor 1402 that may 
include , without limitation , one or more execution units 
1408 to perform machine learning model training and / or 
inferencing according to techniques described herein . In at 
least one embodiment , computer system 1400 is a single 
processor desktop or server system , but in another embodi 
ment , computer system 1400 may be a multiprocessor 
system . In at least one embodiment , processor 1402 may 
include , without limitation , a complex instruction set com 
puter ( “ CISC ” ) microprocessor , a reduced instruction set 
computing ( “ RISC ” ) microprocessor , a very long instruction 
word ( “ VLIW ” ) microprocessor , a processor implementing 
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a combination of instruction sets , or any other processor 
device , such as a digital signal processor , for example . In at 
least one embodiment , processor 1402 may be coupled to a 
processor bus 1410 that may transmit data signals between 
processor 1402 and other components in computer system 
1400 . 

a 

[ 0315 ] In at least one embodiment , processor 1402 may 
include , without limitation , a Level 1 ( “ L1 ” ) internal cache 
memory ( " cache ) 1404. In at least one embodiment , pro 
cessor 1402 may have a single internal cache or multiple 
levels of internal cache . In at least one embodiment , cache 
memory may reside external to processor 1402. Other 
embodiments may also include a combination of both inter 
nal and external caches depending on particular implemen 
tation and needs . In at least one embodiment , a register file 
1406 may store different types of data in various registers 
including , without limitation , integer registers , floating point 
registers , status registers , and an instruction pointer register . 
[ 031 ] In at least one embodiment , execution unit 1408 , 
including , without limitation , logic to perform integer and 
floating point operations , also resides in processor 1402. In 
at least one embodiment , processor 1402 may also include 
a microcode ( “ ucode ” ) read only memory ( “ ROM ” ) that 
stores microcode for certain macro instructions . In at least 
one embodiment , execution unit 1408 may include logic to 
handle a packed instruction set 1409. In at least one embodi 
ment , by including packed instruction set 1409 in an instruc 
tion set of a general - purpose processor , along with associ 
ated circuitry to execute instructions , operations used by 
many multimedia applications may be performed using 
packed data in processor 1402. In at least one embodiment , 
many multimedia applications may be accelerated and 
executed more efficiently by using a full width of a proces 
sor's data bus for performing operations on packed data , 
which may eliminate a need to transfer smaller units of data 
across that processor's data bus to perform one or more 
operations one data element at a time . 
[ 0317 ] In at least one embodiment , execution unit 1408 
may also be used in microcontrollers , embedded processors , 

phics devices , DSPs , and other types of logic circuits . In 
at least one embodiment , computer system 1400 may 
include , without limitation , a memory 1420. In at least one 
embodiment , memory 1420 may be a Dynamic Random 
Access Memory ( “ DRAM ” ) device , a Static Random Access 
Memory ( “ SRAM ” ) device , a flash memory device , or 
another memory device . In at least one embodiment , 
memory 1420 may store instruction ( s ) 1419 and / or data 
1421 represented by data signals that may be executed by 
processor 1402 . 
[ 0318 ] In at least one embodiment , a system logic chip 
may be coupled to processor bus 1410 and memory 1420. In 
at least one embodiment , a system logic chip may include , 
without limitation , a memory controller hub ( “ MCH ” ) 1416 , 
and processor 1402 may communicate with MCH 1416 via 
processor bus 1410. In at least one embodiment , MCH 1416 
may provide a high bandwidth memory path 1418 to 
memory 1420 for instruction and data storage and for 
storage of graphics commands , data and textures . In at least 
one embodiment , MCH 1416 may direct data signals 
between processor 1402 , memory 1420 , and other compo 
nents in computer system 1400 and to bridge data signals 
between processor bus 1410 , memory 1420 , and a system 
I / O interface 1422. In at least one embodiment , a system 
logic chip may provide a graphics port for coupling to a 

graphics controller . In at least one embodiment , MCH 1416 
may be coupled to memory 1420 through high bandwidth 
memory path 1418 and a graphics / video card 1412 may be 
coupled to MCH 1416 through an Accelerated Graphics Port 
( “ AGP ” ) interconnect 1414 . 
[ 0319 ] In at least one embodiment , computer system 1400 
may use system 1/0 interface 1422 as a proprietary hub 
interface bus to couple MCH 1416 to an I / O controller hub 
( “ ICH ” ) 1430. In at least one embodiment , ICH 1430 may 
provide direct connections to some I / O devices via a local 
I / O bus . In at least one embodiment , a local I / O bus may 
include , without limitation , a high - speed I / O bus for con 
necting peripherals to memory 1420 , a chipset , and proces 
sor 1402. Examples may include , without limitation , an 
audio controller 1429 , a firmware hub ( “ flash BIOS ” ) 1428 , 
a wireless transceiver 1426 , a data storage 1424 , a legacy I / O 
controller 1423 containing user input and keyboard inter 
faces 1425 , a serial expansion port 1427 , such as a Universal 
Serial Bus ( “ USB ” ) port , and a network controller 1434. In 
at least one embodiment , data storage 1424 may comprise a 
hard disk drive , a floppy disk drive , a CD - ROM device , a 
flash memory device , or other mass storage device . 
[ 0320 ] In at least one embodiment , FIG . 14 illustrates a 
system , which includes interconnected hardware devices or 
" chips ” , whereas in other embodiments , FIG . 14 may illus 
trate an exemplary SoC . In at least one embodiment , devices 
illustrated in FIG . 14 may be interconnected with propri 
etary interconnects , standardized interconnects ( e.g. , PCIe ) 
or some combination thereof . In at least one embodiment , 
one or more components of computer system 1400 are 
interconnected using compute express link ( CXL ) intercon 
nects . 
[ 0321 ] Inference and / or training logic 1015 are used to 
perform inferencing and / or training operations associated 
with one or more embodiments . Details regarding inference 
and / or training logic 1015 are provided herein in conjunc 
tion with FIGS . 10A and / or 10B . In at least one embodiment , 
inference and / or training logic 1015 may be used in system 
FIG . 14 for inferencing or predicting operations based , at 
least in part , on weight parameters calculated using neural 
network training operations , neural network functions and / 
or architectures , or neural network use cases described 
herein . 
[ 0322 ] FIG . 15 is a block diagram illustrating an electronic 
device 1500 for utilizing a processor 1510 , according to at 
least one embodiment . In at least one embodiment , elec 
tronic device 1500 may be , for example and without limi 
tation , a notebook , a tower server , a rack server , a blade 
server , a laptop , a desktop , a tablet , a mobile device , a phone , 
an embedded computer , or any other suitable electronic 
device . 
[ 0323 ] In at least one embodiment , electronic device 1500 
may include , without limitation , processor 1510 communi 
catively coupled to any suitable number or kind of compo 
nents , peripherals , modules , or devices . In at least one 
embodiment , processor 1510 is coupled using a bus or 
interface , such as a IC bus , a System Management Bus 
( “ SMBus ” ) , a Low Pin Count ( LPC ) bus , a Serial Peripheral 
Interface ( “ SPI ” ) , a High Definition Audio ( “ HDA ” ) bus , a 
Serial Advance Technology Attachment ( “ SATA ” ) bus , a 
Universal Serial Bus ( “ USB ” ) ( versions 1 , 2 , 3 , etc. ) , or a 
Universal Asynchronous Receiver / Transmitter ( “ UART ” ) 
bus . In at least one embodiment , FIG . 15 illustrates a system , 
which includes interconnected hardware devices or “ chips ” , 
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whereas in other embodiments , FIG . 15 may illustrate an 
exemplary SoC . In at least one embodiment , devices illus 
trated in FIG . 15 may be interconnected with proprietary 
interconnects , standardized interconnects ( e.g. , PCIe ) or 
some combination thereof . In at least one embodiment , one 
or more components of FIG . 15 are interconnected using 
compute express link ( CXL ) interconnects . 
[ 0324 ] In at least one embodiment , FIG . 15 may include a 
display 1524 , a touch screen 1525 , a touch pad 1530 , a Near 
Field Communications unit ( “ NFC ” ) 1545 , a sensor hub 
1540 , a thermal sensor 1546 , an Express Chipset ( “ EC ” ) 
1535 , a Trusted Platform Module ( TPM " ) 1538 , BIOS / 
firmware / flash memory ( “ BIOS , FW Flash ” ) 1522 , a DSP 
1560 , a drive 1520 such as a Solid State Disk ( “ SSD " ) or a 
Hard Disk Drive ( “ HDD ” ) , a wireless local area network 
unit ( “ WLAN ” ) 1550 , a Bluetooth unit 1552 , a Wireless 
Wide Area Network unit ( “ WWAN " ) 1556 , a Global Posi 
tioning System ( GPS ) unit 1555 , a camera ( “ USB 3.0 
camera ” ) 1554 such as a USB 3.0 camera , and / or a Low 
Power Double Data Rate ( “ LPDDR ” ) memory unit 
( “ LPDDR3 " ) 1515 implemented in , for example , an 
LPDDR3 standard . These components may each be imple 
mented in any suitable manner . 
[ 0325 ] In at least one embodiment , other components may 
be communicatively coupled to processor 1510 through 
components described herein . In at least one embodiment , 
an accelerometer 1541 , an ambient light sensor ( “ ALS ” ) 
1542 , a compass 1543 , and a gyroscope 1544 may be 
communicatively coupled to sensor hub 1540. In at least one 
embodiment , a thermal sensor 1539 , a fan 1537 , a keyboard 
1536 , and touch pad 1530 may be communicatively coupled 
to EC 1535. In at least one embodiment , speakers 1563 , 
headphones 1564 , and a microphone ( “ mic ” ) 1565 may be 
communicatively coupled to an audio unit ( " audio codec and 
class D amp ” ) 1562 , which may in turn be communicatively 
coupled to DSP 1560. In at least one embodiment , audio unit 
1562 may include , for example and without limitation , 
audio coder / decoder ( " codec ” ) and a class D amplifier . In at 
least one embodiment , a SIM card ( “ SIM ” ) 1557 may be 
communicatively coupled to WWAN unit 1556. In at least 
one embodiment , components such as WLAN unit 1550 and 
Bluetooth unit 1552 , as well as WWAN unit 1556 may be 
implemented in a Next Generation Form Factor ( “ NGFF ” ) . 
[ 0326 ] Inference and / or training logic 1015 are used to 
perform inferencing and / or training operations associated 
with one or more embodiments . Details regarding inference 
and / or training logic 1015 are provided herein in conjunc 
tion with FIGS . 10A and / or 10B . In at least one embodiment , 
inference and / or training logic 1015 may be used in system 
FIG . 15 for inferencing or predicting operations based , at 
least in part , on weight parameters calculated using neural 
network training operations , neural network functions and / 
or architectures , or neural network use cases described 
herein . In various embodiments , the inference and / or train 
ing logic 1015 utilize the target image data generated by the 
offline image signal processing 240 as described above in 
connection with FIG . 2. In addition , the data collection 202 
described above in connection with FIG . 2 , in various 
embodiments is performed by the vehicle 1300 . 
[ 0327 ] FIG . 16 illustrates a computer system 1600 , 
according to at least one embodiment . In at least one 
embodiment , computer system 1600 is configured to imple 
ment various processes and methods described throughout 
this disclosure . 

[ 0328 ] In at least one embodiment , computer system 1600 
comprises , without limitation , at least one central processing 
unit ( “ CPU ” ) 1602 that is connected to a communication bus 
1610 implemented using any suitable protocol , such as PCI 
( " Peripheral Component Interconnect ” ) , peripheral compo 
nent interconnect express ( “ PCI - Express ” ) , AGP ( “ Acceler 
ated Graphics Port ” ) , HyperTransport , or any other bus or 
point - to - point communication protocol ( s ) . In at least one 
embodiment , computer system 1600 includes , without limi 
tation , a main memory 1604 and control logic ( e.g. , imple 
mented as hardware , software , or a combination thereof ) and 
data are stored in main memory 1604 , which may take form 
of random access memory ( “ RAM ” ) . In at least one embodi 
ment , a network interface subsystem ( “ network interface ” ) 
1622 provides an interface to other computing devices and 
networks for receiving data from and transmitting data to 
other systems with computer system 1600 . 
[ 0329 ] In at least one embodiment , computer system 1600 , 
in at least one embodiment , includes , without limitation , 
input devices 1608 , a parallel processing system 1612 , and 
display devices 1606 that can be implemented using a 
conventional cathode ray tube ( “ CRT ” ) , a liquid crystal 
display ( “ LCD " ) , a light emitting diode ( “ LED " ) display , a 
plasma display , or other suitable display technologies . In at 
least one embodiment , user input is received from input 
devices 1608 such as keyboard , mouse , touchpad , micro 
phone , etc. In at least one embodiment , each module 
described herein can be situated on a single semiconductor 
platform to form a processing system . 
[ 0330 ] Inference and / or training logic 1015 are used to 
perform inferencing and / or training operations associated 
with one or more embodiments . Details regarding inference 
and / or training logic 1015 are provided herein in conjunc 
tion with FIGS . 10A and / or 10B . In at least one embodiment , 
inference and / or training logic 1015 may be used in system 
FIG . 16 for inferencing or predicting operations based , at 
least in part , on weight parameters calculated using neural 
network training operations , neural network functions and / 
or architectures , or neural network use cases described 
herein . In various embodiments , the inference and / or train 
ing logic 1015 utilize the target image data generated by the 
offline image signal processing 240 as described above in 
connection with FIG . 2. In addition , the data collection 202 
described above in connection with FIG . 2 , in various 
embodiments is performed by the vehicle 1300 . 
[ 0331 ] FIG . 17 illustrates a computer system 1700 , 
according to at least one embodiment . In at least one 
embodiment , computer system 1700 includes , without limi 
tation , a computer 1710 and a USB stick 1720. In at least one 
embodiment , computer 1710 may include , without limita 
tion , any number and type of processor ( s ) ( not shown ) and 
a memory ( not shown ) . In at least one embodiment , com 
puter 1710 includes , without limitation , a server , a cloud 
instance , a laptop , and a desktop computer . 
[ 0332 ] In at least one embodiment , USB stick 1720 
includes , without limitation , a processing unit 1730 , a USB 
interface 1740 , and USB interface logic 1750. In at least one 
embodiment , processing unit 1730 may be any instruction 
execution system , apparatus , or device capable of executing 
instructions . In at least one embodiment , processing unit 
1730 may include , without limitation , any number and type 
of processing cores ( not shown ) . In at least one embodiment , 
processing unit 1730 comprises an application specific inte 
grated circuit ( “ ASIC ” ) that is optimized to perform any 
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amount and type of operations associated with machine 
learning . For instance , in at least one embodiment , process 
ing unit 1730 is a tensor processing unit ( “ TPC ” ) that is 
optimized to perform machine learning inference operations . 
In at least one embodiment , processing unit 1730 is a vision processing unit ( “ VPU ” ) that is optimized to perform 
machine vision and machine learning inference operations . 
[ 0333 ] In at least one embodiment , USB interface 1740 
may be any type of USB connector or USB socket . For 
instance , in at least one embodiment , USB interface 1740 is 
a USB 3.0 Type - C socket for data and power . In at least one 
embodiment , USB interface 1740 is a USB 3.0 Type - A 
connector . In at least one embodiment , USB interface logic 

include any amount and type of logic that enables 
processing unit 1730 to interface with devices ( e.g. , com 
puter 1710 ) via USB connector 1740 . 
[ 0334 ] Inference and / or training logic 1015 are used to 
perform inferencing and / or training operations associated 
with one or more embodiments . Details regarding inference 
and / or training logic 1015 are provided herein in conjunc 
tion with FIGS . 10A and / or 10B . In at least one embodiment , 
inference and / or training logic 1015 may be used in system 
FIG . 17 for inferencing or predicting operations based , at 
least in part , on weight parameters calculated using neural 
network training operations , neural network functions and / 
or architectures , or neural network use cases described 
herein . 
[ 0335 ] FIG . 18A illustrates an exemplary architecture in 
which a plurality of GPUs 1810 ( 1 ) -1810 ( N ) is communica 
tively coupled to a plurality of multi - core processors 1805 
( 1 ) -1805 ( M ) over high - speed links 1840 ( 1 ) -1840 ( N ) ( e.g. , 
buses , point - to - point interconnects , etc. ) . In at least one 
embodiment , high - speed links 1840 ( 1 ) -1840 ( N ) support a 
communication throughput of 4 GB / s , 30 GB / s , 80 GB / s or 
higher . In at least one embodiment , various interconnect 
protocols may be used including , but not limited to , PCIe 4.0 
or 5.0 and NVLink 2.0 . In various figures , “ N ” and “ M ” 
represent positive integers , values of which may be different 
from figure to figure . 
[ 0336 ] In addition , and in at least one embodiment , two or 
more of GPUs 1810 are interconnected over high - speed 
links 1829 ( 1 ) -1829 ( 2 ) , which may be implemented using 
similar or different protocols / links than those used for high 
speed links 1840 ( 1 ) -1840 ( N ) . Similarly , two or more of 
multi - core processors 1805 may be connected over a high 
speed link 1828 which may be symmetric multi - processor 
( SMP ) buses operating at 20 GB / s , 30 GB / s , 120 GB / s or 
higher . Alternatively , all communication between various 
system components shown in FIG . 18A may be accom 
plished using similar protocols / links ( e.g. , over a common 
interconnection fabric ) . 
[ 0337 ] In at least one embodiment , each multi - core pro 
cessor 1805 is communicatively coupled to a processor 
memory 1801 ( 1 ) -1801 ( M ) , via memory interconnects 1826 
( 1 ) -1826 ( M ) , respectively , and each GPU 1810 ( 1 ) -1810 ( N ) 
is communicatively coupled to GPU memory 1820 ( 1 ) -1820 
( N ) over GPU memory interconnects 1850 ( 1 ) -1850 ( N ) , 
respectively . In at least one embodiment , memory intercon 
nects 1826 and 1850 may utilize similar or different memory 
access technologies . By way of example , and not limitation , 
processor memories 1801 ( 1 ) -1801 ( M ) and GPU memories 
1820 may be volatile memories such as dynamic random 
access memories ( DRAMs ) ( including stacked DRAMs ) , 
Graphics DDR SDRAM ( GDDR ) ( e.g. , GDDR5 , GDDR6 ) , 

or High Bandwidth Memory ( HBM ) and / or may be non 
volatile memories such as 3D XPoint or Nano - Ram . In at 
least one embodiment , some portion of processor memories 
1801 may be volatile memory and another portion may be 
non - volatile memory ( e.g. , using a two - level memory ( 2LM ) 
hierarchy ) . 
[ 0338 ] As described herein , although various multi - core 
processors 1805 and GPUs 1810 may be physically coupled 
to a particular memory 1801 , 1820 , respectively , and / or a 
unified memory architecture may be implemented in which 
a virtual system address space ( also referred to as “ effective 
address ” space ) is distributed among various physical 
memories . For example , processor memories 1801 ( 1 ) -1801 
( M ) may each comprise 64 GB of system memory address 
space and GPU memories 1820 ( 1 ) -1820 ( N ) may each com 
prise 32 GB of system memory address space resulting in a 
total of 256 GB addressable memory when M = 2 and N = 4 . 
Other values for N and M are possible . 
[ 0339 ] FIG . 18B illustrates additional details for an inter 
connection between a multi - core processor 1807 and a 
graphics acceleration module 1846 in accordance with one 
exemplary embodiment . In at least one embodiment , graph 
ics acceleration module 1846 may include one or more GPU 
chips integrated on a line card which is coupled to processor 
1807 via high - speed link 1840 ( e.g. , a PCIe bus , NVLink , 
etc. ) . In at least one embodiment , graphics acceleration 
module 1846 may alternatively be integrated on a package 
or chip with processor 1807 . 
[ 0340 ] In at least one embodi processor 1807 
includes a plurality of cores 1860A - 1860D , each with a 
translation lookaside buffer ( “ TLB ” ) 1861A - 1861D and one 
or more caches 1862A - 1862D . In at least one embodiment , 
cores 1860A - 1860D may include various other components 
for executing instructions and processing data that are not 
illustrated . In at least one embodiment , caches 1862A 
1862D may comprise Level 1 ( L1 ) and Level 2 ( L2 ) caches . 
In addition , one or more shared caches 1856 may be 
included in caches 1862A - 1862D and shared by sets of cores 
1860A - 1860D . For example , one embodiment of processor 
1807 includes 24 cores , each with its own L2 cache , twelve 
shared L2 caches , and twelve shared L3 caches . In this 
embodiment , one or more L2 and L3 caches are shared by 
two adjacent cores . In at least one embodiment , processor 
1807 and graphics acceleration module 1846 connect with 
system memory 1814 , which may include processor memo 
ries 1801 ( 1 ) -1801 ( M ) of FIG . 18A . 
[ 0341 ] In at least one embodiment , coherency is main 
tained for data and instructions stored in various caches 
1862A - 1862D , 1856 and system memory 1814 via inter 
core communication over a coherence bus 1864. In at least 
one embodiment , for example , each cache may have cache 
coherency logic / circuitry associated therewith to communi 
cate to over coherence bus 1864 in response to detected 
reads or writes to particular cache lines . In at least one 
embodiment , a cache snooping protocol is implemented 
over coherence bus 1864 to snoop cache accesses . 
[ 0342 ] In at least one embodiment , a proxy circuit 1825 
communicatively couples graphics acceleration module 
1846 to coherence bus 1864 , allowing graphics acceleration 
module 1846 to participate in a cache coherence protocol as 
a peer of cores 1860A - 1860D . In particular , in at least one 
embodiment , an interface 1835 provides connectivity to 
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proxy circuit 1825 over high - speed link 1840 and an inter 
face 1837 connects graphics acceleration module 1846 to 
high - speed link 1840 . 
[ 0343 ] In at least one embodiment , an accelerator integra 
tion circuit 1836 provides cache management , memory 
access , context management , and interrupt management 
services on behalf of a plurality of graphics processing 
engines 1831 ( 1 ) -1831 ( N ) of graphics acceleration module 
1846. In at least one embodiment , graphics processing 
engines 1831 ( 1 ) -1831 ( N ) may each comprise a separate 
graphics processing unit ( GPU ) . In at least one embodiment , 
graphics processing engines 1831 ( 1 ) -1831 ( N ) alternatively 
may comprise different types of graphics processing engines 
within a GPU , such as graphics execution units , media 
processing engines ( e.g. , video encoders / decoders ) , sam 
plers , and blit engines . In at least one embodiment , graphics 
acceleration module 1846 may be a GPU with a plurality of 
graphics processing engines 1831 ( 1 ) -1831 ( N ) or graphics 
processing engines 1831 ( 1 ) -1831 ( N ) may be individual 
GPUs integrated on a common package , line card , or chip . 
[ 0344 ] In at least one embodiment , accelerator integration 
circuit 1836 includes a memory management unit ( MMU ) 
1839 for performing various memory management functions 
such as virtual - to - physical memory translations ( also 
referred to as effective - to - real memory translations ) and 
memory access protocols for accessing system memory 
1814. In at least one embodiment , MMU 1839 may also 
include a translation lookaside buffer ( TLB ) ( not shown ) for 
caching virtual / effective to physical / real address transla 
tions . In at least one embodiment , a cache 1838 can store 
commands and data for efficient access by graphics process 
ing engines 1831 ( 1 ) -1831 ( N ) . In at least one embodiment , 
data stored in cache 1838 and graphics memories 1833 ( 1 ) 
1833 ( M ) is kept coherent with core caches 1862A - 1862D , 
1856 and system memory 1814 , possibly using a fetch unit 
1844. As mentioned , this may be accomplished via proxy 
circuit 1825 on behalf of cache 1838 and memories 1833 
( 1 ) -1833 ( M ) ( e.g. , sending updates to cache 1838 related to 
modifications / accesses of cache lines on processor caches 
1862A - 1862D , 1856 and receiving updates from cache 
1838 ) . 
[ 0345 ] In at least one embodiment , a set of registers 1845 
store context data for threads executed by graphics process 
ing engines 1831 ( 1 ) -1831 ( N ) and a context management 
circuit 1848 manages thread contexts . For example , context 
management circuit 1848 may perform save and restore 
operations to save and restore contexts of various threads 
during contexts switches ( e.g. , where a first thread is saved 
and a second thread is stored so that a second thread can be 
execute by a graphics processing engine ) . For example , on 
a context switch , context management circuit 1848 may 
store current register values to a designated region in 
memory ( e.g. , identified by a context pointer ) . It may then 
restore register values when returning to a context . In at least 
one embodiment , an interrupt management circuit 1847 
receives and processes interrupts received from system 
devices . 
[ 0346 ] In at least one embodiment , virtual / effective 
addresses from a graphics processing engine 1831 are trans 
lated to real / physical addresses in system memory 1814 by 
MMU 1839. In at least one embodiment , accelerator inte 
gration circuit 1836 supports multiple ( e.g. , 4 , 8 , 16 ) graph 
ics accelerator modules 1846 and / or other accelerator 
devices . In at least one embodiment , graphics accelerator 

module 1846 may be dedicated to a single application 
executed on processor 1807 or may be shared between 
multiple applications . In at least one embodiment , a virtu 
alized graphics execution environment is presented in which 
resources of graphics processing engines 1831 ( 1 ) -1831 ( N ) 
are shared with multiple applications or virtual machines 
( VMs ) . In at least one embodiment , resources may be 
subdivided into " slices ” which are allocated to different 
VMs and / or applications based on processing requirements 
and priorities associated with VMs and / or applications . 
[ 0347 ] In at least one embodiment , accelerator integration 
circuit 1836 performs as a bridge to a system for graphics 
acceleration module 1846 and provides address translation 
and system memory cache services . In addition , in at least 
one embodiment , accelerator integration circuit 1836 may 
provide virtualization facilities for a host processor to man 
age virtualization of graphics processing engines 1831 ( 1 ) 
1831 ( N ) , interrupts , and memory management . 
[ 0348 ] In at least one embodiment , because hardware 
resources of graphics processing engines 1831 ( 1 ) -1831 ( N ) 
are mapped explicitly to a real address space seen by host 
processor 1807 , any host processor can address these 
resources directly using an effective address value . In at least 
one embodiment , one function of accelerator integration 
circuit 1836 is physical separation of graphics processing 
engines 1831 ( 1 ) -1831 ( N ) so that they appear to a system as 
independent units . 
[ 0349 ] In at least one embodiment , one or more graphics 
memories 1833 ( 1 ) -1833 ( M ) are coupled to each of graphics 
processing engines 1831 ( 1 ) -1831 ( N ) , respectively and 
N = M . In at least one embodiment , graphics memories 
1833 ( 1 ) -1833 ( M ) store instructions and data being pro 
cessed by each of graphics processing engines 1831 ( 1 ) -1831 
( N ) . In at least one embodiment , graphics memories 1833 
( 1 ) -1833 ( M ) may be volatile memories such as DRAMS 
( including stacked DRAMS ) , GDDR memory ( e.g. , 
GDDR5 , GDDR6 ) , or HBM , and / or may be non - volatile 
memories such as 3D XPoint or Nano - Ram . 
[ 0350 ] In at least one embodiment , to reduce data traffic 
over high - speed link 1840 , biasing techniques can be used to 
ensure that data stored in graphics memories 1833 ( 1 ) -1833 
( M ) is data that will be used most frequently by graphics 
processing engines 1831 ( 1 ) -1831 ( N ) and preferably not 
used by cores 1860A - 1860D ( at least not frequently ) . Simi 
larly , in at least one embodiment , a biasing mechanism 
attempts to keep data needed by cores ( and preferably not 
graphics processing engines 1831 ( 1 ) -1831 ( N ) ) within 
caches 1862A - 1862D , 1856 and system memory 1814 . 
[ 0351 ] FIG . 18C illustrates another exemplary embodi 
ment in which accelerator integration circuit 1836 is inte 
grated within processor 1807. In this embodiment , graphics 
processing engines 1831 ( 1 ) -1831 ( N ) communicate directly 
over high - speed link 1840 to accelerator integration circuit 
1836 via interface 1837 and interface 1835 ( which , again , 
may be any form of bus or interface protocol ) . In at least one 
embodiment , accelerator integration circuit 1836 may per 
form similar operations as those described with respect to 
FIG . 18B , but potentially at a higher throughput given its 
close proximity to coherence bus 1864 and caches 1862A 
1862D , 1856. In at least one embodiment , an accelerator 
integration circuit supports different programming models 
including a dedicated - process programming model ( no 
graphics acceleration module virtualization ) and shared pro 
gramming models ( with virtualization ) , which may include 

a 
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process , a hypervisor initializes accelerator integration cir 
cuit 1836 for an owning partition and an operating system 
initializes accelerator integration circuit 1836 for an owning 
process when graphics acceleration module 1846 is 
assigned . 
[ 0358 ] In at least one embodiment , in operation , a WD 
fetch unit 1891 in accelerator integration slice 1890 fetches 
next WD 1884 , which includes an indication of work to be 
done by one or more graphics processing engines of graph 
ics acceleration module 1846. In at least one embodiment , 
data from WD 1884 may be stored in registers 1845 and used 
by MMU 1839 , interrupt management circuit 1847 and / or 
context management circuit 1848 as illustrated . For 
example , one embodiment of MMU 1839 includes segment / 
page walk circuitry for accessing segment / page tables 1886 
within an OS virtual address space 1885. In at least one 
embodiment , interrupt management circuit 1847 may pro 
cess interrupt events 1892 received from graphics accelera 
tion module 1846. In at least one embodiment , when per 
forming graphics operations , an effective address 1893 
generated by a graphics processing engine 1831 ( 1 ) -1831 ( N ) 
is translated to a real address by MMU 1839 . 
[ 0359 ] In at least one embodiment , registers 1845 are 
duplicated for each graphics processing engine 1831 ( 1 ) 
1831 ( N ) and / or graphics acceleration module 1846 and may 
be initialized by a hypervisor or an operating system . In at 
least one embodiment , each of these duplicated registers 
may be included in an accelerator integration slice 1890 . 
Exemplary registers that may be initialized by a hypervisor 
are shown in Table 1 . 

TABLE 1 

programming models which are controlled by accelerator 
integration circuit 1836 and programming models which are 
controlled by graphics acceleration module 1846 . 
[ 0352 ] In at least one embodiment , graphics processing 
engines 1831 ( 1 ) -1831 ( N ) are dedicated to a single applica 
tion or process under a single operating system . In at least 
one embodiment , a single application can funnel other 
application requests to graphics processing engines 1831 ( 1 ) 
1831 ( N ) , providing virtualization within a VM / partition . 
[ 0353 ] In at least one embodiment , graphics processing 
engines 1831 ( 1 ) -1831 ( N ) , may be shared by multiple 
VM / application partitions . In at least one embodiment , 
shared models may use a system hypervisor to virtualize 
graphics processing engines 1831 ( 1 ) -1831 ( N ) to allow 
access by each operating system . In at least one embodi 
ment , for single - partition systems without a hypervisor , 
graphics processing engines 1831 ( 1 ) -1831 ( N ) are owned by 
an operating system . In at least one embodiment , an oper 
ating system can virtualize graphics processing engines 
1831 ( 1 ) -1831 ( N ) to provide access to each process or appli 
cation . 
[ 0354 ] In at least one embodiment , graphics acceleration 
module 1846 or an individual graphics processing engine 
1831 ( 1 ) -1831 ( N ) selects a process element using a process 
handle . In at least one embodiment , process elements are 
stored in system memory 1814 and are addressable using an 
effective address to real address translation technique 
described herein . In at least one embodiment , a process 
handle may be an implementation - specific value provided to 
a host process when registering its context with graphics 
processing engine 1831 ( 1 ) -1831 ( N ) ( that is , calling system 
software to add a process element to a process element 
linked list ) . In at least one embodiment , a lower 16 - bits of 
a process handle may be an offset of a process element 
within a process element linked list . 
[ 0355 ] FIG . 18D illustrates an exemplary accelerator inte 
gration slice 1890. In at least one embodiment , a “ slice ” 
comprises a specified portion of processing resources of 
accelerator integration circuit 1836. In at least one embodi 
ment , an application is effective address space 1882 within 
system memory 1814 stores process elements 1883. In at 
least one embodiment , process elements 1883 are stored in 
response to GPU invocations 1881 from applications 1880 
executed on processor 1807. In at least one embodiment , a 
process element 1883 contains process state for correspond 
ing application 1880. In at least one embodiment , a work 
descriptor ( WD ) 1884 contained in process element 1883 
can be a single job requested by an application or may 
contain a pointer to a queue of jobs . In at least one embodi 
ment , WD 1884 is a pointer to a job request queue in an 
application's effective address space 1882 . 
[ 0356 ] In at least one embodiment , graphics acceleration 
module 1846 and / or individual graphics processing engines 
1831 ( 1 ) -1831 ( N ) can be shared by all or a subset of pro 
cesses in a system . In at least one embodiment , an infra 
structure for setting up process states and sending a WD 
1884 to a graphics acceleration module 1846 to start a job in 
a virtualized environment may be included . 
[ 0357 ] In at least one embodiment , a dedicated - process 
programming model is implementation - specific . In at least 
one embodiment , in this model , a single process owns 
graphics acceleration module 1846 or an individual graphics 
processing engine 1831. In at least one embodiment , when 
graphics acceleration module 1846 is owned by a single 

Hypervisor Initialized Registers 

Register 
# Description 
1 Slice Control Register 
2 Real Address ( RA ) Scheduled Processes Area Pointer 
3 Authority Mask Override Register 
4 Interrupt Vector Table Entry Offset 
5 Interrupt Vector Table Entry Limit 
6 State Register 
7 Logical Partition ID 
8 Real address ( RA ) Hypervisor Accelerator Utilization Record 

Pointer 
9 Storage Description Register 

[ 0360 ] Exemplary registers that may be initialized by an 
operating system are shown in Table 2 . 

TABLE 2 

Operating System Initialized Registers 

Register 
# Description 
1 
2 
3 

Process and Thread Identification 
Effective Address ( EA ) Context Save / Restore Pointer 
Virtual Address ( VA ) Accelerator Utilization Record Pointer 
Virtual Address ( VA ) Storage Segment Table Pointer 
Authority Mask 
Work descriptor 

4 . 
5 
6 

[ 0361 ] In at least one embodiment , each WD 1884 is 
specific to a particular graphics acceleration module 1846 
and / or graphics processing engines 1831 ( 1 ) -1831 ( N ) . In at 






















































































